1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/page_pool/helpers.h> 42 #include <net/selftests.h> 43 #include <net/tso.h> 44 #include <linux/tcp.h> 45 #include <linux/udp.h> 46 #include <linux/icmp.h> 47 #include <linux/spinlock.h> 48 #include <linux/workqueue.h> 49 #include <linux/bitops.h> 50 #include <linux/io.h> 51 #include <linux/irq.h> 52 #include <linux/clk.h> 53 #include <linux/crc32.h> 54 #include <linux/platform_device.h> 55 #include <linux/mdio.h> 56 #include <linux/phy.h> 57 #include <linux/fec.h> 58 #include <linux/of.h> 59 #include <linux/of_device.h> 60 #include <linux/of_mdio.h> 61 #include <linux/of_net.h> 62 #include <linux/regulator/consumer.h> 63 #include <linux/if_vlan.h> 64 #include <linux/pinctrl/consumer.h> 65 #include <linux/gpio/consumer.h> 66 #include <linux/prefetch.h> 67 #include <linux/mfd/syscon.h> 68 #include <linux/regmap.h> 69 #include <soc/imx/cpuidle.h> 70 #include <linux/filter.h> 71 #include <linux/bpf.h> 72 #include <linux/bpf_trace.h> 73 74 #include <asm/cacheflush.h> 75 76 #include "fec.h" 77 78 static void set_multicast_list(struct net_device *ndev); 79 static void fec_enet_itr_coal_set(struct net_device *ndev); 80 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep, 81 int cpu, struct xdp_buff *xdp, 82 u32 dma_sync_len); 83 84 #define DRIVER_NAME "fec" 85 86 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 87 88 /* Pause frame feild and FIFO threshold */ 89 #define FEC_ENET_FCE (1 << 5) 90 #define FEC_ENET_RSEM_V 0x84 91 #define FEC_ENET_RSFL_V 16 92 #define FEC_ENET_RAEM_V 0x8 93 #define FEC_ENET_RAFL_V 0x8 94 #define FEC_ENET_OPD_V 0xFFF0 95 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 96 97 #define FEC_ENET_XDP_PASS 0 98 #define FEC_ENET_XDP_CONSUMED BIT(0) 99 #define FEC_ENET_XDP_TX BIT(1) 100 #define FEC_ENET_XDP_REDIR BIT(2) 101 102 struct fec_devinfo { 103 u32 quirks; 104 }; 105 106 static const struct fec_devinfo fec_imx25_info = { 107 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 108 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45, 109 }; 110 111 static const struct fec_devinfo fec_imx27_info = { 112 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG | 113 FEC_QUIRK_HAS_MDIO_C45, 114 }; 115 116 static const struct fec_devinfo fec_imx28_info = { 117 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 118 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 119 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 120 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45, 121 }; 122 123 static const struct fec_devinfo fec_imx6q_info = { 124 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 125 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 126 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 127 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII | 128 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45, 129 }; 130 131 static const struct fec_devinfo fec_mvf600_info = { 132 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC | 133 FEC_QUIRK_HAS_MDIO_C45, 134 }; 135 136 static const struct fec_devinfo fec_imx6x_info = { 137 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 138 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 139 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 140 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 141 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 142 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 143 FEC_QUIRK_HAS_MDIO_C45, 144 }; 145 146 static const struct fec_devinfo fec_imx6ul_info = { 147 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 148 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 149 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 150 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 151 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII | 152 FEC_QUIRK_HAS_MDIO_C45, 153 }; 154 155 static const struct fec_devinfo fec_imx8mq_info = { 156 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 157 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 158 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 159 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 160 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 161 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 162 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 | 163 FEC_QUIRK_HAS_MDIO_C45, 164 }; 165 166 static const struct fec_devinfo fec_imx8qm_info = { 167 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 168 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 169 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 170 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 171 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 172 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 173 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45, 174 }; 175 176 static const struct fec_devinfo fec_s32v234_info = { 177 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 178 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 179 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 180 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 181 FEC_QUIRK_HAS_MDIO_C45, 182 }; 183 184 static struct platform_device_id fec_devtype[] = { 185 { 186 /* keep it for coldfire */ 187 .name = DRIVER_NAME, 188 .driver_data = 0, 189 }, { 190 .name = "imx25-fec", 191 .driver_data = (kernel_ulong_t)&fec_imx25_info, 192 }, { 193 .name = "imx27-fec", 194 .driver_data = (kernel_ulong_t)&fec_imx27_info, 195 }, { 196 .name = "imx28-fec", 197 .driver_data = (kernel_ulong_t)&fec_imx28_info, 198 }, { 199 .name = "imx6q-fec", 200 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 201 }, { 202 .name = "mvf600-fec", 203 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 204 }, { 205 .name = "imx6sx-fec", 206 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 207 }, { 208 .name = "imx6ul-fec", 209 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 210 }, { 211 .name = "imx8mq-fec", 212 .driver_data = (kernel_ulong_t)&fec_imx8mq_info, 213 }, { 214 .name = "imx8qm-fec", 215 .driver_data = (kernel_ulong_t)&fec_imx8qm_info, 216 }, { 217 .name = "s32v234-fec", 218 .driver_data = (kernel_ulong_t)&fec_s32v234_info, 219 }, { 220 /* sentinel */ 221 } 222 }; 223 MODULE_DEVICE_TABLE(platform, fec_devtype); 224 225 enum imx_fec_type { 226 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 227 IMX27_FEC, /* runs on i.mx27/35/51 */ 228 IMX28_FEC, 229 IMX6Q_FEC, 230 MVF600_FEC, 231 IMX6SX_FEC, 232 IMX6UL_FEC, 233 IMX8MQ_FEC, 234 IMX8QM_FEC, 235 S32V234_FEC, 236 }; 237 238 static const struct of_device_id fec_dt_ids[] = { 239 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 240 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 241 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 242 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 243 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 244 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 245 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 246 { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], }, 247 { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], }, 248 { .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], }, 249 { /* sentinel */ } 250 }; 251 MODULE_DEVICE_TABLE(of, fec_dt_ids); 252 253 static unsigned char macaddr[ETH_ALEN]; 254 module_param_array(macaddr, byte, NULL, 0); 255 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 256 257 #if defined(CONFIG_M5272) 258 /* 259 * Some hardware gets it MAC address out of local flash memory. 260 * if this is non-zero then assume it is the address to get MAC from. 261 */ 262 #if defined(CONFIG_NETtel) 263 #define FEC_FLASHMAC 0xf0006006 264 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 265 #define FEC_FLASHMAC 0xf0006000 266 #elif defined(CONFIG_CANCam) 267 #define FEC_FLASHMAC 0xf0020000 268 #elif defined (CONFIG_M5272C3) 269 #define FEC_FLASHMAC (0xffe04000 + 4) 270 #elif defined(CONFIG_MOD5272) 271 #define FEC_FLASHMAC 0xffc0406b 272 #else 273 #define FEC_FLASHMAC 0 274 #endif 275 #endif /* CONFIG_M5272 */ 276 277 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 278 * 279 * 2048 byte skbufs are allocated. However, alignment requirements 280 * varies between FEC variants. Worst case is 64, so round down by 64. 281 */ 282 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 283 #define PKT_MINBUF_SIZE 64 284 285 /* FEC receive acceleration */ 286 #define FEC_RACC_IPDIS (1 << 1) 287 #define FEC_RACC_PRODIS (1 << 2) 288 #define FEC_RACC_SHIFT16 BIT(7) 289 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 290 291 /* MIB Control Register */ 292 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 293 294 /* 295 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 296 * size bits. Other FEC hardware does not, so we need to take that into 297 * account when setting it. 298 */ 299 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 300 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 301 defined(CONFIG_ARM64) 302 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 303 #else 304 #define OPT_FRAME_SIZE 0 305 #endif 306 307 /* FEC MII MMFR bits definition */ 308 #define FEC_MMFR_ST (1 << 30) 309 #define FEC_MMFR_ST_C45 (0) 310 #define FEC_MMFR_OP_READ (2 << 28) 311 #define FEC_MMFR_OP_READ_C45 (3 << 28) 312 #define FEC_MMFR_OP_WRITE (1 << 28) 313 #define FEC_MMFR_OP_ADDR_WRITE (0) 314 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 315 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 316 #define FEC_MMFR_TA (2 << 16) 317 #define FEC_MMFR_DATA(v) (v & 0xffff) 318 /* FEC ECR bits definition */ 319 #define FEC_ECR_MAGICEN (1 << 2) 320 #define FEC_ECR_SLEEP (1 << 3) 321 322 #define FEC_MII_TIMEOUT 30000 /* us */ 323 324 /* Transmitter timeout */ 325 #define TX_TIMEOUT (2 * HZ) 326 327 #define FEC_PAUSE_FLAG_AUTONEG 0x1 328 #define FEC_PAUSE_FLAG_ENABLE 0x2 329 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 330 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 331 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 332 333 /* Max number of allowed TCP segments for software TSO */ 334 #define FEC_MAX_TSO_SEGS 100 335 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 336 337 #define IS_TSO_HEADER(txq, addr) \ 338 ((addr >= txq->tso_hdrs_dma) && \ 339 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 340 341 static int mii_cnt; 342 343 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 344 struct bufdesc_prop *bd) 345 { 346 return (bdp >= bd->last) ? bd->base 347 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 348 } 349 350 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 351 struct bufdesc_prop *bd) 352 { 353 return (bdp <= bd->base) ? bd->last 354 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 355 } 356 357 static int fec_enet_get_bd_index(struct bufdesc *bdp, 358 struct bufdesc_prop *bd) 359 { 360 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 361 } 362 363 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 364 { 365 int entries; 366 367 entries = (((const char *)txq->dirty_tx - 368 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 369 370 return entries >= 0 ? entries : entries + txq->bd.ring_size; 371 } 372 373 static void swap_buffer(void *bufaddr, int len) 374 { 375 int i; 376 unsigned int *buf = bufaddr; 377 378 for (i = 0; i < len; i += 4, buf++) 379 swab32s(buf); 380 } 381 382 static void fec_dump(struct net_device *ndev) 383 { 384 struct fec_enet_private *fep = netdev_priv(ndev); 385 struct bufdesc *bdp; 386 struct fec_enet_priv_tx_q *txq; 387 int index = 0; 388 389 netdev_info(ndev, "TX ring dump\n"); 390 pr_info("Nr SC addr len SKB\n"); 391 392 txq = fep->tx_queue[0]; 393 bdp = txq->bd.base; 394 395 do { 396 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 397 index, 398 bdp == txq->bd.cur ? 'S' : ' ', 399 bdp == txq->dirty_tx ? 'H' : ' ', 400 fec16_to_cpu(bdp->cbd_sc), 401 fec32_to_cpu(bdp->cbd_bufaddr), 402 fec16_to_cpu(bdp->cbd_datlen), 403 txq->tx_buf[index].buf_p); 404 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 405 index++; 406 } while (bdp != txq->bd.base); 407 } 408 409 static inline bool is_ipv4_pkt(struct sk_buff *skb) 410 { 411 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 412 } 413 414 static int 415 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 416 { 417 /* Only run for packets requiring a checksum. */ 418 if (skb->ip_summed != CHECKSUM_PARTIAL) 419 return 0; 420 421 if (unlikely(skb_cow_head(skb, 0))) 422 return -1; 423 424 if (is_ipv4_pkt(skb)) 425 ip_hdr(skb)->check = 0; 426 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 427 428 return 0; 429 } 430 431 static int 432 fec_enet_create_page_pool(struct fec_enet_private *fep, 433 struct fec_enet_priv_rx_q *rxq, int size) 434 { 435 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 436 struct page_pool_params pp_params = { 437 .order = 0, 438 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 439 .pool_size = size, 440 .nid = dev_to_node(&fep->pdev->dev), 441 .dev = &fep->pdev->dev, 442 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 443 .offset = FEC_ENET_XDP_HEADROOM, 444 .max_len = FEC_ENET_RX_FRSIZE, 445 }; 446 int err; 447 448 rxq->page_pool = page_pool_create(&pp_params); 449 if (IS_ERR(rxq->page_pool)) { 450 err = PTR_ERR(rxq->page_pool); 451 rxq->page_pool = NULL; 452 return err; 453 } 454 455 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0); 456 if (err < 0) 457 goto err_free_pp; 458 459 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 460 rxq->page_pool); 461 if (err) 462 goto err_unregister_rxq; 463 464 return 0; 465 466 err_unregister_rxq: 467 xdp_rxq_info_unreg(&rxq->xdp_rxq); 468 err_free_pp: 469 page_pool_destroy(rxq->page_pool); 470 rxq->page_pool = NULL; 471 return err; 472 } 473 474 static struct bufdesc * 475 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 476 struct sk_buff *skb, 477 struct net_device *ndev) 478 { 479 struct fec_enet_private *fep = netdev_priv(ndev); 480 struct bufdesc *bdp = txq->bd.cur; 481 struct bufdesc_ex *ebdp; 482 int nr_frags = skb_shinfo(skb)->nr_frags; 483 int frag, frag_len; 484 unsigned short status; 485 unsigned int estatus = 0; 486 skb_frag_t *this_frag; 487 unsigned int index; 488 void *bufaddr; 489 dma_addr_t addr; 490 int i; 491 492 for (frag = 0; frag < nr_frags; frag++) { 493 this_frag = &skb_shinfo(skb)->frags[frag]; 494 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 495 ebdp = (struct bufdesc_ex *)bdp; 496 497 status = fec16_to_cpu(bdp->cbd_sc); 498 status &= ~BD_ENET_TX_STATS; 499 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 500 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 501 502 /* Handle the last BD specially */ 503 if (frag == nr_frags - 1) { 504 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 505 if (fep->bufdesc_ex) { 506 estatus |= BD_ENET_TX_INT; 507 if (unlikely(skb_shinfo(skb)->tx_flags & 508 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 509 estatus |= BD_ENET_TX_TS; 510 } 511 } 512 513 if (fep->bufdesc_ex) { 514 if (fep->quirks & FEC_QUIRK_HAS_AVB) 515 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 516 if (skb->ip_summed == CHECKSUM_PARTIAL) 517 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 518 519 ebdp->cbd_bdu = 0; 520 ebdp->cbd_esc = cpu_to_fec32(estatus); 521 } 522 523 bufaddr = skb_frag_address(this_frag); 524 525 index = fec_enet_get_bd_index(bdp, &txq->bd); 526 if (((unsigned long) bufaddr) & fep->tx_align || 527 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 528 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 529 bufaddr = txq->tx_bounce[index]; 530 531 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 532 swap_buffer(bufaddr, frag_len); 533 } 534 535 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 536 DMA_TO_DEVICE); 537 if (dma_mapping_error(&fep->pdev->dev, addr)) { 538 if (net_ratelimit()) 539 netdev_err(ndev, "Tx DMA memory map failed\n"); 540 goto dma_mapping_error; 541 } 542 543 bdp->cbd_bufaddr = cpu_to_fec32(addr); 544 bdp->cbd_datlen = cpu_to_fec16(frag_len); 545 /* Make sure the updates to rest of the descriptor are 546 * performed before transferring ownership. 547 */ 548 wmb(); 549 bdp->cbd_sc = cpu_to_fec16(status); 550 } 551 552 return bdp; 553 dma_mapping_error: 554 bdp = txq->bd.cur; 555 for (i = 0; i < frag; i++) { 556 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 557 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 558 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 559 } 560 return ERR_PTR(-ENOMEM); 561 } 562 563 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 564 struct sk_buff *skb, struct net_device *ndev) 565 { 566 struct fec_enet_private *fep = netdev_priv(ndev); 567 int nr_frags = skb_shinfo(skb)->nr_frags; 568 struct bufdesc *bdp, *last_bdp; 569 void *bufaddr; 570 dma_addr_t addr; 571 unsigned short status; 572 unsigned short buflen; 573 unsigned int estatus = 0; 574 unsigned int index; 575 int entries_free; 576 577 entries_free = fec_enet_get_free_txdesc_num(txq); 578 if (entries_free < MAX_SKB_FRAGS + 1) { 579 dev_kfree_skb_any(skb); 580 if (net_ratelimit()) 581 netdev_err(ndev, "NOT enough BD for SG!\n"); 582 return NETDEV_TX_OK; 583 } 584 585 /* Protocol checksum off-load for TCP and UDP. */ 586 if (fec_enet_clear_csum(skb, ndev)) { 587 dev_kfree_skb_any(skb); 588 return NETDEV_TX_OK; 589 } 590 591 /* Fill in a Tx ring entry */ 592 bdp = txq->bd.cur; 593 last_bdp = bdp; 594 status = fec16_to_cpu(bdp->cbd_sc); 595 status &= ~BD_ENET_TX_STATS; 596 597 /* Set buffer length and buffer pointer */ 598 bufaddr = skb->data; 599 buflen = skb_headlen(skb); 600 601 index = fec_enet_get_bd_index(bdp, &txq->bd); 602 if (((unsigned long) bufaddr) & fep->tx_align || 603 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 604 memcpy(txq->tx_bounce[index], skb->data, buflen); 605 bufaddr = txq->tx_bounce[index]; 606 607 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 608 swap_buffer(bufaddr, buflen); 609 } 610 611 /* Push the data cache so the CPM does not get stale memory data. */ 612 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 613 if (dma_mapping_error(&fep->pdev->dev, addr)) { 614 dev_kfree_skb_any(skb); 615 if (net_ratelimit()) 616 netdev_err(ndev, "Tx DMA memory map failed\n"); 617 return NETDEV_TX_OK; 618 } 619 620 if (nr_frags) { 621 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 622 if (IS_ERR(last_bdp)) { 623 dma_unmap_single(&fep->pdev->dev, addr, 624 buflen, DMA_TO_DEVICE); 625 dev_kfree_skb_any(skb); 626 return NETDEV_TX_OK; 627 } 628 } else { 629 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 630 if (fep->bufdesc_ex) { 631 estatus = BD_ENET_TX_INT; 632 if (unlikely(skb_shinfo(skb)->tx_flags & 633 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 634 estatus |= BD_ENET_TX_TS; 635 } 636 } 637 bdp->cbd_bufaddr = cpu_to_fec32(addr); 638 bdp->cbd_datlen = cpu_to_fec16(buflen); 639 640 if (fep->bufdesc_ex) { 641 642 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 643 644 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 645 fep->hwts_tx_en)) 646 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 647 648 if (fep->quirks & FEC_QUIRK_HAS_AVB) 649 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 650 651 if (skb->ip_summed == CHECKSUM_PARTIAL) 652 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 653 654 ebdp->cbd_bdu = 0; 655 ebdp->cbd_esc = cpu_to_fec32(estatus); 656 } 657 658 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 659 /* Save skb pointer */ 660 txq->tx_buf[index].buf_p = skb; 661 662 /* Make sure the updates to rest of the descriptor are performed before 663 * transferring ownership. 664 */ 665 wmb(); 666 667 /* Send it on its way. Tell FEC it's ready, interrupt when done, 668 * it's the last BD of the frame, and to put the CRC on the end. 669 */ 670 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 671 bdp->cbd_sc = cpu_to_fec16(status); 672 673 /* If this was the last BD in the ring, start at the beginning again. */ 674 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 675 676 skb_tx_timestamp(skb); 677 678 /* Make sure the update to bdp is performed before txq->bd.cur. */ 679 wmb(); 680 txq->bd.cur = bdp; 681 682 /* Trigger transmission start */ 683 writel(0, txq->bd.reg_desc_active); 684 685 return 0; 686 } 687 688 static int 689 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 690 struct net_device *ndev, 691 struct bufdesc *bdp, int index, char *data, 692 int size, bool last_tcp, bool is_last) 693 { 694 struct fec_enet_private *fep = netdev_priv(ndev); 695 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 696 unsigned short status; 697 unsigned int estatus = 0; 698 dma_addr_t addr; 699 700 status = fec16_to_cpu(bdp->cbd_sc); 701 status &= ~BD_ENET_TX_STATS; 702 703 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 704 705 if (((unsigned long) data) & fep->tx_align || 706 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 707 memcpy(txq->tx_bounce[index], data, size); 708 data = txq->tx_bounce[index]; 709 710 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 711 swap_buffer(data, size); 712 } 713 714 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 715 if (dma_mapping_error(&fep->pdev->dev, addr)) { 716 dev_kfree_skb_any(skb); 717 if (net_ratelimit()) 718 netdev_err(ndev, "Tx DMA memory map failed\n"); 719 return NETDEV_TX_OK; 720 } 721 722 bdp->cbd_datlen = cpu_to_fec16(size); 723 bdp->cbd_bufaddr = cpu_to_fec32(addr); 724 725 if (fep->bufdesc_ex) { 726 if (fep->quirks & FEC_QUIRK_HAS_AVB) 727 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 728 if (skb->ip_summed == CHECKSUM_PARTIAL) 729 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 730 ebdp->cbd_bdu = 0; 731 ebdp->cbd_esc = cpu_to_fec32(estatus); 732 } 733 734 /* Handle the last BD specially */ 735 if (last_tcp) 736 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 737 if (is_last) { 738 status |= BD_ENET_TX_INTR; 739 if (fep->bufdesc_ex) 740 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 741 } 742 743 bdp->cbd_sc = cpu_to_fec16(status); 744 745 return 0; 746 } 747 748 static int 749 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 750 struct sk_buff *skb, struct net_device *ndev, 751 struct bufdesc *bdp, int index) 752 { 753 struct fec_enet_private *fep = netdev_priv(ndev); 754 int hdr_len = skb_tcp_all_headers(skb); 755 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 756 void *bufaddr; 757 unsigned long dmabuf; 758 unsigned short status; 759 unsigned int estatus = 0; 760 761 status = fec16_to_cpu(bdp->cbd_sc); 762 status &= ~BD_ENET_TX_STATS; 763 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 764 765 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 766 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 767 if (((unsigned long)bufaddr) & fep->tx_align || 768 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 769 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 770 bufaddr = txq->tx_bounce[index]; 771 772 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 773 swap_buffer(bufaddr, hdr_len); 774 775 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 776 hdr_len, DMA_TO_DEVICE); 777 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 778 dev_kfree_skb_any(skb); 779 if (net_ratelimit()) 780 netdev_err(ndev, "Tx DMA memory map failed\n"); 781 return NETDEV_TX_OK; 782 } 783 } 784 785 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 786 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 787 788 if (fep->bufdesc_ex) { 789 if (fep->quirks & FEC_QUIRK_HAS_AVB) 790 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 791 if (skb->ip_summed == CHECKSUM_PARTIAL) 792 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 793 ebdp->cbd_bdu = 0; 794 ebdp->cbd_esc = cpu_to_fec32(estatus); 795 } 796 797 bdp->cbd_sc = cpu_to_fec16(status); 798 799 return 0; 800 } 801 802 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 803 struct sk_buff *skb, 804 struct net_device *ndev) 805 { 806 struct fec_enet_private *fep = netdev_priv(ndev); 807 int hdr_len, total_len, data_left; 808 struct bufdesc *bdp = txq->bd.cur; 809 struct tso_t tso; 810 unsigned int index = 0; 811 int ret; 812 813 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 814 dev_kfree_skb_any(skb); 815 if (net_ratelimit()) 816 netdev_err(ndev, "NOT enough BD for TSO!\n"); 817 return NETDEV_TX_OK; 818 } 819 820 /* Protocol checksum off-load for TCP and UDP. */ 821 if (fec_enet_clear_csum(skb, ndev)) { 822 dev_kfree_skb_any(skb); 823 return NETDEV_TX_OK; 824 } 825 826 /* Initialize the TSO handler, and prepare the first payload */ 827 hdr_len = tso_start(skb, &tso); 828 829 total_len = skb->len - hdr_len; 830 while (total_len > 0) { 831 char *hdr; 832 833 index = fec_enet_get_bd_index(bdp, &txq->bd); 834 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 835 total_len -= data_left; 836 837 /* prepare packet headers: MAC + IP + TCP */ 838 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 839 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 840 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 841 if (ret) 842 goto err_release; 843 844 while (data_left > 0) { 845 int size; 846 847 size = min_t(int, tso.size, data_left); 848 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 849 index = fec_enet_get_bd_index(bdp, &txq->bd); 850 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 851 bdp, index, 852 tso.data, size, 853 size == data_left, 854 total_len == 0); 855 if (ret) 856 goto err_release; 857 858 data_left -= size; 859 tso_build_data(skb, &tso, size); 860 } 861 862 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 863 } 864 865 /* Save skb pointer */ 866 txq->tx_buf[index].buf_p = skb; 867 868 skb_tx_timestamp(skb); 869 txq->bd.cur = bdp; 870 871 /* Trigger transmission start */ 872 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 873 !readl(txq->bd.reg_desc_active) || 874 !readl(txq->bd.reg_desc_active) || 875 !readl(txq->bd.reg_desc_active) || 876 !readl(txq->bd.reg_desc_active)) 877 writel(0, txq->bd.reg_desc_active); 878 879 return 0; 880 881 err_release: 882 /* TODO: Release all used data descriptors for TSO */ 883 return ret; 884 } 885 886 static netdev_tx_t 887 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 888 { 889 struct fec_enet_private *fep = netdev_priv(ndev); 890 int entries_free; 891 unsigned short queue; 892 struct fec_enet_priv_tx_q *txq; 893 struct netdev_queue *nq; 894 int ret; 895 896 queue = skb_get_queue_mapping(skb); 897 txq = fep->tx_queue[queue]; 898 nq = netdev_get_tx_queue(ndev, queue); 899 900 if (skb_is_gso(skb)) 901 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 902 else 903 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 904 if (ret) 905 return ret; 906 907 entries_free = fec_enet_get_free_txdesc_num(txq); 908 if (entries_free <= txq->tx_stop_threshold) 909 netif_tx_stop_queue(nq); 910 911 return NETDEV_TX_OK; 912 } 913 914 /* Init RX & TX buffer descriptors 915 */ 916 static void fec_enet_bd_init(struct net_device *dev) 917 { 918 struct fec_enet_private *fep = netdev_priv(dev); 919 struct fec_enet_priv_tx_q *txq; 920 struct fec_enet_priv_rx_q *rxq; 921 struct bufdesc *bdp; 922 unsigned int i; 923 unsigned int q; 924 925 for (q = 0; q < fep->num_rx_queues; q++) { 926 /* Initialize the receive buffer descriptors. */ 927 rxq = fep->rx_queue[q]; 928 bdp = rxq->bd.base; 929 930 for (i = 0; i < rxq->bd.ring_size; i++) { 931 932 /* Initialize the BD for every fragment in the page. */ 933 if (bdp->cbd_bufaddr) 934 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 935 else 936 bdp->cbd_sc = cpu_to_fec16(0); 937 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 938 } 939 940 /* Set the last buffer to wrap */ 941 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 942 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 943 944 rxq->bd.cur = rxq->bd.base; 945 } 946 947 for (q = 0; q < fep->num_tx_queues; q++) { 948 /* ...and the same for transmit */ 949 txq = fep->tx_queue[q]; 950 bdp = txq->bd.base; 951 txq->bd.cur = bdp; 952 953 for (i = 0; i < txq->bd.ring_size; i++) { 954 /* Initialize the BD for every fragment in the page. */ 955 bdp->cbd_sc = cpu_to_fec16(0); 956 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) { 957 if (bdp->cbd_bufaddr && 958 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 959 dma_unmap_single(&fep->pdev->dev, 960 fec32_to_cpu(bdp->cbd_bufaddr), 961 fec16_to_cpu(bdp->cbd_datlen), 962 DMA_TO_DEVICE); 963 if (txq->tx_buf[i].buf_p) 964 dev_kfree_skb_any(txq->tx_buf[i].buf_p); 965 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) { 966 if (bdp->cbd_bufaddr) 967 dma_unmap_single(&fep->pdev->dev, 968 fec32_to_cpu(bdp->cbd_bufaddr), 969 fec16_to_cpu(bdp->cbd_datlen), 970 DMA_TO_DEVICE); 971 972 if (txq->tx_buf[i].buf_p) 973 xdp_return_frame(txq->tx_buf[i].buf_p); 974 } else { 975 struct page *page = txq->tx_buf[i].buf_p; 976 977 if (page) 978 page_pool_put_page(page->pp, page, 0, false); 979 } 980 981 txq->tx_buf[i].buf_p = NULL; 982 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 983 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 984 bdp->cbd_bufaddr = cpu_to_fec32(0); 985 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 986 } 987 988 /* Set the last buffer to wrap */ 989 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 990 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 991 txq->dirty_tx = bdp; 992 } 993 } 994 995 static void fec_enet_active_rxring(struct net_device *ndev) 996 { 997 struct fec_enet_private *fep = netdev_priv(ndev); 998 int i; 999 1000 for (i = 0; i < fep->num_rx_queues; i++) 1001 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 1002 } 1003 1004 static void fec_enet_enable_ring(struct net_device *ndev) 1005 { 1006 struct fec_enet_private *fep = netdev_priv(ndev); 1007 struct fec_enet_priv_tx_q *txq; 1008 struct fec_enet_priv_rx_q *rxq; 1009 int i; 1010 1011 for (i = 0; i < fep->num_rx_queues; i++) { 1012 rxq = fep->rx_queue[i]; 1013 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 1014 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 1015 1016 /* enable DMA1/2 */ 1017 if (i) 1018 writel(RCMR_MATCHEN | RCMR_CMP(i), 1019 fep->hwp + FEC_RCMR(i)); 1020 } 1021 1022 for (i = 0; i < fep->num_tx_queues; i++) { 1023 txq = fep->tx_queue[i]; 1024 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 1025 1026 /* enable DMA1/2 */ 1027 if (i) 1028 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 1029 fep->hwp + FEC_DMA_CFG(i)); 1030 } 1031 } 1032 1033 /* 1034 * This function is called to start or restart the FEC during a link 1035 * change, transmit timeout, or to reconfigure the FEC. The network 1036 * packet processing for this device must be stopped before this call. 1037 */ 1038 static void 1039 fec_restart(struct net_device *ndev) 1040 { 1041 struct fec_enet_private *fep = netdev_priv(ndev); 1042 u32 temp_mac[2]; 1043 u32 rcntl = OPT_FRAME_SIZE | 0x04; 1044 u32 ecntl = 0x2; /* ETHEREN */ 1045 1046 /* Whack a reset. We should wait for this. 1047 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1048 * instead of reset MAC itself. 1049 */ 1050 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 1051 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 1052 writel(0, fep->hwp + FEC_ECNTRL); 1053 } else { 1054 writel(1, fep->hwp + FEC_ECNTRL); 1055 udelay(10); 1056 } 1057 1058 /* 1059 * enet-mac reset will reset mac address registers too, 1060 * so need to reconfigure it. 1061 */ 1062 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1063 writel((__force u32)cpu_to_be32(temp_mac[0]), 1064 fep->hwp + FEC_ADDR_LOW); 1065 writel((__force u32)cpu_to_be32(temp_mac[1]), 1066 fep->hwp + FEC_ADDR_HIGH); 1067 1068 /* Clear any outstanding interrupt, except MDIO. */ 1069 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1070 1071 fec_enet_bd_init(ndev); 1072 1073 fec_enet_enable_ring(ndev); 1074 1075 /* Enable MII mode */ 1076 if (fep->full_duplex == DUPLEX_FULL) { 1077 /* FD enable */ 1078 writel(0x04, fep->hwp + FEC_X_CNTRL); 1079 } else { 1080 /* No Rcv on Xmit */ 1081 rcntl |= 0x02; 1082 writel(0x0, fep->hwp + FEC_X_CNTRL); 1083 } 1084 1085 /* Set MII speed */ 1086 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1087 1088 #if !defined(CONFIG_M5272) 1089 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1090 u32 val = readl(fep->hwp + FEC_RACC); 1091 1092 /* align IP header */ 1093 val |= FEC_RACC_SHIFT16; 1094 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1095 /* set RX checksum */ 1096 val |= FEC_RACC_OPTIONS; 1097 else 1098 val &= ~FEC_RACC_OPTIONS; 1099 writel(val, fep->hwp + FEC_RACC); 1100 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1101 } 1102 #endif 1103 1104 /* 1105 * The phy interface and speed need to get configured 1106 * differently on enet-mac. 1107 */ 1108 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1109 /* Enable flow control and length check */ 1110 rcntl |= 0x40000000 | 0x00000020; 1111 1112 /* RGMII, RMII or MII */ 1113 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1114 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1115 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1116 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1117 rcntl |= (1 << 6); 1118 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1119 rcntl |= (1 << 8); 1120 else 1121 rcntl &= ~(1 << 8); 1122 1123 /* 1G, 100M or 10M */ 1124 if (ndev->phydev) { 1125 if (ndev->phydev->speed == SPEED_1000) 1126 ecntl |= (1 << 5); 1127 else if (ndev->phydev->speed == SPEED_100) 1128 rcntl &= ~(1 << 9); 1129 else 1130 rcntl |= (1 << 9); 1131 } 1132 } else { 1133 #ifdef FEC_MIIGSK_ENR 1134 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1135 u32 cfgr; 1136 /* disable the gasket and wait */ 1137 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1138 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1139 udelay(1); 1140 1141 /* 1142 * configure the gasket: 1143 * RMII, 50 MHz, no loopback, no echo 1144 * MII, 25 MHz, no loopback, no echo 1145 */ 1146 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1147 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1148 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1149 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1150 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1151 1152 /* re-enable the gasket */ 1153 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1154 } 1155 #endif 1156 } 1157 1158 #if !defined(CONFIG_M5272) 1159 /* enable pause frame*/ 1160 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1161 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1162 ndev->phydev && ndev->phydev->pause)) { 1163 rcntl |= FEC_ENET_FCE; 1164 1165 /* set FIFO threshold parameter to reduce overrun */ 1166 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1167 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1168 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1169 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1170 1171 /* OPD */ 1172 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1173 } else { 1174 rcntl &= ~FEC_ENET_FCE; 1175 } 1176 #endif /* !defined(CONFIG_M5272) */ 1177 1178 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1179 1180 /* Setup multicast filter. */ 1181 set_multicast_list(ndev); 1182 #ifndef CONFIG_M5272 1183 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1184 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1185 #endif 1186 1187 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1188 /* enable ENET endian swap */ 1189 ecntl |= (1 << 8); 1190 /* enable ENET store and forward mode */ 1191 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1192 } 1193 1194 if (fep->bufdesc_ex) 1195 ecntl |= (1 << 4); 1196 1197 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1198 fep->rgmii_txc_dly) 1199 ecntl |= FEC_ENET_TXC_DLY; 1200 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1201 fep->rgmii_rxc_dly) 1202 ecntl |= FEC_ENET_RXC_DLY; 1203 1204 #ifndef CONFIG_M5272 1205 /* Enable the MIB statistic event counters */ 1206 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1207 #endif 1208 1209 /* And last, enable the transmit and receive processing */ 1210 writel(ecntl, fep->hwp + FEC_ECNTRL); 1211 fec_enet_active_rxring(ndev); 1212 1213 if (fep->bufdesc_ex) 1214 fec_ptp_start_cyclecounter(ndev); 1215 1216 /* Enable interrupts we wish to service */ 1217 if (fep->link) 1218 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1219 else 1220 writel(0, fep->hwp + FEC_IMASK); 1221 1222 /* Init the interrupt coalescing */ 1223 if (fep->quirks & FEC_QUIRK_HAS_COALESCE) 1224 fec_enet_itr_coal_set(ndev); 1225 } 1226 1227 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep) 1228 { 1229 if (!(of_machine_is_compatible("fsl,imx8qm") || 1230 of_machine_is_compatible("fsl,imx8qxp") || 1231 of_machine_is_compatible("fsl,imx8dxl"))) 1232 return 0; 1233 1234 return imx_scu_get_handle(&fep->ipc_handle); 1235 } 1236 1237 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled) 1238 { 1239 struct device_node *np = fep->pdev->dev.of_node; 1240 u32 rsrc_id, val; 1241 int idx; 1242 1243 if (!np || !fep->ipc_handle) 1244 return; 1245 1246 idx = of_alias_get_id(np, "ethernet"); 1247 if (idx < 0) 1248 idx = 0; 1249 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0; 1250 1251 val = enabled ? 1 : 0; 1252 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val); 1253 } 1254 1255 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1256 { 1257 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1258 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1259 1260 if (stop_gpr->gpr) { 1261 if (enabled) 1262 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1263 BIT(stop_gpr->bit), 1264 BIT(stop_gpr->bit)); 1265 else 1266 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1267 BIT(stop_gpr->bit), 0); 1268 } else if (pdata && pdata->sleep_mode_enable) { 1269 pdata->sleep_mode_enable(enabled); 1270 } else { 1271 fec_enet_ipg_stop_set(fep, enabled); 1272 } 1273 } 1274 1275 static void fec_irqs_disable(struct net_device *ndev) 1276 { 1277 struct fec_enet_private *fep = netdev_priv(ndev); 1278 1279 writel(0, fep->hwp + FEC_IMASK); 1280 } 1281 1282 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1283 { 1284 struct fec_enet_private *fep = netdev_priv(ndev); 1285 1286 writel(0, fep->hwp + FEC_IMASK); 1287 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1288 } 1289 1290 static void 1291 fec_stop(struct net_device *ndev) 1292 { 1293 struct fec_enet_private *fep = netdev_priv(ndev); 1294 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1295 u32 val; 1296 1297 /* We cannot expect a graceful transmit stop without link !!! */ 1298 if (fep->link) { 1299 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1300 udelay(10); 1301 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1302 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1303 } 1304 1305 /* Whack a reset. We should wait for this. 1306 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1307 * instead of reset MAC itself. 1308 */ 1309 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1310 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1311 writel(0, fep->hwp + FEC_ECNTRL); 1312 } else { 1313 writel(1, fep->hwp + FEC_ECNTRL); 1314 udelay(10); 1315 } 1316 } else { 1317 val = readl(fep->hwp + FEC_ECNTRL); 1318 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1319 writel(val, fep->hwp + FEC_ECNTRL); 1320 } 1321 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1322 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1323 1324 /* We have to keep ENET enabled to have MII interrupt stay working */ 1325 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1326 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1327 writel(2, fep->hwp + FEC_ECNTRL); 1328 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1329 } 1330 } 1331 1332 1333 static void 1334 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1335 { 1336 struct fec_enet_private *fep = netdev_priv(ndev); 1337 1338 fec_dump(ndev); 1339 1340 ndev->stats.tx_errors++; 1341 1342 schedule_work(&fep->tx_timeout_work); 1343 } 1344 1345 static void fec_enet_timeout_work(struct work_struct *work) 1346 { 1347 struct fec_enet_private *fep = 1348 container_of(work, struct fec_enet_private, tx_timeout_work); 1349 struct net_device *ndev = fep->netdev; 1350 1351 rtnl_lock(); 1352 if (netif_device_present(ndev) || netif_running(ndev)) { 1353 napi_disable(&fep->napi); 1354 netif_tx_lock_bh(ndev); 1355 fec_restart(ndev); 1356 netif_tx_wake_all_queues(ndev); 1357 netif_tx_unlock_bh(ndev); 1358 napi_enable(&fep->napi); 1359 } 1360 rtnl_unlock(); 1361 } 1362 1363 static void 1364 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1365 struct skb_shared_hwtstamps *hwtstamps) 1366 { 1367 unsigned long flags; 1368 u64 ns; 1369 1370 spin_lock_irqsave(&fep->tmreg_lock, flags); 1371 ns = timecounter_cyc2time(&fep->tc, ts); 1372 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1373 1374 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1375 hwtstamps->hwtstamp = ns_to_ktime(ns); 1376 } 1377 1378 static void 1379 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id, int budget) 1380 { 1381 struct fec_enet_private *fep; 1382 struct xdp_frame *xdpf; 1383 struct bufdesc *bdp; 1384 unsigned short status; 1385 struct sk_buff *skb; 1386 struct fec_enet_priv_tx_q *txq; 1387 struct netdev_queue *nq; 1388 int index = 0; 1389 int entries_free; 1390 struct page *page; 1391 int frame_len; 1392 1393 fep = netdev_priv(ndev); 1394 1395 txq = fep->tx_queue[queue_id]; 1396 /* get next bdp of dirty_tx */ 1397 nq = netdev_get_tx_queue(ndev, queue_id); 1398 bdp = txq->dirty_tx; 1399 1400 /* get next bdp of dirty_tx */ 1401 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1402 1403 while (bdp != READ_ONCE(txq->bd.cur)) { 1404 /* Order the load of bd.cur and cbd_sc */ 1405 rmb(); 1406 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1407 if (status & BD_ENET_TX_READY) 1408 break; 1409 1410 index = fec_enet_get_bd_index(bdp, &txq->bd); 1411 1412 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) { 1413 skb = txq->tx_buf[index].buf_p; 1414 if (bdp->cbd_bufaddr && 1415 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1416 dma_unmap_single(&fep->pdev->dev, 1417 fec32_to_cpu(bdp->cbd_bufaddr), 1418 fec16_to_cpu(bdp->cbd_datlen), 1419 DMA_TO_DEVICE); 1420 bdp->cbd_bufaddr = cpu_to_fec32(0); 1421 if (!skb) 1422 goto tx_buf_done; 1423 } else { 1424 /* Tx processing cannot call any XDP (or page pool) APIs if 1425 * the "budget" is 0. Because NAPI is called with budget of 1426 * 0 (such as netpoll) indicates we may be in an IRQ context, 1427 * however, we can't use the page pool from IRQ context. 1428 */ 1429 if (unlikely(!budget)) 1430 break; 1431 1432 if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) { 1433 xdpf = txq->tx_buf[index].buf_p; 1434 if (bdp->cbd_bufaddr) 1435 dma_unmap_single(&fep->pdev->dev, 1436 fec32_to_cpu(bdp->cbd_bufaddr), 1437 fec16_to_cpu(bdp->cbd_datlen), 1438 DMA_TO_DEVICE); 1439 } else { 1440 page = txq->tx_buf[index].buf_p; 1441 } 1442 1443 bdp->cbd_bufaddr = cpu_to_fec32(0); 1444 if (unlikely(!txq->tx_buf[index].buf_p)) { 1445 txq->tx_buf[index].type = FEC_TXBUF_T_SKB; 1446 goto tx_buf_done; 1447 } 1448 1449 frame_len = fec16_to_cpu(bdp->cbd_datlen); 1450 } 1451 1452 /* Check for errors. */ 1453 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1454 BD_ENET_TX_RL | BD_ENET_TX_UN | 1455 BD_ENET_TX_CSL)) { 1456 ndev->stats.tx_errors++; 1457 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1458 ndev->stats.tx_heartbeat_errors++; 1459 if (status & BD_ENET_TX_LC) /* Late collision */ 1460 ndev->stats.tx_window_errors++; 1461 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1462 ndev->stats.tx_aborted_errors++; 1463 if (status & BD_ENET_TX_UN) /* Underrun */ 1464 ndev->stats.tx_fifo_errors++; 1465 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1466 ndev->stats.tx_carrier_errors++; 1467 } else { 1468 ndev->stats.tx_packets++; 1469 1470 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) 1471 ndev->stats.tx_bytes += skb->len; 1472 else 1473 ndev->stats.tx_bytes += frame_len; 1474 } 1475 1476 /* Deferred means some collisions occurred during transmit, 1477 * but we eventually sent the packet OK. 1478 */ 1479 if (status & BD_ENET_TX_DEF) 1480 ndev->stats.collisions++; 1481 1482 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) { 1483 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1484 * are to time stamp the packet, so we still need to check time 1485 * stamping enabled flag. 1486 */ 1487 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1488 fep->hwts_tx_en) && fep->bufdesc_ex) { 1489 struct skb_shared_hwtstamps shhwtstamps; 1490 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1491 1492 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1493 skb_tstamp_tx(skb, &shhwtstamps); 1494 } 1495 1496 /* Free the sk buffer associated with this last transmit */ 1497 napi_consume_skb(skb, budget); 1498 } else if (txq->tx_buf[index].type == FEC_TXBUF_T_XDP_NDO) { 1499 xdp_return_frame_rx_napi(xdpf); 1500 } else { /* recycle pages of XDP_TX frames */ 1501 /* The dma_sync_size = 0 as XDP_TX has already synced DMA for_device */ 1502 page_pool_put_page(page->pp, page, 0, true); 1503 } 1504 1505 txq->tx_buf[index].buf_p = NULL; 1506 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 1507 txq->tx_buf[index].type = FEC_TXBUF_T_SKB; 1508 1509 tx_buf_done: 1510 /* Make sure the update to bdp and tx_buf are performed 1511 * before dirty_tx 1512 */ 1513 wmb(); 1514 txq->dirty_tx = bdp; 1515 1516 /* Update pointer to next buffer descriptor to be transmitted */ 1517 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1518 1519 /* Since we have freed up a buffer, the ring is no longer full 1520 */ 1521 if (netif_tx_queue_stopped(nq)) { 1522 entries_free = fec_enet_get_free_txdesc_num(txq); 1523 if (entries_free >= txq->tx_wake_threshold) 1524 netif_tx_wake_queue(nq); 1525 } 1526 } 1527 1528 /* ERR006358: Keep the transmitter going */ 1529 if (bdp != txq->bd.cur && 1530 readl(txq->bd.reg_desc_active) == 0) 1531 writel(0, txq->bd.reg_desc_active); 1532 } 1533 1534 static void fec_enet_tx(struct net_device *ndev, int budget) 1535 { 1536 struct fec_enet_private *fep = netdev_priv(ndev); 1537 int i; 1538 1539 /* Make sure that AVB queues are processed first. */ 1540 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1541 fec_enet_tx_queue(ndev, i, budget); 1542 } 1543 1544 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq, 1545 struct bufdesc *bdp, int index) 1546 { 1547 struct page *new_page; 1548 dma_addr_t phys_addr; 1549 1550 new_page = page_pool_dev_alloc_pages(rxq->page_pool); 1551 WARN_ON(!new_page); 1552 rxq->rx_skb_info[index].page = new_page; 1553 1554 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM; 1555 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM; 1556 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1557 } 1558 1559 static u32 1560 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog, 1561 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int cpu) 1562 { 1563 unsigned int sync, len = xdp->data_end - xdp->data; 1564 u32 ret = FEC_ENET_XDP_PASS; 1565 struct page *page; 1566 int err; 1567 u32 act; 1568 1569 act = bpf_prog_run_xdp(prog, xdp); 1570 1571 /* Due xdp_adjust_tail and xdp_adjust_head: DMA sync for_device cover 1572 * max len CPU touch 1573 */ 1574 sync = xdp->data_end - xdp->data; 1575 sync = max(sync, len); 1576 1577 switch (act) { 1578 case XDP_PASS: 1579 rxq->stats[RX_XDP_PASS]++; 1580 ret = FEC_ENET_XDP_PASS; 1581 break; 1582 1583 case XDP_REDIRECT: 1584 rxq->stats[RX_XDP_REDIRECT]++; 1585 err = xdp_do_redirect(fep->netdev, xdp, prog); 1586 if (unlikely(err)) 1587 goto xdp_err; 1588 1589 ret = FEC_ENET_XDP_REDIR; 1590 break; 1591 1592 case XDP_TX: 1593 rxq->stats[RX_XDP_TX]++; 1594 err = fec_enet_xdp_tx_xmit(fep, cpu, xdp, sync); 1595 if (unlikely(err)) { 1596 rxq->stats[RX_XDP_TX_ERRORS]++; 1597 goto xdp_err; 1598 } 1599 1600 ret = FEC_ENET_XDP_TX; 1601 break; 1602 1603 default: 1604 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1605 fallthrough; 1606 1607 case XDP_ABORTED: 1608 fallthrough; /* handle aborts by dropping packet */ 1609 1610 case XDP_DROP: 1611 rxq->stats[RX_XDP_DROP]++; 1612 xdp_err: 1613 ret = FEC_ENET_XDP_CONSUMED; 1614 page = virt_to_head_page(xdp->data); 1615 page_pool_put_page(rxq->page_pool, page, sync, true); 1616 if (act != XDP_DROP) 1617 trace_xdp_exception(fep->netdev, prog, act); 1618 break; 1619 } 1620 1621 return ret; 1622 } 1623 1624 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1625 * When we update through the ring, if the next incoming buffer has 1626 * not been given to the system, we just set the empty indicator, 1627 * effectively tossing the packet. 1628 */ 1629 static int 1630 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1631 { 1632 struct fec_enet_private *fep = netdev_priv(ndev); 1633 struct fec_enet_priv_rx_q *rxq; 1634 struct bufdesc *bdp; 1635 unsigned short status; 1636 struct sk_buff *skb; 1637 ushort pkt_len; 1638 __u8 *data; 1639 int pkt_received = 0; 1640 struct bufdesc_ex *ebdp = NULL; 1641 bool vlan_packet_rcvd = false; 1642 u16 vlan_tag; 1643 int index = 0; 1644 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1645 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 1646 u32 ret, xdp_result = FEC_ENET_XDP_PASS; 1647 u32 data_start = FEC_ENET_XDP_HEADROOM; 1648 int cpu = smp_processor_id(); 1649 struct xdp_buff xdp; 1650 struct page *page; 1651 u32 sub_len = 4; 1652 1653 #if !defined(CONFIG_M5272) 1654 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of 1655 * FEC_RACC_SHIFT16 is set by default in the probe function. 1656 */ 1657 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1658 data_start += 2; 1659 sub_len += 2; 1660 } 1661 #endif 1662 1663 #ifdef CONFIG_M532x 1664 flush_cache_all(); 1665 #endif 1666 rxq = fep->rx_queue[queue_id]; 1667 1668 /* First, grab all of the stats for the incoming packet. 1669 * These get messed up if we get called due to a busy condition. 1670 */ 1671 bdp = rxq->bd.cur; 1672 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq); 1673 1674 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1675 1676 if (pkt_received >= budget) 1677 break; 1678 pkt_received++; 1679 1680 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1681 1682 /* Check for errors. */ 1683 status ^= BD_ENET_RX_LAST; 1684 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1685 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1686 BD_ENET_RX_CL)) { 1687 ndev->stats.rx_errors++; 1688 if (status & BD_ENET_RX_OV) { 1689 /* FIFO overrun */ 1690 ndev->stats.rx_fifo_errors++; 1691 goto rx_processing_done; 1692 } 1693 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1694 | BD_ENET_RX_LAST)) { 1695 /* Frame too long or too short. */ 1696 ndev->stats.rx_length_errors++; 1697 if (status & BD_ENET_RX_LAST) 1698 netdev_err(ndev, "rcv is not +last\n"); 1699 } 1700 if (status & BD_ENET_RX_CR) /* CRC Error */ 1701 ndev->stats.rx_crc_errors++; 1702 /* Report late collisions as a frame error. */ 1703 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1704 ndev->stats.rx_frame_errors++; 1705 goto rx_processing_done; 1706 } 1707 1708 /* Process the incoming frame. */ 1709 ndev->stats.rx_packets++; 1710 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1711 ndev->stats.rx_bytes += pkt_len; 1712 1713 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1714 page = rxq->rx_skb_info[index].page; 1715 dma_sync_single_for_cpu(&fep->pdev->dev, 1716 fec32_to_cpu(bdp->cbd_bufaddr), 1717 pkt_len, 1718 DMA_FROM_DEVICE); 1719 prefetch(page_address(page)); 1720 fec_enet_update_cbd(rxq, bdp, index); 1721 1722 if (xdp_prog) { 1723 xdp_buff_clear_frags_flag(&xdp); 1724 /* subtract 16bit shift and FCS */ 1725 xdp_prepare_buff(&xdp, page_address(page), 1726 data_start, pkt_len - sub_len, false); 1727 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, cpu); 1728 xdp_result |= ret; 1729 if (ret != FEC_ENET_XDP_PASS) 1730 goto rx_processing_done; 1731 } 1732 1733 /* The packet length includes FCS, but we don't want to 1734 * include that when passing upstream as it messes up 1735 * bridging applications. 1736 */ 1737 skb = build_skb(page_address(page), PAGE_SIZE); 1738 if (unlikely(!skb)) { 1739 page_pool_recycle_direct(rxq->page_pool, page); 1740 ndev->stats.rx_dropped++; 1741 1742 netdev_err_once(ndev, "build_skb failed!\n"); 1743 goto rx_processing_done; 1744 } 1745 1746 skb_reserve(skb, data_start); 1747 skb_put(skb, pkt_len - sub_len); 1748 skb_mark_for_recycle(skb); 1749 1750 if (unlikely(need_swap)) { 1751 data = page_address(page) + FEC_ENET_XDP_HEADROOM; 1752 swap_buffer(data, pkt_len); 1753 } 1754 data = skb->data; 1755 1756 /* Extract the enhanced buffer descriptor */ 1757 ebdp = NULL; 1758 if (fep->bufdesc_ex) 1759 ebdp = (struct bufdesc_ex *)bdp; 1760 1761 /* If this is a VLAN packet remove the VLAN Tag */ 1762 vlan_packet_rcvd = false; 1763 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1764 fep->bufdesc_ex && 1765 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1766 /* Push and remove the vlan tag */ 1767 struct vlan_hdr *vlan_header = 1768 (struct vlan_hdr *) (data + ETH_HLEN); 1769 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1770 1771 vlan_packet_rcvd = true; 1772 1773 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1774 skb_pull(skb, VLAN_HLEN); 1775 } 1776 1777 skb->protocol = eth_type_trans(skb, ndev); 1778 1779 /* Get receive timestamp from the skb */ 1780 if (fep->hwts_rx_en && fep->bufdesc_ex) 1781 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1782 skb_hwtstamps(skb)); 1783 1784 if (fep->bufdesc_ex && 1785 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1786 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1787 /* don't check it */ 1788 skb->ip_summed = CHECKSUM_UNNECESSARY; 1789 } else { 1790 skb_checksum_none_assert(skb); 1791 } 1792 } 1793 1794 /* Handle received VLAN packets */ 1795 if (vlan_packet_rcvd) 1796 __vlan_hwaccel_put_tag(skb, 1797 htons(ETH_P_8021Q), 1798 vlan_tag); 1799 1800 skb_record_rx_queue(skb, queue_id); 1801 napi_gro_receive(&fep->napi, skb); 1802 1803 rx_processing_done: 1804 /* Clear the status flags for this buffer */ 1805 status &= ~BD_ENET_RX_STATS; 1806 1807 /* Mark the buffer empty */ 1808 status |= BD_ENET_RX_EMPTY; 1809 1810 if (fep->bufdesc_ex) { 1811 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1812 1813 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1814 ebdp->cbd_prot = 0; 1815 ebdp->cbd_bdu = 0; 1816 } 1817 /* Make sure the updates to rest of the descriptor are 1818 * performed before transferring ownership. 1819 */ 1820 wmb(); 1821 bdp->cbd_sc = cpu_to_fec16(status); 1822 1823 /* Update BD pointer to next entry */ 1824 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1825 1826 /* Doing this here will keep the FEC running while we process 1827 * incoming frames. On a heavily loaded network, we should be 1828 * able to keep up at the expense of system resources. 1829 */ 1830 writel(0, rxq->bd.reg_desc_active); 1831 } 1832 rxq->bd.cur = bdp; 1833 1834 if (xdp_result & FEC_ENET_XDP_REDIR) 1835 xdp_do_flush_map(); 1836 1837 return pkt_received; 1838 } 1839 1840 static int fec_enet_rx(struct net_device *ndev, int budget) 1841 { 1842 struct fec_enet_private *fep = netdev_priv(ndev); 1843 int i, done = 0; 1844 1845 /* Make sure that AVB queues are processed first. */ 1846 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1847 done += fec_enet_rx_queue(ndev, budget - done, i); 1848 1849 return done; 1850 } 1851 1852 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1853 { 1854 uint int_events; 1855 1856 int_events = readl(fep->hwp + FEC_IEVENT); 1857 1858 /* Don't clear MDIO events, we poll for those */ 1859 int_events &= ~FEC_ENET_MII; 1860 1861 writel(int_events, fep->hwp + FEC_IEVENT); 1862 1863 return int_events != 0; 1864 } 1865 1866 static irqreturn_t 1867 fec_enet_interrupt(int irq, void *dev_id) 1868 { 1869 struct net_device *ndev = dev_id; 1870 struct fec_enet_private *fep = netdev_priv(ndev); 1871 irqreturn_t ret = IRQ_NONE; 1872 1873 if (fec_enet_collect_events(fep) && fep->link) { 1874 ret = IRQ_HANDLED; 1875 1876 if (napi_schedule_prep(&fep->napi)) { 1877 /* Disable interrupts */ 1878 writel(0, fep->hwp + FEC_IMASK); 1879 __napi_schedule(&fep->napi); 1880 } 1881 } 1882 1883 return ret; 1884 } 1885 1886 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1887 { 1888 struct net_device *ndev = napi->dev; 1889 struct fec_enet_private *fep = netdev_priv(ndev); 1890 int done = 0; 1891 1892 do { 1893 done += fec_enet_rx(ndev, budget - done); 1894 fec_enet_tx(ndev, budget); 1895 } while ((done < budget) && fec_enet_collect_events(fep)); 1896 1897 if (done < budget) { 1898 napi_complete_done(napi, done); 1899 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1900 } 1901 1902 return done; 1903 } 1904 1905 /* ------------------------------------------------------------------------- */ 1906 static int fec_get_mac(struct net_device *ndev) 1907 { 1908 struct fec_enet_private *fep = netdev_priv(ndev); 1909 unsigned char *iap, tmpaddr[ETH_ALEN]; 1910 int ret; 1911 1912 /* 1913 * try to get mac address in following order: 1914 * 1915 * 1) module parameter via kernel command line in form 1916 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1917 */ 1918 iap = macaddr; 1919 1920 /* 1921 * 2) from device tree data 1922 */ 1923 if (!is_valid_ether_addr(iap)) { 1924 struct device_node *np = fep->pdev->dev.of_node; 1925 if (np) { 1926 ret = of_get_mac_address(np, tmpaddr); 1927 if (!ret) 1928 iap = tmpaddr; 1929 else if (ret == -EPROBE_DEFER) 1930 return ret; 1931 } 1932 } 1933 1934 /* 1935 * 3) from flash or fuse (via platform data) 1936 */ 1937 if (!is_valid_ether_addr(iap)) { 1938 #ifdef CONFIG_M5272 1939 if (FEC_FLASHMAC) 1940 iap = (unsigned char *)FEC_FLASHMAC; 1941 #else 1942 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1943 1944 if (pdata) 1945 iap = (unsigned char *)&pdata->mac; 1946 #endif 1947 } 1948 1949 /* 1950 * 4) FEC mac registers set by bootloader 1951 */ 1952 if (!is_valid_ether_addr(iap)) { 1953 *((__be32 *) &tmpaddr[0]) = 1954 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1955 *((__be16 *) &tmpaddr[4]) = 1956 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1957 iap = &tmpaddr[0]; 1958 } 1959 1960 /* 1961 * 5) random mac address 1962 */ 1963 if (!is_valid_ether_addr(iap)) { 1964 /* Report it and use a random ethernet address instead */ 1965 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1966 eth_hw_addr_random(ndev); 1967 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1968 ndev->dev_addr); 1969 return 0; 1970 } 1971 1972 /* Adjust MAC if using macaddr */ 1973 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 1974 1975 return 0; 1976 } 1977 1978 /* ------------------------------------------------------------------------- */ 1979 1980 /* 1981 * Phy section 1982 */ 1983 static void fec_enet_adjust_link(struct net_device *ndev) 1984 { 1985 struct fec_enet_private *fep = netdev_priv(ndev); 1986 struct phy_device *phy_dev = ndev->phydev; 1987 int status_change = 0; 1988 1989 /* 1990 * If the netdev is down, or is going down, we're not interested 1991 * in link state events, so just mark our idea of the link as down 1992 * and ignore the event. 1993 */ 1994 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1995 fep->link = 0; 1996 } else if (phy_dev->link) { 1997 if (!fep->link) { 1998 fep->link = phy_dev->link; 1999 status_change = 1; 2000 } 2001 2002 if (fep->full_duplex != phy_dev->duplex) { 2003 fep->full_duplex = phy_dev->duplex; 2004 status_change = 1; 2005 } 2006 2007 if (phy_dev->speed != fep->speed) { 2008 fep->speed = phy_dev->speed; 2009 status_change = 1; 2010 } 2011 2012 /* if any of the above changed restart the FEC */ 2013 if (status_change) { 2014 netif_stop_queue(ndev); 2015 napi_disable(&fep->napi); 2016 netif_tx_lock_bh(ndev); 2017 fec_restart(ndev); 2018 netif_tx_wake_all_queues(ndev); 2019 netif_tx_unlock_bh(ndev); 2020 napi_enable(&fep->napi); 2021 } 2022 } else { 2023 if (fep->link) { 2024 netif_stop_queue(ndev); 2025 napi_disable(&fep->napi); 2026 netif_tx_lock_bh(ndev); 2027 fec_stop(ndev); 2028 netif_tx_unlock_bh(ndev); 2029 napi_enable(&fep->napi); 2030 fep->link = phy_dev->link; 2031 status_change = 1; 2032 } 2033 } 2034 2035 if (status_change) 2036 phy_print_status(phy_dev); 2037 } 2038 2039 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 2040 { 2041 uint ievent; 2042 int ret; 2043 2044 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 2045 ievent & FEC_ENET_MII, 2, 30000); 2046 2047 if (!ret) 2048 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2049 2050 return ret; 2051 } 2052 2053 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum) 2054 { 2055 struct fec_enet_private *fep = bus->priv; 2056 struct device *dev = &fep->pdev->dev; 2057 int ret = 0, frame_start, frame_addr, frame_op; 2058 2059 ret = pm_runtime_resume_and_get(dev); 2060 if (ret < 0) 2061 return ret; 2062 2063 /* C22 read */ 2064 frame_op = FEC_MMFR_OP_READ; 2065 frame_start = FEC_MMFR_ST; 2066 frame_addr = regnum; 2067 2068 /* start a read op */ 2069 writel(frame_start | frame_op | 2070 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2071 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2072 2073 /* wait for end of transfer */ 2074 ret = fec_enet_mdio_wait(fep); 2075 if (ret) { 2076 netdev_err(fep->netdev, "MDIO read timeout\n"); 2077 goto out; 2078 } 2079 2080 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2081 2082 out: 2083 pm_runtime_mark_last_busy(dev); 2084 pm_runtime_put_autosuspend(dev); 2085 2086 return ret; 2087 } 2088 2089 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id, 2090 int devad, int regnum) 2091 { 2092 struct fec_enet_private *fep = bus->priv; 2093 struct device *dev = &fep->pdev->dev; 2094 int ret = 0, frame_start, frame_op; 2095 2096 ret = pm_runtime_resume_and_get(dev); 2097 if (ret < 0) 2098 return ret; 2099 2100 frame_start = FEC_MMFR_ST_C45; 2101 2102 /* write address */ 2103 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2104 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2105 FEC_MMFR_TA | (regnum & 0xFFFF), 2106 fep->hwp + FEC_MII_DATA); 2107 2108 /* wait for end of transfer */ 2109 ret = fec_enet_mdio_wait(fep); 2110 if (ret) { 2111 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2112 goto out; 2113 } 2114 2115 frame_op = FEC_MMFR_OP_READ_C45; 2116 2117 /* start a read op */ 2118 writel(frame_start | frame_op | 2119 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2120 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2121 2122 /* wait for end of transfer */ 2123 ret = fec_enet_mdio_wait(fep); 2124 if (ret) { 2125 netdev_err(fep->netdev, "MDIO read timeout\n"); 2126 goto out; 2127 } 2128 2129 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2130 2131 out: 2132 pm_runtime_mark_last_busy(dev); 2133 pm_runtime_put_autosuspend(dev); 2134 2135 return ret; 2136 } 2137 2138 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum, 2139 u16 value) 2140 { 2141 struct fec_enet_private *fep = bus->priv; 2142 struct device *dev = &fep->pdev->dev; 2143 int ret, frame_start, frame_addr; 2144 2145 ret = pm_runtime_resume_and_get(dev); 2146 if (ret < 0) 2147 return ret; 2148 2149 /* C22 write */ 2150 frame_start = FEC_MMFR_ST; 2151 frame_addr = regnum; 2152 2153 /* start a write op */ 2154 writel(frame_start | FEC_MMFR_OP_WRITE | 2155 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2156 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2157 fep->hwp + FEC_MII_DATA); 2158 2159 /* wait for end of transfer */ 2160 ret = fec_enet_mdio_wait(fep); 2161 if (ret) 2162 netdev_err(fep->netdev, "MDIO write timeout\n"); 2163 2164 pm_runtime_mark_last_busy(dev); 2165 pm_runtime_put_autosuspend(dev); 2166 2167 return ret; 2168 } 2169 2170 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id, 2171 int devad, int regnum, u16 value) 2172 { 2173 struct fec_enet_private *fep = bus->priv; 2174 struct device *dev = &fep->pdev->dev; 2175 int ret, frame_start; 2176 2177 ret = pm_runtime_resume_and_get(dev); 2178 if (ret < 0) 2179 return ret; 2180 2181 frame_start = FEC_MMFR_ST_C45; 2182 2183 /* write address */ 2184 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2185 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2186 FEC_MMFR_TA | (regnum & 0xFFFF), 2187 fep->hwp + FEC_MII_DATA); 2188 2189 /* wait for end of transfer */ 2190 ret = fec_enet_mdio_wait(fep); 2191 if (ret) { 2192 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2193 goto out; 2194 } 2195 2196 /* start a write op */ 2197 writel(frame_start | FEC_MMFR_OP_WRITE | 2198 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2199 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2200 fep->hwp + FEC_MII_DATA); 2201 2202 /* wait for end of transfer */ 2203 ret = fec_enet_mdio_wait(fep); 2204 if (ret) 2205 netdev_err(fep->netdev, "MDIO write timeout\n"); 2206 2207 out: 2208 pm_runtime_mark_last_busy(dev); 2209 pm_runtime_put_autosuspend(dev); 2210 2211 return ret; 2212 } 2213 2214 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2215 { 2216 struct fec_enet_private *fep = netdev_priv(ndev); 2217 struct phy_device *phy_dev = ndev->phydev; 2218 2219 if (phy_dev) { 2220 phy_reset_after_clk_enable(phy_dev); 2221 } else if (fep->phy_node) { 2222 /* 2223 * If the PHY still is not bound to the MAC, but there is 2224 * OF PHY node and a matching PHY device instance already, 2225 * use the OF PHY node to obtain the PHY device instance, 2226 * and then use that PHY device instance when triggering 2227 * the PHY reset. 2228 */ 2229 phy_dev = of_phy_find_device(fep->phy_node); 2230 phy_reset_after_clk_enable(phy_dev); 2231 put_device(&phy_dev->mdio.dev); 2232 } 2233 } 2234 2235 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2236 { 2237 struct fec_enet_private *fep = netdev_priv(ndev); 2238 int ret; 2239 2240 if (enable) { 2241 ret = clk_prepare_enable(fep->clk_enet_out); 2242 if (ret) 2243 return ret; 2244 2245 if (fep->clk_ptp) { 2246 mutex_lock(&fep->ptp_clk_mutex); 2247 ret = clk_prepare_enable(fep->clk_ptp); 2248 if (ret) { 2249 mutex_unlock(&fep->ptp_clk_mutex); 2250 goto failed_clk_ptp; 2251 } else { 2252 fep->ptp_clk_on = true; 2253 } 2254 mutex_unlock(&fep->ptp_clk_mutex); 2255 } 2256 2257 ret = clk_prepare_enable(fep->clk_ref); 2258 if (ret) 2259 goto failed_clk_ref; 2260 2261 ret = clk_prepare_enable(fep->clk_2x_txclk); 2262 if (ret) 2263 goto failed_clk_2x_txclk; 2264 2265 fec_enet_phy_reset_after_clk_enable(ndev); 2266 } else { 2267 clk_disable_unprepare(fep->clk_enet_out); 2268 if (fep->clk_ptp) { 2269 mutex_lock(&fep->ptp_clk_mutex); 2270 clk_disable_unprepare(fep->clk_ptp); 2271 fep->ptp_clk_on = false; 2272 mutex_unlock(&fep->ptp_clk_mutex); 2273 } 2274 clk_disable_unprepare(fep->clk_ref); 2275 clk_disable_unprepare(fep->clk_2x_txclk); 2276 } 2277 2278 return 0; 2279 2280 failed_clk_2x_txclk: 2281 if (fep->clk_ref) 2282 clk_disable_unprepare(fep->clk_ref); 2283 failed_clk_ref: 2284 if (fep->clk_ptp) { 2285 mutex_lock(&fep->ptp_clk_mutex); 2286 clk_disable_unprepare(fep->clk_ptp); 2287 fep->ptp_clk_on = false; 2288 mutex_unlock(&fep->ptp_clk_mutex); 2289 } 2290 failed_clk_ptp: 2291 clk_disable_unprepare(fep->clk_enet_out); 2292 2293 return ret; 2294 } 2295 2296 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2297 struct device_node *np) 2298 { 2299 u32 rgmii_tx_delay, rgmii_rx_delay; 2300 2301 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2302 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2303 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2304 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2305 return -EINVAL; 2306 } else if (rgmii_tx_delay == 2000) { 2307 fep->rgmii_txc_dly = true; 2308 } 2309 } 2310 2311 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2312 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2313 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2314 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2315 return -EINVAL; 2316 } else if (rgmii_rx_delay == 2000) { 2317 fep->rgmii_rxc_dly = true; 2318 } 2319 } 2320 2321 return 0; 2322 } 2323 2324 static int fec_enet_mii_probe(struct net_device *ndev) 2325 { 2326 struct fec_enet_private *fep = netdev_priv(ndev); 2327 struct phy_device *phy_dev = NULL; 2328 char mdio_bus_id[MII_BUS_ID_SIZE]; 2329 char phy_name[MII_BUS_ID_SIZE + 3]; 2330 int phy_id; 2331 int dev_id = fep->dev_id; 2332 2333 if (fep->phy_node) { 2334 phy_dev = of_phy_connect(ndev, fep->phy_node, 2335 &fec_enet_adjust_link, 0, 2336 fep->phy_interface); 2337 if (!phy_dev) { 2338 netdev_err(ndev, "Unable to connect to phy\n"); 2339 return -ENODEV; 2340 } 2341 } else { 2342 /* check for attached phy */ 2343 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2344 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2345 continue; 2346 if (dev_id--) 2347 continue; 2348 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2349 break; 2350 } 2351 2352 if (phy_id >= PHY_MAX_ADDR) { 2353 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2354 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2355 phy_id = 0; 2356 } 2357 2358 snprintf(phy_name, sizeof(phy_name), 2359 PHY_ID_FMT, mdio_bus_id, phy_id); 2360 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2361 fep->phy_interface); 2362 } 2363 2364 if (IS_ERR(phy_dev)) { 2365 netdev_err(ndev, "could not attach to PHY\n"); 2366 return PTR_ERR(phy_dev); 2367 } 2368 2369 /* mask with MAC supported features */ 2370 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2371 phy_set_max_speed(phy_dev, 1000); 2372 phy_remove_link_mode(phy_dev, 2373 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2374 #if !defined(CONFIG_M5272) 2375 phy_support_sym_pause(phy_dev); 2376 #endif 2377 } 2378 else 2379 phy_set_max_speed(phy_dev, 100); 2380 2381 fep->link = 0; 2382 fep->full_duplex = 0; 2383 2384 phy_dev->mac_managed_pm = true; 2385 2386 phy_attached_info(phy_dev); 2387 2388 return 0; 2389 } 2390 2391 static int fec_enet_mii_init(struct platform_device *pdev) 2392 { 2393 static struct mii_bus *fec0_mii_bus; 2394 struct net_device *ndev = platform_get_drvdata(pdev); 2395 struct fec_enet_private *fep = netdev_priv(ndev); 2396 bool suppress_preamble = false; 2397 struct device_node *node; 2398 int err = -ENXIO; 2399 u32 mii_speed, holdtime; 2400 u32 bus_freq; 2401 2402 /* 2403 * The i.MX28 dual fec interfaces are not equal. 2404 * Here are the differences: 2405 * 2406 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2407 * - fec0 acts as the 1588 time master while fec1 is slave 2408 * - external phys can only be configured by fec0 2409 * 2410 * That is to say fec1 can not work independently. It only works 2411 * when fec0 is working. The reason behind this design is that the 2412 * second interface is added primarily for Switch mode. 2413 * 2414 * Because of the last point above, both phys are attached on fec0 2415 * mdio interface in board design, and need to be configured by 2416 * fec0 mii_bus. 2417 */ 2418 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2419 /* fec1 uses fec0 mii_bus */ 2420 if (mii_cnt && fec0_mii_bus) { 2421 fep->mii_bus = fec0_mii_bus; 2422 mii_cnt++; 2423 return 0; 2424 } 2425 return -ENOENT; 2426 } 2427 2428 bus_freq = 2500000; /* 2.5MHz by default */ 2429 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2430 if (node) { 2431 of_property_read_u32(node, "clock-frequency", &bus_freq); 2432 suppress_preamble = of_property_read_bool(node, 2433 "suppress-preamble"); 2434 } 2435 2436 /* 2437 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2438 * 2439 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2440 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2441 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2442 * document. 2443 */ 2444 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2445 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2446 mii_speed--; 2447 if (mii_speed > 63) { 2448 dev_err(&pdev->dev, 2449 "fec clock (%lu) too fast to get right mii speed\n", 2450 clk_get_rate(fep->clk_ipg)); 2451 err = -EINVAL; 2452 goto err_out; 2453 } 2454 2455 /* 2456 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2457 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2458 * versions are RAZ there, so just ignore the difference and write the 2459 * register always. 2460 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2461 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2462 * output. 2463 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2464 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2465 * holdtime cannot result in a value greater than 3. 2466 */ 2467 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2468 2469 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2470 2471 if (suppress_preamble) 2472 fep->phy_speed |= BIT(7); 2473 2474 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2475 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2476 * MII event generation condition: 2477 * - writing MSCR: 2478 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2479 * mscr_reg_data_in[7:0] != 0 2480 * - writing MMFR: 2481 * - mscr[7:0]_not_zero 2482 */ 2483 writel(0, fep->hwp + FEC_MII_DATA); 2484 } 2485 2486 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2487 2488 /* Clear any pending transaction complete indication */ 2489 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2490 2491 fep->mii_bus = mdiobus_alloc(); 2492 if (fep->mii_bus == NULL) { 2493 err = -ENOMEM; 2494 goto err_out; 2495 } 2496 2497 fep->mii_bus->name = "fec_enet_mii_bus"; 2498 fep->mii_bus->read = fec_enet_mdio_read_c22; 2499 fep->mii_bus->write = fec_enet_mdio_write_c22; 2500 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) { 2501 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45; 2502 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45; 2503 } 2504 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2505 pdev->name, fep->dev_id + 1); 2506 fep->mii_bus->priv = fep; 2507 fep->mii_bus->parent = &pdev->dev; 2508 2509 err = of_mdiobus_register(fep->mii_bus, node); 2510 if (err) 2511 goto err_out_free_mdiobus; 2512 of_node_put(node); 2513 2514 mii_cnt++; 2515 2516 /* save fec0 mii_bus */ 2517 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2518 fec0_mii_bus = fep->mii_bus; 2519 2520 return 0; 2521 2522 err_out_free_mdiobus: 2523 mdiobus_free(fep->mii_bus); 2524 err_out: 2525 of_node_put(node); 2526 return err; 2527 } 2528 2529 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2530 { 2531 if (--mii_cnt == 0) { 2532 mdiobus_unregister(fep->mii_bus); 2533 mdiobus_free(fep->mii_bus); 2534 } 2535 } 2536 2537 static void fec_enet_get_drvinfo(struct net_device *ndev, 2538 struct ethtool_drvinfo *info) 2539 { 2540 struct fec_enet_private *fep = netdev_priv(ndev); 2541 2542 strscpy(info->driver, fep->pdev->dev.driver->name, 2543 sizeof(info->driver)); 2544 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2545 } 2546 2547 static int fec_enet_get_regs_len(struct net_device *ndev) 2548 { 2549 struct fec_enet_private *fep = netdev_priv(ndev); 2550 struct resource *r; 2551 int s = 0; 2552 2553 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2554 if (r) 2555 s = resource_size(r); 2556 2557 return s; 2558 } 2559 2560 /* List of registers that can be safety be read to dump them with ethtool */ 2561 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2562 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2563 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2564 static __u32 fec_enet_register_version = 2; 2565 static u32 fec_enet_register_offset[] = { 2566 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2567 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2568 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2569 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2570 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2571 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2572 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2573 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2574 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2575 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2576 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2577 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2578 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2579 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2580 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2581 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2582 RMON_T_P_GTE2048, RMON_T_OCTETS, 2583 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2584 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2585 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2586 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2587 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2588 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2589 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2590 RMON_R_P_GTE2048, RMON_R_OCTETS, 2591 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2592 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2593 }; 2594 /* for i.MX6ul */ 2595 static u32 fec_enet_register_offset_6ul[] = { 2596 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2597 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2598 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0, 2599 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, 2600 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0, 2601 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2602 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, 2603 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2604 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2605 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2606 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2607 RMON_T_P_GTE2048, RMON_T_OCTETS, 2608 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2609 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2610 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2611 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2612 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2613 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2614 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2615 RMON_R_P_GTE2048, RMON_R_OCTETS, 2616 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2617 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2618 }; 2619 #else 2620 static __u32 fec_enet_register_version = 1; 2621 static u32 fec_enet_register_offset[] = { 2622 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2623 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2624 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2625 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2626 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2627 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2628 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2629 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2630 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2631 }; 2632 #endif 2633 2634 static void fec_enet_get_regs(struct net_device *ndev, 2635 struct ethtool_regs *regs, void *regbuf) 2636 { 2637 struct fec_enet_private *fep = netdev_priv(ndev); 2638 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2639 struct device *dev = &fep->pdev->dev; 2640 u32 *buf = (u32 *)regbuf; 2641 u32 i, off; 2642 int ret; 2643 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2644 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2645 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2646 u32 *reg_list; 2647 u32 reg_cnt; 2648 2649 if (!of_machine_is_compatible("fsl,imx6ul")) { 2650 reg_list = fec_enet_register_offset; 2651 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2652 } else { 2653 reg_list = fec_enet_register_offset_6ul; 2654 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul); 2655 } 2656 #else 2657 /* coldfire */ 2658 static u32 *reg_list = fec_enet_register_offset; 2659 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2660 #endif 2661 ret = pm_runtime_resume_and_get(dev); 2662 if (ret < 0) 2663 return; 2664 2665 regs->version = fec_enet_register_version; 2666 2667 memset(buf, 0, regs->len); 2668 2669 for (i = 0; i < reg_cnt; i++) { 2670 off = reg_list[i]; 2671 2672 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2673 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2674 continue; 2675 2676 off >>= 2; 2677 buf[off] = readl(&theregs[off]); 2678 } 2679 2680 pm_runtime_mark_last_busy(dev); 2681 pm_runtime_put_autosuspend(dev); 2682 } 2683 2684 static int fec_enet_get_ts_info(struct net_device *ndev, 2685 struct ethtool_ts_info *info) 2686 { 2687 struct fec_enet_private *fep = netdev_priv(ndev); 2688 2689 if (fep->bufdesc_ex) { 2690 2691 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2692 SOF_TIMESTAMPING_RX_SOFTWARE | 2693 SOF_TIMESTAMPING_SOFTWARE | 2694 SOF_TIMESTAMPING_TX_HARDWARE | 2695 SOF_TIMESTAMPING_RX_HARDWARE | 2696 SOF_TIMESTAMPING_RAW_HARDWARE; 2697 if (fep->ptp_clock) 2698 info->phc_index = ptp_clock_index(fep->ptp_clock); 2699 else 2700 info->phc_index = -1; 2701 2702 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2703 (1 << HWTSTAMP_TX_ON); 2704 2705 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2706 (1 << HWTSTAMP_FILTER_ALL); 2707 return 0; 2708 } else { 2709 return ethtool_op_get_ts_info(ndev, info); 2710 } 2711 } 2712 2713 #if !defined(CONFIG_M5272) 2714 2715 static void fec_enet_get_pauseparam(struct net_device *ndev, 2716 struct ethtool_pauseparam *pause) 2717 { 2718 struct fec_enet_private *fep = netdev_priv(ndev); 2719 2720 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2721 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2722 pause->rx_pause = pause->tx_pause; 2723 } 2724 2725 static int fec_enet_set_pauseparam(struct net_device *ndev, 2726 struct ethtool_pauseparam *pause) 2727 { 2728 struct fec_enet_private *fep = netdev_priv(ndev); 2729 2730 if (!ndev->phydev) 2731 return -ENODEV; 2732 2733 if (pause->tx_pause != pause->rx_pause) { 2734 netdev_info(ndev, 2735 "hardware only support enable/disable both tx and rx"); 2736 return -EINVAL; 2737 } 2738 2739 fep->pause_flag = 0; 2740 2741 /* tx pause must be same as rx pause */ 2742 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2743 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2744 2745 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2746 pause->autoneg); 2747 2748 if (pause->autoneg) { 2749 if (netif_running(ndev)) 2750 fec_stop(ndev); 2751 phy_start_aneg(ndev->phydev); 2752 } 2753 if (netif_running(ndev)) { 2754 napi_disable(&fep->napi); 2755 netif_tx_lock_bh(ndev); 2756 fec_restart(ndev); 2757 netif_tx_wake_all_queues(ndev); 2758 netif_tx_unlock_bh(ndev); 2759 napi_enable(&fep->napi); 2760 } 2761 2762 return 0; 2763 } 2764 2765 static const struct fec_stat { 2766 char name[ETH_GSTRING_LEN]; 2767 u16 offset; 2768 } fec_stats[] = { 2769 /* RMON TX */ 2770 { "tx_dropped", RMON_T_DROP }, 2771 { "tx_packets", RMON_T_PACKETS }, 2772 { "tx_broadcast", RMON_T_BC_PKT }, 2773 { "tx_multicast", RMON_T_MC_PKT }, 2774 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2775 { "tx_undersize", RMON_T_UNDERSIZE }, 2776 { "tx_oversize", RMON_T_OVERSIZE }, 2777 { "tx_fragment", RMON_T_FRAG }, 2778 { "tx_jabber", RMON_T_JAB }, 2779 { "tx_collision", RMON_T_COL }, 2780 { "tx_64byte", RMON_T_P64 }, 2781 { "tx_65to127byte", RMON_T_P65TO127 }, 2782 { "tx_128to255byte", RMON_T_P128TO255 }, 2783 { "tx_256to511byte", RMON_T_P256TO511 }, 2784 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2785 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2786 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2787 { "tx_octets", RMON_T_OCTETS }, 2788 2789 /* IEEE TX */ 2790 { "IEEE_tx_drop", IEEE_T_DROP }, 2791 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2792 { "IEEE_tx_1col", IEEE_T_1COL }, 2793 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2794 { "IEEE_tx_def", IEEE_T_DEF }, 2795 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2796 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2797 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2798 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2799 { "IEEE_tx_sqe", IEEE_T_SQE }, 2800 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2801 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2802 2803 /* RMON RX */ 2804 { "rx_packets", RMON_R_PACKETS }, 2805 { "rx_broadcast", RMON_R_BC_PKT }, 2806 { "rx_multicast", RMON_R_MC_PKT }, 2807 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2808 { "rx_undersize", RMON_R_UNDERSIZE }, 2809 { "rx_oversize", RMON_R_OVERSIZE }, 2810 { "rx_fragment", RMON_R_FRAG }, 2811 { "rx_jabber", RMON_R_JAB }, 2812 { "rx_64byte", RMON_R_P64 }, 2813 { "rx_65to127byte", RMON_R_P65TO127 }, 2814 { "rx_128to255byte", RMON_R_P128TO255 }, 2815 { "rx_256to511byte", RMON_R_P256TO511 }, 2816 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2817 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2818 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2819 { "rx_octets", RMON_R_OCTETS }, 2820 2821 /* IEEE RX */ 2822 { "IEEE_rx_drop", IEEE_R_DROP }, 2823 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2824 { "IEEE_rx_crc", IEEE_R_CRC }, 2825 { "IEEE_rx_align", IEEE_R_ALIGN }, 2826 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2827 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2828 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2829 }; 2830 2831 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2832 2833 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = { 2834 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */ 2835 "rx_xdp_pass", /* RX_XDP_PASS, */ 2836 "rx_xdp_drop", /* RX_XDP_DROP, */ 2837 "rx_xdp_tx", /* RX_XDP_TX, */ 2838 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */ 2839 "tx_xdp_xmit", /* TX_XDP_XMIT, */ 2840 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */ 2841 }; 2842 2843 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2844 { 2845 struct fec_enet_private *fep = netdev_priv(dev); 2846 int i; 2847 2848 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2849 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2850 } 2851 2852 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data) 2853 { 2854 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 }; 2855 struct fec_enet_priv_rx_q *rxq; 2856 int i, j; 2857 2858 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2859 rxq = fep->rx_queue[i]; 2860 2861 for (j = 0; j < XDP_STATS_TOTAL; j++) 2862 xdp_stats[j] += rxq->stats[j]; 2863 } 2864 2865 memcpy(data, xdp_stats, sizeof(xdp_stats)); 2866 } 2867 2868 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data) 2869 { 2870 #ifdef CONFIG_PAGE_POOL_STATS 2871 struct page_pool_stats stats = {}; 2872 struct fec_enet_priv_rx_q *rxq; 2873 int i; 2874 2875 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2876 rxq = fep->rx_queue[i]; 2877 2878 if (!rxq->page_pool) 2879 continue; 2880 2881 page_pool_get_stats(rxq->page_pool, &stats); 2882 } 2883 2884 page_pool_ethtool_stats_get(data, &stats); 2885 #endif 2886 } 2887 2888 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2889 struct ethtool_stats *stats, u64 *data) 2890 { 2891 struct fec_enet_private *fep = netdev_priv(dev); 2892 2893 if (netif_running(dev)) 2894 fec_enet_update_ethtool_stats(dev); 2895 2896 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2897 data += FEC_STATS_SIZE / sizeof(u64); 2898 2899 fec_enet_get_xdp_stats(fep, data); 2900 data += XDP_STATS_TOTAL; 2901 2902 fec_enet_page_pool_stats(fep, data); 2903 } 2904 2905 static void fec_enet_get_strings(struct net_device *netdev, 2906 u32 stringset, u8 *data) 2907 { 2908 int i; 2909 switch (stringset) { 2910 case ETH_SS_STATS: 2911 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) { 2912 memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN); 2913 data += ETH_GSTRING_LEN; 2914 } 2915 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) { 2916 strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN); 2917 data += ETH_GSTRING_LEN; 2918 } 2919 page_pool_ethtool_stats_get_strings(data); 2920 2921 break; 2922 case ETH_SS_TEST: 2923 net_selftest_get_strings(data); 2924 break; 2925 } 2926 } 2927 2928 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2929 { 2930 int count; 2931 2932 switch (sset) { 2933 case ETH_SS_STATS: 2934 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL; 2935 count += page_pool_ethtool_stats_get_count(); 2936 return count; 2937 2938 case ETH_SS_TEST: 2939 return net_selftest_get_count(); 2940 default: 2941 return -EOPNOTSUPP; 2942 } 2943 } 2944 2945 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2946 { 2947 struct fec_enet_private *fep = netdev_priv(dev); 2948 struct fec_enet_priv_rx_q *rxq; 2949 int i, j; 2950 2951 /* Disable MIB statistics counters */ 2952 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2953 2954 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2955 writel(0, fep->hwp + fec_stats[i].offset); 2956 2957 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2958 rxq = fep->rx_queue[i]; 2959 for (j = 0; j < XDP_STATS_TOTAL; j++) 2960 rxq->stats[j] = 0; 2961 } 2962 2963 /* Don't disable MIB statistics counters */ 2964 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2965 } 2966 2967 #else /* !defined(CONFIG_M5272) */ 2968 #define FEC_STATS_SIZE 0 2969 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2970 { 2971 } 2972 2973 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2974 { 2975 } 2976 #endif /* !defined(CONFIG_M5272) */ 2977 2978 /* ITR clock source is enet system clock (clk_ahb). 2979 * TCTT unit is cycle_ns * 64 cycle 2980 * So, the ICTT value = X us / (cycle_ns * 64) 2981 */ 2982 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2983 { 2984 struct fec_enet_private *fep = netdev_priv(ndev); 2985 2986 return us * (fep->itr_clk_rate / 64000) / 1000; 2987 } 2988 2989 /* Set threshold for interrupt coalescing */ 2990 static void fec_enet_itr_coal_set(struct net_device *ndev) 2991 { 2992 struct fec_enet_private *fep = netdev_priv(ndev); 2993 int rx_itr, tx_itr; 2994 2995 /* Must be greater than zero to avoid unpredictable behavior */ 2996 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2997 !fep->tx_time_itr || !fep->tx_pkts_itr) 2998 return; 2999 3000 /* Select enet system clock as Interrupt Coalescing 3001 * timer Clock Source 3002 */ 3003 rx_itr = FEC_ITR_CLK_SEL; 3004 tx_itr = FEC_ITR_CLK_SEL; 3005 3006 /* set ICFT and ICTT */ 3007 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 3008 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 3009 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 3010 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 3011 3012 rx_itr |= FEC_ITR_EN; 3013 tx_itr |= FEC_ITR_EN; 3014 3015 writel(tx_itr, fep->hwp + FEC_TXIC0); 3016 writel(rx_itr, fep->hwp + FEC_RXIC0); 3017 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 3018 writel(tx_itr, fep->hwp + FEC_TXIC1); 3019 writel(rx_itr, fep->hwp + FEC_RXIC1); 3020 writel(tx_itr, fep->hwp + FEC_TXIC2); 3021 writel(rx_itr, fep->hwp + FEC_RXIC2); 3022 } 3023 } 3024 3025 static int fec_enet_get_coalesce(struct net_device *ndev, 3026 struct ethtool_coalesce *ec, 3027 struct kernel_ethtool_coalesce *kernel_coal, 3028 struct netlink_ext_ack *extack) 3029 { 3030 struct fec_enet_private *fep = netdev_priv(ndev); 3031 3032 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 3033 return -EOPNOTSUPP; 3034 3035 ec->rx_coalesce_usecs = fep->rx_time_itr; 3036 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 3037 3038 ec->tx_coalesce_usecs = fep->tx_time_itr; 3039 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 3040 3041 return 0; 3042 } 3043 3044 static int fec_enet_set_coalesce(struct net_device *ndev, 3045 struct ethtool_coalesce *ec, 3046 struct kernel_ethtool_coalesce *kernel_coal, 3047 struct netlink_ext_ack *extack) 3048 { 3049 struct fec_enet_private *fep = netdev_priv(ndev); 3050 struct device *dev = &fep->pdev->dev; 3051 unsigned int cycle; 3052 3053 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 3054 return -EOPNOTSUPP; 3055 3056 if (ec->rx_max_coalesced_frames > 255) { 3057 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 3058 return -EINVAL; 3059 } 3060 3061 if (ec->tx_max_coalesced_frames > 255) { 3062 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 3063 return -EINVAL; 3064 } 3065 3066 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 3067 if (cycle > 0xFFFF) { 3068 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 3069 return -EINVAL; 3070 } 3071 3072 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 3073 if (cycle > 0xFFFF) { 3074 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 3075 return -EINVAL; 3076 } 3077 3078 fep->rx_time_itr = ec->rx_coalesce_usecs; 3079 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 3080 3081 fep->tx_time_itr = ec->tx_coalesce_usecs; 3082 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 3083 3084 fec_enet_itr_coal_set(ndev); 3085 3086 return 0; 3087 } 3088 3089 /* LPI Sleep Ts count base on tx clk (clk_ref). 3090 * The lpi sleep cnt value = X us / (cycle_ns). 3091 */ 3092 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 3093 { 3094 struct fec_enet_private *fep = netdev_priv(ndev); 3095 3096 return us * (fep->clk_ref_rate / 1000) / 1000; 3097 } 3098 3099 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 3100 { 3101 struct fec_enet_private *fep = netdev_priv(ndev); 3102 struct ethtool_eee *p = &fep->eee; 3103 unsigned int sleep_cycle, wake_cycle; 3104 int ret = 0; 3105 3106 if (enable) { 3107 ret = phy_init_eee(ndev->phydev, false); 3108 if (ret) 3109 return ret; 3110 3111 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 3112 wake_cycle = sleep_cycle; 3113 } else { 3114 sleep_cycle = 0; 3115 wake_cycle = 0; 3116 } 3117 3118 p->tx_lpi_enabled = enable; 3119 p->eee_enabled = enable; 3120 p->eee_active = enable; 3121 3122 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 3123 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 3124 3125 return 0; 3126 } 3127 3128 static int 3129 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 3130 { 3131 struct fec_enet_private *fep = netdev_priv(ndev); 3132 struct ethtool_eee *p = &fep->eee; 3133 3134 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3135 return -EOPNOTSUPP; 3136 3137 if (!netif_running(ndev)) 3138 return -ENETDOWN; 3139 3140 edata->eee_enabled = p->eee_enabled; 3141 edata->eee_active = p->eee_active; 3142 edata->tx_lpi_timer = p->tx_lpi_timer; 3143 edata->tx_lpi_enabled = p->tx_lpi_enabled; 3144 3145 return phy_ethtool_get_eee(ndev->phydev, edata); 3146 } 3147 3148 static int 3149 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 3150 { 3151 struct fec_enet_private *fep = netdev_priv(ndev); 3152 struct ethtool_eee *p = &fep->eee; 3153 int ret = 0; 3154 3155 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3156 return -EOPNOTSUPP; 3157 3158 if (!netif_running(ndev)) 3159 return -ENETDOWN; 3160 3161 p->tx_lpi_timer = edata->tx_lpi_timer; 3162 3163 if (!edata->eee_enabled || !edata->tx_lpi_enabled || 3164 !edata->tx_lpi_timer) 3165 ret = fec_enet_eee_mode_set(ndev, false); 3166 else 3167 ret = fec_enet_eee_mode_set(ndev, true); 3168 3169 if (ret) 3170 return ret; 3171 3172 return phy_ethtool_set_eee(ndev->phydev, edata); 3173 } 3174 3175 static void 3176 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3177 { 3178 struct fec_enet_private *fep = netdev_priv(ndev); 3179 3180 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 3181 wol->supported = WAKE_MAGIC; 3182 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 3183 } else { 3184 wol->supported = wol->wolopts = 0; 3185 } 3186 } 3187 3188 static int 3189 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3190 { 3191 struct fec_enet_private *fep = netdev_priv(ndev); 3192 3193 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 3194 return -EINVAL; 3195 3196 if (wol->wolopts & ~WAKE_MAGIC) 3197 return -EINVAL; 3198 3199 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 3200 if (device_may_wakeup(&ndev->dev)) 3201 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 3202 else 3203 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 3204 3205 return 0; 3206 } 3207 3208 static const struct ethtool_ops fec_enet_ethtool_ops = { 3209 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3210 ETHTOOL_COALESCE_MAX_FRAMES, 3211 .get_drvinfo = fec_enet_get_drvinfo, 3212 .get_regs_len = fec_enet_get_regs_len, 3213 .get_regs = fec_enet_get_regs, 3214 .nway_reset = phy_ethtool_nway_reset, 3215 .get_link = ethtool_op_get_link, 3216 .get_coalesce = fec_enet_get_coalesce, 3217 .set_coalesce = fec_enet_set_coalesce, 3218 #ifndef CONFIG_M5272 3219 .get_pauseparam = fec_enet_get_pauseparam, 3220 .set_pauseparam = fec_enet_set_pauseparam, 3221 .get_strings = fec_enet_get_strings, 3222 .get_ethtool_stats = fec_enet_get_ethtool_stats, 3223 .get_sset_count = fec_enet_get_sset_count, 3224 #endif 3225 .get_ts_info = fec_enet_get_ts_info, 3226 .get_wol = fec_enet_get_wol, 3227 .set_wol = fec_enet_set_wol, 3228 .get_eee = fec_enet_get_eee, 3229 .set_eee = fec_enet_set_eee, 3230 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3231 .set_link_ksettings = phy_ethtool_set_link_ksettings, 3232 .self_test = net_selftest, 3233 }; 3234 3235 static void fec_enet_free_buffers(struct net_device *ndev) 3236 { 3237 struct fec_enet_private *fep = netdev_priv(ndev); 3238 unsigned int i; 3239 struct fec_enet_priv_tx_q *txq; 3240 struct fec_enet_priv_rx_q *rxq; 3241 unsigned int q; 3242 3243 for (q = 0; q < fep->num_rx_queues; q++) { 3244 rxq = fep->rx_queue[q]; 3245 for (i = 0; i < rxq->bd.ring_size; i++) 3246 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false); 3247 3248 for (i = 0; i < XDP_STATS_TOTAL; i++) 3249 rxq->stats[i] = 0; 3250 3251 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 3252 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3253 page_pool_destroy(rxq->page_pool); 3254 rxq->page_pool = NULL; 3255 } 3256 3257 for (q = 0; q < fep->num_tx_queues; q++) { 3258 txq = fep->tx_queue[q]; 3259 for (i = 0; i < txq->bd.ring_size; i++) { 3260 kfree(txq->tx_bounce[i]); 3261 txq->tx_bounce[i] = NULL; 3262 3263 if (!txq->tx_buf[i].buf_p) { 3264 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 3265 continue; 3266 } 3267 3268 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) { 3269 dev_kfree_skb(txq->tx_buf[i].buf_p); 3270 } else if (txq->tx_buf[i].type == FEC_TXBUF_T_XDP_NDO) { 3271 xdp_return_frame(txq->tx_buf[i].buf_p); 3272 } else { 3273 struct page *page = txq->tx_buf[i].buf_p; 3274 3275 page_pool_put_page(page->pp, page, 0, false); 3276 } 3277 3278 txq->tx_buf[i].buf_p = NULL; 3279 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 3280 } 3281 } 3282 } 3283 3284 static void fec_enet_free_queue(struct net_device *ndev) 3285 { 3286 struct fec_enet_private *fep = netdev_priv(ndev); 3287 int i; 3288 struct fec_enet_priv_tx_q *txq; 3289 3290 for (i = 0; i < fep->num_tx_queues; i++) 3291 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3292 txq = fep->tx_queue[i]; 3293 dma_free_coherent(&fep->pdev->dev, 3294 txq->bd.ring_size * TSO_HEADER_SIZE, 3295 txq->tso_hdrs, 3296 txq->tso_hdrs_dma); 3297 } 3298 3299 for (i = 0; i < fep->num_rx_queues; i++) 3300 kfree(fep->rx_queue[i]); 3301 for (i = 0; i < fep->num_tx_queues; i++) 3302 kfree(fep->tx_queue[i]); 3303 } 3304 3305 static int fec_enet_alloc_queue(struct net_device *ndev) 3306 { 3307 struct fec_enet_private *fep = netdev_priv(ndev); 3308 int i; 3309 int ret = 0; 3310 struct fec_enet_priv_tx_q *txq; 3311 3312 for (i = 0; i < fep->num_tx_queues; i++) { 3313 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3314 if (!txq) { 3315 ret = -ENOMEM; 3316 goto alloc_failed; 3317 } 3318 3319 fep->tx_queue[i] = txq; 3320 txq->bd.ring_size = TX_RING_SIZE; 3321 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3322 3323 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3324 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS; 3325 3326 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 3327 txq->bd.ring_size * TSO_HEADER_SIZE, 3328 &txq->tso_hdrs_dma, 3329 GFP_KERNEL); 3330 if (!txq->tso_hdrs) { 3331 ret = -ENOMEM; 3332 goto alloc_failed; 3333 } 3334 } 3335 3336 for (i = 0; i < fep->num_rx_queues; i++) { 3337 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3338 GFP_KERNEL); 3339 if (!fep->rx_queue[i]) { 3340 ret = -ENOMEM; 3341 goto alloc_failed; 3342 } 3343 3344 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3345 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3346 } 3347 return ret; 3348 3349 alloc_failed: 3350 fec_enet_free_queue(ndev); 3351 return ret; 3352 } 3353 3354 static int 3355 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3356 { 3357 struct fec_enet_private *fep = netdev_priv(ndev); 3358 struct fec_enet_priv_rx_q *rxq; 3359 dma_addr_t phys_addr; 3360 struct bufdesc *bdp; 3361 struct page *page; 3362 int i, err; 3363 3364 rxq = fep->rx_queue[queue]; 3365 bdp = rxq->bd.base; 3366 3367 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size); 3368 if (err < 0) { 3369 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err); 3370 return err; 3371 } 3372 3373 for (i = 0; i < rxq->bd.ring_size; i++) { 3374 page = page_pool_dev_alloc_pages(rxq->page_pool); 3375 if (!page) 3376 goto err_alloc; 3377 3378 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM; 3379 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 3380 3381 rxq->rx_skb_info[i].page = page; 3382 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM; 3383 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3384 3385 if (fep->bufdesc_ex) { 3386 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3387 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3388 } 3389 3390 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3391 } 3392 3393 /* Set the last buffer to wrap. */ 3394 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3395 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3396 return 0; 3397 3398 err_alloc: 3399 fec_enet_free_buffers(ndev); 3400 return -ENOMEM; 3401 } 3402 3403 static int 3404 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3405 { 3406 struct fec_enet_private *fep = netdev_priv(ndev); 3407 unsigned int i; 3408 struct bufdesc *bdp; 3409 struct fec_enet_priv_tx_q *txq; 3410 3411 txq = fep->tx_queue[queue]; 3412 bdp = txq->bd.base; 3413 for (i = 0; i < txq->bd.ring_size; i++) { 3414 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3415 if (!txq->tx_bounce[i]) 3416 goto err_alloc; 3417 3418 bdp->cbd_sc = cpu_to_fec16(0); 3419 bdp->cbd_bufaddr = cpu_to_fec32(0); 3420 3421 if (fep->bufdesc_ex) { 3422 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3423 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3424 } 3425 3426 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3427 } 3428 3429 /* Set the last buffer to wrap. */ 3430 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3431 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3432 3433 return 0; 3434 3435 err_alloc: 3436 fec_enet_free_buffers(ndev); 3437 return -ENOMEM; 3438 } 3439 3440 static int fec_enet_alloc_buffers(struct net_device *ndev) 3441 { 3442 struct fec_enet_private *fep = netdev_priv(ndev); 3443 unsigned int i; 3444 3445 for (i = 0; i < fep->num_rx_queues; i++) 3446 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3447 return -ENOMEM; 3448 3449 for (i = 0; i < fep->num_tx_queues; i++) 3450 if (fec_enet_alloc_txq_buffers(ndev, i)) 3451 return -ENOMEM; 3452 return 0; 3453 } 3454 3455 static int 3456 fec_enet_open(struct net_device *ndev) 3457 { 3458 struct fec_enet_private *fep = netdev_priv(ndev); 3459 int ret; 3460 bool reset_again; 3461 3462 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3463 if (ret < 0) 3464 return ret; 3465 3466 pinctrl_pm_select_default_state(&fep->pdev->dev); 3467 ret = fec_enet_clk_enable(ndev, true); 3468 if (ret) 3469 goto clk_enable; 3470 3471 /* During the first fec_enet_open call the PHY isn't probed at this 3472 * point. Therefore the phy_reset_after_clk_enable() call within 3473 * fec_enet_clk_enable() fails. As we need this reset in order to be 3474 * sure the PHY is working correctly we check if we need to reset again 3475 * later when the PHY is probed 3476 */ 3477 if (ndev->phydev && ndev->phydev->drv) 3478 reset_again = false; 3479 else 3480 reset_again = true; 3481 3482 /* I should reset the ring buffers here, but I don't yet know 3483 * a simple way to do that. 3484 */ 3485 3486 ret = fec_enet_alloc_buffers(ndev); 3487 if (ret) 3488 goto err_enet_alloc; 3489 3490 /* Init MAC prior to mii bus probe */ 3491 fec_restart(ndev); 3492 3493 /* Call phy_reset_after_clk_enable() again if it failed during 3494 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3495 */ 3496 if (reset_again) 3497 fec_enet_phy_reset_after_clk_enable(ndev); 3498 3499 /* Probe and connect to PHY when open the interface */ 3500 ret = fec_enet_mii_probe(ndev); 3501 if (ret) 3502 goto err_enet_mii_probe; 3503 3504 if (fep->quirks & FEC_QUIRK_ERR006687) 3505 imx6q_cpuidle_fec_irqs_used(); 3506 3507 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3508 cpu_latency_qos_add_request(&fep->pm_qos_req, 0); 3509 3510 napi_enable(&fep->napi); 3511 phy_start(ndev->phydev); 3512 netif_tx_start_all_queues(ndev); 3513 3514 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3515 FEC_WOL_FLAG_ENABLE); 3516 3517 return 0; 3518 3519 err_enet_mii_probe: 3520 fec_enet_free_buffers(ndev); 3521 err_enet_alloc: 3522 fec_enet_clk_enable(ndev, false); 3523 clk_enable: 3524 pm_runtime_mark_last_busy(&fep->pdev->dev); 3525 pm_runtime_put_autosuspend(&fep->pdev->dev); 3526 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3527 return ret; 3528 } 3529 3530 static int 3531 fec_enet_close(struct net_device *ndev) 3532 { 3533 struct fec_enet_private *fep = netdev_priv(ndev); 3534 3535 phy_stop(ndev->phydev); 3536 3537 if (netif_device_present(ndev)) { 3538 napi_disable(&fep->napi); 3539 netif_tx_disable(ndev); 3540 fec_stop(ndev); 3541 } 3542 3543 phy_disconnect(ndev->phydev); 3544 3545 if (fep->quirks & FEC_QUIRK_ERR006687) 3546 imx6q_cpuidle_fec_irqs_unused(); 3547 3548 fec_enet_update_ethtool_stats(ndev); 3549 3550 fec_enet_clk_enable(ndev, false); 3551 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3552 cpu_latency_qos_remove_request(&fep->pm_qos_req); 3553 3554 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3555 pm_runtime_mark_last_busy(&fep->pdev->dev); 3556 pm_runtime_put_autosuspend(&fep->pdev->dev); 3557 3558 fec_enet_free_buffers(ndev); 3559 3560 return 0; 3561 } 3562 3563 /* Set or clear the multicast filter for this adaptor. 3564 * Skeleton taken from sunlance driver. 3565 * The CPM Ethernet implementation allows Multicast as well as individual 3566 * MAC address filtering. Some of the drivers check to make sure it is 3567 * a group multicast address, and discard those that are not. I guess I 3568 * will do the same for now, but just remove the test if you want 3569 * individual filtering as well (do the upper net layers want or support 3570 * this kind of feature?). 3571 */ 3572 3573 #define FEC_HASH_BITS 6 /* #bits in hash */ 3574 3575 static void set_multicast_list(struct net_device *ndev) 3576 { 3577 struct fec_enet_private *fep = netdev_priv(ndev); 3578 struct netdev_hw_addr *ha; 3579 unsigned int crc, tmp; 3580 unsigned char hash; 3581 unsigned int hash_high = 0, hash_low = 0; 3582 3583 if (ndev->flags & IFF_PROMISC) { 3584 tmp = readl(fep->hwp + FEC_R_CNTRL); 3585 tmp |= 0x8; 3586 writel(tmp, fep->hwp + FEC_R_CNTRL); 3587 return; 3588 } 3589 3590 tmp = readl(fep->hwp + FEC_R_CNTRL); 3591 tmp &= ~0x8; 3592 writel(tmp, fep->hwp + FEC_R_CNTRL); 3593 3594 if (ndev->flags & IFF_ALLMULTI) { 3595 /* Catch all multicast addresses, so set the 3596 * filter to all 1's 3597 */ 3598 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3599 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3600 3601 return; 3602 } 3603 3604 /* Add the addresses in hash register */ 3605 netdev_for_each_mc_addr(ha, ndev) { 3606 /* calculate crc32 value of mac address */ 3607 crc = ether_crc_le(ndev->addr_len, ha->addr); 3608 3609 /* only upper 6 bits (FEC_HASH_BITS) are used 3610 * which point to specific bit in the hash registers 3611 */ 3612 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3613 3614 if (hash > 31) 3615 hash_high |= 1 << (hash - 32); 3616 else 3617 hash_low |= 1 << hash; 3618 } 3619 3620 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3621 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3622 } 3623 3624 /* Set a MAC change in hardware. */ 3625 static int 3626 fec_set_mac_address(struct net_device *ndev, void *p) 3627 { 3628 struct fec_enet_private *fep = netdev_priv(ndev); 3629 struct sockaddr *addr = p; 3630 3631 if (addr) { 3632 if (!is_valid_ether_addr(addr->sa_data)) 3633 return -EADDRNOTAVAIL; 3634 eth_hw_addr_set(ndev, addr->sa_data); 3635 } 3636 3637 /* Add netif status check here to avoid system hang in below case: 3638 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3639 * After ethx down, fec all clocks are gated off and then register 3640 * access causes system hang. 3641 */ 3642 if (!netif_running(ndev)) 3643 return 0; 3644 3645 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3646 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3647 fep->hwp + FEC_ADDR_LOW); 3648 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3649 fep->hwp + FEC_ADDR_HIGH); 3650 return 0; 3651 } 3652 3653 #ifdef CONFIG_NET_POLL_CONTROLLER 3654 /** 3655 * fec_poll_controller - FEC Poll controller function 3656 * @dev: The FEC network adapter 3657 * 3658 * Polled functionality used by netconsole and others in non interrupt mode 3659 * 3660 */ 3661 static void fec_poll_controller(struct net_device *dev) 3662 { 3663 int i; 3664 struct fec_enet_private *fep = netdev_priv(dev); 3665 3666 for (i = 0; i < FEC_IRQ_NUM; i++) { 3667 if (fep->irq[i] > 0) { 3668 disable_irq(fep->irq[i]); 3669 fec_enet_interrupt(fep->irq[i], dev); 3670 enable_irq(fep->irq[i]); 3671 } 3672 } 3673 } 3674 #endif 3675 3676 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3677 netdev_features_t features) 3678 { 3679 struct fec_enet_private *fep = netdev_priv(netdev); 3680 netdev_features_t changed = features ^ netdev->features; 3681 3682 netdev->features = features; 3683 3684 /* Receive checksum has been changed */ 3685 if (changed & NETIF_F_RXCSUM) { 3686 if (features & NETIF_F_RXCSUM) 3687 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3688 else 3689 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3690 } 3691 } 3692 3693 static int fec_set_features(struct net_device *netdev, 3694 netdev_features_t features) 3695 { 3696 struct fec_enet_private *fep = netdev_priv(netdev); 3697 netdev_features_t changed = features ^ netdev->features; 3698 3699 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3700 napi_disable(&fep->napi); 3701 netif_tx_lock_bh(netdev); 3702 fec_stop(netdev); 3703 fec_enet_set_netdev_features(netdev, features); 3704 fec_restart(netdev); 3705 netif_tx_wake_all_queues(netdev); 3706 netif_tx_unlock_bh(netdev); 3707 napi_enable(&fep->napi); 3708 } else { 3709 fec_enet_set_netdev_features(netdev, features); 3710 } 3711 3712 return 0; 3713 } 3714 3715 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3716 struct net_device *sb_dev) 3717 { 3718 struct fec_enet_private *fep = netdev_priv(ndev); 3719 u16 vlan_tag = 0; 3720 3721 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3722 return netdev_pick_tx(ndev, skb, NULL); 3723 3724 /* VLAN is present in the payload.*/ 3725 if (eth_type_vlan(skb->protocol)) { 3726 struct vlan_ethhdr *vhdr = skb_vlan_eth_hdr(skb); 3727 3728 vlan_tag = ntohs(vhdr->h_vlan_TCI); 3729 /* VLAN is present in the skb but not yet pushed in the payload.*/ 3730 } else if (skb_vlan_tag_present(skb)) { 3731 vlan_tag = skb->vlan_tci; 3732 } else { 3733 return vlan_tag; 3734 } 3735 3736 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3737 } 3738 3739 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf) 3740 { 3741 struct fec_enet_private *fep = netdev_priv(dev); 3742 bool is_run = netif_running(dev); 3743 struct bpf_prog *old_prog; 3744 3745 switch (bpf->command) { 3746 case XDP_SETUP_PROG: 3747 /* No need to support the SoCs that require to 3748 * do the frame swap because the performance wouldn't be 3749 * better than the skb mode. 3750 */ 3751 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 3752 return -EOPNOTSUPP; 3753 3754 if (!bpf->prog) 3755 xdp_features_clear_redirect_target(dev); 3756 3757 if (is_run) { 3758 napi_disable(&fep->napi); 3759 netif_tx_disable(dev); 3760 } 3761 3762 old_prog = xchg(&fep->xdp_prog, bpf->prog); 3763 if (old_prog) 3764 bpf_prog_put(old_prog); 3765 3766 fec_restart(dev); 3767 3768 if (is_run) { 3769 napi_enable(&fep->napi); 3770 netif_tx_start_all_queues(dev); 3771 } 3772 3773 if (bpf->prog) 3774 xdp_features_set_redirect_target(dev, false); 3775 3776 return 0; 3777 3778 case XDP_SETUP_XSK_POOL: 3779 return -EOPNOTSUPP; 3780 3781 default: 3782 return -EOPNOTSUPP; 3783 } 3784 } 3785 3786 static int 3787 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index) 3788 { 3789 if (unlikely(index < 0)) 3790 return 0; 3791 3792 return (index % fep->num_tx_queues); 3793 } 3794 3795 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep, 3796 struct fec_enet_priv_tx_q *txq, 3797 void *frame, u32 dma_sync_len, 3798 bool ndo_xmit) 3799 { 3800 unsigned int index, status, estatus; 3801 struct bufdesc *bdp; 3802 dma_addr_t dma_addr; 3803 int entries_free; 3804 u16 frame_len; 3805 3806 entries_free = fec_enet_get_free_txdesc_num(txq); 3807 if (entries_free < MAX_SKB_FRAGS + 1) { 3808 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n"); 3809 return -EBUSY; 3810 } 3811 3812 /* Fill in a Tx ring entry */ 3813 bdp = txq->bd.cur; 3814 status = fec16_to_cpu(bdp->cbd_sc); 3815 status &= ~BD_ENET_TX_STATS; 3816 3817 index = fec_enet_get_bd_index(bdp, &txq->bd); 3818 3819 if (ndo_xmit) { 3820 struct xdp_frame *xdpf = frame; 3821 3822 dma_addr = dma_map_single(&fep->pdev->dev, xdpf->data, 3823 xdpf->len, DMA_TO_DEVICE); 3824 if (dma_mapping_error(&fep->pdev->dev, dma_addr)) 3825 return -ENOMEM; 3826 3827 frame_len = xdpf->len; 3828 txq->tx_buf[index].buf_p = xdpf; 3829 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO; 3830 } else { 3831 struct xdp_buff *xdpb = frame; 3832 struct page *page; 3833 3834 page = virt_to_page(xdpb->data); 3835 dma_addr = page_pool_get_dma_addr(page) + 3836 (xdpb->data - xdpb->data_hard_start); 3837 dma_sync_single_for_device(&fep->pdev->dev, dma_addr, 3838 dma_sync_len, DMA_BIDIRECTIONAL); 3839 frame_len = xdpb->data_end - xdpb->data; 3840 txq->tx_buf[index].buf_p = page; 3841 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_TX; 3842 } 3843 3844 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 3845 if (fep->bufdesc_ex) 3846 estatus = BD_ENET_TX_INT; 3847 3848 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr); 3849 bdp->cbd_datlen = cpu_to_fec16(frame_len); 3850 3851 if (fep->bufdesc_ex) { 3852 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3853 3854 if (fep->quirks & FEC_QUIRK_HAS_AVB) 3855 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 3856 3857 ebdp->cbd_bdu = 0; 3858 ebdp->cbd_esc = cpu_to_fec32(estatus); 3859 } 3860 3861 /* Make sure the updates to rest of the descriptor are performed before 3862 * transferring ownership. 3863 */ 3864 dma_wmb(); 3865 3866 /* Send it on its way. Tell FEC it's ready, interrupt when done, 3867 * it's the last BD of the frame, and to put the CRC on the end. 3868 */ 3869 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 3870 bdp->cbd_sc = cpu_to_fec16(status); 3871 3872 /* If this was the last BD in the ring, start at the beginning again. */ 3873 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3874 3875 /* Make sure the update to bdp are performed before txq->bd.cur. */ 3876 dma_wmb(); 3877 3878 txq->bd.cur = bdp; 3879 3880 /* Trigger transmission start */ 3881 writel(0, txq->bd.reg_desc_active); 3882 3883 return 0; 3884 } 3885 3886 static int fec_enet_xdp_tx_xmit(struct fec_enet_private *fep, 3887 int cpu, struct xdp_buff *xdp, 3888 u32 dma_sync_len) 3889 { 3890 struct fec_enet_priv_tx_q *txq; 3891 struct netdev_queue *nq; 3892 int queue, ret; 3893 3894 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3895 txq = fep->tx_queue[queue]; 3896 nq = netdev_get_tx_queue(fep->netdev, queue); 3897 3898 __netif_tx_lock(nq, cpu); 3899 3900 /* Avoid tx timeout as XDP shares the queue with kernel stack */ 3901 txq_trans_cond_update(nq); 3902 ret = fec_enet_txq_xmit_frame(fep, txq, xdp, dma_sync_len, false); 3903 3904 __netif_tx_unlock(nq); 3905 3906 return ret; 3907 } 3908 3909 static int fec_enet_xdp_xmit(struct net_device *dev, 3910 int num_frames, 3911 struct xdp_frame **frames, 3912 u32 flags) 3913 { 3914 struct fec_enet_private *fep = netdev_priv(dev); 3915 struct fec_enet_priv_tx_q *txq; 3916 int cpu = smp_processor_id(); 3917 unsigned int sent_frames = 0; 3918 struct netdev_queue *nq; 3919 unsigned int queue; 3920 int i; 3921 3922 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3923 txq = fep->tx_queue[queue]; 3924 nq = netdev_get_tx_queue(fep->netdev, queue); 3925 3926 __netif_tx_lock(nq, cpu); 3927 3928 /* Avoid tx timeout as XDP shares the queue with kernel stack */ 3929 txq_trans_cond_update(nq); 3930 for (i = 0; i < num_frames; i++) { 3931 if (fec_enet_txq_xmit_frame(fep, txq, frames[i], 0, true) < 0) 3932 break; 3933 sent_frames++; 3934 } 3935 3936 __netif_tx_unlock(nq); 3937 3938 return sent_frames; 3939 } 3940 3941 static int fec_hwtstamp_get(struct net_device *ndev, 3942 struct kernel_hwtstamp_config *config) 3943 { 3944 struct fec_enet_private *fep = netdev_priv(ndev); 3945 3946 if (!netif_running(ndev)) 3947 return -EINVAL; 3948 3949 if (!fep->bufdesc_ex) 3950 return -EOPNOTSUPP; 3951 3952 fec_ptp_get(ndev, config); 3953 3954 return 0; 3955 } 3956 3957 static int fec_hwtstamp_set(struct net_device *ndev, 3958 struct kernel_hwtstamp_config *config, 3959 struct netlink_ext_ack *extack) 3960 { 3961 struct fec_enet_private *fep = netdev_priv(ndev); 3962 3963 if (!netif_running(ndev)) 3964 return -EINVAL; 3965 3966 if (!fep->bufdesc_ex) 3967 return -EOPNOTSUPP; 3968 3969 return fec_ptp_set(ndev, config, extack); 3970 } 3971 3972 static const struct net_device_ops fec_netdev_ops = { 3973 .ndo_open = fec_enet_open, 3974 .ndo_stop = fec_enet_close, 3975 .ndo_start_xmit = fec_enet_start_xmit, 3976 .ndo_select_queue = fec_enet_select_queue, 3977 .ndo_set_rx_mode = set_multicast_list, 3978 .ndo_validate_addr = eth_validate_addr, 3979 .ndo_tx_timeout = fec_timeout, 3980 .ndo_set_mac_address = fec_set_mac_address, 3981 .ndo_eth_ioctl = phy_do_ioctl_running, 3982 #ifdef CONFIG_NET_POLL_CONTROLLER 3983 .ndo_poll_controller = fec_poll_controller, 3984 #endif 3985 .ndo_set_features = fec_set_features, 3986 .ndo_bpf = fec_enet_bpf, 3987 .ndo_xdp_xmit = fec_enet_xdp_xmit, 3988 .ndo_hwtstamp_get = fec_hwtstamp_get, 3989 .ndo_hwtstamp_set = fec_hwtstamp_set, 3990 }; 3991 3992 static const unsigned short offset_des_active_rxq[] = { 3993 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3994 }; 3995 3996 static const unsigned short offset_des_active_txq[] = { 3997 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3998 }; 3999 4000 /* 4001 * XXX: We need to clean up on failure exits here. 4002 * 4003 */ 4004 static int fec_enet_init(struct net_device *ndev) 4005 { 4006 struct fec_enet_private *fep = netdev_priv(ndev); 4007 struct bufdesc *cbd_base; 4008 dma_addr_t bd_dma; 4009 int bd_size; 4010 unsigned int i; 4011 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 4012 sizeof(struct bufdesc); 4013 unsigned dsize_log2 = __fls(dsize); 4014 int ret; 4015 4016 WARN_ON(dsize != (1 << dsize_log2)); 4017 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 4018 fep->rx_align = 0xf; 4019 fep->tx_align = 0xf; 4020 #else 4021 fep->rx_align = 0x3; 4022 fep->tx_align = 0x3; 4023 #endif 4024 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 4025 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 4026 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT; 4027 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT; 4028 4029 /* Check mask of the streaming and coherent API */ 4030 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 4031 if (ret < 0) { 4032 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 4033 return ret; 4034 } 4035 4036 ret = fec_enet_alloc_queue(ndev); 4037 if (ret) 4038 return ret; 4039 4040 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 4041 4042 /* Allocate memory for buffer descriptors. */ 4043 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 4044 GFP_KERNEL); 4045 if (!cbd_base) { 4046 ret = -ENOMEM; 4047 goto free_queue_mem; 4048 } 4049 4050 /* Get the Ethernet address */ 4051 ret = fec_get_mac(ndev); 4052 if (ret) 4053 goto free_queue_mem; 4054 4055 /* Set receive and transmit descriptor base. */ 4056 for (i = 0; i < fep->num_rx_queues; i++) { 4057 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 4058 unsigned size = dsize * rxq->bd.ring_size; 4059 4060 rxq->bd.qid = i; 4061 rxq->bd.base = cbd_base; 4062 rxq->bd.cur = cbd_base; 4063 rxq->bd.dma = bd_dma; 4064 rxq->bd.dsize = dsize; 4065 rxq->bd.dsize_log2 = dsize_log2; 4066 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 4067 bd_dma += size; 4068 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4069 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4070 } 4071 4072 for (i = 0; i < fep->num_tx_queues; i++) { 4073 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 4074 unsigned size = dsize * txq->bd.ring_size; 4075 4076 txq->bd.qid = i; 4077 txq->bd.base = cbd_base; 4078 txq->bd.cur = cbd_base; 4079 txq->bd.dma = bd_dma; 4080 txq->bd.dsize = dsize; 4081 txq->bd.dsize_log2 = dsize_log2; 4082 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 4083 bd_dma += size; 4084 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4085 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4086 } 4087 4088 4089 /* The FEC Ethernet specific entries in the device structure */ 4090 ndev->watchdog_timeo = TX_TIMEOUT; 4091 ndev->netdev_ops = &fec_netdev_ops; 4092 ndev->ethtool_ops = &fec_enet_ethtool_ops; 4093 4094 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 4095 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi); 4096 4097 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 4098 /* enable hw VLAN support */ 4099 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 4100 4101 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 4102 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 4103 4104 /* enable hw accelerator */ 4105 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 4106 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 4107 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 4108 } 4109 4110 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 4111 fep->tx_align = 0; 4112 fep->rx_align = 0x3f; 4113 } 4114 4115 ndev->hw_features = ndev->features; 4116 4117 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME)) 4118 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | 4119 NETDEV_XDP_ACT_REDIRECT; 4120 4121 fec_restart(ndev); 4122 4123 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 4124 fec_enet_clear_ethtool_stats(ndev); 4125 else 4126 fec_enet_update_ethtool_stats(ndev); 4127 4128 return 0; 4129 4130 free_queue_mem: 4131 fec_enet_free_queue(ndev); 4132 return ret; 4133 } 4134 4135 #ifdef CONFIG_OF 4136 static int fec_reset_phy(struct platform_device *pdev) 4137 { 4138 struct gpio_desc *phy_reset; 4139 int msec = 1, phy_post_delay = 0; 4140 struct device_node *np = pdev->dev.of_node; 4141 int err; 4142 4143 if (!np) 4144 return 0; 4145 4146 err = of_property_read_u32(np, "phy-reset-duration", &msec); 4147 /* A sane reset duration should not be longer than 1s */ 4148 if (!err && msec > 1000) 4149 msec = 1; 4150 4151 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 4152 /* valid reset duration should be less than 1s */ 4153 if (!err && phy_post_delay > 1000) 4154 return -EINVAL; 4155 4156 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset", 4157 GPIOD_OUT_HIGH); 4158 if (IS_ERR(phy_reset)) 4159 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset), 4160 "failed to get phy-reset-gpios\n"); 4161 4162 if (!phy_reset) 4163 return 0; 4164 4165 if (msec > 20) 4166 msleep(msec); 4167 else 4168 usleep_range(msec * 1000, msec * 1000 + 1000); 4169 4170 gpiod_set_value_cansleep(phy_reset, 0); 4171 4172 if (!phy_post_delay) 4173 return 0; 4174 4175 if (phy_post_delay > 20) 4176 msleep(phy_post_delay); 4177 else 4178 usleep_range(phy_post_delay * 1000, 4179 phy_post_delay * 1000 + 1000); 4180 4181 return 0; 4182 } 4183 #else /* CONFIG_OF */ 4184 static int fec_reset_phy(struct platform_device *pdev) 4185 { 4186 /* 4187 * In case of platform probe, the reset has been done 4188 * by machine code. 4189 */ 4190 return 0; 4191 } 4192 #endif /* CONFIG_OF */ 4193 4194 static void 4195 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 4196 { 4197 struct device_node *np = pdev->dev.of_node; 4198 4199 *num_tx = *num_rx = 1; 4200 4201 if (!np || !of_device_is_available(np)) 4202 return; 4203 4204 /* parse the num of tx and rx queues */ 4205 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 4206 4207 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 4208 4209 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 4210 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 4211 *num_tx); 4212 *num_tx = 1; 4213 return; 4214 } 4215 4216 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 4217 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 4218 *num_rx); 4219 *num_rx = 1; 4220 return; 4221 } 4222 4223 } 4224 4225 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 4226 { 4227 int irq_cnt = platform_irq_count(pdev); 4228 4229 if (irq_cnt > FEC_IRQ_NUM) 4230 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 4231 else if (irq_cnt == 2) 4232 irq_cnt = 1; /* last for pps */ 4233 else if (irq_cnt <= 0) 4234 irq_cnt = 1; /* At least 1 irq is needed */ 4235 return irq_cnt; 4236 } 4237 4238 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 4239 { 4240 struct net_device *ndev = platform_get_drvdata(pdev); 4241 struct fec_enet_private *fep = netdev_priv(ndev); 4242 4243 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 4244 fep->wake_irq = fep->irq[2]; 4245 else 4246 fep->wake_irq = fep->irq[0]; 4247 } 4248 4249 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 4250 struct device_node *np) 4251 { 4252 struct device_node *gpr_np; 4253 u32 out_val[3]; 4254 int ret = 0; 4255 4256 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 4257 if (!gpr_np) 4258 return 0; 4259 4260 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 4261 ARRAY_SIZE(out_val)); 4262 if (ret) { 4263 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 4264 goto out; 4265 } 4266 4267 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 4268 if (IS_ERR(fep->stop_gpr.gpr)) { 4269 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 4270 ret = PTR_ERR(fep->stop_gpr.gpr); 4271 fep->stop_gpr.gpr = NULL; 4272 goto out; 4273 } 4274 4275 fep->stop_gpr.reg = out_val[1]; 4276 fep->stop_gpr.bit = out_val[2]; 4277 4278 out: 4279 of_node_put(gpr_np); 4280 4281 return ret; 4282 } 4283 4284 static int 4285 fec_probe(struct platform_device *pdev) 4286 { 4287 struct fec_enet_private *fep; 4288 struct fec_platform_data *pdata; 4289 phy_interface_t interface; 4290 struct net_device *ndev; 4291 int i, irq, ret = 0; 4292 const struct of_device_id *of_id; 4293 static int dev_id; 4294 struct device_node *np = pdev->dev.of_node, *phy_node; 4295 int num_tx_qs; 4296 int num_rx_qs; 4297 char irq_name[8]; 4298 int irq_cnt; 4299 struct fec_devinfo *dev_info; 4300 4301 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 4302 4303 /* Init network device */ 4304 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 4305 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 4306 if (!ndev) 4307 return -ENOMEM; 4308 4309 SET_NETDEV_DEV(ndev, &pdev->dev); 4310 4311 /* setup board info structure */ 4312 fep = netdev_priv(ndev); 4313 4314 of_id = of_match_device(fec_dt_ids, &pdev->dev); 4315 if (of_id) 4316 pdev->id_entry = of_id->data; 4317 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 4318 if (dev_info) 4319 fep->quirks = dev_info->quirks; 4320 4321 fep->netdev = ndev; 4322 fep->num_rx_queues = num_rx_qs; 4323 fep->num_tx_queues = num_tx_qs; 4324 4325 #if !defined(CONFIG_M5272) 4326 /* default enable pause frame auto negotiation */ 4327 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 4328 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 4329 #endif 4330 4331 /* Select default pin state */ 4332 pinctrl_pm_select_default_state(&pdev->dev); 4333 4334 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 4335 if (IS_ERR(fep->hwp)) { 4336 ret = PTR_ERR(fep->hwp); 4337 goto failed_ioremap; 4338 } 4339 4340 fep->pdev = pdev; 4341 fep->dev_id = dev_id++; 4342 4343 platform_set_drvdata(pdev, ndev); 4344 4345 if ((of_machine_is_compatible("fsl,imx6q") || 4346 of_machine_is_compatible("fsl,imx6dl")) && 4347 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 4348 fep->quirks |= FEC_QUIRK_ERR006687; 4349 4350 ret = fec_enet_ipc_handle_init(fep); 4351 if (ret) 4352 goto failed_ipc_init; 4353 4354 if (of_property_read_bool(np, "fsl,magic-packet")) 4355 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 4356 4357 ret = fec_enet_init_stop_mode(fep, np); 4358 if (ret) 4359 goto failed_stop_mode; 4360 4361 phy_node = of_parse_phandle(np, "phy-handle", 0); 4362 if (!phy_node && of_phy_is_fixed_link(np)) { 4363 ret = of_phy_register_fixed_link(np); 4364 if (ret < 0) { 4365 dev_err(&pdev->dev, 4366 "broken fixed-link specification\n"); 4367 goto failed_phy; 4368 } 4369 phy_node = of_node_get(np); 4370 } 4371 fep->phy_node = phy_node; 4372 4373 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 4374 if (ret) { 4375 pdata = dev_get_platdata(&pdev->dev); 4376 if (pdata) 4377 fep->phy_interface = pdata->phy; 4378 else 4379 fep->phy_interface = PHY_INTERFACE_MODE_MII; 4380 } else { 4381 fep->phy_interface = interface; 4382 } 4383 4384 ret = fec_enet_parse_rgmii_delay(fep, np); 4385 if (ret) 4386 goto failed_rgmii_delay; 4387 4388 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 4389 if (IS_ERR(fep->clk_ipg)) { 4390 ret = PTR_ERR(fep->clk_ipg); 4391 goto failed_clk; 4392 } 4393 4394 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 4395 if (IS_ERR(fep->clk_ahb)) { 4396 ret = PTR_ERR(fep->clk_ahb); 4397 goto failed_clk; 4398 } 4399 4400 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 4401 4402 /* enet_out is optional, depends on board */ 4403 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 4404 if (IS_ERR(fep->clk_enet_out)) { 4405 ret = PTR_ERR(fep->clk_enet_out); 4406 goto failed_clk; 4407 } 4408 4409 fep->ptp_clk_on = false; 4410 mutex_init(&fep->ptp_clk_mutex); 4411 4412 /* clk_ref is optional, depends on board */ 4413 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 4414 if (IS_ERR(fep->clk_ref)) { 4415 ret = PTR_ERR(fep->clk_ref); 4416 goto failed_clk; 4417 } 4418 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 4419 4420 /* clk_2x_txclk is optional, depends on board */ 4421 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 4422 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 4423 if (IS_ERR(fep->clk_2x_txclk)) 4424 fep->clk_2x_txclk = NULL; 4425 } 4426 4427 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 4428 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 4429 if (IS_ERR(fep->clk_ptp)) { 4430 fep->clk_ptp = NULL; 4431 fep->bufdesc_ex = false; 4432 } 4433 4434 ret = fec_enet_clk_enable(ndev, true); 4435 if (ret) 4436 goto failed_clk; 4437 4438 ret = clk_prepare_enable(fep->clk_ipg); 4439 if (ret) 4440 goto failed_clk_ipg; 4441 ret = clk_prepare_enable(fep->clk_ahb); 4442 if (ret) 4443 goto failed_clk_ahb; 4444 4445 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 4446 if (!IS_ERR(fep->reg_phy)) { 4447 ret = regulator_enable(fep->reg_phy); 4448 if (ret) { 4449 dev_err(&pdev->dev, 4450 "Failed to enable phy regulator: %d\n", ret); 4451 goto failed_regulator; 4452 } 4453 } else { 4454 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 4455 ret = -EPROBE_DEFER; 4456 goto failed_regulator; 4457 } 4458 fep->reg_phy = NULL; 4459 } 4460 4461 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 4462 pm_runtime_use_autosuspend(&pdev->dev); 4463 pm_runtime_get_noresume(&pdev->dev); 4464 pm_runtime_set_active(&pdev->dev); 4465 pm_runtime_enable(&pdev->dev); 4466 4467 ret = fec_reset_phy(pdev); 4468 if (ret) 4469 goto failed_reset; 4470 4471 irq_cnt = fec_enet_get_irq_cnt(pdev); 4472 if (fep->bufdesc_ex) 4473 fec_ptp_init(pdev, irq_cnt); 4474 4475 ret = fec_enet_init(ndev); 4476 if (ret) 4477 goto failed_init; 4478 4479 for (i = 0; i < irq_cnt; i++) { 4480 snprintf(irq_name, sizeof(irq_name), "int%d", i); 4481 irq = platform_get_irq_byname_optional(pdev, irq_name); 4482 if (irq < 0) 4483 irq = platform_get_irq(pdev, i); 4484 if (irq < 0) { 4485 ret = irq; 4486 goto failed_irq; 4487 } 4488 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 4489 0, pdev->name, ndev); 4490 if (ret) 4491 goto failed_irq; 4492 4493 fep->irq[i] = irq; 4494 } 4495 4496 /* Decide which interrupt line is wakeup capable */ 4497 fec_enet_get_wakeup_irq(pdev); 4498 4499 ret = fec_enet_mii_init(pdev); 4500 if (ret) 4501 goto failed_mii_init; 4502 4503 /* Carrier starts down, phylib will bring it up */ 4504 netif_carrier_off(ndev); 4505 fec_enet_clk_enable(ndev, false); 4506 pinctrl_pm_select_sleep_state(&pdev->dev); 4507 4508 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 4509 4510 ret = register_netdev(ndev); 4511 if (ret) 4512 goto failed_register; 4513 4514 device_init_wakeup(&ndev->dev, fep->wol_flag & 4515 FEC_WOL_HAS_MAGIC_PACKET); 4516 4517 if (fep->bufdesc_ex && fep->ptp_clock) 4518 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 4519 4520 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 4521 4522 pm_runtime_mark_last_busy(&pdev->dev); 4523 pm_runtime_put_autosuspend(&pdev->dev); 4524 4525 return 0; 4526 4527 failed_register: 4528 fec_enet_mii_remove(fep); 4529 failed_mii_init: 4530 failed_irq: 4531 failed_init: 4532 fec_ptp_stop(pdev); 4533 failed_reset: 4534 pm_runtime_put_noidle(&pdev->dev); 4535 pm_runtime_disable(&pdev->dev); 4536 if (fep->reg_phy) 4537 regulator_disable(fep->reg_phy); 4538 failed_regulator: 4539 clk_disable_unprepare(fep->clk_ahb); 4540 failed_clk_ahb: 4541 clk_disable_unprepare(fep->clk_ipg); 4542 failed_clk_ipg: 4543 fec_enet_clk_enable(ndev, false); 4544 failed_clk: 4545 failed_rgmii_delay: 4546 if (of_phy_is_fixed_link(np)) 4547 of_phy_deregister_fixed_link(np); 4548 of_node_put(phy_node); 4549 failed_stop_mode: 4550 failed_ipc_init: 4551 failed_phy: 4552 dev_id--; 4553 failed_ioremap: 4554 free_netdev(ndev); 4555 4556 return ret; 4557 } 4558 4559 static void 4560 fec_drv_remove(struct platform_device *pdev) 4561 { 4562 struct net_device *ndev = platform_get_drvdata(pdev); 4563 struct fec_enet_private *fep = netdev_priv(ndev); 4564 struct device_node *np = pdev->dev.of_node; 4565 int ret; 4566 4567 ret = pm_runtime_get_sync(&pdev->dev); 4568 if (ret < 0) 4569 dev_err(&pdev->dev, 4570 "Failed to resume device in remove callback (%pe)\n", 4571 ERR_PTR(ret)); 4572 4573 cancel_work_sync(&fep->tx_timeout_work); 4574 fec_ptp_stop(pdev); 4575 unregister_netdev(ndev); 4576 fec_enet_mii_remove(fep); 4577 if (fep->reg_phy) 4578 regulator_disable(fep->reg_phy); 4579 4580 if (of_phy_is_fixed_link(np)) 4581 of_phy_deregister_fixed_link(np); 4582 of_node_put(fep->phy_node); 4583 4584 /* After pm_runtime_get_sync() failed, the clks are still off, so skip 4585 * disabling them again. 4586 */ 4587 if (ret >= 0) { 4588 clk_disable_unprepare(fep->clk_ahb); 4589 clk_disable_unprepare(fep->clk_ipg); 4590 } 4591 pm_runtime_put_noidle(&pdev->dev); 4592 pm_runtime_disable(&pdev->dev); 4593 4594 free_netdev(ndev); 4595 } 4596 4597 static int __maybe_unused fec_suspend(struct device *dev) 4598 { 4599 struct net_device *ndev = dev_get_drvdata(dev); 4600 struct fec_enet_private *fep = netdev_priv(ndev); 4601 int ret; 4602 4603 rtnl_lock(); 4604 if (netif_running(ndev)) { 4605 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4606 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4607 phy_stop(ndev->phydev); 4608 napi_disable(&fep->napi); 4609 netif_tx_lock_bh(ndev); 4610 netif_device_detach(ndev); 4611 netif_tx_unlock_bh(ndev); 4612 fec_stop(ndev); 4613 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4614 fec_irqs_disable(ndev); 4615 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4616 } else { 4617 fec_irqs_disable_except_wakeup(ndev); 4618 if (fep->wake_irq > 0) { 4619 disable_irq(fep->wake_irq); 4620 enable_irq_wake(fep->wake_irq); 4621 } 4622 fec_enet_stop_mode(fep, true); 4623 } 4624 /* It's safe to disable clocks since interrupts are masked */ 4625 fec_enet_clk_enable(ndev, false); 4626 4627 fep->rpm_active = !pm_runtime_status_suspended(dev); 4628 if (fep->rpm_active) { 4629 ret = pm_runtime_force_suspend(dev); 4630 if (ret < 0) { 4631 rtnl_unlock(); 4632 return ret; 4633 } 4634 } 4635 } 4636 rtnl_unlock(); 4637 4638 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4639 regulator_disable(fep->reg_phy); 4640 4641 /* SOC supply clock to phy, when clock is disabled, phy link down 4642 * SOC control phy regulator, when regulator is disabled, phy link down 4643 */ 4644 if (fep->clk_enet_out || fep->reg_phy) 4645 fep->link = 0; 4646 4647 return 0; 4648 } 4649 4650 static int __maybe_unused fec_resume(struct device *dev) 4651 { 4652 struct net_device *ndev = dev_get_drvdata(dev); 4653 struct fec_enet_private *fep = netdev_priv(ndev); 4654 int ret; 4655 int val; 4656 4657 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4658 ret = regulator_enable(fep->reg_phy); 4659 if (ret) 4660 return ret; 4661 } 4662 4663 rtnl_lock(); 4664 if (netif_running(ndev)) { 4665 if (fep->rpm_active) 4666 pm_runtime_force_resume(dev); 4667 4668 ret = fec_enet_clk_enable(ndev, true); 4669 if (ret) { 4670 rtnl_unlock(); 4671 goto failed_clk; 4672 } 4673 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4674 fec_enet_stop_mode(fep, false); 4675 if (fep->wake_irq) { 4676 disable_irq_wake(fep->wake_irq); 4677 enable_irq(fep->wake_irq); 4678 } 4679 4680 val = readl(fep->hwp + FEC_ECNTRL); 4681 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4682 writel(val, fep->hwp + FEC_ECNTRL); 4683 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4684 } else { 4685 pinctrl_pm_select_default_state(&fep->pdev->dev); 4686 } 4687 fec_restart(ndev); 4688 netif_tx_lock_bh(ndev); 4689 netif_device_attach(ndev); 4690 netif_tx_unlock_bh(ndev); 4691 napi_enable(&fep->napi); 4692 phy_init_hw(ndev->phydev); 4693 phy_start(ndev->phydev); 4694 } 4695 rtnl_unlock(); 4696 4697 return 0; 4698 4699 failed_clk: 4700 if (fep->reg_phy) 4701 regulator_disable(fep->reg_phy); 4702 return ret; 4703 } 4704 4705 static int __maybe_unused fec_runtime_suspend(struct device *dev) 4706 { 4707 struct net_device *ndev = dev_get_drvdata(dev); 4708 struct fec_enet_private *fep = netdev_priv(ndev); 4709 4710 clk_disable_unprepare(fep->clk_ahb); 4711 clk_disable_unprepare(fep->clk_ipg); 4712 4713 return 0; 4714 } 4715 4716 static int __maybe_unused fec_runtime_resume(struct device *dev) 4717 { 4718 struct net_device *ndev = dev_get_drvdata(dev); 4719 struct fec_enet_private *fep = netdev_priv(ndev); 4720 int ret; 4721 4722 ret = clk_prepare_enable(fep->clk_ahb); 4723 if (ret) 4724 return ret; 4725 ret = clk_prepare_enable(fep->clk_ipg); 4726 if (ret) 4727 goto failed_clk_ipg; 4728 4729 return 0; 4730 4731 failed_clk_ipg: 4732 clk_disable_unprepare(fep->clk_ahb); 4733 return ret; 4734 } 4735 4736 static const struct dev_pm_ops fec_pm_ops = { 4737 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4738 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4739 }; 4740 4741 static struct platform_driver fec_driver = { 4742 .driver = { 4743 .name = DRIVER_NAME, 4744 .pm = &fec_pm_ops, 4745 .of_match_table = fec_dt_ids, 4746 .suppress_bind_attrs = true, 4747 }, 4748 .id_table = fec_devtype, 4749 .probe = fec_probe, 4750 .remove_new = fec_drv_remove, 4751 }; 4752 4753 module_platform_driver(fec_driver); 4754 4755 MODULE_LICENSE("GPL"); 4756