1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/tso.h> 42 #include <linux/tcp.h> 43 #include <linux/udp.h> 44 #include <linux/icmp.h> 45 #include <linux/spinlock.h> 46 #include <linux/workqueue.h> 47 #include <linux/bitops.h> 48 #include <linux/io.h> 49 #include <linux/irq.h> 50 #include <linux/clk.h> 51 #include <linux/crc32.h> 52 #include <linux/platform_device.h> 53 #include <linux/mdio.h> 54 #include <linux/phy.h> 55 #include <linux/fec.h> 56 #include <linux/of.h> 57 #include <linux/of_device.h> 58 #include <linux/of_gpio.h> 59 #include <linux/of_mdio.h> 60 #include <linux/of_net.h> 61 #include <linux/regulator/consumer.h> 62 #include <linux/if_vlan.h> 63 #include <linux/pinctrl/consumer.h> 64 #include <linux/prefetch.h> 65 #include <linux/mfd/syscon.h> 66 #include <linux/regmap.h> 67 #include <soc/imx/cpuidle.h> 68 69 #include <asm/cacheflush.h> 70 71 #include "fec.h" 72 73 static void set_multicast_list(struct net_device *ndev); 74 static void fec_enet_itr_coal_init(struct net_device *ndev); 75 76 #define DRIVER_NAME "fec" 77 78 /* Pause frame feild and FIFO threshold */ 79 #define FEC_ENET_FCE (1 << 5) 80 #define FEC_ENET_RSEM_V 0x84 81 #define FEC_ENET_RSFL_V 16 82 #define FEC_ENET_RAEM_V 0x8 83 #define FEC_ENET_RAFL_V 0x8 84 #define FEC_ENET_OPD_V 0xFFF0 85 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 86 87 struct fec_devinfo { 88 u32 quirks; 89 }; 90 91 static const struct fec_devinfo fec_imx25_info = { 92 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 93 FEC_QUIRK_HAS_FRREG, 94 }; 95 96 static const struct fec_devinfo fec_imx27_info = { 97 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 98 }; 99 100 static const struct fec_devinfo fec_imx28_info = { 101 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 102 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 103 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 104 FEC_QUIRK_NO_HARD_RESET, 105 }; 106 107 static const struct fec_devinfo fec_imx6q_info = { 108 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 109 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 110 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 111 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII, 112 }; 113 114 static const struct fec_devinfo fec_mvf600_info = { 115 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 116 }; 117 118 static const struct fec_devinfo fec_imx6x_info = { 119 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 120 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 121 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 122 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 123 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 124 FEC_QUIRK_CLEAR_SETUP_MII, 125 }; 126 127 static const struct fec_devinfo fec_imx6ul_info = { 128 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 129 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 130 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 131 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 132 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII, 133 }; 134 135 static struct platform_device_id fec_devtype[] = { 136 { 137 /* keep it for coldfire */ 138 .name = DRIVER_NAME, 139 .driver_data = 0, 140 }, { 141 .name = "imx25-fec", 142 .driver_data = (kernel_ulong_t)&fec_imx25_info, 143 }, { 144 .name = "imx27-fec", 145 .driver_data = (kernel_ulong_t)&fec_imx27_info, 146 }, { 147 .name = "imx28-fec", 148 .driver_data = (kernel_ulong_t)&fec_imx28_info, 149 }, { 150 .name = "imx6q-fec", 151 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 152 }, { 153 .name = "mvf600-fec", 154 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 155 }, { 156 .name = "imx6sx-fec", 157 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 158 }, { 159 .name = "imx6ul-fec", 160 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 161 }, { 162 /* sentinel */ 163 } 164 }; 165 MODULE_DEVICE_TABLE(platform, fec_devtype); 166 167 enum imx_fec_type { 168 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 169 IMX27_FEC, /* runs on i.mx27/35/51 */ 170 IMX28_FEC, 171 IMX6Q_FEC, 172 MVF600_FEC, 173 IMX6SX_FEC, 174 IMX6UL_FEC, 175 }; 176 177 static const struct of_device_id fec_dt_ids[] = { 178 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 179 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 180 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 181 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 182 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 183 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 184 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 185 { /* sentinel */ } 186 }; 187 MODULE_DEVICE_TABLE(of, fec_dt_ids); 188 189 static unsigned char macaddr[ETH_ALEN]; 190 module_param_array(macaddr, byte, NULL, 0); 191 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 192 193 #if defined(CONFIG_M5272) 194 /* 195 * Some hardware gets it MAC address out of local flash memory. 196 * if this is non-zero then assume it is the address to get MAC from. 197 */ 198 #if defined(CONFIG_NETtel) 199 #define FEC_FLASHMAC 0xf0006006 200 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 201 #define FEC_FLASHMAC 0xf0006000 202 #elif defined(CONFIG_CANCam) 203 #define FEC_FLASHMAC 0xf0020000 204 #elif defined (CONFIG_M5272C3) 205 #define FEC_FLASHMAC (0xffe04000 + 4) 206 #elif defined(CONFIG_MOD5272) 207 #define FEC_FLASHMAC 0xffc0406b 208 #else 209 #define FEC_FLASHMAC 0 210 #endif 211 #endif /* CONFIG_M5272 */ 212 213 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 214 * 215 * 2048 byte skbufs are allocated. However, alignment requirements 216 * varies between FEC variants. Worst case is 64, so round down by 64. 217 */ 218 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 219 #define PKT_MINBUF_SIZE 64 220 221 /* FEC receive acceleration */ 222 #define FEC_RACC_IPDIS (1 << 1) 223 #define FEC_RACC_PRODIS (1 << 2) 224 #define FEC_RACC_SHIFT16 BIT(7) 225 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 226 227 /* MIB Control Register */ 228 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 229 230 /* 231 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 232 * size bits. Other FEC hardware does not, so we need to take that into 233 * account when setting it. 234 */ 235 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 236 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 237 defined(CONFIG_ARM64) 238 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 239 #else 240 #define OPT_FRAME_SIZE 0 241 #endif 242 243 /* FEC MII MMFR bits definition */ 244 #define FEC_MMFR_ST (1 << 30) 245 #define FEC_MMFR_ST_C45 (0) 246 #define FEC_MMFR_OP_READ (2 << 28) 247 #define FEC_MMFR_OP_READ_C45 (3 << 28) 248 #define FEC_MMFR_OP_WRITE (1 << 28) 249 #define FEC_MMFR_OP_ADDR_WRITE (0) 250 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 251 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 252 #define FEC_MMFR_TA (2 << 16) 253 #define FEC_MMFR_DATA(v) (v & 0xffff) 254 /* FEC ECR bits definition */ 255 #define FEC_ECR_MAGICEN (1 << 2) 256 #define FEC_ECR_SLEEP (1 << 3) 257 258 #define FEC_MII_TIMEOUT 30000 /* us */ 259 260 /* Transmitter timeout */ 261 #define TX_TIMEOUT (2 * HZ) 262 263 #define FEC_PAUSE_FLAG_AUTONEG 0x1 264 #define FEC_PAUSE_FLAG_ENABLE 0x2 265 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 266 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 267 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 268 269 #define COPYBREAK_DEFAULT 256 270 271 /* Max number of allowed TCP segments for software TSO */ 272 #define FEC_MAX_TSO_SEGS 100 273 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 274 275 #define IS_TSO_HEADER(txq, addr) \ 276 ((addr >= txq->tso_hdrs_dma) && \ 277 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 278 279 static int mii_cnt; 280 281 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 282 struct bufdesc_prop *bd) 283 { 284 return (bdp >= bd->last) ? bd->base 285 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 286 } 287 288 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 289 struct bufdesc_prop *bd) 290 { 291 return (bdp <= bd->base) ? bd->last 292 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 293 } 294 295 static int fec_enet_get_bd_index(struct bufdesc *bdp, 296 struct bufdesc_prop *bd) 297 { 298 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 299 } 300 301 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 302 { 303 int entries; 304 305 entries = (((const char *)txq->dirty_tx - 306 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 307 308 return entries >= 0 ? entries : entries + txq->bd.ring_size; 309 } 310 311 static void swap_buffer(void *bufaddr, int len) 312 { 313 int i; 314 unsigned int *buf = bufaddr; 315 316 for (i = 0; i < len; i += 4, buf++) 317 swab32s(buf); 318 } 319 320 static void swap_buffer2(void *dst_buf, void *src_buf, int len) 321 { 322 int i; 323 unsigned int *src = src_buf; 324 unsigned int *dst = dst_buf; 325 326 for (i = 0; i < len; i += 4, src++, dst++) 327 *dst = swab32p(src); 328 } 329 330 static void fec_dump(struct net_device *ndev) 331 { 332 struct fec_enet_private *fep = netdev_priv(ndev); 333 struct bufdesc *bdp; 334 struct fec_enet_priv_tx_q *txq; 335 int index = 0; 336 337 netdev_info(ndev, "TX ring dump\n"); 338 pr_info("Nr SC addr len SKB\n"); 339 340 txq = fep->tx_queue[0]; 341 bdp = txq->bd.base; 342 343 do { 344 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 345 index, 346 bdp == txq->bd.cur ? 'S' : ' ', 347 bdp == txq->dirty_tx ? 'H' : ' ', 348 fec16_to_cpu(bdp->cbd_sc), 349 fec32_to_cpu(bdp->cbd_bufaddr), 350 fec16_to_cpu(bdp->cbd_datlen), 351 txq->tx_skbuff[index]); 352 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 353 index++; 354 } while (bdp != txq->bd.base); 355 } 356 357 static inline bool is_ipv4_pkt(struct sk_buff *skb) 358 { 359 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 360 } 361 362 static int 363 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 364 { 365 /* Only run for packets requiring a checksum. */ 366 if (skb->ip_summed != CHECKSUM_PARTIAL) 367 return 0; 368 369 if (unlikely(skb_cow_head(skb, 0))) 370 return -1; 371 372 if (is_ipv4_pkt(skb)) 373 ip_hdr(skb)->check = 0; 374 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 375 376 return 0; 377 } 378 379 static struct bufdesc * 380 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 381 struct sk_buff *skb, 382 struct net_device *ndev) 383 { 384 struct fec_enet_private *fep = netdev_priv(ndev); 385 struct bufdesc *bdp = txq->bd.cur; 386 struct bufdesc_ex *ebdp; 387 int nr_frags = skb_shinfo(skb)->nr_frags; 388 int frag, frag_len; 389 unsigned short status; 390 unsigned int estatus = 0; 391 skb_frag_t *this_frag; 392 unsigned int index; 393 void *bufaddr; 394 dma_addr_t addr; 395 int i; 396 397 for (frag = 0; frag < nr_frags; frag++) { 398 this_frag = &skb_shinfo(skb)->frags[frag]; 399 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 400 ebdp = (struct bufdesc_ex *)bdp; 401 402 status = fec16_to_cpu(bdp->cbd_sc); 403 status &= ~BD_ENET_TX_STATS; 404 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 405 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 406 407 /* Handle the last BD specially */ 408 if (frag == nr_frags - 1) { 409 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 410 if (fep->bufdesc_ex) { 411 estatus |= BD_ENET_TX_INT; 412 if (unlikely(skb_shinfo(skb)->tx_flags & 413 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 414 estatus |= BD_ENET_TX_TS; 415 } 416 } 417 418 if (fep->bufdesc_ex) { 419 if (fep->quirks & FEC_QUIRK_HAS_AVB) 420 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 421 if (skb->ip_summed == CHECKSUM_PARTIAL) 422 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 423 ebdp->cbd_bdu = 0; 424 ebdp->cbd_esc = cpu_to_fec32(estatus); 425 } 426 427 bufaddr = skb_frag_address(this_frag); 428 429 index = fec_enet_get_bd_index(bdp, &txq->bd); 430 if (((unsigned long) bufaddr) & fep->tx_align || 431 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 432 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 433 bufaddr = txq->tx_bounce[index]; 434 435 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 436 swap_buffer(bufaddr, frag_len); 437 } 438 439 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 440 DMA_TO_DEVICE); 441 if (dma_mapping_error(&fep->pdev->dev, addr)) { 442 if (net_ratelimit()) 443 netdev_err(ndev, "Tx DMA memory map failed\n"); 444 goto dma_mapping_error; 445 } 446 447 bdp->cbd_bufaddr = cpu_to_fec32(addr); 448 bdp->cbd_datlen = cpu_to_fec16(frag_len); 449 /* Make sure the updates to rest of the descriptor are 450 * performed before transferring ownership. 451 */ 452 wmb(); 453 bdp->cbd_sc = cpu_to_fec16(status); 454 } 455 456 return bdp; 457 dma_mapping_error: 458 bdp = txq->bd.cur; 459 for (i = 0; i < frag; i++) { 460 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 461 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 462 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 463 } 464 return ERR_PTR(-ENOMEM); 465 } 466 467 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 468 struct sk_buff *skb, struct net_device *ndev) 469 { 470 struct fec_enet_private *fep = netdev_priv(ndev); 471 int nr_frags = skb_shinfo(skb)->nr_frags; 472 struct bufdesc *bdp, *last_bdp; 473 void *bufaddr; 474 dma_addr_t addr; 475 unsigned short status; 476 unsigned short buflen; 477 unsigned int estatus = 0; 478 unsigned int index; 479 int entries_free; 480 481 entries_free = fec_enet_get_free_txdesc_num(txq); 482 if (entries_free < MAX_SKB_FRAGS + 1) { 483 dev_kfree_skb_any(skb); 484 if (net_ratelimit()) 485 netdev_err(ndev, "NOT enough BD for SG!\n"); 486 return NETDEV_TX_OK; 487 } 488 489 /* Protocol checksum off-load for TCP and UDP. */ 490 if (fec_enet_clear_csum(skb, ndev)) { 491 dev_kfree_skb_any(skb); 492 return NETDEV_TX_OK; 493 } 494 495 /* Fill in a Tx ring entry */ 496 bdp = txq->bd.cur; 497 last_bdp = bdp; 498 status = fec16_to_cpu(bdp->cbd_sc); 499 status &= ~BD_ENET_TX_STATS; 500 501 /* Set buffer length and buffer pointer */ 502 bufaddr = skb->data; 503 buflen = skb_headlen(skb); 504 505 index = fec_enet_get_bd_index(bdp, &txq->bd); 506 if (((unsigned long) bufaddr) & fep->tx_align || 507 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 508 memcpy(txq->tx_bounce[index], skb->data, buflen); 509 bufaddr = txq->tx_bounce[index]; 510 511 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 512 swap_buffer(bufaddr, buflen); 513 } 514 515 /* Push the data cache so the CPM does not get stale memory data. */ 516 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 517 if (dma_mapping_error(&fep->pdev->dev, addr)) { 518 dev_kfree_skb_any(skb); 519 if (net_ratelimit()) 520 netdev_err(ndev, "Tx DMA memory map failed\n"); 521 return NETDEV_TX_OK; 522 } 523 524 if (nr_frags) { 525 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 526 if (IS_ERR(last_bdp)) { 527 dma_unmap_single(&fep->pdev->dev, addr, 528 buflen, DMA_TO_DEVICE); 529 dev_kfree_skb_any(skb); 530 return NETDEV_TX_OK; 531 } 532 } else { 533 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 534 if (fep->bufdesc_ex) { 535 estatus = BD_ENET_TX_INT; 536 if (unlikely(skb_shinfo(skb)->tx_flags & 537 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 538 estatus |= BD_ENET_TX_TS; 539 } 540 } 541 bdp->cbd_bufaddr = cpu_to_fec32(addr); 542 bdp->cbd_datlen = cpu_to_fec16(buflen); 543 544 if (fep->bufdesc_ex) { 545 546 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 547 548 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 549 fep->hwts_tx_en)) 550 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 551 552 if (fep->quirks & FEC_QUIRK_HAS_AVB) 553 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 554 555 if (skb->ip_summed == CHECKSUM_PARTIAL) 556 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 557 558 ebdp->cbd_bdu = 0; 559 ebdp->cbd_esc = cpu_to_fec32(estatus); 560 } 561 562 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 563 /* Save skb pointer */ 564 txq->tx_skbuff[index] = skb; 565 566 /* Make sure the updates to rest of the descriptor are performed before 567 * transferring ownership. 568 */ 569 wmb(); 570 571 /* Send it on its way. Tell FEC it's ready, interrupt when done, 572 * it's the last BD of the frame, and to put the CRC on the end. 573 */ 574 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 575 bdp->cbd_sc = cpu_to_fec16(status); 576 577 /* If this was the last BD in the ring, start at the beginning again. */ 578 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 579 580 skb_tx_timestamp(skb); 581 582 /* Make sure the update to bdp and tx_skbuff are performed before 583 * txq->bd.cur. 584 */ 585 wmb(); 586 txq->bd.cur = bdp; 587 588 /* Trigger transmission start */ 589 writel(0, txq->bd.reg_desc_active); 590 591 return 0; 592 } 593 594 static int 595 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 596 struct net_device *ndev, 597 struct bufdesc *bdp, int index, char *data, 598 int size, bool last_tcp, bool is_last) 599 { 600 struct fec_enet_private *fep = netdev_priv(ndev); 601 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 602 unsigned short status; 603 unsigned int estatus = 0; 604 dma_addr_t addr; 605 606 status = fec16_to_cpu(bdp->cbd_sc); 607 status &= ~BD_ENET_TX_STATS; 608 609 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 610 611 if (((unsigned long) data) & fep->tx_align || 612 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 613 memcpy(txq->tx_bounce[index], data, size); 614 data = txq->tx_bounce[index]; 615 616 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 617 swap_buffer(data, size); 618 } 619 620 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 621 if (dma_mapping_error(&fep->pdev->dev, addr)) { 622 dev_kfree_skb_any(skb); 623 if (net_ratelimit()) 624 netdev_err(ndev, "Tx DMA memory map failed\n"); 625 return NETDEV_TX_BUSY; 626 } 627 628 bdp->cbd_datlen = cpu_to_fec16(size); 629 bdp->cbd_bufaddr = cpu_to_fec32(addr); 630 631 if (fep->bufdesc_ex) { 632 if (fep->quirks & FEC_QUIRK_HAS_AVB) 633 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 634 if (skb->ip_summed == CHECKSUM_PARTIAL) 635 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 636 ebdp->cbd_bdu = 0; 637 ebdp->cbd_esc = cpu_to_fec32(estatus); 638 } 639 640 /* Handle the last BD specially */ 641 if (last_tcp) 642 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 643 if (is_last) { 644 status |= BD_ENET_TX_INTR; 645 if (fep->bufdesc_ex) 646 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 647 } 648 649 bdp->cbd_sc = cpu_to_fec16(status); 650 651 return 0; 652 } 653 654 static int 655 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 656 struct sk_buff *skb, struct net_device *ndev, 657 struct bufdesc *bdp, int index) 658 { 659 struct fec_enet_private *fep = netdev_priv(ndev); 660 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 661 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 662 void *bufaddr; 663 unsigned long dmabuf; 664 unsigned short status; 665 unsigned int estatus = 0; 666 667 status = fec16_to_cpu(bdp->cbd_sc); 668 status &= ~BD_ENET_TX_STATS; 669 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 670 671 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 672 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 673 if (((unsigned long)bufaddr) & fep->tx_align || 674 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 675 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 676 bufaddr = txq->tx_bounce[index]; 677 678 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 679 swap_buffer(bufaddr, hdr_len); 680 681 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 682 hdr_len, DMA_TO_DEVICE); 683 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 684 dev_kfree_skb_any(skb); 685 if (net_ratelimit()) 686 netdev_err(ndev, "Tx DMA memory map failed\n"); 687 return NETDEV_TX_BUSY; 688 } 689 } 690 691 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 692 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 693 694 if (fep->bufdesc_ex) { 695 if (fep->quirks & FEC_QUIRK_HAS_AVB) 696 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 697 if (skb->ip_summed == CHECKSUM_PARTIAL) 698 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 699 ebdp->cbd_bdu = 0; 700 ebdp->cbd_esc = cpu_to_fec32(estatus); 701 } 702 703 bdp->cbd_sc = cpu_to_fec16(status); 704 705 return 0; 706 } 707 708 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 709 struct sk_buff *skb, 710 struct net_device *ndev) 711 { 712 struct fec_enet_private *fep = netdev_priv(ndev); 713 int hdr_len, total_len, data_left; 714 struct bufdesc *bdp = txq->bd.cur; 715 struct tso_t tso; 716 unsigned int index = 0; 717 int ret; 718 719 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 720 dev_kfree_skb_any(skb); 721 if (net_ratelimit()) 722 netdev_err(ndev, "NOT enough BD for TSO!\n"); 723 return NETDEV_TX_OK; 724 } 725 726 /* Protocol checksum off-load for TCP and UDP. */ 727 if (fec_enet_clear_csum(skb, ndev)) { 728 dev_kfree_skb_any(skb); 729 return NETDEV_TX_OK; 730 } 731 732 /* Initialize the TSO handler, and prepare the first payload */ 733 hdr_len = tso_start(skb, &tso); 734 735 total_len = skb->len - hdr_len; 736 while (total_len > 0) { 737 char *hdr; 738 739 index = fec_enet_get_bd_index(bdp, &txq->bd); 740 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 741 total_len -= data_left; 742 743 /* prepare packet headers: MAC + IP + TCP */ 744 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 745 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 746 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 747 if (ret) 748 goto err_release; 749 750 while (data_left > 0) { 751 int size; 752 753 size = min_t(int, tso.size, data_left); 754 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 755 index = fec_enet_get_bd_index(bdp, &txq->bd); 756 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 757 bdp, index, 758 tso.data, size, 759 size == data_left, 760 total_len == 0); 761 if (ret) 762 goto err_release; 763 764 data_left -= size; 765 tso_build_data(skb, &tso, size); 766 } 767 768 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 769 } 770 771 /* Save skb pointer */ 772 txq->tx_skbuff[index] = skb; 773 774 skb_tx_timestamp(skb); 775 txq->bd.cur = bdp; 776 777 /* Trigger transmission start */ 778 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 779 !readl(txq->bd.reg_desc_active) || 780 !readl(txq->bd.reg_desc_active) || 781 !readl(txq->bd.reg_desc_active) || 782 !readl(txq->bd.reg_desc_active)) 783 writel(0, txq->bd.reg_desc_active); 784 785 return 0; 786 787 err_release: 788 /* TODO: Release all used data descriptors for TSO */ 789 return ret; 790 } 791 792 static netdev_tx_t 793 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 794 { 795 struct fec_enet_private *fep = netdev_priv(ndev); 796 int entries_free; 797 unsigned short queue; 798 struct fec_enet_priv_tx_q *txq; 799 struct netdev_queue *nq; 800 int ret; 801 802 queue = skb_get_queue_mapping(skb); 803 txq = fep->tx_queue[queue]; 804 nq = netdev_get_tx_queue(ndev, queue); 805 806 if (skb_is_gso(skb)) 807 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 808 else 809 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 810 if (ret) 811 return ret; 812 813 entries_free = fec_enet_get_free_txdesc_num(txq); 814 if (entries_free <= txq->tx_stop_threshold) 815 netif_tx_stop_queue(nq); 816 817 return NETDEV_TX_OK; 818 } 819 820 /* Init RX & TX buffer descriptors 821 */ 822 static void fec_enet_bd_init(struct net_device *dev) 823 { 824 struct fec_enet_private *fep = netdev_priv(dev); 825 struct fec_enet_priv_tx_q *txq; 826 struct fec_enet_priv_rx_q *rxq; 827 struct bufdesc *bdp; 828 unsigned int i; 829 unsigned int q; 830 831 for (q = 0; q < fep->num_rx_queues; q++) { 832 /* Initialize the receive buffer descriptors. */ 833 rxq = fep->rx_queue[q]; 834 bdp = rxq->bd.base; 835 836 for (i = 0; i < rxq->bd.ring_size; i++) { 837 838 /* Initialize the BD for every fragment in the page. */ 839 if (bdp->cbd_bufaddr) 840 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 841 else 842 bdp->cbd_sc = cpu_to_fec16(0); 843 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 844 } 845 846 /* Set the last buffer to wrap */ 847 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 848 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 849 850 rxq->bd.cur = rxq->bd.base; 851 } 852 853 for (q = 0; q < fep->num_tx_queues; q++) { 854 /* ...and the same for transmit */ 855 txq = fep->tx_queue[q]; 856 bdp = txq->bd.base; 857 txq->bd.cur = bdp; 858 859 for (i = 0; i < txq->bd.ring_size; i++) { 860 /* Initialize the BD for every fragment in the page. */ 861 bdp->cbd_sc = cpu_to_fec16(0); 862 if (bdp->cbd_bufaddr && 863 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 864 dma_unmap_single(&fep->pdev->dev, 865 fec32_to_cpu(bdp->cbd_bufaddr), 866 fec16_to_cpu(bdp->cbd_datlen), 867 DMA_TO_DEVICE); 868 if (txq->tx_skbuff[i]) { 869 dev_kfree_skb_any(txq->tx_skbuff[i]); 870 txq->tx_skbuff[i] = NULL; 871 } 872 bdp->cbd_bufaddr = cpu_to_fec32(0); 873 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 874 } 875 876 /* Set the last buffer to wrap */ 877 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 878 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 879 txq->dirty_tx = bdp; 880 } 881 } 882 883 static void fec_enet_active_rxring(struct net_device *ndev) 884 { 885 struct fec_enet_private *fep = netdev_priv(ndev); 886 int i; 887 888 for (i = 0; i < fep->num_rx_queues; i++) 889 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 890 } 891 892 static void fec_enet_enable_ring(struct net_device *ndev) 893 { 894 struct fec_enet_private *fep = netdev_priv(ndev); 895 struct fec_enet_priv_tx_q *txq; 896 struct fec_enet_priv_rx_q *rxq; 897 int i; 898 899 for (i = 0; i < fep->num_rx_queues; i++) { 900 rxq = fep->rx_queue[i]; 901 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 902 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 903 904 /* enable DMA1/2 */ 905 if (i) 906 writel(RCMR_MATCHEN | RCMR_CMP(i), 907 fep->hwp + FEC_RCMR(i)); 908 } 909 910 for (i = 0; i < fep->num_tx_queues; i++) { 911 txq = fep->tx_queue[i]; 912 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 913 914 /* enable DMA1/2 */ 915 if (i) 916 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 917 fep->hwp + FEC_DMA_CFG(i)); 918 } 919 } 920 921 static void fec_enet_reset_skb(struct net_device *ndev) 922 { 923 struct fec_enet_private *fep = netdev_priv(ndev); 924 struct fec_enet_priv_tx_q *txq; 925 int i, j; 926 927 for (i = 0; i < fep->num_tx_queues; i++) { 928 txq = fep->tx_queue[i]; 929 930 for (j = 0; j < txq->bd.ring_size; j++) { 931 if (txq->tx_skbuff[j]) { 932 dev_kfree_skb_any(txq->tx_skbuff[j]); 933 txq->tx_skbuff[j] = NULL; 934 } 935 } 936 } 937 } 938 939 /* 940 * This function is called to start or restart the FEC during a link 941 * change, transmit timeout, or to reconfigure the FEC. The network 942 * packet processing for this device must be stopped before this call. 943 */ 944 static void 945 fec_restart(struct net_device *ndev) 946 { 947 struct fec_enet_private *fep = netdev_priv(ndev); 948 u32 val; 949 u32 temp_mac[2]; 950 u32 rcntl = OPT_FRAME_SIZE | 0x04; 951 u32 ecntl = 0x2; /* ETHEREN */ 952 953 /* Whack a reset. We should wait for this. 954 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 955 * instead of reset MAC itself. 956 */ 957 if (fep->quirks & FEC_QUIRK_HAS_AVB || 958 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 959 writel(0, fep->hwp + FEC_ECNTRL); 960 } else { 961 writel(1, fep->hwp + FEC_ECNTRL); 962 udelay(10); 963 } 964 965 /* 966 * enet-mac reset will reset mac address registers too, 967 * so need to reconfigure it. 968 */ 969 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 970 writel((__force u32)cpu_to_be32(temp_mac[0]), 971 fep->hwp + FEC_ADDR_LOW); 972 writel((__force u32)cpu_to_be32(temp_mac[1]), 973 fep->hwp + FEC_ADDR_HIGH); 974 975 /* Clear any outstanding interrupt, except MDIO. */ 976 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 977 978 fec_enet_bd_init(ndev); 979 980 fec_enet_enable_ring(ndev); 981 982 /* Reset tx SKB buffers. */ 983 fec_enet_reset_skb(ndev); 984 985 /* Enable MII mode */ 986 if (fep->full_duplex == DUPLEX_FULL) { 987 /* FD enable */ 988 writel(0x04, fep->hwp + FEC_X_CNTRL); 989 } else { 990 /* No Rcv on Xmit */ 991 rcntl |= 0x02; 992 writel(0x0, fep->hwp + FEC_X_CNTRL); 993 } 994 995 /* Set MII speed */ 996 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 997 998 #if !defined(CONFIG_M5272) 999 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1000 val = readl(fep->hwp + FEC_RACC); 1001 /* align IP header */ 1002 val |= FEC_RACC_SHIFT16; 1003 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1004 /* set RX checksum */ 1005 val |= FEC_RACC_OPTIONS; 1006 else 1007 val &= ~FEC_RACC_OPTIONS; 1008 writel(val, fep->hwp + FEC_RACC); 1009 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1010 } 1011 #endif 1012 1013 /* 1014 * The phy interface and speed need to get configured 1015 * differently on enet-mac. 1016 */ 1017 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1018 /* Enable flow control and length check */ 1019 rcntl |= 0x40000000 | 0x00000020; 1020 1021 /* RGMII, RMII or MII */ 1022 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1023 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1024 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1025 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1026 rcntl |= (1 << 6); 1027 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1028 rcntl |= (1 << 8); 1029 else 1030 rcntl &= ~(1 << 8); 1031 1032 /* 1G, 100M or 10M */ 1033 if (ndev->phydev) { 1034 if (ndev->phydev->speed == SPEED_1000) 1035 ecntl |= (1 << 5); 1036 else if (ndev->phydev->speed == SPEED_100) 1037 rcntl &= ~(1 << 9); 1038 else 1039 rcntl |= (1 << 9); 1040 } 1041 } else { 1042 #ifdef FEC_MIIGSK_ENR 1043 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1044 u32 cfgr; 1045 /* disable the gasket and wait */ 1046 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1047 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1048 udelay(1); 1049 1050 /* 1051 * configure the gasket: 1052 * RMII, 50 MHz, no loopback, no echo 1053 * MII, 25 MHz, no loopback, no echo 1054 */ 1055 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1056 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1057 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1058 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1059 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1060 1061 /* re-enable the gasket */ 1062 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1063 } 1064 #endif 1065 } 1066 1067 #if !defined(CONFIG_M5272) 1068 /* enable pause frame*/ 1069 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1070 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1071 ndev->phydev && ndev->phydev->pause)) { 1072 rcntl |= FEC_ENET_FCE; 1073 1074 /* set FIFO threshold parameter to reduce overrun */ 1075 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1076 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1077 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1078 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1079 1080 /* OPD */ 1081 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1082 } else { 1083 rcntl &= ~FEC_ENET_FCE; 1084 } 1085 #endif /* !defined(CONFIG_M5272) */ 1086 1087 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1088 1089 /* Setup multicast filter. */ 1090 set_multicast_list(ndev); 1091 #ifndef CONFIG_M5272 1092 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1093 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1094 #endif 1095 1096 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1097 /* enable ENET endian swap */ 1098 ecntl |= (1 << 8); 1099 /* enable ENET store and forward mode */ 1100 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1101 } 1102 1103 if (fep->bufdesc_ex) 1104 ecntl |= (1 << 4); 1105 1106 #ifndef CONFIG_M5272 1107 /* Enable the MIB statistic event counters */ 1108 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1109 #endif 1110 1111 /* And last, enable the transmit and receive processing */ 1112 writel(ecntl, fep->hwp + FEC_ECNTRL); 1113 fec_enet_active_rxring(ndev); 1114 1115 if (fep->bufdesc_ex) 1116 fec_ptp_start_cyclecounter(ndev); 1117 1118 /* Enable interrupts we wish to service */ 1119 if (fep->link) 1120 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1121 else 1122 writel(0, fep->hwp + FEC_IMASK); 1123 1124 /* Init the interrupt coalescing */ 1125 fec_enet_itr_coal_init(ndev); 1126 1127 } 1128 1129 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1130 { 1131 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1132 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1133 1134 if (stop_gpr->gpr) { 1135 if (enabled) 1136 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1137 BIT(stop_gpr->bit), 1138 BIT(stop_gpr->bit)); 1139 else 1140 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1141 BIT(stop_gpr->bit), 0); 1142 } else if (pdata && pdata->sleep_mode_enable) { 1143 pdata->sleep_mode_enable(enabled); 1144 } 1145 } 1146 1147 static void 1148 fec_stop(struct net_device *ndev) 1149 { 1150 struct fec_enet_private *fep = netdev_priv(ndev); 1151 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1152 u32 val; 1153 1154 /* We cannot expect a graceful transmit stop without link !!! */ 1155 if (fep->link) { 1156 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1157 udelay(10); 1158 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1159 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1160 } 1161 1162 /* Whack a reset. We should wait for this. 1163 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1164 * instead of reset MAC itself. 1165 */ 1166 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1167 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 1168 writel(0, fep->hwp + FEC_ECNTRL); 1169 } else { 1170 writel(1, fep->hwp + FEC_ECNTRL); 1171 udelay(10); 1172 } 1173 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1174 } else { 1175 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1176 val = readl(fep->hwp + FEC_ECNTRL); 1177 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1178 writel(val, fep->hwp + FEC_ECNTRL); 1179 fec_enet_stop_mode(fep, true); 1180 } 1181 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1182 1183 /* We have to keep ENET enabled to have MII interrupt stay working */ 1184 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1185 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1186 writel(2, fep->hwp + FEC_ECNTRL); 1187 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1188 } 1189 } 1190 1191 1192 static void 1193 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1194 { 1195 struct fec_enet_private *fep = netdev_priv(ndev); 1196 1197 fec_dump(ndev); 1198 1199 ndev->stats.tx_errors++; 1200 1201 schedule_work(&fep->tx_timeout_work); 1202 } 1203 1204 static void fec_enet_timeout_work(struct work_struct *work) 1205 { 1206 struct fec_enet_private *fep = 1207 container_of(work, struct fec_enet_private, tx_timeout_work); 1208 struct net_device *ndev = fep->netdev; 1209 1210 rtnl_lock(); 1211 if (netif_device_present(ndev) || netif_running(ndev)) { 1212 napi_disable(&fep->napi); 1213 netif_tx_lock_bh(ndev); 1214 fec_restart(ndev); 1215 netif_tx_wake_all_queues(ndev); 1216 netif_tx_unlock_bh(ndev); 1217 napi_enable(&fep->napi); 1218 } 1219 rtnl_unlock(); 1220 } 1221 1222 static void 1223 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1224 struct skb_shared_hwtstamps *hwtstamps) 1225 { 1226 unsigned long flags; 1227 u64 ns; 1228 1229 spin_lock_irqsave(&fep->tmreg_lock, flags); 1230 ns = timecounter_cyc2time(&fep->tc, ts); 1231 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1232 1233 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1234 hwtstamps->hwtstamp = ns_to_ktime(ns); 1235 } 1236 1237 static void 1238 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1239 { 1240 struct fec_enet_private *fep; 1241 struct bufdesc *bdp; 1242 unsigned short status; 1243 struct sk_buff *skb; 1244 struct fec_enet_priv_tx_q *txq; 1245 struct netdev_queue *nq; 1246 int index = 0; 1247 int entries_free; 1248 1249 fep = netdev_priv(ndev); 1250 1251 txq = fep->tx_queue[queue_id]; 1252 /* get next bdp of dirty_tx */ 1253 nq = netdev_get_tx_queue(ndev, queue_id); 1254 bdp = txq->dirty_tx; 1255 1256 /* get next bdp of dirty_tx */ 1257 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1258 1259 while (bdp != READ_ONCE(txq->bd.cur)) { 1260 /* Order the load of bd.cur and cbd_sc */ 1261 rmb(); 1262 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1263 if (status & BD_ENET_TX_READY) 1264 break; 1265 1266 index = fec_enet_get_bd_index(bdp, &txq->bd); 1267 1268 skb = txq->tx_skbuff[index]; 1269 txq->tx_skbuff[index] = NULL; 1270 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1271 dma_unmap_single(&fep->pdev->dev, 1272 fec32_to_cpu(bdp->cbd_bufaddr), 1273 fec16_to_cpu(bdp->cbd_datlen), 1274 DMA_TO_DEVICE); 1275 bdp->cbd_bufaddr = cpu_to_fec32(0); 1276 if (!skb) 1277 goto skb_done; 1278 1279 /* Check for errors. */ 1280 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1281 BD_ENET_TX_RL | BD_ENET_TX_UN | 1282 BD_ENET_TX_CSL)) { 1283 ndev->stats.tx_errors++; 1284 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1285 ndev->stats.tx_heartbeat_errors++; 1286 if (status & BD_ENET_TX_LC) /* Late collision */ 1287 ndev->stats.tx_window_errors++; 1288 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1289 ndev->stats.tx_aborted_errors++; 1290 if (status & BD_ENET_TX_UN) /* Underrun */ 1291 ndev->stats.tx_fifo_errors++; 1292 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1293 ndev->stats.tx_carrier_errors++; 1294 } else { 1295 ndev->stats.tx_packets++; 1296 ndev->stats.tx_bytes += skb->len; 1297 } 1298 1299 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1300 * are to time stamp the packet, so we still need to check time 1301 * stamping enabled flag. 1302 */ 1303 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1304 fep->hwts_tx_en) && 1305 fep->bufdesc_ex) { 1306 struct skb_shared_hwtstamps shhwtstamps; 1307 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1308 1309 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1310 skb_tstamp_tx(skb, &shhwtstamps); 1311 } 1312 1313 /* Deferred means some collisions occurred during transmit, 1314 * but we eventually sent the packet OK. 1315 */ 1316 if (status & BD_ENET_TX_DEF) 1317 ndev->stats.collisions++; 1318 1319 /* Free the sk buffer associated with this last transmit */ 1320 dev_kfree_skb_any(skb); 1321 skb_done: 1322 /* Make sure the update to bdp and tx_skbuff are performed 1323 * before dirty_tx 1324 */ 1325 wmb(); 1326 txq->dirty_tx = bdp; 1327 1328 /* Update pointer to next buffer descriptor to be transmitted */ 1329 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1330 1331 /* Since we have freed up a buffer, the ring is no longer full 1332 */ 1333 if (netif_tx_queue_stopped(nq)) { 1334 entries_free = fec_enet_get_free_txdesc_num(txq); 1335 if (entries_free >= txq->tx_wake_threshold) 1336 netif_tx_wake_queue(nq); 1337 } 1338 } 1339 1340 /* ERR006358: Keep the transmitter going */ 1341 if (bdp != txq->bd.cur && 1342 readl(txq->bd.reg_desc_active) == 0) 1343 writel(0, txq->bd.reg_desc_active); 1344 } 1345 1346 static void fec_enet_tx(struct net_device *ndev) 1347 { 1348 struct fec_enet_private *fep = netdev_priv(ndev); 1349 int i; 1350 1351 /* Make sure that AVB queues are processed first. */ 1352 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1353 fec_enet_tx_queue(ndev, i); 1354 } 1355 1356 static int 1357 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) 1358 { 1359 struct fec_enet_private *fep = netdev_priv(ndev); 1360 int off; 1361 1362 off = ((unsigned long)skb->data) & fep->rx_align; 1363 if (off) 1364 skb_reserve(skb, fep->rx_align + 1 - off); 1365 1366 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE)); 1367 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) { 1368 if (net_ratelimit()) 1369 netdev_err(ndev, "Rx DMA memory map failed\n"); 1370 return -ENOMEM; 1371 } 1372 1373 return 0; 1374 } 1375 1376 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, 1377 struct bufdesc *bdp, u32 length, bool swap) 1378 { 1379 struct fec_enet_private *fep = netdev_priv(ndev); 1380 struct sk_buff *new_skb; 1381 1382 if (length > fep->rx_copybreak) 1383 return false; 1384 1385 new_skb = netdev_alloc_skb(ndev, length); 1386 if (!new_skb) 1387 return false; 1388 1389 dma_sync_single_for_cpu(&fep->pdev->dev, 1390 fec32_to_cpu(bdp->cbd_bufaddr), 1391 FEC_ENET_RX_FRSIZE - fep->rx_align, 1392 DMA_FROM_DEVICE); 1393 if (!swap) 1394 memcpy(new_skb->data, (*skb)->data, length); 1395 else 1396 swap_buffer2(new_skb->data, (*skb)->data, length); 1397 *skb = new_skb; 1398 1399 return true; 1400 } 1401 1402 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1403 * When we update through the ring, if the next incoming buffer has 1404 * not been given to the system, we just set the empty indicator, 1405 * effectively tossing the packet. 1406 */ 1407 static int 1408 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1409 { 1410 struct fec_enet_private *fep = netdev_priv(ndev); 1411 struct fec_enet_priv_rx_q *rxq; 1412 struct bufdesc *bdp; 1413 unsigned short status; 1414 struct sk_buff *skb_new = NULL; 1415 struct sk_buff *skb; 1416 ushort pkt_len; 1417 __u8 *data; 1418 int pkt_received = 0; 1419 struct bufdesc_ex *ebdp = NULL; 1420 bool vlan_packet_rcvd = false; 1421 u16 vlan_tag; 1422 int index = 0; 1423 bool is_copybreak; 1424 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1425 1426 #ifdef CONFIG_M532x 1427 flush_cache_all(); 1428 #endif 1429 rxq = fep->rx_queue[queue_id]; 1430 1431 /* First, grab all of the stats for the incoming packet. 1432 * These get messed up if we get called due to a busy condition. 1433 */ 1434 bdp = rxq->bd.cur; 1435 1436 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1437 1438 if (pkt_received >= budget) 1439 break; 1440 pkt_received++; 1441 1442 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT); 1443 1444 /* Check for errors. */ 1445 status ^= BD_ENET_RX_LAST; 1446 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1447 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1448 BD_ENET_RX_CL)) { 1449 ndev->stats.rx_errors++; 1450 if (status & BD_ENET_RX_OV) { 1451 /* FIFO overrun */ 1452 ndev->stats.rx_fifo_errors++; 1453 goto rx_processing_done; 1454 } 1455 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1456 | BD_ENET_RX_LAST)) { 1457 /* Frame too long or too short. */ 1458 ndev->stats.rx_length_errors++; 1459 if (status & BD_ENET_RX_LAST) 1460 netdev_err(ndev, "rcv is not +last\n"); 1461 } 1462 if (status & BD_ENET_RX_CR) /* CRC Error */ 1463 ndev->stats.rx_crc_errors++; 1464 /* Report late collisions as a frame error. */ 1465 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1466 ndev->stats.rx_frame_errors++; 1467 goto rx_processing_done; 1468 } 1469 1470 /* Process the incoming frame. */ 1471 ndev->stats.rx_packets++; 1472 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1473 ndev->stats.rx_bytes += pkt_len; 1474 1475 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1476 skb = rxq->rx_skbuff[index]; 1477 1478 /* The packet length includes FCS, but we don't want to 1479 * include that when passing upstream as it messes up 1480 * bridging applications. 1481 */ 1482 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, 1483 need_swap); 1484 if (!is_copybreak) { 1485 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 1486 if (unlikely(!skb_new)) { 1487 ndev->stats.rx_dropped++; 1488 goto rx_processing_done; 1489 } 1490 dma_unmap_single(&fep->pdev->dev, 1491 fec32_to_cpu(bdp->cbd_bufaddr), 1492 FEC_ENET_RX_FRSIZE - fep->rx_align, 1493 DMA_FROM_DEVICE); 1494 } 1495 1496 prefetch(skb->data - NET_IP_ALIGN); 1497 skb_put(skb, pkt_len - 4); 1498 data = skb->data; 1499 1500 if (!is_copybreak && need_swap) 1501 swap_buffer(data, pkt_len); 1502 1503 #if !defined(CONFIG_M5272) 1504 if (fep->quirks & FEC_QUIRK_HAS_RACC) 1505 data = skb_pull_inline(skb, 2); 1506 #endif 1507 1508 /* Extract the enhanced buffer descriptor */ 1509 ebdp = NULL; 1510 if (fep->bufdesc_ex) 1511 ebdp = (struct bufdesc_ex *)bdp; 1512 1513 /* If this is a VLAN packet remove the VLAN Tag */ 1514 vlan_packet_rcvd = false; 1515 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1516 fep->bufdesc_ex && 1517 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1518 /* Push and remove the vlan tag */ 1519 struct vlan_hdr *vlan_header = 1520 (struct vlan_hdr *) (data + ETH_HLEN); 1521 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1522 1523 vlan_packet_rcvd = true; 1524 1525 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1526 skb_pull(skb, VLAN_HLEN); 1527 } 1528 1529 skb->protocol = eth_type_trans(skb, ndev); 1530 1531 /* Get receive timestamp from the skb */ 1532 if (fep->hwts_rx_en && fep->bufdesc_ex) 1533 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1534 skb_hwtstamps(skb)); 1535 1536 if (fep->bufdesc_ex && 1537 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1538 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1539 /* don't check it */ 1540 skb->ip_summed = CHECKSUM_UNNECESSARY; 1541 } else { 1542 skb_checksum_none_assert(skb); 1543 } 1544 } 1545 1546 /* Handle received VLAN packets */ 1547 if (vlan_packet_rcvd) 1548 __vlan_hwaccel_put_tag(skb, 1549 htons(ETH_P_8021Q), 1550 vlan_tag); 1551 1552 skb_record_rx_queue(skb, queue_id); 1553 napi_gro_receive(&fep->napi, skb); 1554 1555 if (is_copybreak) { 1556 dma_sync_single_for_device(&fep->pdev->dev, 1557 fec32_to_cpu(bdp->cbd_bufaddr), 1558 FEC_ENET_RX_FRSIZE - fep->rx_align, 1559 DMA_FROM_DEVICE); 1560 } else { 1561 rxq->rx_skbuff[index] = skb_new; 1562 fec_enet_new_rxbdp(ndev, bdp, skb_new); 1563 } 1564 1565 rx_processing_done: 1566 /* Clear the status flags for this buffer */ 1567 status &= ~BD_ENET_RX_STATS; 1568 1569 /* Mark the buffer empty */ 1570 status |= BD_ENET_RX_EMPTY; 1571 1572 if (fep->bufdesc_ex) { 1573 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1574 1575 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1576 ebdp->cbd_prot = 0; 1577 ebdp->cbd_bdu = 0; 1578 } 1579 /* Make sure the updates to rest of the descriptor are 1580 * performed before transferring ownership. 1581 */ 1582 wmb(); 1583 bdp->cbd_sc = cpu_to_fec16(status); 1584 1585 /* Update BD pointer to next entry */ 1586 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1587 1588 /* Doing this here will keep the FEC running while we process 1589 * incoming frames. On a heavily loaded network, we should be 1590 * able to keep up at the expense of system resources. 1591 */ 1592 writel(0, rxq->bd.reg_desc_active); 1593 } 1594 rxq->bd.cur = bdp; 1595 return pkt_received; 1596 } 1597 1598 static int fec_enet_rx(struct net_device *ndev, int budget) 1599 { 1600 struct fec_enet_private *fep = netdev_priv(ndev); 1601 int i, done = 0; 1602 1603 /* Make sure that AVB queues are processed first. */ 1604 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1605 done += fec_enet_rx_queue(ndev, budget - done, i); 1606 1607 return done; 1608 } 1609 1610 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1611 { 1612 uint int_events; 1613 1614 int_events = readl(fep->hwp + FEC_IEVENT); 1615 1616 /* Don't clear MDIO events, we poll for those */ 1617 int_events &= ~FEC_ENET_MII; 1618 1619 writel(int_events, fep->hwp + FEC_IEVENT); 1620 1621 return int_events != 0; 1622 } 1623 1624 static irqreturn_t 1625 fec_enet_interrupt(int irq, void *dev_id) 1626 { 1627 struct net_device *ndev = dev_id; 1628 struct fec_enet_private *fep = netdev_priv(ndev); 1629 irqreturn_t ret = IRQ_NONE; 1630 1631 if (fec_enet_collect_events(fep) && fep->link) { 1632 ret = IRQ_HANDLED; 1633 1634 if (napi_schedule_prep(&fep->napi)) { 1635 /* Disable interrupts */ 1636 writel(0, fep->hwp + FEC_IMASK); 1637 __napi_schedule(&fep->napi); 1638 } 1639 } 1640 1641 return ret; 1642 } 1643 1644 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1645 { 1646 struct net_device *ndev = napi->dev; 1647 struct fec_enet_private *fep = netdev_priv(ndev); 1648 int done = 0; 1649 1650 do { 1651 done += fec_enet_rx(ndev, budget - done); 1652 fec_enet_tx(ndev); 1653 } while ((done < budget) && fec_enet_collect_events(fep)); 1654 1655 if (done < budget) { 1656 napi_complete_done(napi, done); 1657 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1658 } 1659 1660 return done; 1661 } 1662 1663 /* ------------------------------------------------------------------------- */ 1664 static void fec_get_mac(struct net_device *ndev) 1665 { 1666 struct fec_enet_private *fep = netdev_priv(ndev); 1667 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1668 unsigned char *iap, tmpaddr[ETH_ALEN]; 1669 1670 /* 1671 * try to get mac address in following order: 1672 * 1673 * 1) module parameter via kernel command line in form 1674 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1675 */ 1676 iap = macaddr; 1677 1678 /* 1679 * 2) from device tree data 1680 */ 1681 if (!is_valid_ether_addr(iap)) { 1682 struct device_node *np = fep->pdev->dev.of_node; 1683 if (np) { 1684 const char *mac = of_get_mac_address(np); 1685 if (!IS_ERR(mac)) 1686 iap = (unsigned char *) mac; 1687 } 1688 } 1689 1690 /* 1691 * 3) from flash or fuse (via platform data) 1692 */ 1693 if (!is_valid_ether_addr(iap)) { 1694 #ifdef CONFIG_M5272 1695 if (FEC_FLASHMAC) 1696 iap = (unsigned char *)FEC_FLASHMAC; 1697 #else 1698 if (pdata) 1699 iap = (unsigned char *)&pdata->mac; 1700 #endif 1701 } 1702 1703 /* 1704 * 4) FEC mac registers set by bootloader 1705 */ 1706 if (!is_valid_ether_addr(iap)) { 1707 *((__be32 *) &tmpaddr[0]) = 1708 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1709 *((__be16 *) &tmpaddr[4]) = 1710 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1711 iap = &tmpaddr[0]; 1712 } 1713 1714 /* 1715 * 5) random mac address 1716 */ 1717 if (!is_valid_ether_addr(iap)) { 1718 /* Report it and use a random ethernet address instead */ 1719 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1720 eth_hw_addr_random(ndev); 1721 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1722 ndev->dev_addr); 1723 return; 1724 } 1725 1726 memcpy(ndev->dev_addr, iap, ETH_ALEN); 1727 1728 /* Adjust MAC if using macaddr */ 1729 if (iap == macaddr) 1730 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; 1731 } 1732 1733 /* ------------------------------------------------------------------------- */ 1734 1735 /* 1736 * Phy section 1737 */ 1738 static void fec_enet_adjust_link(struct net_device *ndev) 1739 { 1740 struct fec_enet_private *fep = netdev_priv(ndev); 1741 struct phy_device *phy_dev = ndev->phydev; 1742 int status_change = 0; 1743 1744 /* 1745 * If the netdev is down, or is going down, we're not interested 1746 * in link state events, so just mark our idea of the link as down 1747 * and ignore the event. 1748 */ 1749 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1750 fep->link = 0; 1751 } else if (phy_dev->link) { 1752 if (!fep->link) { 1753 fep->link = phy_dev->link; 1754 status_change = 1; 1755 } 1756 1757 if (fep->full_duplex != phy_dev->duplex) { 1758 fep->full_duplex = phy_dev->duplex; 1759 status_change = 1; 1760 } 1761 1762 if (phy_dev->speed != fep->speed) { 1763 fep->speed = phy_dev->speed; 1764 status_change = 1; 1765 } 1766 1767 /* if any of the above changed restart the FEC */ 1768 if (status_change) { 1769 napi_disable(&fep->napi); 1770 netif_tx_lock_bh(ndev); 1771 fec_restart(ndev); 1772 netif_tx_wake_all_queues(ndev); 1773 netif_tx_unlock_bh(ndev); 1774 napi_enable(&fep->napi); 1775 } 1776 } else { 1777 if (fep->link) { 1778 napi_disable(&fep->napi); 1779 netif_tx_lock_bh(ndev); 1780 fec_stop(ndev); 1781 netif_tx_unlock_bh(ndev); 1782 napi_enable(&fep->napi); 1783 fep->link = phy_dev->link; 1784 status_change = 1; 1785 } 1786 } 1787 1788 if (status_change) 1789 phy_print_status(phy_dev); 1790 } 1791 1792 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1793 { 1794 uint ievent; 1795 int ret; 1796 1797 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1798 ievent & FEC_ENET_MII, 2, 30000); 1799 1800 if (!ret) 1801 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1802 1803 return ret; 1804 } 1805 1806 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1807 { 1808 struct fec_enet_private *fep = bus->priv; 1809 struct device *dev = &fep->pdev->dev; 1810 int ret = 0, frame_start, frame_addr, frame_op; 1811 bool is_c45 = !!(regnum & MII_ADDR_C45); 1812 1813 ret = pm_runtime_resume_and_get(dev); 1814 if (ret < 0) 1815 return ret; 1816 1817 if (is_c45) { 1818 frame_start = FEC_MMFR_ST_C45; 1819 1820 /* write address */ 1821 frame_addr = (regnum >> 16); 1822 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1823 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1824 FEC_MMFR_TA | (regnum & 0xFFFF), 1825 fep->hwp + FEC_MII_DATA); 1826 1827 /* wait for end of transfer */ 1828 ret = fec_enet_mdio_wait(fep); 1829 if (ret) { 1830 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1831 goto out; 1832 } 1833 1834 frame_op = FEC_MMFR_OP_READ_C45; 1835 1836 } else { 1837 /* C22 read */ 1838 frame_op = FEC_MMFR_OP_READ; 1839 frame_start = FEC_MMFR_ST; 1840 frame_addr = regnum; 1841 } 1842 1843 /* start a read op */ 1844 writel(frame_start | frame_op | 1845 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1846 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 1847 1848 /* wait for end of transfer */ 1849 ret = fec_enet_mdio_wait(fep); 1850 if (ret) { 1851 netdev_err(fep->netdev, "MDIO read timeout\n"); 1852 goto out; 1853 } 1854 1855 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 1856 1857 out: 1858 pm_runtime_mark_last_busy(dev); 1859 pm_runtime_put_autosuspend(dev); 1860 1861 return ret; 1862 } 1863 1864 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 1865 u16 value) 1866 { 1867 struct fec_enet_private *fep = bus->priv; 1868 struct device *dev = &fep->pdev->dev; 1869 int ret, frame_start, frame_addr; 1870 bool is_c45 = !!(regnum & MII_ADDR_C45); 1871 1872 ret = pm_runtime_resume_and_get(dev); 1873 if (ret < 0) 1874 return ret; 1875 1876 if (is_c45) { 1877 frame_start = FEC_MMFR_ST_C45; 1878 1879 /* write address */ 1880 frame_addr = (regnum >> 16); 1881 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1882 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1883 FEC_MMFR_TA | (regnum & 0xFFFF), 1884 fep->hwp + FEC_MII_DATA); 1885 1886 /* wait for end of transfer */ 1887 ret = fec_enet_mdio_wait(fep); 1888 if (ret) { 1889 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1890 goto out; 1891 } 1892 } else { 1893 /* C22 write */ 1894 frame_start = FEC_MMFR_ST; 1895 frame_addr = regnum; 1896 } 1897 1898 /* start a write op */ 1899 writel(frame_start | FEC_MMFR_OP_WRITE | 1900 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1901 FEC_MMFR_TA | FEC_MMFR_DATA(value), 1902 fep->hwp + FEC_MII_DATA); 1903 1904 /* wait for end of transfer */ 1905 ret = fec_enet_mdio_wait(fep); 1906 if (ret) 1907 netdev_err(fep->netdev, "MDIO write timeout\n"); 1908 1909 out: 1910 pm_runtime_mark_last_busy(dev); 1911 pm_runtime_put_autosuspend(dev); 1912 1913 return ret; 1914 } 1915 1916 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 1917 { 1918 struct fec_enet_private *fep = netdev_priv(ndev); 1919 struct phy_device *phy_dev = ndev->phydev; 1920 1921 if (phy_dev) { 1922 phy_reset_after_clk_enable(phy_dev); 1923 } else if (fep->phy_node) { 1924 /* 1925 * If the PHY still is not bound to the MAC, but there is 1926 * OF PHY node and a matching PHY device instance already, 1927 * use the OF PHY node to obtain the PHY device instance, 1928 * and then use that PHY device instance when triggering 1929 * the PHY reset. 1930 */ 1931 phy_dev = of_phy_find_device(fep->phy_node); 1932 phy_reset_after_clk_enable(phy_dev); 1933 put_device(&phy_dev->mdio.dev); 1934 } 1935 } 1936 1937 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 1938 { 1939 struct fec_enet_private *fep = netdev_priv(ndev); 1940 int ret; 1941 1942 if (enable) { 1943 ret = clk_prepare_enable(fep->clk_enet_out); 1944 if (ret) 1945 return ret; 1946 1947 if (fep->clk_ptp) { 1948 mutex_lock(&fep->ptp_clk_mutex); 1949 ret = clk_prepare_enable(fep->clk_ptp); 1950 if (ret) { 1951 mutex_unlock(&fep->ptp_clk_mutex); 1952 goto failed_clk_ptp; 1953 } else { 1954 fep->ptp_clk_on = true; 1955 } 1956 mutex_unlock(&fep->ptp_clk_mutex); 1957 } 1958 1959 ret = clk_prepare_enable(fep->clk_ref); 1960 if (ret) 1961 goto failed_clk_ref; 1962 1963 fec_enet_phy_reset_after_clk_enable(ndev); 1964 } else { 1965 clk_disable_unprepare(fep->clk_enet_out); 1966 if (fep->clk_ptp) { 1967 mutex_lock(&fep->ptp_clk_mutex); 1968 clk_disable_unprepare(fep->clk_ptp); 1969 fep->ptp_clk_on = false; 1970 mutex_unlock(&fep->ptp_clk_mutex); 1971 } 1972 clk_disable_unprepare(fep->clk_ref); 1973 } 1974 1975 return 0; 1976 1977 failed_clk_ref: 1978 if (fep->clk_ptp) { 1979 mutex_lock(&fep->ptp_clk_mutex); 1980 clk_disable_unprepare(fep->clk_ptp); 1981 fep->ptp_clk_on = false; 1982 mutex_unlock(&fep->ptp_clk_mutex); 1983 } 1984 failed_clk_ptp: 1985 clk_disable_unprepare(fep->clk_enet_out); 1986 1987 return ret; 1988 } 1989 1990 static int fec_enet_mii_probe(struct net_device *ndev) 1991 { 1992 struct fec_enet_private *fep = netdev_priv(ndev); 1993 struct phy_device *phy_dev = NULL; 1994 char mdio_bus_id[MII_BUS_ID_SIZE]; 1995 char phy_name[MII_BUS_ID_SIZE + 3]; 1996 int phy_id; 1997 int dev_id = fep->dev_id; 1998 1999 if (fep->phy_node) { 2000 phy_dev = of_phy_connect(ndev, fep->phy_node, 2001 &fec_enet_adjust_link, 0, 2002 fep->phy_interface); 2003 if (!phy_dev) { 2004 netdev_err(ndev, "Unable to connect to phy\n"); 2005 return -ENODEV; 2006 } 2007 } else { 2008 /* check for attached phy */ 2009 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2010 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2011 continue; 2012 if (dev_id--) 2013 continue; 2014 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2015 break; 2016 } 2017 2018 if (phy_id >= PHY_MAX_ADDR) { 2019 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2020 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2021 phy_id = 0; 2022 } 2023 2024 snprintf(phy_name, sizeof(phy_name), 2025 PHY_ID_FMT, mdio_bus_id, phy_id); 2026 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2027 fep->phy_interface); 2028 } 2029 2030 if (IS_ERR(phy_dev)) { 2031 netdev_err(ndev, "could not attach to PHY\n"); 2032 return PTR_ERR(phy_dev); 2033 } 2034 2035 /* mask with MAC supported features */ 2036 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2037 phy_set_max_speed(phy_dev, 1000); 2038 phy_remove_link_mode(phy_dev, 2039 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2040 #if !defined(CONFIG_M5272) 2041 phy_support_sym_pause(phy_dev); 2042 #endif 2043 } 2044 else 2045 phy_set_max_speed(phy_dev, 100); 2046 2047 fep->link = 0; 2048 fep->full_duplex = 0; 2049 2050 phy_attached_info(phy_dev); 2051 2052 return 0; 2053 } 2054 2055 static int fec_enet_mii_init(struct platform_device *pdev) 2056 { 2057 static struct mii_bus *fec0_mii_bus; 2058 struct net_device *ndev = platform_get_drvdata(pdev); 2059 struct fec_enet_private *fep = netdev_priv(ndev); 2060 bool suppress_preamble = false; 2061 struct device_node *node; 2062 int err = -ENXIO; 2063 u32 mii_speed, holdtime; 2064 u32 bus_freq; 2065 2066 /* 2067 * The i.MX28 dual fec interfaces are not equal. 2068 * Here are the differences: 2069 * 2070 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2071 * - fec0 acts as the 1588 time master while fec1 is slave 2072 * - external phys can only be configured by fec0 2073 * 2074 * That is to say fec1 can not work independently. It only works 2075 * when fec0 is working. The reason behind this design is that the 2076 * second interface is added primarily for Switch mode. 2077 * 2078 * Because of the last point above, both phys are attached on fec0 2079 * mdio interface in board design, and need to be configured by 2080 * fec0 mii_bus. 2081 */ 2082 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2083 /* fec1 uses fec0 mii_bus */ 2084 if (mii_cnt && fec0_mii_bus) { 2085 fep->mii_bus = fec0_mii_bus; 2086 mii_cnt++; 2087 return 0; 2088 } 2089 return -ENOENT; 2090 } 2091 2092 bus_freq = 2500000; /* 2.5MHz by default */ 2093 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2094 if (node) { 2095 of_property_read_u32(node, "clock-frequency", &bus_freq); 2096 suppress_preamble = of_property_read_bool(node, 2097 "suppress-preamble"); 2098 } 2099 2100 /* 2101 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2102 * 2103 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2104 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2105 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2106 * document. 2107 */ 2108 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2109 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2110 mii_speed--; 2111 if (mii_speed > 63) { 2112 dev_err(&pdev->dev, 2113 "fec clock (%lu) too fast to get right mii speed\n", 2114 clk_get_rate(fep->clk_ipg)); 2115 err = -EINVAL; 2116 goto err_out; 2117 } 2118 2119 /* 2120 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2121 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2122 * versions are RAZ there, so just ignore the difference and write the 2123 * register always. 2124 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2125 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2126 * output. 2127 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2128 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2129 * holdtime cannot result in a value greater than 3. 2130 */ 2131 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2132 2133 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2134 2135 if (suppress_preamble) 2136 fep->phy_speed |= BIT(7); 2137 2138 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2139 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2140 * MII event generation condition: 2141 * - writing MSCR: 2142 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2143 * mscr_reg_data_in[7:0] != 0 2144 * - writing MMFR: 2145 * - mscr[7:0]_not_zero 2146 */ 2147 writel(0, fep->hwp + FEC_MII_DATA); 2148 } 2149 2150 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2151 2152 /* Clear any pending transaction complete indication */ 2153 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2154 2155 fep->mii_bus = mdiobus_alloc(); 2156 if (fep->mii_bus == NULL) { 2157 err = -ENOMEM; 2158 goto err_out; 2159 } 2160 2161 fep->mii_bus->name = "fec_enet_mii_bus"; 2162 fep->mii_bus->read = fec_enet_mdio_read; 2163 fep->mii_bus->write = fec_enet_mdio_write; 2164 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2165 pdev->name, fep->dev_id + 1); 2166 fep->mii_bus->priv = fep; 2167 fep->mii_bus->parent = &pdev->dev; 2168 2169 err = of_mdiobus_register(fep->mii_bus, node); 2170 if (err) 2171 goto err_out_free_mdiobus; 2172 of_node_put(node); 2173 2174 mii_cnt++; 2175 2176 /* save fec0 mii_bus */ 2177 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2178 fec0_mii_bus = fep->mii_bus; 2179 2180 return 0; 2181 2182 err_out_free_mdiobus: 2183 mdiobus_free(fep->mii_bus); 2184 err_out: 2185 of_node_put(node); 2186 return err; 2187 } 2188 2189 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2190 { 2191 if (--mii_cnt == 0) { 2192 mdiobus_unregister(fep->mii_bus); 2193 mdiobus_free(fep->mii_bus); 2194 } 2195 } 2196 2197 static void fec_enet_get_drvinfo(struct net_device *ndev, 2198 struct ethtool_drvinfo *info) 2199 { 2200 struct fec_enet_private *fep = netdev_priv(ndev); 2201 2202 strlcpy(info->driver, fep->pdev->dev.driver->name, 2203 sizeof(info->driver)); 2204 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2205 } 2206 2207 static int fec_enet_get_regs_len(struct net_device *ndev) 2208 { 2209 struct fec_enet_private *fep = netdev_priv(ndev); 2210 struct resource *r; 2211 int s = 0; 2212 2213 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2214 if (r) 2215 s = resource_size(r); 2216 2217 return s; 2218 } 2219 2220 /* List of registers that can be safety be read to dump them with ethtool */ 2221 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2222 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2223 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2224 static __u32 fec_enet_register_version = 2; 2225 static u32 fec_enet_register_offset[] = { 2226 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2227 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2228 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2229 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2230 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2231 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2232 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2233 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2234 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2235 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2236 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2237 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2238 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2239 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2240 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2241 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2242 RMON_T_P_GTE2048, RMON_T_OCTETS, 2243 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2244 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2245 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2246 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2247 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2248 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2249 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2250 RMON_R_P_GTE2048, RMON_R_OCTETS, 2251 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2252 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2253 }; 2254 #else 2255 static __u32 fec_enet_register_version = 1; 2256 static u32 fec_enet_register_offset[] = { 2257 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2258 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2259 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2260 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2261 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2262 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2263 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2264 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2265 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2266 }; 2267 #endif 2268 2269 static void fec_enet_get_regs(struct net_device *ndev, 2270 struct ethtool_regs *regs, void *regbuf) 2271 { 2272 struct fec_enet_private *fep = netdev_priv(ndev); 2273 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2274 struct device *dev = &fep->pdev->dev; 2275 u32 *buf = (u32 *)regbuf; 2276 u32 i, off; 2277 int ret; 2278 2279 ret = pm_runtime_resume_and_get(dev); 2280 if (ret < 0) 2281 return; 2282 2283 regs->version = fec_enet_register_version; 2284 2285 memset(buf, 0, regs->len); 2286 2287 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { 2288 off = fec_enet_register_offset[i]; 2289 2290 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2291 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2292 continue; 2293 2294 off >>= 2; 2295 buf[off] = readl(&theregs[off]); 2296 } 2297 2298 pm_runtime_mark_last_busy(dev); 2299 pm_runtime_put_autosuspend(dev); 2300 } 2301 2302 static int fec_enet_get_ts_info(struct net_device *ndev, 2303 struct ethtool_ts_info *info) 2304 { 2305 struct fec_enet_private *fep = netdev_priv(ndev); 2306 2307 if (fep->bufdesc_ex) { 2308 2309 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2310 SOF_TIMESTAMPING_RX_SOFTWARE | 2311 SOF_TIMESTAMPING_SOFTWARE | 2312 SOF_TIMESTAMPING_TX_HARDWARE | 2313 SOF_TIMESTAMPING_RX_HARDWARE | 2314 SOF_TIMESTAMPING_RAW_HARDWARE; 2315 if (fep->ptp_clock) 2316 info->phc_index = ptp_clock_index(fep->ptp_clock); 2317 else 2318 info->phc_index = -1; 2319 2320 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2321 (1 << HWTSTAMP_TX_ON); 2322 2323 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2324 (1 << HWTSTAMP_FILTER_ALL); 2325 return 0; 2326 } else { 2327 return ethtool_op_get_ts_info(ndev, info); 2328 } 2329 } 2330 2331 #if !defined(CONFIG_M5272) 2332 2333 static void fec_enet_get_pauseparam(struct net_device *ndev, 2334 struct ethtool_pauseparam *pause) 2335 { 2336 struct fec_enet_private *fep = netdev_priv(ndev); 2337 2338 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2339 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2340 pause->rx_pause = pause->tx_pause; 2341 } 2342 2343 static int fec_enet_set_pauseparam(struct net_device *ndev, 2344 struct ethtool_pauseparam *pause) 2345 { 2346 struct fec_enet_private *fep = netdev_priv(ndev); 2347 2348 if (!ndev->phydev) 2349 return -ENODEV; 2350 2351 if (pause->tx_pause != pause->rx_pause) { 2352 netdev_info(ndev, 2353 "hardware only support enable/disable both tx and rx"); 2354 return -EINVAL; 2355 } 2356 2357 fep->pause_flag = 0; 2358 2359 /* tx pause must be same as rx pause */ 2360 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2361 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2362 2363 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2364 pause->autoneg); 2365 2366 if (pause->autoneg) { 2367 if (netif_running(ndev)) 2368 fec_stop(ndev); 2369 phy_start_aneg(ndev->phydev); 2370 } 2371 if (netif_running(ndev)) { 2372 napi_disable(&fep->napi); 2373 netif_tx_lock_bh(ndev); 2374 fec_restart(ndev); 2375 netif_tx_wake_all_queues(ndev); 2376 netif_tx_unlock_bh(ndev); 2377 napi_enable(&fep->napi); 2378 } 2379 2380 return 0; 2381 } 2382 2383 static const struct fec_stat { 2384 char name[ETH_GSTRING_LEN]; 2385 u16 offset; 2386 } fec_stats[] = { 2387 /* RMON TX */ 2388 { "tx_dropped", RMON_T_DROP }, 2389 { "tx_packets", RMON_T_PACKETS }, 2390 { "tx_broadcast", RMON_T_BC_PKT }, 2391 { "tx_multicast", RMON_T_MC_PKT }, 2392 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2393 { "tx_undersize", RMON_T_UNDERSIZE }, 2394 { "tx_oversize", RMON_T_OVERSIZE }, 2395 { "tx_fragment", RMON_T_FRAG }, 2396 { "tx_jabber", RMON_T_JAB }, 2397 { "tx_collision", RMON_T_COL }, 2398 { "tx_64byte", RMON_T_P64 }, 2399 { "tx_65to127byte", RMON_T_P65TO127 }, 2400 { "tx_128to255byte", RMON_T_P128TO255 }, 2401 { "tx_256to511byte", RMON_T_P256TO511 }, 2402 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2403 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2404 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2405 { "tx_octets", RMON_T_OCTETS }, 2406 2407 /* IEEE TX */ 2408 { "IEEE_tx_drop", IEEE_T_DROP }, 2409 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2410 { "IEEE_tx_1col", IEEE_T_1COL }, 2411 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2412 { "IEEE_tx_def", IEEE_T_DEF }, 2413 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2414 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2415 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2416 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2417 { "IEEE_tx_sqe", IEEE_T_SQE }, 2418 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2419 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2420 2421 /* RMON RX */ 2422 { "rx_packets", RMON_R_PACKETS }, 2423 { "rx_broadcast", RMON_R_BC_PKT }, 2424 { "rx_multicast", RMON_R_MC_PKT }, 2425 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2426 { "rx_undersize", RMON_R_UNDERSIZE }, 2427 { "rx_oversize", RMON_R_OVERSIZE }, 2428 { "rx_fragment", RMON_R_FRAG }, 2429 { "rx_jabber", RMON_R_JAB }, 2430 { "rx_64byte", RMON_R_P64 }, 2431 { "rx_65to127byte", RMON_R_P65TO127 }, 2432 { "rx_128to255byte", RMON_R_P128TO255 }, 2433 { "rx_256to511byte", RMON_R_P256TO511 }, 2434 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2435 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2436 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2437 { "rx_octets", RMON_R_OCTETS }, 2438 2439 /* IEEE RX */ 2440 { "IEEE_rx_drop", IEEE_R_DROP }, 2441 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2442 { "IEEE_rx_crc", IEEE_R_CRC }, 2443 { "IEEE_rx_align", IEEE_R_ALIGN }, 2444 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2445 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2446 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2447 }; 2448 2449 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2450 2451 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2452 { 2453 struct fec_enet_private *fep = netdev_priv(dev); 2454 int i; 2455 2456 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2457 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2458 } 2459 2460 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2461 struct ethtool_stats *stats, u64 *data) 2462 { 2463 struct fec_enet_private *fep = netdev_priv(dev); 2464 2465 if (netif_running(dev)) 2466 fec_enet_update_ethtool_stats(dev); 2467 2468 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2469 } 2470 2471 static void fec_enet_get_strings(struct net_device *netdev, 2472 u32 stringset, u8 *data) 2473 { 2474 int i; 2475 switch (stringset) { 2476 case ETH_SS_STATS: 2477 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2478 memcpy(data + i * ETH_GSTRING_LEN, 2479 fec_stats[i].name, ETH_GSTRING_LEN); 2480 break; 2481 } 2482 } 2483 2484 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2485 { 2486 switch (sset) { 2487 case ETH_SS_STATS: 2488 return ARRAY_SIZE(fec_stats); 2489 default: 2490 return -EOPNOTSUPP; 2491 } 2492 } 2493 2494 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2495 { 2496 struct fec_enet_private *fep = netdev_priv(dev); 2497 int i; 2498 2499 /* Disable MIB statistics counters */ 2500 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2501 2502 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2503 writel(0, fep->hwp + fec_stats[i].offset); 2504 2505 /* Don't disable MIB statistics counters */ 2506 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2507 } 2508 2509 #else /* !defined(CONFIG_M5272) */ 2510 #define FEC_STATS_SIZE 0 2511 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2512 { 2513 } 2514 2515 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2516 { 2517 } 2518 #endif /* !defined(CONFIG_M5272) */ 2519 2520 /* ITR clock source is enet system clock (clk_ahb). 2521 * TCTT unit is cycle_ns * 64 cycle 2522 * So, the ICTT value = X us / (cycle_ns * 64) 2523 */ 2524 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2525 { 2526 struct fec_enet_private *fep = netdev_priv(ndev); 2527 2528 return us * (fep->itr_clk_rate / 64000) / 1000; 2529 } 2530 2531 /* Set threshold for interrupt coalescing */ 2532 static void fec_enet_itr_coal_set(struct net_device *ndev) 2533 { 2534 struct fec_enet_private *fep = netdev_priv(ndev); 2535 int rx_itr, tx_itr; 2536 2537 /* Must be greater than zero to avoid unpredictable behavior */ 2538 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2539 !fep->tx_time_itr || !fep->tx_pkts_itr) 2540 return; 2541 2542 /* Select enet system clock as Interrupt Coalescing 2543 * timer Clock Source 2544 */ 2545 rx_itr = FEC_ITR_CLK_SEL; 2546 tx_itr = FEC_ITR_CLK_SEL; 2547 2548 /* set ICFT and ICTT */ 2549 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2550 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2551 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2552 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2553 2554 rx_itr |= FEC_ITR_EN; 2555 tx_itr |= FEC_ITR_EN; 2556 2557 writel(tx_itr, fep->hwp + FEC_TXIC0); 2558 writel(rx_itr, fep->hwp + FEC_RXIC0); 2559 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 2560 writel(tx_itr, fep->hwp + FEC_TXIC1); 2561 writel(rx_itr, fep->hwp + FEC_RXIC1); 2562 writel(tx_itr, fep->hwp + FEC_TXIC2); 2563 writel(rx_itr, fep->hwp + FEC_RXIC2); 2564 } 2565 } 2566 2567 static int 2568 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2569 { 2570 struct fec_enet_private *fep = netdev_priv(ndev); 2571 2572 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2573 return -EOPNOTSUPP; 2574 2575 ec->rx_coalesce_usecs = fep->rx_time_itr; 2576 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2577 2578 ec->tx_coalesce_usecs = fep->tx_time_itr; 2579 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2580 2581 return 0; 2582 } 2583 2584 static int 2585 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2586 { 2587 struct fec_enet_private *fep = netdev_priv(ndev); 2588 struct device *dev = &fep->pdev->dev; 2589 unsigned int cycle; 2590 2591 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2592 return -EOPNOTSUPP; 2593 2594 if (ec->rx_max_coalesced_frames > 255) { 2595 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2596 return -EINVAL; 2597 } 2598 2599 if (ec->tx_max_coalesced_frames > 255) { 2600 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2601 return -EINVAL; 2602 } 2603 2604 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 2605 if (cycle > 0xFFFF) { 2606 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 2607 return -EINVAL; 2608 } 2609 2610 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 2611 if (cycle > 0xFFFF) { 2612 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 2613 return -EINVAL; 2614 } 2615 2616 fep->rx_time_itr = ec->rx_coalesce_usecs; 2617 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2618 2619 fep->tx_time_itr = ec->tx_coalesce_usecs; 2620 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2621 2622 fec_enet_itr_coal_set(ndev); 2623 2624 return 0; 2625 } 2626 2627 static void fec_enet_itr_coal_init(struct net_device *ndev) 2628 { 2629 struct ethtool_coalesce ec; 2630 2631 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2632 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2633 2634 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2635 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2636 2637 fec_enet_set_coalesce(ndev, &ec); 2638 } 2639 2640 static int fec_enet_get_tunable(struct net_device *netdev, 2641 const struct ethtool_tunable *tuna, 2642 void *data) 2643 { 2644 struct fec_enet_private *fep = netdev_priv(netdev); 2645 int ret = 0; 2646 2647 switch (tuna->id) { 2648 case ETHTOOL_RX_COPYBREAK: 2649 *(u32 *)data = fep->rx_copybreak; 2650 break; 2651 default: 2652 ret = -EINVAL; 2653 break; 2654 } 2655 2656 return ret; 2657 } 2658 2659 static int fec_enet_set_tunable(struct net_device *netdev, 2660 const struct ethtool_tunable *tuna, 2661 const void *data) 2662 { 2663 struct fec_enet_private *fep = netdev_priv(netdev); 2664 int ret = 0; 2665 2666 switch (tuna->id) { 2667 case ETHTOOL_RX_COPYBREAK: 2668 fep->rx_copybreak = *(u32 *)data; 2669 break; 2670 default: 2671 ret = -EINVAL; 2672 break; 2673 } 2674 2675 return ret; 2676 } 2677 2678 static void 2679 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2680 { 2681 struct fec_enet_private *fep = netdev_priv(ndev); 2682 2683 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 2684 wol->supported = WAKE_MAGIC; 2685 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 2686 } else { 2687 wol->supported = wol->wolopts = 0; 2688 } 2689 } 2690 2691 static int 2692 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2693 { 2694 struct fec_enet_private *fep = netdev_priv(ndev); 2695 2696 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 2697 return -EINVAL; 2698 2699 if (wol->wolopts & ~WAKE_MAGIC) 2700 return -EINVAL; 2701 2702 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 2703 if (device_may_wakeup(&ndev->dev)) { 2704 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 2705 if (fep->irq[0] > 0) 2706 enable_irq_wake(fep->irq[0]); 2707 } else { 2708 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 2709 if (fep->irq[0] > 0) 2710 disable_irq_wake(fep->irq[0]); 2711 } 2712 2713 return 0; 2714 } 2715 2716 static const struct ethtool_ops fec_enet_ethtool_ops = { 2717 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 2718 ETHTOOL_COALESCE_MAX_FRAMES, 2719 .get_drvinfo = fec_enet_get_drvinfo, 2720 .get_regs_len = fec_enet_get_regs_len, 2721 .get_regs = fec_enet_get_regs, 2722 .nway_reset = phy_ethtool_nway_reset, 2723 .get_link = ethtool_op_get_link, 2724 .get_coalesce = fec_enet_get_coalesce, 2725 .set_coalesce = fec_enet_set_coalesce, 2726 #ifndef CONFIG_M5272 2727 .get_pauseparam = fec_enet_get_pauseparam, 2728 .set_pauseparam = fec_enet_set_pauseparam, 2729 .get_strings = fec_enet_get_strings, 2730 .get_ethtool_stats = fec_enet_get_ethtool_stats, 2731 .get_sset_count = fec_enet_get_sset_count, 2732 #endif 2733 .get_ts_info = fec_enet_get_ts_info, 2734 .get_tunable = fec_enet_get_tunable, 2735 .set_tunable = fec_enet_set_tunable, 2736 .get_wol = fec_enet_get_wol, 2737 .set_wol = fec_enet_set_wol, 2738 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2739 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2740 }; 2741 2742 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2743 { 2744 struct fec_enet_private *fep = netdev_priv(ndev); 2745 struct phy_device *phydev = ndev->phydev; 2746 2747 if (!netif_running(ndev)) 2748 return -EINVAL; 2749 2750 if (!phydev) 2751 return -ENODEV; 2752 2753 if (fep->bufdesc_ex) { 2754 bool use_fec_hwts = !phy_has_hwtstamp(phydev); 2755 2756 if (cmd == SIOCSHWTSTAMP) { 2757 if (use_fec_hwts) 2758 return fec_ptp_set(ndev, rq); 2759 fec_ptp_disable_hwts(ndev); 2760 } else if (cmd == SIOCGHWTSTAMP) { 2761 if (use_fec_hwts) 2762 return fec_ptp_get(ndev, rq); 2763 } 2764 } 2765 2766 return phy_mii_ioctl(phydev, rq, cmd); 2767 } 2768 2769 static void fec_enet_free_buffers(struct net_device *ndev) 2770 { 2771 struct fec_enet_private *fep = netdev_priv(ndev); 2772 unsigned int i; 2773 struct sk_buff *skb; 2774 struct bufdesc *bdp; 2775 struct fec_enet_priv_tx_q *txq; 2776 struct fec_enet_priv_rx_q *rxq; 2777 unsigned int q; 2778 2779 for (q = 0; q < fep->num_rx_queues; q++) { 2780 rxq = fep->rx_queue[q]; 2781 bdp = rxq->bd.base; 2782 for (i = 0; i < rxq->bd.ring_size; i++) { 2783 skb = rxq->rx_skbuff[i]; 2784 rxq->rx_skbuff[i] = NULL; 2785 if (skb) { 2786 dma_unmap_single(&fep->pdev->dev, 2787 fec32_to_cpu(bdp->cbd_bufaddr), 2788 FEC_ENET_RX_FRSIZE - fep->rx_align, 2789 DMA_FROM_DEVICE); 2790 dev_kfree_skb(skb); 2791 } 2792 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2793 } 2794 } 2795 2796 for (q = 0; q < fep->num_tx_queues; q++) { 2797 txq = fep->tx_queue[q]; 2798 for (i = 0; i < txq->bd.ring_size; i++) { 2799 kfree(txq->tx_bounce[i]); 2800 txq->tx_bounce[i] = NULL; 2801 skb = txq->tx_skbuff[i]; 2802 txq->tx_skbuff[i] = NULL; 2803 dev_kfree_skb(skb); 2804 } 2805 } 2806 } 2807 2808 static void fec_enet_free_queue(struct net_device *ndev) 2809 { 2810 struct fec_enet_private *fep = netdev_priv(ndev); 2811 int i; 2812 struct fec_enet_priv_tx_q *txq; 2813 2814 for (i = 0; i < fep->num_tx_queues; i++) 2815 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 2816 txq = fep->tx_queue[i]; 2817 dma_free_coherent(&fep->pdev->dev, 2818 txq->bd.ring_size * TSO_HEADER_SIZE, 2819 txq->tso_hdrs, 2820 txq->tso_hdrs_dma); 2821 } 2822 2823 for (i = 0; i < fep->num_rx_queues; i++) 2824 kfree(fep->rx_queue[i]); 2825 for (i = 0; i < fep->num_tx_queues; i++) 2826 kfree(fep->tx_queue[i]); 2827 } 2828 2829 static int fec_enet_alloc_queue(struct net_device *ndev) 2830 { 2831 struct fec_enet_private *fep = netdev_priv(ndev); 2832 int i; 2833 int ret = 0; 2834 struct fec_enet_priv_tx_q *txq; 2835 2836 for (i = 0; i < fep->num_tx_queues; i++) { 2837 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 2838 if (!txq) { 2839 ret = -ENOMEM; 2840 goto alloc_failed; 2841 } 2842 2843 fep->tx_queue[i] = txq; 2844 txq->bd.ring_size = TX_RING_SIZE; 2845 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 2846 2847 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 2848 txq->tx_wake_threshold = 2849 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 2850 2851 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 2852 txq->bd.ring_size * TSO_HEADER_SIZE, 2853 &txq->tso_hdrs_dma, 2854 GFP_KERNEL); 2855 if (!txq->tso_hdrs) { 2856 ret = -ENOMEM; 2857 goto alloc_failed; 2858 } 2859 } 2860 2861 for (i = 0; i < fep->num_rx_queues; i++) { 2862 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 2863 GFP_KERNEL); 2864 if (!fep->rx_queue[i]) { 2865 ret = -ENOMEM; 2866 goto alloc_failed; 2867 } 2868 2869 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 2870 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 2871 } 2872 return ret; 2873 2874 alloc_failed: 2875 fec_enet_free_queue(ndev); 2876 return ret; 2877 } 2878 2879 static int 2880 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 2881 { 2882 struct fec_enet_private *fep = netdev_priv(ndev); 2883 unsigned int i; 2884 struct sk_buff *skb; 2885 struct bufdesc *bdp; 2886 struct fec_enet_priv_rx_q *rxq; 2887 2888 rxq = fep->rx_queue[queue]; 2889 bdp = rxq->bd.base; 2890 for (i = 0; i < rxq->bd.ring_size; i++) { 2891 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 2892 if (!skb) 2893 goto err_alloc; 2894 2895 if (fec_enet_new_rxbdp(ndev, bdp, skb)) { 2896 dev_kfree_skb(skb); 2897 goto err_alloc; 2898 } 2899 2900 rxq->rx_skbuff[i] = skb; 2901 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 2902 2903 if (fep->bufdesc_ex) { 2904 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2905 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 2906 } 2907 2908 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2909 } 2910 2911 /* Set the last buffer to wrap. */ 2912 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 2913 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2914 return 0; 2915 2916 err_alloc: 2917 fec_enet_free_buffers(ndev); 2918 return -ENOMEM; 2919 } 2920 2921 static int 2922 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 2923 { 2924 struct fec_enet_private *fep = netdev_priv(ndev); 2925 unsigned int i; 2926 struct bufdesc *bdp; 2927 struct fec_enet_priv_tx_q *txq; 2928 2929 txq = fep->tx_queue[queue]; 2930 bdp = txq->bd.base; 2931 for (i = 0; i < txq->bd.ring_size; i++) { 2932 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 2933 if (!txq->tx_bounce[i]) 2934 goto err_alloc; 2935 2936 bdp->cbd_sc = cpu_to_fec16(0); 2937 bdp->cbd_bufaddr = cpu_to_fec32(0); 2938 2939 if (fep->bufdesc_ex) { 2940 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2941 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 2942 } 2943 2944 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 2945 } 2946 2947 /* Set the last buffer to wrap. */ 2948 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 2949 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2950 2951 return 0; 2952 2953 err_alloc: 2954 fec_enet_free_buffers(ndev); 2955 return -ENOMEM; 2956 } 2957 2958 static int fec_enet_alloc_buffers(struct net_device *ndev) 2959 { 2960 struct fec_enet_private *fep = netdev_priv(ndev); 2961 unsigned int i; 2962 2963 for (i = 0; i < fep->num_rx_queues; i++) 2964 if (fec_enet_alloc_rxq_buffers(ndev, i)) 2965 return -ENOMEM; 2966 2967 for (i = 0; i < fep->num_tx_queues; i++) 2968 if (fec_enet_alloc_txq_buffers(ndev, i)) 2969 return -ENOMEM; 2970 return 0; 2971 } 2972 2973 static int 2974 fec_enet_open(struct net_device *ndev) 2975 { 2976 struct fec_enet_private *fep = netdev_priv(ndev); 2977 int ret; 2978 bool reset_again; 2979 2980 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 2981 if (ret < 0) 2982 return ret; 2983 2984 pinctrl_pm_select_default_state(&fep->pdev->dev); 2985 ret = fec_enet_clk_enable(ndev, true); 2986 if (ret) 2987 goto clk_enable; 2988 2989 /* During the first fec_enet_open call the PHY isn't probed at this 2990 * point. Therefore the phy_reset_after_clk_enable() call within 2991 * fec_enet_clk_enable() fails. As we need this reset in order to be 2992 * sure the PHY is working correctly we check if we need to reset again 2993 * later when the PHY is probed 2994 */ 2995 if (ndev->phydev && ndev->phydev->drv) 2996 reset_again = false; 2997 else 2998 reset_again = true; 2999 3000 /* I should reset the ring buffers here, but I don't yet know 3001 * a simple way to do that. 3002 */ 3003 3004 ret = fec_enet_alloc_buffers(ndev); 3005 if (ret) 3006 goto err_enet_alloc; 3007 3008 /* Init MAC prior to mii bus probe */ 3009 fec_restart(ndev); 3010 3011 /* Call phy_reset_after_clk_enable() again if it failed during 3012 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3013 */ 3014 if (reset_again) 3015 fec_enet_phy_reset_after_clk_enable(ndev); 3016 3017 /* Probe and connect to PHY when open the interface */ 3018 ret = fec_enet_mii_probe(ndev); 3019 if (ret) 3020 goto err_enet_mii_probe; 3021 3022 if (fep->quirks & FEC_QUIRK_ERR006687) 3023 imx6q_cpuidle_fec_irqs_used(); 3024 3025 napi_enable(&fep->napi); 3026 phy_start(ndev->phydev); 3027 netif_tx_start_all_queues(ndev); 3028 3029 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3030 FEC_WOL_FLAG_ENABLE); 3031 3032 return 0; 3033 3034 err_enet_mii_probe: 3035 fec_enet_free_buffers(ndev); 3036 err_enet_alloc: 3037 fec_enet_clk_enable(ndev, false); 3038 clk_enable: 3039 pm_runtime_mark_last_busy(&fep->pdev->dev); 3040 pm_runtime_put_autosuspend(&fep->pdev->dev); 3041 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3042 return ret; 3043 } 3044 3045 static int 3046 fec_enet_close(struct net_device *ndev) 3047 { 3048 struct fec_enet_private *fep = netdev_priv(ndev); 3049 3050 phy_stop(ndev->phydev); 3051 3052 if (netif_device_present(ndev)) { 3053 napi_disable(&fep->napi); 3054 netif_tx_disable(ndev); 3055 fec_stop(ndev); 3056 } 3057 3058 phy_disconnect(ndev->phydev); 3059 3060 if (fep->quirks & FEC_QUIRK_ERR006687) 3061 imx6q_cpuidle_fec_irqs_unused(); 3062 3063 fec_enet_update_ethtool_stats(ndev); 3064 3065 fec_enet_clk_enable(ndev, false); 3066 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3067 pm_runtime_mark_last_busy(&fep->pdev->dev); 3068 pm_runtime_put_autosuspend(&fep->pdev->dev); 3069 3070 fec_enet_free_buffers(ndev); 3071 3072 return 0; 3073 } 3074 3075 /* Set or clear the multicast filter for this adaptor. 3076 * Skeleton taken from sunlance driver. 3077 * The CPM Ethernet implementation allows Multicast as well as individual 3078 * MAC address filtering. Some of the drivers check to make sure it is 3079 * a group multicast address, and discard those that are not. I guess I 3080 * will do the same for now, but just remove the test if you want 3081 * individual filtering as well (do the upper net layers want or support 3082 * this kind of feature?). 3083 */ 3084 3085 #define FEC_HASH_BITS 6 /* #bits in hash */ 3086 3087 static void set_multicast_list(struct net_device *ndev) 3088 { 3089 struct fec_enet_private *fep = netdev_priv(ndev); 3090 struct netdev_hw_addr *ha; 3091 unsigned int crc, tmp; 3092 unsigned char hash; 3093 unsigned int hash_high = 0, hash_low = 0; 3094 3095 if (ndev->flags & IFF_PROMISC) { 3096 tmp = readl(fep->hwp + FEC_R_CNTRL); 3097 tmp |= 0x8; 3098 writel(tmp, fep->hwp + FEC_R_CNTRL); 3099 return; 3100 } 3101 3102 tmp = readl(fep->hwp + FEC_R_CNTRL); 3103 tmp &= ~0x8; 3104 writel(tmp, fep->hwp + FEC_R_CNTRL); 3105 3106 if (ndev->flags & IFF_ALLMULTI) { 3107 /* Catch all multicast addresses, so set the 3108 * filter to all 1's 3109 */ 3110 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3111 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3112 3113 return; 3114 } 3115 3116 /* Add the addresses in hash register */ 3117 netdev_for_each_mc_addr(ha, ndev) { 3118 /* calculate crc32 value of mac address */ 3119 crc = ether_crc_le(ndev->addr_len, ha->addr); 3120 3121 /* only upper 6 bits (FEC_HASH_BITS) are used 3122 * which point to specific bit in the hash registers 3123 */ 3124 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3125 3126 if (hash > 31) 3127 hash_high |= 1 << (hash - 32); 3128 else 3129 hash_low |= 1 << hash; 3130 } 3131 3132 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3133 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3134 } 3135 3136 /* Set a MAC change in hardware. */ 3137 static int 3138 fec_set_mac_address(struct net_device *ndev, void *p) 3139 { 3140 struct fec_enet_private *fep = netdev_priv(ndev); 3141 struct sockaddr *addr = p; 3142 3143 if (addr) { 3144 if (!is_valid_ether_addr(addr->sa_data)) 3145 return -EADDRNOTAVAIL; 3146 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 3147 } 3148 3149 /* Add netif status check here to avoid system hang in below case: 3150 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3151 * After ethx down, fec all clocks are gated off and then register 3152 * access causes system hang. 3153 */ 3154 if (!netif_running(ndev)) 3155 return 0; 3156 3157 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3158 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3159 fep->hwp + FEC_ADDR_LOW); 3160 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3161 fep->hwp + FEC_ADDR_HIGH); 3162 return 0; 3163 } 3164 3165 #ifdef CONFIG_NET_POLL_CONTROLLER 3166 /** 3167 * fec_poll_controller - FEC Poll controller function 3168 * @dev: The FEC network adapter 3169 * 3170 * Polled functionality used by netconsole and others in non interrupt mode 3171 * 3172 */ 3173 static void fec_poll_controller(struct net_device *dev) 3174 { 3175 int i; 3176 struct fec_enet_private *fep = netdev_priv(dev); 3177 3178 for (i = 0; i < FEC_IRQ_NUM; i++) { 3179 if (fep->irq[i] > 0) { 3180 disable_irq(fep->irq[i]); 3181 fec_enet_interrupt(fep->irq[i], dev); 3182 enable_irq(fep->irq[i]); 3183 } 3184 } 3185 } 3186 #endif 3187 3188 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3189 netdev_features_t features) 3190 { 3191 struct fec_enet_private *fep = netdev_priv(netdev); 3192 netdev_features_t changed = features ^ netdev->features; 3193 3194 netdev->features = features; 3195 3196 /* Receive checksum has been changed */ 3197 if (changed & NETIF_F_RXCSUM) { 3198 if (features & NETIF_F_RXCSUM) 3199 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3200 else 3201 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3202 } 3203 } 3204 3205 static int fec_set_features(struct net_device *netdev, 3206 netdev_features_t features) 3207 { 3208 struct fec_enet_private *fep = netdev_priv(netdev); 3209 netdev_features_t changed = features ^ netdev->features; 3210 3211 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3212 napi_disable(&fep->napi); 3213 netif_tx_lock_bh(netdev); 3214 fec_stop(netdev); 3215 fec_enet_set_netdev_features(netdev, features); 3216 fec_restart(netdev); 3217 netif_tx_wake_all_queues(netdev); 3218 netif_tx_unlock_bh(netdev); 3219 napi_enable(&fep->napi); 3220 } else { 3221 fec_enet_set_netdev_features(netdev, features); 3222 } 3223 3224 return 0; 3225 } 3226 3227 static const struct net_device_ops fec_netdev_ops = { 3228 .ndo_open = fec_enet_open, 3229 .ndo_stop = fec_enet_close, 3230 .ndo_start_xmit = fec_enet_start_xmit, 3231 .ndo_set_rx_mode = set_multicast_list, 3232 .ndo_validate_addr = eth_validate_addr, 3233 .ndo_tx_timeout = fec_timeout, 3234 .ndo_set_mac_address = fec_set_mac_address, 3235 .ndo_do_ioctl = fec_enet_ioctl, 3236 #ifdef CONFIG_NET_POLL_CONTROLLER 3237 .ndo_poll_controller = fec_poll_controller, 3238 #endif 3239 .ndo_set_features = fec_set_features, 3240 }; 3241 3242 static const unsigned short offset_des_active_rxq[] = { 3243 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3244 }; 3245 3246 static const unsigned short offset_des_active_txq[] = { 3247 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3248 }; 3249 3250 /* 3251 * XXX: We need to clean up on failure exits here. 3252 * 3253 */ 3254 static int fec_enet_init(struct net_device *ndev) 3255 { 3256 struct fec_enet_private *fep = netdev_priv(ndev); 3257 struct bufdesc *cbd_base; 3258 dma_addr_t bd_dma; 3259 int bd_size; 3260 unsigned int i; 3261 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3262 sizeof(struct bufdesc); 3263 unsigned dsize_log2 = __fls(dsize); 3264 int ret; 3265 3266 WARN_ON(dsize != (1 << dsize_log2)); 3267 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3268 fep->rx_align = 0xf; 3269 fep->tx_align = 0xf; 3270 #else 3271 fep->rx_align = 0x3; 3272 fep->tx_align = 0x3; 3273 #endif 3274 3275 /* Check mask of the streaming and coherent API */ 3276 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3277 if (ret < 0) { 3278 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3279 return ret; 3280 } 3281 3282 fec_enet_alloc_queue(ndev); 3283 3284 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3285 3286 /* Allocate memory for buffer descriptors. */ 3287 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3288 GFP_KERNEL); 3289 if (!cbd_base) { 3290 return -ENOMEM; 3291 } 3292 3293 /* Get the Ethernet address */ 3294 fec_get_mac(ndev); 3295 /* make sure MAC we just acquired is programmed into the hw */ 3296 fec_set_mac_address(ndev, NULL); 3297 3298 /* Set receive and transmit descriptor base. */ 3299 for (i = 0; i < fep->num_rx_queues; i++) { 3300 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3301 unsigned size = dsize * rxq->bd.ring_size; 3302 3303 rxq->bd.qid = i; 3304 rxq->bd.base = cbd_base; 3305 rxq->bd.cur = cbd_base; 3306 rxq->bd.dma = bd_dma; 3307 rxq->bd.dsize = dsize; 3308 rxq->bd.dsize_log2 = dsize_log2; 3309 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3310 bd_dma += size; 3311 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3312 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3313 } 3314 3315 for (i = 0; i < fep->num_tx_queues; i++) { 3316 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3317 unsigned size = dsize * txq->bd.ring_size; 3318 3319 txq->bd.qid = i; 3320 txq->bd.base = cbd_base; 3321 txq->bd.cur = cbd_base; 3322 txq->bd.dma = bd_dma; 3323 txq->bd.dsize = dsize; 3324 txq->bd.dsize_log2 = dsize_log2; 3325 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3326 bd_dma += size; 3327 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3328 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3329 } 3330 3331 3332 /* The FEC Ethernet specific entries in the device structure */ 3333 ndev->watchdog_timeo = TX_TIMEOUT; 3334 ndev->netdev_ops = &fec_netdev_ops; 3335 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3336 3337 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3338 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); 3339 3340 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3341 /* enable hw VLAN support */ 3342 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3343 3344 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3345 ndev->gso_max_segs = FEC_MAX_TSO_SEGS; 3346 3347 /* enable hw accelerator */ 3348 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3349 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3350 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3351 } 3352 3353 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 3354 fep->tx_align = 0; 3355 fep->rx_align = 0x3f; 3356 } 3357 3358 ndev->hw_features = ndev->features; 3359 3360 fec_restart(ndev); 3361 3362 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3363 fec_enet_clear_ethtool_stats(ndev); 3364 else 3365 fec_enet_update_ethtool_stats(ndev); 3366 3367 return 0; 3368 } 3369 3370 #ifdef CONFIG_OF 3371 static int fec_reset_phy(struct platform_device *pdev) 3372 { 3373 int err, phy_reset; 3374 bool active_high = false; 3375 int msec = 1, phy_post_delay = 0; 3376 struct device_node *np = pdev->dev.of_node; 3377 3378 if (!np) 3379 return 0; 3380 3381 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3382 /* A sane reset duration should not be longer than 1s */ 3383 if (!err && msec > 1000) 3384 msec = 1; 3385 3386 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3387 if (phy_reset == -EPROBE_DEFER) 3388 return phy_reset; 3389 else if (!gpio_is_valid(phy_reset)) 3390 return 0; 3391 3392 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 3393 /* valid reset duration should be less than 1s */ 3394 if (!err && phy_post_delay > 1000) 3395 return -EINVAL; 3396 3397 active_high = of_property_read_bool(np, "phy-reset-active-high"); 3398 3399 err = devm_gpio_request_one(&pdev->dev, phy_reset, 3400 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 3401 "phy-reset"); 3402 if (err) { 3403 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 3404 return err; 3405 } 3406 3407 if (msec > 20) 3408 msleep(msec); 3409 else 3410 usleep_range(msec * 1000, msec * 1000 + 1000); 3411 3412 gpio_set_value_cansleep(phy_reset, !active_high); 3413 3414 if (!phy_post_delay) 3415 return 0; 3416 3417 if (phy_post_delay > 20) 3418 msleep(phy_post_delay); 3419 else 3420 usleep_range(phy_post_delay * 1000, 3421 phy_post_delay * 1000 + 1000); 3422 3423 return 0; 3424 } 3425 #else /* CONFIG_OF */ 3426 static int fec_reset_phy(struct platform_device *pdev) 3427 { 3428 /* 3429 * In case of platform probe, the reset has been done 3430 * by machine code. 3431 */ 3432 return 0; 3433 } 3434 #endif /* CONFIG_OF */ 3435 3436 static void 3437 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 3438 { 3439 struct device_node *np = pdev->dev.of_node; 3440 3441 *num_tx = *num_rx = 1; 3442 3443 if (!np || !of_device_is_available(np)) 3444 return; 3445 3446 /* parse the num of tx and rx queues */ 3447 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 3448 3449 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 3450 3451 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 3452 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 3453 *num_tx); 3454 *num_tx = 1; 3455 return; 3456 } 3457 3458 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 3459 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 3460 *num_rx); 3461 *num_rx = 1; 3462 return; 3463 } 3464 3465 } 3466 3467 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 3468 { 3469 int irq_cnt = platform_irq_count(pdev); 3470 3471 if (irq_cnt > FEC_IRQ_NUM) 3472 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 3473 else if (irq_cnt == 2) 3474 irq_cnt = 1; /* last for pps */ 3475 else if (irq_cnt <= 0) 3476 irq_cnt = 1; /* At least 1 irq is needed */ 3477 return irq_cnt; 3478 } 3479 3480 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 3481 struct device_node *np) 3482 { 3483 struct device_node *gpr_np; 3484 u32 out_val[3]; 3485 int ret = 0; 3486 3487 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 3488 if (!gpr_np) 3489 return 0; 3490 3491 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 3492 ARRAY_SIZE(out_val)); 3493 if (ret) { 3494 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 3495 return ret; 3496 } 3497 3498 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 3499 if (IS_ERR(fep->stop_gpr.gpr)) { 3500 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 3501 ret = PTR_ERR(fep->stop_gpr.gpr); 3502 fep->stop_gpr.gpr = NULL; 3503 goto out; 3504 } 3505 3506 fep->stop_gpr.reg = out_val[1]; 3507 fep->stop_gpr.bit = out_val[2]; 3508 3509 out: 3510 of_node_put(gpr_np); 3511 3512 return ret; 3513 } 3514 3515 static int 3516 fec_probe(struct platform_device *pdev) 3517 { 3518 struct fec_enet_private *fep; 3519 struct fec_platform_data *pdata; 3520 phy_interface_t interface; 3521 struct net_device *ndev; 3522 int i, irq, ret = 0; 3523 const struct of_device_id *of_id; 3524 static int dev_id; 3525 struct device_node *np = pdev->dev.of_node, *phy_node; 3526 int num_tx_qs; 3527 int num_rx_qs; 3528 char irq_name[8]; 3529 int irq_cnt; 3530 struct fec_devinfo *dev_info; 3531 3532 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 3533 3534 /* Init network device */ 3535 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 3536 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 3537 if (!ndev) 3538 return -ENOMEM; 3539 3540 SET_NETDEV_DEV(ndev, &pdev->dev); 3541 3542 /* setup board info structure */ 3543 fep = netdev_priv(ndev); 3544 3545 of_id = of_match_device(fec_dt_ids, &pdev->dev); 3546 if (of_id) 3547 pdev->id_entry = of_id->data; 3548 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 3549 if (dev_info) 3550 fep->quirks = dev_info->quirks; 3551 3552 fep->netdev = ndev; 3553 fep->num_rx_queues = num_rx_qs; 3554 fep->num_tx_queues = num_tx_qs; 3555 3556 #if !defined(CONFIG_M5272) 3557 /* default enable pause frame auto negotiation */ 3558 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 3559 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 3560 #endif 3561 3562 /* Select default pin state */ 3563 pinctrl_pm_select_default_state(&pdev->dev); 3564 3565 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 3566 if (IS_ERR(fep->hwp)) { 3567 ret = PTR_ERR(fep->hwp); 3568 goto failed_ioremap; 3569 } 3570 3571 fep->pdev = pdev; 3572 fep->dev_id = dev_id++; 3573 3574 platform_set_drvdata(pdev, ndev); 3575 3576 if ((of_machine_is_compatible("fsl,imx6q") || 3577 of_machine_is_compatible("fsl,imx6dl")) && 3578 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 3579 fep->quirks |= FEC_QUIRK_ERR006687; 3580 3581 if (of_get_property(np, "fsl,magic-packet", NULL)) 3582 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 3583 3584 ret = fec_enet_init_stop_mode(fep, np); 3585 if (ret) 3586 goto failed_stop_mode; 3587 3588 phy_node = of_parse_phandle(np, "phy-handle", 0); 3589 if (!phy_node && of_phy_is_fixed_link(np)) { 3590 ret = of_phy_register_fixed_link(np); 3591 if (ret < 0) { 3592 dev_err(&pdev->dev, 3593 "broken fixed-link specification\n"); 3594 goto failed_phy; 3595 } 3596 phy_node = of_node_get(np); 3597 } 3598 fep->phy_node = phy_node; 3599 3600 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 3601 if (ret) { 3602 pdata = dev_get_platdata(&pdev->dev); 3603 if (pdata) 3604 fep->phy_interface = pdata->phy; 3605 else 3606 fep->phy_interface = PHY_INTERFACE_MODE_MII; 3607 } else { 3608 fep->phy_interface = interface; 3609 } 3610 3611 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 3612 if (IS_ERR(fep->clk_ipg)) { 3613 ret = PTR_ERR(fep->clk_ipg); 3614 goto failed_clk; 3615 } 3616 3617 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 3618 if (IS_ERR(fep->clk_ahb)) { 3619 ret = PTR_ERR(fep->clk_ahb); 3620 goto failed_clk; 3621 } 3622 3623 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 3624 3625 /* enet_out is optional, depends on board */ 3626 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); 3627 if (IS_ERR(fep->clk_enet_out)) 3628 fep->clk_enet_out = NULL; 3629 3630 fep->ptp_clk_on = false; 3631 mutex_init(&fep->ptp_clk_mutex); 3632 3633 /* clk_ref is optional, depends on board */ 3634 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); 3635 if (IS_ERR(fep->clk_ref)) 3636 fep->clk_ref = NULL; 3637 3638 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 3639 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 3640 if (IS_ERR(fep->clk_ptp)) { 3641 fep->clk_ptp = NULL; 3642 fep->bufdesc_ex = false; 3643 } 3644 3645 ret = fec_enet_clk_enable(ndev, true); 3646 if (ret) 3647 goto failed_clk; 3648 3649 ret = clk_prepare_enable(fep->clk_ipg); 3650 if (ret) 3651 goto failed_clk_ipg; 3652 ret = clk_prepare_enable(fep->clk_ahb); 3653 if (ret) 3654 goto failed_clk_ahb; 3655 3656 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 3657 if (!IS_ERR(fep->reg_phy)) { 3658 ret = regulator_enable(fep->reg_phy); 3659 if (ret) { 3660 dev_err(&pdev->dev, 3661 "Failed to enable phy regulator: %d\n", ret); 3662 goto failed_regulator; 3663 } 3664 } else { 3665 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 3666 ret = -EPROBE_DEFER; 3667 goto failed_regulator; 3668 } 3669 fep->reg_phy = NULL; 3670 } 3671 3672 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 3673 pm_runtime_use_autosuspend(&pdev->dev); 3674 pm_runtime_get_noresume(&pdev->dev); 3675 pm_runtime_set_active(&pdev->dev); 3676 pm_runtime_enable(&pdev->dev); 3677 3678 ret = fec_reset_phy(pdev); 3679 if (ret) 3680 goto failed_reset; 3681 3682 irq_cnt = fec_enet_get_irq_cnt(pdev); 3683 if (fep->bufdesc_ex) 3684 fec_ptp_init(pdev, irq_cnt); 3685 3686 ret = fec_enet_init(ndev); 3687 if (ret) 3688 goto failed_init; 3689 3690 for (i = 0; i < irq_cnt; i++) { 3691 snprintf(irq_name, sizeof(irq_name), "int%d", i); 3692 irq = platform_get_irq_byname_optional(pdev, irq_name); 3693 if (irq < 0) 3694 irq = platform_get_irq(pdev, i); 3695 if (irq < 0) { 3696 ret = irq; 3697 goto failed_irq; 3698 } 3699 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 3700 0, pdev->name, ndev); 3701 if (ret) 3702 goto failed_irq; 3703 3704 fep->irq[i] = irq; 3705 } 3706 3707 ret = fec_enet_mii_init(pdev); 3708 if (ret) 3709 goto failed_mii_init; 3710 3711 /* Carrier starts down, phylib will bring it up */ 3712 netif_carrier_off(ndev); 3713 fec_enet_clk_enable(ndev, false); 3714 pinctrl_pm_select_sleep_state(&pdev->dev); 3715 3716 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 3717 3718 ret = register_netdev(ndev); 3719 if (ret) 3720 goto failed_register; 3721 3722 device_init_wakeup(&ndev->dev, fep->wol_flag & 3723 FEC_WOL_HAS_MAGIC_PACKET); 3724 3725 if (fep->bufdesc_ex && fep->ptp_clock) 3726 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 3727 3728 fep->rx_copybreak = COPYBREAK_DEFAULT; 3729 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 3730 3731 pm_runtime_mark_last_busy(&pdev->dev); 3732 pm_runtime_put_autosuspend(&pdev->dev); 3733 3734 return 0; 3735 3736 failed_register: 3737 fec_enet_mii_remove(fep); 3738 failed_mii_init: 3739 failed_irq: 3740 failed_init: 3741 fec_ptp_stop(pdev); 3742 failed_reset: 3743 pm_runtime_put_noidle(&pdev->dev); 3744 pm_runtime_disable(&pdev->dev); 3745 if (fep->reg_phy) 3746 regulator_disable(fep->reg_phy); 3747 failed_regulator: 3748 clk_disable_unprepare(fep->clk_ahb); 3749 failed_clk_ahb: 3750 clk_disable_unprepare(fep->clk_ipg); 3751 failed_clk_ipg: 3752 fec_enet_clk_enable(ndev, false); 3753 failed_clk: 3754 if (of_phy_is_fixed_link(np)) 3755 of_phy_deregister_fixed_link(np); 3756 of_node_put(phy_node); 3757 failed_stop_mode: 3758 failed_phy: 3759 dev_id--; 3760 failed_ioremap: 3761 free_netdev(ndev); 3762 3763 return ret; 3764 } 3765 3766 static int 3767 fec_drv_remove(struct platform_device *pdev) 3768 { 3769 struct net_device *ndev = platform_get_drvdata(pdev); 3770 struct fec_enet_private *fep = netdev_priv(ndev); 3771 struct device_node *np = pdev->dev.of_node; 3772 int ret; 3773 3774 ret = pm_runtime_resume_and_get(&pdev->dev); 3775 if (ret < 0) 3776 return ret; 3777 3778 cancel_work_sync(&fep->tx_timeout_work); 3779 fec_ptp_stop(pdev); 3780 unregister_netdev(ndev); 3781 fec_enet_mii_remove(fep); 3782 if (fep->reg_phy) 3783 regulator_disable(fep->reg_phy); 3784 3785 if (of_phy_is_fixed_link(np)) 3786 of_phy_deregister_fixed_link(np); 3787 of_node_put(fep->phy_node); 3788 free_netdev(ndev); 3789 3790 clk_disable_unprepare(fep->clk_ahb); 3791 clk_disable_unprepare(fep->clk_ipg); 3792 pm_runtime_put_noidle(&pdev->dev); 3793 pm_runtime_disable(&pdev->dev); 3794 3795 return 0; 3796 } 3797 3798 static int __maybe_unused fec_suspend(struct device *dev) 3799 { 3800 struct net_device *ndev = dev_get_drvdata(dev); 3801 struct fec_enet_private *fep = netdev_priv(ndev); 3802 3803 rtnl_lock(); 3804 if (netif_running(ndev)) { 3805 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 3806 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 3807 phy_stop(ndev->phydev); 3808 napi_disable(&fep->napi); 3809 netif_tx_lock_bh(ndev); 3810 netif_device_detach(ndev); 3811 netif_tx_unlock_bh(ndev); 3812 fec_stop(ndev); 3813 fec_enet_clk_enable(ndev, false); 3814 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3815 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3816 } 3817 rtnl_unlock(); 3818 3819 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3820 regulator_disable(fep->reg_phy); 3821 3822 /* SOC supply clock to phy, when clock is disabled, phy link down 3823 * SOC control phy regulator, when regulator is disabled, phy link down 3824 */ 3825 if (fep->clk_enet_out || fep->reg_phy) 3826 fep->link = 0; 3827 3828 return 0; 3829 } 3830 3831 static int __maybe_unused fec_resume(struct device *dev) 3832 { 3833 struct net_device *ndev = dev_get_drvdata(dev); 3834 struct fec_enet_private *fep = netdev_priv(ndev); 3835 int ret; 3836 int val; 3837 3838 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 3839 ret = regulator_enable(fep->reg_phy); 3840 if (ret) 3841 return ret; 3842 } 3843 3844 rtnl_lock(); 3845 if (netif_running(ndev)) { 3846 ret = fec_enet_clk_enable(ndev, true); 3847 if (ret) { 3848 rtnl_unlock(); 3849 goto failed_clk; 3850 } 3851 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 3852 fec_enet_stop_mode(fep, false); 3853 3854 val = readl(fep->hwp + FEC_ECNTRL); 3855 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 3856 writel(val, fep->hwp + FEC_ECNTRL); 3857 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 3858 } else { 3859 pinctrl_pm_select_default_state(&fep->pdev->dev); 3860 } 3861 fec_restart(ndev); 3862 netif_tx_lock_bh(ndev); 3863 netif_device_attach(ndev); 3864 netif_tx_unlock_bh(ndev); 3865 napi_enable(&fep->napi); 3866 phy_start(ndev->phydev); 3867 } 3868 rtnl_unlock(); 3869 3870 return 0; 3871 3872 failed_clk: 3873 if (fep->reg_phy) 3874 regulator_disable(fep->reg_phy); 3875 return ret; 3876 } 3877 3878 static int __maybe_unused fec_runtime_suspend(struct device *dev) 3879 { 3880 struct net_device *ndev = dev_get_drvdata(dev); 3881 struct fec_enet_private *fep = netdev_priv(ndev); 3882 3883 clk_disable_unprepare(fep->clk_ahb); 3884 clk_disable_unprepare(fep->clk_ipg); 3885 3886 return 0; 3887 } 3888 3889 static int __maybe_unused fec_runtime_resume(struct device *dev) 3890 { 3891 struct net_device *ndev = dev_get_drvdata(dev); 3892 struct fec_enet_private *fep = netdev_priv(ndev); 3893 int ret; 3894 3895 ret = clk_prepare_enable(fep->clk_ahb); 3896 if (ret) 3897 return ret; 3898 ret = clk_prepare_enable(fep->clk_ipg); 3899 if (ret) 3900 goto failed_clk_ipg; 3901 3902 return 0; 3903 3904 failed_clk_ipg: 3905 clk_disable_unprepare(fep->clk_ahb); 3906 return ret; 3907 } 3908 3909 static const struct dev_pm_ops fec_pm_ops = { 3910 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 3911 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 3912 }; 3913 3914 static struct platform_driver fec_driver = { 3915 .driver = { 3916 .name = DRIVER_NAME, 3917 .pm = &fec_pm_ops, 3918 .of_match_table = fec_dt_ids, 3919 .suppress_bind_attrs = true, 3920 }, 3921 .id_table = fec_devtype, 3922 .probe = fec_probe, 3923 .remove = fec_drv_remove, 3924 }; 3925 3926 module_platform_driver(fec_driver); 3927 3928 MODULE_ALIAS("platform:"DRIVER_NAME); 3929 MODULE_LICENSE("GPL"); 3930