1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
64 
65 #include <asm/cacheflush.h>
66 
67 #include "fec.h"
68 
69 static void set_multicast_list(struct net_device *ndev);
70 static void fec_enet_itr_coal_init(struct net_device *ndev);
71 
72 #define DRIVER_NAME	"fec"
73 
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
75 
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE	(1 << 5)
78 #define FEC_ENET_RSEM_V	0x84
79 #define FEC_ENET_RSFL_V	16
80 #define FEC_ENET_RAEM_V	0x8
81 #define FEC_ENET_RAFL_V	0x8
82 #define FEC_ENET_OPD_V	0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
84 
85 static struct platform_device_id fec_devtype[] = {
86 	{
87 		/* keep it for coldfire */
88 		.name = DRIVER_NAME,
89 		.driver_data = 0,
90 	}, {
91 		.name = "imx25-fec",
92 		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
93 	}, {
94 		.name = "imx27-fec",
95 		.driver_data = FEC_QUIRK_HAS_RACC,
96 	}, {
97 		.name = "imx28-fec",
98 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
99 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
100 	}, {
101 		.name = "imx6q-fec",
102 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
103 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
104 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
105 				FEC_QUIRK_HAS_RACC,
106 	}, {
107 		.name = "mvf600-fec",
108 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
109 	}, {
110 		.name = "imx6sx-fec",
111 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
114 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
115 				FEC_QUIRK_HAS_RACC,
116 	}, {
117 		/* sentinel */
118 	}
119 };
120 MODULE_DEVICE_TABLE(platform, fec_devtype);
121 
122 enum imx_fec_type {
123 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
124 	IMX27_FEC,	/* runs on i.mx27/35/51 */
125 	IMX28_FEC,
126 	IMX6Q_FEC,
127 	MVF600_FEC,
128 	IMX6SX_FEC,
129 };
130 
131 static const struct of_device_id fec_dt_ids[] = {
132 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
133 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
134 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
135 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
136 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
137 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
138 	{ /* sentinel */ }
139 };
140 MODULE_DEVICE_TABLE(of, fec_dt_ids);
141 
142 static unsigned char macaddr[ETH_ALEN];
143 module_param_array(macaddr, byte, NULL, 0);
144 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
145 
146 #if defined(CONFIG_M5272)
147 /*
148  * Some hardware gets it MAC address out of local flash memory.
149  * if this is non-zero then assume it is the address to get MAC from.
150  */
151 #if defined(CONFIG_NETtel)
152 #define	FEC_FLASHMAC	0xf0006006
153 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
154 #define	FEC_FLASHMAC	0xf0006000
155 #elif defined(CONFIG_CANCam)
156 #define	FEC_FLASHMAC	0xf0020000
157 #elif defined (CONFIG_M5272C3)
158 #define	FEC_FLASHMAC	(0xffe04000 + 4)
159 #elif defined(CONFIG_MOD5272)
160 #define FEC_FLASHMAC	0xffc0406b
161 #else
162 #define	FEC_FLASHMAC	0
163 #endif
164 #endif /* CONFIG_M5272 */
165 
166 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
167  */
168 #define PKT_MAXBUF_SIZE		1522
169 #define PKT_MINBUF_SIZE		64
170 #define PKT_MAXBLR_SIZE		1536
171 
172 /* FEC receive acceleration */
173 #define FEC_RACC_IPDIS		(1 << 1)
174 #define FEC_RACC_PRODIS		(1 << 2)
175 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
176 
177 /*
178  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
179  * size bits. Other FEC hardware does not, so we need to take that into
180  * account when setting it.
181  */
182 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
183     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
184 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
185 #else
186 #define	OPT_FRAME_SIZE	0
187 #endif
188 
189 /* FEC MII MMFR bits definition */
190 #define FEC_MMFR_ST		(1 << 30)
191 #define FEC_MMFR_OP_READ	(2 << 28)
192 #define FEC_MMFR_OP_WRITE	(1 << 28)
193 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
194 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
195 #define FEC_MMFR_TA		(2 << 16)
196 #define FEC_MMFR_DATA(v)	(v & 0xffff)
197 /* FEC ECR bits definition */
198 #define FEC_ECR_MAGICEN		(1 << 2)
199 #define FEC_ECR_SLEEP		(1 << 3)
200 
201 #define FEC_MII_TIMEOUT		30000 /* us */
202 
203 /* Transmitter timeout */
204 #define TX_TIMEOUT (2 * HZ)
205 
206 #define FEC_PAUSE_FLAG_AUTONEG	0x1
207 #define FEC_PAUSE_FLAG_ENABLE	0x2
208 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
209 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
210 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
211 
212 #define COPYBREAK_DEFAULT	256
213 
214 #define TSO_HEADER_SIZE		128
215 /* Max number of allowed TCP segments for software TSO */
216 #define FEC_MAX_TSO_SEGS	100
217 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
218 
219 #define IS_TSO_HEADER(txq, addr) \
220 	((addr >= txq->tso_hdrs_dma) && \
221 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
222 
223 static int mii_cnt;
224 
225 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
226 					     struct bufdesc_prop *bd)
227 {
228 	return (bdp >= bd->last) ? bd->base
229 			: (struct bufdesc *)(((unsigned)bdp) + bd->dsize);
230 }
231 
232 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
233 					     struct bufdesc_prop *bd)
234 {
235 	return (bdp <= bd->base) ? bd->last
236 			: (struct bufdesc *)(((unsigned)bdp) - bd->dsize);
237 }
238 
239 static int fec_enet_get_bd_index(struct bufdesc *bdp,
240 				 struct bufdesc_prop *bd)
241 {
242 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
243 }
244 
245 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
246 {
247 	int entries;
248 
249 	entries = (((const char *)txq->dirty_tx -
250 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
251 
252 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
253 }
254 
255 static void swap_buffer(void *bufaddr, int len)
256 {
257 	int i;
258 	unsigned int *buf = bufaddr;
259 
260 	for (i = 0; i < len; i += 4, buf++)
261 		swab32s(buf);
262 }
263 
264 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
265 {
266 	int i;
267 	unsigned int *src = src_buf;
268 	unsigned int *dst = dst_buf;
269 
270 	for (i = 0; i < len; i += 4, src++, dst++)
271 		*dst = swab32p(src);
272 }
273 
274 static void fec_dump(struct net_device *ndev)
275 {
276 	struct fec_enet_private *fep = netdev_priv(ndev);
277 	struct bufdesc *bdp;
278 	struct fec_enet_priv_tx_q *txq;
279 	int index = 0;
280 
281 	netdev_info(ndev, "TX ring dump\n");
282 	pr_info("Nr     SC     addr       len  SKB\n");
283 
284 	txq = fep->tx_queue[0];
285 	bdp = txq->bd.base;
286 
287 	do {
288 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
289 			index,
290 			bdp == txq->bd.cur ? 'S' : ' ',
291 			bdp == txq->dirty_tx ? 'H' : ' ',
292 			fec16_to_cpu(bdp->cbd_sc),
293 			fec32_to_cpu(bdp->cbd_bufaddr),
294 			fec16_to_cpu(bdp->cbd_datlen),
295 			txq->tx_skbuff[index]);
296 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
297 		index++;
298 	} while (bdp != txq->bd.base);
299 }
300 
301 static inline bool is_ipv4_pkt(struct sk_buff *skb)
302 {
303 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
304 }
305 
306 static int
307 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
308 {
309 	/* Only run for packets requiring a checksum. */
310 	if (skb->ip_summed != CHECKSUM_PARTIAL)
311 		return 0;
312 
313 	if (unlikely(skb_cow_head(skb, 0)))
314 		return -1;
315 
316 	if (is_ipv4_pkt(skb))
317 		ip_hdr(skb)->check = 0;
318 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
319 
320 	return 0;
321 }
322 
323 static struct bufdesc *
324 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
325 			     struct sk_buff *skb,
326 			     struct net_device *ndev)
327 {
328 	struct fec_enet_private *fep = netdev_priv(ndev);
329 	struct bufdesc *bdp = txq->bd.cur;
330 	struct bufdesc_ex *ebdp;
331 	int nr_frags = skb_shinfo(skb)->nr_frags;
332 	int frag, frag_len;
333 	unsigned short status;
334 	unsigned int estatus = 0;
335 	skb_frag_t *this_frag;
336 	unsigned int index;
337 	void *bufaddr;
338 	dma_addr_t addr;
339 	int i;
340 
341 	for (frag = 0; frag < nr_frags; frag++) {
342 		this_frag = &skb_shinfo(skb)->frags[frag];
343 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
344 		ebdp = (struct bufdesc_ex *)bdp;
345 
346 		status = fec16_to_cpu(bdp->cbd_sc);
347 		status &= ~BD_ENET_TX_STATS;
348 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
349 		frag_len = skb_shinfo(skb)->frags[frag].size;
350 
351 		/* Handle the last BD specially */
352 		if (frag == nr_frags - 1) {
353 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
354 			if (fep->bufdesc_ex) {
355 				estatus |= BD_ENET_TX_INT;
356 				if (unlikely(skb_shinfo(skb)->tx_flags &
357 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
358 					estatus |= BD_ENET_TX_TS;
359 			}
360 		}
361 
362 		if (fep->bufdesc_ex) {
363 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
364 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
365 			if (skb->ip_summed == CHECKSUM_PARTIAL)
366 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
367 			ebdp->cbd_bdu = 0;
368 			ebdp->cbd_esc = cpu_to_fec32(estatus);
369 		}
370 
371 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
372 
373 		index = fec_enet_get_bd_index(bdp, &txq->bd);
374 		if (((unsigned long) bufaddr) & fep->tx_align ||
375 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
376 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
377 			bufaddr = txq->tx_bounce[index];
378 
379 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
380 				swap_buffer(bufaddr, frag_len);
381 		}
382 
383 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
384 				      DMA_TO_DEVICE);
385 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
386 			if (net_ratelimit())
387 				netdev_err(ndev, "Tx DMA memory map failed\n");
388 			goto dma_mapping_error;
389 		}
390 
391 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
392 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
393 		/* Make sure the updates to rest of the descriptor are
394 		 * performed before transferring ownership.
395 		 */
396 		wmb();
397 		bdp->cbd_sc = cpu_to_fec16(status);
398 	}
399 
400 	return bdp;
401 dma_mapping_error:
402 	bdp = txq->bd.cur;
403 	for (i = 0; i < frag; i++) {
404 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
405 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
406 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
407 	}
408 	return ERR_PTR(-ENOMEM);
409 }
410 
411 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
412 				   struct sk_buff *skb, struct net_device *ndev)
413 {
414 	struct fec_enet_private *fep = netdev_priv(ndev);
415 	int nr_frags = skb_shinfo(skb)->nr_frags;
416 	struct bufdesc *bdp, *last_bdp;
417 	void *bufaddr;
418 	dma_addr_t addr;
419 	unsigned short status;
420 	unsigned short buflen;
421 	unsigned int estatus = 0;
422 	unsigned int index;
423 	int entries_free;
424 
425 	entries_free = fec_enet_get_free_txdesc_num(txq);
426 	if (entries_free < MAX_SKB_FRAGS + 1) {
427 		dev_kfree_skb_any(skb);
428 		if (net_ratelimit())
429 			netdev_err(ndev, "NOT enough BD for SG!\n");
430 		return NETDEV_TX_OK;
431 	}
432 
433 	/* Protocol checksum off-load for TCP and UDP. */
434 	if (fec_enet_clear_csum(skb, ndev)) {
435 		dev_kfree_skb_any(skb);
436 		return NETDEV_TX_OK;
437 	}
438 
439 	/* Fill in a Tx ring entry */
440 	bdp = txq->bd.cur;
441 	last_bdp = bdp;
442 	status = fec16_to_cpu(bdp->cbd_sc);
443 	status &= ~BD_ENET_TX_STATS;
444 
445 	/* Set buffer length and buffer pointer */
446 	bufaddr = skb->data;
447 	buflen = skb_headlen(skb);
448 
449 	index = fec_enet_get_bd_index(bdp, &txq->bd);
450 	if (((unsigned long) bufaddr) & fep->tx_align ||
451 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
452 		memcpy(txq->tx_bounce[index], skb->data, buflen);
453 		bufaddr = txq->tx_bounce[index];
454 
455 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
456 			swap_buffer(bufaddr, buflen);
457 	}
458 
459 	/* Push the data cache so the CPM does not get stale memory data. */
460 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
461 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
462 		dev_kfree_skb_any(skb);
463 		if (net_ratelimit())
464 			netdev_err(ndev, "Tx DMA memory map failed\n");
465 		return NETDEV_TX_OK;
466 	}
467 
468 	if (nr_frags) {
469 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
470 		if (IS_ERR(last_bdp)) {
471 			dma_unmap_single(&fep->pdev->dev, addr,
472 					 buflen, DMA_TO_DEVICE);
473 			dev_kfree_skb_any(skb);
474 			return NETDEV_TX_OK;
475 		}
476 	} else {
477 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
478 		if (fep->bufdesc_ex) {
479 			estatus = BD_ENET_TX_INT;
480 			if (unlikely(skb_shinfo(skb)->tx_flags &
481 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
482 				estatus |= BD_ENET_TX_TS;
483 		}
484 	}
485 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
486 	bdp->cbd_datlen = cpu_to_fec16(buflen);
487 
488 	if (fep->bufdesc_ex) {
489 
490 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
491 
492 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
493 			fep->hwts_tx_en))
494 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
495 
496 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
497 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
498 
499 		if (skb->ip_summed == CHECKSUM_PARTIAL)
500 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
501 
502 		ebdp->cbd_bdu = 0;
503 		ebdp->cbd_esc = cpu_to_fec32(estatus);
504 	}
505 
506 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
507 	/* Save skb pointer */
508 	txq->tx_skbuff[index] = skb;
509 
510 	/* Make sure the updates to rest of the descriptor are performed before
511 	 * transferring ownership.
512 	 */
513 	wmb();
514 
515 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
516 	 * it's the last BD of the frame, and to put the CRC on the end.
517 	 */
518 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
519 	bdp->cbd_sc = cpu_to_fec16(status);
520 
521 	/* If this was the last BD in the ring, start at the beginning again. */
522 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
523 
524 	skb_tx_timestamp(skb);
525 
526 	/* Make sure the update to bdp and tx_skbuff are performed before
527 	 * txq->bd.cur.
528 	 */
529 	wmb();
530 	txq->bd.cur = bdp;
531 
532 	/* Trigger transmission start */
533 	writel(0, txq->bd.reg_desc_active);
534 
535 	return 0;
536 }
537 
538 static int
539 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
540 			  struct net_device *ndev,
541 			  struct bufdesc *bdp, int index, char *data,
542 			  int size, bool last_tcp, bool is_last)
543 {
544 	struct fec_enet_private *fep = netdev_priv(ndev);
545 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
546 	unsigned short status;
547 	unsigned int estatus = 0;
548 	dma_addr_t addr;
549 
550 	status = fec16_to_cpu(bdp->cbd_sc);
551 	status &= ~BD_ENET_TX_STATS;
552 
553 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
554 
555 	if (((unsigned long) data) & fep->tx_align ||
556 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
557 		memcpy(txq->tx_bounce[index], data, size);
558 		data = txq->tx_bounce[index];
559 
560 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
561 			swap_buffer(data, size);
562 	}
563 
564 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
565 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
566 		dev_kfree_skb_any(skb);
567 		if (net_ratelimit())
568 			netdev_err(ndev, "Tx DMA memory map failed\n");
569 		return NETDEV_TX_BUSY;
570 	}
571 
572 	bdp->cbd_datlen = cpu_to_fec16(size);
573 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
574 
575 	if (fep->bufdesc_ex) {
576 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
577 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
578 		if (skb->ip_summed == CHECKSUM_PARTIAL)
579 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
580 		ebdp->cbd_bdu = 0;
581 		ebdp->cbd_esc = cpu_to_fec32(estatus);
582 	}
583 
584 	/* Handle the last BD specially */
585 	if (last_tcp)
586 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
587 	if (is_last) {
588 		status |= BD_ENET_TX_INTR;
589 		if (fep->bufdesc_ex)
590 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
591 	}
592 
593 	bdp->cbd_sc = cpu_to_fec16(status);
594 
595 	return 0;
596 }
597 
598 static int
599 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
600 			 struct sk_buff *skb, struct net_device *ndev,
601 			 struct bufdesc *bdp, int index)
602 {
603 	struct fec_enet_private *fep = netdev_priv(ndev);
604 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
605 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
606 	void *bufaddr;
607 	unsigned long dmabuf;
608 	unsigned short status;
609 	unsigned int estatus = 0;
610 
611 	status = fec16_to_cpu(bdp->cbd_sc);
612 	status &= ~BD_ENET_TX_STATS;
613 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
614 
615 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
616 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
617 	if (((unsigned long)bufaddr) & fep->tx_align ||
618 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
619 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
620 		bufaddr = txq->tx_bounce[index];
621 
622 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
623 			swap_buffer(bufaddr, hdr_len);
624 
625 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
626 					hdr_len, DMA_TO_DEVICE);
627 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
628 			dev_kfree_skb_any(skb);
629 			if (net_ratelimit())
630 				netdev_err(ndev, "Tx DMA memory map failed\n");
631 			return NETDEV_TX_BUSY;
632 		}
633 	}
634 
635 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
636 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
637 
638 	if (fep->bufdesc_ex) {
639 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
640 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
641 		if (skb->ip_summed == CHECKSUM_PARTIAL)
642 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
643 		ebdp->cbd_bdu = 0;
644 		ebdp->cbd_esc = cpu_to_fec32(estatus);
645 	}
646 
647 	bdp->cbd_sc = cpu_to_fec16(status);
648 
649 	return 0;
650 }
651 
652 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
653 				   struct sk_buff *skb,
654 				   struct net_device *ndev)
655 {
656 	struct fec_enet_private *fep = netdev_priv(ndev);
657 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
658 	int total_len, data_left;
659 	struct bufdesc *bdp = txq->bd.cur;
660 	struct tso_t tso;
661 	unsigned int index = 0;
662 	int ret;
663 
664 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
665 		dev_kfree_skb_any(skb);
666 		if (net_ratelimit())
667 			netdev_err(ndev, "NOT enough BD for TSO!\n");
668 		return NETDEV_TX_OK;
669 	}
670 
671 	/* Protocol checksum off-load for TCP and UDP. */
672 	if (fec_enet_clear_csum(skb, ndev)) {
673 		dev_kfree_skb_any(skb);
674 		return NETDEV_TX_OK;
675 	}
676 
677 	/* Initialize the TSO handler, and prepare the first payload */
678 	tso_start(skb, &tso);
679 
680 	total_len = skb->len - hdr_len;
681 	while (total_len > 0) {
682 		char *hdr;
683 
684 		index = fec_enet_get_bd_index(bdp, &txq->bd);
685 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
686 		total_len -= data_left;
687 
688 		/* prepare packet headers: MAC + IP + TCP */
689 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
690 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
691 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
692 		if (ret)
693 			goto err_release;
694 
695 		while (data_left > 0) {
696 			int size;
697 
698 			size = min_t(int, tso.size, data_left);
699 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
700 			index = fec_enet_get_bd_index(bdp, &txq->bd);
701 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
702 							bdp, index,
703 							tso.data, size,
704 							size == data_left,
705 							total_len == 0);
706 			if (ret)
707 				goto err_release;
708 
709 			data_left -= size;
710 			tso_build_data(skb, &tso, size);
711 		}
712 
713 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
714 	}
715 
716 	/* Save skb pointer */
717 	txq->tx_skbuff[index] = skb;
718 
719 	skb_tx_timestamp(skb);
720 	txq->bd.cur = bdp;
721 
722 	/* Trigger transmission start */
723 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
724 	    !readl(txq->bd.reg_desc_active) ||
725 	    !readl(txq->bd.reg_desc_active) ||
726 	    !readl(txq->bd.reg_desc_active) ||
727 	    !readl(txq->bd.reg_desc_active))
728 		writel(0, txq->bd.reg_desc_active);
729 
730 	return 0;
731 
732 err_release:
733 	/* TODO: Release all used data descriptors for TSO */
734 	return ret;
735 }
736 
737 static netdev_tx_t
738 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
739 {
740 	struct fec_enet_private *fep = netdev_priv(ndev);
741 	int entries_free;
742 	unsigned short queue;
743 	struct fec_enet_priv_tx_q *txq;
744 	struct netdev_queue *nq;
745 	int ret;
746 
747 	queue = skb_get_queue_mapping(skb);
748 	txq = fep->tx_queue[queue];
749 	nq = netdev_get_tx_queue(ndev, queue);
750 
751 	if (skb_is_gso(skb))
752 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
753 	else
754 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
755 	if (ret)
756 		return ret;
757 
758 	entries_free = fec_enet_get_free_txdesc_num(txq);
759 	if (entries_free <= txq->tx_stop_threshold)
760 		netif_tx_stop_queue(nq);
761 
762 	return NETDEV_TX_OK;
763 }
764 
765 /* Init RX & TX buffer descriptors
766  */
767 static void fec_enet_bd_init(struct net_device *dev)
768 {
769 	struct fec_enet_private *fep = netdev_priv(dev);
770 	struct fec_enet_priv_tx_q *txq;
771 	struct fec_enet_priv_rx_q *rxq;
772 	struct bufdesc *bdp;
773 	unsigned int i;
774 	unsigned int q;
775 
776 	for (q = 0; q < fep->num_rx_queues; q++) {
777 		/* Initialize the receive buffer descriptors. */
778 		rxq = fep->rx_queue[q];
779 		bdp = rxq->bd.base;
780 
781 		for (i = 0; i < rxq->bd.ring_size; i++) {
782 
783 			/* Initialize the BD for every fragment in the page. */
784 			if (bdp->cbd_bufaddr)
785 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
786 			else
787 				bdp->cbd_sc = cpu_to_fec16(0);
788 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
789 		}
790 
791 		/* Set the last buffer to wrap */
792 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
793 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
794 
795 		rxq->bd.cur = rxq->bd.base;
796 	}
797 
798 	for (q = 0; q < fep->num_tx_queues; q++) {
799 		/* ...and the same for transmit */
800 		txq = fep->tx_queue[q];
801 		bdp = txq->bd.base;
802 		txq->bd.cur = bdp;
803 
804 		for (i = 0; i < txq->bd.ring_size; i++) {
805 			/* Initialize the BD for every fragment in the page. */
806 			bdp->cbd_sc = cpu_to_fec16(0);
807 			if (txq->tx_skbuff[i]) {
808 				dev_kfree_skb_any(txq->tx_skbuff[i]);
809 				txq->tx_skbuff[i] = NULL;
810 			}
811 			bdp->cbd_bufaddr = cpu_to_fec32(0);
812 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
813 		}
814 
815 		/* Set the last buffer to wrap */
816 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
817 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
818 		txq->dirty_tx = bdp;
819 	}
820 }
821 
822 static void fec_enet_active_rxring(struct net_device *ndev)
823 {
824 	struct fec_enet_private *fep = netdev_priv(ndev);
825 	int i;
826 
827 	for (i = 0; i < fep->num_rx_queues; i++)
828 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
829 }
830 
831 static void fec_enet_enable_ring(struct net_device *ndev)
832 {
833 	struct fec_enet_private *fep = netdev_priv(ndev);
834 	struct fec_enet_priv_tx_q *txq;
835 	struct fec_enet_priv_rx_q *rxq;
836 	int i;
837 
838 	for (i = 0; i < fep->num_rx_queues; i++) {
839 		rxq = fep->rx_queue[i];
840 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
841 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
842 
843 		/* enable DMA1/2 */
844 		if (i)
845 			writel(RCMR_MATCHEN | RCMR_CMP(i),
846 			       fep->hwp + FEC_RCMR(i));
847 	}
848 
849 	for (i = 0; i < fep->num_tx_queues; i++) {
850 		txq = fep->tx_queue[i];
851 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
852 
853 		/* enable DMA1/2 */
854 		if (i)
855 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
856 			       fep->hwp + FEC_DMA_CFG(i));
857 	}
858 }
859 
860 static void fec_enet_reset_skb(struct net_device *ndev)
861 {
862 	struct fec_enet_private *fep = netdev_priv(ndev);
863 	struct fec_enet_priv_tx_q *txq;
864 	int i, j;
865 
866 	for (i = 0; i < fep->num_tx_queues; i++) {
867 		txq = fep->tx_queue[i];
868 
869 		for (j = 0; j < txq->bd.ring_size; j++) {
870 			if (txq->tx_skbuff[j]) {
871 				dev_kfree_skb_any(txq->tx_skbuff[j]);
872 				txq->tx_skbuff[j] = NULL;
873 			}
874 		}
875 	}
876 }
877 
878 /*
879  * This function is called to start or restart the FEC during a link
880  * change, transmit timeout, or to reconfigure the FEC.  The network
881  * packet processing for this device must be stopped before this call.
882  */
883 static void
884 fec_restart(struct net_device *ndev)
885 {
886 	struct fec_enet_private *fep = netdev_priv(ndev);
887 	u32 val;
888 	u32 temp_mac[2];
889 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
890 	u32 ecntl = 0x2; /* ETHEREN */
891 
892 	/* Whack a reset.  We should wait for this.
893 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
894 	 * instead of reset MAC itself.
895 	 */
896 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
897 		writel(0, fep->hwp + FEC_ECNTRL);
898 	} else {
899 		writel(1, fep->hwp + FEC_ECNTRL);
900 		udelay(10);
901 	}
902 
903 	/*
904 	 * enet-mac reset will reset mac address registers too,
905 	 * so need to reconfigure it.
906 	 */
907 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
908 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
909 		writel((__force u32)cpu_to_be32(temp_mac[0]),
910 		       fep->hwp + FEC_ADDR_LOW);
911 		writel((__force u32)cpu_to_be32(temp_mac[1]),
912 		       fep->hwp + FEC_ADDR_HIGH);
913 	}
914 
915 	/* Clear any outstanding interrupt. */
916 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
917 
918 	fec_enet_bd_init(ndev);
919 
920 	fec_enet_enable_ring(ndev);
921 
922 	/* Reset tx SKB buffers. */
923 	fec_enet_reset_skb(ndev);
924 
925 	/* Enable MII mode */
926 	if (fep->full_duplex == DUPLEX_FULL) {
927 		/* FD enable */
928 		writel(0x04, fep->hwp + FEC_X_CNTRL);
929 	} else {
930 		/* No Rcv on Xmit */
931 		rcntl |= 0x02;
932 		writel(0x0, fep->hwp + FEC_X_CNTRL);
933 	}
934 
935 	/* Set MII speed */
936 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
937 
938 #if !defined(CONFIG_M5272)
939 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
940 		/* set RX checksum */
941 		val = readl(fep->hwp + FEC_RACC);
942 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
943 			val |= FEC_RACC_OPTIONS;
944 		else
945 			val &= ~FEC_RACC_OPTIONS;
946 		writel(val, fep->hwp + FEC_RACC);
947 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
948 	}
949 #endif
950 
951 	/*
952 	 * The phy interface and speed need to get configured
953 	 * differently on enet-mac.
954 	 */
955 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
956 		/* Enable flow control and length check */
957 		rcntl |= 0x40000000 | 0x00000020;
958 
959 		/* RGMII, RMII or MII */
960 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
961 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
962 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
963 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
964 			rcntl |= (1 << 6);
965 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
966 			rcntl |= (1 << 8);
967 		else
968 			rcntl &= ~(1 << 8);
969 
970 		/* 1G, 100M or 10M */
971 		if (ndev->phydev) {
972 			if (ndev->phydev->speed == SPEED_1000)
973 				ecntl |= (1 << 5);
974 			else if (ndev->phydev->speed == SPEED_100)
975 				rcntl &= ~(1 << 9);
976 			else
977 				rcntl |= (1 << 9);
978 		}
979 	} else {
980 #ifdef FEC_MIIGSK_ENR
981 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
982 			u32 cfgr;
983 			/* disable the gasket and wait */
984 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
985 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
986 				udelay(1);
987 
988 			/*
989 			 * configure the gasket:
990 			 *   RMII, 50 MHz, no loopback, no echo
991 			 *   MII, 25 MHz, no loopback, no echo
992 			 */
993 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
994 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
995 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
996 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
997 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
998 
999 			/* re-enable the gasket */
1000 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1001 		}
1002 #endif
1003 	}
1004 
1005 #if !defined(CONFIG_M5272)
1006 	/* enable pause frame*/
1007 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1008 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1009 	     ndev->phydev && ndev->phydev->pause)) {
1010 		rcntl |= FEC_ENET_FCE;
1011 
1012 		/* set FIFO threshold parameter to reduce overrun */
1013 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1014 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1015 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1016 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1017 
1018 		/* OPD */
1019 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1020 	} else {
1021 		rcntl &= ~FEC_ENET_FCE;
1022 	}
1023 #endif /* !defined(CONFIG_M5272) */
1024 
1025 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1026 
1027 	/* Setup multicast filter. */
1028 	set_multicast_list(ndev);
1029 #ifndef CONFIG_M5272
1030 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1031 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1032 #endif
1033 
1034 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1035 		/* enable ENET endian swap */
1036 		ecntl |= (1 << 8);
1037 		/* enable ENET store and forward mode */
1038 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1039 	}
1040 
1041 	if (fep->bufdesc_ex)
1042 		ecntl |= (1 << 4);
1043 
1044 #ifndef CONFIG_M5272
1045 	/* Enable the MIB statistic event counters */
1046 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1047 #endif
1048 
1049 	/* And last, enable the transmit and receive processing */
1050 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1051 	fec_enet_active_rxring(ndev);
1052 
1053 	if (fep->bufdesc_ex)
1054 		fec_ptp_start_cyclecounter(ndev);
1055 
1056 	/* Enable interrupts we wish to service */
1057 	if (fep->link)
1058 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1059 	else
1060 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1061 
1062 	/* Init the interrupt coalescing */
1063 	fec_enet_itr_coal_init(ndev);
1064 
1065 }
1066 
1067 static void
1068 fec_stop(struct net_device *ndev)
1069 {
1070 	struct fec_enet_private *fep = netdev_priv(ndev);
1071 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1072 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1073 	u32 val;
1074 
1075 	/* We cannot expect a graceful transmit stop without link !!! */
1076 	if (fep->link) {
1077 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1078 		udelay(10);
1079 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1080 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1081 	}
1082 
1083 	/* Whack a reset.  We should wait for this.
1084 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1085 	 * instead of reset MAC itself.
1086 	 */
1087 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1088 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1089 			writel(0, fep->hwp + FEC_ECNTRL);
1090 		} else {
1091 			writel(1, fep->hwp + FEC_ECNTRL);
1092 			udelay(10);
1093 		}
1094 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1095 	} else {
1096 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1097 		val = readl(fep->hwp + FEC_ECNTRL);
1098 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1099 		writel(val, fep->hwp + FEC_ECNTRL);
1100 
1101 		if (pdata && pdata->sleep_mode_enable)
1102 			pdata->sleep_mode_enable(true);
1103 	}
1104 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1105 
1106 	/* We have to keep ENET enabled to have MII interrupt stay working */
1107 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1108 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1109 		writel(2, fep->hwp + FEC_ECNTRL);
1110 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1111 	}
1112 }
1113 
1114 
1115 static void
1116 fec_timeout(struct net_device *ndev)
1117 {
1118 	struct fec_enet_private *fep = netdev_priv(ndev);
1119 
1120 	fec_dump(ndev);
1121 
1122 	ndev->stats.tx_errors++;
1123 
1124 	schedule_work(&fep->tx_timeout_work);
1125 }
1126 
1127 static void fec_enet_timeout_work(struct work_struct *work)
1128 {
1129 	struct fec_enet_private *fep =
1130 		container_of(work, struct fec_enet_private, tx_timeout_work);
1131 	struct net_device *ndev = fep->netdev;
1132 
1133 	rtnl_lock();
1134 	if (netif_device_present(ndev) || netif_running(ndev)) {
1135 		napi_disable(&fep->napi);
1136 		netif_tx_lock_bh(ndev);
1137 		fec_restart(ndev);
1138 		netif_wake_queue(ndev);
1139 		netif_tx_unlock_bh(ndev);
1140 		napi_enable(&fep->napi);
1141 	}
1142 	rtnl_unlock();
1143 }
1144 
1145 static void
1146 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1147 	struct skb_shared_hwtstamps *hwtstamps)
1148 {
1149 	unsigned long flags;
1150 	u64 ns;
1151 
1152 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1153 	ns = timecounter_cyc2time(&fep->tc, ts);
1154 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1155 
1156 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1157 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1158 }
1159 
1160 static void
1161 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1162 {
1163 	struct	fec_enet_private *fep;
1164 	struct bufdesc *bdp;
1165 	unsigned short status;
1166 	struct	sk_buff	*skb;
1167 	struct fec_enet_priv_tx_q *txq;
1168 	struct netdev_queue *nq;
1169 	int	index = 0;
1170 	int	entries_free;
1171 
1172 	fep = netdev_priv(ndev);
1173 
1174 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1175 
1176 	txq = fep->tx_queue[queue_id];
1177 	/* get next bdp of dirty_tx */
1178 	nq = netdev_get_tx_queue(ndev, queue_id);
1179 	bdp = txq->dirty_tx;
1180 
1181 	/* get next bdp of dirty_tx */
1182 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1183 
1184 	while (bdp != READ_ONCE(txq->bd.cur)) {
1185 		/* Order the load of bd.cur and cbd_sc */
1186 		rmb();
1187 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1188 		if (status & BD_ENET_TX_READY)
1189 			break;
1190 
1191 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1192 
1193 		skb = txq->tx_skbuff[index];
1194 		txq->tx_skbuff[index] = NULL;
1195 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1196 			dma_unmap_single(&fep->pdev->dev,
1197 					 fec32_to_cpu(bdp->cbd_bufaddr),
1198 					 fec16_to_cpu(bdp->cbd_datlen),
1199 					 DMA_TO_DEVICE);
1200 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1201 		if (!skb)
1202 			goto skb_done;
1203 
1204 		/* Check for errors. */
1205 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1206 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1207 				   BD_ENET_TX_CSL)) {
1208 			ndev->stats.tx_errors++;
1209 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1210 				ndev->stats.tx_heartbeat_errors++;
1211 			if (status & BD_ENET_TX_LC)  /* Late collision */
1212 				ndev->stats.tx_window_errors++;
1213 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1214 				ndev->stats.tx_aborted_errors++;
1215 			if (status & BD_ENET_TX_UN)  /* Underrun */
1216 				ndev->stats.tx_fifo_errors++;
1217 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1218 				ndev->stats.tx_carrier_errors++;
1219 		} else {
1220 			ndev->stats.tx_packets++;
1221 			ndev->stats.tx_bytes += skb->len;
1222 		}
1223 
1224 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1225 			fep->bufdesc_ex) {
1226 			struct skb_shared_hwtstamps shhwtstamps;
1227 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1228 
1229 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1230 			skb_tstamp_tx(skb, &shhwtstamps);
1231 		}
1232 
1233 		/* Deferred means some collisions occurred during transmit,
1234 		 * but we eventually sent the packet OK.
1235 		 */
1236 		if (status & BD_ENET_TX_DEF)
1237 			ndev->stats.collisions++;
1238 
1239 		/* Free the sk buffer associated with this last transmit */
1240 		dev_kfree_skb_any(skb);
1241 skb_done:
1242 		/* Make sure the update to bdp and tx_skbuff are performed
1243 		 * before dirty_tx
1244 		 */
1245 		wmb();
1246 		txq->dirty_tx = bdp;
1247 
1248 		/* Update pointer to next buffer descriptor to be transmitted */
1249 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1250 
1251 		/* Since we have freed up a buffer, the ring is no longer full
1252 		 */
1253 		if (netif_queue_stopped(ndev)) {
1254 			entries_free = fec_enet_get_free_txdesc_num(txq);
1255 			if (entries_free >= txq->tx_wake_threshold)
1256 				netif_tx_wake_queue(nq);
1257 		}
1258 	}
1259 
1260 	/* ERR006538: Keep the transmitter going */
1261 	if (bdp != txq->bd.cur &&
1262 	    readl(txq->bd.reg_desc_active) == 0)
1263 		writel(0, txq->bd.reg_desc_active);
1264 }
1265 
1266 static void
1267 fec_enet_tx(struct net_device *ndev)
1268 {
1269 	struct fec_enet_private *fep = netdev_priv(ndev);
1270 	u16 queue_id;
1271 	/* First process class A queue, then Class B and Best Effort queue */
1272 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1273 		clear_bit(queue_id, &fep->work_tx);
1274 		fec_enet_tx_queue(ndev, queue_id);
1275 	}
1276 	return;
1277 }
1278 
1279 static int
1280 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1281 {
1282 	struct  fec_enet_private *fep = netdev_priv(ndev);
1283 	int off;
1284 
1285 	off = ((unsigned long)skb->data) & fep->rx_align;
1286 	if (off)
1287 		skb_reserve(skb, fep->rx_align + 1 - off);
1288 
1289 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1290 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1291 		if (net_ratelimit())
1292 			netdev_err(ndev, "Rx DMA memory map failed\n");
1293 		return -ENOMEM;
1294 	}
1295 
1296 	return 0;
1297 }
1298 
1299 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1300 			       struct bufdesc *bdp, u32 length, bool swap)
1301 {
1302 	struct  fec_enet_private *fep = netdev_priv(ndev);
1303 	struct sk_buff *new_skb;
1304 
1305 	if (length > fep->rx_copybreak)
1306 		return false;
1307 
1308 	new_skb = netdev_alloc_skb(ndev, length);
1309 	if (!new_skb)
1310 		return false;
1311 
1312 	dma_sync_single_for_cpu(&fep->pdev->dev,
1313 				fec32_to_cpu(bdp->cbd_bufaddr),
1314 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1315 				DMA_FROM_DEVICE);
1316 	if (!swap)
1317 		memcpy(new_skb->data, (*skb)->data, length);
1318 	else
1319 		swap_buffer2(new_skb->data, (*skb)->data, length);
1320 	*skb = new_skb;
1321 
1322 	return true;
1323 }
1324 
1325 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1326  * When we update through the ring, if the next incoming buffer has
1327  * not been given to the system, we just set the empty indicator,
1328  * effectively tossing the packet.
1329  */
1330 static int
1331 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1332 {
1333 	struct fec_enet_private *fep = netdev_priv(ndev);
1334 	struct fec_enet_priv_rx_q *rxq;
1335 	struct bufdesc *bdp;
1336 	unsigned short status;
1337 	struct  sk_buff *skb_new = NULL;
1338 	struct  sk_buff *skb;
1339 	ushort	pkt_len;
1340 	__u8 *data;
1341 	int	pkt_received = 0;
1342 	struct	bufdesc_ex *ebdp = NULL;
1343 	bool	vlan_packet_rcvd = false;
1344 	u16	vlan_tag;
1345 	int	index = 0;
1346 	bool	is_copybreak;
1347 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1348 
1349 #ifdef CONFIG_M532x
1350 	flush_cache_all();
1351 #endif
1352 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1353 	rxq = fep->rx_queue[queue_id];
1354 
1355 	/* First, grab all of the stats for the incoming packet.
1356 	 * These get messed up if we get called due to a busy condition.
1357 	 */
1358 	bdp = rxq->bd.cur;
1359 
1360 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1361 
1362 		if (pkt_received >= budget)
1363 			break;
1364 		pkt_received++;
1365 
1366 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1367 
1368 		/* Check for errors. */
1369 		status ^= BD_ENET_RX_LAST;
1370 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1371 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1372 			   BD_ENET_RX_CL)) {
1373 			ndev->stats.rx_errors++;
1374 			if (status & BD_ENET_RX_OV) {
1375 				/* FIFO overrun */
1376 				ndev->stats.rx_fifo_errors++;
1377 				goto rx_processing_done;
1378 			}
1379 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1380 						| BD_ENET_RX_LAST)) {
1381 				/* Frame too long or too short. */
1382 				ndev->stats.rx_length_errors++;
1383 				if (status & BD_ENET_RX_LAST)
1384 					netdev_err(ndev, "rcv is not +last\n");
1385 			}
1386 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1387 				ndev->stats.rx_crc_errors++;
1388 			/* Report late collisions as a frame error. */
1389 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1390 				ndev->stats.rx_frame_errors++;
1391 			goto rx_processing_done;
1392 		}
1393 
1394 		/* Process the incoming frame. */
1395 		ndev->stats.rx_packets++;
1396 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1397 		ndev->stats.rx_bytes += pkt_len;
1398 
1399 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1400 		skb = rxq->rx_skbuff[index];
1401 
1402 		/* The packet length includes FCS, but we don't want to
1403 		 * include that when passing upstream as it messes up
1404 		 * bridging applications.
1405 		 */
1406 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1407 						  need_swap);
1408 		if (!is_copybreak) {
1409 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1410 			if (unlikely(!skb_new)) {
1411 				ndev->stats.rx_dropped++;
1412 				goto rx_processing_done;
1413 			}
1414 			dma_unmap_single(&fep->pdev->dev,
1415 					 fec32_to_cpu(bdp->cbd_bufaddr),
1416 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1417 					 DMA_FROM_DEVICE);
1418 		}
1419 
1420 		prefetch(skb->data - NET_IP_ALIGN);
1421 		skb_put(skb, pkt_len - 4);
1422 		data = skb->data;
1423 		if (!is_copybreak && need_swap)
1424 			swap_buffer(data, pkt_len);
1425 
1426 		/* Extract the enhanced buffer descriptor */
1427 		ebdp = NULL;
1428 		if (fep->bufdesc_ex)
1429 			ebdp = (struct bufdesc_ex *)bdp;
1430 
1431 		/* If this is a VLAN packet remove the VLAN Tag */
1432 		vlan_packet_rcvd = false;
1433 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1434 		    fep->bufdesc_ex &&
1435 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1436 			/* Push and remove the vlan tag */
1437 			struct vlan_hdr *vlan_header =
1438 					(struct vlan_hdr *) (data + ETH_HLEN);
1439 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1440 
1441 			vlan_packet_rcvd = true;
1442 
1443 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1444 			skb_pull(skb, VLAN_HLEN);
1445 		}
1446 
1447 		skb->protocol = eth_type_trans(skb, ndev);
1448 
1449 		/* Get receive timestamp from the skb */
1450 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1451 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1452 					  skb_hwtstamps(skb));
1453 
1454 		if (fep->bufdesc_ex &&
1455 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1456 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1457 				/* don't check it */
1458 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1459 			} else {
1460 				skb_checksum_none_assert(skb);
1461 			}
1462 		}
1463 
1464 		/* Handle received VLAN packets */
1465 		if (vlan_packet_rcvd)
1466 			__vlan_hwaccel_put_tag(skb,
1467 					       htons(ETH_P_8021Q),
1468 					       vlan_tag);
1469 
1470 		napi_gro_receive(&fep->napi, skb);
1471 
1472 		if (is_copybreak) {
1473 			dma_sync_single_for_device(&fep->pdev->dev,
1474 						   fec32_to_cpu(bdp->cbd_bufaddr),
1475 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1476 						   DMA_FROM_DEVICE);
1477 		} else {
1478 			rxq->rx_skbuff[index] = skb_new;
1479 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1480 		}
1481 
1482 rx_processing_done:
1483 		/* Clear the status flags for this buffer */
1484 		status &= ~BD_ENET_RX_STATS;
1485 
1486 		/* Mark the buffer empty */
1487 		status |= BD_ENET_RX_EMPTY;
1488 
1489 		if (fep->bufdesc_ex) {
1490 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1491 
1492 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1493 			ebdp->cbd_prot = 0;
1494 			ebdp->cbd_bdu = 0;
1495 		}
1496 		/* Make sure the updates to rest of the descriptor are
1497 		 * performed before transferring ownership.
1498 		 */
1499 		wmb();
1500 		bdp->cbd_sc = cpu_to_fec16(status);
1501 
1502 		/* Update BD pointer to next entry */
1503 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1504 
1505 		/* Doing this here will keep the FEC running while we process
1506 		 * incoming frames.  On a heavily loaded network, we should be
1507 		 * able to keep up at the expense of system resources.
1508 		 */
1509 		writel(0, rxq->bd.reg_desc_active);
1510 	}
1511 	rxq->bd.cur = bdp;
1512 	return pkt_received;
1513 }
1514 
1515 static int
1516 fec_enet_rx(struct net_device *ndev, int budget)
1517 {
1518 	int     pkt_received = 0;
1519 	u16	queue_id;
1520 	struct fec_enet_private *fep = netdev_priv(ndev);
1521 
1522 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1523 		int ret;
1524 
1525 		ret = fec_enet_rx_queue(ndev,
1526 					budget - pkt_received, queue_id);
1527 
1528 		if (ret < budget - pkt_received)
1529 			clear_bit(queue_id, &fep->work_rx);
1530 
1531 		pkt_received += ret;
1532 	}
1533 	return pkt_received;
1534 }
1535 
1536 static bool
1537 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1538 {
1539 	if (int_events == 0)
1540 		return false;
1541 
1542 	if (int_events & FEC_ENET_RXF)
1543 		fep->work_rx |= (1 << 2);
1544 	if (int_events & FEC_ENET_RXF_1)
1545 		fep->work_rx |= (1 << 0);
1546 	if (int_events & FEC_ENET_RXF_2)
1547 		fep->work_rx |= (1 << 1);
1548 
1549 	if (int_events & FEC_ENET_TXF)
1550 		fep->work_tx |= (1 << 2);
1551 	if (int_events & FEC_ENET_TXF_1)
1552 		fep->work_tx |= (1 << 0);
1553 	if (int_events & FEC_ENET_TXF_2)
1554 		fep->work_tx |= (1 << 1);
1555 
1556 	return true;
1557 }
1558 
1559 static irqreturn_t
1560 fec_enet_interrupt(int irq, void *dev_id)
1561 {
1562 	struct net_device *ndev = dev_id;
1563 	struct fec_enet_private *fep = netdev_priv(ndev);
1564 	uint int_events;
1565 	irqreturn_t ret = IRQ_NONE;
1566 
1567 	int_events = readl(fep->hwp + FEC_IEVENT);
1568 	writel(int_events, fep->hwp + FEC_IEVENT);
1569 	fec_enet_collect_events(fep, int_events);
1570 
1571 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1572 		ret = IRQ_HANDLED;
1573 
1574 		if (napi_schedule_prep(&fep->napi)) {
1575 			/* Disable the NAPI interrupts */
1576 			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1577 			__napi_schedule(&fep->napi);
1578 		}
1579 	}
1580 
1581 	if (int_events & FEC_ENET_MII) {
1582 		ret = IRQ_HANDLED;
1583 		complete(&fep->mdio_done);
1584 	}
1585 
1586 	if (fep->ptp_clock)
1587 		fec_ptp_check_pps_event(fep);
1588 
1589 	return ret;
1590 }
1591 
1592 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1593 {
1594 	struct net_device *ndev = napi->dev;
1595 	struct fec_enet_private *fep = netdev_priv(ndev);
1596 	int pkts;
1597 
1598 	pkts = fec_enet_rx(ndev, budget);
1599 
1600 	fec_enet_tx(ndev);
1601 
1602 	if (pkts < budget) {
1603 		napi_complete(napi);
1604 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1605 	}
1606 	return pkts;
1607 }
1608 
1609 /* ------------------------------------------------------------------------- */
1610 static void fec_get_mac(struct net_device *ndev)
1611 {
1612 	struct fec_enet_private *fep = netdev_priv(ndev);
1613 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1614 	unsigned char *iap, tmpaddr[ETH_ALEN];
1615 
1616 	/*
1617 	 * try to get mac address in following order:
1618 	 *
1619 	 * 1) module parameter via kernel command line in form
1620 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1621 	 */
1622 	iap = macaddr;
1623 
1624 	/*
1625 	 * 2) from device tree data
1626 	 */
1627 	if (!is_valid_ether_addr(iap)) {
1628 		struct device_node *np = fep->pdev->dev.of_node;
1629 		if (np) {
1630 			const char *mac = of_get_mac_address(np);
1631 			if (mac)
1632 				iap = (unsigned char *) mac;
1633 		}
1634 	}
1635 
1636 	/*
1637 	 * 3) from flash or fuse (via platform data)
1638 	 */
1639 	if (!is_valid_ether_addr(iap)) {
1640 #ifdef CONFIG_M5272
1641 		if (FEC_FLASHMAC)
1642 			iap = (unsigned char *)FEC_FLASHMAC;
1643 #else
1644 		if (pdata)
1645 			iap = (unsigned char *)&pdata->mac;
1646 #endif
1647 	}
1648 
1649 	/*
1650 	 * 4) FEC mac registers set by bootloader
1651 	 */
1652 	if (!is_valid_ether_addr(iap)) {
1653 		*((__be32 *) &tmpaddr[0]) =
1654 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1655 		*((__be16 *) &tmpaddr[4]) =
1656 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1657 		iap = &tmpaddr[0];
1658 	}
1659 
1660 	/*
1661 	 * 5) random mac address
1662 	 */
1663 	if (!is_valid_ether_addr(iap)) {
1664 		/* Report it and use a random ethernet address instead */
1665 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1666 		eth_hw_addr_random(ndev);
1667 		netdev_info(ndev, "Using random MAC address: %pM\n",
1668 			    ndev->dev_addr);
1669 		return;
1670 	}
1671 
1672 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1673 
1674 	/* Adjust MAC if using macaddr */
1675 	if (iap == macaddr)
1676 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1677 }
1678 
1679 /* ------------------------------------------------------------------------- */
1680 
1681 /*
1682  * Phy section
1683  */
1684 static void fec_enet_adjust_link(struct net_device *ndev)
1685 {
1686 	struct fec_enet_private *fep = netdev_priv(ndev);
1687 	struct phy_device *phy_dev = ndev->phydev;
1688 	int status_change = 0;
1689 
1690 	/* Prevent a state halted on mii error */
1691 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1692 		phy_dev->state = PHY_RESUMING;
1693 		return;
1694 	}
1695 
1696 	/*
1697 	 * If the netdev is down, or is going down, we're not interested
1698 	 * in link state events, so just mark our idea of the link as down
1699 	 * and ignore the event.
1700 	 */
1701 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1702 		fep->link = 0;
1703 	} else if (phy_dev->link) {
1704 		if (!fep->link) {
1705 			fep->link = phy_dev->link;
1706 			status_change = 1;
1707 		}
1708 
1709 		if (fep->full_duplex != phy_dev->duplex) {
1710 			fep->full_duplex = phy_dev->duplex;
1711 			status_change = 1;
1712 		}
1713 
1714 		if (phy_dev->speed != fep->speed) {
1715 			fep->speed = phy_dev->speed;
1716 			status_change = 1;
1717 		}
1718 
1719 		/* if any of the above changed restart the FEC */
1720 		if (status_change) {
1721 			napi_disable(&fep->napi);
1722 			netif_tx_lock_bh(ndev);
1723 			fec_restart(ndev);
1724 			netif_wake_queue(ndev);
1725 			netif_tx_unlock_bh(ndev);
1726 			napi_enable(&fep->napi);
1727 		}
1728 	} else {
1729 		if (fep->link) {
1730 			napi_disable(&fep->napi);
1731 			netif_tx_lock_bh(ndev);
1732 			fec_stop(ndev);
1733 			netif_tx_unlock_bh(ndev);
1734 			napi_enable(&fep->napi);
1735 			fep->link = phy_dev->link;
1736 			status_change = 1;
1737 		}
1738 	}
1739 
1740 	if (status_change)
1741 		phy_print_status(phy_dev);
1742 }
1743 
1744 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1745 {
1746 	struct fec_enet_private *fep = bus->priv;
1747 	struct device *dev = &fep->pdev->dev;
1748 	unsigned long time_left;
1749 	int ret = 0;
1750 
1751 	ret = pm_runtime_get_sync(dev);
1752 	if (ret < 0)
1753 		return ret;
1754 
1755 	fep->mii_timeout = 0;
1756 	reinit_completion(&fep->mdio_done);
1757 
1758 	/* start a read op */
1759 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1760 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1761 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1762 
1763 	/* wait for end of transfer */
1764 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1765 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1766 	if (time_left == 0) {
1767 		fep->mii_timeout = 1;
1768 		netdev_err(fep->netdev, "MDIO read timeout\n");
1769 		ret = -ETIMEDOUT;
1770 		goto out;
1771 	}
1772 
1773 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1774 
1775 out:
1776 	pm_runtime_mark_last_busy(dev);
1777 	pm_runtime_put_autosuspend(dev);
1778 
1779 	return ret;
1780 }
1781 
1782 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1783 			   u16 value)
1784 {
1785 	struct fec_enet_private *fep = bus->priv;
1786 	struct device *dev = &fep->pdev->dev;
1787 	unsigned long time_left;
1788 	int ret;
1789 
1790 	ret = pm_runtime_get_sync(dev);
1791 	if (ret < 0)
1792 		return ret;
1793 	else
1794 		ret = 0;
1795 
1796 	fep->mii_timeout = 0;
1797 	reinit_completion(&fep->mdio_done);
1798 
1799 	/* start a write op */
1800 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1801 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1802 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1803 		fep->hwp + FEC_MII_DATA);
1804 
1805 	/* wait for end of transfer */
1806 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1807 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1808 	if (time_left == 0) {
1809 		fep->mii_timeout = 1;
1810 		netdev_err(fep->netdev, "MDIO write timeout\n");
1811 		ret  = -ETIMEDOUT;
1812 	}
1813 
1814 	pm_runtime_mark_last_busy(dev);
1815 	pm_runtime_put_autosuspend(dev);
1816 
1817 	return ret;
1818 }
1819 
1820 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1821 {
1822 	struct fec_enet_private *fep = netdev_priv(ndev);
1823 	int ret;
1824 
1825 	if (enable) {
1826 		ret = clk_prepare_enable(fep->clk_ahb);
1827 		if (ret)
1828 			return ret;
1829 		if (fep->clk_enet_out) {
1830 			ret = clk_prepare_enable(fep->clk_enet_out);
1831 			if (ret)
1832 				goto failed_clk_enet_out;
1833 		}
1834 		if (fep->clk_ptp) {
1835 			mutex_lock(&fep->ptp_clk_mutex);
1836 			ret = clk_prepare_enable(fep->clk_ptp);
1837 			if (ret) {
1838 				mutex_unlock(&fep->ptp_clk_mutex);
1839 				goto failed_clk_ptp;
1840 			} else {
1841 				fep->ptp_clk_on = true;
1842 			}
1843 			mutex_unlock(&fep->ptp_clk_mutex);
1844 		}
1845 		if (fep->clk_ref) {
1846 			ret = clk_prepare_enable(fep->clk_ref);
1847 			if (ret)
1848 				goto failed_clk_ref;
1849 		}
1850 	} else {
1851 		clk_disable_unprepare(fep->clk_ahb);
1852 		if (fep->clk_enet_out)
1853 			clk_disable_unprepare(fep->clk_enet_out);
1854 		if (fep->clk_ptp) {
1855 			mutex_lock(&fep->ptp_clk_mutex);
1856 			clk_disable_unprepare(fep->clk_ptp);
1857 			fep->ptp_clk_on = false;
1858 			mutex_unlock(&fep->ptp_clk_mutex);
1859 		}
1860 		if (fep->clk_ref)
1861 			clk_disable_unprepare(fep->clk_ref);
1862 	}
1863 
1864 	return 0;
1865 
1866 failed_clk_ref:
1867 	if (fep->clk_ref)
1868 		clk_disable_unprepare(fep->clk_ref);
1869 failed_clk_ptp:
1870 	if (fep->clk_enet_out)
1871 		clk_disable_unprepare(fep->clk_enet_out);
1872 failed_clk_enet_out:
1873 		clk_disable_unprepare(fep->clk_ahb);
1874 
1875 	return ret;
1876 }
1877 
1878 static int fec_enet_mii_probe(struct net_device *ndev)
1879 {
1880 	struct fec_enet_private *fep = netdev_priv(ndev);
1881 	struct phy_device *phy_dev = NULL;
1882 	char mdio_bus_id[MII_BUS_ID_SIZE];
1883 	char phy_name[MII_BUS_ID_SIZE + 3];
1884 	int phy_id;
1885 	int dev_id = fep->dev_id;
1886 
1887 	if (fep->phy_node) {
1888 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1889 					 &fec_enet_adjust_link, 0,
1890 					 fep->phy_interface);
1891 		if (!phy_dev)
1892 			return -ENODEV;
1893 	} else {
1894 		/* check for attached phy */
1895 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1896 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1897 				continue;
1898 			if (dev_id--)
1899 				continue;
1900 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1901 			break;
1902 		}
1903 
1904 		if (phy_id >= PHY_MAX_ADDR) {
1905 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1906 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1907 			phy_id = 0;
1908 		}
1909 
1910 		snprintf(phy_name, sizeof(phy_name),
1911 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1912 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1913 				      fep->phy_interface);
1914 	}
1915 
1916 	if (IS_ERR(phy_dev)) {
1917 		netdev_err(ndev, "could not attach to PHY\n");
1918 		return PTR_ERR(phy_dev);
1919 	}
1920 
1921 	/* mask with MAC supported features */
1922 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1923 		phy_dev->supported &= PHY_GBIT_FEATURES;
1924 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1925 #if !defined(CONFIG_M5272)
1926 		phy_dev->supported |= SUPPORTED_Pause;
1927 #endif
1928 	}
1929 	else
1930 		phy_dev->supported &= PHY_BASIC_FEATURES;
1931 
1932 	phy_dev->advertising = phy_dev->supported;
1933 
1934 	fep->link = 0;
1935 	fep->full_duplex = 0;
1936 
1937 	phy_attached_info(phy_dev);
1938 
1939 	return 0;
1940 }
1941 
1942 static int fec_enet_mii_init(struct platform_device *pdev)
1943 {
1944 	static struct mii_bus *fec0_mii_bus;
1945 	struct net_device *ndev = platform_get_drvdata(pdev);
1946 	struct fec_enet_private *fep = netdev_priv(ndev);
1947 	struct device_node *node;
1948 	int err = -ENXIO;
1949 	u32 mii_speed, holdtime;
1950 
1951 	/*
1952 	 * The i.MX28 dual fec interfaces are not equal.
1953 	 * Here are the differences:
1954 	 *
1955 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1956 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1957 	 *  - external phys can only be configured by fec0
1958 	 *
1959 	 * That is to say fec1 can not work independently. It only works
1960 	 * when fec0 is working. The reason behind this design is that the
1961 	 * second interface is added primarily for Switch mode.
1962 	 *
1963 	 * Because of the last point above, both phys are attached on fec0
1964 	 * mdio interface in board design, and need to be configured by
1965 	 * fec0 mii_bus.
1966 	 */
1967 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1968 		/* fec1 uses fec0 mii_bus */
1969 		if (mii_cnt && fec0_mii_bus) {
1970 			fep->mii_bus = fec0_mii_bus;
1971 			mii_cnt++;
1972 			return 0;
1973 		}
1974 		return -ENOENT;
1975 	}
1976 
1977 	fep->mii_timeout = 0;
1978 
1979 	/*
1980 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1981 	 *
1982 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1983 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1984 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1985 	 * document.
1986 	 */
1987 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1988 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
1989 		mii_speed--;
1990 	if (mii_speed > 63) {
1991 		dev_err(&pdev->dev,
1992 			"fec clock (%lu) to fast to get right mii speed\n",
1993 			clk_get_rate(fep->clk_ipg));
1994 		err = -EINVAL;
1995 		goto err_out;
1996 	}
1997 
1998 	/*
1999 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2000 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2001 	 * versions are RAZ there, so just ignore the difference and write the
2002 	 * register always.
2003 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2004 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2005 	 * output.
2006 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2007 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2008 	 * holdtime cannot result in a value greater than 3.
2009 	 */
2010 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2011 
2012 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2013 
2014 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2015 
2016 	fep->mii_bus = mdiobus_alloc();
2017 	if (fep->mii_bus == NULL) {
2018 		err = -ENOMEM;
2019 		goto err_out;
2020 	}
2021 
2022 	fep->mii_bus->name = "fec_enet_mii_bus";
2023 	fep->mii_bus->read = fec_enet_mdio_read;
2024 	fep->mii_bus->write = fec_enet_mdio_write;
2025 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2026 		pdev->name, fep->dev_id + 1);
2027 	fep->mii_bus->priv = fep;
2028 	fep->mii_bus->parent = &pdev->dev;
2029 
2030 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2031 	if (node) {
2032 		err = of_mdiobus_register(fep->mii_bus, node);
2033 		of_node_put(node);
2034 	} else {
2035 		err = mdiobus_register(fep->mii_bus);
2036 	}
2037 
2038 	if (err)
2039 		goto err_out_free_mdiobus;
2040 
2041 	mii_cnt++;
2042 
2043 	/* save fec0 mii_bus */
2044 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2045 		fec0_mii_bus = fep->mii_bus;
2046 
2047 	return 0;
2048 
2049 err_out_free_mdiobus:
2050 	mdiobus_free(fep->mii_bus);
2051 err_out:
2052 	return err;
2053 }
2054 
2055 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2056 {
2057 	if (--mii_cnt == 0) {
2058 		mdiobus_unregister(fep->mii_bus);
2059 		mdiobus_free(fep->mii_bus);
2060 	}
2061 }
2062 
2063 static void fec_enet_get_drvinfo(struct net_device *ndev,
2064 				 struct ethtool_drvinfo *info)
2065 {
2066 	struct fec_enet_private *fep = netdev_priv(ndev);
2067 
2068 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2069 		sizeof(info->driver));
2070 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2071 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2072 }
2073 
2074 static int fec_enet_get_regs_len(struct net_device *ndev)
2075 {
2076 	struct fec_enet_private *fep = netdev_priv(ndev);
2077 	struct resource *r;
2078 	int s = 0;
2079 
2080 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2081 	if (r)
2082 		s = resource_size(r);
2083 
2084 	return s;
2085 }
2086 
2087 /* List of registers that can be safety be read to dump them with ethtool */
2088 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2089 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2090 static u32 fec_enet_register_offset[] = {
2091 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2092 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2093 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2094 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2095 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2096 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2097 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2098 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2099 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2100 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2101 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2102 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2103 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2104 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2105 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2106 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2107 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2108 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2109 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2110 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2111 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2112 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2113 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2114 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2115 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2116 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2117 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2118 };
2119 #else
2120 static u32 fec_enet_register_offset[] = {
2121 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2122 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2123 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2124 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2125 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2126 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2127 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2128 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2129 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2130 };
2131 #endif
2132 
2133 static void fec_enet_get_regs(struct net_device *ndev,
2134 			      struct ethtool_regs *regs, void *regbuf)
2135 {
2136 	struct fec_enet_private *fep = netdev_priv(ndev);
2137 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2138 	u32 *buf = (u32 *)regbuf;
2139 	u32 i, off;
2140 
2141 	memset(buf, 0, regs->len);
2142 
2143 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2144 		off = fec_enet_register_offset[i] / 4;
2145 		buf[off] = readl(&theregs[off]);
2146 	}
2147 }
2148 
2149 static int fec_enet_get_ts_info(struct net_device *ndev,
2150 				struct ethtool_ts_info *info)
2151 {
2152 	struct fec_enet_private *fep = netdev_priv(ndev);
2153 
2154 	if (fep->bufdesc_ex) {
2155 
2156 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2157 					SOF_TIMESTAMPING_RX_SOFTWARE |
2158 					SOF_TIMESTAMPING_SOFTWARE |
2159 					SOF_TIMESTAMPING_TX_HARDWARE |
2160 					SOF_TIMESTAMPING_RX_HARDWARE |
2161 					SOF_TIMESTAMPING_RAW_HARDWARE;
2162 		if (fep->ptp_clock)
2163 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2164 		else
2165 			info->phc_index = -1;
2166 
2167 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2168 				 (1 << HWTSTAMP_TX_ON);
2169 
2170 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2171 				   (1 << HWTSTAMP_FILTER_ALL);
2172 		return 0;
2173 	} else {
2174 		return ethtool_op_get_ts_info(ndev, info);
2175 	}
2176 }
2177 
2178 #if !defined(CONFIG_M5272)
2179 
2180 static void fec_enet_get_pauseparam(struct net_device *ndev,
2181 				    struct ethtool_pauseparam *pause)
2182 {
2183 	struct fec_enet_private *fep = netdev_priv(ndev);
2184 
2185 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2186 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2187 	pause->rx_pause = pause->tx_pause;
2188 }
2189 
2190 static int fec_enet_set_pauseparam(struct net_device *ndev,
2191 				   struct ethtool_pauseparam *pause)
2192 {
2193 	struct fec_enet_private *fep = netdev_priv(ndev);
2194 
2195 	if (!ndev->phydev)
2196 		return -ENODEV;
2197 
2198 	if (pause->tx_pause != pause->rx_pause) {
2199 		netdev_info(ndev,
2200 			"hardware only support enable/disable both tx and rx");
2201 		return -EINVAL;
2202 	}
2203 
2204 	fep->pause_flag = 0;
2205 
2206 	/* tx pause must be same as rx pause */
2207 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2208 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2209 
2210 	if (pause->rx_pause || pause->autoneg) {
2211 		ndev->phydev->supported |= ADVERTISED_Pause;
2212 		ndev->phydev->advertising |= ADVERTISED_Pause;
2213 	} else {
2214 		ndev->phydev->supported &= ~ADVERTISED_Pause;
2215 		ndev->phydev->advertising &= ~ADVERTISED_Pause;
2216 	}
2217 
2218 	if (pause->autoneg) {
2219 		if (netif_running(ndev))
2220 			fec_stop(ndev);
2221 		phy_start_aneg(ndev->phydev);
2222 	}
2223 	if (netif_running(ndev)) {
2224 		napi_disable(&fep->napi);
2225 		netif_tx_lock_bh(ndev);
2226 		fec_restart(ndev);
2227 		netif_wake_queue(ndev);
2228 		netif_tx_unlock_bh(ndev);
2229 		napi_enable(&fep->napi);
2230 	}
2231 
2232 	return 0;
2233 }
2234 
2235 static const struct fec_stat {
2236 	char name[ETH_GSTRING_LEN];
2237 	u16 offset;
2238 } fec_stats[] = {
2239 	/* RMON TX */
2240 	{ "tx_dropped", RMON_T_DROP },
2241 	{ "tx_packets", RMON_T_PACKETS },
2242 	{ "tx_broadcast", RMON_T_BC_PKT },
2243 	{ "tx_multicast", RMON_T_MC_PKT },
2244 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2245 	{ "tx_undersize", RMON_T_UNDERSIZE },
2246 	{ "tx_oversize", RMON_T_OVERSIZE },
2247 	{ "tx_fragment", RMON_T_FRAG },
2248 	{ "tx_jabber", RMON_T_JAB },
2249 	{ "tx_collision", RMON_T_COL },
2250 	{ "tx_64byte", RMON_T_P64 },
2251 	{ "tx_65to127byte", RMON_T_P65TO127 },
2252 	{ "tx_128to255byte", RMON_T_P128TO255 },
2253 	{ "tx_256to511byte", RMON_T_P256TO511 },
2254 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2255 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2256 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2257 	{ "tx_octets", RMON_T_OCTETS },
2258 
2259 	/* IEEE TX */
2260 	{ "IEEE_tx_drop", IEEE_T_DROP },
2261 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2262 	{ "IEEE_tx_1col", IEEE_T_1COL },
2263 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2264 	{ "IEEE_tx_def", IEEE_T_DEF },
2265 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2266 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2267 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2268 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2269 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2270 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2271 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2272 
2273 	/* RMON RX */
2274 	{ "rx_packets", RMON_R_PACKETS },
2275 	{ "rx_broadcast", RMON_R_BC_PKT },
2276 	{ "rx_multicast", RMON_R_MC_PKT },
2277 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2278 	{ "rx_undersize", RMON_R_UNDERSIZE },
2279 	{ "rx_oversize", RMON_R_OVERSIZE },
2280 	{ "rx_fragment", RMON_R_FRAG },
2281 	{ "rx_jabber", RMON_R_JAB },
2282 	{ "rx_64byte", RMON_R_P64 },
2283 	{ "rx_65to127byte", RMON_R_P65TO127 },
2284 	{ "rx_128to255byte", RMON_R_P128TO255 },
2285 	{ "rx_256to511byte", RMON_R_P256TO511 },
2286 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2287 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2288 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2289 	{ "rx_octets", RMON_R_OCTETS },
2290 
2291 	/* IEEE RX */
2292 	{ "IEEE_rx_drop", IEEE_R_DROP },
2293 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2294 	{ "IEEE_rx_crc", IEEE_R_CRC },
2295 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2296 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2297 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2298 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2299 };
2300 
2301 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2302 	struct ethtool_stats *stats, u64 *data)
2303 {
2304 	struct fec_enet_private *fep = netdev_priv(dev);
2305 	int i;
2306 
2307 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2308 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2309 }
2310 
2311 static void fec_enet_get_strings(struct net_device *netdev,
2312 	u32 stringset, u8 *data)
2313 {
2314 	int i;
2315 	switch (stringset) {
2316 	case ETH_SS_STATS:
2317 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2318 			memcpy(data + i * ETH_GSTRING_LEN,
2319 				fec_stats[i].name, ETH_GSTRING_LEN);
2320 		break;
2321 	}
2322 }
2323 
2324 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2325 {
2326 	switch (sset) {
2327 	case ETH_SS_STATS:
2328 		return ARRAY_SIZE(fec_stats);
2329 	default:
2330 		return -EOPNOTSUPP;
2331 	}
2332 }
2333 #endif /* !defined(CONFIG_M5272) */
2334 
2335 static int fec_enet_nway_reset(struct net_device *dev)
2336 {
2337 	struct phy_device *phydev = dev->phydev;
2338 
2339 	if (!phydev)
2340 		return -ENODEV;
2341 
2342 	return genphy_restart_aneg(phydev);
2343 }
2344 
2345 /* ITR clock source is enet system clock (clk_ahb).
2346  * TCTT unit is cycle_ns * 64 cycle
2347  * So, the ICTT value = X us / (cycle_ns * 64)
2348  */
2349 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2350 {
2351 	struct fec_enet_private *fep = netdev_priv(ndev);
2352 
2353 	return us * (fep->itr_clk_rate / 64000) / 1000;
2354 }
2355 
2356 /* Set threshold for interrupt coalescing */
2357 static void fec_enet_itr_coal_set(struct net_device *ndev)
2358 {
2359 	struct fec_enet_private *fep = netdev_priv(ndev);
2360 	int rx_itr, tx_itr;
2361 
2362 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2363 		return;
2364 
2365 	/* Must be greater than zero to avoid unpredictable behavior */
2366 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2367 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2368 		return;
2369 
2370 	/* Select enet system clock as Interrupt Coalescing
2371 	 * timer Clock Source
2372 	 */
2373 	rx_itr = FEC_ITR_CLK_SEL;
2374 	tx_itr = FEC_ITR_CLK_SEL;
2375 
2376 	/* set ICFT and ICTT */
2377 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2378 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2379 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2380 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2381 
2382 	rx_itr |= FEC_ITR_EN;
2383 	tx_itr |= FEC_ITR_EN;
2384 
2385 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2386 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2387 	writel(tx_itr, fep->hwp + FEC_TXIC1);
2388 	writel(rx_itr, fep->hwp + FEC_RXIC1);
2389 	writel(tx_itr, fep->hwp + FEC_TXIC2);
2390 	writel(rx_itr, fep->hwp + FEC_RXIC2);
2391 }
2392 
2393 static int
2394 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2395 {
2396 	struct fec_enet_private *fep = netdev_priv(ndev);
2397 
2398 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2399 		return -EOPNOTSUPP;
2400 
2401 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2402 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2403 
2404 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2405 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2406 
2407 	return 0;
2408 }
2409 
2410 static int
2411 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2412 {
2413 	struct fec_enet_private *fep = netdev_priv(ndev);
2414 	unsigned int cycle;
2415 
2416 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2417 		return -EOPNOTSUPP;
2418 
2419 	if (ec->rx_max_coalesced_frames > 255) {
2420 		pr_err("Rx coalesced frames exceed hardware limitation\n");
2421 		return -EINVAL;
2422 	}
2423 
2424 	if (ec->tx_max_coalesced_frames > 255) {
2425 		pr_err("Tx coalesced frame exceed hardware limitation\n");
2426 		return -EINVAL;
2427 	}
2428 
2429 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2430 	if (cycle > 0xFFFF) {
2431 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2432 		return -EINVAL;
2433 	}
2434 
2435 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2436 	if (cycle > 0xFFFF) {
2437 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2438 		return -EINVAL;
2439 	}
2440 
2441 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2442 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2443 
2444 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2445 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2446 
2447 	fec_enet_itr_coal_set(ndev);
2448 
2449 	return 0;
2450 }
2451 
2452 static void fec_enet_itr_coal_init(struct net_device *ndev)
2453 {
2454 	struct ethtool_coalesce ec;
2455 
2456 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2457 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2458 
2459 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2460 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2461 
2462 	fec_enet_set_coalesce(ndev, &ec);
2463 }
2464 
2465 static int fec_enet_get_tunable(struct net_device *netdev,
2466 				const struct ethtool_tunable *tuna,
2467 				void *data)
2468 {
2469 	struct fec_enet_private *fep = netdev_priv(netdev);
2470 	int ret = 0;
2471 
2472 	switch (tuna->id) {
2473 	case ETHTOOL_RX_COPYBREAK:
2474 		*(u32 *)data = fep->rx_copybreak;
2475 		break;
2476 	default:
2477 		ret = -EINVAL;
2478 		break;
2479 	}
2480 
2481 	return ret;
2482 }
2483 
2484 static int fec_enet_set_tunable(struct net_device *netdev,
2485 				const struct ethtool_tunable *tuna,
2486 				const void *data)
2487 {
2488 	struct fec_enet_private *fep = netdev_priv(netdev);
2489 	int ret = 0;
2490 
2491 	switch (tuna->id) {
2492 	case ETHTOOL_RX_COPYBREAK:
2493 		fep->rx_copybreak = *(u32 *)data;
2494 		break;
2495 	default:
2496 		ret = -EINVAL;
2497 		break;
2498 	}
2499 
2500 	return ret;
2501 }
2502 
2503 static void
2504 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2505 {
2506 	struct fec_enet_private *fep = netdev_priv(ndev);
2507 
2508 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2509 		wol->supported = WAKE_MAGIC;
2510 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2511 	} else {
2512 		wol->supported = wol->wolopts = 0;
2513 	}
2514 }
2515 
2516 static int
2517 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2518 {
2519 	struct fec_enet_private *fep = netdev_priv(ndev);
2520 
2521 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2522 		return -EINVAL;
2523 
2524 	if (wol->wolopts & ~WAKE_MAGIC)
2525 		return -EINVAL;
2526 
2527 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2528 	if (device_may_wakeup(&ndev->dev)) {
2529 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2530 		if (fep->irq[0] > 0)
2531 			enable_irq_wake(fep->irq[0]);
2532 	} else {
2533 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2534 		if (fep->irq[0] > 0)
2535 			disable_irq_wake(fep->irq[0]);
2536 	}
2537 
2538 	return 0;
2539 }
2540 
2541 static const struct ethtool_ops fec_enet_ethtool_ops = {
2542 	.get_drvinfo		= fec_enet_get_drvinfo,
2543 	.get_regs_len		= fec_enet_get_regs_len,
2544 	.get_regs		= fec_enet_get_regs,
2545 	.nway_reset		= fec_enet_nway_reset,
2546 	.get_link		= ethtool_op_get_link,
2547 	.get_coalesce		= fec_enet_get_coalesce,
2548 	.set_coalesce		= fec_enet_set_coalesce,
2549 #ifndef CONFIG_M5272
2550 	.get_pauseparam		= fec_enet_get_pauseparam,
2551 	.set_pauseparam		= fec_enet_set_pauseparam,
2552 	.get_strings		= fec_enet_get_strings,
2553 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2554 	.get_sset_count		= fec_enet_get_sset_count,
2555 #endif
2556 	.get_ts_info		= fec_enet_get_ts_info,
2557 	.get_tunable		= fec_enet_get_tunable,
2558 	.set_tunable		= fec_enet_set_tunable,
2559 	.get_wol		= fec_enet_get_wol,
2560 	.set_wol		= fec_enet_set_wol,
2561 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2562 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2563 };
2564 
2565 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2566 {
2567 	struct fec_enet_private *fep = netdev_priv(ndev);
2568 	struct phy_device *phydev = ndev->phydev;
2569 
2570 	if (!netif_running(ndev))
2571 		return -EINVAL;
2572 
2573 	if (!phydev)
2574 		return -ENODEV;
2575 
2576 	if (fep->bufdesc_ex) {
2577 		if (cmd == SIOCSHWTSTAMP)
2578 			return fec_ptp_set(ndev, rq);
2579 		if (cmd == SIOCGHWTSTAMP)
2580 			return fec_ptp_get(ndev, rq);
2581 	}
2582 
2583 	return phy_mii_ioctl(phydev, rq, cmd);
2584 }
2585 
2586 static void fec_enet_free_buffers(struct net_device *ndev)
2587 {
2588 	struct fec_enet_private *fep = netdev_priv(ndev);
2589 	unsigned int i;
2590 	struct sk_buff *skb;
2591 	struct bufdesc	*bdp;
2592 	struct fec_enet_priv_tx_q *txq;
2593 	struct fec_enet_priv_rx_q *rxq;
2594 	unsigned int q;
2595 
2596 	for (q = 0; q < fep->num_rx_queues; q++) {
2597 		rxq = fep->rx_queue[q];
2598 		bdp = rxq->bd.base;
2599 		for (i = 0; i < rxq->bd.ring_size; i++) {
2600 			skb = rxq->rx_skbuff[i];
2601 			rxq->rx_skbuff[i] = NULL;
2602 			if (skb) {
2603 				dma_unmap_single(&fep->pdev->dev,
2604 						 fec32_to_cpu(bdp->cbd_bufaddr),
2605 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2606 						 DMA_FROM_DEVICE);
2607 				dev_kfree_skb(skb);
2608 			}
2609 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2610 		}
2611 	}
2612 
2613 	for (q = 0; q < fep->num_tx_queues; q++) {
2614 		txq = fep->tx_queue[q];
2615 		bdp = txq->bd.base;
2616 		for (i = 0; i < txq->bd.ring_size; i++) {
2617 			kfree(txq->tx_bounce[i]);
2618 			txq->tx_bounce[i] = NULL;
2619 			skb = txq->tx_skbuff[i];
2620 			txq->tx_skbuff[i] = NULL;
2621 			dev_kfree_skb(skb);
2622 		}
2623 	}
2624 }
2625 
2626 static void fec_enet_free_queue(struct net_device *ndev)
2627 {
2628 	struct fec_enet_private *fep = netdev_priv(ndev);
2629 	int i;
2630 	struct fec_enet_priv_tx_q *txq;
2631 
2632 	for (i = 0; i < fep->num_tx_queues; i++)
2633 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2634 			txq = fep->tx_queue[i];
2635 			dma_free_coherent(NULL,
2636 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2637 					  txq->tso_hdrs,
2638 					  txq->tso_hdrs_dma);
2639 		}
2640 
2641 	for (i = 0; i < fep->num_rx_queues; i++)
2642 		kfree(fep->rx_queue[i]);
2643 	for (i = 0; i < fep->num_tx_queues; i++)
2644 		kfree(fep->tx_queue[i]);
2645 }
2646 
2647 static int fec_enet_alloc_queue(struct net_device *ndev)
2648 {
2649 	struct fec_enet_private *fep = netdev_priv(ndev);
2650 	int i;
2651 	int ret = 0;
2652 	struct fec_enet_priv_tx_q *txq;
2653 
2654 	for (i = 0; i < fep->num_tx_queues; i++) {
2655 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2656 		if (!txq) {
2657 			ret = -ENOMEM;
2658 			goto alloc_failed;
2659 		}
2660 
2661 		fep->tx_queue[i] = txq;
2662 		txq->bd.ring_size = TX_RING_SIZE;
2663 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2664 
2665 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2666 		txq->tx_wake_threshold =
2667 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2668 
2669 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2670 					txq->bd.ring_size * TSO_HEADER_SIZE,
2671 					&txq->tso_hdrs_dma,
2672 					GFP_KERNEL);
2673 		if (!txq->tso_hdrs) {
2674 			ret = -ENOMEM;
2675 			goto alloc_failed;
2676 		}
2677 	}
2678 
2679 	for (i = 0; i < fep->num_rx_queues; i++) {
2680 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2681 					   GFP_KERNEL);
2682 		if (!fep->rx_queue[i]) {
2683 			ret = -ENOMEM;
2684 			goto alloc_failed;
2685 		}
2686 
2687 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2688 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2689 	}
2690 	return ret;
2691 
2692 alloc_failed:
2693 	fec_enet_free_queue(ndev);
2694 	return ret;
2695 }
2696 
2697 static int
2698 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2699 {
2700 	struct fec_enet_private *fep = netdev_priv(ndev);
2701 	unsigned int i;
2702 	struct sk_buff *skb;
2703 	struct bufdesc	*bdp;
2704 	struct fec_enet_priv_rx_q *rxq;
2705 
2706 	rxq = fep->rx_queue[queue];
2707 	bdp = rxq->bd.base;
2708 	for (i = 0; i < rxq->bd.ring_size; i++) {
2709 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2710 		if (!skb)
2711 			goto err_alloc;
2712 
2713 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2714 			dev_kfree_skb(skb);
2715 			goto err_alloc;
2716 		}
2717 
2718 		rxq->rx_skbuff[i] = skb;
2719 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2720 
2721 		if (fep->bufdesc_ex) {
2722 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2723 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2724 		}
2725 
2726 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2727 	}
2728 
2729 	/* Set the last buffer to wrap. */
2730 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2731 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2732 	return 0;
2733 
2734  err_alloc:
2735 	fec_enet_free_buffers(ndev);
2736 	return -ENOMEM;
2737 }
2738 
2739 static int
2740 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2741 {
2742 	struct fec_enet_private *fep = netdev_priv(ndev);
2743 	unsigned int i;
2744 	struct bufdesc  *bdp;
2745 	struct fec_enet_priv_tx_q *txq;
2746 
2747 	txq = fep->tx_queue[queue];
2748 	bdp = txq->bd.base;
2749 	for (i = 0; i < txq->bd.ring_size; i++) {
2750 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2751 		if (!txq->tx_bounce[i])
2752 			goto err_alloc;
2753 
2754 		bdp->cbd_sc = cpu_to_fec16(0);
2755 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2756 
2757 		if (fep->bufdesc_ex) {
2758 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2759 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2760 		}
2761 
2762 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2763 	}
2764 
2765 	/* Set the last buffer to wrap. */
2766 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2767 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2768 
2769 	return 0;
2770 
2771  err_alloc:
2772 	fec_enet_free_buffers(ndev);
2773 	return -ENOMEM;
2774 }
2775 
2776 static int fec_enet_alloc_buffers(struct net_device *ndev)
2777 {
2778 	struct fec_enet_private *fep = netdev_priv(ndev);
2779 	unsigned int i;
2780 
2781 	for (i = 0; i < fep->num_rx_queues; i++)
2782 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2783 			return -ENOMEM;
2784 
2785 	for (i = 0; i < fep->num_tx_queues; i++)
2786 		if (fec_enet_alloc_txq_buffers(ndev, i))
2787 			return -ENOMEM;
2788 	return 0;
2789 }
2790 
2791 static int
2792 fec_enet_open(struct net_device *ndev)
2793 {
2794 	struct fec_enet_private *fep = netdev_priv(ndev);
2795 	int ret;
2796 
2797 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2798 	if (ret < 0)
2799 		return ret;
2800 
2801 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2802 	ret = fec_enet_clk_enable(ndev, true);
2803 	if (ret)
2804 		goto clk_enable;
2805 
2806 	/* I should reset the ring buffers here, but I don't yet know
2807 	 * a simple way to do that.
2808 	 */
2809 
2810 	ret = fec_enet_alloc_buffers(ndev);
2811 	if (ret)
2812 		goto err_enet_alloc;
2813 
2814 	/* Init MAC prior to mii bus probe */
2815 	fec_restart(ndev);
2816 
2817 	/* Probe and connect to PHY when open the interface */
2818 	ret = fec_enet_mii_probe(ndev);
2819 	if (ret)
2820 		goto err_enet_mii_probe;
2821 
2822 	if (fep->quirks & FEC_QUIRK_ERR006687)
2823 		imx6q_cpuidle_fec_irqs_used();
2824 
2825 	napi_enable(&fep->napi);
2826 	phy_start(ndev->phydev);
2827 	netif_tx_start_all_queues(ndev);
2828 
2829 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2830 				 FEC_WOL_FLAG_ENABLE);
2831 
2832 	return 0;
2833 
2834 err_enet_mii_probe:
2835 	fec_enet_free_buffers(ndev);
2836 err_enet_alloc:
2837 	fec_enet_clk_enable(ndev, false);
2838 clk_enable:
2839 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2840 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2841 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2842 	return ret;
2843 }
2844 
2845 static int
2846 fec_enet_close(struct net_device *ndev)
2847 {
2848 	struct fec_enet_private *fep = netdev_priv(ndev);
2849 
2850 	phy_stop(ndev->phydev);
2851 
2852 	if (netif_device_present(ndev)) {
2853 		napi_disable(&fep->napi);
2854 		netif_tx_disable(ndev);
2855 		fec_stop(ndev);
2856 	}
2857 
2858 	phy_disconnect(ndev->phydev);
2859 
2860 	if (fep->quirks & FEC_QUIRK_ERR006687)
2861 		imx6q_cpuidle_fec_irqs_unused();
2862 
2863 	fec_enet_clk_enable(ndev, false);
2864 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2865 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2866 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2867 
2868 	fec_enet_free_buffers(ndev);
2869 
2870 	return 0;
2871 }
2872 
2873 /* Set or clear the multicast filter for this adaptor.
2874  * Skeleton taken from sunlance driver.
2875  * The CPM Ethernet implementation allows Multicast as well as individual
2876  * MAC address filtering.  Some of the drivers check to make sure it is
2877  * a group multicast address, and discard those that are not.  I guess I
2878  * will do the same for now, but just remove the test if you want
2879  * individual filtering as well (do the upper net layers want or support
2880  * this kind of feature?).
2881  */
2882 
2883 #define HASH_BITS	6		/* #bits in hash */
2884 #define CRC32_POLY	0xEDB88320
2885 
2886 static void set_multicast_list(struct net_device *ndev)
2887 {
2888 	struct fec_enet_private *fep = netdev_priv(ndev);
2889 	struct netdev_hw_addr *ha;
2890 	unsigned int i, bit, data, crc, tmp;
2891 	unsigned char hash;
2892 
2893 	if (ndev->flags & IFF_PROMISC) {
2894 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2895 		tmp |= 0x8;
2896 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2897 		return;
2898 	}
2899 
2900 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2901 	tmp &= ~0x8;
2902 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2903 
2904 	if (ndev->flags & IFF_ALLMULTI) {
2905 		/* Catch all multicast addresses, so set the
2906 		 * filter to all 1's
2907 		 */
2908 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2909 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2910 
2911 		return;
2912 	}
2913 
2914 	/* Clear filter and add the addresses in hash register
2915 	 */
2916 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2917 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2918 
2919 	netdev_for_each_mc_addr(ha, ndev) {
2920 		/* calculate crc32 value of mac address */
2921 		crc = 0xffffffff;
2922 
2923 		for (i = 0; i < ndev->addr_len; i++) {
2924 			data = ha->addr[i];
2925 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2926 				crc = (crc >> 1) ^
2927 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2928 			}
2929 		}
2930 
2931 		/* only upper 6 bits (HASH_BITS) are used
2932 		 * which point to specific bit in he hash registers
2933 		 */
2934 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2935 
2936 		if (hash > 31) {
2937 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2938 			tmp |= 1 << (hash - 32);
2939 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2940 		} else {
2941 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2942 			tmp |= 1 << hash;
2943 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2944 		}
2945 	}
2946 }
2947 
2948 /* Set a MAC change in hardware. */
2949 static int
2950 fec_set_mac_address(struct net_device *ndev, void *p)
2951 {
2952 	struct fec_enet_private *fep = netdev_priv(ndev);
2953 	struct sockaddr *addr = p;
2954 
2955 	if (addr) {
2956 		if (!is_valid_ether_addr(addr->sa_data))
2957 			return -EADDRNOTAVAIL;
2958 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2959 	}
2960 
2961 	/* Add netif status check here to avoid system hang in below case:
2962 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
2963 	 * After ethx down, fec all clocks are gated off and then register
2964 	 * access causes system hang.
2965 	 */
2966 	if (!netif_running(ndev))
2967 		return 0;
2968 
2969 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2970 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2971 		fep->hwp + FEC_ADDR_LOW);
2972 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2973 		fep->hwp + FEC_ADDR_HIGH);
2974 	return 0;
2975 }
2976 
2977 #ifdef CONFIG_NET_POLL_CONTROLLER
2978 /**
2979  * fec_poll_controller - FEC Poll controller function
2980  * @dev: The FEC network adapter
2981  *
2982  * Polled functionality used by netconsole and others in non interrupt mode
2983  *
2984  */
2985 static void fec_poll_controller(struct net_device *dev)
2986 {
2987 	int i;
2988 	struct fec_enet_private *fep = netdev_priv(dev);
2989 
2990 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2991 		if (fep->irq[i] > 0) {
2992 			disable_irq(fep->irq[i]);
2993 			fec_enet_interrupt(fep->irq[i], dev);
2994 			enable_irq(fep->irq[i]);
2995 		}
2996 	}
2997 }
2998 #endif
2999 
3000 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3001 	netdev_features_t features)
3002 {
3003 	struct fec_enet_private *fep = netdev_priv(netdev);
3004 	netdev_features_t changed = features ^ netdev->features;
3005 
3006 	netdev->features = features;
3007 
3008 	/* Receive checksum has been changed */
3009 	if (changed & NETIF_F_RXCSUM) {
3010 		if (features & NETIF_F_RXCSUM)
3011 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3012 		else
3013 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3014 	}
3015 }
3016 
3017 static int fec_set_features(struct net_device *netdev,
3018 	netdev_features_t features)
3019 {
3020 	struct fec_enet_private *fep = netdev_priv(netdev);
3021 	netdev_features_t changed = features ^ netdev->features;
3022 
3023 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3024 		napi_disable(&fep->napi);
3025 		netif_tx_lock_bh(netdev);
3026 		fec_stop(netdev);
3027 		fec_enet_set_netdev_features(netdev, features);
3028 		fec_restart(netdev);
3029 		netif_tx_wake_all_queues(netdev);
3030 		netif_tx_unlock_bh(netdev);
3031 		napi_enable(&fep->napi);
3032 	} else {
3033 		fec_enet_set_netdev_features(netdev, features);
3034 	}
3035 
3036 	return 0;
3037 }
3038 
3039 static const struct net_device_ops fec_netdev_ops = {
3040 	.ndo_open		= fec_enet_open,
3041 	.ndo_stop		= fec_enet_close,
3042 	.ndo_start_xmit		= fec_enet_start_xmit,
3043 	.ndo_set_rx_mode	= set_multicast_list,
3044 	.ndo_change_mtu		= eth_change_mtu,
3045 	.ndo_validate_addr	= eth_validate_addr,
3046 	.ndo_tx_timeout		= fec_timeout,
3047 	.ndo_set_mac_address	= fec_set_mac_address,
3048 	.ndo_do_ioctl		= fec_enet_ioctl,
3049 #ifdef CONFIG_NET_POLL_CONTROLLER
3050 	.ndo_poll_controller	= fec_poll_controller,
3051 #endif
3052 	.ndo_set_features	= fec_set_features,
3053 };
3054 
3055 static const unsigned short offset_des_active_rxq[] = {
3056 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3057 };
3058 
3059 static const unsigned short offset_des_active_txq[] = {
3060 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3061 };
3062 
3063  /*
3064   * XXX:  We need to clean up on failure exits here.
3065   *
3066   */
3067 static int fec_enet_init(struct net_device *ndev)
3068 {
3069 	struct fec_enet_private *fep = netdev_priv(ndev);
3070 	struct bufdesc *cbd_base;
3071 	dma_addr_t bd_dma;
3072 	int bd_size;
3073 	unsigned int i;
3074 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3075 			sizeof(struct bufdesc);
3076 	unsigned dsize_log2 = __fls(dsize);
3077 
3078 	WARN_ON(dsize != (1 << dsize_log2));
3079 #if defined(CONFIG_ARM)
3080 	fep->rx_align = 0xf;
3081 	fep->tx_align = 0xf;
3082 #else
3083 	fep->rx_align = 0x3;
3084 	fep->tx_align = 0x3;
3085 #endif
3086 
3087 	fec_enet_alloc_queue(ndev);
3088 
3089 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3090 
3091 	/* Allocate memory for buffer descriptors. */
3092 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3093 				       GFP_KERNEL);
3094 	if (!cbd_base) {
3095 		return -ENOMEM;
3096 	}
3097 
3098 	memset(cbd_base, 0, bd_size);
3099 
3100 	/* Get the Ethernet address */
3101 	fec_get_mac(ndev);
3102 	/* make sure MAC we just acquired is programmed into the hw */
3103 	fec_set_mac_address(ndev, NULL);
3104 
3105 	/* Set receive and transmit descriptor base. */
3106 	for (i = 0; i < fep->num_rx_queues; i++) {
3107 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3108 		unsigned size = dsize * rxq->bd.ring_size;
3109 
3110 		rxq->bd.qid = i;
3111 		rxq->bd.base = cbd_base;
3112 		rxq->bd.cur = cbd_base;
3113 		rxq->bd.dma = bd_dma;
3114 		rxq->bd.dsize = dsize;
3115 		rxq->bd.dsize_log2 = dsize_log2;
3116 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3117 		bd_dma += size;
3118 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3119 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3120 	}
3121 
3122 	for (i = 0; i < fep->num_tx_queues; i++) {
3123 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3124 		unsigned size = dsize * txq->bd.ring_size;
3125 
3126 		txq->bd.qid = i;
3127 		txq->bd.base = cbd_base;
3128 		txq->bd.cur = cbd_base;
3129 		txq->bd.dma = bd_dma;
3130 		txq->bd.dsize = dsize;
3131 		txq->bd.dsize_log2 = dsize_log2;
3132 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3133 		bd_dma += size;
3134 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3135 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3136 	}
3137 
3138 
3139 	/* The FEC Ethernet specific entries in the device structure */
3140 	ndev->watchdog_timeo = TX_TIMEOUT;
3141 	ndev->netdev_ops = &fec_netdev_ops;
3142 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3143 
3144 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3145 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3146 
3147 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3148 		/* enable hw VLAN support */
3149 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3150 
3151 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3152 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3153 
3154 		/* enable hw accelerator */
3155 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3156 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3157 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3158 	}
3159 
3160 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3161 		fep->tx_align = 0;
3162 		fep->rx_align = 0x3f;
3163 	}
3164 
3165 	ndev->hw_features = ndev->features;
3166 
3167 	fec_restart(ndev);
3168 
3169 	return 0;
3170 }
3171 
3172 #ifdef CONFIG_OF
3173 static void fec_reset_phy(struct platform_device *pdev)
3174 {
3175 	int err, phy_reset;
3176 	bool active_high = false;
3177 	int msec = 1;
3178 	struct device_node *np = pdev->dev.of_node;
3179 
3180 	if (!np)
3181 		return;
3182 
3183 	of_property_read_u32(np, "phy-reset-duration", &msec);
3184 	/* A sane reset duration should not be longer than 1s */
3185 	if (msec > 1000)
3186 		msec = 1;
3187 
3188 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3189 	if (!gpio_is_valid(phy_reset))
3190 		return;
3191 
3192 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3193 
3194 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3195 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3196 			"phy-reset");
3197 	if (err) {
3198 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3199 		return;
3200 	}
3201 	msleep(msec);
3202 	gpio_set_value_cansleep(phy_reset, !active_high);
3203 }
3204 #else /* CONFIG_OF */
3205 static void fec_reset_phy(struct platform_device *pdev)
3206 {
3207 	/*
3208 	 * In case of platform probe, the reset has been done
3209 	 * by machine code.
3210 	 */
3211 }
3212 #endif /* CONFIG_OF */
3213 
3214 static void
3215 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3216 {
3217 	struct device_node *np = pdev->dev.of_node;
3218 
3219 	*num_tx = *num_rx = 1;
3220 
3221 	if (!np || !of_device_is_available(np))
3222 		return;
3223 
3224 	/* parse the num of tx and rx queues */
3225 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3226 
3227 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3228 
3229 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3230 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3231 			 *num_tx);
3232 		*num_tx = 1;
3233 		return;
3234 	}
3235 
3236 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3237 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3238 			 *num_rx);
3239 		*num_rx = 1;
3240 		return;
3241 	}
3242 
3243 }
3244 
3245 static int
3246 fec_probe(struct platform_device *pdev)
3247 {
3248 	struct fec_enet_private *fep;
3249 	struct fec_platform_data *pdata;
3250 	struct net_device *ndev;
3251 	int i, irq, ret = 0;
3252 	struct resource *r;
3253 	const struct of_device_id *of_id;
3254 	static int dev_id;
3255 	struct device_node *np = pdev->dev.of_node, *phy_node;
3256 	int num_tx_qs;
3257 	int num_rx_qs;
3258 
3259 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3260 
3261 	/* Init network device */
3262 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3263 				  num_tx_qs, num_rx_qs);
3264 	if (!ndev)
3265 		return -ENOMEM;
3266 
3267 	SET_NETDEV_DEV(ndev, &pdev->dev);
3268 
3269 	/* setup board info structure */
3270 	fep = netdev_priv(ndev);
3271 
3272 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3273 	if (of_id)
3274 		pdev->id_entry = of_id->data;
3275 	fep->quirks = pdev->id_entry->driver_data;
3276 
3277 	fep->netdev = ndev;
3278 	fep->num_rx_queues = num_rx_qs;
3279 	fep->num_tx_queues = num_tx_qs;
3280 
3281 #if !defined(CONFIG_M5272)
3282 	/* default enable pause frame auto negotiation */
3283 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3284 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3285 #endif
3286 
3287 	/* Select default pin state */
3288 	pinctrl_pm_select_default_state(&pdev->dev);
3289 
3290 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3291 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3292 	if (IS_ERR(fep->hwp)) {
3293 		ret = PTR_ERR(fep->hwp);
3294 		goto failed_ioremap;
3295 	}
3296 
3297 	fep->pdev = pdev;
3298 	fep->dev_id = dev_id++;
3299 
3300 	platform_set_drvdata(pdev, ndev);
3301 
3302 	if ((of_machine_is_compatible("fsl,imx6q") ||
3303 	     of_machine_is_compatible("fsl,imx6dl")) &&
3304 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3305 		fep->quirks |= FEC_QUIRK_ERR006687;
3306 
3307 	if (of_get_property(np, "fsl,magic-packet", NULL))
3308 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3309 
3310 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3311 	if (!phy_node && of_phy_is_fixed_link(np)) {
3312 		ret = of_phy_register_fixed_link(np);
3313 		if (ret < 0) {
3314 			dev_err(&pdev->dev,
3315 				"broken fixed-link specification\n");
3316 			goto failed_phy;
3317 		}
3318 		phy_node = of_node_get(np);
3319 	}
3320 	fep->phy_node = phy_node;
3321 
3322 	ret = of_get_phy_mode(pdev->dev.of_node);
3323 	if (ret < 0) {
3324 		pdata = dev_get_platdata(&pdev->dev);
3325 		if (pdata)
3326 			fep->phy_interface = pdata->phy;
3327 		else
3328 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3329 	} else {
3330 		fep->phy_interface = ret;
3331 	}
3332 
3333 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3334 	if (IS_ERR(fep->clk_ipg)) {
3335 		ret = PTR_ERR(fep->clk_ipg);
3336 		goto failed_clk;
3337 	}
3338 
3339 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3340 	if (IS_ERR(fep->clk_ahb)) {
3341 		ret = PTR_ERR(fep->clk_ahb);
3342 		goto failed_clk;
3343 	}
3344 
3345 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3346 
3347 	/* enet_out is optional, depends on board */
3348 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3349 	if (IS_ERR(fep->clk_enet_out))
3350 		fep->clk_enet_out = NULL;
3351 
3352 	fep->ptp_clk_on = false;
3353 	mutex_init(&fep->ptp_clk_mutex);
3354 
3355 	/* clk_ref is optional, depends on board */
3356 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3357 	if (IS_ERR(fep->clk_ref))
3358 		fep->clk_ref = NULL;
3359 
3360 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3361 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3362 	if (IS_ERR(fep->clk_ptp)) {
3363 		fep->clk_ptp = NULL;
3364 		fep->bufdesc_ex = false;
3365 	}
3366 
3367 	ret = fec_enet_clk_enable(ndev, true);
3368 	if (ret)
3369 		goto failed_clk;
3370 
3371 	ret = clk_prepare_enable(fep->clk_ipg);
3372 	if (ret)
3373 		goto failed_clk_ipg;
3374 
3375 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3376 	if (!IS_ERR(fep->reg_phy)) {
3377 		ret = regulator_enable(fep->reg_phy);
3378 		if (ret) {
3379 			dev_err(&pdev->dev,
3380 				"Failed to enable phy regulator: %d\n", ret);
3381 			goto failed_regulator;
3382 		}
3383 	} else {
3384 		fep->reg_phy = NULL;
3385 	}
3386 
3387 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3388 	pm_runtime_use_autosuspend(&pdev->dev);
3389 	pm_runtime_get_noresume(&pdev->dev);
3390 	pm_runtime_set_active(&pdev->dev);
3391 	pm_runtime_enable(&pdev->dev);
3392 
3393 	fec_reset_phy(pdev);
3394 
3395 	if (fep->bufdesc_ex)
3396 		fec_ptp_init(pdev);
3397 
3398 	ret = fec_enet_init(ndev);
3399 	if (ret)
3400 		goto failed_init;
3401 
3402 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3403 		irq = platform_get_irq(pdev, i);
3404 		if (irq < 0) {
3405 			if (i)
3406 				break;
3407 			ret = irq;
3408 			goto failed_irq;
3409 		}
3410 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3411 				       0, pdev->name, ndev);
3412 		if (ret)
3413 			goto failed_irq;
3414 
3415 		fep->irq[i] = irq;
3416 	}
3417 
3418 	init_completion(&fep->mdio_done);
3419 	ret = fec_enet_mii_init(pdev);
3420 	if (ret)
3421 		goto failed_mii_init;
3422 
3423 	/* Carrier starts down, phylib will bring it up */
3424 	netif_carrier_off(ndev);
3425 	fec_enet_clk_enable(ndev, false);
3426 	pinctrl_pm_select_sleep_state(&pdev->dev);
3427 
3428 	ret = register_netdev(ndev);
3429 	if (ret)
3430 		goto failed_register;
3431 
3432 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3433 			   FEC_WOL_HAS_MAGIC_PACKET);
3434 
3435 	if (fep->bufdesc_ex && fep->ptp_clock)
3436 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3437 
3438 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3439 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3440 
3441 	pm_runtime_mark_last_busy(&pdev->dev);
3442 	pm_runtime_put_autosuspend(&pdev->dev);
3443 
3444 	return 0;
3445 
3446 failed_register:
3447 	fec_enet_mii_remove(fep);
3448 failed_mii_init:
3449 failed_irq:
3450 failed_init:
3451 	fec_ptp_stop(pdev);
3452 	if (fep->reg_phy)
3453 		regulator_disable(fep->reg_phy);
3454 failed_regulator:
3455 	clk_disable_unprepare(fep->clk_ipg);
3456 failed_clk_ipg:
3457 	fec_enet_clk_enable(ndev, false);
3458 failed_clk:
3459 failed_phy:
3460 	of_node_put(phy_node);
3461 failed_ioremap:
3462 	free_netdev(ndev);
3463 
3464 	return ret;
3465 }
3466 
3467 static int
3468 fec_drv_remove(struct platform_device *pdev)
3469 {
3470 	struct net_device *ndev = platform_get_drvdata(pdev);
3471 	struct fec_enet_private *fep = netdev_priv(ndev);
3472 
3473 	cancel_work_sync(&fep->tx_timeout_work);
3474 	fec_ptp_stop(pdev);
3475 	unregister_netdev(ndev);
3476 	fec_enet_mii_remove(fep);
3477 	if (fep->reg_phy)
3478 		regulator_disable(fep->reg_phy);
3479 	of_node_put(fep->phy_node);
3480 	free_netdev(ndev);
3481 
3482 	return 0;
3483 }
3484 
3485 static int __maybe_unused fec_suspend(struct device *dev)
3486 {
3487 	struct net_device *ndev = dev_get_drvdata(dev);
3488 	struct fec_enet_private *fep = netdev_priv(ndev);
3489 
3490 	rtnl_lock();
3491 	if (netif_running(ndev)) {
3492 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3493 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3494 		phy_stop(ndev->phydev);
3495 		napi_disable(&fep->napi);
3496 		netif_tx_lock_bh(ndev);
3497 		netif_device_detach(ndev);
3498 		netif_tx_unlock_bh(ndev);
3499 		fec_stop(ndev);
3500 		fec_enet_clk_enable(ndev, false);
3501 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3502 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3503 	}
3504 	rtnl_unlock();
3505 
3506 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3507 		regulator_disable(fep->reg_phy);
3508 
3509 	/* SOC supply clock to phy, when clock is disabled, phy link down
3510 	 * SOC control phy regulator, when regulator is disabled, phy link down
3511 	 */
3512 	if (fep->clk_enet_out || fep->reg_phy)
3513 		fep->link = 0;
3514 
3515 	return 0;
3516 }
3517 
3518 static int __maybe_unused fec_resume(struct device *dev)
3519 {
3520 	struct net_device *ndev = dev_get_drvdata(dev);
3521 	struct fec_enet_private *fep = netdev_priv(ndev);
3522 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3523 	int ret;
3524 	int val;
3525 
3526 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3527 		ret = regulator_enable(fep->reg_phy);
3528 		if (ret)
3529 			return ret;
3530 	}
3531 
3532 	rtnl_lock();
3533 	if (netif_running(ndev)) {
3534 		ret = fec_enet_clk_enable(ndev, true);
3535 		if (ret) {
3536 			rtnl_unlock();
3537 			goto failed_clk;
3538 		}
3539 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3540 			if (pdata && pdata->sleep_mode_enable)
3541 				pdata->sleep_mode_enable(false);
3542 			val = readl(fep->hwp + FEC_ECNTRL);
3543 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3544 			writel(val, fep->hwp + FEC_ECNTRL);
3545 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3546 		} else {
3547 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3548 		}
3549 		fec_restart(ndev);
3550 		netif_tx_lock_bh(ndev);
3551 		netif_device_attach(ndev);
3552 		netif_tx_unlock_bh(ndev);
3553 		napi_enable(&fep->napi);
3554 		phy_start(ndev->phydev);
3555 	}
3556 	rtnl_unlock();
3557 
3558 	return 0;
3559 
3560 failed_clk:
3561 	if (fep->reg_phy)
3562 		regulator_disable(fep->reg_phy);
3563 	return ret;
3564 }
3565 
3566 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3567 {
3568 	struct net_device *ndev = dev_get_drvdata(dev);
3569 	struct fec_enet_private *fep = netdev_priv(ndev);
3570 
3571 	clk_disable_unprepare(fep->clk_ipg);
3572 
3573 	return 0;
3574 }
3575 
3576 static int __maybe_unused fec_runtime_resume(struct device *dev)
3577 {
3578 	struct net_device *ndev = dev_get_drvdata(dev);
3579 	struct fec_enet_private *fep = netdev_priv(ndev);
3580 
3581 	return clk_prepare_enable(fep->clk_ipg);
3582 }
3583 
3584 static const struct dev_pm_ops fec_pm_ops = {
3585 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3586 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3587 };
3588 
3589 static struct platform_driver fec_driver = {
3590 	.driver	= {
3591 		.name	= DRIVER_NAME,
3592 		.pm	= &fec_pm_ops,
3593 		.of_match_table = fec_dt_ids,
3594 	},
3595 	.id_table = fec_devtype,
3596 	.probe	= fec_probe,
3597 	.remove	= fec_drv_remove,
3598 };
3599 
3600 module_platform_driver(fec_driver);
3601 
3602 MODULE_ALIAS("platform:"DRIVER_NAME);
3603 MODULE_LICENSE("GPL");
3604