1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_mdio.h>
56 #include <linux/of_net.h>
57 #include <linux/regulator/consumer.h>
58 #include <linux/if_vlan.h>
59 #include <linux/pinctrl/consumer.h>
60 
61 #include <asm/cacheflush.h>
62 
63 #include "fec.h"
64 
65 static void set_multicast_list(struct net_device *ndev);
66 
67 #if defined(CONFIG_ARM)
68 #define FEC_ALIGNMENT	0xf
69 #else
70 #define FEC_ALIGNMENT	0x3
71 #endif
72 
73 #define DRIVER_NAME	"fec"
74 
75 /* Pause frame feild and FIFO threshold */
76 #define FEC_ENET_FCE	(1 << 5)
77 #define FEC_ENET_RSEM_V	0x84
78 #define FEC_ENET_RSFL_V	16
79 #define FEC_ENET_RAEM_V	0x8
80 #define FEC_ENET_RAFL_V	0x8
81 #define FEC_ENET_OPD_V	0xFFF0
82 
83 /* Controller is ENET-MAC */
84 #define FEC_QUIRK_ENET_MAC		(1 << 0)
85 /* Controller needs driver to swap frame */
86 #define FEC_QUIRK_SWAP_FRAME		(1 << 1)
87 /* Controller uses gasket */
88 #define FEC_QUIRK_USE_GASKET		(1 << 2)
89 /* Controller has GBIT support */
90 #define FEC_QUIRK_HAS_GBIT		(1 << 3)
91 /* Controller has extend desc buffer */
92 #define FEC_QUIRK_HAS_BUFDESC_EX	(1 << 4)
93 /* Controller has hardware checksum support */
94 #define FEC_QUIRK_HAS_CSUM		(1 << 5)
95 /* Controller has hardware vlan support */
96 #define FEC_QUIRK_HAS_VLAN		(1 << 6)
97 /* ENET IP errata ERR006358
98  *
99  * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
100  * detected as not set during a prior frame transmission, then the
101  * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
102  * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
103  * frames not being transmitted until there is a 0-to-1 transition on
104  * ENET_TDAR[TDAR].
105  */
106 #define FEC_QUIRK_ERR006358            (1 << 7)
107 
108 static struct platform_device_id fec_devtype[] = {
109 	{
110 		/* keep it for coldfire */
111 		.name = DRIVER_NAME,
112 		.driver_data = 0,
113 	}, {
114 		.name = "imx25-fec",
115 		.driver_data = FEC_QUIRK_USE_GASKET,
116 	}, {
117 		.name = "imx27-fec",
118 		.driver_data = 0,
119 	}, {
120 		.name = "imx28-fec",
121 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
122 	}, {
123 		.name = "imx6q-fec",
124 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
125 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
126 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
127 	}, {
128 		.name = "mvf600-fec",
129 		.driver_data = FEC_QUIRK_ENET_MAC,
130 	}, {
131 		/* sentinel */
132 	}
133 };
134 MODULE_DEVICE_TABLE(platform, fec_devtype);
135 
136 enum imx_fec_type {
137 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
138 	IMX27_FEC,	/* runs on i.mx27/35/51 */
139 	IMX28_FEC,
140 	IMX6Q_FEC,
141 	MVF600_FEC,
142 };
143 
144 static const struct of_device_id fec_dt_ids[] = {
145 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
146 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
147 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
148 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
149 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
150 	{ /* sentinel */ }
151 };
152 MODULE_DEVICE_TABLE(of, fec_dt_ids);
153 
154 static unsigned char macaddr[ETH_ALEN];
155 module_param_array(macaddr, byte, NULL, 0);
156 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
157 
158 #if defined(CONFIG_M5272)
159 /*
160  * Some hardware gets it MAC address out of local flash memory.
161  * if this is non-zero then assume it is the address to get MAC from.
162  */
163 #if defined(CONFIG_NETtel)
164 #define	FEC_FLASHMAC	0xf0006006
165 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
166 #define	FEC_FLASHMAC	0xf0006000
167 #elif defined(CONFIG_CANCam)
168 #define	FEC_FLASHMAC	0xf0020000
169 #elif defined (CONFIG_M5272C3)
170 #define	FEC_FLASHMAC	(0xffe04000 + 4)
171 #elif defined(CONFIG_MOD5272)
172 #define FEC_FLASHMAC	0xffc0406b
173 #else
174 #define	FEC_FLASHMAC	0
175 #endif
176 #endif /* CONFIG_M5272 */
177 
178 /* Interrupt events/masks. */
179 #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
180 #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
181 #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
182 #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
183 #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
184 #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
185 #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
186 #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
187 #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
188 #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
189 
190 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
191 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
192 
193 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
194  */
195 #define PKT_MAXBUF_SIZE		1522
196 #define PKT_MINBUF_SIZE		64
197 #define PKT_MAXBLR_SIZE		1536
198 
199 /* FEC receive acceleration */
200 #define FEC_RACC_IPDIS		(1 << 1)
201 #define FEC_RACC_PRODIS		(1 << 2)
202 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
203 
204 /*
205  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
206  * size bits. Other FEC hardware does not, so we need to take that into
207  * account when setting it.
208  */
209 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
210     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
211 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
212 #else
213 #define	OPT_FRAME_SIZE	0
214 #endif
215 
216 /* FEC MII MMFR bits definition */
217 #define FEC_MMFR_ST		(1 << 30)
218 #define FEC_MMFR_OP_READ	(2 << 28)
219 #define FEC_MMFR_OP_WRITE	(1 << 28)
220 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
221 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
222 #define FEC_MMFR_TA		(2 << 16)
223 #define FEC_MMFR_DATA(v)	(v & 0xffff)
224 
225 #define FEC_MII_TIMEOUT		30000 /* us */
226 
227 /* Transmitter timeout */
228 #define TX_TIMEOUT (2 * HZ)
229 
230 #define FEC_PAUSE_FLAG_AUTONEG	0x1
231 #define FEC_PAUSE_FLAG_ENABLE	0x2
232 
233 #define TSO_HEADER_SIZE		128
234 /* Max number of allowed TCP segments for software TSO */
235 #define FEC_MAX_TSO_SEGS	100
236 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
237 
238 #define IS_TSO_HEADER(txq, addr) \
239 	((addr >= txq->tso_hdrs_dma) && \
240 	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
241 
242 static int mii_cnt;
243 
244 static inline
245 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
246 {
247 	struct bufdesc *new_bd = bdp + 1;
248 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
249 	struct bufdesc_ex *ex_base;
250 	struct bufdesc *base;
251 	int ring_size;
252 
253 	if (bdp >= fep->tx_bd_base) {
254 		base = fep->tx_bd_base;
255 		ring_size = fep->tx_ring_size;
256 		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
257 	} else {
258 		base = fep->rx_bd_base;
259 		ring_size = fep->rx_ring_size;
260 		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
261 	}
262 
263 	if (fep->bufdesc_ex)
264 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
265 			ex_base : ex_new_bd);
266 	else
267 		return (new_bd >= (base + ring_size)) ?
268 			base : new_bd;
269 }
270 
271 static inline
272 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
273 {
274 	struct bufdesc *new_bd = bdp - 1;
275 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
276 	struct bufdesc_ex *ex_base;
277 	struct bufdesc *base;
278 	int ring_size;
279 
280 	if (bdp >= fep->tx_bd_base) {
281 		base = fep->tx_bd_base;
282 		ring_size = fep->tx_ring_size;
283 		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
284 	} else {
285 		base = fep->rx_bd_base;
286 		ring_size = fep->rx_ring_size;
287 		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
288 	}
289 
290 	if (fep->bufdesc_ex)
291 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
292 			(ex_new_bd + ring_size) : ex_new_bd);
293 	else
294 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
295 }
296 
297 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
298 				struct fec_enet_private *fep)
299 {
300 	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
301 }
302 
303 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep)
304 {
305 	int entries;
306 
307 	entries = ((const char *)fep->dirty_tx -
308 			(const char *)fep->cur_tx) / fep->bufdesc_size - 1;
309 
310 	return entries > 0 ? entries : entries + fep->tx_ring_size;
311 }
312 
313 static void *swap_buffer(void *bufaddr, int len)
314 {
315 	int i;
316 	unsigned int *buf = bufaddr;
317 
318 	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
319 		*buf = cpu_to_be32(*buf);
320 
321 	return bufaddr;
322 }
323 
324 static void fec_dump(struct net_device *ndev)
325 {
326 	struct fec_enet_private *fep = netdev_priv(ndev);
327 	struct bufdesc *bdp = fep->tx_bd_base;
328 	unsigned int index = 0;
329 
330 	netdev_info(ndev, "TX ring dump\n");
331 	pr_info("Nr     SC     addr       len  SKB\n");
332 
333 	do {
334 		pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
335 			index,
336 			bdp == fep->cur_tx ? 'S' : ' ',
337 			bdp == fep->dirty_tx ? 'H' : ' ',
338 			bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
339 			fep->tx_skbuff[index]);
340 		bdp = fec_enet_get_nextdesc(bdp, fep);
341 		index++;
342 	} while (bdp != fep->tx_bd_base);
343 }
344 
345 static inline bool is_ipv4_pkt(struct sk_buff *skb)
346 {
347 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
348 }
349 
350 static int
351 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
352 {
353 	/* Only run for packets requiring a checksum. */
354 	if (skb->ip_summed != CHECKSUM_PARTIAL)
355 		return 0;
356 
357 	if (unlikely(skb_cow_head(skb, 0)))
358 		return -1;
359 
360 	if (is_ipv4_pkt(skb))
361 		ip_hdr(skb)->check = 0;
362 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
363 
364 	return 0;
365 }
366 
367 static int
368 fec_enet_txq_submit_frag_skb(struct sk_buff *skb, struct net_device *ndev)
369 {
370 	struct fec_enet_private *fep = netdev_priv(ndev);
371 	const struct platform_device_id *id_entry =
372 				platform_get_device_id(fep->pdev);
373 	struct bufdesc *bdp = fep->cur_tx;
374 	struct bufdesc_ex *ebdp;
375 	int nr_frags = skb_shinfo(skb)->nr_frags;
376 	int frag, frag_len;
377 	unsigned short status;
378 	unsigned int estatus = 0;
379 	skb_frag_t *this_frag;
380 	unsigned int index;
381 	void *bufaddr;
382 	dma_addr_t addr;
383 	int i;
384 
385 	for (frag = 0; frag < nr_frags; frag++) {
386 		this_frag = &skb_shinfo(skb)->frags[frag];
387 		bdp = fec_enet_get_nextdesc(bdp, fep);
388 		ebdp = (struct bufdesc_ex *)bdp;
389 
390 		status = bdp->cbd_sc;
391 		status &= ~BD_ENET_TX_STATS;
392 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
393 		frag_len = skb_shinfo(skb)->frags[frag].size;
394 
395 		/* Handle the last BD specially */
396 		if (frag == nr_frags - 1) {
397 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
398 			if (fep->bufdesc_ex) {
399 				estatus |= BD_ENET_TX_INT;
400 				if (unlikely(skb_shinfo(skb)->tx_flags &
401 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
402 					estatus |= BD_ENET_TX_TS;
403 			}
404 		}
405 
406 		if (fep->bufdesc_ex) {
407 			if (skb->ip_summed == CHECKSUM_PARTIAL)
408 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
409 			ebdp->cbd_bdu = 0;
410 			ebdp->cbd_esc = estatus;
411 		}
412 
413 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
414 
415 		index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
416 		if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
417 			id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
418 			memcpy(fep->tx_bounce[index], bufaddr, frag_len);
419 			bufaddr = fep->tx_bounce[index];
420 
421 			if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
422 				swap_buffer(bufaddr, frag_len);
423 		}
424 
425 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
426 				      DMA_TO_DEVICE);
427 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
428 			dev_kfree_skb_any(skb);
429 			if (net_ratelimit())
430 				netdev_err(ndev, "Tx DMA memory map failed\n");
431 			goto dma_mapping_error;
432 		}
433 
434 		bdp->cbd_bufaddr = addr;
435 		bdp->cbd_datlen = frag_len;
436 		bdp->cbd_sc = status;
437 	}
438 
439 	fep->cur_tx = bdp;
440 
441 	return 0;
442 
443 dma_mapping_error:
444 	bdp = fep->cur_tx;
445 	for (i = 0; i < frag; i++) {
446 		bdp = fec_enet_get_nextdesc(bdp, fep);
447 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
448 				bdp->cbd_datlen, DMA_TO_DEVICE);
449 	}
450 	return NETDEV_TX_OK;
451 }
452 
453 static int fec_enet_txq_submit_skb(struct sk_buff *skb, struct net_device *ndev)
454 {
455 	struct fec_enet_private *fep = netdev_priv(ndev);
456 	const struct platform_device_id *id_entry =
457 				platform_get_device_id(fep->pdev);
458 	int nr_frags = skb_shinfo(skb)->nr_frags;
459 	struct bufdesc *bdp, *last_bdp;
460 	void *bufaddr;
461 	dma_addr_t addr;
462 	unsigned short status;
463 	unsigned short buflen;
464 	unsigned int estatus = 0;
465 	unsigned int index;
466 	int entries_free;
467 	int ret;
468 
469 	entries_free = fec_enet_get_free_txdesc_num(fep);
470 	if (entries_free < MAX_SKB_FRAGS + 1) {
471 		dev_kfree_skb_any(skb);
472 		if (net_ratelimit())
473 			netdev_err(ndev, "NOT enough BD for SG!\n");
474 		return NETDEV_TX_OK;
475 	}
476 
477 	/* Protocol checksum off-load for TCP and UDP. */
478 	if (fec_enet_clear_csum(skb, ndev)) {
479 		dev_kfree_skb_any(skb);
480 		return NETDEV_TX_OK;
481 	}
482 
483 	/* Fill in a Tx ring entry */
484 	bdp = fep->cur_tx;
485 	status = bdp->cbd_sc;
486 	status &= ~BD_ENET_TX_STATS;
487 
488 	/* Set buffer length and buffer pointer */
489 	bufaddr = skb->data;
490 	buflen = skb_headlen(skb);
491 
492 	index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
493 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
494 		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
495 		memcpy(fep->tx_bounce[index], skb->data, buflen);
496 		bufaddr = fep->tx_bounce[index];
497 
498 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
499 			swap_buffer(bufaddr, buflen);
500 	}
501 
502 	/* Push the data cache so the CPM does not get stale memory data. */
503 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
504 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
505 		dev_kfree_skb_any(skb);
506 		if (net_ratelimit())
507 			netdev_err(ndev, "Tx DMA memory map failed\n");
508 		return NETDEV_TX_OK;
509 	}
510 
511 	if (nr_frags) {
512 		ret = fec_enet_txq_submit_frag_skb(skb, ndev);
513 		if (ret)
514 			return ret;
515 	} else {
516 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
517 		if (fep->bufdesc_ex) {
518 			estatus = BD_ENET_TX_INT;
519 			if (unlikely(skb_shinfo(skb)->tx_flags &
520 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
521 				estatus |= BD_ENET_TX_TS;
522 		}
523 	}
524 
525 	if (fep->bufdesc_ex) {
526 
527 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
528 
529 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
530 			fep->hwts_tx_en))
531 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
532 
533 		if (skb->ip_summed == CHECKSUM_PARTIAL)
534 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
535 
536 		ebdp->cbd_bdu = 0;
537 		ebdp->cbd_esc = estatus;
538 	}
539 
540 	last_bdp = fep->cur_tx;
541 	index = fec_enet_get_bd_index(fep->tx_bd_base, last_bdp, fep);
542 	/* Save skb pointer */
543 	fep->tx_skbuff[index] = skb;
544 
545 	bdp->cbd_datlen = buflen;
546 	bdp->cbd_bufaddr = addr;
547 
548 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
549 	 * it's the last BD of the frame, and to put the CRC on the end.
550 	 */
551 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
552 	bdp->cbd_sc = status;
553 
554 	/* If this was the last BD in the ring, start at the beginning again. */
555 	bdp = fec_enet_get_nextdesc(last_bdp, fep);
556 
557 	skb_tx_timestamp(skb);
558 
559 	fep->cur_tx = bdp;
560 
561 	/* Trigger transmission start */
562 	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
563 
564 	return 0;
565 }
566 
567 static int
568 fec_enet_txq_put_data_tso(struct sk_buff *skb, struct net_device *ndev,
569 			struct bufdesc *bdp, int index, char *data,
570 			int size, bool last_tcp, bool is_last)
571 {
572 	struct fec_enet_private *fep = netdev_priv(ndev);
573 	const struct platform_device_id *id_entry =
574 				platform_get_device_id(fep->pdev);
575 	struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
576 	unsigned short status;
577 	unsigned int estatus = 0;
578 	dma_addr_t addr;
579 
580 	status = bdp->cbd_sc;
581 	status &= ~BD_ENET_TX_STATS;
582 
583 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
584 
585 	if (((unsigned long) data) & FEC_ALIGNMENT ||
586 		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
587 		memcpy(fep->tx_bounce[index], data, size);
588 		data = fep->tx_bounce[index];
589 
590 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
591 			swap_buffer(data, size);
592 	}
593 
594 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
595 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
596 		dev_kfree_skb_any(skb);
597 		if (net_ratelimit())
598 			netdev_err(ndev, "Tx DMA memory map failed\n");
599 		return NETDEV_TX_BUSY;
600 	}
601 
602 	bdp->cbd_datlen = size;
603 	bdp->cbd_bufaddr = addr;
604 
605 	if (fep->bufdesc_ex) {
606 		if (skb->ip_summed == CHECKSUM_PARTIAL)
607 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
608 		ebdp->cbd_bdu = 0;
609 		ebdp->cbd_esc = estatus;
610 	}
611 
612 	/* Handle the last BD specially */
613 	if (last_tcp)
614 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
615 	if (is_last) {
616 		status |= BD_ENET_TX_INTR;
617 		if (fep->bufdesc_ex)
618 			ebdp->cbd_esc |= BD_ENET_TX_INT;
619 	}
620 
621 	bdp->cbd_sc = status;
622 
623 	return 0;
624 }
625 
626 static int
627 fec_enet_txq_put_hdr_tso(struct sk_buff *skb, struct net_device *ndev,
628 			struct bufdesc *bdp, int index)
629 {
630 	struct fec_enet_private *fep = netdev_priv(ndev);
631 	const struct platform_device_id *id_entry =
632 				platform_get_device_id(fep->pdev);
633 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
634 	struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
635 	void *bufaddr;
636 	unsigned long dmabuf;
637 	unsigned short status;
638 	unsigned int estatus = 0;
639 
640 	status = bdp->cbd_sc;
641 	status &= ~BD_ENET_TX_STATS;
642 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
643 
644 	bufaddr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
645 	dmabuf = fep->tso_hdrs_dma + index * TSO_HEADER_SIZE;
646 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
647 		id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
648 		memcpy(fep->tx_bounce[index], skb->data, hdr_len);
649 		bufaddr = fep->tx_bounce[index];
650 
651 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
652 			swap_buffer(bufaddr, hdr_len);
653 
654 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
655 					hdr_len, DMA_TO_DEVICE);
656 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
657 			dev_kfree_skb_any(skb);
658 			if (net_ratelimit())
659 				netdev_err(ndev, "Tx DMA memory map failed\n");
660 			return NETDEV_TX_BUSY;
661 		}
662 	}
663 
664 	bdp->cbd_bufaddr = dmabuf;
665 	bdp->cbd_datlen = hdr_len;
666 
667 	if (fep->bufdesc_ex) {
668 		if (skb->ip_summed == CHECKSUM_PARTIAL)
669 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
670 		ebdp->cbd_bdu = 0;
671 		ebdp->cbd_esc = estatus;
672 	}
673 
674 	bdp->cbd_sc = status;
675 
676 	return 0;
677 }
678 
679 static int fec_enet_txq_submit_tso(struct sk_buff *skb, struct net_device *ndev)
680 {
681 	struct fec_enet_private *fep = netdev_priv(ndev);
682 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
683 	int total_len, data_left;
684 	struct bufdesc *bdp = fep->cur_tx;
685 	struct tso_t tso;
686 	unsigned int index = 0;
687 	int ret;
688 
689 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep)) {
690 		dev_kfree_skb_any(skb);
691 		if (net_ratelimit())
692 			netdev_err(ndev, "NOT enough BD for TSO!\n");
693 		return NETDEV_TX_OK;
694 	}
695 
696 	/* Protocol checksum off-load for TCP and UDP. */
697 	if (fec_enet_clear_csum(skb, ndev)) {
698 		dev_kfree_skb_any(skb);
699 		return NETDEV_TX_OK;
700 	}
701 
702 	/* Initialize the TSO handler, and prepare the first payload */
703 	tso_start(skb, &tso);
704 
705 	total_len = skb->len - hdr_len;
706 	while (total_len > 0) {
707 		char *hdr;
708 
709 		index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
710 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
711 		total_len -= data_left;
712 
713 		/* prepare packet headers: MAC + IP + TCP */
714 		hdr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
715 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
716 		ret = fec_enet_txq_put_hdr_tso(skb, ndev, bdp, index);
717 		if (ret)
718 			goto err_release;
719 
720 		while (data_left > 0) {
721 			int size;
722 
723 			size = min_t(int, tso.size, data_left);
724 			bdp = fec_enet_get_nextdesc(bdp, fep);
725 			index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
726 			ret = fec_enet_txq_put_data_tso(skb, ndev, bdp, index, tso.data,
727 							size, size == data_left,
728 							total_len == 0);
729 			if (ret)
730 				goto err_release;
731 
732 			data_left -= size;
733 			tso_build_data(skb, &tso, size);
734 		}
735 
736 		bdp = fec_enet_get_nextdesc(bdp, fep);
737 	}
738 
739 	/* Save skb pointer */
740 	fep->tx_skbuff[index] = skb;
741 
742 	skb_tx_timestamp(skb);
743 	fep->cur_tx = bdp;
744 
745 	/* Trigger transmission start */
746 	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
747 
748 	return 0;
749 
750 err_release:
751 	/* TODO: Release all used data descriptors for TSO */
752 	return ret;
753 }
754 
755 static netdev_tx_t
756 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
757 {
758 	struct fec_enet_private *fep = netdev_priv(ndev);
759 	int entries_free;
760 	int ret;
761 
762 	if (skb_is_gso(skb))
763 		ret = fec_enet_txq_submit_tso(skb, ndev);
764 	else
765 		ret = fec_enet_txq_submit_skb(skb, ndev);
766 	if (ret)
767 		return ret;
768 
769 	entries_free = fec_enet_get_free_txdesc_num(fep);
770 	if (entries_free <= fep->tx_stop_threshold)
771 		netif_stop_queue(ndev);
772 
773 	return NETDEV_TX_OK;
774 }
775 
776 /* Init RX & TX buffer descriptors
777  */
778 static void fec_enet_bd_init(struct net_device *dev)
779 {
780 	struct fec_enet_private *fep = netdev_priv(dev);
781 	struct bufdesc *bdp;
782 	unsigned int i;
783 
784 	/* Initialize the receive buffer descriptors. */
785 	bdp = fep->rx_bd_base;
786 	for (i = 0; i < fep->rx_ring_size; i++) {
787 
788 		/* Initialize the BD for every fragment in the page. */
789 		if (bdp->cbd_bufaddr)
790 			bdp->cbd_sc = BD_ENET_RX_EMPTY;
791 		else
792 			bdp->cbd_sc = 0;
793 		bdp = fec_enet_get_nextdesc(bdp, fep);
794 	}
795 
796 	/* Set the last buffer to wrap */
797 	bdp = fec_enet_get_prevdesc(bdp, fep);
798 	bdp->cbd_sc |= BD_SC_WRAP;
799 
800 	fep->cur_rx = fep->rx_bd_base;
801 
802 	/* ...and the same for transmit */
803 	bdp = fep->tx_bd_base;
804 	fep->cur_tx = bdp;
805 	for (i = 0; i < fep->tx_ring_size; i++) {
806 
807 		/* Initialize the BD for every fragment in the page. */
808 		bdp->cbd_sc = 0;
809 		if (fep->tx_skbuff[i]) {
810 			dev_kfree_skb_any(fep->tx_skbuff[i]);
811 			fep->tx_skbuff[i] = NULL;
812 		}
813 		bdp->cbd_bufaddr = 0;
814 		bdp = fec_enet_get_nextdesc(bdp, fep);
815 	}
816 
817 	/* Set the last buffer to wrap */
818 	bdp = fec_enet_get_prevdesc(bdp, fep);
819 	bdp->cbd_sc |= BD_SC_WRAP;
820 	fep->dirty_tx = bdp;
821 }
822 
823 /*
824  * This function is called to start or restart the FEC during a link
825  * change, transmit timeout, or to reconfigure the FEC.  The network
826  * packet processing for this device must be stopped before this call.
827  */
828 static void
829 fec_restart(struct net_device *ndev)
830 {
831 	struct fec_enet_private *fep = netdev_priv(ndev);
832 	const struct platform_device_id *id_entry =
833 				platform_get_device_id(fep->pdev);
834 	int i;
835 	u32 val;
836 	u32 temp_mac[2];
837 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
838 	u32 ecntl = 0x2; /* ETHEREN */
839 
840 	/* Whack a reset.  We should wait for this. */
841 	writel(1, fep->hwp + FEC_ECNTRL);
842 	udelay(10);
843 
844 	/*
845 	 * enet-mac reset will reset mac address registers too,
846 	 * so need to reconfigure it.
847 	 */
848 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
849 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
850 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
851 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
852 	}
853 
854 	/* Clear any outstanding interrupt. */
855 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
856 
857 	/* Set maximum receive buffer size. */
858 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
859 
860 	fec_enet_bd_init(ndev);
861 
862 	/* Set receive and transmit descriptor base. */
863 	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
864 	if (fep->bufdesc_ex)
865 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
866 			* fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
867 	else
868 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
869 			* fep->rx_ring_size,	fep->hwp + FEC_X_DES_START);
870 
871 
872 	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
873 		if (fep->tx_skbuff[i]) {
874 			dev_kfree_skb_any(fep->tx_skbuff[i]);
875 			fep->tx_skbuff[i] = NULL;
876 		}
877 	}
878 
879 	/* Enable MII mode */
880 	if (fep->full_duplex == DUPLEX_FULL) {
881 		/* FD enable */
882 		writel(0x04, fep->hwp + FEC_X_CNTRL);
883 	} else {
884 		/* No Rcv on Xmit */
885 		rcntl |= 0x02;
886 		writel(0x0, fep->hwp + FEC_X_CNTRL);
887 	}
888 
889 	/* Set MII speed */
890 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
891 
892 #if !defined(CONFIG_M5272)
893 	/* set RX checksum */
894 	val = readl(fep->hwp + FEC_RACC);
895 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
896 		val |= FEC_RACC_OPTIONS;
897 	else
898 		val &= ~FEC_RACC_OPTIONS;
899 	writel(val, fep->hwp + FEC_RACC);
900 #endif
901 
902 	/*
903 	 * The phy interface and speed need to get configured
904 	 * differently on enet-mac.
905 	 */
906 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
907 		/* Enable flow control and length check */
908 		rcntl |= 0x40000000 | 0x00000020;
909 
910 		/* RGMII, RMII or MII */
911 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
912 			rcntl |= (1 << 6);
913 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
914 			rcntl |= (1 << 8);
915 		else
916 			rcntl &= ~(1 << 8);
917 
918 		/* 1G, 100M or 10M */
919 		if (fep->phy_dev) {
920 			if (fep->phy_dev->speed == SPEED_1000)
921 				ecntl |= (1 << 5);
922 			else if (fep->phy_dev->speed == SPEED_100)
923 				rcntl &= ~(1 << 9);
924 			else
925 				rcntl |= (1 << 9);
926 		}
927 	} else {
928 #ifdef FEC_MIIGSK_ENR
929 		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
930 			u32 cfgr;
931 			/* disable the gasket and wait */
932 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
933 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
934 				udelay(1);
935 
936 			/*
937 			 * configure the gasket:
938 			 *   RMII, 50 MHz, no loopback, no echo
939 			 *   MII, 25 MHz, no loopback, no echo
940 			 */
941 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
942 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
943 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
944 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
945 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
946 
947 			/* re-enable the gasket */
948 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
949 		}
950 #endif
951 	}
952 
953 #if !defined(CONFIG_M5272)
954 	/* enable pause frame*/
955 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
956 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
957 	     fep->phy_dev && fep->phy_dev->pause)) {
958 		rcntl |= FEC_ENET_FCE;
959 
960 		/* set FIFO threshold parameter to reduce overrun */
961 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
962 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
963 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
964 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
965 
966 		/* OPD */
967 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
968 	} else {
969 		rcntl &= ~FEC_ENET_FCE;
970 	}
971 #endif /* !defined(CONFIG_M5272) */
972 
973 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
974 
975 	/* Setup multicast filter. */
976 	set_multicast_list(ndev);
977 #ifndef CONFIG_M5272
978 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
979 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
980 #endif
981 
982 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
983 		/* enable ENET endian swap */
984 		ecntl |= (1 << 8);
985 		/* enable ENET store and forward mode */
986 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
987 	}
988 
989 	if (fep->bufdesc_ex)
990 		ecntl |= (1 << 4);
991 
992 #ifndef CONFIG_M5272
993 	/* Enable the MIB statistic event counters */
994 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
995 #endif
996 
997 	/* And last, enable the transmit and receive processing */
998 	writel(ecntl, fep->hwp + FEC_ECNTRL);
999 	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1000 
1001 	if (fep->bufdesc_ex)
1002 		fec_ptp_start_cyclecounter(ndev);
1003 
1004 	/* Enable interrupts we wish to service */
1005 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1006 }
1007 
1008 static void
1009 fec_stop(struct net_device *ndev)
1010 {
1011 	struct fec_enet_private *fep = netdev_priv(ndev);
1012 	const struct platform_device_id *id_entry =
1013 				platform_get_device_id(fep->pdev);
1014 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1015 
1016 	/* We cannot expect a graceful transmit stop without link !!! */
1017 	if (fep->link) {
1018 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1019 		udelay(10);
1020 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1021 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1022 	}
1023 
1024 	/* Whack a reset.  We should wait for this. */
1025 	writel(1, fep->hwp + FEC_ECNTRL);
1026 	udelay(10);
1027 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1028 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1029 
1030 	/* We have to keep ENET enabled to have MII interrupt stay working */
1031 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1032 		writel(2, fep->hwp + FEC_ECNTRL);
1033 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1034 	}
1035 }
1036 
1037 
1038 static void
1039 fec_timeout(struct net_device *ndev)
1040 {
1041 	struct fec_enet_private *fep = netdev_priv(ndev);
1042 
1043 	fec_dump(ndev);
1044 
1045 	ndev->stats.tx_errors++;
1046 
1047 	schedule_work(&fep->tx_timeout_work);
1048 }
1049 
1050 static void fec_enet_timeout_work(struct work_struct *work)
1051 {
1052 	struct fec_enet_private *fep =
1053 		container_of(work, struct fec_enet_private, tx_timeout_work);
1054 	struct net_device *ndev = fep->netdev;
1055 
1056 	rtnl_lock();
1057 	if (netif_device_present(ndev) || netif_running(ndev)) {
1058 		napi_disable(&fep->napi);
1059 		netif_tx_lock_bh(ndev);
1060 		fec_restart(ndev);
1061 		netif_wake_queue(ndev);
1062 		netif_tx_unlock_bh(ndev);
1063 		napi_enable(&fep->napi);
1064 	}
1065 	rtnl_unlock();
1066 }
1067 
1068 static void
1069 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1070 	struct skb_shared_hwtstamps *hwtstamps)
1071 {
1072 	unsigned long flags;
1073 	u64 ns;
1074 
1075 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1076 	ns = timecounter_cyc2time(&fep->tc, ts);
1077 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1078 
1079 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1080 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1081 }
1082 
1083 static void
1084 fec_enet_tx(struct net_device *ndev)
1085 {
1086 	struct	fec_enet_private *fep;
1087 	struct bufdesc *bdp;
1088 	unsigned short status;
1089 	struct	sk_buff	*skb;
1090 	int	index = 0;
1091 	int	entries_free;
1092 
1093 	fep = netdev_priv(ndev);
1094 	bdp = fep->dirty_tx;
1095 
1096 	/* get next bdp of dirty_tx */
1097 	bdp = fec_enet_get_nextdesc(bdp, fep);
1098 
1099 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1100 
1101 		/* current queue is empty */
1102 		if (bdp == fep->cur_tx)
1103 			break;
1104 
1105 		index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
1106 
1107 		skb = fep->tx_skbuff[index];
1108 		fep->tx_skbuff[index] = NULL;
1109 		if (!IS_TSO_HEADER(fep, bdp->cbd_bufaddr))
1110 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1111 					bdp->cbd_datlen, DMA_TO_DEVICE);
1112 		bdp->cbd_bufaddr = 0;
1113 		if (!skb) {
1114 			bdp = fec_enet_get_nextdesc(bdp, fep);
1115 			continue;
1116 		}
1117 
1118 		/* Check for errors. */
1119 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1120 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1121 				   BD_ENET_TX_CSL)) {
1122 			ndev->stats.tx_errors++;
1123 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1124 				ndev->stats.tx_heartbeat_errors++;
1125 			if (status & BD_ENET_TX_LC)  /* Late collision */
1126 				ndev->stats.tx_window_errors++;
1127 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1128 				ndev->stats.tx_aborted_errors++;
1129 			if (status & BD_ENET_TX_UN)  /* Underrun */
1130 				ndev->stats.tx_fifo_errors++;
1131 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1132 				ndev->stats.tx_carrier_errors++;
1133 		} else {
1134 			ndev->stats.tx_packets++;
1135 			ndev->stats.tx_bytes += skb->len;
1136 		}
1137 
1138 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1139 			fep->bufdesc_ex) {
1140 			struct skb_shared_hwtstamps shhwtstamps;
1141 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1142 
1143 			fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1144 			skb_tstamp_tx(skb, &shhwtstamps);
1145 		}
1146 
1147 		/* Deferred means some collisions occurred during transmit,
1148 		 * but we eventually sent the packet OK.
1149 		 */
1150 		if (status & BD_ENET_TX_DEF)
1151 			ndev->stats.collisions++;
1152 
1153 		/* Free the sk buffer associated with this last transmit */
1154 		dev_kfree_skb_any(skb);
1155 
1156 		fep->dirty_tx = bdp;
1157 
1158 		/* Update pointer to next buffer descriptor to be transmitted */
1159 		bdp = fec_enet_get_nextdesc(bdp, fep);
1160 
1161 		/* Since we have freed up a buffer, the ring is no longer full
1162 		 */
1163 		if (netif_queue_stopped(ndev)) {
1164 			entries_free = fec_enet_get_free_txdesc_num(fep);
1165 			if (entries_free >= fep->tx_wake_threshold)
1166 				netif_wake_queue(ndev);
1167 		}
1168 	}
1169 
1170 	/* ERR006538: Keep the transmitter going */
1171 	if (bdp != fep->cur_tx && readl(fep->hwp + FEC_X_DES_ACTIVE) == 0)
1172 		writel(0, fep->hwp + FEC_X_DES_ACTIVE);
1173 }
1174 
1175 /* During a receive, the cur_rx points to the current incoming buffer.
1176  * When we update through the ring, if the next incoming buffer has
1177  * not been given to the system, we just set the empty indicator,
1178  * effectively tossing the packet.
1179  */
1180 static int
1181 fec_enet_rx(struct net_device *ndev, int budget)
1182 {
1183 	struct fec_enet_private *fep = netdev_priv(ndev);
1184 	const struct platform_device_id *id_entry =
1185 				platform_get_device_id(fep->pdev);
1186 	struct bufdesc *bdp;
1187 	unsigned short status;
1188 	struct	sk_buff	*skb;
1189 	ushort	pkt_len;
1190 	__u8 *data;
1191 	int	pkt_received = 0;
1192 	struct	bufdesc_ex *ebdp = NULL;
1193 	bool	vlan_packet_rcvd = false;
1194 	u16	vlan_tag;
1195 	int	index = 0;
1196 
1197 #ifdef CONFIG_M532x
1198 	flush_cache_all();
1199 #endif
1200 
1201 	/* First, grab all of the stats for the incoming packet.
1202 	 * These get messed up if we get called due to a busy condition.
1203 	 */
1204 	bdp = fep->cur_rx;
1205 
1206 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1207 
1208 		if (pkt_received >= budget)
1209 			break;
1210 		pkt_received++;
1211 
1212 		/* Since we have allocated space to hold a complete frame,
1213 		 * the last indicator should be set.
1214 		 */
1215 		if ((status & BD_ENET_RX_LAST) == 0)
1216 			netdev_err(ndev, "rcv is not +last\n");
1217 
1218 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1219 
1220 		/* Check for errors. */
1221 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1222 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1223 			ndev->stats.rx_errors++;
1224 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1225 				/* Frame too long or too short. */
1226 				ndev->stats.rx_length_errors++;
1227 			}
1228 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1229 				ndev->stats.rx_frame_errors++;
1230 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1231 				ndev->stats.rx_crc_errors++;
1232 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1233 				ndev->stats.rx_fifo_errors++;
1234 		}
1235 
1236 		/* Report late collisions as a frame error.
1237 		 * On this error, the BD is closed, but we don't know what we
1238 		 * have in the buffer.  So, just drop this frame on the floor.
1239 		 */
1240 		if (status & BD_ENET_RX_CL) {
1241 			ndev->stats.rx_errors++;
1242 			ndev->stats.rx_frame_errors++;
1243 			goto rx_processing_done;
1244 		}
1245 
1246 		/* Process the incoming frame. */
1247 		ndev->stats.rx_packets++;
1248 		pkt_len = bdp->cbd_datlen;
1249 		ndev->stats.rx_bytes += pkt_len;
1250 
1251 		index = fec_enet_get_bd_index(fep->rx_bd_base, bdp, fep);
1252 		data = fep->rx_skbuff[index]->data;
1253 		dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1254 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1255 
1256 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
1257 			swap_buffer(data, pkt_len);
1258 
1259 		/* Extract the enhanced buffer descriptor */
1260 		ebdp = NULL;
1261 		if (fep->bufdesc_ex)
1262 			ebdp = (struct bufdesc_ex *)bdp;
1263 
1264 		/* If this is a VLAN packet remove the VLAN Tag */
1265 		vlan_packet_rcvd = false;
1266 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1267 		    fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1268 			/* Push and remove the vlan tag */
1269 			struct vlan_hdr *vlan_header =
1270 					(struct vlan_hdr *) (data + ETH_HLEN);
1271 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1272 			pkt_len -= VLAN_HLEN;
1273 
1274 			vlan_packet_rcvd = true;
1275 		}
1276 
1277 		/* This does 16 byte alignment, exactly what we need.
1278 		 * The packet length includes FCS, but we don't want to
1279 		 * include that when passing upstream as it messes up
1280 		 * bridging applications.
1281 		 */
1282 		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
1283 
1284 		if (unlikely(!skb)) {
1285 			ndev->stats.rx_dropped++;
1286 		} else {
1287 			int payload_offset = (2 * ETH_ALEN);
1288 			skb_reserve(skb, NET_IP_ALIGN);
1289 			skb_put(skb, pkt_len - 4);	/* Make room */
1290 
1291 			/* Extract the frame data without the VLAN header. */
1292 			skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
1293 			if (vlan_packet_rcvd)
1294 				payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
1295 			skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
1296 						       data + payload_offset,
1297 						       pkt_len - 4 - (2 * ETH_ALEN));
1298 
1299 			skb->protocol = eth_type_trans(skb, ndev);
1300 
1301 			/* Get receive timestamp from the skb */
1302 			if (fep->hwts_rx_en && fep->bufdesc_ex)
1303 				fec_enet_hwtstamp(fep, ebdp->ts,
1304 						  skb_hwtstamps(skb));
1305 
1306 			if (fep->bufdesc_ex &&
1307 			    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1308 				if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1309 					/* don't check it */
1310 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1311 				} else {
1312 					skb_checksum_none_assert(skb);
1313 				}
1314 			}
1315 
1316 			/* Handle received VLAN packets */
1317 			if (vlan_packet_rcvd)
1318 				__vlan_hwaccel_put_tag(skb,
1319 						       htons(ETH_P_8021Q),
1320 						       vlan_tag);
1321 
1322 			napi_gro_receive(&fep->napi, skb);
1323 		}
1324 
1325 		dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1326 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1327 rx_processing_done:
1328 		/* Clear the status flags for this buffer */
1329 		status &= ~BD_ENET_RX_STATS;
1330 
1331 		/* Mark the buffer empty */
1332 		status |= BD_ENET_RX_EMPTY;
1333 		bdp->cbd_sc = status;
1334 
1335 		if (fep->bufdesc_ex) {
1336 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1337 
1338 			ebdp->cbd_esc = BD_ENET_RX_INT;
1339 			ebdp->cbd_prot = 0;
1340 			ebdp->cbd_bdu = 0;
1341 		}
1342 
1343 		/* Update BD pointer to next entry */
1344 		bdp = fec_enet_get_nextdesc(bdp, fep);
1345 
1346 		/* Doing this here will keep the FEC running while we process
1347 		 * incoming frames.  On a heavily loaded network, we should be
1348 		 * able to keep up at the expense of system resources.
1349 		 */
1350 		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1351 	}
1352 	fep->cur_rx = bdp;
1353 
1354 	return pkt_received;
1355 }
1356 
1357 static irqreturn_t
1358 fec_enet_interrupt(int irq, void *dev_id)
1359 {
1360 	struct net_device *ndev = dev_id;
1361 	struct fec_enet_private *fep = netdev_priv(ndev);
1362 	const unsigned napi_mask = FEC_ENET_RXF | FEC_ENET_TXF;
1363 	uint int_events;
1364 	irqreturn_t ret = IRQ_NONE;
1365 
1366 	int_events = readl(fep->hwp + FEC_IEVENT);
1367 	writel(int_events & ~napi_mask, fep->hwp + FEC_IEVENT);
1368 
1369 	if (int_events & napi_mask) {
1370 		ret = IRQ_HANDLED;
1371 
1372 		/* Disable the NAPI interrupts */
1373 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1374 		napi_schedule(&fep->napi);
1375 	}
1376 
1377 	if (int_events & FEC_ENET_MII) {
1378 		ret = IRQ_HANDLED;
1379 		complete(&fep->mdio_done);
1380 	}
1381 
1382 	return ret;
1383 }
1384 
1385 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1386 {
1387 	struct net_device *ndev = napi->dev;
1388 	struct fec_enet_private *fep = netdev_priv(ndev);
1389 	int pkts;
1390 
1391 	/*
1392 	 * Clear any pending transmit or receive interrupts before
1393 	 * processing the rings to avoid racing with the hardware.
1394 	 */
1395 	writel(FEC_ENET_RXF | FEC_ENET_TXF, fep->hwp + FEC_IEVENT);
1396 
1397 	pkts = fec_enet_rx(ndev, budget);
1398 
1399 	fec_enet_tx(ndev);
1400 
1401 	if (pkts < budget) {
1402 		napi_complete(napi);
1403 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1404 	}
1405 	return pkts;
1406 }
1407 
1408 /* ------------------------------------------------------------------------- */
1409 static void fec_get_mac(struct net_device *ndev)
1410 {
1411 	struct fec_enet_private *fep = netdev_priv(ndev);
1412 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1413 	unsigned char *iap, tmpaddr[ETH_ALEN];
1414 
1415 	/*
1416 	 * try to get mac address in following order:
1417 	 *
1418 	 * 1) module parameter via kernel command line in form
1419 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1420 	 */
1421 	iap = macaddr;
1422 
1423 	/*
1424 	 * 2) from device tree data
1425 	 */
1426 	if (!is_valid_ether_addr(iap)) {
1427 		struct device_node *np = fep->pdev->dev.of_node;
1428 		if (np) {
1429 			const char *mac = of_get_mac_address(np);
1430 			if (mac)
1431 				iap = (unsigned char *) mac;
1432 		}
1433 	}
1434 
1435 	/*
1436 	 * 3) from flash or fuse (via platform data)
1437 	 */
1438 	if (!is_valid_ether_addr(iap)) {
1439 #ifdef CONFIG_M5272
1440 		if (FEC_FLASHMAC)
1441 			iap = (unsigned char *)FEC_FLASHMAC;
1442 #else
1443 		if (pdata)
1444 			iap = (unsigned char *)&pdata->mac;
1445 #endif
1446 	}
1447 
1448 	/*
1449 	 * 4) FEC mac registers set by bootloader
1450 	 */
1451 	if (!is_valid_ether_addr(iap)) {
1452 		*((__be32 *) &tmpaddr[0]) =
1453 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1454 		*((__be16 *) &tmpaddr[4]) =
1455 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1456 		iap = &tmpaddr[0];
1457 	}
1458 
1459 	/*
1460 	 * 5) random mac address
1461 	 */
1462 	if (!is_valid_ether_addr(iap)) {
1463 		/* Report it and use a random ethernet address instead */
1464 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1465 		eth_hw_addr_random(ndev);
1466 		netdev_info(ndev, "Using random MAC address: %pM\n",
1467 			    ndev->dev_addr);
1468 		return;
1469 	}
1470 
1471 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1472 
1473 	/* Adjust MAC if using macaddr */
1474 	if (iap == macaddr)
1475 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1476 }
1477 
1478 /* ------------------------------------------------------------------------- */
1479 
1480 /*
1481  * Phy section
1482  */
1483 static void fec_enet_adjust_link(struct net_device *ndev)
1484 {
1485 	struct fec_enet_private *fep = netdev_priv(ndev);
1486 	struct phy_device *phy_dev = fep->phy_dev;
1487 	int status_change = 0;
1488 
1489 	/* Prevent a state halted on mii error */
1490 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1491 		phy_dev->state = PHY_RESUMING;
1492 		return;
1493 	}
1494 
1495 	/*
1496 	 * If the netdev is down, or is going down, we're not interested
1497 	 * in link state events, so just mark our idea of the link as down
1498 	 * and ignore the event.
1499 	 */
1500 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1501 		fep->link = 0;
1502 	} else if (phy_dev->link) {
1503 		if (!fep->link) {
1504 			fep->link = phy_dev->link;
1505 			status_change = 1;
1506 		}
1507 
1508 		if (fep->full_duplex != phy_dev->duplex) {
1509 			fep->full_duplex = phy_dev->duplex;
1510 			status_change = 1;
1511 		}
1512 
1513 		if (phy_dev->speed != fep->speed) {
1514 			fep->speed = phy_dev->speed;
1515 			status_change = 1;
1516 		}
1517 
1518 		/* if any of the above changed restart the FEC */
1519 		if (status_change) {
1520 			napi_disable(&fep->napi);
1521 			netif_tx_lock_bh(ndev);
1522 			fec_restart(ndev);
1523 			netif_wake_queue(ndev);
1524 			netif_tx_unlock_bh(ndev);
1525 			napi_enable(&fep->napi);
1526 		}
1527 	} else {
1528 		if (fep->link) {
1529 			napi_disable(&fep->napi);
1530 			netif_tx_lock_bh(ndev);
1531 			fec_stop(ndev);
1532 			netif_tx_unlock_bh(ndev);
1533 			napi_enable(&fep->napi);
1534 			fep->link = phy_dev->link;
1535 			status_change = 1;
1536 		}
1537 	}
1538 
1539 	if (status_change)
1540 		phy_print_status(phy_dev);
1541 }
1542 
1543 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1544 {
1545 	struct fec_enet_private *fep = bus->priv;
1546 	unsigned long time_left;
1547 
1548 	fep->mii_timeout = 0;
1549 	init_completion(&fep->mdio_done);
1550 
1551 	/* start a read op */
1552 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1553 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1554 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1555 
1556 	/* wait for end of transfer */
1557 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1558 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1559 	if (time_left == 0) {
1560 		fep->mii_timeout = 1;
1561 		netdev_err(fep->netdev, "MDIO read timeout\n");
1562 		return -ETIMEDOUT;
1563 	}
1564 
1565 	/* return value */
1566 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1567 }
1568 
1569 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1570 			   u16 value)
1571 {
1572 	struct fec_enet_private *fep = bus->priv;
1573 	unsigned long time_left;
1574 
1575 	fep->mii_timeout = 0;
1576 	init_completion(&fep->mdio_done);
1577 
1578 	/* start a write op */
1579 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1580 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1581 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1582 		fep->hwp + FEC_MII_DATA);
1583 
1584 	/* wait for end of transfer */
1585 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1586 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1587 	if (time_left == 0) {
1588 		fep->mii_timeout = 1;
1589 		netdev_err(fep->netdev, "MDIO write timeout\n");
1590 		return -ETIMEDOUT;
1591 	}
1592 
1593 	return 0;
1594 }
1595 
1596 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1597 {
1598 	struct fec_enet_private *fep = netdev_priv(ndev);
1599 	int ret;
1600 
1601 	if (enable) {
1602 		ret = clk_prepare_enable(fep->clk_ahb);
1603 		if (ret)
1604 			return ret;
1605 		ret = clk_prepare_enable(fep->clk_ipg);
1606 		if (ret)
1607 			goto failed_clk_ipg;
1608 		if (fep->clk_enet_out) {
1609 			ret = clk_prepare_enable(fep->clk_enet_out);
1610 			if (ret)
1611 				goto failed_clk_enet_out;
1612 		}
1613 		if (fep->clk_ptp) {
1614 			mutex_lock(&fep->ptp_clk_mutex);
1615 			ret = clk_prepare_enable(fep->clk_ptp);
1616 			if (ret) {
1617 				mutex_unlock(&fep->ptp_clk_mutex);
1618 				goto failed_clk_ptp;
1619 			} else {
1620 				fep->ptp_clk_on = true;
1621 			}
1622 			mutex_unlock(&fep->ptp_clk_mutex);
1623 		}
1624 	} else {
1625 		clk_disable_unprepare(fep->clk_ahb);
1626 		clk_disable_unprepare(fep->clk_ipg);
1627 		if (fep->clk_enet_out)
1628 			clk_disable_unprepare(fep->clk_enet_out);
1629 		if (fep->clk_ptp) {
1630 			mutex_lock(&fep->ptp_clk_mutex);
1631 			clk_disable_unprepare(fep->clk_ptp);
1632 			fep->ptp_clk_on = false;
1633 			mutex_unlock(&fep->ptp_clk_mutex);
1634 		}
1635 	}
1636 
1637 	return 0;
1638 failed_clk_ptp:
1639 	if (fep->clk_enet_out)
1640 		clk_disable_unprepare(fep->clk_enet_out);
1641 failed_clk_enet_out:
1642 		clk_disable_unprepare(fep->clk_ipg);
1643 failed_clk_ipg:
1644 		clk_disable_unprepare(fep->clk_ahb);
1645 
1646 	return ret;
1647 }
1648 
1649 static int fec_enet_mii_probe(struct net_device *ndev)
1650 {
1651 	struct fec_enet_private *fep = netdev_priv(ndev);
1652 	const struct platform_device_id *id_entry =
1653 				platform_get_device_id(fep->pdev);
1654 	struct phy_device *phy_dev = NULL;
1655 	char mdio_bus_id[MII_BUS_ID_SIZE];
1656 	char phy_name[MII_BUS_ID_SIZE + 3];
1657 	int phy_id;
1658 	int dev_id = fep->dev_id;
1659 
1660 	fep->phy_dev = NULL;
1661 
1662 	if (fep->phy_node) {
1663 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1664 					 &fec_enet_adjust_link, 0,
1665 					 fep->phy_interface);
1666 	} else {
1667 		/* check for attached phy */
1668 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1669 			if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1670 				continue;
1671 			if (fep->mii_bus->phy_map[phy_id] == NULL)
1672 				continue;
1673 			if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1674 				continue;
1675 			if (dev_id--)
1676 				continue;
1677 			strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1678 			break;
1679 		}
1680 
1681 		if (phy_id >= PHY_MAX_ADDR) {
1682 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1683 			strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1684 			phy_id = 0;
1685 		}
1686 
1687 		snprintf(phy_name, sizeof(phy_name),
1688 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1689 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1690 				      fep->phy_interface);
1691 	}
1692 
1693 	if (IS_ERR(phy_dev)) {
1694 		netdev_err(ndev, "could not attach to PHY\n");
1695 		return PTR_ERR(phy_dev);
1696 	}
1697 
1698 	/* mask with MAC supported features */
1699 	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1700 		phy_dev->supported &= PHY_GBIT_FEATURES;
1701 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1702 #if !defined(CONFIG_M5272)
1703 		phy_dev->supported |= SUPPORTED_Pause;
1704 #endif
1705 	}
1706 	else
1707 		phy_dev->supported &= PHY_BASIC_FEATURES;
1708 
1709 	phy_dev->advertising = phy_dev->supported;
1710 
1711 	fep->phy_dev = phy_dev;
1712 	fep->link = 0;
1713 	fep->full_duplex = 0;
1714 
1715 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1716 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1717 		    fep->phy_dev->irq);
1718 
1719 	return 0;
1720 }
1721 
1722 static int fec_enet_mii_init(struct platform_device *pdev)
1723 {
1724 	static struct mii_bus *fec0_mii_bus;
1725 	struct net_device *ndev = platform_get_drvdata(pdev);
1726 	struct fec_enet_private *fep = netdev_priv(ndev);
1727 	const struct platform_device_id *id_entry =
1728 				platform_get_device_id(fep->pdev);
1729 	struct device_node *node;
1730 	int err = -ENXIO, i;
1731 
1732 	/*
1733 	 * The dual fec interfaces are not equivalent with enet-mac.
1734 	 * Here are the differences:
1735 	 *
1736 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1737 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1738 	 *  - external phys can only be configured by fec0
1739 	 *
1740 	 * That is to say fec1 can not work independently. It only works
1741 	 * when fec0 is working. The reason behind this design is that the
1742 	 * second interface is added primarily for Switch mode.
1743 	 *
1744 	 * Because of the last point above, both phys are attached on fec0
1745 	 * mdio interface in board design, and need to be configured by
1746 	 * fec0 mii_bus.
1747 	 */
1748 	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1749 		/* fec1 uses fec0 mii_bus */
1750 		if (mii_cnt && fec0_mii_bus) {
1751 			fep->mii_bus = fec0_mii_bus;
1752 			mii_cnt++;
1753 			return 0;
1754 		}
1755 		return -ENOENT;
1756 	}
1757 
1758 	fep->mii_timeout = 0;
1759 
1760 	/*
1761 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1762 	 *
1763 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1764 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1765 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1766 	 * document.
1767 	 */
1768 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1769 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1770 		fep->phy_speed--;
1771 	fep->phy_speed <<= 1;
1772 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1773 
1774 	fep->mii_bus = mdiobus_alloc();
1775 	if (fep->mii_bus == NULL) {
1776 		err = -ENOMEM;
1777 		goto err_out;
1778 	}
1779 
1780 	fep->mii_bus->name = "fec_enet_mii_bus";
1781 	fep->mii_bus->read = fec_enet_mdio_read;
1782 	fep->mii_bus->write = fec_enet_mdio_write;
1783 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1784 		pdev->name, fep->dev_id + 1);
1785 	fep->mii_bus->priv = fep;
1786 	fep->mii_bus->parent = &pdev->dev;
1787 
1788 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1789 	if (!fep->mii_bus->irq) {
1790 		err = -ENOMEM;
1791 		goto err_out_free_mdiobus;
1792 	}
1793 
1794 	for (i = 0; i < PHY_MAX_ADDR; i++)
1795 		fep->mii_bus->irq[i] = PHY_POLL;
1796 
1797 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
1798 	if (node) {
1799 		err = of_mdiobus_register(fep->mii_bus, node);
1800 		of_node_put(node);
1801 	} else {
1802 		err = mdiobus_register(fep->mii_bus);
1803 	}
1804 
1805 	if (err)
1806 		goto err_out_free_mdio_irq;
1807 
1808 	mii_cnt++;
1809 
1810 	/* save fec0 mii_bus */
1811 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1812 		fec0_mii_bus = fep->mii_bus;
1813 
1814 	return 0;
1815 
1816 err_out_free_mdio_irq:
1817 	kfree(fep->mii_bus->irq);
1818 err_out_free_mdiobus:
1819 	mdiobus_free(fep->mii_bus);
1820 err_out:
1821 	return err;
1822 }
1823 
1824 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1825 {
1826 	if (--mii_cnt == 0) {
1827 		mdiobus_unregister(fep->mii_bus);
1828 		kfree(fep->mii_bus->irq);
1829 		mdiobus_free(fep->mii_bus);
1830 	}
1831 }
1832 
1833 static int fec_enet_get_settings(struct net_device *ndev,
1834 				  struct ethtool_cmd *cmd)
1835 {
1836 	struct fec_enet_private *fep = netdev_priv(ndev);
1837 	struct phy_device *phydev = fep->phy_dev;
1838 
1839 	if (!phydev)
1840 		return -ENODEV;
1841 
1842 	return phy_ethtool_gset(phydev, cmd);
1843 }
1844 
1845 static int fec_enet_set_settings(struct net_device *ndev,
1846 				 struct ethtool_cmd *cmd)
1847 {
1848 	struct fec_enet_private *fep = netdev_priv(ndev);
1849 	struct phy_device *phydev = fep->phy_dev;
1850 
1851 	if (!phydev)
1852 		return -ENODEV;
1853 
1854 	return phy_ethtool_sset(phydev, cmd);
1855 }
1856 
1857 static void fec_enet_get_drvinfo(struct net_device *ndev,
1858 				 struct ethtool_drvinfo *info)
1859 {
1860 	struct fec_enet_private *fep = netdev_priv(ndev);
1861 
1862 	strlcpy(info->driver, fep->pdev->dev.driver->name,
1863 		sizeof(info->driver));
1864 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1865 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1866 }
1867 
1868 static int fec_enet_get_ts_info(struct net_device *ndev,
1869 				struct ethtool_ts_info *info)
1870 {
1871 	struct fec_enet_private *fep = netdev_priv(ndev);
1872 
1873 	if (fep->bufdesc_ex) {
1874 
1875 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1876 					SOF_TIMESTAMPING_RX_SOFTWARE |
1877 					SOF_TIMESTAMPING_SOFTWARE |
1878 					SOF_TIMESTAMPING_TX_HARDWARE |
1879 					SOF_TIMESTAMPING_RX_HARDWARE |
1880 					SOF_TIMESTAMPING_RAW_HARDWARE;
1881 		if (fep->ptp_clock)
1882 			info->phc_index = ptp_clock_index(fep->ptp_clock);
1883 		else
1884 			info->phc_index = -1;
1885 
1886 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1887 				 (1 << HWTSTAMP_TX_ON);
1888 
1889 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1890 				   (1 << HWTSTAMP_FILTER_ALL);
1891 		return 0;
1892 	} else {
1893 		return ethtool_op_get_ts_info(ndev, info);
1894 	}
1895 }
1896 
1897 #if !defined(CONFIG_M5272)
1898 
1899 static void fec_enet_get_pauseparam(struct net_device *ndev,
1900 				    struct ethtool_pauseparam *pause)
1901 {
1902 	struct fec_enet_private *fep = netdev_priv(ndev);
1903 
1904 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1905 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1906 	pause->rx_pause = pause->tx_pause;
1907 }
1908 
1909 static int fec_enet_set_pauseparam(struct net_device *ndev,
1910 				   struct ethtool_pauseparam *pause)
1911 {
1912 	struct fec_enet_private *fep = netdev_priv(ndev);
1913 
1914 	if (!fep->phy_dev)
1915 		return -ENODEV;
1916 
1917 	if (pause->tx_pause != pause->rx_pause) {
1918 		netdev_info(ndev,
1919 			"hardware only support enable/disable both tx and rx");
1920 		return -EINVAL;
1921 	}
1922 
1923 	fep->pause_flag = 0;
1924 
1925 	/* tx pause must be same as rx pause */
1926 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1927 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1928 
1929 	if (pause->rx_pause || pause->autoneg) {
1930 		fep->phy_dev->supported |= ADVERTISED_Pause;
1931 		fep->phy_dev->advertising |= ADVERTISED_Pause;
1932 	} else {
1933 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
1934 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1935 	}
1936 
1937 	if (pause->autoneg) {
1938 		if (netif_running(ndev))
1939 			fec_stop(ndev);
1940 		phy_start_aneg(fep->phy_dev);
1941 	}
1942 	if (netif_running(ndev)) {
1943 		napi_disable(&fep->napi);
1944 		netif_tx_lock_bh(ndev);
1945 		fec_restart(ndev);
1946 		netif_wake_queue(ndev);
1947 		netif_tx_unlock_bh(ndev);
1948 		napi_enable(&fep->napi);
1949 	}
1950 
1951 	return 0;
1952 }
1953 
1954 static const struct fec_stat {
1955 	char name[ETH_GSTRING_LEN];
1956 	u16 offset;
1957 } fec_stats[] = {
1958 	/* RMON TX */
1959 	{ "tx_dropped", RMON_T_DROP },
1960 	{ "tx_packets", RMON_T_PACKETS },
1961 	{ "tx_broadcast", RMON_T_BC_PKT },
1962 	{ "tx_multicast", RMON_T_MC_PKT },
1963 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
1964 	{ "tx_undersize", RMON_T_UNDERSIZE },
1965 	{ "tx_oversize", RMON_T_OVERSIZE },
1966 	{ "tx_fragment", RMON_T_FRAG },
1967 	{ "tx_jabber", RMON_T_JAB },
1968 	{ "tx_collision", RMON_T_COL },
1969 	{ "tx_64byte", RMON_T_P64 },
1970 	{ "tx_65to127byte", RMON_T_P65TO127 },
1971 	{ "tx_128to255byte", RMON_T_P128TO255 },
1972 	{ "tx_256to511byte", RMON_T_P256TO511 },
1973 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
1974 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
1975 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
1976 	{ "tx_octets", RMON_T_OCTETS },
1977 
1978 	/* IEEE TX */
1979 	{ "IEEE_tx_drop", IEEE_T_DROP },
1980 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1981 	{ "IEEE_tx_1col", IEEE_T_1COL },
1982 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
1983 	{ "IEEE_tx_def", IEEE_T_DEF },
1984 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
1985 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
1986 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
1987 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
1988 	{ "IEEE_tx_sqe", IEEE_T_SQE },
1989 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1990 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1991 
1992 	/* RMON RX */
1993 	{ "rx_packets", RMON_R_PACKETS },
1994 	{ "rx_broadcast", RMON_R_BC_PKT },
1995 	{ "rx_multicast", RMON_R_MC_PKT },
1996 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
1997 	{ "rx_undersize", RMON_R_UNDERSIZE },
1998 	{ "rx_oversize", RMON_R_OVERSIZE },
1999 	{ "rx_fragment", RMON_R_FRAG },
2000 	{ "rx_jabber", RMON_R_JAB },
2001 	{ "rx_64byte", RMON_R_P64 },
2002 	{ "rx_65to127byte", RMON_R_P65TO127 },
2003 	{ "rx_128to255byte", RMON_R_P128TO255 },
2004 	{ "rx_256to511byte", RMON_R_P256TO511 },
2005 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2006 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2007 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2008 	{ "rx_octets", RMON_R_OCTETS },
2009 
2010 	/* IEEE RX */
2011 	{ "IEEE_rx_drop", IEEE_R_DROP },
2012 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2013 	{ "IEEE_rx_crc", IEEE_R_CRC },
2014 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2015 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2016 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2017 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2018 };
2019 
2020 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2021 	struct ethtool_stats *stats, u64 *data)
2022 {
2023 	struct fec_enet_private *fep = netdev_priv(dev);
2024 	int i;
2025 
2026 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2027 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2028 }
2029 
2030 static void fec_enet_get_strings(struct net_device *netdev,
2031 	u32 stringset, u8 *data)
2032 {
2033 	int i;
2034 	switch (stringset) {
2035 	case ETH_SS_STATS:
2036 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2037 			memcpy(data + i * ETH_GSTRING_LEN,
2038 				fec_stats[i].name, ETH_GSTRING_LEN);
2039 		break;
2040 	}
2041 }
2042 
2043 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2044 {
2045 	switch (sset) {
2046 	case ETH_SS_STATS:
2047 		return ARRAY_SIZE(fec_stats);
2048 	default:
2049 		return -EOPNOTSUPP;
2050 	}
2051 }
2052 #endif /* !defined(CONFIG_M5272) */
2053 
2054 static int fec_enet_nway_reset(struct net_device *dev)
2055 {
2056 	struct fec_enet_private *fep = netdev_priv(dev);
2057 	struct phy_device *phydev = fep->phy_dev;
2058 
2059 	if (!phydev)
2060 		return -ENODEV;
2061 
2062 	return genphy_restart_aneg(phydev);
2063 }
2064 
2065 static const struct ethtool_ops fec_enet_ethtool_ops = {
2066 	.get_settings		= fec_enet_get_settings,
2067 	.set_settings		= fec_enet_set_settings,
2068 	.get_drvinfo		= fec_enet_get_drvinfo,
2069 	.nway_reset		= fec_enet_nway_reset,
2070 	.get_link		= ethtool_op_get_link,
2071 #ifndef CONFIG_M5272
2072 	.get_pauseparam		= fec_enet_get_pauseparam,
2073 	.set_pauseparam		= fec_enet_set_pauseparam,
2074 	.get_strings		= fec_enet_get_strings,
2075 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2076 	.get_sset_count		= fec_enet_get_sset_count,
2077 #endif
2078 	.get_ts_info		= fec_enet_get_ts_info,
2079 };
2080 
2081 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2082 {
2083 	struct fec_enet_private *fep = netdev_priv(ndev);
2084 	struct phy_device *phydev = fep->phy_dev;
2085 
2086 	if (!netif_running(ndev))
2087 		return -EINVAL;
2088 
2089 	if (!phydev)
2090 		return -ENODEV;
2091 
2092 	if (fep->bufdesc_ex) {
2093 		if (cmd == SIOCSHWTSTAMP)
2094 			return fec_ptp_set(ndev, rq);
2095 		if (cmd == SIOCGHWTSTAMP)
2096 			return fec_ptp_get(ndev, rq);
2097 	}
2098 
2099 	return phy_mii_ioctl(phydev, rq, cmd);
2100 }
2101 
2102 static void fec_enet_free_buffers(struct net_device *ndev)
2103 {
2104 	struct fec_enet_private *fep = netdev_priv(ndev);
2105 	unsigned int i;
2106 	struct sk_buff *skb;
2107 	struct bufdesc	*bdp;
2108 
2109 	bdp = fep->rx_bd_base;
2110 	for (i = 0; i < fep->rx_ring_size; i++) {
2111 		skb = fep->rx_skbuff[i];
2112 		fep->rx_skbuff[i] = NULL;
2113 		if (skb) {
2114 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
2115 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
2116 			dev_kfree_skb(skb);
2117 		}
2118 		bdp = fec_enet_get_nextdesc(bdp, fep);
2119 	}
2120 
2121 	bdp = fep->tx_bd_base;
2122 	for (i = 0; i < fep->tx_ring_size; i++) {
2123 		kfree(fep->tx_bounce[i]);
2124 		fep->tx_bounce[i] = NULL;
2125 		skb = fep->tx_skbuff[i];
2126 		fep->tx_skbuff[i] = NULL;
2127 		dev_kfree_skb(skb);
2128 	}
2129 }
2130 
2131 static int fec_enet_alloc_buffers(struct net_device *ndev)
2132 {
2133 	struct fec_enet_private *fep = netdev_priv(ndev);
2134 	unsigned int i;
2135 	struct sk_buff *skb;
2136 	struct bufdesc	*bdp;
2137 
2138 	bdp = fep->rx_bd_base;
2139 	for (i = 0; i < fep->rx_ring_size; i++) {
2140 		dma_addr_t addr;
2141 
2142 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2143 		if (!skb)
2144 			goto err_alloc;
2145 
2146 		addr = dma_map_single(&fep->pdev->dev, skb->data,
2147 				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
2148 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
2149 			dev_kfree_skb(skb);
2150 			if (net_ratelimit())
2151 				netdev_err(ndev, "Rx DMA memory map failed\n");
2152 			goto err_alloc;
2153 		}
2154 
2155 		fep->rx_skbuff[i] = skb;
2156 		bdp->cbd_bufaddr = addr;
2157 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
2158 
2159 		if (fep->bufdesc_ex) {
2160 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2161 			ebdp->cbd_esc = BD_ENET_RX_INT;
2162 		}
2163 
2164 		bdp = fec_enet_get_nextdesc(bdp, fep);
2165 	}
2166 
2167 	/* Set the last buffer to wrap. */
2168 	bdp = fec_enet_get_prevdesc(bdp, fep);
2169 	bdp->cbd_sc |= BD_SC_WRAP;
2170 
2171 	bdp = fep->tx_bd_base;
2172 	for (i = 0; i < fep->tx_ring_size; i++) {
2173 		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2174 		if (!fep->tx_bounce[i])
2175 			goto err_alloc;
2176 
2177 		bdp->cbd_sc = 0;
2178 		bdp->cbd_bufaddr = 0;
2179 
2180 		if (fep->bufdesc_ex) {
2181 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2182 			ebdp->cbd_esc = BD_ENET_TX_INT;
2183 		}
2184 
2185 		bdp = fec_enet_get_nextdesc(bdp, fep);
2186 	}
2187 
2188 	/* Set the last buffer to wrap. */
2189 	bdp = fec_enet_get_prevdesc(bdp, fep);
2190 	bdp->cbd_sc |= BD_SC_WRAP;
2191 
2192 	return 0;
2193 
2194  err_alloc:
2195 	fec_enet_free_buffers(ndev);
2196 	return -ENOMEM;
2197 }
2198 
2199 static int
2200 fec_enet_open(struct net_device *ndev)
2201 {
2202 	struct fec_enet_private *fep = netdev_priv(ndev);
2203 	int ret;
2204 
2205 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2206 	ret = fec_enet_clk_enable(ndev, true);
2207 	if (ret)
2208 		return ret;
2209 
2210 	/* I should reset the ring buffers here, but I don't yet know
2211 	 * a simple way to do that.
2212 	 */
2213 
2214 	ret = fec_enet_alloc_buffers(ndev);
2215 	if (ret)
2216 		return ret;
2217 
2218 	/* Probe and connect to PHY when open the interface */
2219 	ret = fec_enet_mii_probe(ndev);
2220 	if (ret) {
2221 		fec_enet_free_buffers(ndev);
2222 		return ret;
2223 	}
2224 
2225 	fec_restart(ndev);
2226 	napi_enable(&fep->napi);
2227 	phy_start(fep->phy_dev);
2228 	netif_start_queue(ndev);
2229 	return 0;
2230 }
2231 
2232 static int
2233 fec_enet_close(struct net_device *ndev)
2234 {
2235 	struct fec_enet_private *fep = netdev_priv(ndev);
2236 
2237 	phy_stop(fep->phy_dev);
2238 
2239 	if (netif_device_present(ndev)) {
2240 		napi_disable(&fep->napi);
2241 		netif_tx_disable(ndev);
2242 		fec_stop(ndev);
2243 	}
2244 
2245 	phy_disconnect(fep->phy_dev);
2246 	fep->phy_dev = NULL;
2247 
2248 	fec_enet_clk_enable(ndev, false);
2249 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2250 	fec_enet_free_buffers(ndev);
2251 
2252 	return 0;
2253 }
2254 
2255 /* Set or clear the multicast filter for this adaptor.
2256  * Skeleton taken from sunlance driver.
2257  * The CPM Ethernet implementation allows Multicast as well as individual
2258  * MAC address filtering.  Some of the drivers check to make sure it is
2259  * a group multicast address, and discard those that are not.  I guess I
2260  * will do the same for now, but just remove the test if you want
2261  * individual filtering as well (do the upper net layers want or support
2262  * this kind of feature?).
2263  */
2264 
2265 #define HASH_BITS	6		/* #bits in hash */
2266 #define CRC32_POLY	0xEDB88320
2267 
2268 static void set_multicast_list(struct net_device *ndev)
2269 {
2270 	struct fec_enet_private *fep = netdev_priv(ndev);
2271 	struct netdev_hw_addr *ha;
2272 	unsigned int i, bit, data, crc, tmp;
2273 	unsigned char hash;
2274 
2275 	if (ndev->flags & IFF_PROMISC) {
2276 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2277 		tmp |= 0x8;
2278 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2279 		return;
2280 	}
2281 
2282 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2283 	tmp &= ~0x8;
2284 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2285 
2286 	if (ndev->flags & IFF_ALLMULTI) {
2287 		/* Catch all multicast addresses, so set the
2288 		 * filter to all 1's
2289 		 */
2290 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2291 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2292 
2293 		return;
2294 	}
2295 
2296 	/* Clear filter and add the addresses in hash register
2297 	 */
2298 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2299 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2300 
2301 	netdev_for_each_mc_addr(ha, ndev) {
2302 		/* calculate crc32 value of mac address */
2303 		crc = 0xffffffff;
2304 
2305 		for (i = 0; i < ndev->addr_len; i++) {
2306 			data = ha->addr[i];
2307 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2308 				crc = (crc >> 1) ^
2309 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2310 			}
2311 		}
2312 
2313 		/* only upper 6 bits (HASH_BITS) are used
2314 		 * which point to specific bit in he hash registers
2315 		 */
2316 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2317 
2318 		if (hash > 31) {
2319 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2320 			tmp |= 1 << (hash - 32);
2321 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2322 		} else {
2323 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2324 			tmp |= 1 << hash;
2325 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2326 		}
2327 	}
2328 }
2329 
2330 /* Set a MAC change in hardware. */
2331 static int
2332 fec_set_mac_address(struct net_device *ndev, void *p)
2333 {
2334 	struct fec_enet_private *fep = netdev_priv(ndev);
2335 	struct sockaddr *addr = p;
2336 
2337 	if (addr) {
2338 		if (!is_valid_ether_addr(addr->sa_data))
2339 			return -EADDRNOTAVAIL;
2340 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2341 	}
2342 
2343 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2344 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2345 		fep->hwp + FEC_ADDR_LOW);
2346 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2347 		fep->hwp + FEC_ADDR_HIGH);
2348 	return 0;
2349 }
2350 
2351 #ifdef CONFIG_NET_POLL_CONTROLLER
2352 /**
2353  * fec_poll_controller - FEC Poll controller function
2354  * @dev: The FEC network adapter
2355  *
2356  * Polled functionality used by netconsole and others in non interrupt mode
2357  *
2358  */
2359 static void fec_poll_controller(struct net_device *dev)
2360 {
2361 	int i;
2362 	struct fec_enet_private *fep = netdev_priv(dev);
2363 
2364 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2365 		if (fep->irq[i] > 0) {
2366 			disable_irq(fep->irq[i]);
2367 			fec_enet_interrupt(fep->irq[i], dev);
2368 			enable_irq(fep->irq[i]);
2369 		}
2370 	}
2371 }
2372 #endif
2373 
2374 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2375 
2376 static int fec_set_features(struct net_device *netdev,
2377 	netdev_features_t features)
2378 {
2379 	struct fec_enet_private *fep = netdev_priv(netdev);
2380 	netdev_features_t changed = features ^ netdev->features;
2381 
2382 	/* Quiesce the device if necessary */
2383 	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2384 		napi_disable(&fep->napi);
2385 		netif_tx_lock_bh(netdev);
2386 		fec_stop(netdev);
2387 	}
2388 
2389 	netdev->features = features;
2390 
2391 	/* Receive checksum has been changed */
2392 	if (changed & NETIF_F_RXCSUM) {
2393 		if (features & NETIF_F_RXCSUM)
2394 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2395 		else
2396 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2397 	}
2398 
2399 	/* Resume the device after updates */
2400 	if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2401 		fec_restart(netdev);
2402 		netif_wake_queue(netdev);
2403 		netif_tx_unlock_bh(netdev);
2404 		napi_enable(&fep->napi);
2405 	}
2406 
2407 	return 0;
2408 }
2409 
2410 static const struct net_device_ops fec_netdev_ops = {
2411 	.ndo_open		= fec_enet_open,
2412 	.ndo_stop		= fec_enet_close,
2413 	.ndo_start_xmit		= fec_enet_start_xmit,
2414 	.ndo_set_rx_mode	= set_multicast_list,
2415 	.ndo_change_mtu		= eth_change_mtu,
2416 	.ndo_validate_addr	= eth_validate_addr,
2417 	.ndo_tx_timeout		= fec_timeout,
2418 	.ndo_set_mac_address	= fec_set_mac_address,
2419 	.ndo_do_ioctl		= fec_enet_ioctl,
2420 #ifdef CONFIG_NET_POLL_CONTROLLER
2421 	.ndo_poll_controller	= fec_poll_controller,
2422 #endif
2423 	.ndo_set_features	= fec_set_features,
2424 };
2425 
2426  /*
2427   * XXX:  We need to clean up on failure exits here.
2428   *
2429   */
2430 static int fec_enet_init(struct net_device *ndev)
2431 {
2432 	struct fec_enet_private *fep = netdev_priv(ndev);
2433 	const struct platform_device_id *id_entry =
2434 				platform_get_device_id(fep->pdev);
2435 	struct bufdesc *cbd_base;
2436 	int bd_size;
2437 
2438 	/* init the tx & rx ring size */
2439 	fep->tx_ring_size = TX_RING_SIZE;
2440 	fep->rx_ring_size = RX_RING_SIZE;
2441 
2442 	fep->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2443 	fep->tx_wake_threshold = (fep->tx_ring_size - fep->tx_stop_threshold) / 2;
2444 
2445 	if (fep->bufdesc_ex)
2446 		fep->bufdesc_size = sizeof(struct bufdesc_ex);
2447 	else
2448 		fep->bufdesc_size = sizeof(struct bufdesc);
2449 	bd_size = (fep->tx_ring_size + fep->rx_ring_size) *
2450 			fep->bufdesc_size;
2451 
2452 	/* Allocate memory for buffer descriptors. */
2453 	cbd_base = dma_alloc_coherent(NULL, bd_size, &fep->bd_dma,
2454 				      GFP_KERNEL);
2455 	if (!cbd_base)
2456 		return -ENOMEM;
2457 
2458 	fep->tso_hdrs = dma_alloc_coherent(NULL, fep->tx_ring_size * TSO_HEADER_SIZE,
2459 						&fep->tso_hdrs_dma, GFP_KERNEL);
2460 	if (!fep->tso_hdrs) {
2461 		dma_free_coherent(NULL, bd_size, cbd_base, fep->bd_dma);
2462 		return -ENOMEM;
2463 	}
2464 
2465 	memset(cbd_base, 0, PAGE_SIZE);
2466 
2467 	fep->netdev = ndev;
2468 
2469 	/* Get the Ethernet address */
2470 	fec_get_mac(ndev);
2471 	/* make sure MAC we just acquired is programmed into the hw */
2472 	fec_set_mac_address(ndev, NULL);
2473 
2474 	/* Set receive and transmit descriptor base. */
2475 	fep->rx_bd_base = cbd_base;
2476 	if (fep->bufdesc_ex)
2477 		fep->tx_bd_base = (struct bufdesc *)
2478 			(((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2479 	else
2480 		fep->tx_bd_base = cbd_base + fep->rx_ring_size;
2481 
2482 	/* The FEC Ethernet specific entries in the device structure */
2483 	ndev->watchdog_timeo = TX_TIMEOUT;
2484 	ndev->netdev_ops = &fec_netdev_ops;
2485 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
2486 
2487 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2488 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2489 
2490 	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN)
2491 		/* enable hw VLAN support */
2492 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2493 
2494 	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
2495 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
2496 
2497 		/* enable hw accelerator */
2498 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2499 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
2500 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2501 	}
2502 
2503 	ndev->hw_features = ndev->features;
2504 
2505 	fec_restart(ndev);
2506 
2507 	return 0;
2508 }
2509 
2510 #ifdef CONFIG_OF
2511 static void fec_reset_phy(struct platform_device *pdev)
2512 {
2513 	int err, phy_reset;
2514 	int msec = 1;
2515 	struct device_node *np = pdev->dev.of_node;
2516 
2517 	if (!np)
2518 		return;
2519 
2520 	of_property_read_u32(np, "phy-reset-duration", &msec);
2521 	/* A sane reset duration should not be longer than 1s */
2522 	if (msec > 1000)
2523 		msec = 1;
2524 
2525 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2526 	if (!gpio_is_valid(phy_reset))
2527 		return;
2528 
2529 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
2530 				    GPIOF_OUT_INIT_LOW, "phy-reset");
2531 	if (err) {
2532 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2533 		return;
2534 	}
2535 	msleep(msec);
2536 	gpio_set_value(phy_reset, 1);
2537 }
2538 #else /* CONFIG_OF */
2539 static void fec_reset_phy(struct platform_device *pdev)
2540 {
2541 	/*
2542 	 * In case of platform probe, the reset has been done
2543 	 * by machine code.
2544 	 */
2545 }
2546 #endif /* CONFIG_OF */
2547 
2548 static int
2549 fec_probe(struct platform_device *pdev)
2550 {
2551 	struct fec_enet_private *fep;
2552 	struct fec_platform_data *pdata;
2553 	struct net_device *ndev;
2554 	int i, irq, ret = 0;
2555 	struct resource *r;
2556 	const struct of_device_id *of_id;
2557 	static int dev_id;
2558 	struct device_node *np = pdev->dev.of_node, *phy_node;
2559 
2560 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
2561 	if (of_id)
2562 		pdev->id_entry = of_id->data;
2563 
2564 	/* Init network device */
2565 	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2566 	if (!ndev)
2567 		return -ENOMEM;
2568 
2569 	SET_NETDEV_DEV(ndev, &pdev->dev);
2570 
2571 	/* setup board info structure */
2572 	fep = netdev_priv(ndev);
2573 
2574 #if !defined(CONFIG_M5272)
2575 	/* default enable pause frame auto negotiation */
2576 	if (pdev->id_entry &&
2577 	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2578 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2579 #endif
2580 
2581 	/* Select default pin state */
2582 	pinctrl_pm_select_default_state(&pdev->dev);
2583 
2584 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2585 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2586 	if (IS_ERR(fep->hwp)) {
2587 		ret = PTR_ERR(fep->hwp);
2588 		goto failed_ioremap;
2589 	}
2590 
2591 	fep->pdev = pdev;
2592 	fep->dev_id = dev_id++;
2593 
2594 	fep->bufdesc_ex = 0;
2595 
2596 	platform_set_drvdata(pdev, ndev);
2597 
2598 	phy_node = of_parse_phandle(np, "phy-handle", 0);
2599 	if (!phy_node && of_phy_is_fixed_link(np)) {
2600 		ret = of_phy_register_fixed_link(np);
2601 		if (ret < 0) {
2602 			dev_err(&pdev->dev,
2603 				"broken fixed-link specification\n");
2604 			goto failed_phy;
2605 		}
2606 		phy_node = of_node_get(np);
2607 	}
2608 	fep->phy_node = phy_node;
2609 
2610 	ret = of_get_phy_mode(pdev->dev.of_node);
2611 	if (ret < 0) {
2612 		pdata = dev_get_platdata(&pdev->dev);
2613 		if (pdata)
2614 			fep->phy_interface = pdata->phy;
2615 		else
2616 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
2617 	} else {
2618 		fep->phy_interface = ret;
2619 	}
2620 
2621 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2622 	if (IS_ERR(fep->clk_ipg)) {
2623 		ret = PTR_ERR(fep->clk_ipg);
2624 		goto failed_clk;
2625 	}
2626 
2627 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2628 	if (IS_ERR(fep->clk_ahb)) {
2629 		ret = PTR_ERR(fep->clk_ahb);
2630 		goto failed_clk;
2631 	}
2632 
2633 	/* enet_out is optional, depends on board */
2634 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2635 	if (IS_ERR(fep->clk_enet_out))
2636 		fep->clk_enet_out = NULL;
2637 
2638 	fep->ptp_clk_on = false;
2639 	mutex_init(&fep->ptp_clk_mutex);
2640 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2641 	fep->bufdesc_ex =
2642 		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2643 	if (IS_ERR(fep->clk_ptp)) {
2644 		fep->clk_ptp = NULL;
2645 		fep->bufdesc_ex = 0;
2646 	}
2647 
2648 	ret = fec_enet_clk_enable(ndev, true);
2649 	if (ret)
2650 		goto failed_clk;
2651 
2652 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2653 	if (!IS_ERR(fep->reg_phy)) {
2654 		ret = regulator_enable(fep->reg_phy);
2655 		if (ret) {
2656 			dev_err(&pdev->dev,
2657 				"Failed to enable phy regulator: %d\n", ret);
2658 			goto failed_regulator;
2659 		}
2660 	} else {
2661 		fep->reg_phy = NULL;
2662 	}
2663 
2664 	fec_reset_phy(pdev);
2665 
2666 	if (fep->bufdesc_ex)
2667 		fec_ptp_init(pdev);
2668 
2669 	ret = fec_enet_init(ndev);
2670 	if (ret)
2671 		goto failed_init;
2672 
2673 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2674 		irq = platform_get_irq(pdev, i);
2675 		if (irq < 0) {
2676 			if (i)
2677 				break;
2678 			ret = irq;
2679 			goto failed_irq;
2680 		}
2681 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2682 				       0, pdev->name, ndev);
2683 		if (ret)
2684 			goto failed_irq;
2685 	}
2686 
2687 	ret = fec_enet_mii_init(pdev);
2688 	if (ret)
2689 		goto failed_mii_init;
2690 
2691 	/* Carrier starts down, phylib will bring it up */
2692 	netif_carrier_off(ndev);
2693 	fec_enet_clk_enable(ndev, false);
2694 	pinctrl_pm_select_sleep_state(&pdev->dev);
2695 
2696 	ret = register_netdev(ndev);
2697 	if (ret)
2698 		goto failed_register;
2699 
2700 	if (fep->bufdesc_ex && fep->ptp_clock)
2701 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2702 
2703 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
2704 	return 0;
2705 
2706 failed_register:
2707 	fec_enet_mii_remove(fep);
2708 failed_mii_init:
2709 failed_irq:
2710 failed_init:
2711 	if (fep->reg_phy)
2712 		regulator_disable(fep->reg_phy);
2713 failed_regulator:
2714 	fec_enet_clk_enable(ndev, false);
2715 failed_clk:
2716 failed_phy:
2717 	of_node_put(phy_node);
2718 failed_ioremap:
2719 	free_netdev(ndev);
2720 
2721 	return ret;
2722 }
2723 
2724 static int
2725 fec_drv_remove(struct platform_device *pdev)
2726 {
2727 	struct net_device *ndev = platform_get_drvdata(pdev);
2728 	struct fec_enet_private *fep = netdev_priv(ndev);
2729 
2730 	cancel_delayed_work_sync(&fep->time_keep);
2731 	cancel_work_sync(&fep->tx_timeout_work);
2732 	unregister_netdev(ndev);
2733 	fec_enet_mii_remove(fep);
2734 	if (fep->reg_phy)
2735 		regulator_disable(fep->reg_phy);
2736 	if (fep->ptp_clock)
2737 		ptp_clock_unregister(fep->ptp_clock);
2738 	fec_enet_clk_enable(ndev, false);
2739 	of_node_put(fep->phy_node);
2740 	free_netdev(ndev);
2741 
2742 	return 0;
2743 }
2744 
2745 static int __maybe_unused fec_suspend(struct device *dev)
2746 {
2747 	struct net_device *ndev = dev_get_drvdata(dev);
2748 	struct fec_enet_private *fep = netdev_priv(ndev);
2749 
2750 	rtnl_lock();
2751 	if (netif_running(ndev)) {
2752 		phy_stop(fep->phy_dev);
2753 		napi_disable(&fep->napi);
2754 		netif_tx_lock_bh(ndev);
2755 		netif_device_detach(ndev);
2756 		netif_tx_unlock_bh(ndev);
2757 		fec_stop(ndev);
2758 	}
2759 	rtnl_unlock();
2760 
2761 	fec_enet_clk_enable(ndev, false);
2762 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2763 
2764 	if (fep->reg_phy)
2765 		regulator_disable(fep->reg_phy);
2766 
2767 	return 0;
2768 }
2769 
2770 static int __maybe_unused fec_resume(struct device *dev)
2771 {
2772 	struct net_device *ndev = dev_get_drvdata(dev);
2773 	struct fec_enet_private *fep = netdev_priv(ndev);
2774 	int ret;
2775 
2776 	if (fep->reg_phy) {
2777 		ret = regulator_enable(fep->reg_phy);
2778 		if (ret)
2779 			return ret;
2780 	}
2781 
2782 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2783 	ret = fec_enet_clk_enable(ndev, true);
2784 	if (ret)
2785 		goto failed_clk;
2786 
2787 	rtnl_lock();
2788 	if (netif_running(ndev)) {
2789 		fec_restart(ndev);
2790 		netif_tx_lock_bh(ndev);
2791 		netif_device_attach(ndev);
2792 		netif_tx_unlock_bh(ndev);
2793 		napi_enable(&fep->napi);
2794 		phy_start(fep->phy_dev);
2795 	}
2796 	rtnl_unlock();
2797 
2798 	return 0;
2799 
2800 failed_clk:
2801 	if (fep->reg_phy)
2802 		regulator_disable(fep->reg_phy);
2803 	return ret;
2804 }
2805 
2806 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2807 
2808 static struct platform_driver fec_driver = {
2809 	.driver	= {
2810 		.name	= DRIVER_NAME,
2811 		.owner	= THIS_MODULE,
2812 		.pm	= &fec_pm_ops,
2813 		.of_match_table = fec_dt_ids,
2814 	},
2815 	.id_table = fec_devtype,
2816 	.probe	= fec_probe,
2817 	.remove	= fec_drv_remove,
2818 };
2819 
2820 module_platform_driver(fec_driver);
2821 
2822 MODULE_ALIAS("platform:"DRIVER_NAME);
2823 MODULE_LICENSE("GPL");
2824