1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
64 
65 #include <asm/cacheflush.h>
66 
67 #include "fec.h"
68 
69 static void set_multicast_list(struct net_device *ndev);
70 static void fec_enet_itr_coal_init(struct net_device *ndev);
71 
72 #define DRIVER_NAME	"fec"
73 
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
75 
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE	(1 << 5)
78 #define FEC_ENET_RSEM_V	0x84
79 #define FEC_ENET_RSFL_V	16
80 #define FEC_ENET_RAEM_V	0x8
81 #define FEC_ENET_RAFL_V	0x8
82 #define FEC_ENET_OPD_V	0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
84 
85 static struct platform_device_id fec_devtype[] = {
86 	{
87 		/* keep it for coldfire */
88 		.name = DRIVER_NAME,
89 		.driver_data = 0,
90 	}, {
91 		.name = "imx25-fec",
92 		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR,
93 	}, {
94 		.name = "imx27-fec",
95 		.driver_data = FEC_QUIRK_MIB_CLEAR,
96 	}, {
97 		.name = "imx28-fec",
98 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
99 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
100 	}, {
101 		.name = "imx6q-fec",
102 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
103 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
104 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
105 				FEC_QUIRK_HAS_RACC,
106 	}, {
107 		.name = "mvf600-fec",
108 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
109 	}, {
110 		.name = "imx6sx-fec",
111 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
114 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
115 				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
116 	}, {
117 		.name = "imx6ul-fec",
118 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
121 				FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
122 				FEC_QUIRK_HAS_COALESCE,
123 	}, {
124 		/* sentinel */
125 	}
126 };
127 MODULE_DEVICE_TABLE(platform, fec_devtype);
128 
129 enum imx_fec_type {
130 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
131 	IMX27_FEC,	/* runs on i.mx27/35/51 */
132 	IMX28_FEC,
133 	IMX6Q_FEC,
134 	MVF600_FEC,
135 	IMX6SX_FEC,
136 	IMX6UL_FEC,
137 };
138 
139 static const struct of_device_id fec_dt_ids[] = {
140 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
141 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
142 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
143 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
144 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
145 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
146 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
147 	{ /* sentinel */ }
148 };
149 MODULE_DEVICE_TABLE(of, fec_dt_ids);
150 
151 static unsigned char macaddr[ETH_ALEN];
152 module_param_array(macaddr, byte, NULL, 0);
153 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
154 
155 #if defined(CONFIG_M5272)
156 /*
157  * Some hardware gets it MAC address out of local flash memory.
158  * if this is non-zero then assume it is the address to get MAC from.
159  */
160 #if defined(CONFIG_NETtel)
161 #define	FEC_FLASHMAC	0xf0006006
162 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
163 #define	FEC_FLASHMAC	0xf0006000
164 #elif defined(CONFIG_CANCam)
165 #define	FEC_FLASHMAC	0xf0020000
166 #elif defined (CONFIG_M5272C3)
167 #define	FEC_FLASHMAC	(0xffe04000 + 4)
168 #elif defined(CONFIG_MOD5272)
169 #define FEC_FLASHMAC	0xffc0406b
170 #else
171 #define	FEC_FLASHMAC	0
172 #endif
173 #endif /* CONFIG_M5272 */
174 
175 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
176  *
177  * 2048 byte skbufs are allocated. However, alignment requirements
178  * varies between FEC variants. Worst case is 64, so round down by 64.
179  */
180 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
181 #define PKT_MINBUF_SIZE		64
182 
183 /* FEC receive acceleration */
184 #define FEC_RACC_IPDIS		(1 << 1)
185 #define FEC_RACC_PRODIS		(1 << 2)
186 #define FEC_RACC_SHIFT16	BIT(7)
187 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
188 
189 /* MIB Control Register */
190 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
191 
192 /*
193  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
194  * size bits. Other FEC hardware does not, so we need to take that into
195  * account when setting it.
196  */
197 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
198     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
199     defined(CONFIG_ARM64)
200 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
201 #else
202 #define	OPT_FRAME_SIZE	0
203 #endif
204 
205 /* FEC MII MMFR bits definition */
206 #define FEC_MMFR_ST		(1 << 30)
207 #define FEC_MMFR_OP_READ	(2 << 28)
208 #define FEC_MMFR_OP_WRITE	(1 << 28)
209 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
210 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
211 #define FEC_MMFR_TA		(2 << 16)
212 #define FEC_MMFR_DATA(v)	(v & 0xffff)
213 /* FEC ECR bits definition */
214 #define FEC_ECR_MAGICEN		(1 << 2)
215 #define FEC_ECR_SLEEP		(1 << 3)
216 
217 #define FEC_MII_TIMEOUT		30000 /* us */
218 
219 /* Transmitter timeout */
220 #define TX_TIMEOUT (2 * HZ)
221 
222 #define FEC_PAUSE_FLAG_AUTONEG	0x1
223 #define FEC_PAUSE_FLAG_ENABLE	0x2
224 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
225 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
226 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
227 
228 #define COPYBREAK_DEFAULT	256
229 
230 /* Max number of allowed TCP segments for software TSO */
231 #define FEC_MAX_TSO_SEGS	100
232 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
233 
234 #define IS_TSO_HEADER(txq, addr) \
235 	((addr >= txq->tso_hdrs_dma) && \
236 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
237 
238 static int mii_cnt;
239 
240 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
241 					     struct bufdesc_prop *bd)
242 {
243 	return (bdp >= bd->last) ? bd->base
244 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
245 }
246 
247 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
248 					     struct bufdesc_prop *bd)
249 {
250 	return (bdp <= bd->base) ? bd->last
251 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
252 }
253 
254 static int fec_enet_get_bd_index(struct bufdesc *bdp,
255 				 struct bufdesc_prop *bd)
256 {
257 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
258 }
259 
260 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
261 {
262 	int entries;
263 
264 	entries = (((const char *)txq->dirty_tx -
265 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
266 
267 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
268 }
269 
270 static void swap_buffer(void *bufaddr, int len)
271 {
272 	int i;
273 	unsigned int *buf = bufaddr;
274 
275 	for (i = 0; i < len; i += 4, buf++)
276 		swab32s(buf);
277 }
278 
279 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
280 {
281 	int i;
282 	unsigned int *src = src_buf;
283 	unsigned int *dst = dst_buf;
284 
285 	for (i = 0; i < len; i += 4, src++, dst++)
286 		*dst = swab32p(src);
287 }
288 
289 static void fec_dump(struct net_device *ndev)
290 {
291 	struct fec_enet_private *fep = netdev_priv(ndev);
292 	struct bufdesc *bdp;
293 	struct fec_enet_priv_tx_q *txq;
294 	int index = 0;
295 
296 	netdev_info(ndev, "TX ring dump\n");
297 	pr_info("Nr     SC     addr       len  SKB\n");
298 
299 	txq = fep->tx_queue[0];
300 	bdp = txq->bd.base;
301 
302 	do {
303 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
304 			index,
305 			bdp == txq->bd.cur ? 'S' : ' ',
306 			bdp == txq->dirty_tx ? 'H' : ' ',
307 			fec16_to_cpu(bdp->cbd_sc),
308 			fec32_to_cpu(bdp->cbd_bufaddr),
309 			fec16_to_cpu(bdp->cbd_datlen),
310 			txq->tx_skbuff[index]);
311 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
312 		index++;
313 	} while (bdp != txq->bd.base);
314 }
315 
316 static inline bool is_ipv4_pkt(struct sk_buff *skb)
317 {
318 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
319 }
320 
321 static int
322 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
323 {
324 	/* Only run for packets requiring a checksum. */
325 	if (skb->ip_summed != CHECKSUM_PARTIAL)
326 		return 0;
327 
328 	if (unlikely(skb_cow_head(skb, 0)))
329 		return -1;
330 
331 	if (is_ipv4_pkt(skb))
332 		ip_hdr(skb)->check = 0;
333 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
334 
335 	return 0;
336 }
337 
338 static struct bufdesc *
339 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
340 			     struct sk_buff *skb,
341 			     struct net_device *ndev)
342 {
343 	struct fec_enet_private *fep = netdev_priv(ndev);
344 	struct bufdesc *bdp = txq->bd.cur;
345 	struct bufdesc_ex *ebdp;
346 	int nr_frags = skb_shinfo(skb)->nr_frags;
347 	int frag, frag_len;
348 	unsigned short status;
349 	unsigned int estatus = 0;
350 	skb_frag_t *this_frag;
351 	unsigned int index;
352 	void *bufaddr;
353 	dma_addr_t addr;
354 	int i;
355 
356 	for (frag = 0; frag < nr_frags; frag++) {
357 		this_frag = &skb_shinfo(skb)->frags[frag];
358 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
359 		ebdp = (struct bufdesc_ex *)bdp;
360 
361 		status = fec16_to_cpu(bdp->cbd_sc);
362 		status &= ~BD_ENET_TX_STATS;
363 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
364 		frag_len = skb_shinfo(skb)->frags[frag].size;
365 
366 		/* Handle the last BD specially */
367 		if (frag == nr_frags - 1) {
368 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
369 			if (fep->bufdesc_ex) {
370 				estatus |= BD_ENET_TX_INT;
371 				if (unlikely(skb_shinfo(skb)->tx_flags &
372 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
373 					estatus |= BD_ENET_TX_TS;
374 			}
375 		}
376 
377 		if (fep->bufdesc_ex) {
378 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
379 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
380 			if (skb->ip_summed == CHECKSUM_PARTIAL)
381 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
382 			ebdp->cbd_bdu = 0;
383 			ebdp->cbd_esc = cpu_to_fec32(estatus);
384 		}
385 
386 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
387 
388 		index = fec_enet_get_bd_index(bdp, &txq->bd);
389 		if (((unsigned long) bufaddr) & fep->tx_align ||
390 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
391 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
392 			bufaddr = txq->tx_bounce[index];
393 
394 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
395 				swap_buffer(bufaddr, frag_len);
396 		}
397 
398 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
399 				      DMA_TO_DEVICE);
400 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
401 			if (net_ratelimit())
402 				netdev_err(ndev, "Tx DMA memory map failed\n");
403 			goto dma_mapping_error;
404 		}
405 
406 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
407 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
408 		/* Make sure the updates to rest of the descriptor are
409 		 * performed before transferring ownership.
410 		 */
411 		wmb();
412 		bdp->cbd_sc = cpu_to_fec16(status);
413 	}
414 
415 	return bdp;
416 dma_mapping_error:
417 	bdp = txq->bd.cur;
418 	for (i = 0; i < frag; i++) {
419 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
420 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
421 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
422 	}
423 	return ERR_PTR(-ENOMEM);
424 }
425 
426 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
427 				   struct sk_buff *skb, struct net_device *ndev)
428 {
429 	struct fec_enet_private *fep = netdev_priv(ndev);
430 	int nr_frags = skb_shinfo(skb)->nr_frags;
431 	struct bufdesc *bdp, *last_bdp;
432 	void *bufaddr;
433 	dma_addr_t addr;
434 	unsigned short status;
435 	unsigned short buflen;
436 	unsigned int estatus = 0;
437 	unsigned int index;
438 	int entries_free;
439 
440 	entries_free = fec_enet_get_free_txdesc_num(txq);
441 	if (entries_free < MAX_SKB_FRAGS + 1) {
442 		dev_kfree_skb_any(skb);
443 		if (net_ratelimit())
444 			netdev_err(ndev, "NOT enough BD for SG!\n");
445 		return NETDEV_TX_OK;
446 	}
447 
448 	/* Protocol checksum off-load for TCP and UDP. */
449 	if (fec_enet_clear_csum(skb, ndev)) {
450 		dev_kfree_skb_any(skb);
451 		return NETDEV_TX_OK;
452 	}
453 
454 	/* Fill in a Tx ring entry */
455 	bdp = txq->bd.cur;
456 	last_bdp = bdp;
457 	status = fec16_to_cpu(bdp->cbd_sc);
458 	status &= ~BD_ENET_TX_STATS;
459 
460 	/* Set buffer length and buffer pointer */
461 	bufaddr = skb->data;
462 	buflen = skb_headlen(skb);
463 
464 	index = fec_enet_get_bd_index(bdp, &txq->bd);
465 	if (((unsigned long) bufaddr) & fep->tx_align ||
466 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
467 		memcpy(txq->tx_bounce[index], skb->data, buflen);
468 		bufaddr = txq->tx_bounce[index];
469 
470 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
471 			swap_buffer(bufaddr, buflen);
472 	}
473 
474 	/* Push the data cache so the CPM does not get stale memory data. */
475 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
476 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
477 		dev_kfree_skb_any(skb);
478 		if (net_ratelimit())
479 			netdev_err(ndev, "Tx DMA memory map failed\n");
480 		return NETDEV_TX_OK;
481 	}
482 
483 	if (nr_frags) {
484 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
485 		if (IS_ERR(last_bdp)) {
486 			dma_unmap_single(&fep->pdev->dev, addr,
487 					 buflen, DMA_TO_DEVICE);
488 			dev_kfree_skb_any(skb);
489 			return NETDEV_TX_OK;
490 		}
491 	} else {
492 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
493 		if (fep->bufdesc_ex) {
494 			estatus = BD_ENET_TX_INT;
495 			if (unlikely(skb_shinfo(skb)->tx_flags &
496 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
497 				estatus |= BD_ENET_TX_TS;
498 		}
499 	}
500 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
501 	bdp->cbd_datlen = cpu_to_fec16(buflen);
502 
503 	if (fep->bufdesc_ex) {
504 
505 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
506 
507 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
508 			fep->hwts_tx_en))
509 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
510 
511 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
512 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
513 
514 		if (skb->ip_summed == CHECKSUM_PARTIAL)
515 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
516 
517 		ebdp->cbd_bdu = 0;
518 		ebdp->cbd_esc = cpu_to_fec32(estatus);
519 	}
520 
521 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
522 	/* Save skb pointer */
523 	txq->tx_skbuff[index] = skb;
524 
525 	/* Make sure the updates to rest of the descriptor are performed before
526 	 * transferring ownership.
527 	 */
528 	wmb();
529 
530 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
531 	 * it's the last BD of the frame, and to put the CRC on the end.
532 	 */
533 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
534 	bdp->cbd_sc = cpu_to_fec16(status);
535 
536 	/* If this was the last BD in the ring, start at the beginning again. */
537 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
538 
539 	skb_tx_timestamp(skb);
540 
541 	/* Make sure the update to bdp and tx_skbuff are performed before
542 	 * txq->bd.cur.
543 	 */
544 	wmb();
545 	txq->bd.cur = bdp;
546 
547 	/* Trigger transmission start */
548 	writel(0, txq->bd.reg_desc_active);
549 
550 	return 0;
551 }
552 
553 static int
554 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
555 			  struct net_device *ndev,
556 			  struct bufdesc *bdp, int index, char *data,
557 			  int size, bool last_tcp, bool is_last)
558 {
559 	struct fec_enet_private *fep = netdev_priv(ndev);
560 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
561 	unsigned short status;
562 	unsigned int estatus = 0;
563 	dma_addr_t addr;
564 
565 	status = fec16_to_cpu(bdp->cbd_sc);
566 	status &= ~BD_ENET_TX_STATS;
567 
568 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
569 
570 	if (((unsigned long) data) & fep->tx_align ||
571 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
572 		memcpy(txq->tx_bounce[index], data, size);
573 		data = txq->tx_bounce[index];
574 
575 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
576 			swap_buffer(data, size);
577 	}
578 
579 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
580 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
581 		dev_kfree_skb_any(skb);
582 		if (net_ratelimit())
583 			netdev_err(ndev, "Tx DMA memory map failed\n");
584 		return NETDEV_TX_BUSY;
585 	}
586 
587 	bdp->cbd_datlen = cpu_to_fec16(size);
588 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
589 
590 	if (fep->bufdesc_ex) {
591 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
592 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
593 		if (skb->ip_summed == CHECKSUM_PARTIAL)
594 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
595 		ebdp->cbd_bdu = 0;
596 		ebdp->cbd_esc = cpu_to_fec32(estatus);
597 	}
598 
599 	/* Handle the last BD specially */
600 	if (last_tcp)
601 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
602 	if (is_last) {
603 		status |= BD_ENET_TX_INTR;
604 		if (fep->bufdesc_ex)
605 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
606 	}
607 
608 	bdp->cbd_sc = cpu_to_fec16(status);
609 
610 	return 0;
611 }
612 
613 static int
614 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
615 			 struct sk_buff *skb, struct net_device *ndev,
616 			 struct bufdesc *bdp, int index)
617 {
618 	struct fec_enet_private *fep = netdev_priv(ndev);
619 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
620 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
621 	void *bufaddr;
622 	unsigned long dmabuf;
623 	unsigned short status;
624 	unsigned int estatus = 0;
625 
626 	status = fec16_to_cpu(bdp->cbd_sc);
627 	status &= ~BD_ENET_TX_STATS;
628 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
629 
630 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
631 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
632 	if (((unsigned long)bufaddr) & fep->tx_align ||
633 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
634 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
635 		bufaddr = txq->tx_bounce[index];
636 
637 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
638 			swap_buffer(bufaddr, hdr_len);
639 
640 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
641 					hdr_len, DMA_TO_DEVICE);
642 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
643 			dev_kfree_skb_any(skb);
644 			if (net_ratelimit())
645 				netdev_err(ndev, "Tx DMA memory map failed\n");
646 			return NETDEV_TX_BUSY;
647 		}
648 	}
649 
650 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
651 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
652 
653 	if (fep->bufdesc_ex) {
654 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
655 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
656 		if (skb->ip_summed == CHECKSUM_PARTIAL)
657 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
658 		ebdp->cbd_bdu = 0;
659 		ebdp->cbd_esc = cpu_to_fec32(estatus);
660 	}
661 
662 	bdp->cbd_sc = cpu_to_fec16(status);
663 
664 	return 0;
665 }
666 
667 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
668 				   struct sk_buff *skb,
669 				   struct net_device *ndev)
670 {
671 	struct fec_enet_private *fep = netdev_priv(ndev);
672 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
673 	int total_len, data_left;
674 	struct bufdesc *bdp = txq->bd.cur;
675 	struct tso_t tso;
676 	unsigned int index = 0;
677 	int ret;
678 
679 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
680 		dev_kfree_skb_any(skb);
681 		if (net_ratelimit())
682 			netdev_err(ndev, "NOT enough BD for TSO!\n");
683 		return NETDEV_TX_OK;
684 	}
685 
686 	/* Protocol checksum off-load for TCP and UDP. */
687 	if (fec_enet_clear_csum(skb, ndev)) {
688 		dev_kfree_skb_any(skb);
689 		return NETDEV_TX_OK;
690 	}
691 
692 	/* Initialize the TSO handler, and prepare the first payload */
693 	tso_start(skb, &tso);
694 
695 	total_len = skb->len - hdr_len;
696 	while (total_len > 0) {
697 		char *hdr;
698 
699 		index = fec_enet_get_bd_index(bdp, &txq->bd);
700 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
701 		total_len -= data_left;
702 
703 		/* prepare packet headers: MAC + IP + TCP */
704 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
705 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
706 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
707 		if (ret)
708 			goto err_release;
709 
710 		while (data_left > 0) {
711 			int size;
712 
713 			size = min_t(int, tso.size, data_left);
714 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
715 			index = fec_enet_get_bd_index(bdp, &txq->bd);
716 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
717 							bdp, index,
718 							tso.data, size,
719 							size == data_left,
720 							total_len == 0);
721 			if (ret)
722 				goto err_release;
723 
724 			data_left -= size;
725 			tso_build_data(skb, &tso, size);
726 		}
727 
728 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
729 	}
730 
731 	/* Save skb pointer */
732 	txq->tx_skbuff[index] = skb;
733 
734 	skb_tx_timestamp(skb);
735 	txq->bd.cur = bdp;
736 
737 	/* Trigger transmission start */
738 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
739 	    !readl(txq->bd.reg_desc_active) ||
740 	    !readl(txq->bd.reg_desc_active) ||
741 	    !readl(txq->bd.reg_desc_active) ||
742 	    !readl(txq->bd.reg_desc_active))
743 		writel(0, txq->bd.reg_desc_active);
744 
745 	return 0;
746 
747 err_release:
748 	/* TODO: Release all used data descriptors for TSO */
749 	return ret;
750 }
751 
752 static netdev_tx_t
753 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
754 {
755 	struct fec_enet_private *fep = netdev_priv(ndev);
756 	int entries_free;
757 	unsigned short queue;
758 	struct fec_enet_priv_tx_q *txq;
759 	struct netdev_queue *nq;
760 	int ret;
761 
762 	queue = skb_get_queue_mapping(skb);
763 	txq = fep->tx_queue[queue];
764 	nq = netdev_get_tx_queue(ndev, queue);
765 
766 	if (skb_is_gso(skb))
767 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
768 	else
769 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
770 	if (ret)
771 		return ret;
772 
773 	entries_free = fec_enet_get_free_txdesc_num(txq);
774 	if (entries_free <= txq->tx_stop_threshold)
775 		netif_tx_stop_queue(nq);
776 
777 	return NETDEV_TX_OK;
778 }
779 
780 /* Init RX & TX buffer descriptors
781  */
782 static void fec_enet_bd_init(struct net_device *dev)
783 {
784 	struct fec_enet_private *fep = netdev_priv(dev);
785 	struct fec_enet_priv_tx_q *txq;
786 	struct fec_enet_priv_rx_q *rxq;
787 	struct bufdesc *bdp;
788 	unsigned int i;
789 	unsigned int q;
790 
791 	for (q = 0; q < fep->num_rx_queues; q++) {
792 		/* Initialize the receive buffer descriptors. */
793 		rxq = fep->rx_queue[q];
794 		bdp = rxq->bd.base;
795 
796 		for (i = 0; i < rxq->bd.ring_size; i++) {
797 
798 			/* Initialize the BD for every fragment in the page. */
799 			if (bdp->cbd_bufaddr)
800 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
801 			else
802 				bdp->cbd_sc = cpu_to_fec16(0);
803 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
804 		}
805 
806 		/* Set the last buffer to wrap */
807 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
808 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
809 
810 		rxq->bd.cur = rxq->bd.base;
811 	}
812 
813 	for (q = 0; q < fep->num_tx_queues; q++) {
814 		/* ...and the same for transmit */
815 		txq = fep->tx_queue[q];
816 		bdp = txq->bd.base;
817 		txq->bd.cur = bdp;
818 
819 		for (i = 0; i < txq->bd.ring_size; i++) {
820 			/* Initialize the BD for every fragment in the page. */
821 			bdp->cbd_sc = cpu_to_fec16(0);
822 			if (bdp->cbd_bufaddr &&
823 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
824 				dma_unmap_single(&fep->pdev->dev,
825 						 fec32_to_cpu(bdp->cbd_bufaddr),
826 						 fec16_to_cpu(bdp->cbd_datlen),
827 						 DMA_TO_DEVICE);
828 			if (txq->tx_skbuff[i]) {
829 				dev_kfree_skb_any(txq->tx_skbuff[i]);
830 				txq->tx_skbuff[i] = NULL;
831 			}
832 			bdp->cbd_bufaddr = cpu_to_fec32(0);
833 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
834 		}
835 
836 		/* Set the last buffer to wrap */
837 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
838 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
839 		txq->dirty_tx = bdp;
840 	}
841 }
842 
843 static void fec_enet_active_rxring(struct net_device *ndev)
844 {
845 	struct fec_enet_private *fep = netdev_priv(ndev);
846 	int i;
847 
848 	for (i = 0; i < fep->num_rx_queues; i++)
849 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
850 }
851 
852 static void fec_enet_enable_ring(struct net_device *ndev)
853 {
854 	struct fec_enet_private *fep = netdev_priv(ndev);
855 	struct fec_enet_priv_tx_q *txq;
856 	struct fec_enet_priv_rx_q *rxq;
857 	int i;
858 
859 	for (i = 0; i < fep->num_rx_queues; i++) {
860 		rxq = fep->rx_queue[i];
861 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
862 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
863 
864 		/* enable DMA1/2 */
865 		if (i)
866 			writel(RCMR_MATCHEN | RCMR_CMP(i),
867 			       fep->hwp + FEC_RCMR(i));
868 	}
869 
870 	for (i = 0; i < fep->num_tx_queues; i++) {
871 		txq = fep->tx_queue[i];
872 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
873 
874 		/* enable DMA1/2 */
875 		if (i)
876 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
877 			       fep->hwp + FEC_DMA_CFG(i));
878 	}
879 }
880 
881 static void fec_enet_reset_skb(struct net_device *ndev)
882 {
883 	struct fec_enet_private *fep = netdev_priv(ndev);
884 	struct fec_enet_priv_tx_q *txq;
885 	int i, j;
886 
887 	for (i = 0; i < fep->num_tx_queues; i++) {
888 		txq = fep->tx_queue[i];
889 
890 		for (j = 0; j < txq->bd.ring_size; j++) {
891 			if (txq->tx_skbuff[j]) {
892 				dev_kfree_skb_any(txq->tx_skbuff[j]);
893 				txq->tx_skbuff[j] = NULL;
894 			}
895 		}
896 	}
897 }
898 
899 /*
900  * This function is called to start or restart the FEC during a link
901  * change, transmit timeout, or to reconfigure the FEC.  The network
902  * packet processing for this device must be stopped before this call.
903  */
904 static void
905 fec_restart(struct net_device *ndev)
906 {
907 	struct fec_enet_private *fep = netdev_priv(ndev);
908 	u32 val;
909 	u32 temp_mac[2];
910 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
911 	u32 ecntl = 0x2; /* ETHEREN */
912 
913 	/* Whack a reset.  We should wait for this.
914 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
915 	 * instead of reset MAC itself.
916 	 */
917 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
918 		writel(0, fep->hwp + FEC_ECNTRL);
919 	} else {
920 		writel(1, fep->hwp + FEC_ECNTRL);
921 		udelay(10);
922 	}
923 
924 	/*
925 	 * enet-mac reset will reset mac address registers too,
926 	 * so need to reconfigure it.
927 	 */
928 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
929 	writel((__force u32)cpu_to_be32(temp_mac[0]),
930 	       fep->hwp + FEC_ADDR_LOW);
931 	writel((__force u32)cpu_to_be32(temp_mac[1]),
932 	       fep->hwp + FEC_ADDR_HIGH);
933 
934 	/* Clear any outstanding interrupt. */
935 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
936 
937 	fec_enet_bd_init(ndev);
938 
939 	fec_enet_enable_ring(ndev);
940 
941 	/* Reset tx SKB buffers. */
942 	fec_enet_reset_skb(ndev);
943 
944 	/* Enable MII mode */
945 	if (fep->full_duplex == DUPLEX_FULL) {
946 		/* FD enable */
947 		writel(0x04, fep->hwp + FEC_X_CNTRL);
948 	} else {
949 		/* No Rcv on Xmit */
950 		rcntl |= 0x02;
951 		writel(0x0, fep->hwp + FEC_X_CNTRL);
952 	}
953 
954 	/* Set MII speed */
955 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
956 
957 #if !defined(CONFIG_M5272)
958 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
959 		val = readl(fep->hwp + FEC_RACC);
960 		/* align IP header */
961 		val |= FEC_RACC_SHIFT16;
962 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
963 			/* set RX checksum */
964 			val |= FEC_RACC_OPTIONS;
965 		else
966 			val &= ~FEC_RACC_OPTIONS;
967 		writel(val, fep->hwp + FEC_RACC);
968 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
969 	}
970 #endif
971 
972 	/*
973 	 * The phy interface and speed need to get configured
974 	 * differently on enet-mac.
975 	 */
976 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
977 		/* Enable flow control and length check */
978 		rcntl |= 0x40000000 | 0x00000020;
979 
980 		/* RGMII, RMII or MII */
981 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
982 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
983 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
984 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
985 			rcntl |= (1 << 6);
986 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
987 			rcntl |= (1 << 8);
988 		else
989 			rcntl &= ~(1 << 8);
990 
991 		/* 1G, 100M or 10M */
992 		if (ndev->phydev) {
993 			if (ndev->phydev->speed == SPEED_1000)
994 				ecntl |= (1 << 5);
995 			else if (ndev->phydev->speed == SPEED_100)
996 				rcntl &= ~(1 << 9);
997 			else
998 				rcntl |= (1 << 9);
999 		}
1000 	} else {
1001 #ifdef FEC_MIIGSK_ENR
1002 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1003 			u32 cfgr;
1004 			/* disable the gasket and wait */
1005 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1006 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1007 				udelay(1);
1008 
1009 			/*
1010 			 * configure the gasket:
1011 			 *   RMII, 50 MHz, no loopback, no echo
1012 			 *   MII, 25 MHz, no loopback, no echo
1013 			 */
1014 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1015 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1016 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1017 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1018 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1019 
1020 			/* re-enable the gasket */
1021 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1022 		}
1023 #endif
1024 	}
1025 
1026 #if !defined(CONFIG_M5272)
1027 	/* enable pause frame*/
1028 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1029 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1030 	     ndev->phydev && ndev->phydev->pause)) {
1031 		rcntl |= FEC_ENET_FCE;
1032 
1033 		/* set FIFO threshold parameter to reduce overrun */
1034 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1035 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1036 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1037 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1038 
1039 		/* OPD */
1040 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1041 	} else {
1042 		rcntl &= ~FEC_ENET_FCE;
1043 	}
1044 #endif /* !defined(CONFIG_M5272) */
1045 
1046 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1047 
1048 	/* Setup multicast filter. */
1049 	set_multicast_list(ndev);
1050 #ifndef CONFIG_M5272
1051 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1052 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1053 #endif
1054 
1055 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1056 		/* enable ENET endian swap */
1057 		ecntl |= (1 << 8);
1058 		/* enable ENET store and forward mode */
1059 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1060 	}
1061 
1062 	if (fep->bufdesc_ex)
1063 		ecntl |= (1 << 4);
1064 
1065 #ifndef CONFIG_M5272
1066 	/* Enable the MIB statistic event counters */
1067 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1068 #endif
1069 
1070 	/* And last, enable the transmit and receive processing */
1071 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1072 	fec_enet_active_rxring(ndev);
1073 
1074 	if (fep->bufdesc_ex)
1075 		fec_ptp_start_cyclecounter(ndev);
1076 
1077 	/* Enable interrupts we wish to service */
1078 	if (fep->link)
1079 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1080 	else
1081 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1082 
1083 	/* Init the interrupt coalescing */
1084 	fec_enet_itr_coal_init(ndev);
1085 
1086 }
1087 
1088 static void
1089 fec_stop(struct net_device *ndev)
1090 {
1091 	struct fec_enet_private *fep = netdev_priv(ndev);
1092 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1093 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1094 	u32 val;
1095 
1096 	/* We cannot expect a graceful transmit stop without link !!! */
1097 	if (fep->link) {
1098 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1099 		udelay(10);
1100 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1101 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1102 	}
1103 
1104 	/* Whack a reset.  We should wait for this.
1105 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1106 	 * instead of reset MAC itself.
1107 	 */
1108 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1109 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1110 			writel(0, fep->hwp + FEC_ECNTRL);
1111 		} else {
1112 			writel(1, fep->hwp + FEC_ECNTRL);
1113 			udelay(10);
1114 		}
1115 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1116 	} else {
1117 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1118 		val = readl(fep->hwp + FEC_ECNTRL);
1119 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1120 		writel(val, fep->hwp + FEC_ECNTRL);
1121 
1122 		if (pdata && pdata->sleep_mode_enable)
1123 			pdata->sleep_mode_enable(true);
1124 	}
1125 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1126 
1127 	/* We have to keep ENET enabled to have MII interrupt stay working */
1128 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1129 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1130 		writel(2, fep->hwp + FEC_ECNTRL);
1131 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1132 	}
1133 }
1134 
1135 
1136 static void
1137 fec_timeout(struct net_device *ndev)
1138 {
1139 	struct fec_enet_private *fep = netdev_priv(ndev);
1140 
1141 	fec_dump(ndev);
1142 
1143 	ndev->stats.tx_errors++;
1144 
1145 	schedule_work(&fep->tx_timeout_work);
1146 }
1147 
1148 static void fec_enet_timeout_work(struct work_struct *work)
1149 {
1150 	struct fec_enet_private *fep =
1151 		container_of(work, struct fec_enet_private, tx_timeout_work);
1152 	struct net_device *ndev = fep->netdev;
1153 
1154 	rtnl_lock();
1155 	if (netif_device_present(ndev) || netif_running(ndev)) {
1156 		napi_disable(&fep->napi);
1157 		netif_tx_lock_bh(ndev);
1158 		fec_restart(ndev);
1159 		netif_wake_queue(ndev);
1160 		netif_tx_unlock_bh(ndev);
1161 		napi_enable(&fep->napi);
1162 	}
1163 	rtnl_unlock();
1164 }
1165 
1166 static void
1167 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1168 	struct skb_shared_hwtstamps *hwtstamps)
1169 {
1170 	unsigned long flags;
1171 	u64 ns;
1172 
1173 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1174 	ns = timecounter_cyc2time(&fep->tc, ts);
1175 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1176 
1177 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1178 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1179 }
1180 
1181 static void
1182 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1183 {
1184 	struct	fec_enet_private *fep;
1185 	struct bufdesc *bdp;
1186 	unsigned short status;
1187 	struct	sk_buff	*skb;
1188 	struct fec_enet_priv_tx_q *txq;
1189 	struct netdev_queue *nq;
1190 	int	index = 0;
1191 	int	entries_free;
1192 
1193 	fep = netdev_priv(ndev);
1194 
1195 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1196 
1197 	txq = fep->tx_queue[queue_id];
1198 	/* get next bdp of dirty_tx */
1199 	nq = netdev_get_tx_queue(ndev, queue_id);
1200 	bdp = txq->dirty_tx;
1201 
1202 	/* get next bdp of dirty_tx */
1203 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1204 
1205 	while (bdp != READ_ONCE(txq->bd.cur)) {
1206 		/* Order the load of bd.cur and cbd_sc */
1207 		rmb();
1208 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1209 		if (status & BD_ENET_TX_READY)
1210 			break;
1211 
1212 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1213 
1214 		skb = txq->tx_skbuff[index];
1215 		txq->tx_skbuff[index] = NULL;
1216 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1217 			dma_unmap_single(&fep->pdev->dev,
1218 					 fec32_to_cpu(bdp->cbd_bufaddr),
1219 					 fec16_to_cpu(bdp->cbd_datlen),
1220 					 DMA_TO_DEVICE);
1221 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1222 		if (!skb)
1223 			goto skb_done;
1224 
1225 		/* Check for errors. */
1226 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1227 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1228 				   BD_ENET_TX_CSL)) {
1229 			ndev->stats.tx_errors++;
1230 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1231 				ndev->stats.tx_heartbeat_errors++;
1232 			if (status & BD_ENET_TX_LC)  /* Late collision */
1233 				ndev->stats.tx_window_errors++;
1234 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1235 				ndev->stats.tx_aborted_errors++;
1236 			if (status & BD_ENET_TX_UN)  /* Underrun */
1237 				ndev->stats.tx_fifo_errors++;
1238 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1239 				ndev->stats.tx_carrier_errors++;
1240 		} else {
1241 			ndev->stats.tx_packets++;
1242 			ndev->stats.tx_bytes += skb->len;
1243 		}
1244 
1245 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1246 			fep->bufdesc_ex) {
1247 			struct skb_shared_hwtstamps shhwtstamps;
1248 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1249 
1250 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1251 			skb_tstamp_tx(skb, &shhwtstamps);
1252 		}
1253 
1254 		/* Deferred means some collisions occurred during transmit,
1255 		 * but we eventually sent the packet OK.
1256 		 */
1257 		if (status & BD_ENET_TX_DEF)
1258 			ndev->stats.collisions++;
1259 
1260 		/* Free the sk buffer associated with this last transmit */
1261 		dev_kfree_skb_any(skb);
1262 skb_done:
1263 		/* Make sure the update to bdp and tx_skbuff are performed
1264 		 * before dirty_tx
1265 		 */
1266 		wmb();
1267 		txq->dirty_tx = bdp;
1268 
1269 		/* Update pointer to next buffer descriptor to be transmitted */
1270 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1271 
1272 		/* Since we have freed up a buffer, the ring is no longer full
1273 		 */
1274 		if (netif_queue_stopped(ndev)) {
1275 			entries_free = fec_enet_get_free_txdesc_num(txq);
1276 			if (entries_free >= txq->tx_wake_threshold)
1277 				netif_tx_wake_queue(nq);
1278 		}
1279 	}
1280 
1281 	/* ERR006358: Keep the transmitter going */
1282 	if (bdp != txq->bd.cur &&
1283 	    readl(txq->bd.reg_desc_active) == 0)
1284 		writel(0, txq->bd.reg_desc_active);
1285 }
1286 
1287 static void
1288 fec_enet_tx(struct net_device *ndev)
1289 {
1290 	struct fec_enet_private *fep = netdev_priv(ndev);
1291 	u16 queue_id;
1292 	/* First process class A queue, then Class B and Best Effort queue */
1293 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1294 		clear_bit(queue_id, &fep->work_tx);
1295 		fec_enet_tx_queue(ndev, queue_id);
1296 	}
1297 	return;
1298 }
1299 
1300 static int
1301 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1302 {
1303 	struct  fec_enet_private *fep = netdev_priv(ndev);
1304 	int off;
1305 
1306 	off = ((unsigned long)skb->data) & fep->rx_align;
1307 	if (off)
1308 		skb_reserve(skb, fep->rx_align + 1 - off);
1309 
1310 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1311 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1312 		if (net_ratelimit())
1313 			netdev_err(ndev, "Rx DMA memory map failed\n");
1314 		return -ENOMEM;
1315 	}
1316 
1317 	return 0;
1318 }
1319 
1320 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1321 			       struct bufdesc *bdp, u32 length, bool swap)
1322 {
1323 	struct  fec_enet_private *fep = netdev_priv(ndev);
1324 	struct sk_buff *new_skb;
1325 
1326 	if (length > fep->rx_copybreak)
1327 		return false;
1328 
1329 	new_skb = netdev_alloc_skb(ndev, length);
1330 	if (!new_skb)
1331 		return false;
1332 
1333 	dma_sync_single_for_cpu(&fep->pdev->dev,
1334 				fec32_to_cpu(bdp->cbd_bufaddr),
1335 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1336 				DMA_FROM_DEVICE);
1337 	if (!swap)
1338 		memcpy(new_skb->data, (*skb)->data, length);
1339 	else
1340 		swap_buffer2(new_skb->data, (*skb)->data, length);
1341 	*skb = new_skb;
1342 
1343 	return true;
1344 }
1345 
1346 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1347  * When we update through the ring, if the next incoming buffer has
1348  * not been given to the system, we just set the empty indicator,
1349  * effectively tossing the packet.
1350  */
1351 static int
1352 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1353 {
1354 	struct fec_enet_private *fep = netdev_priv(ndev);
1355 	struct fec_enet_priv_rx_q *rxq;
1356 	struct bufdesc *bdp;
1357 	unsigned short status;
1358 	struct  sk_buff *skb_new = NULL;
1359 	struct  sk_buff *skb;
1360 	ushort	pkt_len;
1361 	__u8 *data;
1362 	int	pkt_received = 0;
1363 	struct	bufdesc_ex *ebdp = NULL;
1364 	bool	vlan_packet_rcvd = false;
1365 	u16	vlan_tag;
1366 	int	index = 0;
1367 	bool	is_copybreak;
1368 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1369 
1370 #ifdef CONFIG_M532x
1371 	flush_cache_all();
1372 #endif
1373 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1374 	rxq = fep->rx_queue[queue_id];
1375 
1376 	/* First, grab all of the stats for the incoming packet.
1377 	 * These get messed up if we get called due to a busy condition.
1378 	 */
1379 	bdp = rxq->bd.cur;
1380 
1381 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1382 
1383 		if (pkt_received >= budget)
1384 			break;
1385 		pkt_received++;
1386 
1387 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1388 
1389 		/* Check for errors. */
1390 		status ^= BD_ENET_RX_LAST;
1391 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1392 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1393 			   BD_ENET_RX_CL)) {
1394 			ndev->stats.rx_errors++;
1395 			if (status & BD_ENET_RX_OV) {
1396 				/* FIFO overrun */
1397 				ndev->stats.rx_fifo_errors++;
1398 				goto rx_processing_done;
1399 			}
1400 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1401 						| BD_ENET_RX_LAST)) {
1402 				/* Frame too long or too short. */
1403 				ndev->stats.rx_length_errors++;
1404 				if (status & BD_ENET_RX_LAST)
1405 					netdev_err(ndev, "rcv is not +last\n");
1406 			}
1407 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1408 				ndev->stats.rx_crc_errors++;
1409 			/* Report late collisions as a frame error. */
1410 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1411 				ndev->stats.rx_frame_errors++;
1412 			goto rx_processing_done;
1413 		}
1414 
1415 		/* Process the incoming frame. */
1416 		ndev->stats.rx_packets++;
1417 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1418 		ndev->stats.rx_bytes += pkt_len;
1419 
1420 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1421 		skb = rxq->rx_skbuff[index];
1422 
1423 		/* The packet length includes FCS, but we don't want to
1424 		 * include that when passing upstream as it messes up
1425 		 * bridging applications.
1426 		 */
1427 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1428 						  need_swap);
1429 		if (!is_copybreak) {
1430 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1431 			if (unlikely(!skb_new)) {
1432 				ndev->stats.rx_dropped++;
1433 				goto rx_processing_done;
1434 			}
1435 			dma_unmap_single(&fep->pdev->dev,
1436 					 fec32_to_cpu(bdp->cbd_bufaddr),
1437 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1438 					 DMA_FROM_DEVICE);
1439 		}
1440 
1441 		prefetch(skb->data - NET_IP_ALIGN);
1442 		skb_put(skb, pkt_len - 4);
1443 		data = skb->data;
1444 
1445 		if (!is_copybreak && need_swap)
1446 			swap_buffer(data, pkt_len);
1447 
1448 #if !defined(CONFIG_M5272)
1449 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1450 			data = skb_pull_inline(skb, 2);
1451 #endif
1452 
1453 		/* Extract the enhanced buffer descriptor */
1454 		ebdp = NULL;
1455 		if (fep->bufdesc_ex)
1456 			ebdp = (struct bufdesc_ex *)bdp;
1457 
1458 		/* If this is a VLAN packet remove the VLAN Tag */
1459 		vlan_packet_rcvd = false;
1460 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1461 		    fep->bufdesc_ex &&
1462 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1463 			/* Push and remove the vlan tag */
1464 			struct vlan_hdr *vlan_header =
1465 					(struct vlan_hdr *) (data + ETH_HLEN);
1466 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1467 
1468 			vlan_packet_rcvd = true;
1469 
1470 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1471 			skb_pull(skb, VLAN_HLEN);
1472 		}
1473 
1474 		skb->protocol = eth_type_trans(skb, ndev);
1475 
1476 		/* Get receive timestamp from the skb */
1477 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1478 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1479 					  skb_hwtstamps(skb));
1480 
1481 		if (fep->bufdesc_ex &&
1482 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1483 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1484 				/* don't check it */
1485 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1486 			} else {
1487 				skb_checksum_none_assert(skb);
1488 			}
1489 		}
1490 
1491 		/* Handle received VLAN packets */
1492 		if (vlan_packet_rcvd)
1493 			__vlan_hwaccel_put_tag(skb,
1494 					       htons(ETH_P_8021Q),
1495 					       vlan_tag);
1496 
1497 		napi_gro_receive(&fep->napi, skb);
1498 
1499 		if (is_copybreak) {
1500 			dma_sync_single_for_device(&fep->pdev->dev,
1501 						   fec32_to_cpu(bdp->cbd_bufaddr),
1502 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1503 						   DMA_FROM_DEVICE);
1504 		} else {
1505 			rxq->rx_skbuff[index] = skb_new;
1506 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1507 		}
1508 
1509 rx_processing_done:
1510 		/* Clear the status flags for this buffer */
1511 		status &= ~BD_ENET_RX_STATS;
1512 
1513 		/* Mark the buffer empty */
1514 		status |= BD_ENET_RX_EMPTY;
1515 
1516 		if (fep->bufdesc_ex) {
1517 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1518 
1519 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1520 			ebdp->cbd_prot = 0;
1521 			ebdp->cbd_bdu = 0;
1522 		}
1523 		/* Make sure the updates to rest of the descriptor are
1524 		 * performed before transferring ownership.
1525 		 */
1526 		wmb();
1527 		bdp->cbd_sc = cpu_to_fec16(status);
1528 
1529 		/* Update BD pointer to next entry */
1530 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1531 
1532 		/* Doing this here will keep the FEC running while we process
1533 		 * incoming frames.  On a heavily loaded network, we should be
1534 		 * able to keep up at the expense of system resources.
1535 		 */
1536 		writel(0, rxq->bd.reg_desc_active);
1537 	}
1538 	rxq->bd.cur = bdp;
1539 	return pkt_received;
1540 }
1541 
1542 static int
1543 fec_enet_rx(struct net_device *ndev, int budget)
1544 {
1545 	int     pkt_received = 0;
1546 	u16	queue_id;
1547 	struct fec_enet_private *fep = netdev_priv(ndev);
1548 
1549 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1550 		int ret;
1551 
1552 		ret = fec_enet_rx_queue(ndev,
1553 					budget - pkt_received, queue_id);
1554 
1555 		if (ret < budget - pkt_received)
1556 			clear_bit(queue_id, &fep->work_rx);
1557 
1558 		pkt_received += ret;
1559 	}
1560 	return pkt_received;
1561 }
1562 
1563 static bool
1564 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1565 {
1566 	if (int_events == 0)
1567 		return false;
1568 
1569 	if (int_events & FEC_ENET_RXF_0)
1570 		fep->work_rx |= (1 << 2);
1571 	if (int_events & FEC_ENET_RXF_1)
1572 		fep->work_rx |= (1 << 0);
1573 	if (int_events & FEC_ENET_RXF_2)
1574 		fep->work_rx |= (1 << 1);
1575 
1576 	if (int_events & FEC_ENET_TXF_0)
1577 		fep->work_tx |= (1 << 2);
1578 	if (int_events & FEC_ENET_TXF_1)
1579 		fep->work_tx |= (1 << 0);
1580 	if (int_events & FEC_ENET_TXF_2)
1581 		fep->work_tx |= (1 << 1);
1582 
1583 	return true;
1584 }
1585 
1586 static irqreturn_t
1587 fec_enet_interrupt(int irq, void *dev_id)
1588 {
1589 	struct net_device *ndev = dev_id;
1590 	struct fec_enet_private *fep = netdev_priv(ndev);
1591 	uint int_events;
1592 	irqreturn_t ret = IRQ_NONE;
1593 
1594 	int_events = readl(fep->hwp + FEC_IEVENT);
1595 	writel(int_events, fep->hwp + FEC_IEVENT);
1596 	fec_enet_collect_events(fep, int_events);
1597 
1598 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1599 		ret = IRQ_HANDLED;
1600 
1601 		if (napi_schedule_prep(&fep->napi)) {
1602 			/* Disable the NAPI interrupts */
1603 			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1604 			__napi_schedule(&fep->napi);
1605 		}
1606 	}
1607 
1608 	if (int_events & FEC_ENET_MII) {
1609 		ret = IRQ_HANDLED;
1610 		complete(&fep->mdio_done);
1611 	}
1612 	return ret;
1613 }
1614 
1615 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1616 {
1617 	struct net_device *ndev = napi->dev;
1618 	struct fec_enet_private *fep = netdev_priv(ndev);
1619 	int pkts;
1620 
1621 	pkts = fec_enet_rx(ndev, budget);
1622 
1623 	fec_enet_tx(ndev);
1624 
1625 	if (pkts < budget) {
1626 		napi_complete_done(napi, pkts);
1627 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1628 	}
1629 	return pkts;
1630 }
1631 
1632 /* ------------------------------------------------------------------------- */
1633 static void fec_get_mac(struct net_device *ndev)
1634 {
1635 	struct fec_enet_private *fep = netdev_priv(ndev);
1636 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1637 	unsigned char *iap, tmpaddr[ETH_ALEN];
1638 
1639 	/*
1640 	 * try to get mac address in following order:
1641 	 *
1642 	 * 1) module parameter via kernel command line in form
1643 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1644 	 */
1645 	iap = macaddr;
1646 
1647 	/*
1648 	 * 2) from device tree data
1649 	 */
1650 	if (!is_valid_ether_addr(iap)) {
1651 		struct device_node *np = fep->pdev->dev.of_node;
1652 		if (np) {
1653 			const char *mac = of_get_mac_address(np);
1654 			if (mac)
1655 				iap = (unsigned char *) mac;
1656 		}
1657 	}
1658 
1659 	/*
1660 	 * 3) from flash or fuse (via platform data)
1661 	 */
1662 	if (!is_valid_ether_addr(iap)) {
1663 #ifdef CONFIG_M5272
1664 		if (FEC_FLASHMAC)
1665 			iap = (unsigned char *)FEC_FLASHMAC;
1666 #else
1667 		if (pdata)
1668 			iap = (unsigned char *)&pdata->mac;
1669 #endif
1670 	}
1671 
1672 	/*
1673 	 * 4) FEC mac registers set by bootloader
1674 	 */
1675 	if (!is_valid_ether_addr(iap)) {
1676 		*((__be32 *) &tmpaddr[0]) =
1677 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1678 		*((__be16 *) &tmpaddr[4]) =
1679 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1680 		iap = &tmpaddr[0];
1681 	}
1682 
1683 	/*
1684 	 * 5) random mac address
1685 	 */
1686 	if (!is_valid_ether_addr(iap)) {
1687 		/* Report it and use a random ethernet address instead */
1688 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1689 		eth_hw_addr_random(ndev);
1690 		netdev_info(ndev, "Using random MAC address: %pM\n",
1691 			    ndev->dev_addr);
1692 		return;
1693 	}
1694 
1695 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1696 
1697 	/* Adjust MAC if using macaddr */
1698 	if (iap == macaddr)
1699 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1700 }
1701 
1702 /* ------------------------------------------------------------------------- */
1703 
1704 /*
1705  * Phy section
1706  */
1707 static void fec_enet_adjust_link(struct net_device *ndev)
1708 {
1709 	struct fec_enet_private *fep = netdev_priv(ndev);
1710 	struct phy_device *phy_dev = ndev->phydev;
1711 	int status_change = 0;
1712 
1713 	/* Prevent a state halted on mii error */
1714 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1715 		phy_dev->state = PHY_RESUMING;
1716 		return;
1717 	}
1718 
1719 	/*
1720 	 * If the netdev is down, or is going down, we're not interested
1721 	 * in link state events, so just mark our idea of the link as down
1722 	 * and ignore the event.
1723 	 */
1724 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1725 		fep->link = 0;
1726 	} else if (phy_dev->link) {
1727 		if (!fep->link) {
1728 			fep->link = phy_dev->link;
1729 			status_change = 1;
1730 		}
1731 
1732 		if (fep->full_duplex != phy_dev->duplex) {
1733 			fep->full_duplex = phy_dev->duplex;
1734 			status_change = 1;
1735 		}
1736 
1737 		if (phy_dev->speed != fep->speed) {
1738 			fep->speed = phy_dev->speed;
1739 			status_change = 1;
1740 		}
1741 
1742 		/* if any of the above changed restart the FEC */
1743 		if (status_change) {
1744 			napi_disable(&fep->napi);
1745 			netif_tx_lock_bh(ndev);
1746 			fec_restart(ndev);
1747 			netif_wake_queue(ndev);
1748 			netif_tx_unlock_bh(ndev);
1749 			napi_enable(&fep->napi);
1750 		}
1751 	} else {
1752 		if (fep->link) {
1753 			napi_disable(&fep->napi);
1754 			netif_tx_lock_bh(ndev);
1755 			fec_stop(ndev);
1756 			netif_tx_unlock_bh(ndev);
1757 			napi_enable(&fep->napi);
1758 			fep->link = phy_dev->link;
1759 			status_change = 1;
1760 		}
1761 	}
1762 
1763 	if (status_change)
1764 		phy_print_status(phy_dev);
1765 }
1766 
1767 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1768 {
1769 	struct fec_enet_private *fep = bus->priv;
1770 	struct device *dev = &fep->pdev->dev;
1771 	unsigned long time_left;
1772 	int ret = 0;
1773 
1774 	ret = pm_runtime_get_sync(dev);
1775 	if (ret < 0)
1776 		return ret;
1777 
1778 	fep->mii_timeout = 0;
1779 	reinit_completion(&fep->mdio_done);
1780 
1781 	/* start a read op */
1782 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1783 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1784 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1785 
1786 	/* wait for end of transfer */
1787 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1788 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1789 	if (time_left == 0) {
1790 		fep->mii_timeout = 1;
1791 		netdev_err(fep->netdev, "MDIO read timeout\n");
1792 		ret = -ETIMEDOUT;
1793 		goto out;
1794 	}
1795 
1796 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1797 
1798 out:
1799 	pm_runtime_mark_last_busy(dev);
1800 	pm_runtime_put_autosuspend(dev);
1801 
1802 	return ret;
1803 }
1804 
1805 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1806 			   u16 value)
1807 {
1808 	struct fec_enet_private *fep = bus->priv;
1809 	struct device *dev = &fep->pdev->dev;
1810 	unsigned long time_left;
1811 	int ret;
1812 
1813 	ret = pm_runtime_get_sync(dev);
1814 	if (ret < 0)
1815 		return ret;
1816 	else
1817 		ret = 0;
1818 
1819 	fep->mii_timeout = 0;
1820 	reinit_completion(&fep->mdio_done);
1821 
1822 	/* start a write op */
1823 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1824 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1825 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1826 		fep->hwp + FEC_MII_DATA);
1827 
1828 	/* wait for end of transfer */
1829 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1830 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1831 	if (time_left == 0) {
1832 		fep->mii_timeout = 1;
1833 		netdev_err(fep->netdev, "MDIO write timeout\n");
1834 		ret  = -ETIMEDOUT;
1835 	}
1836 
1837 	pm_runtime_mark_last_busy(dev);
1838 	pm_runtime_put_autosuspend(dev);
1839 
1840 	return ret;
1841 }
1842 
1843 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1844 {
1845 	struct fec_enet_private *fep = netdev_priv(ndev);
1846 	int ret;
1847 
1848 	if (enable) {
1849 		ret = clk_prepare_enable(fep->clk_ahb);
1850 		if (ret)
1851 			return ret;
1852 
1853 		ret = clk_prepare_enable(fep->clk_enet_out);
1854 		if (ret)
1855 			goto failed_clk_enet_out;
1856 
1857 		if (fep->clk_ptp) {
1858 			mutex_lock(&fep->ptp_clk_mutex);
1859 			ret = clk_prepare_enable(fep->clk_ptp);
1860 			if (ret) {
1861 				mutex_unlock(&fep->ptp_clk_mutex);
1862 				goto failed_clk_ptp;
1863 			} else {
1864 				fep->ptp_clk_on = true;
1865 			}
1866 			mutex_unlock(&fep->ptp_clk_mutex);
1867 		}
1868 
1869 		ret = clk_prepare_enable(fep->clk_ref);
1870 		if (ret)
1871 			goto failed_clk_ref;
1872 
1873 		phy_reset_after_clk_enable(ndev->phydev);
1874 	} else {
1875 		clk_disable_unprepare(fep->clk_ahb);
1876 		clk_disable_unprepare(fep->clk_enet_out);
1877 		if (fep->clk_ptp) {
1878 			mutex_lock(&fep->ptp_clk_mutex);
1879 			clk_disable_unprepare(fep->clk_ptp);
1880 			fep->ptp_clk_on = false;
1881 			mutex_unlock(&fep->ptp_clk_mutex);
1882 		}
1883 		clk_disable_unprepare(fep->clk_ref);
1884 	}
1885 
1886 	return 0;
1887 
1888 failed_clk_ref:
1889 	if (fep->clk_ref)
1890 		clk_disable_unprepare(fep->clk_ref);
1891 failed_clk_ptp:
1892 	if (fep->clk_enet_out)
1893 		clk_disable_unprepare(fep->clk_enet_out);
1894 failed_clk_enet_out:
1895 		clk_disable_unprepare(fep->clk_ahb);
1896 
1897 	return ret;
1898 }
1899 
1900 static int fec_enet_mii_probe(struct net_device *ndev)
1901 {
1902 	struct fec_enet_private *fep = netdev_priv(ndev);
1903 	struct phy_device *phy_dev = NULL;
1904 	char mdio_bus_id[MII_BUS_ID_SIZE];
1905 	char phy_name[MII_BUS_ID_SIZE + 3];
1906 	int phy_id;
1907 	int dev_id = fep->dev_id;
1908 
1909 	if (fep->phy_node) {
1910 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1911 					 &fec_enet_adjust_link, 0,
1912 					 fep->phy_interface);
1913 		if (!phy_dev) {
1914 			netdev_err(ndev, "Unable to connect to phy\n");
1915 			return -ENODEV;
1916 		}
1917 	} else {
1918 		/* check for attached phy */
1919 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1920 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1921 				continue;
1922 			if (dev_id--)
1923 				continue;
1924 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1925 			break;
1926 		}
1927 
1928 		if (phy_id >= PHY_MAX_ADDR) {
1929 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1930 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1931 			phy_id = 0;
1932 		}
1933 
1934 		snprintf(phy_name, sizeof(phy_name),
1935 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1936 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1937 				      fep->phy_interface);
1938 	}
1939 
1940 	if (IS_ERR(phy_dev)) {
1941 		netdev_err(ndev, "could not attach to PHY\n");
1942 		return PTR_ERR(phy_dev);
1943 	}
1944 
1945 	/* mask with MAC supported features */
1946 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1947 		phy_dev->supported &= PHY_GBIT_FEATURES;
1948 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1949 #if !defined(CONFIG_M5272)
1950 		phy_dev->supported |= SUPPORTED_Pause;
1951 #endif
1952 	}
1953 	else
1954 		phy_dev->supported &= PHY_BASIC_FEATURES;
1955 
1956 	phy_dev->advertising = phy_dev->supported;
1957 
1958 	fep->link = 0;
1959 	fep->full_duplex = 0;
1960 
1961 	phy_attached_info(phy_dev);
1962 
1963 	return 0;
1964 }
1965 
1966 static int fec_enet_mii_init(struct platform_device *pdev)
1967 {
1968 	static struct mii_bus *fec0_mii_bus;
1969 	struct net_device *ndev = platform_get_drvdata(pdev);
1970 	struct fec_enet_private *fep = netdev_priv(ndev);
1971 	struct device_node *node;
1972 	int err = -ENXIO;
1973 	u32 mii_speed, holdtime;
1974 
1975 	/*
1976 	 * The i.MX28 dual fec interfaces are not equal.
1977 	 * Here are the differences:
1978 	 *
1979 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1980 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1981 	 *  - external phys can only be configured by fec0
1982 	 *
1983 	 * That is to say fec1 can not work independently. It only works
1984 	 * when fec0 is working. The reason behind this design is that the
1985 	 * second interface is added primarily for Switch mode.
1986 	 *
1987 	 * Because of the last point above, both phys are attached on fec0
1988 	 * mdio interface in board design, and need to be configured by
1989 	 * fec0 mii_bus.
1990 	 */
1991 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1992 		/* fec1 uses fec0 mii_bus */
1993 		if (mii_cnt && fec0_mii_bus) {
1994 			fep->mii_bus = fec0_mii_bus;
1995 			mii_cnt++;
1996 			return 0;
1997 		}
1998 		return -ENOENT;
1999 	}
2000 
2001 	fep->mii_timeout = 0;
2002 
2003 	/*
2004 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2005 	 *
2006 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2007 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2008 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2009 	 * document.
2010 	 */
2011 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2012 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2013 		mii_speed--;
2014 	if (mii_speed > 63) {
2015 		dev_err(&pdev->dev,
2016 			"fec clock (%lu) too fast to get right mii speed\n",
2017 			clk_get_rate(fep->clk_ipg));
2018 		err = -EINVAL;
2019 		goto err_out;
2020 	}
2021 
2022 	/*
2023 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2024 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2025 	 * versions are RAZ there, so just ignore the difference and write the
2026 	 * register always.
2027 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2028 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2029 	 * output.
2030 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2031 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2032 	 * holdtime cannot result in a value greater than 3.
2033 	 */
2034 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2035 
2036 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2037 
2038 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2039 
2040 	fep->mii_bus = mdiobus_alloc();
2041 	if (fep->mii_bus == NULL) {
2042 		err = -ENOMEM;
2043 		goto err_out;
2044 	}
2045 
2046 	fep->mii_bus->name = "fec_enet_mii_bus";
2047 	fep->mii_bus->read = fec_enet_mdio_read;
2048 	fep->mii_bus->write = fec_enet_mdio_write;
2049 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2050 		pdev->name, fep->dev_id + 1);
2051 	fep->mii_bus->priv = fep;
2052 	fep->mii_bus->parent = &pdev->dev;
2053 
2054 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2055 	if (node) {
2056 		err = of_mdiobus_register(fep->mii_bus, node);
2057 		of_node_put(node);
2058 	} else {
2059 		err = mdiobus_register(fep->mii_bus);
2060 	}
2061 
2062 	if (err)
2063 		goto err_out_free_mdiobus;
2064 
2065 	mii_cnt++;
2066 
2067 	/* save fec0 mii_bus */
2068 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2069 		fec0_mii_bus = fep->mii_bus;
2070 
2071 	return 0;
2072 
2073 err_out_free_mdiobus:
2074 	mdiobus_free(fep->mii_bus);
2075 err_out:
2076 	return err;
2077 }
2078 
2079 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2080 {
2081 	if (--mii_cnt == 0) {
2082 		mdiobus_unregister(fep->mii_bus);
2083 		mdiobus_free(fep->mii_bus);
2084 	}
2085 }
2086 
2087 static void fec_enet_get_drvinfo(struct net_device *ndev,
2088 				 struct ethtool_drvinfo *info)
2089 {
2090 	struct fec_enet_private *fep = netdev_priv(ndev);
2091 
2092 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2093 		sizeof(info->driver));
2094 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2095 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2096 }
2097 
2098 static int fec_enet_get_regs_len(struct net_device *ndev)
2099 {
2100 	struct fec_enet_private *fep = netdev_priv(ndev);
2101 	struct resource *r;
2102 	int s = 0;
2103 
2104 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2105 	if (r)
2106 		s = resource_size(r);
2107 
2108 	return s;
2109 }
2110 
2111 /* List of registers that can be safety be read to dump them with ethtool */
2112 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2113 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2114 	defined(CONFIG_ARM64)
2115 static u32 fec_enet_register_offset[] = {
2116 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2117 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2118 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2119 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2120 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2121 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2122 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2123 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2124 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2125 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2126 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2127 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2128 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2129 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2130 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2131 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2132 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2133 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2134 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2135 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2136 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2137 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2138 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2139 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2140 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2141 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2142 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2143 };
2144 #else
2145 static u32 fec_enet_register_offset[] = {
2146 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2147 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2148 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2149 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2150 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2151 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2152 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2153 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2154 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2155 };
2156 #endif
2157 
2158 static void fec_enet_get_regs(struct net_device *ndev,
2159 			      struct ethtool_regs *regs, void *regbuf)
2160 {
2161 	struct fec_enet_private *fep = netdev_priv(ndev);
2162 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2163 	u32 *buf = (u32 *)regbuf;
2164 	u32 i, off;
2165 
2166 	memset(buf, 0, regs->len);
2167 
2168 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2169 		off = fec_enet_register_offset[i] / 4;
2170 		buf[off] = readl(&theregs[off]);
2171 	}
2172 }
2173 
2174 static int fec_enet_get_ts_info(struct net_device *ndev,
2175 				struct ethtool_ts_info *info)
2176 {
2177 	struct fec_enet_private *fep = netdev_priv(ndev);
2178 
2179 	if (fep->bufdesc_ex) {
2180 
2181 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2182 					SOF_TIMESTAMPING_RX_SOFTWARE |
2183 					SOF_TIMESTAMPING_SOFTWARE |
2184 					SOF_TIMESTAMPING_TX_HARDWARE |
2185 					SOF_TIMESTAMPING_RX_HARDWARE |
2186 					SOF_TIMESTAMPING_RAW_HARDWARE;
2187 		if (fep->ptp_clock)
2188 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2189 		else
2190 			info->phc_index = -1;
2191 
2192 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2193 				 (1 << HWTSTAMP_TX_ON);
2194 
2195 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2196 				   (1 << HWTSTAMP_FILTER_ALL);
2197 		return 0;
2198 	} else {
2199 		return ethtool_op_get_ts_info(ndev, info);
2200 	}
2201 }
2202 
2203 #if !defined(CONFIG_M5272)
2204 
2205 static void fec_enet_get_pauseparam(struct net_device *ndev,
2206 				    struct ethtool_pauseparam *pause)
2207 {
2208 	struct fec_enet_private *fep = netdev_priv(ndev);
2209 
2210 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2211 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2212 	pause->rx_pause = pause->tx_pause;
2213 }
2214 
2215 static int fec_enet_set_pauseparam(struct net_device *ndev,
2216 				   struct ethtool_pauseparam *pause)
2217 {
2218 	struct fec_enet_private *fep = netdev_priv(ndev);
2219 
2220 	if (!ndev->phydev)
2221 		return -ENODEV;
2222 
2223 	if (pause->tx_pause != pause->rx_pause) {
2224 		netdev_info(ndev,
2225 			"hardware only support enable/disable both tx and rx");
2226 		return -EINVAL;
2227 	}
2228 
2229 	fep->pause_flag = 0;
2230 
2231 	/* tx pause must be same as rx pause */
2232 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2233 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2234 
2235 	if (pause->rx_pause || pause->autoneg) {
2236 		ndev->phydev->supported |= ADVERTISED_Pause;
2237 		ndev->phydev->advertising |= ADVERTISED_Pause;
2238 	} else {
2239 		ndev->phydev->supported &= ~ADVERTISED_Pause;
2240 		ndev->phydev->advertising &= ~ADVERTISED_Pause;
2241 	}
2242 
2243 	if (pause->autoneg) {
2244 		if (netif_running(ndev))
2245 			fec_stop(ndev);
2246 		phy_start_aneg(ndev->phydev);
2247 	}
2248 	if (netif_running(ndev)) {
2249 		napi_disable(&fep->napi);
2250 		netif_tx_lock_bh(ndev);
2251 		fec_restart(ndev);
2252 		netif_wake_queue(ndev);
2253 		netif_tx_unlock_bh(ndev);
2254 		napi_enable(&fep->napi);
2255 	}
2256 
2257 	return 0;
2258 }
2259 
2260 static const struct fec_stat {
2261 	char name[ETH_GSTRING_LEN];
2262 	u16 offset;
2263 } fec_stats[] = {
2264 	/* RMON TX */
2265 	{ "tx_dropped", RMON_T_DROP },
2266 	{ "tx_packets", RMON_T_PACKETS },
2267 	{ "tx_broadcast", RMON_T_BC_PKT },
2268 	{ "tx_multicast", RMON_T_MC_PKT },
2269 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2270 	{ "tx_undersize", RMON_T_UNDERSIZE },
2271 	{ "tx_oversize", RMON_T_OVERSIZE },
2272 	{ "tx_fragment", RMON_T_FRAG },
2273 	{ "tx_jabber", RMON_T_JAB },
2274 	{ "tx_collision", RMON_T_COL },
2275 	{ "tx_64byte", RMON_T_P64 },
2276 	{ "tx_65to127byte", RMON_T_P65TO127 },
2277 	{ "tx_128to255byte", RMON_T_P128TO255 },
2278 	{ "tx_256to511byte", RMON_T_P256TO511 },
2279 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2280 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2281 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2282 	{ "tx_octets", RMON_T_OCTETS },
2283 
2284 	/* IEEE TX */
2285 	{ "IEEE_tx_drop", IEEE_T_DROP },
2286 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2287 	{ "IEEE_tx_1col", IEEE_T_1COL },
2288 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2289 	{ "IEEE_tx_def", IEEE_T_DEF },
2290 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2291 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2292 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2293 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2294 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2295 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2296 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2297 
2298 	/* RMON RX */
2299 	{ "rx_packets", RMON_R_PACKETS },
2300 	{ "rx_broadcast", RMON_R_BC_PKT },
2301 	{ "rx_multicast", RMON_R_MC_PKT },
2302 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2303 	{ "rx_undersize", RMON_R_UNDERSIZE },
2304 	{ "rx_oversize", RMON_R_OVERSIZE },
2305 	{ "rx_fragment", RMON_R_FRAG },
2306 	{ "rx_jabber", RMON_R_JAB },
2307 	{ "rx_64byte", RMON_R_P64 },
2308 	{ "rx_65to127byte", RMON_R_P65TO127 },
2309 	{ "rx_128to255byte", RMON_R_P128TO255 },
2310 	{ "rx_256to511byte", RMON_R_P256TO511 },
2311 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2312 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2313 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2314 	{ "rx_octets", RMON_R_OCTETS },
2315 
2316 	/* IEEE RX */
2317 	{ "IEEE_rx_drop", IEEE_R_DROP },
2318 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2319 	{ "IEEE_rx_crc", IEEE_R_CRC },
2320 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2321 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2322 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2323 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2324 };
2325 
2326 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2327 
2328 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2329 {
2330 	struct fec_enet_private *fep = netdev_priv(dev);
2331 	int i;
2332 
2333 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2334 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2335 }
2336 
2337 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2338 				       struct ethtool_stats *stats, u64 *data)
2339 {
2340 	struct fec_enet_private *fep = netdev_priv(dev);
2341 
2342 	if (netif_running(dev))
2343 		fec_enet_update_ethtool_stats(dev);
2344 
2345 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2346 }
2347 
2348 static void fec_enet_get_strings(struct net_device *netdev,
2349 	u32 stringset, u8 *data)
2350 {
2351 	int i;
2352 	switch (stringset) {
2353 	case ETH_SS_STATS:
2354 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2355 			memcpy(data + i * ETH_GSTRING_LEN,
2356 				fec_stats[i].name, ETH_GSTRING_LEN);
2357 		break;
2358 	}
2359 }
2360 
2361 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2362 {
2363 	switch (sset) {
2364 	case ETH_SS_STATS:
2365 		return ARRAY_SIZE(fec_stats);
2366 	default:
2367 		return -EOPNOTSUPP;
2368 	}
2369 }
2370 
2371 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2372 {
2373 	struct fec_enet_private *fep = netdev_priv(dev);
2374 	int i;
2375 
2376 	/* Disable MIB statistics counters */
2377 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2378 
2379 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2380 		writel(0, fep->hwp + fec_stats[i].offset);
2381 
2382 	/* Don't disable MIB statistics counters */
2383 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2384 }
2385 
2386 #else	/* !defined(CONFIG_M5272) */
2387 #define FEC_STATS_SIZE	0
2388 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2389 {
2390 }
2391 
2392 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2393 {
2394 }
2395 #endif /* !defined(CONFIG_M5272) */
2396 
2397 /* ITR clock source is enet system clock (clk_ahb).
2398  * TCTT unit is cycle_ns * 64 cycle
2399  * So, the ICTT value = X us / (cycle_ns * 64)
2400  */
2401 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2402 {
2403 	struct fec_enet_private *fep = netdev_priv(ndev);
2404 
2405 	return us * (fep->itr_clk_rate / 64000) / 1000;
2406 }
2407 
2408 /* Set threshold for interrupt coalescing */
2409 static void fec_enet_itr_coal_set(struct net_device *ndev)
2410 {
2411 	struct fec_enet_private *fep = netdev_priv(ndev);
2412 	int rx_itr, tx_itr;
2413 
2414 	/* Must be greater than zero to avoid unpredictable behavior */
2415 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2416 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2417 		return;
2418 
2419 	/* Select enet system clock as Interrupt Coalescing
2420 	 * timer Clock Source
2421 	 */
2422 	rx_itr = FEC_ITR_CLK_SEL;
2423 	tx_itr = FEC_ITR_CLK_SEL;
2424 
2425 	/* set ICFT and ICTT */
2426 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2427 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2428 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2429 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2430 
2431 	rx_itr |= FEC_ITR_EN;
2432 	tx_itr |= FEC_ITR_EN;
2433 
2434 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2435 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2436 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2437 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2438 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2439 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2440 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2441 	}
2442 }
2443 
2444 static int
2445 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2446 {
2447 	struct fec_enet_private *fep = netdev_priv(ndev);
2448 
2449 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2450 		return -EOPNOTSUPP;
2451 
2452 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2453 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2454 
2455 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2456 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2457 
2458 	return 0;
2459 }
2460 
2461 static int
2462 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2463 {
2464 	struct fec_enet_private *fep = netdev_priv(ndev);
2465 	unsigned int cycle;
2466 
2467 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2468 		return -EOPNOTSUPP;
2469 
2470 	if (ec->rx_max_coalesced_frames > 255) {
2471 		pr_err("Rx coalesced frames exceed hardware limitation\n");
2472 		return -EINVAL;
2473 	}
2474 
2475 	if (ec->tx_max_coalesced_frames > 255) {
2476 		pr_err("Tx coalesced frame exceed hardware limitation\n");
2477 		return -EINVAL;
2478 	}
2479 
2480 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2481 	if (cycle > 0xFFFF) {
2482 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2483 		return -EINVAL;
2484 	}
2485 
2486 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2487 	if (cycle > 0xFFFF) {
2488 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2489 		return -EINVAL;
2490 	}
2491 
2492 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2493 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2494 
2495 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2496 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2497 
2498 	fec_enet_itr_coal_set(ndev);
2499 
2500 	return 0;
2501 }
2502 
2503 static void fec_enet_itr_coal_init(struct net_device *ndev)
2504 {
2505 	struct ethtool_coalesce ec;
2506 
2507 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2508 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2509 
2510 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2511 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2512 
2513 	fec_enet_set_coalesce(ndev, &ec);
2514 }
2515 
2516 static int fec_enet_get_tunable(struct net_device *netdev,
2517 				const struct ethtool_tunable *tuna,
2518 				void *data)
2519 {
2520 	struct fec_enet_private *fep = netdev_priv(netdev);
2521 	int ret = 0;
2522 
2523 	switch (tuna->id) {
2524 	case ETHTOOL_RX_COPYBREAK:
2525 		*(u32 *)data = fep->rx_copybreak;
2526 		break;
2527 	default:
2528 		ret = -EINVAL;
2529 		break;
2530 	}
2531 
2532 	return ret;
2533 }
2534 
2535 static int fec_enet_set_tunable(struct net_device *netdev,
2536 				const struct ethtool_tunable *tuna,
2537 				const void *data)
2538 {
2539 	struct fec_enet_private *fep = netdev_priv(netdev);
2540 	int ret = 0;
2541 
2542 	switch (tuna->id) {
2543 	case ETHTOOL_RX_COPYBREAK:
2544 		fep->rx_copybreak = *(u32 *)data;
2545 		break;
2546 	default:
2547 		ret = -EINVAL;
2548 		break;
2549 	}
2550 
2551 	return ret;
2552 }
2553 
2554 static void
2555 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2556 {
2557 	struct fec_enet_private *fep = netdev_priv(ndev);
2558 
2559 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2560 		wol->supported = WAKE_MAGIC;
2561 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2562 	} else {
2563 		wol->supported = wol->wolopts = 0;
2564 	}
2565 }
2566 
2567 static int
2568 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2569 {
2570 	struct fec_enet_private *fep = netdev_priv(ndev);
2571 
2572 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2573 		return -EINVAL;
2574 
2575 	if (wol->wolopts & ~WAKE_MAGIC)
2576 		return -EINVAL;
2577 
2578 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2579 	if (device_may_wakeup(&ndev->dev)) {
2580 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2581 		if (fep->irq[0] > 0)
2582 			enable_irq_wake(fep->irq[0]);
2583 	} else {
2584 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2585 		if (fep->irq[0] > 0)
2586 			disable_irq_wake(fep->irq[0]);
2587 	}
2588 
2589 	return 0;
2590 }
2591 
2592 static const struct ethtool_ops fec_enet_ethtool_ops = {
2593 	.get_drvinfo		= fec_enet_get_drvinfo,
2594 	.get_regs_len		= fec_enet_get_regs_len,
2595 	.get_regs		= fec_enet_get_regs,
2596 	.nway_reset		= phy_ethtool_nway_reset,
2597 	.get_link		= ethtool_op_get_link,
2598 	.get_coalesce		= fec_enet_get_coalesce,
2599 	.set_coalesce		= fec_enet_set_coalesce,
2600 #ifndef CONFIG_M5272
2601 	.get_pauseparam		= fec_enet_get_pauseparam,
2602 	.set_pauseparam		= fec_enet_set_pauseparam,
2603 	.get_strings		= fec_enet_get_strings,
2604 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2605 	.get_sset_count		= fec_enet_get_sset_count,
2606 #endif
2607 	.get_ts_info		= fec_enet_get_ts_info,
2608 	.get_tunable		= fec_enet_get_tunable,
2609 	.set_tunable		= fec_enet_set_tunable,
2610 	.get_wol		= fec_enet_get_wol,
2611 	.set_wol		= fec_enet_set_wol,
2612 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2613 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2614 };
2615 
2616 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2617 {
2618 	struct fec_enet_private *fep = netdev_priv(ndev);
2619 	struct phy_device *phydev = ndev->phydev;
2620 
2621 	if (!netif_running(ndev))
2622 		return -EINVAL;
2623 
2624 	if (!phydev)
2625 		return -ENODEV;
2626 
2627 	if (fep->bufdesc_ex) {
2628 		if (cmd == SIOCSHWTSTAMP)
2629 			return fec_ptp_set(ndev, rq);
2630 		if (cmd == SIOCGHWTSTAMP)
2631 			return fec_ptp_get(ndev, rq);
2632 	}
2633 
2634 	return phy_mii_ioctl(phydev, rq, cmd);
2635 }
2636 
2637 static void fec_enet_free_buffers(struct net_device *ndev)
2638 {
2639 	struct fec_enet_private *fep = netdev_priv(ndev);
2640 	unsigned int i;
2641 	struct sk_buff *skb;
2642 	struct bufdesc	*bdp;
2643 	struct fec_enet_priv_tx_q *txq;
2644 	struct fec_enet_priv_rx_q *rxq;
2645 	unsigned int q;
2646 
2647 	for (q = 0; q < fep->num_rx_queues; q++) {
2648 		rxq = fep->rx_queue[q];
2649 		bdp = rxq->bd.base;
2650 		for (i = 0; i < rxq->bd.ring_size; i++) {
2651 			skb = rxq->rx_skbuff[i];
2652 			rxq->rx_skbuff[i] = NULL;
2653 			if (skb) {
2654 				dma_unmap_single(&fep->pdev->dev,
2655 						 fec32_to_cpu(bdp->cbd_bufaddr),
2656 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2657 						 DMA_FROM_DEVICE);
2658 				dev_kfree_skb(skb);
2659 			}
2660 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2661 		}
2662 	}
2663 
2664 	for (q = 0; q < fep->num_tx_queues; q++) {
2665 		txq = fep->tx_queue[q];
2666 		bdp = txq->bd.base;
2667 		for (i = 0; i < txq->bd.ring_size; i++) {
2668 			kfree(txq->tx_bounce[i]);
2669 			txq->tx_bounce[i] = NULL;
2670 			skb = txq->tx_skbuff[i];
2671 			txq->tx_skbuff[i] = NULL;
2672 			dev_kfree_skb(skb);
2673 		}
2674 	}
2675 }
2676 
2677 static void fec_enet_free_queue(struct net_device *ndev)
2678 {
2679 	struct fec_enet_private *fep = netdev_priv(ndev);
2680 	int i;
2681 	struct fec_enet_priv_tx_q *txq;
2682 
2683 	for (i = 0; i < fep->num_tx_queues; i++)
2684 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2685 			txq = fep->tx_queue[i];
2686 			dma_free_coherent(&fep->pdev->dev,
2687 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2688 					  txq->tso_hdrs,
2689 					  txq->tso_hdrs_dma);
2690 		}
2691 
2692 	for (i = 0; i < fep->num_rx_queues; i++)
2693 		kfree(fep->rx_queue[i]);
2694 	for (i = 0; i < fep->num_tx_queues; i++)
2695 		kfree(fep->tx_queue[i]);
2696 }
2697 
2698 static int fec_enet_alloc_queue(struct net_device *ndev)
2699 {
2700 	struct fec_enet_private *fep = netdev_priv(ndev);
2701 	int i;
2702 	int ret = 0;
2703 	struct fec_enet_priv_tx_q *txq;
2704 
2705 	for (i = 0; i < fep->num_tx_queues; i++) {
2706 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2707 		if (!txq) {
2708 			ret = -ENOMEM;
2709 			goto alloc_failed;
2710 		}
2711 
2712 		fep->tx_queue[i] = txq;
2713 		txq->bd.ring_size = TX_RING_SIZE;
2714 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2715 
2716 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2717 		txq->tx_wake_threshold =
2718 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2719 
2720 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2721 					txq->bd.ring_size * TSO_HEADER_SIZE,
2722 					&txq->tso_hdrs_dma,
2723 					GFP_KERNEL);
2724 		if (!txq->tso_hdrs) {
2725 			ret = -ENOMEM;
2726 			goto alloc_failed;
2727 		}
2728 	}
2729 
2730 	for (i = 0; i < fep->num_rx_queues; i++) {
2731 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2732 					   GFP_KERNEL);
2733 		if (!fep->rx_queue[i]) {
2734 			ret = -ENOMEM;
2735 			goto alloc_failed;
2736 		}
2737 
2738 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2739 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2740 	}
2741 	return ret;
2742 
2743 alloc_failed:
2744 	fec_enet_free_queue(ndev);
2745 	return ret;
2746 }
2747 
2748 static int
2749 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2750 {
2751 	struct fec_enet_private *fep = netdev_priv(ndev);
2752 	unsigned int i;
2753 	struct sk_buff *skb;
2754 	struct bufdesc	*bdp;
2755 	struct fec_enet_priv_rx_q *rxq;
2756 
2757 	rxq = fep->rx_queue[queue];
2758 	bdp = rxq->bd.base;
2759 	for (i = 0; i < rxq->bd.ring_size; i++) {
2760 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2761 		if (!skb)
2762 			goto err_alloc;
2763 
2764 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2765 			dev_kfree_skb(skb);
2766 			goto err_alloc;
2767 		}
2768 
2769 		rxq->rx_skbuff[i] = skb;
2770 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2771 
2772 		if (fep->bufdesc_ex) {
2773 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2774 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2775 		}
2776 
2777 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2778 	}
2779 
2780 	/* Set the last buffer to wrap. */
2781 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2782 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2783 	return 0;
2784 
2785  err_alloc:
2786 	fec_enet_free_buffers(ndev);
2787 	return -ENOMEM;
2788 }
2789 
2790 static int
2791 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2792 {
2793 	struct fec_enet_private *fep = netdev_priv(ndev);
2794 	unsigned int i;
2795 	struct bufdesc  *bdp;
2796 	struct fec_enet_priv_tx_q *txq;
2797 
2798 	txq = fep->tx_queue[queue];
2799 	bdp = txq->bd.base;
2800 	for (i = 0; i < txq->bd.ring_size; i++) {
2801 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2802 		if (!txq->tx_bounce[i])
2803 			goto err_alloc;
2804 
2805 		bdp->cbd_sc = cpu_to_fec16(0);
2806 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2807 
2808 		if (fep->bufdesc_ex) {
2809 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2810 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2811 		}
2812 
2813 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2814 	}
2815 
2816 	/* Set the last buffer to wrap. */
2817 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2818 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2819 
2820 	return 0;
2821 
2822  err_alloc:
2823 	fec_enet_free_buffers(ndev);
2824 	return -ENOMEM;
2825 }
2826 
2827 static int fec_enet_alloc_buffers(struct net_device *ndev)
2828 {
2829 	struct fec_enet_private *fep = netdev_priv(ndev);
2830 	unsigned int i;
2831 
2832 	for (i = 0; i < fep->num_rx_queues; i++)
2833 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2834 			return -ENOMEM;
2835 
2836 	for (i = 0; i < fep->num_tx_queues; i++)
2837 		if (fec_enet_alloc_txq_buffers(ndev, i))
2838 			return -ENOMEM;
2839 	return 0;
2840 }
2841 
2842 static int
2843 fec_enet_open(struct net_device *ndev)
2844 {
2845 	struct fec_enet_private *fep = netdev_priv(ndev);
2846 	int ret;
2847 	bool reset_again;
2848 
2849 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2850 	if (ret < 0)
2851 		return ret;
2852 
2853 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2854 	ret = fec_enet_clk_enable(ndev, true);
2855 	if (ret)
2856 		goto clk_enable;
2857 
2858 	/* During the first fec_enet_open call the PHY isn't probed at this
2859 	 * point. Therefore the phy_reset_after_clk_enable() call within
2860 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2861 	 * sure the PHY is working correctly we check if we need to reset again
2862 	 * later when the PHY is probed
2863 	 */
2864 	if (ndev->phydev && ndev->phydev->drv)
2865 		reset_again = false;
2866 	else
2867 		reset_again = true;
2868 
2869 	/* I should reset the ring buffers here, but I don't yet know
2870 	 * a simple way to do that.
2871 	 */
2872 
2873 	ret = fec_enet_alloc_buffers(ndev);
2874 	if (ret)
2875 		goto err_enet_alloc;
2876 
2877 	/* Init MAC prior to mii bus probe */
2878 	fec_restart(ndev);
2879 
2880 	/* Probe and connect to PHY when open the interface */
2881 	ret = fec_enet_mii_probe(ndev);
2882 	if (ret)
2883 		goto err_enet_mii_probe;
2884 
2885 	/* Call phy_reset_after_clk_enable() again if it failed during
2886 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
2887 	 */
2888 	if (reset_again)
2889 		phy_reset_after_clk_enable(ndev->phydev);
2890 
2891 	if (fep->quirks & FEC_QUIRK_ERR006687)
2892 		imx6q_cpuidle_fec_irqs_used();
2893 
2894 	napi_enable(&fep->napi);
2895 	phy_start(ndev->phydev);
2896 	netif_tx_start_all_queues(ndev);
2897 
2898 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2899 				 FEC_WOL_FLAG_ENABLE);
2900 
2901 	return 0;
2902 
2903 err_enet_mii_probe:
2904 	fec_enet_free_buffers(ndev);
2905 err_enet_alloc:
2906 	fec_enet_clk_enable(ndev, false);
2907 clk_enable:
2908 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2909 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2910 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2911 	return ret;
2912 }
2913 
2914 static int
2915 fec_enet_close(struct net_device *ndev)
2916 {
2917 	struct fec_enet_private *fep = netdev_priv(ndev);
2918 
2919 	phy_stop(ndev->phydev);
2920 
2921 	if (netif_device_present(ndev)) {
2922 		napi_disable(&fep->napi);
2923 		netif_tx_disable(ndev);
2924 		fec_stop(ndev);
2925 	}
2926 
2927 	phy_disconnect(ndev->phydev);
2928 
2929 	if (fep->quirks & FEC_QUIRK_ERR006687)
2930 		imx6q_cpuidle_fec_irqs_unused();
2931 
2932 	fec_enet_update_ethtool_stats(ndev);
2933 
2934 	fec_enet_clk_enable(ndev, false);
2935 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2936 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2937 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2938 
2939 	fec_enet_free_buffers(ndev);
2940 
2941 	return 0;
2942 }
2943 
2944 /* Set or clear the multicast filter for this adaptor.
2945  * Skeleton taken from sunlance driver.
2946  * The CPM Ethernet implementation allows Multicast as well as individual
2947  * MAC address filtering.  Some of the drivers check to make sure it is
2948  * a group multicast address, and discard those that are not.  I guess I
2949  * will do the same for now, but just remove the test if you want
2950  * individual filtering as well (do the upper net layers want or support
2951  * this kind of feature?).
2952  */
2953 
2954 #define FEC_HASH_BITS	6		/* #bits in hash */
2955 #define CRC32_POLY	0xEDB88320
2956 
2957 static void set_multicast_list(struct net_device *ndev)
2958 {
2959 	struct fec_enet_private *fep = netdev_priv(ndev);
2960 	struct netdev_hw_addr *ha;
2961 	unsigned int i, bit, data, crc, tmp;
2962 	unsigned char hash;
2963 	unsigned int hash_high = 0, hash_low = 0;
2964 
2965 	if (ndev->flags & IFF_PROMISC) {
2966 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2967 		tmp |= 0x8;
2968 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2969 		return;
2970 	}
2971 
2972 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2973 	tmp &= ~0x8;
2974 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2975 
2976 	if (ndev->flags & IFF_ALLMULTI) {
2977 		/* Catch all multicast addresses, so set the
2978 		 * filter to all 1's
2979 		 */
2980 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2981 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2982 
2983 		return;
2984 	}
2985 
2986 	/* Add the addresses in hash register */
2987 	netdev_for_each_mc_addr(ha, ndev) {
2988 		/* calculate crc32 value of mac address */
2989 		crc = 0xffffffff;
2990 
2991 		for (i = 0; i < ndev->addr_len; i++) {
2992 			data = ha->addr[i];
2993 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2994 				crc = (crc >> 1) ^
2995 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2996 			}
2997 		}
2998 
2999 		/* only upper 6 bits (FEC_HASH_BITS) are used
3000 		 * which point to specific bit in the hash registers
3001 		 */
3002 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3003 
3004 		if (hash > 31)
3005 			hash_high |= 1 << (hash - 32);
3006 		else
3007 			hash_low |= 1 << hash;
3008 	}
3009 
3010 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3011 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3012 }
3013 
3014 /* Set a MAC change in hardware. */
3015 static int
3016 fec_set_mac_address(struct net_device *ndev, void *p)
3017 {
3018 	struct fec_enet_private *fep = netdev_priv(ndev);
3019 	struct sockaddr *addr = p;
3020 
3021 	if (addr) {
3022 		if (!is_valid_ether_addr(addr->sa_data))
3023 			return -EADDRNOTAVAIL;
3024 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3025 	}
3026 
3027 	/* Add netif status check here to avoid system hang in below case:
3028 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3029 	 * After ethx down, fec all clocks are gated off and then register
3030 	 * access causes system hang.
3031 	 */
3032 	if (!netif_running(ndev))
3033 		return 0;
3034 
3035 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3036 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3037 		fep->hwp + FEC_ADDR_LOW);
3038 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3039 		fep->hwp + FEC_ADDR_HIGH);
3040 	return 0;
3041 }
3042 
3043 #ifdef CONFIG_NET_POLL_CONTROLLER
3044 /**
3045  * fec_poll_controller - FEC Poll controller function
3046  * @dev: The FEC network adapter
3047  *
3048  * Polled functionality used by netconsole and others in non interrupt mode
3049  *
3050  */
3051 static void fec_poll_controller(struct net_device *dev)
3052 {
3053 	int i;
3054 	struct fec_enet_private *fep = netdev_priv(dev);
3055 
3056 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3057 		if (fep->irq[i] > 0) {
3058 			disable_irq(fep->irq[i]);
3059 			fec_enet_interrupt(fep->irq[i], dev);
3060 			enable_irq(fep->irq[i]);
3061 		}
3062 	}
3063 }
3064 #endif
3065 
3066 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3067 	netdev_features_t features)
3068 {
3069 	struct fec_enet_private *fep = netdev_priv(netdev);
3070 	netdev_features_t changed = features ^ netdev->features;
3071 
3072 	netdev->features = features;
3073 
3074 	/* Receive checksum has been changed */
3075 	if (changed & NETIF_F_RXCSUM) {
3076 		if (features & NETIF_F_RXCSUM)
3077 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3078 		else
3079 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3080 	}
3081 }
3082 
3083 static int fec_set_features(struct net_device *netdev,
3084 	netdev_features_t features)
3085 {
3086 	struct fec_enet_private *fep = netdev_priv(netdev);
3087 	netdev_features_t changed = features ^ netdev->features;
3088 
3089 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3090 		napi_disable(&fep->napi);
3091 		netif_tx_lock_bh(netdev);
3092 		fec_stop(netdev);
3093 		fec_enet_set_netdev_features(netdev, features);
3094 		fec_restart(netdev);
3095 		netif_tx_wake_all_queues(netdev);
3096 		netif_tx_unlock_bh(netdev);
3097 		napi_enable(&fep->napi);
3098 	} else {
3099 		fec_enet_set_netdev_features(netdev, features);
3100 	}
3101 
3102 	return 0;
3103 }
3104 
3105 static const struct net_device_ops fec_netdev_ops = {
3106 	.ndo_open		= fec_enet_open,
3107 	.ndo_stop		= fec_enet_close,
3108 	.ndo_start_xmit		= fec_enet_start_xmit,
3109 	.ndo_set_rx_mode	= set_multicast_list,
3110 	.ndo_validate_addr	= eth_validate_addr,
3111 	.ndo_tx_timeout		= fec_timeout,
3112 	.ndo_set_mac_address	= fec_set_mac_address,
3113 	.ndo_do_ioctl		= fec_enet_ioctl,
3114 #ifdef CONFIG_NET_POLL_CONTROLLER
3115 	.ndo_poll_controller	= fec_poll_controller,
3116 #endif
3117 	.ndo_set_features	= fec_set_features,
3118 };
3119 
3120 static const unsigned short offset_des_active_rxq[] = {
3121 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3122 };
3123 
3124 static const unsigned short offset_des_active_txq[] = {
3125 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3126 };
3127 
3128  /*
3129   * XXX:  We need to clean up on failure exits here.
3130   *
3131   */
3132 static int fec_enet_init(struct net_device *ndev)
3133 {
3134 	struct fec_enet_private *fep = netdev_priv(ndev);
3135 	struct bufdesc *cbd_base;
3136 	dma_addr_t bd_dma;
3137 	int bd_size;
3138 	unsigned int i;
3139 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3140 			sizeof(struct bufdesc);
3141 	unsigned dsize_log2 = __fls(dsize);
3142 
3143 	WARN_ON(dsize != (1 << dsize_log2));
3144 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3145 	fep->rx_align = 0xf;
3146 	fep->tx_align = 0xf;
3147 #else
3148 	fep->rx_align = 0x3;
3149 	fep->tx_align = 0x3;
3150 #endif
3151 
3152 	fec_enet_alloc_queue(ndev);
3153 
3154 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3155 
3156 	/* Allocate memory for buffer descriptors. */
3157 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3158 				       GFP_KERNEL);
3159 	if (!cbd_base) {
3160 		return -ENOMEM;
3161 	}
3162 
3163 	memset(cbd_base, 0, bd_size);
3164 
3165 	/* Get the Ethernet address */
3166 	fec_get_mac(ndev);
3167 	/* make sure MAC we just acquired is programmed into the hw */
3168 	fec_set_mac_address(ndev, NULL);
3169 
3170 	/* Set receive and transmit descriptor base. */
3171 	for (i = 0; i < fep->num_rx_queues; i++) {
3172 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3173 		unsigned size = dsize * rxq->bd.ring_size;
3174 
3175 		rxq->bd.qid = i;
3176 		rxq->bd.base = cbd_base;
3177 		rxq->bd.cur = cbd_base;
3178 		rxq->bd.dma = bd_dma;
3179 		rxq->bd.dsize = dsize;
3180 		rxq->bd.dsize_log2 = dsize_log2;
3181 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3182 		bd_dma += size;
3183 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3184 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3185 	}
3186 
3187 	for (i = 0; i < fep->num_tx_queues; i++) {
3188 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3189 		unsigned size = dsize * txq->bd.ring_size;
3190 
3191 		txq->bd.qid = i;
3192 		txq->bd.base = cbd_base;
3193 		txq->bd.cur = cbd_base;
3194 		txq->bd.dma = bd_dma;
3195 		txq->bd.dsize = dsize;
3196 		txq->bd.dsize_log2 = dsize_log2;
3197 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3198 		bd_dma += size;
3199 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3200 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3201 	}
3202 
3203 
3204 	/* The FEC Ethernet specific entries in the device structure */
3205 	ndev->watchdog_timeo = TX_TIMEOUT;
3206 	ndev->netdev_ops = &fec_netdev_ops;
3207 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3208 
3209 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3210 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3211 
3212 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3213 		/* enable hw VLAN support */
3214 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3215 
3216 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3217 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3218 
3219 		/* enable hw accelerator */
3220 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3221 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3222 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3223 	}
3224 
3225 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3226 		fep->tx_align = 0;
3227 		fep->rx_align = 0x3f;
3228 	}
3229 
3230 	ndev->hw_features = ndev->features;
3231 
3232 	fec_restart(ndev);
3233 
3234 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3235 		fec_enet_clear_ethtool_stats(ndev);
3236 	else
3237 		fec_enet_update_ethtool_stats(ndev);
3238 
3239 	return 0;
3240 }
3241 
3242 #ifdef CONFIG_OF
3243 static int fec_reset_phy(struct platform_device *pdev)
3244 {
3245 	int err, phy_reset;
3246 	bool active_high = false;
3247 	int msec = 1, phy_post_delay = 0;
3248 	struct device_node *np = pdev->dev.of_node;
3249 
3250 	if (!np)
3251 		return 0;
3252 
3253 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3254 	/* A sane reset duration should not be longer than 1s */
3255 	if (!err && msec > 1000)
3256 		msec = 1;
3257 
3258 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3259 	if (phy_reset == -EPROBE_DEFER)
3260 		return phy_reset;
3261 	else if (!gpio_is_valid(phy_reset))
3262 		return 0;
3263 
3264 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3265 	/* valid reset duration should be less than 1s */
3266 	if (!err && phy_post_delay > 1000)
3267 		return -EINVAL;
3268 
3269 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3270 
3271 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3272 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3273 			"phy-reset");
3274 	if (err) {
3275 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3276 		return err;
3277 	}
3278 
3279 	if (msec > 20)
3280 		msleep(msec);
3281 	else
3282 		usleep_range(msec * 1000, msec * 1000 + 1000);
3283 
3284 	gpio_set_value_cansleep(phy_reset, !active_high);
3285 
3286 	if (!phy_post_delay)
3287 		return 0;
3288 
3289 	if (phy_post_delay > 20)
3290 		msleep(phy_post_delay);
3291 	else
3292 		usleep_range(phy_post_delay * 1000,
3293 			     phy_post_delay * 1000 + 1000);
3294 
3295 	return 0;
3296 }
3297 #else /* CONFIG_OF */
3298 static int fec_reset_phy(struct platform_device *pdev)
3299 {
3300 	/*
3301 	 * In case of platform probe, the reset has been done
3302 	 * by machine code.
3303 	 */
3304 	return 0;
3305 }
3306 #endif /* CONFIG_OF */
3307 
3308 static void
3309 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3310 {
3311 	struct device_node *np = pdev->dev.of_node;
3312 
3313 	*num_tx = *num_rx = 1;
3314 
3315 	if (!np || !of_device_is_available(np))
3316 		return;
3317 
3318 	/* parse the num of tx and rx queues */
3319 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3320 
3321 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3322 
3323 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3324 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3325 			 *num_tx);
3326 		*num_tx = 1;
3327 		return;
3328 	}
3329 
3330 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3331 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3332 			 *num_rx);
3333 		*num_rx = 1;
3334 		return;
3335 	}
3336 
3337 }
3338 
3339 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3340 {
3341 	int irq_cnt = platform_irq_count(pdev);
3342 
3343 	if (irq_cnt > FEC_IRQ_NUM)
3344 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3345 	else if (irq_cnt == 2)
3346 		irq_cnt = 1;	/* last for pps */
3347 	else if (irq_cnt <= 0)
3348 		irq_cnt = 1;	/* At least 1 irq is needed */
3349 	return irq_cnt;
3350 }
3351 
3352 static int
3353 fec_probe(struct platform_device *pdev)
3354 {
3355 	struct fec_enet_private *fep;
3356 	struct fec_platform_data *pdata;
3357 	struct net_device *ndev;
3358 	int i, irq, ret = 0;
3359 	struct resource *r;
3360 	const struct of_device_id *of_id;
3361 	static int dev_id;
3362 	struct device_node *np = pdev->dev.of_node, *phy_node;
3363 	int num_tx_qs;
3364 	int num_rx_qs;
3365 	char irq_name[8];
3366 	int irq_cnt;
3367 
3368 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3369 
3370 	/* Init network device */
3371 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3372 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3373 	if (!ndev)
3374 		return -ENOMEM;
3375 
3376 	SET_NETDEV_DEV(ndev, &pdev->dev);
3377 
3378 	/* setup board info structure */
3379 	fep = netdev_priv(ndev);
3380 
3381 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3382 	if (of_id)
3383 		pdev->id_entry = of_id->data;
3384 	fep->quirks = pdev->id_entry->driver_data;
3385 
3386 	fep->netdev = ndev;
3387 	fep->num_rx_queues = num_rx_qs;
3388 	fep->num_tx_queues = num_tx_qs;
3389 
3390 #if !defined(CONFIG_M5272)
3391 	/* default enable pause frame auto negotiation */
3392 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3393 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3394 #endif
3395 
3396 	/* Select default pin state */
3397 	pinctrl_pm_select_default_state(&pdev->dev);
3398 
3399 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3400 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3401 	if (IS_ERR(fep->hwp)) {
3402 		ret = PTR_ERR(fep->hwp);
3403 		goto failed_ioremap;
3404 	}
3405 
3406 	fep->pdev = pdev;
3407 	fep->dev_id = dev_id++;
3408 
3409 	platform_set_drvdata(pdev, ndev);
3410 
3411 	if ((of_machine_is_compatible("fsl,imx6q") ||
3412 	     of_machine_is_compatible("fsl,imx6dl")) &&
3413 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3414 		fep->quirks |= FEC_QUIRK_ERR006687;
3415 
3416 	if (of_get_property(np, "fsl,magic-packet", NULL))
3417 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3418 
3419 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3420 	if (!phy_node && of_phy_is_fixed_link(np)) {
3421 		ret = of_phy_register_fixed_link(np);
3422 		if (ret < 0) {
3423 			dev_err(&pdev->dev,
3424 				"broken fixed-link specification\n");
3425 			goto failed_phy;
3426 		}
3427 		phy_node = of_node_get(np);
3428 	}
3429 	fep->phy_node = phy_node;
3430 
3431 	ret = of_get_phy_mode(pdev->dev.of_node);
3432 	if (ret < 0) {
3433 		pdata = dev_get_platdata(&pdev->dev);
3434 		if (pdata)
3435 			fep->phy_interface = pdata->phy;
3436 		else
3437 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3438 	} else {
3439 		fep->phy_interface = ret;
3440 	}
3441 
3442 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3443 	if (IS_ERR(fep->clk_ipg)) {
3444 		ret = PTR_ERR(fep->clk_ipg);
3445 		goto failed_clk;
3446 	}
3447 
3448 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3449 	if (IS_ERR(fep->clk_ahb)) {
3450 		ret = PTR_ERR(fep->clk_ahb);
3451 		goto failed_clk;
3452 	}
3453 
3454 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3455 
3456 	/* enet_out is optional, depends on board */
3457 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3458 	if (IS_ERR(fep->clk_enet_out))
3459 		fep->clk_enet_out = NULL;
3460 
3461 	fep->ptp_clk_on = false;
3462 	mutex_init(&fep->ptp_clk_mutex);
3463 
3464 	/* clk_ref is optional, depends on board */
3465 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3466 	if (IS_ERR(fep->clk_ref))
3467 		fep->clk_ref = NULL;
3468 
3469 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3470 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3471 	if (IS_ERR(fep->clk_ptp)) {
3472 		fep->clk_ptp = NULL;
3473 		fep->bufdesc_ex = false;
3474 	}
3475 
3476 	ret = fec_enet_clk_enable(ndev, true);
3477 	if (ret)
3478 		goto failed_clk;
3479 
3480 	ret = clk_prepare_enable(fep->clk_ipg);
3481 	if (ret)
3482 		goto failed_clk_ipg;
3483 
3484 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3485 	if (!IS_ERR(fep->reg_phy)) {
3486 		ret = regulator_enable(fep->reg_phy);
3487 		if (ret) {
3488 			dev_err(&pdev->dev,
3489 				"Failed to enable phy regulator: %d\n", ret);
3490 			clk_disable_unprepare(fep->clk_ipg);
3491 			goto failed_regulator;
3492 		}
3493 	} else {
3494 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3495 			ret = -EPROBE_DEFER;
3496 			goto failed_regulator;
3497 		}
3498 		fep->reg_phy = NULL;
3499 	}
3500 
3501 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3502 	pm_runtime_use_autosuspend(&pdev->dev);
3503 	pm_runtime_get_noresume(&pdev->dev);
3504 	pm_runtime_set_active(&pdev->dev);
3505 	pm_runtime_enable(&pdev->dev);
3506 
3507 	ret = fec_reset_phy(pdev);
3508 	if (ret)
3509 		goto failed_reset;
3510 
3511 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3512 	if (fep->bufdesc_ex)
3513 		fec_ptp_init(pdev, irq_cnt);
3514 
3515 	ret = fec_enet_init(ndev);
3516 	if (ret)
3517 		goto failed_init;
3518 
3519 	for (i = 0; i < irq_cnt; i++) {
3520 		sprintf(irq_name, "int%d", i);
3521 		irq = platform_get_irq_byname(pdev, irq_name);
3522 		if (irq < 0)
3523 			irq = platform_get_irq(pdev, i);
3524 		if (irq < 0) {
3525 			ret = irq;
3526 			goto failed_irq;
3527 		}
3528 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3529 				       0, pdev->name, ndev);
3530 		if (ret)
3531 			goto failed_irq;
3532 
3533 		fep->irq[i] = irq;
3534 	}
3535 
3536 	init_completion(&fep->mdio_done);
3537 	ret = fec_enet_mii_init(pdev);
3538 	if (ret)
3539 		goto failed_mii_init;
3540 
3541 	/* Carrier starts down, phylib will bring it up */
3542 	netif_carrier_off(ndev);
3543 	fec_enet_clk_enable(ndev, false);
3544 	pinctrl_pm_select_sleep_state(&pdev->dev);
3545 
3546 	ret = register_netdev(ndev);
3547 	if (ret)
3548 		goto failed_register;
3549 
3550 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3551 			   FEC_WOL_HAS_MAGIC_PACKET);
3552 
3553 	if (fep->bufdesc_ex && fep->ptp_clock)
3554 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3555 
3556 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3557 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3558 
3559 	pm_runtime_mark_last_busy(&pdev->dev);
3560 	pm_runtime_put_autosuspend(&pdev->dev);
3561 
3562 	return 0;
3563 
3564 failed_register:
3565 	fec_enet_mii_remove(fep);
3566 failed_mii_init:
3567 failed_irq:
3568 failed_init:
3569 	fec_ptp_stop(pdev);
3570 	if (fep->reg_phy)
3571 		regulator_disable(fep->reg_phy);
3572 failed_reset:
3573 	pm_runtime_put(&pdev->dev);
3574 	pm_runtime_disable(&pdev->dev);
3575 failed_regulator:
3576 failed_clk_ipg:
3577 	fec_enet_clk_enable(ndev, false);
3578 failed_clk:
3579 	if (of_phy_is_fixed_link(np))
3580 		of_phy_deregister_fixed_link(np);
3581 	of_node_put(phy_node);
3582 failed_phy:
3583 	dev_id--;
3584 failed_ioremap:
3585 	free_netdev(ndev);
3586 
3587 	return ret;
3588 }
3589 
3590 static int
3591 fec_drv_remove(struct platform_device *pdev)
3592 {
3593 	struct net_device *ndev = platform_get_drvdata(pdev);
3594 	struct fec_enet_private *fep = netdev_priv(ndev);
3595 	struct device_node *np = pdev->dev.of_node;
3596 
3597 	cancel_work_sync(&fep->tx_timeout_work);
3598 	fec_ptp_stop(pdev);
3599 	unregister_netdev(ndev);
3600 	fec_enet_mii_remove(fep);
3601 	if (fep->reg_phy)
3602 		regulator_disable(fep->reg_phy);
3603 	if (of_phy_is_fixed_link(np))
3604 		of_phy_deregister_fixed_link(np);
3605 	of_node_put(fep->phy_node);
3606 	free_netdev(ndev);
3607 
3608 	return 0;
3609 }
3610 
3611 static int __maybe_unused fec_suspend(struct device *dev)
3612 {
3613 	struct net_device *ndev = dev_get_drvdata(dev);
3614 	struct fec_enet_private *fep = netdev_priv(ndev);
3615 
3616 	rtnl_lock();
3617 	if (netif_running(ndev)) {
3618 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3619 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3620 		phy_stop(ndev->phydev);
3621 		napi_disable(&fep->napi);
3622 		netif_tx_lock_bh(ndev);
3623 		netif_device_detach(ndev);
3624 		netif_tx_unlock_bh(ndev);
3625 		fec_stop(ndev);
3626 		fec_enet_clk_enable(ndev, false);
3627 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3628 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3629 	}
3630 	rtnl_unlock();
3631 
3632 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3633 		regulator_disable(fep->reg_phy);
3634 
3635 	/* SOC supply clock to phy, when clock is disabled, phy link down
3636 	 * SOC control phy regulator, when regulator is disabled, phy link down
3637 	 */
3638 	if (fep->clk_enet_out || fep->reg_phy)
3639 		fep->link = 0;
3640 
3641 	return 0;
3642 }
3643 
3644 static int __maybe_unused fec_resume(struct device *dev)
3645 {
3646 	struct net_device *ndev = dev_get_drvdata(dev);
3647 	struct fec_enet_private *fep = netdev_priv(ndev);
3648 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3649 	int ret;
3650 	int val;
3651 
3652 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3653 		ret = regulator_enable(fep->reg_phy);
3654 		if (ret)
3655 			return ret;
3656 	}
3657 
3658 	rtnl_lock();
3659 	if (netif_running(ndev)) {
3660 		ret = fec_enet_clk_enable(ndev, true);
3661 		if (ret) {
3662 			rtnl_unlock();
3663 			goto failed_clk;
3664 		}
3665 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3666 			if (pdata && pdata->sleep_mode_enable)
3667 				pdata->sleep_mode_enable(false);
3668 			val = readl(fep->hwp + FEC_ECNTRL);
3669 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3670 			writel(val, fep->hwp + FEC_ECNTRL);
3671 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3672 		} else {
3673 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3674 		}
3675 		fec_restart(ndev);
3676 		netif_tx_lock_bh(ndev);
3677 		netif_device_attach(ndev);
3678 		netif_tx_unlock_bh(ndev);
3679 		napi_enable(&fep->napi);
3680 		phy_start(ndev->phydev);
3681 	}
3682 	rtnl_unlock();
3683 
3684 	return 0;
3685 
3686 failed_clk:
3687 	if (fep->reg_phy)
3688 		regulator_disable(fep->reg_phy);
3689 	return ret;
3690 }
3691 
3692 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3693 {
3694 	struct net_device *ndev = dev_get_drvdata(dev);
3695 	struct fec_enet_private *fep = netdev_priv(ndev);
3696 
3697 	clk_disable_unprepare(fep->clk_ipg);
3698 
3699 	return 0;
3700 }
3701 
3702 static int __maybe_unused fec_runtime_resume(struct device *dev)
3703 {
3704 	struct net_device *ndev = dev_get_drvdata(dev);
3705 	struct fec_enet_private *fep = netdev_priv(ndev);
3706 
3707 	return clk_prepare_enable(fep->clk_ipg);
3708 }
3709 
3710 static const struct dev_pm_ops fec_pm_ops = {
3711 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3712 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3713 };
3714 
3715 static struct platform_driver fec_driver = {
3716 	.driver	= {
3717 		.name	= DRIVER_NAME,
3718 		.pm	= &fec_pm_ops,
3719 		.of_match_table = fec_dt_ids,
3720 	},
3721 	.id_table = fec_devtype,
3722 	.probe	= fec_probe,
3723 	.remove	= fec_drv_remove,
3724 };
3725 
3726 module_platform_driver(fec_driver);
3727 
3728 MODULE_ALIAS("platform:"DRIVER_NAME);
3729 MODULE_LICENSE("GPL");
3730