1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/selftests.h>
42 #include <net/tso.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/icmp.h>
46 #include <linux/spinlock.h>
47 #include <linux/workqueue.h>
48 #include <linux/bitops.h>
49 #include <linux/io.h>
50 #include <linux/irq.h>
51 #include <linux/clk.h>
52 #include <linux/crc32.h>
53 #include <linux/platform_device.h>
54 #include <linux/mdio.h>
55 #include <linux/phy.h>
56 #include <linux/fec.h>
57 #include <linux/of.h>
58 #include <linux/of_device.h>
59 #include <linux/of_gpio.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/prefetch.h>
66 #include <linux/mfd/syscon.h>
67 #include <linux/regmap.h>
68 #include <soc/imx/cpuidle.h>
69 
70 #include <asm/cacheflush.h>
71 
72 #include "fec.h"
73 
74 static void set_multicast_list(struct net_device *ndev);
75 static void fec_enet_itr_coal_init(struct net_device *ndev);
76 
77 #define DRIVER_NAME	"fec"
78 
79 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
80 
81 /* Pause frame feild and FIFO threshold */
82 #define FEC_ENET_FCE	(1 << 5)
83 #define FEC_ENET_RSEM_V	0x84
84 #define FEC_ENET_RSFL_V	16
85 #define FEC_ENET_RAEM_V	0x8
86 #define FEC_ENET_RAFL_V	0x8
87 #define FEC_ENET_OPD_V	0xFFF0
88 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
89 
90 struct fec_devinfo {
91 	u32 quirks;
92 };
93 
94 static const struct fec_devinfo fec_imx25_info = {
95 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
96 		  FEC_QUIRK_HAS_FRREG,
97 };
98 
99 static const struct fec_devinfo fec_imx27_info = {
100 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
101 };
102 
103 static const struct fec_devinfo fec_imx28_info = {
104 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
105 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
106 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
107 		  FEC_QUIRK_NO_HARD_RESET,
108 };
109 
110 static const struct fec_devinfo fec_imx6q_info = {
111 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
114 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
115 		  FEC_QUIRK_HAS_PMQOS,
116 };
117 
118 static const struct fec_devinfo fec_mvf600_info = {
119 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
120 };
121 
122 static const struct fec_devinfo fec_imx6x_info = {
123 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
124 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
125 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
126 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
127 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
128 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES,
129 };
130 
131 static const struct fec_devinfo fec_imx6ul_info = {
132 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
133 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
134 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
135 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
136 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
137 };
138 
139 static const struct fec_devinfo fec_imx8mq_info = {
140 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
141 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
142 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
143 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
144 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
145 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
146 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2,
147 };
148 
149 static const struct fec_devinfo fec_imx8qm_info = {
150 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
151 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
152 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
153 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
154 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
155 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
156 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT,
157 };
158 
159 static const struct fec_devinfo fec_s32v234_info = {
160 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
161 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
162 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
163 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
164 };
165 
166 static struct platform_device_id fec_devtype[] = {
167 	{
168 		/* keep it for coldfire */
169 		.name = DRIVER_NAME,
170 		.driver_data = 0,
171 	}, {
172 		.name = "imx25-fec",
173 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
174 	}, {
175 		.name = "imx27-fec",
176 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
177 	}, {
178 		.name = "imx28-fec",
179 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
180 	}, {
181 		.name = "imx6q-fec",
182 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
183 	}, {
184 		.name = "mvf600-fec",
185 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
186 	}, {
187 		.name = "imx6sx-fec",
188 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
189 	}, {
190 		.name = "imx6ul-fec",
191 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
192 	}, {
193 		.name = "imx8mq-fec",
194 		.driver_data = (kernel_ulong_t)&fec_imx8mq_info,
195 	}, {
196 		.name = "imx8qm-fec",
197 		.driver_data = (kernel_ulong_t)&fec_imx8qm_info,
198 	}, {
199 		.name = "s32v234-fec",
200 		.driver_data = (kernel_ulong_t)&fec_s32v234_info,
201 	}, {
202 		/* sentinel */
203 	}
204 };
205 MODULE_DEVICE_TABLE(platform, fec_devtype);
206 
207 enum imx_fec_type {
208 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
209 	IMX27_FEC,	/* runs on i.mx27/35/51 */
210 	IMX28_FEC,
211 	IMX6Q_FEC,
212 	MVF600_FEC,
213 	IMX6SX_FEC,
214 	IMX6UL_FEC,
215 	IMX8MQ_FEC,
216 	IMX8QM_FEC,
217 	S32V234_FEC,
218 };
219 
220 static const struct of_device_id fec_dt_ids[] = {
221 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
222 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
223 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
224 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
225 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
226 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
227 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
228 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
229 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
230 	{ .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], },
231 	{ /* sentinel */ }
232 };
233 MODULE_DEVICE_TABLE(of, fec_dt_ids);
234 
235 static unsigned char macaddr[ETH_ALEN];
236 module_param_array(macaddr, byte, NULL, 0);
237 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
238 
239 #if defined(CONFIG_M5272)
240 /*
241  * Some hardware gets it MAC address out of local flash memory.
242  * if this is non-zero then assume it is the address to get MAC from.
243  */
244 #if defined(CONFIG_NETtel)
245 #define	FEC_FLASHMAC	0xf0006006
246 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
247 #define	FEC_FLASHMAC	0xf0006000
248 #elif defined(CONFIG_CANCam)
249 #define	FEC_FLASHMAC	0xf0020000
250 #elif defined (CONFIG_M5272C3)
251 #define	FEC_FLASHMAC	(0xffe04000 + 4)
252 #elif defined(CONFIG_MOD5272)
253 #define FEC_FLASHMAC	0xffc0406b
254 #else
255 #define	FEC_FLASHMAC	0
256 #endif
257 #endif /* CONFIG_M5272 */
258 
259 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
260  *
261  * 2048 byte skbufs are allocated. However, alignment requirements
262  * varies between FEC variants. Worst case is 64, so round down by 64.
263  */
264 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
265 #define PKT_MINBUF_SIZE		64
266 
267 /* FEC receive acceleration */
268 #define FEC_RACC_IPDIS		(1 << 1)
269 #define FEC_RACC_PRODIS		(1 << 2)
270 #define FEC_RACC_SHIFT16	BIT(7)
271 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
272 
273 /* MIB Control Register */
274 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
275 
276 /*
277  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
278  * size bits. Other FEC hardware does not, so we need to take that into
279  * account when setting it.
280  */
281 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
282     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
283     defined(CONFIG_ARM64)
284 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
285 #else
286 #define	OPT_FRAME_SIZE	0
287 #endif
288 
289 /* FEC MII MMFR bits definition */
290 #define FEC_MMFR_ST		(1 << 30)
291 #define FEC_MMFR_ST_C45		(0)
292 #define FEC_MMFR_OP_READ	(2 << 28)
293 #define FEC_MMFR_OP_READ_C45	(3 << 28)
294 #define FEC_MMFR_OP_WRITE	(1 << 28)
295 #define FEC_MMFR_OP_ADDR_WRITE	(0)
296 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
297 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
298 #define FEC_MMFR_TA		(2 << 16)
299 #define FEC_MMFR_DATA(v)	(v & 0xffff)
300 /* FEC ECR bits definition */
301 #define FEC_ECR_RESET   BIT(0)
302 #define FEC_ECR_ETHEREN BIT(1)
303 #define FEC_ECR_MAGICEN BIT(2)
304 #define FEC_ECR_SLEEP   BIT(3)
305 #define FEC_ECR_EN1588  BIT(4)
306 
307 #define FEC_MII_TIMEOUT		30000 /* us */
308 
309 /* Transmitter timeout */
310 #define TX_TIMEOUT (2 * HZ)
311 
312 #define FEC_PAUSE_FLAG_AUTONEG	0x1
313 #define FEC_PAUSE_FLAG_ENABLE	0x2
314 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
315 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
316 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
317 
318 #define COPYBREAK_DEFAULT	256
319 
320 /* Max number of allowed TCP segments for software TSO */
321 #define FEC_MAX_TSO_SEGS	100
322 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
323 
324 #define IS_TSO_HEADER(txq, addr) \
325 	((addr >= txq->tso_hdrs_dma) && \
326 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
327 
328 static int mii_cnt;
329 
330 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
331 					     struct bufdesc_prop *bd)
332 {
333 	return (bdp >= bd->last) ? bd->base
334 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
335 }
336 
337 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
338 					     struct bufdesc_prop *bd)
339 {
340 	return (bdp <= bd->base) ? bd->last
341 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
342 }
343 
344 static int fec_enet_get_bd_index(struct bufdesc *bdp,
345 				 struct bufdesc_prop *bd)
346 {
347 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
348 }
349 
350 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
351 {
352 	int entries;
353 
354 	entries = (((const char *)txq->dirty_tx -
355 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
356 
357 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
358 }
359 
360 static void swap_buffer(void *bufaddr, int len)
361 {
362 	int i;
363 	unsigned int *buf = bufaddr;
364 
365 	for (i = 0; i < len; i += 4, buf++)
366 		swab32s(buf);
367 }
368 
369 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
370 {
371 	int i;
372 	unsigned int *src = src_buf;
373 	unsigned int *dst = dst_buf;
374 
375 	for (i = 0; i < len; i += 4, src++, dst++)
376 		*dst = swab32p(src);
377 }
378 
379 static void fec_dump(struct net_device *ndev)
380 {
381 	struct fec_enet_private *fep = netdev_priv(ndev);
382 	struct bufdesc *bdp;
383 	struct fec_enet_priv_tx_q *txq;
384 	int index = 0;
385 
386 	netdev_info(ndev, "TX ring dump\n");
387 	pr_info("Nr     SC     addr       len  SKB\n");
388 
389 	txq = fep->tx_queue[0];
390 	bdp = txq->bd.base;
391 
392 	do {
393 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
394 			index,
395 			bdp == txq->bd.cur ? 'S' : ' ',
396 			bdp == txq->dirty_tx ? 'H' : ' ',
397 			fec16_to_cpu(bdp->cbd_sc),
398 			fec32_to_cpu(bdp->cbd_bufaddr),
399 			fec16_to_cpu(bdp->cbd_datlen),
400 			txq->tx_skbuff[index]);
401 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
402 		index++;
403 	} while (bdp != txq->bd.base);
404 }
405 
406 static inline bool is_ipv4_pkt(struct sk_buff *skb)
407 {
408 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
409 }
410 
411 static int
412 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
413 {
414 	/* Only run for packets requiring a checksum. */
415 	if (skb->ip_summed != CHECKSUM_PARTIAL)
416 		return 0;
417 
418 	if (unlikely(skb_cow_head(skb, 0)))
419 		return -1;
420 
421 	if (is_ipv4_pkt(skb))
422 		ip_hdr(skb)->check = 0;
423 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
424 
425 	return 0;
426 }
427 
428 static struct bufdesc *
429 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
430 			     struct sk_buff *skb,
431 			     struct net_device *ndev)
432 {
433 	struct fec_enet_private *fep = netdev_priv(ndev);
434 	struct bufdesc *bdp = txq->bd.cur;
435 	struct bufdesc_ex *ebdp;
436 	int nr_frags = skb_shinfo(skb)->nr_frags;
437 	int frag, frag_len;
438 	unsigned short status;
439 	unsigned int estatus = 0;
440 	skb_frag_t *this_frag;
441 	unsigned int index;
442 	void *bufaddr;
443 	dma_addr_t addr;
444 	int i;
445 
446 	for (frag = 0; frag < nr_frags; frag++) {
447 		this_frag = &skb_shinfo(skb)->frags[frag];
448 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
449 		ebdp = (struct bufdesc_ex *)bdp;
450 
451 		status = fec16_to_cpu(bdp->cbd_sc);
452 		status &= ~BD_ENET_TX_STATS;
453 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
454 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
455 
456 		/* Handle the last BD specially */
457 		if (frag == nr_frags - 1) {
458 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
459 			if (fep->bufdesc_ex) {
460 				estatus |= BD_ENET_TX_INT;
461 				if (unlikely(skb_shinfo(skb)->tx_flags &
462 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
463 					estatus |= BD_ENET_TX_TS;
464 			}
465 		}
466 
467 		if (fep->bufdesc_ex) {
468 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
469 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
470 			if (skb->ip_summed == CHECKSUM_PARTIAL)
471 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
472 
473 			ebdp->cbd_bdu = 0;
474 			ebdp->cbd_esc = cpu_to_fec32(estatus);
475 		}
476 
477 		bufaddr = skb_frag_address(this_frag);
478 
479 		index = fec_enet_get_bd_index(bdp, &txq->bd);
480 		if (((unsigned long) bufaddr) & fep->tx_align ||
481 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
482 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
483 			bufaddr = txq->tx_bounce[index];
484 
485 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
486 				swap_buffer(bufaddr, frag_len);
487 		}
488 
489 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
490 				      DMA_TO_DEVICE);
491 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
492 			if (net_ratelimit())
493 				netdev_err(ndev, "Tx DMA memory map failed\n");
494 			goto dma_mapping_error;
495 		}
496 
497 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
498 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
499 		/* Make sure the updates to rest of the descriptor are
500 		 * performed before transferring ownership.
501 		 */
502 		wmb();
503 		bdp->cbd_sc = cpu_to_fec16(status);
504 	}
505 
506 	return bdp;
507 dma_mapping_error:
508 	bdp = txq->bd.cur;
509 	for (i = 0; i < frag; i++) {
510 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
511 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
512 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
513 	}
514 	return ERR_PTR(-ENOMEM);
515 }
516 
517 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
518 				   struct sk_buff *skb, struct net_device *ndev)
519 {
520 	struct fec_enet_private *fep = netdev_priv(ndev);
521 	int nr_frags = skb_shinfo(skb)->nr_frags;
522 	struct bufdesc *bdp, *last_bdp;
523 	void *bufaddr;
524 	dma_addr_t addr;
525 	unsigned short status;
526 	unsigned short buflen;
527 	unsigned int estatus = 0;
528 	unsigned int index;
529 	int entries_free;
530 
531 	entries_free = fec_enet_get_free_txdesc_num(txq);
532 	if (entries_free < MAX_SKB_FRAGS + 1) {
533 		dev_kfree_skb_any(skb);
534 		if (net_ratelimit())
535 			netdev_err(ndev, "NOT enough BD for SG!\n");
536 		return NETDEV_TX_OK;
537 	}
538 
539 	/* Protocol checksum off-load for TCP and UDP. */
540 	if (fec_enet_clear_csum(skb, ndev)) {
541 		dev_kfree_skb_any(skb);
542 		return NETDEV_TX_OK;
543 	}
544 
545 	/* Fill in a Tx ring entry */
546 	bdp = txq->bd.cur;
547 	last_bdp = bdp;
548 	status = fec16_to_cpu(bdp->cbd_sc);
549 	status &= ~BD_ENET_TX_STATS;
550 
551 	/* Set buffer length and buffer pointer */
552 	bufaddr = skb->data;
553 	buflen = skb_headlen(skb);
554 
555 	index = fec_enet_get_bd_index(bdp, &txq->bd);
556 	if (((unsigned long) bufaddr) & fep->tx_align ||
557 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
558 		memcpy(txq->tx_bounce[index], skb->data, buflen);
559 		bufaddr = txq->tx_bounce[index];
560 
561 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
562 			swap_buffer(bufaddr, buflen);
563 	}
564 
565 	/* Push the data cache so the CPM does not get stale memory data. */
566 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
567 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
568 		dev_kfree_skb_any(skb);
569 		if (net_ratelimit())
570 			netdev_err(ndev, "Tx DMA memory map failed\n");
571 		return NETDEV_TX_OK;
572 	}
573 
574 	if (nr_frags) {
575 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
576 		if (IS_ERR(last_bdp)) {
577 			dma_unmap_single(&fep->pdev->dev, addr,
578 					 buflen, DMA_TO_DEVICE);
579 			dev_kfree_skb_any(skb);
580 			return NETDEV_TX_OK;
581 		}
582 	} else {
583 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
584 		if (fep->bufdesc_ex) {
585 			estatus = BD_ENET_TX_INT;
586 			if (unlikely(skb_shinfo(skb)->tx_flags &
587 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
588 				estatus |= BD_ENET_TX_TS;
589 		}
590 	}
591 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
592 	bdp->cbd_datlen = cpu_to_fec16(buflen);
593 
594 	if (fep->bufdesc_ex) {
595 
596 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
597 
598 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
599 			fep->hwts_tx_en))
600 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
601 
602 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
603 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
604 
605 		if (skb->ip_summed == CHECKSUM_PARTIAL)
606 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
607 
608 		ebdp->cbd_bdu = 0;
609 		ebdp->cbd_esc = cpu_to_fec32(estatus);
610 	}
611 
612 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
613 	/* Save skb pointer */
614 	txq->tx_skbuff[index] = skb;
615 
616 	/* Make sure the updates to rest of the descriptor are performed before
617 	 * transferring ownership.
618 	 */
619 	wmb();
620 
621 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
622 	 * it's the last BD of the frame, and to put the CRC on the end.
623 	 */
624 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
625 	bdp->cbd_sc = cpu_to_fec16(status);
626 
627 	/* If this was the last BD in the ring, start at the beginning again. */
628 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
629 
630 	skb_tx_timestamp(skb);
631 
632 	/* Make sure the update to bdp and tx_skbuff are performed before
633 	 * txq->bd.cur.
634 	 */
635 	wmb();
636 	txq->bd.cur = bdp;
637 
638 	/* Trigger transmission start */
639 	writel(0, txq->bd.reg_desc_active);
640 
641 	return 0;
642 }
643 
644 static int
645 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
646 			  struct net_device *ndev,
647 			  struct bufdesc *bdp, int index, char *data,
648 			  int size, bool last_tcp, bool is_last)
649 {
650 	struct fec_enet_private *fep = netdev_priv(ndev);
651 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
652 	unsigned short status;
653 	unsigned int estatus = 0;
654 	dma_addr_t addr;
655 
656 	status = fec16_to_cpu(bdp->cbd_sc);
657 	status &= ~BD_ENET_TX_STATS;
658 
659 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
660 
661 	if (((unsigned long) data) & fep->tx_align ||
662 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
663 		memcpy(txq->tx_bounce[index], data, size);
664 		data = txq->tx_bounce[index];
665 
666 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
667 			swap_buffer(data, size);
668 	}
669 
670 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
671 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
672 		dev_kfree_skb_any(skb);
673 		if (net_ratelimit())
674 			netdev_err(ndev, "Tx DMA memory map failed\n");
675 		return NETDEV_TX_BUSY;
676 	}
677 
678 	bdp->cbd_datlen = cpu_to_fec16(size);
679 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
680 
681 	if (fep->bufdesc_ex) {
682 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
683 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
684 		if (skb->ip_summed == CHECKSUM_PARTIAL)
685 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
686 		ebdp->cbd_bdu = 0;
687 		ebdp->cbd_esc = cpu_to_fec32(estatus);
688 	}
689 
690 	/* Handle the last BD specially */
691 	if (last_tcp)
692 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
693 	if (is_last) {
694 		status |= BD_ENET_TX_INTR;
695 		if (fep->bufdesc_ex)
696 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
697 	}
698 
699 	bdp->cbd_sc = cpu_to_fec16(status);
700 
701 	return 0;
702 }
703 
704 static int
705 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
706 			 struct sk_buff *skb, struct net_device *ndev,
707 			 struct bufdesc *bdp, int index)
708 {
709 	struct fec_enet_private *fep = netdev_priv(ndev);
710 	int hdr_len = skb_tcp_all_headers(skb);
711 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
712 	void *bufaddr;
713 	unsigned long dmabuf;
714 	unsigned short status;
715 	unsigned int estatus = 0;
716 
717 	status = fec16_to_cpu(bdp->cbd_sc);
718 	status &= ~BD_ENET_TX_STATS;
719 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
720 
721 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
722 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
723 	if (((unsigned long)bufaddr) & fep->tx_align ||
724 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
725 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
726 		bufaddr = txq->tx_bounce[index];
727 
728 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
729 			swap_buffer(bufaddr, hdr_len);
730 
731 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
732 					hdr_len, DMA_TO_DEVICE);
733 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
734 			dev_kfree_skb_any(skb);
735 			if (net_ratelimit())
736 				netdev_err(ndev, "Tx DMA memory map failed\n");
737 			return NETDEV_TX_BUSY;
738 		}
739 	}
740 
741 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
742 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
743 
744 	if (fep->bufdesc_ex) {
745 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
746 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
747 		if (skb->ip_summed == CHECKSUM_PARTIAL)
748 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
749 		ebdp->cbd_bdu = 0;
750 		ebdp->cbd_esc = cpu_to_fec32(estatus);
751 	}
752 
753 	bdp->cbd_sc = cpu_to_fec16(status);
754 
755 	return 0;
756 }
757 
758 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
759 				   struct sk_buff *skb,
760 				   struct net_device *ndev)
761 {
762 	struct fec_enet_private *fep = netdev_priv(ndev);
763 	int hdr_len, total_len, data_left;
764 	struct bufdesc *bdp = txq->bd.cur;
765 	struct tso_t tso;
766 	unsigned int index = 0;
767 	int ret;
768 
769 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
770 		dev_kfree_skb_any(skb);
771 		if (net_ratelimit())
772 			netdev_err(ndev, "NOT enough BD for TSO!\n");
773 		return NETDEV_TX_OK;
774 	}
775 
776 	/* Protocol checksum off-load for TCP and UDP. */
777 	if (fec_enet_clear_csum(skb, ndev)) {
778 		dev_kfree_skb_any(skb);
779 		return NETDEV_TX_OK;
780 	}
781 
782 	/* Initialize the TSO handler, and prepare the first payload */
783 	hdr_len = tso_start(skb, &tso);
784 
785 	total_len = skb->len - hdr_len;
786 	while (total_len > 0) {
787 		char *hdr;
788 
789 		index = fec_enet_get_bd_index(bdp, &txq->bd);
790 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
791 		total_len -= data_left;
792 
793 		/* prepare packet headers: MAC + IP + TCP */
794 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
795 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
796 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
797 		if (ret)
798 			goto err_release;
799 
800 		while (data_left > 0) {
801 			int size;
802 
803 			size = min_t(int, tso.size, data_left);
804 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
805 			index = fec_enet_get_bd_index(bdp, &txq->bd);
806 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
807 							bdp, index,
808 							tso.data, size,
809 							size == data_left,
810 							total_len == 0);
811 			if (ret)
812 				goto err_release;
813 
814 			data_left -= size;
815 			tso_build_data(skb, &tso, size);
816 		}
817 
818 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
819 	}
820 
821 	/* Save skb pointer */
822 	txq->tx_skbuff[index] = skb;
823 
824 	skb_tx_timestamp(skb);
825 	txq->bd.cur = bdp;
826 
827 	/* Trigger transmission start */
828 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
829 	    !readl(txq->bd.reg_desc_active) ||
830 	    !readl(txq->bd.reg_desc_active) ||
831 	    !readl(txq->bd.reg_desc_active) ||
832 	    !readl(txq->bd.reg_desc_active))
833 		writel(0, txq->bd.reg_desc_active);
834 
835 	return 0;
836 
837 err_release:
838 	/* TODO: Release all used data descriptors for TSO */
839 	return ret;
840 }
841 
842 static netdev_tx_t
843 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
844 {
845 	struct fec_enet_private *fep = netdev_priv(ndev);
846 	int entries_free;
847 	unsigned short queue;
848 	struct fec_enet_priv_tx_q *txq;
849 	struct netdev_queue *nq;
850 	int ret;
851 
852 	queue = skb_get_queue_mapping(skb);
853 	txq = fep->tx_queue[queue];
854 	nq = netdev_get_tx_queue(ndev, queue);
855 
856 	if (skb_is_gso(skb))
857 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
858 	else
859 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
860 	if (ret)
861 		return ret;
862 
863 	entries_free = fec_enet_get_free_txdesc_num(txq);
864 	if (entries_free <= txq->tx_stop_threshold)
865 		netif_tx_stop_queue(nq);
866 
867 	return NETDEV_TX_OK;
868 }
869 
870 /* Init RX & TX buffer descriptors
871  */
872 static void fec_enet_bd_init(struct net_device *dev)
873 {
874 	struct fec_enet_private *fep = netdev_priv(dev);
875 	struct fec_enet_priv_tx_q *txq;
876 	struct fec_enet_priv_rx_q *rxq;
877 	struct bufdesc *bdp;
878 	unsigned int i;
879 	unsigned int q;
880 
881 	for (q = 0; q < fep->num_rx_queues; q++) {
882 		/* Initialize the receive buffer descriptors. */
883 		rxq = fep->rx_queue[q];
884 		bdp = rxq->bd.base;
885 
886 		for (i = 0; i < rxq->bd.ring_size; i++) {
887 
888 			/* Initialize the BD for every fragment in the page. */
889 			if (bdp->cbd_bufaddr)
890 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
891 			else
892 				bdp->cbd_sc = cpu_to_fec16(0);
893 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
894 		}
895 
896 		/* Set the last buffer to wrap */
897 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
898 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
899 
900 		rxq->bd.cur = rxq->bd.base;
901 	}
902 
903 	for (q = 0; q < fep->num_tx_queues; q++) {
904 		/* ...and the same for transmit */
905 		txq = fep->tx_queue[q];
906 		bdp = txq->bd.base;
907 		txq->bd.cur = bdp;
908 
909 		for (i = 0; i < txq->bd.ring_size; i++) {
910 			/* Initialize the BD for every fragment in the page. */
911 			bdp->cbd_sc = cpu_to_fec16(0);
912 			if (bdp->cbd_bufaddr &&
913 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
914 				dma_unmap_single(&fep->pdev->dev,
915 						 fec32_to_cpu(bdp->cbd_bufaddr),
916 						 fec16_to_cpu(bdp->cbd_datlen),
917 						 DMA_TO_DEVICE);
918 			if (txq->tx_skbuff[i]) {
919 				dev_kfree_skb_any(txq->tx_skbuff[i]);
920 				txq->tx_skbuff[i] = NULL;
921 			}
922 			bdp->cbd_bufaddr = cpu_to_fec32(0);
923 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
924 		}
925 
926 		/* Set the last buffer to wrap */
927 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
928 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
929 		txq->dirty_tx = bdp;
930 	}
931 }
932 
933 static void fec_enet_active_rxring(struct net_device *ndev)
934 {
935 	struct fec_enet_private *fep = netdev_priv(ndev);
936 	int i;
937 
938 	for (i = 0; i < fep->num_rx_queues; i++)
939 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
940 }
941 
942 static void fec_enet_enable_ring(struct net_device *ndev)
943 {
944 	struct fec_enet_private *fep = netdev_priv(ndev);
945 	struct fec_enet_priv_tx_q *txq;
946 	struct fec_enet_priv_rx_q *rxq;
947 	int i;
948 
949 	for (i = 0; i < fep->num_rx_queues; i++) {
950 		rxq = fep->rx_queue[i];
951 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
952 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
953 
954 		/* enable DMA1/2 */
955 		if (i)
956 			writel(RCMR_MATCHEN | RCMR_CMP(i),
957 			       fep->hwp + FEC_RCMR(i));
958 	}
959 
960 	for (i = 0; i < fep->num_tx_queues; i++) {
961 		txq = fep->tx_queue[i];
962 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
963 
964 		/* enable DMA1/2 */
965 		if (i)
966 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
967 			       fep->hwp + FEC_DMA_CFG(i));
968 	}
969 }
970 
971 static void fec_enet_reset_skb(struct net_device *ndev)
972 {
973 	struct fec_enet_private *fep = netdev_priv(ndev);
974 	struct fec_enet_priv_tx_q *txq;
975 	int i, j;
976 
977 	for (i = 0; i < fep->num_tx_queues; i++) {
978 		txq = fep->tx_queue[i];
979 
980 		for (j = 0; j < txq->bd.ring_size; j++) {
981 			if (txq->tx_skbuff[j]) {
982 				dev_kfree_skb_any(txq->tx_skbuff[j]);
983 				txq->tx_skbuff[j] = NULL;
984 			}
985 		}
986 	}
987 }
988 
989 /*
990  * This function is called to start or restart the FEC during a link
991  * change, transmit timeout, or to reconfigure the FEC.  The network
992  * packet processing for this device must be stopped before this call.
993  */
994 static void
995 fec_restart(struct net_device *ndev)
996 {
997 	struct fec_enet_private *fep = netdev_priv(ndev);
998 	u32 temp_mac[2];
999 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1000 	u32 ecntl = 0x2; /* ETHEREN */
1001 	struct ptp_clock_request ptp_rq = { .type = PTP_CLK_REQ_PPS };
1002 
1003 	fec_ptp_save_state(fep);
1004 
1005 	/* Whack a reset.  We should wait for this.
1006 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1007 	 * instead of reset MAC itself.
1008 	 */
1009 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1010 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1011 		writel(0, fep->hwp + FEC_ECNTRL);
1012 	} else {
1013 		writel(1, fep->hwp + FEC_ECNTRL);
1014 		udelay(10);
1015 	}
1016 
1017 	/*
1018 	 * enet-mac reset will reset mac address registers too,
1019 	 * so need to reconfigure it.
1020 	 */
1021 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1022 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1023 	       fep->hwp + FEC_ADDR_LOW);
1024 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1025 	       fep->hwp + FEC_ADDR_HIGH);
1026 
1027 	/* Clear any outstanding interrupt, except MDIO. */
1028 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1029 
1030 	fec_enet_bd_init(ndev);
1031 
1032 	fec_enet_enable_ring(ndev);
1033 
1034 	/* Reset tx SKB buffers. */
1035 	fec_enet_reset_skb(ndev);
1036 
1037 	/* Enable MII mode */
1038 	if (fep->full_duplex == DUPLEX_FULL) {
1039 		/* FD enable */
1040 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1041 	} else {
1042 		/* No Rcv on Xmit */
1043 		rcntl |= 0x02;
1044 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1045 	}
1046 
1047 	/* Set MII speed */
1048 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1049 
1050 #if !defined(CONFIG_M5272)
1051 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1052 		u32 val = readl(fep->hwp + FEC_RACC);
1053 
1054 		/* align IP header */
1055 		val |= FEC_RACC_SHIFT16;
1056 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1057 			/* set RX checksum */
1058 			val |= FEC_RACC_OPTIONS;
1059 		else
1060 			val &= ~FEC_RACC_OPTIONS;
1061 		writel(val, fep->hwp + FEC_RACC);
1062 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1063 	}
1064 #endif
1065 
1066 	/*
1067 	 * The phy interface and speed need to get configured
1068 	 * differently on enet-mac.
1069 	 */
1070 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1071 		/* Enable flow control and length check */
1072 		rcntl |= 0x40000000 | 0x00000020;
1073 
1074 		/* RGMII, RMII or MII */
1075 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1076 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1077 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1078 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1079 			rcntl |= (1 << 6);
1080 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1081 			rcntl |= (1 << 8);
1082 		else
1083 			rcntl &= ~(1 << 8);
1084 
1085 		/* 1G, 100M or 10M */
1086 		if (ndev->phydev) {
1087 			if (ndev->phydev->speed == SPEED_1000)
1088 				ecntl |= (1 << 5);
1089 			else if (ndev->phydev->speed == SPEED_100)
1090 				rcntl &= ~(1 << 9);
1091 			else
1092 				rcntl |= (1 << 9);
1093 		}
1094 	} else {
1095 #ifdef FEC_MIIGSK_ENR
1096 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1097 			u32 cfgr;
1098 			/* disable the gasket and wait */
1099 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1100 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1101 				udelay(1);
1102 
1103 			/*
1104 			 * configure the gasket:
1105 			 *   RMII, 50 MHz, no loopback, no echo
1106 			 *   MII, 25 MHz, no loopback, no echo
1107 			 */
1108 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1109 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1110 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1111 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1112 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1113 
1114 			/* re-enable the gasket */
1115 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1116 		}
1117 #endif
1118 	}
1119 
1120 #if !defined(CONFIG_M5272)
1121 	/* enable pause frame*/
1122 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1123 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1124 	     ndev->phydev && ndev->phydev->pause)) {
1125 		rcntl |= FEC_ENET_FCE;
1126 
1127 		/* set FIFO threshold parameter to reduce overrun */
1128 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1129 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1130 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1131 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1132 
1133 		/* OPD */
1134 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1135 	} else {
1136 		rcntl &= ~FEC_ENET_FCE;
1137 	}
1138 #endif /* !defined(CONFIG_M5272) */
1139 
1140 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1141 
1142 	/* Setup multicast filter. */
1143 	set_multicast_list(ndev);
1144 #ifndef CONFIG_M5272
1145 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1146 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1147 #endif
1148 
1149 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1150 		/* enable ENET endian swap */
1151 		ecntl |= (1 << 8);
1152 		/* enable ENET store and forward mode */
1153 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1154 	}
1155 
1156 	if (fep->bufdesc_ex)
1157 		ecntl |= FEC_ECR_EN1588;
1158 
1159 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1160 	    fep->rgmii_txc_dly)
1161 		ecntl |= FEC_ENET_TXC_DLY;
1162 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1163 	    fep->rgmii_rxc_dly)
1164 		ecntl |= FEC_ENET_RXC_DLY;
1165 
1166 #ifndef CONFIG_M5272
1167 	/* Enable the MIB statistic event counters */
1168 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1169 #endif
1170 
1171 	/* And last, enable the transmit and receive processing */
1172 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1173 	fec_enet_active_rxring(ndev);
1174 
1175 	if (fep->bufdesc_ex)
1176 		fec_ptp_start_cyclecounter(ndev);
1177 
1178 	/* Restart PPS if needed */
1179 	if (fep->pps_enable) {
1180 		/* Clear flag so fec_ptp_enable_pps() doesn't return immediately */
1181 		fep->pps_enable = 0;
1182 		fec_ptp_restore_state(fep);
1183 		fep->ptp_caps.enable(&fep->ptp_caps, &ptp_rq, 1);
1184 	}
1185 
1186 	/* Enable interrupts we wish to service */
1187 	if (fep->link)
1188 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1189 	else
1190 		writel(0, fep->hwp + FEC_IMASK);
1191 
1192 	/* Init the interrupt coalescing */
1193 	fec_enet_itr_coal_init(ndev);
1194 
1195 }
1196 
1197 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1198 {
1199 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1200 	      of_machine_is_compatible("fsl,imx8qxp") ||
1201 	      of_machine_is_compatible("fsl,imx8dxl")))
1202 		return 0;
1203 
1204 	return imx_scu_get_handle(&fep->ipc_handle);
1205 }
1206 
1207 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1208 {
1209 	struct device_node *np = fep->pdev->dev.of_node;
1210 	u32 rsrc_id, val;
1211 	int idx;
1212 
1213 	if (!np || !fep->ipc_handle)
1214 		return;
1215 
1216 	idx = of_alias_get_id(np, "ethernet");
1217 	if (idx < 0)
1218 		idx = 0;
1219 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1220 
1221 	val = enabled ? 1 : 0;
1222 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1223 }
1224 
1225 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1226 {
1227 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1228 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1229 
1230 	if (stop_gpr->gpr) {
1231 		if (enabled)
1232 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1233 					   BIT(stop_gpr->bit),
1234 					   BIT(stop_gpr->bit));
1235 		else
1236 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1237 					   BIT(stop_gpr->bit), 0);
1238 	} else if (pdata && pdata->sleep_mode_enable) {
1239 		pdata->sleep_mode_enable(enabled);
1240 	} else {
1241 		fec_enet_ipg_stop_set(fep, enabled);
1242 	}
1243 }
1244 
1245 static void fec_irqs_disable(struct net_device *ndev)
1246 {
1247 	struct fec_enet_private *fep = netdev_priv(ndev);
1248 
1249 	writel(0, fep->hwp + FEC_IMASK);
1250 }
1251 
1252 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1253 {
1254 	struct fec_enet_private *fep = netdev_priv(ndev);
1255 
1256 	writel(0, fep->hwp + FEC_IMASK);
1257 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1258 }
1259 
1260 static void
1261 fec_stop(struct net_device *ndev)
1262 {
1263 	struct fec_enet_private *fep = netdev_priv(ndev);
1264 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1265 	u32 val;
1266 	struct ptp_clock_request ptp_rq = { .type = PTP_CLK_REQ_PPS };
1267 	u32 ecntl = 0;
1268 
1269 	/* We cannot expect a graceful transmit stop without link !!! */
1270 	if (fep->link) {
1271 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1272 		udelay(10);
1273 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1274 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1275 	}
1276 
1277 	fec_ptp_save_state(fep);
1278 
1279 	/* Whack a reset.  We should wait for this.
1280 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1281 	 * instead of reset MAC itself.
1282 	 */
1283 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1284 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1285 			writel(0, fep->hwp + FEC_ECNTRL);
1286 		} else {
1287 			writel(1, fep->hwp + FEC_ECNTRL);
1288 			udelay(10);
1289 		}
1290 	} else {
1291 		val = readl(fep->hwp + FEC_ECNTRL);
1292 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1293 		writel(val, fep->hwp + FEC_ECNTRL);
1294 	}
1295 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1296 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1297 
1298 	if (fep->bufdesc_ex)
1299 		ecntl |= FEC_ECR_EN1588;
1300 
1301 	/* We have to keep ENET enabled to have MII interrupt stay working */
1302 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1303 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1304 		ecntl |= FEC_ECR_ETHEREN;
1305 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1306 	}
1307 
1308 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1309 
1310 	if (fep->bufdesc_ex)
1311 		fec_ptp_start_cyclecounter(ndev);
1312 
1313 	/* Restart PPS if needed */
1314 	if (fep->pps_enable) {
1315 		/* Clear flag so fec_ptp_enable_pps() doesn't return immediately */
1316 		fep->pps_enable = 0;
1317 		fec_ptp_restore_state(fep);
1318 		fep->ptp_caps.enable(&fep->ptp_caps, &ptp_rq, 1);
1319 	}
1320 }
1321 
1322 
1323 static void
1324 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1325 {
1326 	struct fec_enet_private *fep = netdev_priv(ndev);
1327 
1328 	fec_dump(ndev);
1329 
1330 	ndev->stats.tx_errors++;
1331 
1332 	schedule_work(&fep->tx_timeout_work);
1333 }
1334 
1335 static void fec_enet_timeout_work(struct work_struct *work)
1336 {
1337 	struct fec_enet_private *fep =
1338 		container_of(work, struct fec_enet_private, tx_timeout_work);
1339 	struct net_device *ndev = fep->netdev;
1340 
1341 	rtnl_lock();
1342 	if (netif_device_present(ndev) || netif_running(ndev)) {
1343 		napi_disable(&fep->napi);
1344 		netif_tx_lock_bh(ndev);
1345 		fec_restart(ndev);
1346 		netif_tx_wake_all_queues(ndev);
1347 		netif_tx_unlock_bh(ndev);
1348 		napi_enable(&fep->napi);
1349 	}
1350 	rtnl_unlock();
1351 }
1352 
1353 static void
1354 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1355 	struct skb_shared_hwtstamps *hwtstamps)
1356 {
1357 	unsigned long flags;
1358 	u64 ns;
1359 
1360 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1361 	ns = timecounter_cyc2time(&fep->tc, ts);
1362 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1363 
1364 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1365 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1366 }
1367 
1368 static void
1369 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1370 {
1371 	struct	fec_enet_private *fep;
1372 	struct bufdesc *bdp;
1373 	unsigned short status;
1374 	struct	sk_buff	*skb;
1375 	struct fec_enet_priv_tx_q *txq;
1376 	struct netdev_queue *nq;
1377 	int	index = 0;
1378 	int	entries_free;
1379 
1380 	fep = netdev_priv(ndev);
1381 
1382 	txq = fep->tx_queue[queue_id];
1383 	/* get next bdp of dirty_tx */
1384 	nq = netdev_get_tx_queue(ndev, queue_id);
1385 	bdp = txq->dirty_tx;
1386 
1387 	/* get next bdp of dirty_tx */
1388 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1389 
1390 	while (bdp != READ_ONCE(txq->bd.cur)) {
1391 		/* Order the load of bd.cur and cbd_sc */
1392 		rmb();
1393 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1394 		if (status & BD_ENET_TX_READY)
1395 			break;
1396 
1397 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1398 
1399 		skb = txq->tx_skbuff[index];
1400 		txq->tx_skbuff[index] = NULL;
1401 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1402 			dma_unmap_single(&fep->pdev->dev,
1403 					 fec32_to_cpu(bdp->cbd_bufaddr),
1404 					 fec16_to_cpu(bdp->cbd_datlen),
1405 					 DMA_TO_DEVICE);
1406 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1407 		if (!skb)
1408 			goto skb_done;
1409 
1410 		/* Check for errors. */
1411 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1412 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1413 				   BD_ENET_TX_CSL)) {
1414 			ndev->stats.tx_errors++;
1415 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1416 				ndev->stats.tx_heartbeat_errors++;
1417 			if (status & BD_ENET_TX_LC)  /* Late collision */
1418 				ndev->stats.tx_window_errors++;
1419 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1420 				ndev->stats.tx_aborted_errors++;
1421 			if (status & BD_ENET_TX_UN)  /* Underrun */
1422 				ndev->stats.tx_fifo_errors++;
1423 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1424 				ndev->stats.tx_carrier_errors++;
1425 		} else {
1426 			ndev->stats.tx_packets++;
1427 			ndev->stats.tx_bytes += skb->len;
1428 		}
1429 
1430 		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1431 		 * are to time stamp the packet, so we still need to check time
1432 		 * stamping enabled flag.
1433 		 */
1434 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1435 			     fep->hwts_tx_en) &&
1436 		    fep->bufdesc_ex) {
1437 			struct skb_shared_hwtstamps shhwtstamps;
1438 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1439 
1440 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1441 			skb_tstamp_tx(skb, &shhwtstamps);
1442 		}
1443 
1444 		/* Deferred means some collisions occurred during transmit,
1445 		 * but we eventually sent the packet OK.
1446 		 */
1447 		if (status & BD_ENET_TX_DEF)
1448 			ndev->stats.collisions++;
1449 
1450 		/* Free the sk buffer associated with this last transmit */
1451 		dev_kfree_skb_any(skb);
1452 skb_done:
1453 		/* Make sure the update to bdp and tx_skbuff are performed
1454 		 * before dirty_tx
1455 		 */
1456 		wmb();
1457 		txq->dirty_tx = bdp;
1458 
1459 		/* Update pointer to next buffer descriptor to be transmitted */
1460 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1461 
1462 		/* Since we have freed up a buffer, the ring is no longer full
1463 		 */
1464 		if (netif_tx_queue_stopped(nq)) {
1465 			entries_free = fec_enet_get_free_txdesc_num(txq);
1466 			if (entries_free >= txq->tx_wake_threshold)
1467 				netif_tx_wake_queue(nq);
1468 		}
1469 	}
1470 
1471 	/* ERR006358: Keep the transmitter going */
1472 	if (bdp != txq->bd.cur &&
1473 	    readl(txq->bd.reg_desc_active) == 0)
1474 		writel(0, txq->bd.reg_desc_active);
1475 }
1476 
1477 static void fec_enet_tx(struct net_device *ndev)
1478 {
1479 	struct fec_enet_private *fep = netdev_priv(ndev);
1480 	int i;
1481 
1482 	/* Make sure that AVB queues are processed first. */
1483 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1484 		fec_enet_tx_queue(ndev, i);
1485 }
1486 
1487 static int
1488 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1489 {
1490 	struct  fec_enet_private *fep = netdev_priv(ndev);
1491 	int off;
1492 
1493 	off = ((unsigned long)skb->data) & fep->rx_align;
1494 	if (off)
1495 		skb_reserve(skb, fep->rx_align + 1 - off);
1496 
1497 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1498 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1499 		if (net_ratelimit())
1500 			netdev_err(ndev, "Rx DMA memory map failed\n");
1501 		return -ENOMEM;
1502 	}
1503 
1504 	return 0;
1505 }
1506 
1507 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1508 			       struct bufdesc *bdp, u32 length, bool swap)
1509 {
1510 	struct  fec_enet_private *fep = netdev_priv(ndev);
1511 	struct sk_buff *new_skb;
1512 
1513 	if (length > fep->rx_copybreak)
1514 		return false;
1515 
1516 	new_skb = netdev_alloc_skb(ndev, length);
1517 	if (!new_skb)
1518 		return false;
1519 
1520 	dma_sync_single_for_cpu(&fep->pdev->dev,
1521 				fec32_to_cpu(bdp->cbd_bufaddr),
1522 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1523 				DMA_FROM_DEVICE);
1524 	if (!swap)
1525 		memcpy(new_skb->data, (*skb)->data, length);
1526 	else
1527 		swap_buffer2(new_skb->data, (*skb)->data, length);
1528 	*skb = new_skb;
1529 
1530 	return true;
1531 }
1532 
1533 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1534  * When we update through the ring, if the next incoming buffer has
1535  * not been given to the system, we just set the empty indicator,
1536  * effectively tossing the packet.
1537  */
1538 static int
1539 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1540 {
1541 	struct fec_enet_private *fep = netdev_priv(ndev);
1542 	struct fec_enet_priv_rx_q *rxq;
1543 	struct bufdesc *bdp;
1544 	unsigned short status;
1545 	struct  sk_buff *skb_new = NULL;
1546 	struct  sk_buff *skb;
1547 	ushort	pkt_len;
1548 	__u8 *data;
1549 	int	pkt_received = 0;
1550 	struct	bufdesc_ex *ebdp = NULL;
1551 	bool	vlan_packet_rcvd = false;
1552 	u16	vlan_tag;
1553 	int	index = 0;
1554 	bool	is_copybreak;
1555 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1556 
1557 #ifdef CONFIG_M532x
1558 	flush_cache_all();
1559 #endif
1560 	rxq = fep->rx_queue[queue_id];
1561 
1562 	/* First, grab all of the stats for the incoming packet.
1563 	 * These get messed up if we get called due to a busy condition.
1564 	 */
1565 	bdp = rxq->bd.cur;
1566 
1567 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1568 
1569 		if (pkt_received >= budget)
1570 			break;
1571 		pkt_received++;
1572 
1573 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1574 
1575 		/* Check for errors. */
1576 		status ^= BD_ENET_RX_LAST;
1577 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1578 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1579 			   BD_ENET_RX_CL)) {
1580 			ndev->stats.rx_errors++;
1581 			if (status & BD_ENET_RX_OV) {
1582 				/* FIFO overrun */
1583 				ndev->stats.rx_fifo_errors++;
1584 				goto rx_processing_done;
1585 			}
1586 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1587 						| BD_ENET_RX_LAST)) {
1588 				/* Frame too long or too short. */
1589 				ndev->stats.rx_length_errors++;
1590 				if (status & BD_ENET_RX_LAST)
1591 					netdev_err(ndev, "rcv is not +last\n");
1592 			}
1593 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1594 				ndev->stats.rx_crc_errors++;
1595 			/* Report late collisions as a frame error. */
1596 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1597 				ndev->stats.rx_frame_errors++;
1598 			goto rx_processing_done;
1599 		}
1600 
1601 		/* Process the incoming frame. */
1602 		ndev->stats.rx_packets++;
1603 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1604 		ndev->stats.rx_bytes += pkt_len;
1605 
1606 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1607 		skb = rxq->rx_skbuff[index];
1608 
1609 		/* The packet length includes FCS, but we don't want to
1610 		 * include that when passing upstream as it messes up
1611 		 * bridging applications.
1612 		 */
1613 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1614 						  need_swap);
1615 		if (!is_copybreak) {
1616 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1617 			if (unlikely(!skb_new)) {
1618 				ndev->stats.rx_dropped++;
1619 				goto rx_processing_done;
1620 			}
1621 			dma_unmap_single(&fep->pdev->dev,
1622 					 fec32_to_cpu(bdp->cbd_bufaddr),
1623 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1624 					 DMA_FROM_DEVICE);
1625 		}
1626 
1627 		prefetch(skb->data - NET_IP_ALIGN);
1628 		skb_put(skb, pkt_len - 4);
1629 		data = skb->data;
1630 
1631 		if (!is_copybreak && need_swap)
1632 			swap_buffer(data, pkt_len);
1633 
1634 #if !defined(CONFIG_M5272)
1635 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1636 			data = skb_pull_inline(skb, 2);
1637 #endif
1638 
1639 		/* Extract the enhanced buffer descriptor */
1640 		ebdp = NULL;
1641 		if (fep->bufdesc_ex)
1642 			ebdp = (struct bufdesc_ex *)bdp;
1643 
1644 		/* If this is a VLAN packet remove the VLAN Tag */
1645 		vlan_packet_rcvd = false;
1646 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1647 		    fep->bufdesc_ex &&
1648 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1649 			/* Push and remove the vlan tag */
1650 			struct vlan_hdr *vlan_header =
1651 					(struct vlan_hdr *) (data + ETH_HLEN);
1652 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1653 
1654 			vlan_packet_rcvd = true;
1655 
1656 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1657 			skb_pull(skb, VLAN_HLEN);
1658 		}
1659 
1660 		skb->protocol = eth_type_trans(skb, ndev);
1661 
1662 		/* Get receive timestamp from the skb */
1663 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1664 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1665 					  skb_hwtstamps(skb));
1666 
1667 		if (fep->bufdesc_ex &&
1668 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1669 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1670 				/* don't check it */
1671 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1672 			} else {
1673 				skb_checksum_none_assert(skb);
1674 			}
1675 		}
1676 
1677 		/* Handle received VLAN packets */
1678 		if (vlan_packet_rcvd)
1679 			__vlan_hwaccel_put_tag(skb,
1680 					       htons(ETH_P_8021Q),
1681 					       vlan_tag);
1682 
1683 		skb_record_rx_queue(skb, queue_id);
1684 		napi_gro_receive(&fep->napi, skb);
1685 
1686 		if (is_copybreak) {
1687 			dma_sync_single_for_device(&fep->pdev->dev,
1688 						   fec32_to_cpu(bdp->cbd_bufaddr),
1689 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1690 						   DMA_FROM_DEVICE);
1691 		} else {
1692 			rxq->rx_skbuff[index] = skb_new;
1693 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1694 		}
1695 
1696 rx_processing_done:
1697 		/* Clear the status flags for this buffer */
1698 		status &= ~BD_ENET_RX_STATS;
1699 
1700 		/* Mark the buffer empty */
1701 		status |= BD_ENET_RX_EMPTY;
1702 
1703 		if (fep->bufdesc_ex) {
1704 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1705 
1706 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1707 			ebdp->cbd_prot = 0;
1708 			ebdp->cbd_bdu = 0;
1709 		}
1710 		/* Make sure the updates to rest of the descriptor are
1711 		 * performed before transferring ownership.
1712 		 */
1713 		wmb();
1714 		bdp->cbd_sc = cpu_to_fec16(status);
1715 
1716 		/* Update BD pointer to next entry */
1717 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1718 
1719 		/* Doing this here will keep the FEC running while we process
1720 		 * incoming frames.  On a heavily loaded network, we should be
1721 		 * able to keep up at the expense of system resources.
1722 		 */
1723 		writel(0, rxq->bd.reg_desc_active);
1724 	}
1725 	rxq->bd.cur = bdp;
1726 	return pkt_received;
1727 }
1728 
1729 static int fec_enet_rx(struct net_device *ndev, int budget)
1730 {
1731 	struct fec_enet_private *fep = netdev_priv(ndev);
1732 	int i, done = 0;
1733 
1734 	/* Make sure that AVB queues are processed first. */
1735 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1736 		done += fec_enet_rx_queue(ndev, budget - done, i);
1737 
1738 	return done;
1739 }
1740 
1741 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1742 {
1743 	uint int_events;
1744 
1745 	int_events = readl(fep->hwp + FEC_IEVENT);
1746 
1747 	/* Don't clear MDIO events, we poll for those */
1748 	int_events &= ~FEC_ENET_MII;
1749 
1750 	writel(int_events, fep->hwp + FEC_IEVENT);
1751 
1752 	return int_events != 0;
1753 }
1754 
1755 static irqreturn_t
1756 fec_enet_interrupt(int irq, void *dev_id)
1757 {
1758 	struct net_device *ndev = dev_id;
1759 	struct fec_enet_private *fep = netdev_priv(ndev);
1760 	irqreturn_t ret = IRQ_NONE;
1761 
1762 	if (fec_enet_collect_events(fep) && fep->link) {
1763 		ret = IRQ_HANDLED;
1764 
1765 		if (napi_schedule_prep(&fep->napi)) {
1766 			/* Disable interrupts */
1767 			writel(0, fep->hwp + FEC_IMASK);
1768 			__napi_schedule(&fep->napi);
1769 		}
1770 	}
1771 
1772 	return ret;
1773 }
1774 
1775 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1776 {
1777 	struct net_device *ndev = napi->dev;
1778 	struct fec_enet_private *fep = netdev_priv(ndev);
1779 	int done = 0;
1780 
1781 	do {
1782 		done += fec_enet_rx(ndev, budget - done);
1783 		fec_enet_tx(ndev);
1784 	} while ((done < budget) && fec_enet_collect_events(fep));
1785 
1786 	if (done < budget) {
1787 		napi_complete_done(napi, done);
1788 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1789 	}
1790 
1791 	return done;
1792 }
1793 
1794 /* ------------------------------------------------------------------------- */
1795 static int fec_get_mac(struct net_device *ndev)
1796 {
1797 	struct fec_enet_private *fep = netdev_priv(ndev);
1798 	unsigned char *iap, tmpaddr[ETH_ALEN];
1799 	int ret;
1800 
1801 	/*
1802 	 * try to get mac address in following order:
1803 	 *
1804 	 * 1) module parameter via kernel command line in form
1805 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1806 	 */
1807 	iap = macaddr;
1808 
1809 	/*
1810 	 * 2) from device tree data
1811 	 */
1812 	if (!is_valid_ether_addr(iap)) {
1813 		struct device_node *np = fep->pdev->dev.of_node;
1814 		if (np) {
1815 			ret = of_get_mac_address(np, tmpaddr);
1816 			if (!ret)
1817 				iap = tmpaddr;
1818 			else if (ret == -EPROBE_DEFER)
1819 				return ret;
1820 		}
1821 	}
1822 
1823 	/*
1824 	 * 3) from flash or fuse (via platform data)
1825 	 */
1826 	if (!is_valid_ether_addr(iap)) {
1827 #ifdef CONFIG_M5272
1828 		if (FEC_FLASHMAC)
1829 			iap = (unsigned char *)FEC_FLASHMAC;
1830 #else
1831 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1832 
1833 		if (pdata)
1834 			iap = (unsigned char *)&pdata->mac;
1835 #endif
1836 	}
1837 
1838 	/*
1839 	 * 4) FEC mac registers set by bootloader
1840 	 */
1841 	if (!is_valid_ether_addr(iap)) {
1842 		*((__be32 *) &tmpaddr[0]) =
1843 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1844 		*((__be16 *) &tmpaddr[4]) =
1845 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1846 		iap = &tmpaddr[0];
1847 	}
1848 
1849 	/*
1850 	 * 5) random mac address
1851 	 */
1852 	if (!is_valid_ether_addr(iap)) {
1853 		/* Report it and use a random ethernet address instead */
1854 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1855 		eth_hw_addr_random(ndev);
1856 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1857 			 ndev->dev_addr);
1858 		return 0;
1859 	}
1860 
1861 	/* Adjust MAC if using macaddr */
1862 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
1863 
1864 	return 0;
1865 }
1866 
1867 /* ------------------------------------------------------------------------- */
1868 
1869 /*
1870  * Phy section
1871  */
1872 static void fec_enet_adjust_link(struct net_device *ndev)
1873 {
1874 	struct fec_enet_private *fep = netdev_priv(ndev);
1875 	struct phy_device *phy_dev = ndev->phydev;
1876 	int status_change = 0;
1877 
1878 	/*
1879 	 * If the netdev is down, or is going down, we're not interested
1880 	 * in link state events, so just mark our idea of the link as down
1881 	 * and ignore the event.
1882 	 */
1883 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1884 		fep->link = 0;
1885 	} else if (phy_dev->link) {
1886 		if (!fep->link) {
1887 			fep->link = phy_dev->link;
1888 			status_change = 1;
1889 		}
1890 
1891 		if (fep->full_duplex != phy_dev->duplex) {
1892 			fep->full_duplex = phy_dev->duplex;
1893 			status_change = 1;
1894 		}
1895 
1896 		if (phy_dev->speed != fep->speed) {
1897 			fep->speed = phy_dev->speed;
1898 			status_change = 1;
1899 		}
1900 
1901 		/* if any of the above changed restart the FEC */
1902 		if (status_change) {
1903 			napi_disable(&fep->napi);
1904 			netif_tx_lock_bh(ndev);
1905 			fec_restart(ndev);
1906 			netif_tx_wake_all_queues(ndev);
1907 			netif_tx_unlock_bh(ndev);
1908 			napi_enable(&fep->napi);
1909 		}
1910 	} else {
1911 		if (fep->link) {
1912 			napi_disable(&fep->napi);
1913 			netif_tx_lock_bh(ndev);
1914 			fec_stop(ndev);
1915 			netif_tx_unlock_bh(ndev);
1916 			napi_enable(&fep->napi);
1917 			fep->link = phy_dev->link;
1918 			status_change = 1;
1919 		}
1920 	}
1921 
1922 	if (status_change)
1923 		phy_print_status(phy_dev);
1924 }
1925 
1926 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1927 {
1928 	uint ievent;
1929 	int ret;
1930 
1931 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1932 					ievent & FEC_ENET_MII, 2, 30000);
1933 
1934 	if (!ret)
1935 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1936 
1937 	return ret;
1938 }
1939 
1940 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1941 {
1942 	struct fec_enet_private *fep = bus->priv;
1943 	struct device *dev = &fep->pdev->dev;
1944 	int ret = 0, frame_start, frame_addr, frame_op;
1945 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1946 
1947 	ret = pm_runtime_resume_and_get(dev);
1948 	if (ret < 0)
1949 		return ret;
1950 
1951 	if (is_c45) {
1952 		frame_start = FEC_MMFR_ST_C45;
1953 
1954 		/* write address */
1955 		frame_addr = (regnum >> 16);
1956 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1957 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1958 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1959 		       fep->hwp + FEC_MII_DATA);
1960 
1961 		/* wait for end of transfer */
1962 		ret = fec_enet_mdio_wait(fep);
1963 		if (ret) {
1964 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1965 			goto out;
1966 		}
1967 
1968 		frame_op = FEC_MMFR_OP_READ_C45;
1969 
1970 	} else {
1971 		/* C22 read */
1972 		frame_op = FEC_MMFR_OP_READ;
1973 		frame_start = FEC_MMFR_ST;
1974 		frame_addr = regnum;
1975 	}
1976 
1977 	/* start a read op */
1978 	writel(frame_start | frame_op |
1979 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1980 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1981 
1982 	/* wait for end of transfer */
1983 	ret = fec_enet_mdio_wait(fep);
1984 	if (ret) {
1985 		netdev_err(fep->netdev, "MDIO read timeout\n");
1986 		goto out;
1987 	}
1988 
1989 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1990 
1991 out:
1992 	pm_runtime_mark_last_busy(dev);
1993 	pm_runtime_put_autosuspend(dev);
1994 
1995 	return ret;
1996 }
1997 
1998 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1999 			   u16 value)
2000 {
2001 	struct fec_enet_private *fep = bus->priv;
2002 	struct device *dev = &fep->pdev->dev;
2003 	int ret, frame_start, frame_addr;
2004 	bool is_c45 = !!(regnum & MII_ADDR_C45);
2005 
2006 	ret = pm_runtime_resume_and_get(dev);
2007 	if (ret < 0)
2008 		return ret;
2009 
2010 	if (is_c45) {
2011 		frame_start = FEC_MMFR_ST_C45;
2012 
2013 		/* write address */
2014 		frame_addr = (regnum >> 16);
2015 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2016 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2017 		       FEC_MMFR_TA | (regnum & 0xFFFF),
2018 		       fep->hwp + FEC_MII_DATA);
2019 
2020 		/* wait for end of transfer */
2021 		ret = fec_enet_mdio_wait(fep);
2022 		if (ret) {
2023 			netdev_err(fep->netdev, "MDIO address write timeout\n");
2024 			goto out;
2025 		}
2026 	} else {
2027 		/* C22 write */
2028 		frame_start = FEC_MMFR_ST;
2029 		frame_addr = regnum;
2030 	}
2031 
2032 	/* start a write op */
2033 	writel(frame_start | FEC_MMFR_OP_WRITE |
2034 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2035 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
2036 		fep->hwp + FEC_MII_DATA);
2037 
2038 	/* wait for end of transfer */
2039 	ret = fec_enet_mdio_wait(fep);
2040 	if (ret)
2041 		netdev_err(fep->netdev, "MDIO write timeout\n");
2042 
2043 out:
2044 	pm_runtime_mark_last_busy(dev);
2045 	pm_runtime_put_autosuspend(dev);
2046 
2047 	return ret;
2048 }
2049 
2050 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2051 {
2052 	struct fec_enet_private *fep = netdev_priv(ndev);
2053 	struct phy_device *phy_dev = ndev->phydev;
2054 
2055 	if (phy_dev) {
2056 		phy_reset_after_clk_enable(phy_dev);
2057 	} else if (fep->phy_node) {
2058 		/*
2059 		 * If the PHY still is not bound to the MAC, but there is
2060 		 * OF PHY node and a matching PHY device instance already,
2061 		 * use the OF PHY node to obtain the PHY device instance,
2062 		 * and then use that PHY device instance when triggering
2063 		 * the PHY reset.
2064 		 */
2065 		phy_dev = of_phy_find_device(fep->phy_node);
2066 		phy_reset_after_clk_enable(phy_dev);
2067 		put_device(&phy_dev->mdio.dev);
2068 	}
2069 }
2070 
2071 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2072 {
2073 	struct fec_enet_private *fep = netdev_priv(ndev);
2074 	unsigned long flags;
2075 	int ret;
2076 
2077 	if (enable) {
2078 		ret = clk_prepare_enable(fep->clk_enet_out);
2079 		if (ret)
2080 			return ret;
2081 
2082 		if (fep->clk_ptp) {
2083 			spin_lock_irqsave(&fep->tmreg_lock, flags);
2084 			ret = clk_prepare_enable(fep->clk_ptp);
2085 			if (ret) {
2086 				spin_unlock_irqrestore(&fep->tmreg_lock, flags);
2087 				goto failed_clk_ptp;
2088 			} else {
2089 				fep->ptp_clk_on = true;
2090 			}
2091 			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
2092 		}
2093 
2094 		ret = clk_prepare_enable(fep->clk_ref);
2095 		if (ret)
2096 			goto failed_clk_ref;
2097 
2098 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2099 		if (ret)
2100 			goto failed_clk_2x_txclk;
2101 
2102 		fec_enet_phy_reset_after_clk_enable(ndev);
2103 	} else {
2104 		clk_disable_unprepare(fep->clk_enet_out);
2105 		if (fep->clk_ptp) {
2106 			spin_lock_irqsave(&fep->tmreg_lock, flags);
2107 			clk_disable_unprepare(fep->clk_ptp);
2108 			fep->ptp_clk_on = false;
2109 			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
2110 		}
2111 		clk_disable_unprepare(fep->clk_ref);
2112 		clk_disable_unprepare(fep->clk_2x_txclk);
2113 	}
2114 
2115 	return 0;
2116 
2117 failed_clk_2x_txclk:
2118 	if (fep->clk_ref)
2119 		clk_disable_unprepare(fep->clk_ref);
2120 failed_clk_ref:
2121 	if (fep->clk_ptp) {
2122 		spin_lock_irqsave(&fep->tmreg_lock, flags);
2123 		clk_disable_unprepare(fep->clk_ptp);
2124 		fep->ptp_clk_on = false;
2125 		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
2126 	}
2127 failed_clk_ptp:
2128 	clk_disable_unprepare(fep->clk_enet_out);
2129 
2130 	return ret;
2131 }
2132 
2133 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2134 				      struct device_node *np)
2135 {
2136 	u32 rgmii_tx_delay, rgmii_rx_delay;
2137 
2138 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2139 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2140 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2141 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2142 			return -EINVAL;
2143 		} else if (rgmii_tx_delay == 2000) {
2144 			fep->rgmii_txc_dly = true;
2145 		}
2146 	}
2147 
2148 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2149 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2150 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2151 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2152 			return -EINVAL;
2153 		} else if (rgmii_rx_delay == 2000) {
2154 			fep->rgmii_rxc_dly = true;
2155 		}
2156 	}
2157 
2158 	return 0;
2159 }
2160 
2161 static int fec_enet_mii_probe(struct net_device *ndev)
2162 {
2163 	struct fec_enet_private *fep = netdev_priv(ndev);
2164 	struct phy_device *phy_dev = NULL;
2165 	char mdio_bus_id[MII_BUS_ID_SIZE];
2166 	char phy_name[MII_BUS_ID_SIZE + 3];
2167 	int phy_id;
2168 	int dev_id = fep->dev_id;
2169 
2170 	if (fep->phy_node) {
2171 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2172 					 &fec_enet_adjust_link, 0,
2173 					 fep->phy_interface);
2174 		if (!phy_dev) {
2175 			netdev_err(ndev, "Unable to connect to phy\n");
2176 			return -ENODEV;
2177 		}
2178 	} else {
2179 		/* check for attached phy */
2180 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2181 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2182 				continue;
2183 			if (dev_id--)
2184 				continue;
2185 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2186 			break;
2187 		}
2188 
2189 		if (phy_id >= PHY_MAX_ADDR) {
2190 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2191 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2192 			phy_id = 0;
2193 		}
2194 
2195 		snprintf(phy_name, sizeof(phy_name),
2196 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2197 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2198 				      fep->phy_interface);
2199 	}
2200 
2201 	if (IS_ERR(phy_dev)) {
2202 		netdev_err(ndev, "could not attach to PHY\n");
2203 		return PTR_ERR(phy_dev);
2204 	}
2205 
2206 	/* mask with MAC supported features */
2207 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2208 		phy_set_max_speed(phy_dev, 1000);
2209 		phy_remove_link_mode(phy_dev,
2210 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2211 #if !defined(CONFIG_M5272)
2212 		phy_support_sym_pause(phy_dev);
2213 #endif
2214 	}
2215 	else
2216 		phy_set_max_speed(phy_dev, 100);
2217 
2218 	fep->link = 0;
2219 	fep->full_duplex = 0;
2220 
2221 	phy_dev->mac_managed_pm = 1;
2222 
2223 	phy_attached_info(phy_dev);
2224 
2225 	return 0;
2226 }
2227 
2228 static int fec_enet_mii_init(struct platform_device *pdev)
2229 {
2230 	static struct mii_bus *fec0_mii_bus;
2231 	struct net_device *ndev = platform_get_drvdata(pdev);
2232 	struct fec_enet_private *fep = netdev_priv(ndev);
2233 	bool suppress_preamble = false;
2234 	struct device_node *node;
2235 	int err = -ENXIO;
2236 	u32 mii_speed, holdtime;
2237 	u32 bus_freq;
2238 
2239 	/*
2240 	 * The i.MX28 dual fec interfaces are not equal.
2241 	 * Here are the differences:
2242 	 *
2243 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2244 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2245 	 *  - external phys can only be configured by fec0
2246 	 *
2247 	 * That is to say fec1 can not work independently. It only works
2248 	 * when fec0 is working. The reason behind this design is that the
2249 	 * second interface is added primarily for Switch mode.
2250 	 *
2251 	 * Because of the last point above, both phys are attached on fec0
2252 	 * mdio interface in board design, and need to be configured by
2253 	 * fec0 mii_bus.
2254 	 */
2255 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2256 		/* fec1 uses fec0 mii_bus */
2257 		if (mii_cnt && fec0_mii_bus) {
2258 			fep->mii_bus = fec0_mii_bus;
2259 			mii_cnt++;
2260 			return 0;
2261 		}
2262 		return -ENOENT;
2263 	}
2264 
2265 	bus_freq = 2500000; /* 2.5MHz by default */
2266 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2267 	if (node) {
2268 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2269 		suppress_preamble = of_property_read_bool(node,
2270 							  "suppress-preamble");
2271 	}
2272 
2273 	/*
2274 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2275 	 *
2276 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2277 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2278 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2279 	 * document.
2280 	 */
2281 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2282 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2283 		mii_speed--;
2284 	if (mii_speed > 63) {
2285 		dev_err(&pdev->dev,
2286 			"fec clock (%lu) too fast to get right mii speed\n",
2287 			clk_get_rate(fep->clk_ipg));
2288 		err = -EINVAL;
2289 		goto err_out;
2290 	}
2291 
2292 	/*
2293 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2294 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2295 	 * versions are RAZ there, so just ignore the difference and write the
2296 	 * register always.
2297 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2298 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2299 	 * output.
2300 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2301 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2302 	 * holdtime cannot result in a value greater than 3.
2303 	 */
2304 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2305 
2306 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2307 
2308 	if (suppress_preamble)
2309 		fep->phy_speed |= BIT(7);
2310 
2311 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2312 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2313 		 * MII event generation condition:
2314 		 * - writing MSCR:
2315 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2316 		 *	  mscr_reg_data_in[7:0] != 0
2317 		 * - writing MMFR:
2318 		 *	- mscr[7:0]_not_zero
2319 		 */
2320 		writel(0, fep->hwp + FEC_MII_DATA);
2321 	}
2322 
2323 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2324 
2325 	/* Clear any pending transaction complete indication */
2326 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2327 
2328 	fep->mii_bus = mdiobus_alloc();
2329 	if (fep->mii_bus == NULL) {
2330 		err = -ENOMEM;
2331 		goto err_out;
2332 	}
2333 
2334 	fep->mii_bus->name = "fec_enet_mii_bus";
2335 	fep->mii_bus->read = fec_enet_mdio_read;
2336 	fep->mii_bus->write = fec_enet_mdio_write;
2337 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2338 		pdev->name, fep->dev_id + 1);
2339 	fep->mii_bus->priv = fep;
2340 	fep->mii_bus->parent = &pdev->dev;
2341 
2342 	err = of_mdiobus_register(fep->mii_bus, node);
2343 	if (err)
2344 		goto err_out_free_mdiobus;
2345 	of_node_put(node);
2346 
2347 	mii_cnt++;
2348 
2349 	/* save fec0 mii_bus */
2350 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2351 		fec0_mii_bus = fep->mii_bus;
2352 
2353 	return 0;
2354 
2355 err_out_free_mdiobus:
2356 	mdiobus_free(fep->mii_bus);
2357 err_out:
2358 	of_node_put(node);
2359 	return err;
2360 }
2361 
2362 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2363 {
2364 	if (--mii_cnt == 0) {
2365 		mdiobus_unregister(fep->mii_bus);
2366 		mdiobus_free(fep->mii_bus);
2367 	}
2368 }
2369 
2370 static void fec_enet_get_drvinfo(struct net_device *ndev,
2371 				 struct ethtool_drvinfo *info)
2372 {
2373 	struct fec_enet_private *fep = netdev_priv(ndev);
2374 
2375 	strscpy(info->driver, fep->pdev->dev.driver->name,
2376 		sizeof(info->driver));
2377 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2378 }
2379 
2380 static int fec_enet_get_regs_len(struct net_device *ndev)
2381 {
2382 	struct fec_enet_private *fep = netdev_priv(ndev);
2383 	struct resource *r;
2384 	int s = 0;
2385 
2386 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2387 	if (r)
2388 		s = resource_size(r);
2389 
2390 	return s;
2391 }
2392 
2393 /* List of registers that can be safety be read to dump them with ethtool */
2394 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2395 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2396 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2397 static __u32 fec_enet_register_version = 2;
2398 static u32 fec_enet_register_offset[] = {
2399 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2400 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2401 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2402 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2403 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2404 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2405 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2406 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2407 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2408 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2409 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2410 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2411 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2412 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2413 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2414 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2415 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2416 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2417 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2418 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2419 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2420 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2421 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2422 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2423 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2424 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2425 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2426 };
2427 #else
2428 static __u32 fec_enet_register_version = 1;
2429 static u32 fec_enet_register_offset[] = {
2430 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2431 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2432 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2433 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2434 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2435 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2436 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2437 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2438 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2439 };
2440 #endif
2441 
2442 static void fec_enet_get_regs(struct net_device *ndev,
2443 			      struct ethtool_regs *regs, void *regbuf)
2444 {
2445 	struct fec_enet_private *fep = netdev_priv(ndev);
2446 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2447 	struct device *dev = &fep->pdev->dev;
2448 	u32 *buf = (u32 *)regbuf;
2449 	u32 i, off;
2450 	int ret;
2451 
2452 	ret = pm_runtime_resume_and_get(dev);
2453 	if (ret < 0)
2454 		return;
2455 
2456 	regs->version = fec_enet_register_version;
2457 
2458 	memset(buf, 0, regs->len);
2459 
2460 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2461 		off = fec_enet_register_offset[i];
2462 
2463 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2464 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2465 			continue;
2466 
2467 		off >>= 2;
2468 		buf[off] = readl(&theregs[off]);
2469 	}
2470 
2471 	pm_runtime_mark_last_busy(dev);
2472 	pm_runtime_put_autosuspend(dev);
2473 }
2474 
2475 static int fec_enet_get_ts_info(struct net_device *ndev,
2476 				struct ethtool_ts_info *info)
2477 {
2478 	struct fec_enet_private *fep = netdev_priv(ndev);
2479 
2480 	if (fep->bufdesc_ex) {
2481 
2482 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2483 					SOF_TIMESTAMPING_RX_SOFTWARE |
2484 					SOF_TIMESTAMPING_SOFTWARE |
2485 					SOF_TIMESTAMPING_TX_HARDWARE |
2486 					SOF_TIMESTAMPING_RX_HARDWARE |
2487 					SOF_TIMESTAMPING_RAW_HARDWARE;
2488 		if (fep->ptp_clock)
2489 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2490 		else
2491 			info->phc_index = -1;
2492 
2493 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2494 				 (1 << HWTSTAMP_TX_ON);
2495 
2496 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2497 				   (1 << HWTSTAMP_FILTER_ALL);
2498 		return 0;
2499 	} else {
2500 		return ethtool_op_get_ts_info(ndev, info);
2501 	}
2502 }
2503 
2504 #if !defined(CONFIG_M5272)
2505 
2506 static void fec_enet_get_pauseparam(struct net_device *ndev,
2507 				    struct ethtool_pauseparam *pause)
2508 {
2509 	struct fec_enet_private *fep = netdev_priv(ndev);
2510 
2511 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2512 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2513 	pause->rx_pause = pause->tx_pause;
2514 }
2515 
2516 static int fec_enet_set_pauseparam(struct net_device *ndev,
2517 				   struct ethtool_pauseparam *pause)
2518 {
2519 	struct fec_enet_private *fep = netdev_priv(ndev);
2520 
2521 	if (!ndev->phydev)
2522 		return -ENODEV;
2523 
2524 	if (pause->tx_pause != pause->rx_pause) {
2525 		netdev_info(ndev,
2526 			"hardware only support enable/disable both tx and rx");
2527 		return -EINVAL;
2528 	}
2529 
2530 	fep->pause_flag = 0;
2531 
2532 	/* tx pause must be same as rx pause */
2533 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2534 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2535 
2536 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2537 			  pause->autoneg);
2538 
2539 	if (pause->autoneg) {
2540 		if (netif_running(ndev))
2541 			fec_stop(ndev);
2542 		phy_start_aneg(ndev->phydev);
2543 	}
2544 	if (netif_running(ndev)) {
2545 		napi_disable(&fep->napi);
2546 		netif_tx_lock_bh(ndev);
2547 		fec_restart(ndev);
2548 		netif_tx_wake_all_queues(ndev);
2549 		netif_tx_unlock_bh(ndev);
2550 		napi_enable(&fep->napi);
2551 	}
2552 
2553 	return 0;
2554 }
2555 
2556 static const struct fec_stat {
2557 	char name[ETH_GSTRING_LEN];
2558 	u16 offset;
2559 } fec_stats[] = {
2560 	/* RMON TX */
2561 	{ "tx_dropped", RMON_T_DROP },
2562 	{ "tx_packets", RMON_T_PACKETS },
2563 	{ "tx_broadcast", RMON_T_BC_PKT },
2564 	{ "tx_multicast", RMON_T_MC_PKT },
2565 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2566 	{ "tx_undersize", RMON_T_UNDERSIZE },
2567 	{ "tx_oversize", RMON_T_OVERSIZE },
2568 	{ "tx_fragment", RMON_T_FRAG },
2569 	{ "tx_jabber", RMON_T_JAB },
2570 	{ "tx_collision", RMON_T_COL },
2571 	{ "tx_64byte", RMON_T_P64 },
2572 	{ "tx_65to127byte", RMON_T_P65TO127 },
2573 	{ "tx_128to255byte", RMON_T_P128TO255 },
2574 	{ "tx_256to511byte", RMON_T_P256TO511 },
2575 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2576 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2577 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2578 	{ "tx_octets", RMON_T_OCTETS },
2579 
2580 	/* IEEE TX */
2581 	{ "IEEE_tx_drop", IEEE_T_DROP },
2582 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2583 	{ "IEEE_tx_1col", IEEE_T_1COL },
2584 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2585 	{ "IEEE_tx_def", IEEE_T_DEF },
2586 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2587 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2588 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2589 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2590 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2591 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2592 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2593 
2594 	/* RMON RX */
2595 	{ "rx_packets", RMON_R_PACKETS },
2596 	{ "rx_broadcast", RMON_R_BC_PKT },
2597 	{ "rx_multicast", RMON_R_MC_PKT },
2598 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2599 	{ "rx_undersize", RMON_R_UNDERSIZE },
2600 	{ "rx_oversize", RMON_R_OVERSIZE },
2601 	{ "rx_fragment", RMON_R_FRAG },
2602 	{ "rx_jabber", RMON_R_JAB },
2603 	{ "rx_64byte", RMON_R_P64 },
2604 	{ "rx_65to127byte", RMON_R_P65TO127 },
2605 	{ "rx_128to255byte", RMON_R_P128TO255 },
2606 	{ "rx_256to511byte", RMON_R_P256TO511 },
2607 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2608 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2609 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2610 	{ "rx_octets", RMON_R_OCTETS },
2611 
2612 	/* IEEE RX */
2613 	{ "IEEE_rx_drop", IEEE_R_DROP },
2614 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2615 	{ "IEEE_rx_crc", IEEE_R_CRC },
2616 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2617 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2618 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2619 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2620 };
2621 
2622 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2623 
2624 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2625 {
2626 	struct fec_enet_private *fep = netdev_priv(dev);
2627 	int i;
2628 
2629 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2630 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2631 }
2632 
2633 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2634 				       struct ethtool_stats *stats, u64 *data)
2635 {
2636 	struct fec_enet_private *fep = netdev_priv(dev);
2637 
2638 	if (netif_running(dev))
2639 		fec_enet_update_ethtool_stats(dev);
2640 
2641 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2642 }
2643 
2644 static void fec_enet_get_strings(struct net_device *netdev,
2645 	u32 stringset, u8 *data)
2646 {
2647 	int i;
2648 	switch (stringset) {
2649 	case ETH_SS_STATS:
2650 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2651 			memcpy(data + i * ETH_GSTRING_LEN,
2652 				fec_stats[i].name, ETH_GSTRING_LEN);
2653 		break;
2654 	case ETH_SS_TEST:
2655 		net_selftest_get_strings(data);
2656 		break;
2657 	}
2658 }
2659 
2660 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2661 {
2662 	switch (sset) {
2663 	case ETH_SS_STATS:
2664 		return ARRAY_SIZE(fec_stats);
2665 	case ETH_SS_TEST:
2666 		return net_selftest_get_count();
2667 	default:
2668 		return -EOPNOTSUPP;
2669 	}
2670 }
2671 
2672 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2673 {
2674 	struct fec_enet_private *fep = netdev_priv(dev);
2675 	int i;
2676 
2677 	/* Disable MIB statistics counters */
2678 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2679 
2680 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2681 		writel(0, fep->hwp + fec_stats[i].offset);
2682 
2683 	/* Don't disable MIB statistics counters */
2684 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2685 }
2686 
2687 #else	/* !defined(CONFIG_M5272) */
2688 #define FEC_STATS_SIZE	0
2689 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2690 {
2691 }
2692 
2693 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2694 {
2695 }
2696 #endif /* !defined(CONFIG_M5272) */
2697 
2698 /* ITR clock source is enet system clock (clk_ahb).
2699  * TCTT unit is cycle_ns * 64 cycle
2700  * So, the ICTT value = X us / (cycle_ns * 64)
2701  */
2702 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2703 {
2704 	struct fec_enet_private *fep = netdev_priv(ndev);
2705 
2706 	return us * (fep->itr_clk_rate / 64000) / 1000;
2707 }
2708 
2709 /* Set threshold for interrupt coalescing */
2710 static void fec_enet_itr_coal_set(struct net_device *ndev)
2711 {
2712 	struct fec_enet_private *fep = netdev_priv(ndev);
2713 	int rx_itr, tx_itr;
2714 
2715 	/* Must be greater than zero to avoid unpredictable behavior */
2716 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2717 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2718 		return;
2719 
2720 	/* Select enet system clock as Interrupt Coalescing
2721 	 * timer Clock Source
2722 	 */
2723 	rx_itr = FEC_ITR_CLK_SEL;
2724 	tx_itr = FEC_ITR_CLK_SEL;
2725 
2726 	/* set ICFT and ICTT */
2727 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2728 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2729 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2730 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2731 
2732 	rx_itr |= FEC_ITR_EN;
2733 	tx_itr |= FEC_ITR_EN;
2734 
2735 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2736 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2737 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
2738 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2739 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2740 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2741 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2742 	}
2743 }
2744 
2745 static int fec_enet_get_coalesce(struct net_device *ndev,
2746 				 struct ethtool_coalesce *ec,
2747 				 struct kernel_ethtool_coalesce *kernel_coal,
2748 				 struct netlink_ext_ack *extack)
2749 {
2750 	struct fec_enet_private *fep = netdev_priv(ndev);
2751 
2752 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2753 		return -EOPNOTSUPP;
2754 
2755 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2756 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2757 
2758 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2759 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2760 
2761 	return 0;
2762 }
2763 
2764 static int fec_enet_set_coalesce(struct net_device *ndev,
2765 				 struct ethtool_coalesce *ec,
2766 				 struct kernel_ethtool_coalesce *kernel_coal,
2767 				 struct netlink_ext_ack *extack)
2768 {
2769 	struct fec_enet_private *fep = netdev_priv(ndev);
2770 	struct device *dev = &fep->pdev->dev;
2771 	unsigned int cycle;
2772 
2773 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2774 		return -EOPNOTSUPP;
2775 
2776 	if (ec->rx_max_coalesced_frames > 255) {
2777 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2778 		return -EINVAL;
2779 	}
2780 
2781 	if (ec->tx_max_coalesced_frames > 255) {
2782 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2783 		return -EINVAL;
2784 	}
2785 
2786 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2787 	if (cycle > 0xFFFF) {
2788 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2789 		return -EINVAL;
2790 	}
2791 
2792 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2793 	if (cycle > 0xFFFF) {
2794 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2795 		return -EINVAL;
2796 	}
2797 
2798 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2799 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2800 
2801 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2802 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2803 
2804 	fec_enet_itr_coal_set(ndev);
2805 
2806 	return 0;
2807 }
2808 
2809 static void fec_enet_itr_coal_init(struct net_device *ndev)
2810 {
2811 	struct ethtool_coalesce ec;
2812 
2813 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2814 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2815 
2816 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2817 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2818 
2819 	fec_enet_set_coalesce(ndev, &ec, NULL, NULL);
2820 }
2821 
2822 static int fec_enet_get_tunable(struct net_device *netdev,
2823 				const struct ethtool_tunable *tuna,
2824 				void *data)
2825 {
2826 	struct fec_enet_private *fep = netdev_priv(netdev);
2827 	int ret = 0;
2828 
2829 	switch (tuna->id) {
2830 	case ETHTOOL_RX_COPYBREAK:
2831 		*(u32 *)data = fep->rx_copybreak;
2832 		break;
2833 	default:
2834 		ret = -EINVAL;
2835 		break;
2836 	}
2837 
2838 	return ret;
2839 }
2840 
2841 static int fec_enet_set_tunable(struct net_device *netdev,
2842 				const struct ethtool_tunable *tuna,
2843 				const void *data)
2844 {
2845 	struct fec_enet_private *fep = netdev_priv(netdev);
2846 	int ret = 0;
2847 
2848 	switch (tuna->id) {
2849 	case ETHTOOL_RX_COPYBREAK:
2850 		fep->rx_copybreak = *(u32 *)data;
2851 		break;
2852 	default:
2853 		ret = -EINVAL;
2854 		break;
2855 	}
2856 
2857 	return ret;
2858 }
2859 
2860 /* LPI Sleep Ts count base on tx clk (clk_ref).
2861  * The lpi sleep cnt value = X us / (cycle_ns).
2862  */
2863 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2864 {
2865 	struct fec_enet_private *fep = netdev_priv(ndev);
2866 
2867 	return us * (fep->clk_ref_rate / 1000) / 1000;
2868 }
2869 
2870 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
2871 {
2872 	struct fec_enet_private *fep = netdev_priv(ndev);
2873 	struct ethtool_eee *p = &fep->eee;
2874 	unsigned int sleep_cycle, wake_cycle;
2875 	int ret = 0;
2876 
2877 	if (enable) {
2878 		ret = phy_init_eee(ndev->phydev, false);
2879 		if (ret)
2880 			return ret;
2881 
2882 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
2883 		wake_cycle = sleep_cycle;
2884 	} else {
2885 		sleep_cycle = 0;
2886 		wake_cycle = 0;
2887 	}
2888 
2889 	p->tx_lpi_enabled = enable;
2890 	p->eee_enabled = enable;
2891 	p->eee_active = enable;
2892 
2893 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2894 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2895 
2896 	return 0;
2897 }
2898 
2899 static int
2900 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2901 {
2902 	struct fec_enet_private *fep = netdev_priv(ndev);
2903 	struct ethtool_eee *p = &fep->eee;
2904 
2905 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
2906 		return -EOPNOTSUPP;
2907 
2908 	if (!netif_running(ndev))
2909 		return -ENETDOWN;
2910 
2911 	edata->eee_enabled = p->eee_enabled;
2912 	edata->eee_active = p->eee_active;
2913 	edata->tx_lpi_timer = p->tx_lpi_timer;
2914 	edata->tx_lpi_enabled = p->tx_lpi_enabled;
2915 
2916 	return phy_ethtool_get_eee(ndev->phydev, edata);
2917 }
2918 
2919 static int
2920 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2921 {
2922 	struct fec_enet_private *fep = netdev_priv(ndev);
2923 	struct ethtool_eee *p = &fep->eee;
2924 	int ret = 0;
2925 
2926 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
2927 		return -EOPNOTSUPP;
2928 
2929 	if (!netif_running(ndev))
2930 		return -ENETDOWN;
2931 
2932 	p->tx_lpi_timer = edata->tx_lpi_timer;
2933 
2934 	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
2935 	    !edata->tx_lpi_timer)
2936 		ret = fec_enet_eee_mode_set(ndev, false);
2937 	else
2938 		ret = fec_enet_eee_mode_set(ndev, true);
2939 
2940 	if (ret)
2941 		return ret;
2942 
2943 	return phy_ethtool_set_eee(ndev->phydev, edata);
2944 }
2945 
2946 static void
2947 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2948 {
2949 	struct fec_enet_private *fep = netdev_priv(ndev);
2950 
2951 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2952 		wol->supported = WAKE_MAGIC;
2953 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2954 	} else {
2955 		wol->supported = wol->wolopts = 0;
2956 	}
2957 }
2958 
2959 static int
2960 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2961 {
2962 	struct fec_enet_private *fep = netdev_priv(ndev);
2963 
2964 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2965 		return -EINVAL;
2966 
2967 	if (wol->wolopts & ~WAKE_MAGIC)
2968 		return -EINVAL;
2969 
2970 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2971 	if (device_may_wakeup(&ndev->dev))
2972 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2973 	else
2974 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2975 
2976 	return 0;
2977 }
2978 
2979 static const struct ethtool_ops fec_enet_ethtool_ops = {
2980 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2981 				     ETHTOOL_COALESCE_MAX_FRAMES,
2982 	.get_drvinfo		= fec_enet_get_drvinfo,
2983 	.get_regs_len		= fec_enet_get_regs_len,
2984 	.get_regs		= fec_enet_get_regs,
2985 	.nway_reset		= phy_ethtool_nway_reset,
2986 	.get_link		= ethtool_op_get_link,
2987 	.get_coalesce		= fec_enet_get_coalesce,
2988 	.set_coalesce		= fec_enet_set_coalesce,
2989 #ifndef CONFIG_M5272
2990 	.get_pauseparam		= fec_enet_get_pauseparam,
2991 	.set_pauseparam		= fec_enet_set_pauseparam,
2992 	.get_strings		= fec_enet_get_strings,
2993 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2994 	.get_sset_count		= fec_enet_get_sset_count,
2995 #endif
2996 	.get_ts_info		= fec_enet_get_ts_info,
2997 	.get_tunable		= fec_enet_get_tunable,
2998 	.set_tunable		= fec_enet_set_tunable,
2999 	.get_wol		= fec_enet_get_wol,
3000 	.set_wol		= fec_enet_set_wol,
3001 	.get_eee		= fec_enet_get_eee,
3002 	.set_eee		= fec_enet_set_eee,
3003 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3004 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3005 	.self_test		= net_selftest,
3006 };
3007 
3008 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
3009 {
3010 	struct fec_enet_private *fep = netdev_priv(ndev);
3011 	struct phy_device *phydev = ndev->phydev;
3012 
3013 	if (!netif_running(ndev))
3014 		return -EINVAL;
3015 
3016 	if (!phydev)
3017 		return -ENODEV;
3018 
3019 	if (fep->bufdesc_ex) {
3020 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
3021 
3022 		if (cmd == SIOCSHWTSTAMP) {
3023 			if (use_fec_hwts)
3024 				return fec_ptp_set(ndev, rq);
3025 			fec_ptp_disable_hwts(ndev);
3026 		} else if (cmd == SIOCGHWTSTAMP) {
3027 			if (use_fec_hwts)
3028 				return fec_ptp_get(ndev, rq);
3029 		}
3030 	}
3031 
3032 	return phy_mii_ioctl(phydev, rq, cmd);
3033 }
3034 
3035 static void fec_enet_free_buffers(struct net_device *ndev)
3036 {
3037 	struct fec_enet_private *fep = netdev_priv(ndev);
3038 	unsigned int i;
3039 	struct sk_buff *skb;
3040 	struct bufdesc	*bdp;
3041 	struct fec_enet_priv_tx_q *txq;
3042 	struct fec_enet_priv_rx_q *rxq;
3043 	unsigned int q;
3044 
3045 	for (q = 0; q < fep->num_rx_queues; q++) {
3046 		rxq = fep->rx_queue[q];
3047 		bdp = rxq->bd.base;
3048 		for (i = 0; i < rxq->bd.ring_size; i++) {
3049 			skb = rxq->rx_skbuff[i];
3050 			rxq->rx_skbuff[i] = NULL;
3051 			if (skb) {
3052 				dma_unmap_single(&fep->pdev->dev,
3053 						 fec32_to_cpu(bdp->cbd_bufaddr),
3054 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
3055 						 DMA_FROM_DEVICE);
3056 				dev_kfree_skb(skb);
3057 			}
3058 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3059 		}
3060 	}
3061 
3062 	for (q = 0; q < fep->num_tx_queues; q++) {
3063 		txq = fep->tx_queue[q];
3064 		for (i = 0; i < txq->bd.ring_size; i++) {
3065 			kfree(txq->tx_bounce[i]);
3066 			txq->tx_bounce[i] = NULL;
3067 			skb = txq->tx_skbuff[i];
3068 			txq->tx_skbuff[i] = NULL;
3069 			dev_kfree_skb(skb);
3070 		}
3071 	}
3072 }
3073 
3074 static void fec_enet_free_queue(struct net_device *ndev)
3075 {
3076 	struct fec_enet_private *fep = netdev_priv(ndev);
3077 	int i;
3078 	struct fec_enet_priv_tx_q *txq;
3079 
3080 	for (i = 0; i < fep->num_tx_queues; i++)
3081 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3082 			txq = fep->tx_queue[i];
3083 			dma_free_coherent(&fep->pdev->dev,
3084 					  txq->bd.ring_size * TSO_HEADER_SIZE,
3085 					  txq->tso_hdrs,
3086 					  txq->tso_hdrs_dma);
3087 		}
3088 
3089 	for (i = 0; i < fep->num_rx_queues; i++)
3090 		kfree(fep->rx_queue[i]);
3091 	for (i = 0; i < fep->num_tx_queues; i++)
3092 		kfree(fep->tx_queue[i]);
3093 }
3094 
3095 static int fec_enet_alloc_queue(struct net_device *ndev)
3096 {
3097 	struct fec_enet_private *fep = netdev_priv(ndev);
3098 	int i;
3099 	int ret = 0;
3100 	struct fec_enet_priv_tx_q *txq;
3101 
3102 	for (i = 0; i < fep->num_tx_queues; i++) {
3103 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3104 		if (!txq) {
3105 			ret = -ENOMEM;
3106 			goto alloc_failed;
3107 		}
3108 
3109 		fep->tx_queue[i] = txq;
3110 		txq->bd.ring_size = TX_RING_SIZE;
3111 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3112 
3113 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3114 		txq->tx_wake_threshold =
3115 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
3116 
3117 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3118 					txq->bd.ring_size * TSO_HEADER_SIZE,
3119 					&txq->tso_hdrs_dma,
3120 					GFP_KERNEL);
3121 		if (!txq->tso_hdrs) {
3122 			ret = -ENOMEM;
3123 			goto alloc_failed;
3124 		}
3125 	}
3126 
3127 	for (i = 0; i < fep->num_rx_queues; i++) {
3128 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3129 					   GFP_KERNEL);
3130 		if (!fep->rx_queue[i]) {
3131 			ret = -ENOMEM;
3132 			goto alloc_failed;
3133 		}
3134 
3135 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3136 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3137 	}
3138 	return ret;
3139 
3140 alloc_failed:
3141 	fec_enet_free_queue(ndev);
3142 	return ret;
3143 }
3144 
3145 static int
3146 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3147 {
3148 	struct fec_enet_private *fep = netdev_priv(ndev);
3149 	unsigned int i;
3150 	struct sk_buff *skb;
3151 	struct bufdesc	*bdp;
3152 	struct fec_enet_priv_rx_q *rxq;
3153 
3154 	rxq = fep->rx_queue[queue];
3155 	bdp = rxq->bd.base;
3156 	for (i = 0; i < rxq->bd.ring_size; i++) {
3157 		skb = __netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE, GFP_KERNEL);
3158 		if (!skb)
3159 			goto err_alloc;
3160 
3161 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
3162 			dev_kfree_skb(skb);
3163 			goto err_alloc;
3164 		}
3165 
3166 		rxq->rx_skbuff[i] = skb;
3167 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3168 
3169 		if (fep->bufdesc_ex) {
3170 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3171 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3172 		}
3173 
3174 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3175 	}
3176 
3177 	/* Set the last buffer to wrap. */
3178 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3179 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3180 	return 0;
3181 
3182  err_alloc:
3183 	fec_enet_free_buffers(ndev);
3184 	return -ENOMEM;
3185 }
3186 
3187 static int
3188 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3189 {
3190 	struct fec_enet_private *fep = netdev_priv(ndev);
3191 	unsigned int i;
3192 	struct bufdesc  *bdp;
3193 	struct fec_enet_priv_tx_q *txq;
3194 
3195 	txq = fep->tx_queue[queue];
3196 	bdp = txq->bd.base;
3197 	for (i = 0; i < txq->bd.ring_size; i++) {
3198 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3199 		if (!txq->tx_bounce[i])
3200 			goto err_alloc;
3201 
3202 		bdp->cbd_sc = cpu_to_fec16(0);
3203 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3204 
3205 		if (fep->bufdesc_ex) {
3206 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3207 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3208 		}
3209 
3210 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3211 	}
3212 
3213 	/* Set the last buffer to wrap. */
3214 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3215 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3216 
3217 	return 0;
3218 
3219  err_alloc:
3220 	fec_enet_free_buffers(ndev);
3221 	return -ENOMEM;
3222 }
3223 
3224 static int fec_enet_alloc_buffers(struct net_device *ndev)
3225 {
3226 	struct fec_enet_private *fep = netdev_priv(ndev);
3227 	unsigned int i;
3228 
3229 	for (i = 0; i < fep->num_rx_queues; i++)
3230 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3231 			return -ENOMEM;
3232 
3233 	for (i = 0; i < fep->num_tx_queues; i++)
3234 		if (fec_enet_alloc_txq_buffers(ndev, i))
3235 			return -ENOMEM;
3236 	return 0;
3237 }
3238 
3239 static int
3240 fec_enet_open(struct net_device *ndev)
3241 {
3242 	struct fec_enet_private *fep = netdev_priv(ndev);
3243 	int ret;
3244 	bool reset_again;
3245 
3246 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3247 	if (ret < 0)
3248 		return ret;
3249 
3250 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3251 	ret = fec_enet_clk_enable(ndev, true);
3252 	if (ret)
3253 		goto clk_enable;
3254 
3255 	/* During the first fec_enet_open call the PHY isn't probed at this
3256 	 * point. Therefore the phy_reset_after_clk_enable() call within
3257 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3258 	 * sure the PHY is working correctly we check if we need to reset again
3259 	 * later when the PHY is probed
3260 	 */
3261 	if (ndev->phydev && ndev->phydev->drv)
3262 		reset_again = false;
3263 	else
3264 		reset_again = true;
3265 
3266 	/* I should reset the ring buffers here, but I don't yet know
3267 	 * a simple way to do that.
3268 	 */
3269 
3270 	ret = fec_enet_alloc_buffers(ndev);
3271 	if (ret)
3272 		goto err_enet_alloc;
3273 
3274 	/* Init MAC prior to mii bus probe */
3275 	fec_restart(ndev);
3276 
3277 	/* Call phy_reset_after_clk_enable() again if it failed during
3278 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3279 	 */
3280 	if (reset_again)
3281 		fec_enet_phy_reset_after_clk_enable(ndev);
3282 
3283 	/* Probe and connect to PHY when open the interface */
3284 	ret = fec_enet_mii_probe(ndev);
3285 	if (ret)
3286 		goto err_enet_mii_probe;
3287 
3288 	if (fep->quirks & FEC_QUIRK_ERR006687)
3289 		imx6q_cpuidle_fec_irqs_used();
3290 
3291 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3292 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3293 
3294 	napi_enable(&fep->napi);
3295 	phy_start(ndev->phydev);
3296 	netif_tx_start_all_queues(ndev);
3297 
3298 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3299 				 FEC_WOL_FLAG_ENABLE);
3300 
3301 	return 0;
3302 
3303 err_enet_mii_probe:
3304 	fec_enet_free_buffers(ndev);
3305 err_enet_alloc:
3306 	fec_enet_clk_enable(ndev, false);
3307 clk_enable:
3308 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3309 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3310 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3311 	return ret;
3312 }
3313 
3314 static int
3315 fec_enet_close(struct net_device *ndev)
3316 {
3317 	struct fec_enet_private *fep = netdev_priv(ndev);
3318 
3319 	phy_stop(ndev->phydev);
3320 
3321 	if (netif_device_present(ndev)) {
3322 		napi_disable(&fep->napi);
3323 		netif_tx_disable(ndev);
3324 		fec_stop(ndev);
3325 	}
3326 
3327 	phy_disconnect(ndev->phydev);
3328 
3329 	if (fep->quirks & FEC_QUIRK_ERR006687)
3330 		imx6q_cpuidle_fec_irqs_unused();
3331 
3332 	fec_enet_update_ethtool_stats(ndev);
3333 
3334 	fec_enet_clk_enable(ndev, false);
3335 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3336 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3337 
3338 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3339 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3340 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3341 
3342 	fec_enet_free_buffers(ndev);
3343 
3344 	return 0;
3345 }
3346 
3347 /* Set or clear the multicast filter for this adaptor.
3348  * Skeleton taken from sunlance driver.
3349  * The CPM Ethernet implementation allows Multicast as well as individual
3350  * MAC address filtering.  Some of the drivers check to make sure it is
3351  * a group multicast address, and discard those that are not.  I guess I
3352  * will do the same for now, but just remove the test if you want
3353  * individual filtering as well (do the upper net layers want or support
3354  * this kind of feature?).
3355  */
3356 
3357 #define FEC_HASH_BITS	6		/* #bits in hash */
3358 
3359 static void set_multicast_list(struct net_device *ndev)
3360 {
3361 	struct fec_enet_private *fep = netdev_priv(ndev);
3362 	struct netdev_hw_addr *ha;
3363 	unsigned int crc, tmp;
3364 	unsigned char hash;
3365 	unsigned int hash_high = 0, hash_low = 0;
3366 
3367 	if (ndev->flags & IFF_PROMISC) {
3368 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3369 		tmp |= 0x8;
3370 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3371 		return;
3372 	}
3373 
3374 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3375 	tmp &= ~0x8;
3376 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3377 
3378 	if (ndev->flags & IFF_ALLMULTI) {
3379 		/* Catch all multicast addresses, so set the
3380 		 * filter to all 1's
3381 		 */
3382 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3383 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3384 
3385 		return;
3386 	}
3387 
3388 	/* Add the addresses in hash register */
3389 	netdev_for_each_mc_addr(ha, ndev) {
3390 		/* calculate crc32 value of mac address */
3391 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3392 
3393 		/* only upper 6 bits (FEC_HASH_BITS) are used
3394 		 * which point to specific bit in the hash registers
3395 		 */
3396 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3397 
3398 		if (hash > 31)
3399 			hash_high |= 1 << (hash - 32);
3400 		else
3401 			hash_low |= 1 << hash;
3402 	}
3403 
3404 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3405 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3406 }
3407 
3408 /* Set a MAC change in hardware. */
3409 static int
3410 fec_set_mac_address(struct net_device *ndev, void *p)
3411 {
3412 	struct fec_enet_private *fep = netdev_priv(ndev);
3413 	struct sockaddr *addr = p;
3414 
3415 	if (addr) {
3416 		if (!is_valid_ether_addr(addr->sa_data))
3417 			return -EADDRNOTAVAIL;
3418 		eth_hw_addr_set(ndev, addr->sa_data);
3419 	}
3420 
3421 	/* Add netif status check here to avoid system hang in below case:
3422 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3423 	 * After ethx down, fec all clocks are gated off and then register
3424 	 * access causes system hang.
3425 	 */
3426 	if (!netif_running(ndev))
3427 		return 0;
3428 
3429 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3430 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3431 		fep->hwp + FEC_ADDR_LOW);
3432 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3433 		fep->hwp + FEC_ADDR_HIGH);
3434 	return 0;
3435 }
3436 
3437 #ifdef CONFIG_NET_POLL_CONTROLLER
3438 /**
3439  * fec_poll_controller - FEC Poll controller function
3440  * @dev: The FEC network adapter
3441  *
3442  * Polled functionality used by netconsole and others in non interrupt mode
3443  *
3444  */
3445 static void fec_poll_controller(struct net_device *dev)
3446 {
3447 	int i;
3448 	struct fec_enet_private *fep = netdev_priv(dev);
3449 
3450 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3451 		if (fep->irq[i] > 0) {
3452 			disable_irq(fep->irq[i]);
3453 			fec_enet_interrupt(fep->irq[i], dev);
3454 			enable_irq(fep->irq[i]);
3455 		}
3456 	}
3457 }
3458 #endif
3459 
3460 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3461 	netdev_features_t features)
3462 {
3463 	struct fec_enet_private *fep = netdev_priv(netdev);
3464 	netdev_features_t changed = features ^ netdev->features;
3465 
3466 	netdev->features = features;
3467 
3468 	/* Receive checksum has been changed */
3469 	if (changed & NETIF_F_RXCSUM) {
3470 		if (features & NETIF_F_RXCSUM)
3471 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3472 		else
3473 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3474 	}
3475 }
3476 
3477 static int fec_set_features(struct net_device *netdev,
3478 	netdev_features_t features)
3479 {
3480 	struct fec_enet_private *fep = netdev_priv(netdev);
3481 	netdev_features_t changed = features ^ netdev->features;
3482 
3483 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3484 		napi_disable(&fep->napi);
3485 		netif_tx_lock_bh(netdev);
3486 		fec_stop(netdev);
3487 		fec_enet_set_netdev_features(netdev, features);
3488 		fec_restart(netdev);
3489 		netif_tx_wake_all_queues(netdev);
3490 		netif_tx_unlock_bh(netdev);
3491 		napi_enable(&fep->napi);
3492 	} else {
3493 		fec_enet_set_netdev_features(netdev, features);
3494 	}
3495 
3496 	return 0;
3497 }
3498 
3499 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb)
3500 {
3501 	struct vlan_ethhdr *vhdr;
3502 	unsigned short vlan_TCI = 0;
3503 
3504 	if (skb->protocol == htons(ETH_P_ALL)) {
3505 		vhdr = (struct vlan_ethhdr *)(skb->data);
3506 		vlan_TCI = ntohs(vhdr->h_vlan_TCI);
3507 	}
3508 
3509 	return vlan_TCI;
3510 }
3511 
3512 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3513 				 struct net_device *sb_dev)
3514 {
3515 	struct fec_enet_private *fep = netdev_priv(ndev);
3516 	u16 vlan_tag;
3517 
3518 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3519 		return netdev_pick_tx(ndev, skb, NULL);
3520 
3521 	vlan_tag = fec_enet_get_raw_vlan_tci(skb);
3522 	if (!vlan_tag)
3523 		return vlan_tag;
3524 
3525 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3526 }
3527 
3528 static const struct net_device_ops fec_netdev_ops = {
3529 	.ndo_open		= fec_enet_open,
3530 	.ndo_stop		= fec_enet_close,
3531 	.ndo_start_xmit		= fec_enet_start_xmit,
3532 	.ndo_select_queue       = fec_enet_select_queue,
3533 	.ndo_set_rx_mode	= set_multicast_list,
3534 	.ndo_validate_addr	= eth_validate_addr,
3535 	.ndo_tx_timeout		= fec_timeout,
3536 	.ndo_set_mac_address	= fec_set_mac_address,
3537 	.ndo_eth_ioctl		= fec_enet_ioctl,
3538 #ifdef CONFIG_NET_POLL_CONTROLLER
3539 	.ndo_poll_controller	= fec_poll_controller,
3540 #endif
3541 	.ndo_set_features	= fec_set_features,
3542 };
3543 
3544 static const unsigned short offset_des_active_rxq[] = {
3545 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3546 };
3547 
3548 static const unsigned short offset_des_active_txq[] = {
3549 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3550 };
3551 
3552  /*
3553   * XXX:  We need to clean up on failure exits here.
3554   *
3555   */
3556 static int fec_enet_init(struct net_device *ndev)
3557 {
3558 	struct fec_enet_private *fep = netdev_priv(ndev);
3559 	struct bufdesc *cbd_base;
3560 	dma_addr_t bd_dma;
3561 	int bd_size;
3562 	unsigned int i;
3563 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3564 			sizeof(struct bufdesc);
3565 	unsigned dsize_log2 = __fls(dsize);
3566 	int ret;
3567 
3568 	WARN_ON(dsize != (1 << dsize_log2));
3569 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3570 	fep->rx_align = 0xf;
3571 	fep->tx_align = 0xf;
3572 #else
3573 	fep->rx_align = 0x3;
3574 	fep->tx_align = 0x3;
3575 #endif
3576 
3577 	/* Check mask of the streaming and coherent API */
3578 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3579 	if (ret < 0) {
3580 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3581 		return ret;
3582 	}
3583 
3584 	ret = fec_enet_alloc_queue(ndev);
3585 	if (ret)
3586 		return ret;
3587 
3588 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3589 
3590 	/* Allocate memory for buffer descriptors. */
3591 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3592 				       GFP_KERNEL);
3593 	if (!cbd_base) {
3594 		ret = -ENOMEM;
3595 		goto free_queue_mem;
3596 	}
3597 
3598 	/* Get the Ethernet address */
3599 	ret = fec_get_mac(ndev);
3600 	if (ret)
3601 		goto free_queue_mem;
3602 
3603 	/* make sure MAC we just acquired is programmed into the hw */
3604 	fec_set_mac_address(ndev, NULL);
3605 
3606 	/* Set receive and transmit descriptor base. */
3607 	for (i = 0; i < fep->num_rx_queues; i++) {
3608 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3609 		unsigned size = dsize * rxq->bd.ring_size;
3610 
3611 		rxq->bd.qid = i;
3612 		rxq->bd.base = cbd_base;
3613 		rxq->bd.cur = cbd_base;
3614 		rxq->bd.dma = bd_dma;
3615 		rxq->bd.dsize = dsize;
3616 		rxq->bd.dsize_log2 = dsize_log2;
3617 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3618 		bd_dma += size;
3619 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3620 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3621 	}
3622 
3623 	for (i = 0; i < fep->num_tx_queues; i++) {
3624 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3625 		unsigned size = dsize * txq->bd.ring_size;
3626 
3627 		txq->bd.qid = i;
3628 		txq->bd.base = cbd_base;
3629 		txq->bd.cur = cbd_base;
3630 		txq->bd.dma = bd_dma;
3631 		txq->bd.dsize = dsize;
3632 		txq->bd.dsize_log2 = dsize_log2;
3633 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3634 		bd_dma += size;
3635 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3636 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3637 	}
3638 
3639 
3640 	/* The FEC Ethernet specific entries in the device structure */
3641 	ndev->watchdog_timeo = TX_TIMEOUT;
3642 	ndev->netdev_ops = &fec_netdev_ops;
3643 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3644 
3645 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3646 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3647 
3648 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3649 		/* enable hw VLAN support */
3650 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3651 
3652 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3653 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
3654 
3655 		/* enable hw accelerator */
3656 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3657 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3658 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3659 	}
3660 
3661 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3662 		fep->tx_align = 0;
3663 		fep->rx_align = 0x3f;
3664 	}
3665 
3666 	ndev->hw_features = ndev->features;
3667 
3668 	fec_restart(ndev);
3669 
3670 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3671 		fec_enet_clear_ethtool_stats(ndev);
3672 	else
3673 		fec_enet_update_ethtool_stats(ndev);
3674 
3675 	return 0;
3676 
3677 free_queue_mem:
3678 	fec_enet_free_queue(ndev);
3679 	return ret;
3680 }
3681 
3682 #ifdef CONFIG_OF
3683 static int fec_reset_phy(struct platform_device *pdev)
3684 {
3685 	int err, phy_reset;
3686 	bool active_high = false;
3687 	int msec = 1, phy_post_delay = 0;
3688 	struct device_node *np = pdev->dev.of_node;
3689 
3690 	if (!np)
3691 		return 0;
3692 
3693 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3694 	/* A sane reset duration should not be longer than 1s */
3695 	if (!err && msec > 1000)
3696 		msec = 1;
3697 
3698 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3699 	if (phy_reset == -EPROBE_DEFER)
3700 		return phy_reset;
3701 	else if (!gpio_is_valid(phy_reset))
3702 		return 0;
3703 
3704 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3705 	/* valid reset duration should be less than 1s */
3706 	if (!err && phy_post_delay > 1000)
3707 		return -EINVAL;
3708 
3709 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3710 
3711 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3712 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3713 			"phy-reset");
3714 	if (err) {
3715 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3716 		return err;
3717 	}
3718 
3719 	if (msec > 20)
3720 		msleep(msec);
3721 	else
3722 		usleep_range(msec * 1000, msec * 1000 + 1000);
3723 
3724 	gpio_set_value_cansleep(phy_reset, !active_high);
3725 
3726 	if (!phy_post_delay)
3727 		return 0;
3728 
3729 	if (phy_post_delay > 20)
3730 		msleep(phy_post_delay);
3731 	else
3732 		usleep_range(phy_post_delay * 1000,
3733 			     phy_post_delay * 1000 + 1000);
3734 
3735 	return 0;
3736 }
3737 #else /* CONFIG_OF */
3738 static int fec_reset_phy(struct platform_device *pdev)
3739 {
3740 	/*
3741 	 * In case of platform probe, the reset has been done
3742 	 * by machine code.
3743 	 */
3744 	return 0;
3745 }
3746 #endif /* CONFIG_OF */
3747 
3748 static void
3749 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3750 {
3751 	struct device_node *np = pdev->dev.of_node;
3752 
3753 	*num_tx = *num_rx = 1;
3754 
3755 	if (!np || !of_device_is_available(np))
3756 		return;
3757 
3758 	/* parse the num of tx and rx queues */
3759 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3760 
3761 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3762 
3763 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3764 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3765 			 *num_tx);
3766 		*num_tx = 1;
3767 		return;
3768 	}
3769 
3770 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3771 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3772 			 *num_rx);
3773 		*num_rx = 1;
3774 		return;
3775 	}
3776 
3777 }
3778 
3779 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3780 {
3781 	int irq_cnt = platform_irq_count(pdev);
3782 
3783 	if (irq_cnt > FEC_IRQ_NUM)
3784 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3785 	else if (irq_cnt == 2)
3786 		irq_cnt = 1;	/* last for pps */
3787 	else if (irq_cnt <= 0)
3788 		irq_cnt = 1;	/* At least 1 irq is needed */
3789 	return irq_cnt;
3790 }
3791 
3792 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
3793 {
3794 	struct net_device *ndev = platform_get_drvdata(pdev);
3795 	struct fec_enet_private *fep = netdev_priv(ndev);
3796 
3797 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
3798 		fep->wake_irq = fep->irq[2];
3799 	else
3800 		fep->wake_irq = fep->irq[0];
3801 }
3802 
3803 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3804 				   struct device_node *np)
3805 {
3806 	struct device_node *gpr_np;
3807 	u32 out_val[3];
3808 	int ret = 0;
3809 
3810 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3811 	if (!gpr_np)
3812 		return 0;
3813 
3814 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3815 					 ARRAY_SIZE(out_val));
3816 	if (ret) {
3817 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3818 		goto out;
3819 	}
3820 
3821 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3822 	if (IS_ERR(fep->stop_gpr.gpr)) {
3823 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3824 		ret = PTR_ERR(fep->stop_gpr.gpr);
3825 		fep->stop_gpr.gpr = NULL;
3826 		goto out;
3827 	}
3828 
3829 	fep->stop_gpr.reg = out_val[1];
3830 	fep->stop_gpr.bit = out_val[2];
3831 
3832 out:
3833 	of_node_put(gpr_np);
3834 
3835 	return ret;
3836 }
3837 
3838 static int
3839 fec_probe(struct platform_device *pdev)
3840 {
3841 	struct fec_enet_private *fep;
3842 	struct fec_platform_data *pdata;
3843 	phy_interface_t interface;
3844 	struct net_device *ndev;
3845 	int i, irq, ret = 0;
3846 	const struct of_device_id *of_id;
3847 	static int dev_id;
3848 	struct device_node *np = pdev->dev.of_node, *phy_node;
3849 	int num_tx_qs;
3850 	int num_rx_qs;
3851 	char irq_name[8];
3852 	int irq_cnt;
3853 	struct fec_devinfo *dev_info;
3854 
3855 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3856 
3857 	/* Init network device */
3858 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3859 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3860 	if (!ndev)
3861 		return -ENOMEM;
3862 
3863 	SET_NETDEV_DEV(ndev, &pdev->dev);
3864 
3865 	/* setup board info structure */
3866 	fep = netdev_priv(ndev);
3867 
3868 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3869 	if (of_id)
3870 		pdev->id_entry = of_id->data;
3871 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3872 	if (dev_info)
3873 		fep->quirks = dev_info->quirks;
3874 
3875 	fep->netdev = ndev;
3876 	fep->num_rx_queues = num_rx_qs;
3877 	fep->num_tx_queues = num_tx_qs;
3878 
3879 #if !defined(CONFIG_M5272)
3880 	/* default enable pause frame auto negotiation */
3881 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3882 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3883 #endif
3884 
3885 	/* Select default pin state */
3886 	pinctrl_pm_select_default_state(&pdev->dev);
3887 
3888 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3889 	if (IS_ERR(fep->hwp)) {
3890 		ret = PTR_ERR(fep->hwp);
3891 		goto failed_ioremap;
3892 	}
3893 
3894 	fep->pdev = pdev;
3895 	fep->dev_id = dev_id++;
3896 
3897 	platform_set_drvdata(pdev, ndev);
3898 
3899 	if ((of_machine_is_compatible("fsl,imx6q") ||
3900 	     of_machine_is_compatible("fsl,imx6dl")) &&
3901 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3902 		fep->quirks |= FEC_QUIRK_ERR006687;
3903 
3904 	ret = fec_enet_ipc_handle_init(fep);
3905 	if (ret)
3906 		goto failed_ipc_init;
3907 
3908 	if (of_get_property(np, "fsl,magic-packet", NULL))
3909 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3910 
3911 	ret = fec_enet_init_stop_mode(fep, np);
3912 	if (ret)
3913 		goto failed_stop_mode;
3914 
3915 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3916 	if (!phy_node && of_phy_is_fixed_link(np)) {
3917 		ret = of_phy_register_fixed_link(np);
3918 		if (ret < 0) {
3919 			dev_err(&pdev->dev,
3920 				"broken fixed-link specification\n");
3921 			goto failed_phy;
3922 		}
3923 		phy_node = of_node_get(np);
3924 	}
3925 	fep->phy_node = phy_node;
3926 
3927 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3928 	if (ret) {
3929 		pdata = dev_get_platdata(&pdev->dev);
3930 		if (pdata)
3931 			fep->phy_interface = pdata->phy;
3932 		else
3933 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3934 	} else {
3935 		fep->phy_interface = interface;
3936 	}
3937 
3938 	ret = fec_enet_parse_rgmii_delay(fep, np);
3939 	if (ret)
3940 		goto failed_rgmii_delay;
3941 
3942 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3943 	if (IS_ERR(fep->clk_ipg)) {
3944 		ret = PTR_ERR(fep->clk_ipg);
3945 		goto failed_clk;
3946 	}
3947 
3948 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3949 	if (IS_ERR(fep->clk_ahb)) {
3950 		ret = PTR_ERR(fep->clk_ahb);
3951 		goto failed_clk;
3952 	}
3953 
3954 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3955 
3956 	/* enet_out is optional, depends on board */
3957 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
3958 	if (IS_ERR(fep->clk_enet_out)) {
3959 		ret = PTR_ERR(fep->clk_enet_out);
3960 		goto failed_clk;
3961 	}
3962 
3963 	fep->ptp_clk_on = false;
3964 	spin_lock_init(&fep->tmreg_lock);
3965 
3966 	/* clk_ref is optional, depends on board */
3967 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
3968 	if (IS_ERR(fep->clk_ref)) {
3969 		ret = PTR_ERR(fep->clk_ref);
3970 		goto failed_clk;
3971 	}
3972 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
3973 
3974 	/* clk_2x_txclk is optional, depends on board */
3975 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
3976 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
3977 		if (IS_ERR(fep->clk_2x_txclk))
3978 			fep->clk_2x_txclk = NULL;
3979 	}
3980 
3981 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3982 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3983 	if (IS_ERR(fep->clk_ptp)) {
3984 		fep->clk_ptp = NULL;
3985 		fep->bufdesc_ex = false;
3986 	}
3987 
3988 	ret = fec_enet_clk_enable(ndev, true);
3989 	if (ret)
3990 		goto failed_clk;
3991 
3992 	ret = clk_prepare_enable(fep->clk_ipg);
3993 	if (ret)
3994 		goto failed_clk_ipg;
3995 	ret = clk_prepare_enable(fep->clk_ahb);
3996 	if (ret)
3997 		goto failed_clk_ahb;
3998 
3999 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4000 	if (!IS_ERR(fep->reg_phy)) {
4001 		ret = regulator_enable(fep->reg_phy);
4002 		if (ret) {
4003 			dev_err(&pdev->dev,
4004 				"Failed to enable phy regulator: %d\n", ret);
4005 			goto failed_regulator;
4006 		}
4007 	} else {
4008 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4009 			ret = -EPROBE_DEFER;
4010 			goto failed_regulator;
4011 		}
4012 		fep->reg_phy = NULL;
4013 	}
4014 
4015 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4016 	pm_runtime_use_autosuspend(&pdev->dev);
4017 	pm_runtime_get_noresume(&pdev->dev);
4018 	pm_runtime_set_active(&pdev->dev);
4019 	pm_runtime_enable(&pdev->dev);
4020 
4021 	ret = fec_reset_phy(pdev);
4022 	if (ret)
4023 		goto failed_reset;
4024 
4025 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4026 	if (fep->bufdesc_ex)
4027 		fec_ptp_init(pdev, irq_cnt);
4028 
4029 	ret = fec_enet_init(ndev);
4030 	if (ret)
4031 		goto failed_init;
4032 
4033 	for (i = 0; i < irq_cnt; i++) {
4034 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4035 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4036 		if (irq < 0)
4037 			irq = platform_get_irq(pdev, i);
4038 		if (irq < 0) {
4039 			ret = irq;
4040 			goto failed_irq;
4041 		}
4042 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4043 				       0, pdev->name, ndev);
4044 		if (ret)
4045 			goto failed_irq;
4046 
4047 		fep->irq[i] = irq;
4048 	}
4049 
4050 	/* Decide which interrupt line is wakeup capable */
4051 	fec_enet_get_wakeup_irq(pdev);
4052 
4053 	ret = fec_enet_mii_init(pdev);
4054 	if (ret)
4055 		goto failed_mii_init;
4056 
4057 	/* Carrier starts down, phylib will bring it up */
4058 	netif_carrier_off(ndev);
4059 	fec_enet_clk_enable(ndev, false);
4060 	pinctrl_pm_select_sleep_state(&pdev->dev);
4061 
4062 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4063 
4064 	ret = register_netdev(ndev);
4065 	if (ret)
4066 		goto failed_register;
4067 
4068 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4069 			   FEC_WOL_HAS_MAGIC_PACKET);
4070 
4071 	if (fep->bufdesc_ex && fep->ptp_clock)
4072 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4073 
4074 	fep->rx_copybreak = COPYBREAK_DEFAULT;
4075 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4076 
4077 	pm_runtime_mark_last_busy(&pdev->dev);
4078 	pm_runtime_put_autosuspend(&pdev->dev);
4079 
4080 	return 0;
4081 
4082 failed_register:
4083 	fec_enet_mii_remove(fep);
4084 failed_mii_init:
4085 failed_irq:
4086 failed_init:
4087 	fec_ptp_stop(pdev);
4088 failed_reset:
4089 	pm_runtime_put_noidle(&pdev->dev);
4090 	pm_runtime_disable(&pdev->dev);
4091 	if (fep->reg_phy)
4092 		regulator_disable(fep->reg_phy);
4093 failed_regulator:
4094 	clk_disable_unprepare(fep->clk_ahb);
4095 failed_clk_ahb:
4096 	clk_disable_unprepare(fep->clk_ipg);
4097 failed_clk_ipg:
4098 	fec_enet_clk_enable(ndev, false);
4099 failed_clk:
4100 failed_rgmii_delay:
4101 	if (of_phy_is_fixed_link(np))
4102 		of_phy_deregister_fixed_link(np);
4103 	of_node_put(phy_node);
4104 failed_stop_mode:
4105 failed_ipc_init:
4106 failed_phy:
4107 	dev_id--;
4108 failed_ioremap:
4109 	free_netdev(ndev);
4110 
4111 	return ret;
4112 }
4113 
4114 static int
4115 fec_drv_remove(struct platform_device *pdev)
4116 {
4117 	struct net_device *ndev = platform_get_drvdata(pdev);
4118 	struct fec_enet_private *fep = netdev_priv(ndev);
4119 	struct device_node *np = pdev->dev.of_node;
4120 	int ret;
4121 
4122 	ret = pm_runtime_resume_and_get(&pdev->dev);
4123 	if (ret < 0)
4124 		return ret;
4125 
4126 	cancel_work_sync(&fep->tx_timeout_work);
4127 	fec_ptp_stop(pdev);
4128 	unregister_netdev(ndev);
4129 	fec_enet_mii_remove(fep);
4130 	if (fep->reg_phy)
4131 		regulator_disable(fep->reg_phy);
4132 
4133 	if (of_phy_is_fixed_link(np))
4134 		of_phy_deregister_fixed_link(np);
4135 	of_node_put(fep->phy_node);
4136 
4137 	clk_disable_unprepare(fep->clk_ahb);
4138 	clk_disable_unprepare(fep->clk_ipg);
4139 	pm_runtime_put_noidle(&pdev->dev);
4140 	pm_runtime_disable(&pdev->dev);
4141 
4142 	free_netdev(ndev);
4143 	return 0;
4144 }
4145 
4146 static int __maybe_unused fec_suspend(struct device *dev)
4147 {
4148 	struct net_device *ndev = dev_get_drvdata(dev);
4149 	struct fec_enet_private *fep = netdev_priv(ndev);
4150 	int ret;
4151 
4152 	rtnl_lock();
4153 	if (netif_running(ndev)) {
4154 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4155 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4156 		phy_stop(ndev->phydev);
4157 		napi_disable(&fep->napi);
4158 		netif_tx_lock_bh(ndev);
4159 		netif_device_detach(ndev);
4160 		netif_tx_unlock_bh(ndev);
4161 		fec_stop(ndev);
4162 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4163 			fec_irqs_disable(ndev);
4164 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4165 		} else {
4166 			fec_irqs_disable_except_wakeup(ndev);
4167 			if (fep->wake_irq > 0) {
4168 				disable_irq(fep->wake_irq);
4169 				enable_irq_wake(fep->wake_irq);
4170 			}
4171 			fec_enet_stop_mode(fep, true);
4172 		}
4173 		/* It's safe to disable clocks since interrupts are masked */
4174 		fec_enet_clk_enable(ndev, false);
4175 
4176 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4177 		if (fep->rpm_active) {
4178 			ret = pm_runtime_force_suspend(dev);
4179 			if (ret < 0) {
4180 				rtnl_unlock();
4181 				return ret;
4182 			}
4183 		}
4184 	}
4185 	rtnl_unlock();
4186 
4187 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4188 		regulator_disable(fep->reg_phy);
4189 
4190 	/* SOC supply clock to phy, when clock is disabled, phy link down
4191 	 * SOC control phy regulator, when regulator is disabled, phy link down
4192 	 */
4193 	if (fep->clk_enet_out || fep->reg_phy)
4194 		fep->link = 0;
4195 
4196 	return 0;
4197 }
4198 
4199 static int __maybe_unused fec_resume(struct device *dev)
4200 {
4201 	struct net_device *ndev = dev_get_drvdata(dev);
4202 	struct fec_enet_private *fep = netdev_priv(ndev);
4203 	int ret;
4204 	int val;
4205 
4206 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4207 		ret = regulator_enable(fep->reg_phy);
4208 		if (ret)
4209 			return ret;
4210 	}
4211 
4212 	rtnl_lock();
4213 	if (netif_running(ndev)) {
4214 		if (fep->rpm_active)
4215 			pm_runtime_force_resume(dev);
4216 
4217 		ret = fec_enet_clk_enable(ndev, true);
4218 		if (ret) {
4219 			rtnl_unlock();
4220 			goto failed_clk;
4221 		}
4222 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4223 			fec_enet_stop_mode(fep, false);
4224 			if (fep->wake_irq) {
4225 				disable_irq_wake(fep->wake_irq);
4226 				enable_irq(fep->wake_irq);
4227 			}
4228 
4229 			val = readl(fep->hwp + FEC_ECNTRL);
4230 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4231 			writel(val, fep->hwp + FEC_ECNTRL);
4232 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4233 		} else {
4234 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4235 		}
4236 		fec_restart(ndev);
4237 		netif_tx_lock_bh(ndev);
4238 		netif_device_attach(ndev);
4239 		netif_tx_unlock_bh(ndev);
4240 		napi_enable(&fep->napi);
4241 		phy_init_hw(ndev->phydev);
4242 		phy_start(ndev->phydev);
4243 	}
4244 	rtnl_unlock();
4245 
4246 	return 0;
4247 
4248 failed_clk:
4249 	if (fep->reg_phy)
4250 		regulator_disable(fep->reg_phy);
4251 	return ret;
4252 }
4253 
4254 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4255 {
4256 	struct net_device *ndev = dev_get_drvdata(dev);
4257 	struct fec_enet_private *fep = netdev_priv(ndev);
4258 
4259 	clk_disable_unprepare(fep->clk_ahb);
4260 	clk_disable_unprepare(fep->clk_ipg);
4261 
4262 	return 0;
4263 }
4264 
4265 static int __maybe_unused fec_runtime_resume(struct device *dev)
4266 {
4267 	struct net_device *ndev = dev_get_drvdata(dev);
4268 	struct fec_enet_private *fep = netdev_priv(ndev);
4269 	int ret;
4270 
4271 	ret = clk_prepare_enable(fep->clk_ahb);
4272 	if (ret)
4273 		return ret;
4274 	ret = clk_prepare_enable(fep->clk_ipg);
4275 	if (ret)
4276 		goto failed_clk_ipg;
4277 
4278 	return 0;
4279 
4280 failed_clk_ipg:
4281 	clk_disable_unprepare(fep->clk_ahb);
4282 	return ret;
4283 }
4284 
4285 static const struct dev_pm_ops fec_pm_ops = {
4286 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4287 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4288 };
4289 
4290 static struct platform_driver fec_driver = {
4291 	.driver	= {
4292 		.name	= DRIVER_NAME,
4293 		.pm	= &fec_pm_ops,
4294 		.of_match_table = fec_dt_ids,
4295 		.suppress_bind_attrs = true,
4296 	},
4297 	.id_table = fec_devtype,
4298 	.probe	= fec_probe,
4299 	.remove	= fec_drv_remove,
4300 };
4301 
4302 module_platform_driver(fec_driver);
4303 
4304 MODULE_LICENSE("GPL");
4305