1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/selftests.h>
42 #include <net/tso.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/icmp.h>
46 #include <linux/spinlock.h>
47 #include <linux/workqueue.h>
48 #include <linux/bitops.h>
49 #include <linux/io.h>
50 #include <linux/irq.h>
51 #include <linux/clk.h>
52 #include <linux/crc32.h>
53 #include <linux/platform_device.h>
54 #include <linux/mdio.h>
55 #include <linux/phy.h>
56 #include <linux/fec.h>
57 #include <linux/of.h>
58 #include <linux/of_device.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/gpio/consumer.h>
65 #include <linux/prefetch.h>
66 #include <linux/mfd/syscon.h>
67 #include <linux/regmap.h>
68 #include <soc/imx/cpuidle.h>
69 #include <linux/filter.h>
70 #include <linux/bpf.h>
71 
72 #include <asm/cacheflush.h>
73 
74 #include "fec.h"
75 
76 static void set_multicast_list(struct net_device *ndev);
77 static void fec_enet_itr_coal_set(struct net_device *ndev);
78 
79 #define DRIVER_NAME	"fec"
80 
81 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
82 
83 /* Pause frame feild and FIFO threshold */
84 #define FEC_ENET_FCE	(1 << 5)
85 #define FEC_ENET_RSEM_V	0x84
86 #define FEC_ENET_RSFL_V	16
87 #define FEC_ENET_RAEM_V	0x8
88 #define FEC_ENET_RAFL_V	0x8
89 #define FEC_ENET_OPD_V	0xFFF0
90 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
91 
92 #define FEC_ENET_XDP_PASS          0
93 #define FEC_ENET_XDP_CONSUMED      BIT(0)
94 #define FEC_ENET_XDP_TX            BIT(1)
95 #define FEC_ENET_XDP_REDIR         BIT(2)
96 
97 struct fec_devinfo {
98 	u32 quirks;
99 };
100 
101 static const struct fec_devinfo fec_imx25_info = {
102 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
103 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
104 };
105 
106 static const struct fec_devinfo fec_imx27_info = {
107 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
108 		  FEC_QUIRK_HAS_MDIO_C45,
109 };
110 
111 static const struct fec_devinfo fec_imx28_info = {
112 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
113 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
114 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
115 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
116 };
117 
118 static const struct fec_devinfo fec_imx6q_info = {
119 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
120 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
121 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
122 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
123 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
124 };
125 
126 static const struct fec_devinfo fec_mvf600_info = {
127 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
128 		  FEC_QUIRK_HAS_MDIO_C45,
129 };
130 
131 static const struct fec_devinfo fec_imx6x_info = {
132 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
133 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
134 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
135 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
136 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
137 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
138 		  FEC_QUIRK_HAS_MDIO_C45,
139 };
140 
141 static const struct fec_devinfo fec_imx6ul_info = {
142 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
143 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
144 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
145 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
146 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
147 		  FEC_QUIRK_HAS_MDIO_C45,
148 };
149 
150 static const struct fec_devinfo fec_imx8mq_info = {
151 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
152 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
153 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
154 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
155 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
156 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
157 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
158 		  FEC_QUIRK_HAS_MDIO_C45,
159 };
160 
161 static const struct fec_devinfo fec_imx8qm_info = {
162 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
163 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
164 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
165 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
166 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
167 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
168 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
169 };
170 
171 static const struct fec_devinfo fec_s32v234_info = {
172 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
173 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
174 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
175 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
176 		  FEC_QUIRK_HAS_MDIO_C45,
177 };
178 
179 static struct platform_device_id fec_devtype[] = {
180 	{
181 		/* keep it for coldfire */
182 		.name = DRIVER_NAME,
183 		.driver_data = 0,
184 	}, {
185 		.name = "imx25-fec",
186 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
187 	}, {
188 		.name = "imx27-fec",
189 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
190 	}, {
191 		.name = "imx28-fec",
192 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
193 	}, {
194 		.name = "imx6q-fec",
195 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
196 	}, {
197 		.name = "mvf600-fec",
198 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
199 	}, {
200 		.name = "imx6sx-fec",
201 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
202 	}, {
203 		.name = "imx6ul-fec",
204 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
205 	}, {
206 		.name = "imx8mq-fec",
207 		.driver_data = (kernel_ulong_t)&fec_imx8mq_info,
208 	}, {
209 		.name = "imx8qm-fec",
210 		.driver_data = (kernel_ulong_t)&fec_imx8qm_info,
211 	}, {
212 		.name = "s32v234-fec",
213 		.driver_data = (kernel_ulong_t)&fec_s32v234_info,
214 	}, {
215 		/* sentinel */
216 	}
217 };
218 MODULE_DEVICE_TABLE(platform, fec_devtype);
219 
220 enum imx_fec_type {
221 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
222 	IMX27_FEC,	/* runs on i.mx27/35/51 */
223 	IMX28_FEC,
224 	IMX6Q_FEC,
225 	MVF600_FEC,
226 	IMX6SX_FEC,
227 	IMX6UL_FEC,
228 	IMX8MQ_FEC,
229 	IMX8QM_FEC,
230 	S32V234_FEC,
231 };
232 
233 static const struct of_device_id fec_dt_ids[] = {
234 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
235 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
236 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
237 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
238 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
239 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
240 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
241 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
242 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
243 	{ .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], },
244 	{ /* sentinel */ }
245 };
246 MODULE_DEVICE_TABLE(of, fec_dt_ids);
247 
248 static unsigned char macaddr[ETH_ALEN];
249 module_param_array(macaddr, byte, NULL, 0);
250 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
251 
252 #if defined(CONFIG_M5272)
253 /*
254  * Some hardware gets it MAC address out of local flash memory.
255  * if this is non-zero then assume it is the address to get MAC from.
256  */
257 #if defined(CONFIG_NETtel)
258 #define	FEC_FLASHMAC	0xf0006006
259 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
260 #define	FEC_FLASHMAC	0xf0006000
261 #elif defined(CONFIG_CANCam)
262 #define	FEC_FLASHMAC	0xf0020000
263 #elif defined (CONFIG_M5272C3)
264 #define	FEC_FLASHMAC	(0xffe04000 + 4)
265 #elif defined(CONFIG_MOD5272)
266 #define FEC_FLASHMAC	0xffc0406b
267 #else
268 #define	FEC_FLASHMAC	0
269 #endif
270 #endif /* CONFIG_M5272 */
271 
272 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
273  *
274  * 2048 byte skbufs are allocated. However, alignment requirements
275  * varies between FEC variants. Worst case is 64, so round down by 64.
276  */
277 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
278 #define PKT_MINBUF_SIZE		64
279 
280 /* FEC receive acceleration */
281 #define FEC_RACC_IPDIS		(1 << 1)
282 #define FEC_RACC_PRODIS		(1 << 2)
283 #define FEC_RACC_SHIFT16	BIT(7)
284 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
285 
286 /* MIB Control Register */
287 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
288 
289 /*
290  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
291  * size bits. Other FEC hardware does not, so we need to take that into
292  * account when setting it.
293  */
294 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
295     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
296     defined(CONFIG_ARM64)
297 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
298 #else
299 #define	OPT_FRAME_SIZE	0
300 #endif
301 
302 /* FEC MII MMFR bits definition */
303 #define FEC_MMFR_ST		(1 << 30)
304 #define FEC_MMFR_ST_C45		(0)
305 #define FEC_MMFR_OP_READ	(2 << 28)
306 #define FEC_MMFR_OP_READ_C45	(3 << 28)
307 #define FEC_MMFR_OP_WRITE	(1 << 28)
308 #define FEC_MMFR_OP_ADDR_WRITE	(0)
309 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
310 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
311 #define FEC_MMFR_TA		(2 << 16)
312 #define FEC_MMFR_DATA(v)	(v & 0xffff)
313 /* FEC ECR bits definition */
314 #define FEC_ECR_MAGICEN		(1 << 2)
315 #define FEC_ECR_SLEEP		(1 << 3)
316 
317 #define FEC_MII_TIMEOUT		30000 /* us */
318 
319 /* Transmitter timeout */
320 #define TX_TIMEOUT (2 * HZ)
321 
322 #define FEC_PAUSE_FLAG_AUTONEG	0x1
323 #define FEC_PAUSE_FLAG_ENABLE	0x2
324 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
325 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
326 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
327 
328 /* Max number of allowed TCP segments for software TSO */
329 #define FEC_MAX_TSO_SEGS	100
330 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
331 
332 #define IS_TSO_HEADER(txq, addr) \
333 	((addr >= txq->tso_hdrs_dma) && \
334 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
335 
336 static int mii_cnt;
337 
338 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
339 					     struct bufdesc_prop *bd)
340 {
341 	return (bdp >= bd->last) ? bd->base
342 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
343 }
344 
345 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
346 					     struct bufdesc_prop *bd)
347 {
348 	return (bdp <= bd->base) ? bd->last
349 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
350 }
351 
352 static int fec_enet_get_bd_index(struct bufdesc *bdp,
353 				 struct bufdesc_prop *bd)
354 {
355 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
356 }
357 
358 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
359 {
360 	int entries;
361 
362 	entries = (((const char *)txq->dirty_tx -
363 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
364 
365 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
366 }
367 
368 static void swap_buffer(void *bufaddr, int len)
369 {
370 	int i;
371 	unsigned int *buf = bufaddr;
372 
373 	for (i = 0; i < len; i += 4, buf++)
374 		swab32s(buf);
375 }
376 
377 static void fec_dump(struct net_device *ndev)
378 {
379 	struct fec_enet_private *fep = netdev_priv(ndev);
380 	struct bufdesc *bdp;
381 	struct fec_enet_priv_tx_q *txq;
382 	int index = 0;
383 
384 	netdev_info(ndev, "TX ring dump\n");
385 	pr_info("Nr     SC     addr       len  SKB\n");
386 
387 	txq = fep->tx_queue[0];
388 	bdp = txq->bd.base;
389 
390 	do {
391 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
392 			index,
393 			bdp == txq->bd.cur ? 'S' : ' ',
394 			bdp == txq->dirty_tx ? 'H' : ' ',
395 			fec16_to_cpu(bdp->cbd_sc),
396 			fec32_to_cpu(bdp->cbd_bufaddr),
397 			fec16_to_cpu(bdp->cbd_datlen),
398 			txq->tx_buf[index].skb);
399 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
400 		index++;
401 	} while (bdp != txq->bd.base);
402 }
403 
404 static inline bool is_ipv4_pkt(struct sk_buff *skb)
405 {
406 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
407 }
408 
409 static int
410 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
411 {
412 	/* Only run for packets requiring a checksum. */
413 	if (skb->ip_summed != CHECKSUM_PARTIAL)
414 		return 0;
415 
416 	if (unlikely(skb_cow_head(skb, 0)))
417 		return -1;
418 
419 	if (is_ipv4_pkt(skb))
420 		ip_hdr(skb)->check = 0;
421 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
422 
423 	return 0;
424 }
425 
426 static int
427 fec_enet_create_page_pool(struct fec_enet_private *fep,
428 			  struct fec_enet_priv_rx_q *rxq, int size)
429 {
430 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
431 	struct page_pool_params pp_params = {
432 		.order = 0,
433 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
434 		.pool_size = size,
435 		.nid = dev_to_node(&fep->pdev->dev),
436 		.dev = &fep->pdev->dev,
437 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
438 		.offset = FEC_ENET_XDP_HEADROOM,
439 		.max_len = FEC_ENET_RX_FRSIZE,
440 	};
441 	int err;
442 
443 	rxq->page_pool = page_pool_create(&pp_params);
444 	if (IS_ERR(rxq->page_pool)) {
445 		err = PTR_ERR(rxq->page_pool);
446 		rxq->page_pool = NULL;
447 		return err;
448 	}
449 
450 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
451 	if (err < 0)
452 		goto err_free_pp;
453 
454 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
455 					 rxq->page_pool);
456 	if (err)
457 		goto err_unregister_rxq;
458 
459 	return 0;
460 
461 err_unregister_rxq:
462 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
463 err_free_pp:
464 	page_pool_destroy(rxq->page_pool);
465 	rxq->page_pool = NULL;
466 	return err;
467 }
468 
469 static struct bufdesc *
470 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
471 			     struct sk_buff *skb,
472 			     struct net_device *ndev)
473 {
474 	struct fec_enet_private *fep = netdev_priv(ndev);
475 	struct bufdesc *bdp = txq->bd.cur;
476 	struct bufdesc_ex *ebdp;
477 	int nr_frags = skb_shinfo(skb)->nr_frags;
478 	int frag, frag_len;
479 	unsigned short status;
480 	unsigned int estatus = 0;
481 	skb_frag_t *this_frag;
482 	unsigned int index;
483 	void *bufaddr;
484 	dma_addr_t addr;
485 	int i;
486 
487 	for (frag = 0; frag < nr_frags; frag++) {
488 		this_frag = &skb_shinfo(skb)->frags[frag];
489 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
490 		ebdp = (struct bufdesc_ex *)bdp;
491 
492 		status = fec16_to_cpu(bdp->cbd_sc);
493 		status &= ~BD_ENET_TX_STATS;
494 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
495 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
496 
497 		/* Handle the last BD specially */
498 		if (frag == nr_frags - 1) {
499 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
500 			if (fep->bufdesc_ex) {
501 				estatus |= BD_ENET_TX_INT;
502 				if (unlikely(skb_shinfo(skb)->tx_flags &
503 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
504 					estatus |= BD_ENET_TX_TS;
505 			}
506 		}
507 
508 		if (fep->bufdesc_ex) {
509 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
510 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
511 			if (skb->ip_summed == CHECKSUM_PARTIAL)
512 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
513 
514 			ebdp->cbd_bdu = 0;
515 			ebdp->cbd_esc = cpu_to_fec32(estatus);
516 		}
517 
518 		bufaddr = skb_frag_address(this_frag);
519 
520 		index = fec_enet_get_bd_index(bdp, &txq->bd);
521 		if (((unsigned long) bufaddr) & fep->tx_align ||
522 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
523 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
524 			bufaddr = txq->tx_bounce[index];
525 
526 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
527 				swap_buffer(bufaddr, frag_len);
528 		}
529 
530 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
531 				      DMA_TO_DEVICE);
532 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
533 			if (net_ratelimit())
534 				netdev_err(ndev, "Tx DMA memory map failed\n");
535 			goto dma_mapping_error;
536 		}
537 
538 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
539 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
540 		/* Make sure the updates to rest of the descriptor are
541 		 * performed before transferring ownership.
542 		 */
543 		wmb();
544 		bdp->cbd_sc = cpu_to_fec16(status);
545 	}
546 
547 	return bdp;
548 dma_mapping_error:
549 	bdp = txq->bd.cur;
550 	for (i = 0; i < frag; i++) {
551 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
552 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
553 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
554 	}
555 	return ERR_PTR(-ENOMEM);
556 }
557 
558 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
559 				   struct sk_buff *skb, struct net_device *ndev)
560 {
561 	struct fec_enet_private *fep = netdev_priv(ndev);
562 	int nr_frags = skb_shinfo(skb)->nr_frags;
563 	struct bufdesc *bdp, *last_bdp;
564 	void *bufaddr;
565 	dma_addr_t addr;
566 	unsigned short status;
567 	unsigned short buflen;
568 	unsigned int estatus = 0;
569 	unsigned int index;
570 	int entries_free;
571 
572 	entries_free = fec_enet_get_free_txdesc_num(txq);
573 	if (entries_free < MAX_SKB_FRAGS + 1) {
574 		dev_kfree_skb_any(skb);
575 		if (net_ratelimit())
576 			netdev_err(ndev, "NOT enough BD for SG!\n");
577 		return NETDEV_TX_OK;
578 	}
579 
580 	/* Protocol checksum off-load for TCP and UDP. */
581 	if (fec_enet_clear_csum(skb, ndev)) {
582 		dev_kfree_skb_any(skb);
583 		return NETDEV_TX_OK;
584 	}
585 
586 	/* Fill in a Tx ring entry */
587 	bdp = txq->bd.cur;
588 	last_bdp = bdp;
589 	status = fec16_to_cpu(bdp->cbd_sc);
590 	status &= ~BD_ENET_TX_STATS;
591 
592 	/* Set buffer length and buffer pointer */
593 	bufaddr = skb->data;
594 	buflen = skb_headlen(skb);
595 
596 	index = fec_enet_get_bd_index(bdp, &txq->bd);
597 	if (((unsigned long) bufaddr) & fep->tx_align ||
598 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
599 		memcpy(txq->tx_bounce[index], skb->data, buflen);
600 		bufaddr = txq->tx_bounce[index];
601 
602 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
603 			swap_buffer(bufaddr, buflen);
604 	}
605 
606 	/* Push the data cache so the CPM does not get stale memory data. */
607 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
608 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
609 		dev_kfree_skb_any(skb);
610 		if (net_ratelimit())
611 			netdev_err(ndev, "Tx DMA memory map failed\n");
612 		return NETDEV_TX_OK;
613 	}
614 
615 	if (nr_frags) {
616 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
617 		if (IS_ERR(last_bdp)) {
618 			dma_unmap_single(&fep->pdev->dev, addr,
619 					 buflen, DMA_TO_DEVICE);
620 			dev_kfree_skb_any(skb);
621 			return NETDEV_TX_OK;
622 		}
623 	} else {
624 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
625 		if (fep->bufdesc_ex) {
626 			estatus = BD_ENET_TX_INT;
627 			if (unlikely(skb_shinfo(skb)->tx_flags &
628 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
629 				estatus |= BD_ENET_TX_TS;
630 		}
631 	}
632 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
633 	bdp->cbd_datlen = cpu_to_fec16(buflen);
634 
635 	if (fep->bufdesc_ex) {
636 
637 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
638 
639 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
640 			fep->hwts_tx_en))
641 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
642 
643 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
644 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
645 
646 		if (skb->ip_summed == CHECKSUM_PARTIAL)
647 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
648 
649 		ebdp->cbd_bdu = 0;
650 		ebdp->cbd_esc = cpu_to_fec32(estatus);
651 	}
652 
653 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
654 	/* Save skb pointer */
655 	txq->tx_buf[index].skb = skb;
656 
657 	/* Make sure the updates to rest of the descriptor are performed before
658 	 * transferring ownership.
659 	 */
660 	wmb();
661 
662 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
663 	 * it's the last BD of the frame, and to put the CRC on the end.
664 	 */
665 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
666 	bdp->cbd_sc = cpu_to_fec16(status);
667 
668 	/* If this was the last BD in the ring, start at the beginning again. */
669 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
670 
671 	skb_tx_timestamp(skb);
672 
673 	/* Make sure the update to bdp is performed before txq->bd.cur. */
674 	wmb();
675 	txq->bd.cur = bdp;
676 
677 	/* Trigger transmission start */
678 	writel(0, txq->bd.reg_desc_active);
679 
680 	return 0;
681 }
682 
683 static int
684 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
685 			  struct net_device *ndev,
686 			  struct bufdesc *bdp, int index, char *data,
687 			  int size, bool last_tcp, bool is_last)
688 {
689 	struct fec_enet_private *fep = netdev_priv(ndev);
690 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
691 	unsigned short status;
692 	unsigned int estatus = 0;
693 	dma_addr_t addr;
694 
695 	status = fec16_to_cpu(bdp->cbd_sc);
696 	status &= ~BD_ENET_TX_STATS;
697 
698 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
699 
700 	if (((unsigned long) data) & fep->tx_align ||
701 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
702 		memcpy(txq->tx_bounce[index], data, size);
703 		data = txq->tx_bounce[index];
704 
705 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
706 			swap_buffer(data, size);
707 	}
708 
709 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
710 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
711 		dev_kfree_skb_any(skb);
712 		if (net_ratelimit())
713 			netdev_err(ndev, "Tx DMA memory map failed\n");
714 		return NETDEV_TX_OK;
715 	}
716 
717 	bdp->cbd_datlen = cpu_to_fec16(size);
718 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
719 
720 	if (fep->bufdesc_ex) {
721 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
722 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
723 		if (skb->ip_summed == CHECKSUM_PARTIAL)
724 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
725 		ebdp->cbd_bdu = 0;
726 		ebdp->cbd_esc = cpu_to_fec32(estatus);
727 	}
728 
729 	/* Handle the last BD specially */
730 	if (last_tcp)
731 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
732 	if (is_last) {
733 		status |= BD_ENET_TX_INTR;
734 		if (fep->bufdesc_ex)
735 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
736 	}
737 
738 	bdp->cbd_sc = cpu_to_fec16(status);
739 
740 	return 0;
741 }
742 
743 static int
744 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
745 			 struct sk_buff *skb, struct net_device *ndev,
746 			 struct bufdesc *bdp, int index)
747 {
748 	struct fec_enet_private *fep = netdev_priv(ndev);
749 	int hdr_len = skb_tcp_all_headers(skb);
750 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
751 	void *bufaddr;
752 	unsigned long dmabuf;
753 	unsigned short status;
754 	unsigned int estatus = 0;
755 
756 	status = fec16_to_cpu(bdp->cbd_sc);
757 	status &= ~BD_ENET_TX_STATS;
758 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
759 
760 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
761 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
762 	if (((unsigned long)bufaddr) & fep->tx_align ||
763 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
764 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
765 		bufaddr = txq->tx_bounce[index];
766 
767 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
768 			swap_buffer(bufaddr, hdr_len);
769 
770 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
771 					hdr_len, DMA_TO_DEVICE);
772 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
773 			dev_kfree_skb_any(skb);
774 			if (net_ratelimit())
775 				netdev_err(ndev, "Tx DMA memory map failed\n");
776 			return NETDEV_TX_OK;
777 		}
778 	}
779 
780 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
781 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
782 
783 	if (fep->bufdesc_ex) {
784 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
785 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
786 		if (skb->ip_summed == CHECKSUM_PARTIAL)
787 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
788 		ebdp->cbd_bdu = 0;
789 		ebdp->cbd_esc = cpu_to_fec32(estatus);
790 	}
791 
792 	bdp->cbd_sc = cpu_to_fec16(status);
793 
794 	return 0;
795 }
796 
797 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
798 				   struct sk_buff *skb,
799 				   struct net_device *ndev)
800 {
801 	struct fec_enet_private *fep = netdev_priv(ndev);
802 	int hdr_len, total_len, data_left;
803 	struct bufdesc *bdp = txq->bd.cur;
804 	struct tso_t tso;
805 	unsigned int index = 0;
806 	int ret;
807 
808 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
809 		dev_kfree_skb_any(skb);
810 		if (net_ratelimit())
811 			netdev_err(ndev, "NOT enough BD for TSO!\n");
812 		return NETDEV_TX_OK;
813 	}
814 
815 	/* Protocol checksum off-load for TCP and UDP. */
816 	if (fec_enet_clear_csum(skb, ndev)) {
817 		dev_kfree_skb_any(skb);
818 		return NETDEV_TX_OK;
819 	}
820 
821 	/* Initialize the TSO handler, and prepare the first payload */
822 	hdr_len = tso_start(skb, &tso);
823 
824 	total_len = skb->len - hdr_len;
825 	while (total_len > 0) {
826 		char *hdr;
827 
828 		index = fec_enet_get_bd_index(bdp, &txq->bd);
829 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
830 		total_len -= data_left;
831 
832 		/* prepare packet headers: MAC + IP + TCP */
833 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
834 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
835 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
836 		if (ret)
837 			goto err_release;
838 
839 		while (data_left > 0) {
840 			int size;
841 
842 			size = min_t(int, tso.size, data_left);
843 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
844 			index = fec_enet_get_bd_index(bdp, &txq->bd);
845 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
846 							bdp, index,
847 							tso.data, size,
848 							size == data_left,
849 							total_len == 0);
850 			if (ret)
851 				goto err_release;
852 
853 			data_left -= size;
854 			tso_build_data(skb, &tso, size);
855 		}
856 
857 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
858 	}
859 
860 	/* Save skb pointer */
861 	txq->tx_buf[index].skb = skb;
862 
863 	skb_tx_timestamp(skb);
864 	txq->bd.cur = bdp;
865 
866 	/* Trigger transmission start */
867 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
868 	    !readl(txq->bd.reg_desc_active) ||
869 	    !readl(txq->bd.reg_desc_active) ||
870 	    !readl(txq->bd.reg_desc_active) ||
871 	    !readl(txq->bd.reg_desc_active))
872 		writel(0, txq->bd.reg_desc_active);
873 
874 	return 0;
875 
876 err_release:
877 	/* TODO: Release all used data descriptors for TSO */
878 	return ret;
879 }
880 
881 static netdev_tx_t
882 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
883 {
884 	struct fec_enet_private *fep = netdev_priv(ndev);
885 	int entries_free;
886 	unsigned short queue;
887 	struct fec_enet_priv_tx_q *txq;
888 	struct netdev_queue *nq;
889 	int ret;
890 
891 	queue = skb_get_queue_mapping(skb);
892 	txq = fep->tx_queue[queue];
893 	nq = netdev_get_tx_queue(ndev, queue);
894 
895 	if (skb_is_gso(skb))
896 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
897 	else
898 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
899 	if (ret)
900 		return ret;
901 
902 	entries_free = fec_enet_get_free_txdesc_num(txq);
903 	if (entries_free <= txq->tx_stop_threshold)
904 		netif_tx_stop_queue(nq);
905 
906 	return NETDEV_TX_OK;
907 }
908 
909 /* Init RX & TX buffer descriptors
910  */
911 static void fec_enet_bd_init(struct net_device *dev)
912 {
913 	struct fec_enet_private *fep = netdev_priv(dev);
914 	struct fec_enet_priv_tx_q *txq;
915 	struct fec_enet_priv_rx_q *rxq;
916 	struct bufdesc *bdp;
917 	unsigned int i;
918 	unsigned int q;
919 
920 	for (q = 0; q < fep->num_rx_queues; q++) {
921 		/* Initialize the receive buffer descriptors. */
922 		rxq = fep->rx_queue[q];
923 		bdp = rxq->bd.base;
924 
925 		for (i = 0; i < rxq->bd.ring_size; i++) {
926 
927 			/* Initialize the BD for every fragment in the page. */
928 			if (bdp->cbd_bufaddr)
929 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
930 			else
931 				bdp->cbd_sc = cpu_to_fec16(0);
932 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
933 		}
934 
935 		/* Set the last buffer to wrap */
936 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
937 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
938 
939 		rxq->bd.cur = rxq->bd.base;
940 	}
941 
942 	for (q = 0; q < fep->num_tx_queues; q++) {
943 		/* ...and the same for transmit */
944 		txq = fep->tx_queue[q];
945 		bdp = txq->bd.base;
946 		txq->bd.cur = bdp;
947 
948 		for (i = 0; i < txq->bd.ring_size; i++) {
949 			/* Initialize the BD for every fragment in the page. */
950 			bdp->cbd_sc = cpu_to_fec16(0);
951 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
952 				if (bdp->cbd_bufaddr &&
953 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
954 					dma_unmap_single(&fep->pdev->dev,
955 							 fec32_to_cpu(bdp->cbd_bufaddr),
956 							 fec16_to_cpu(bdp->cbd_datlen),
957 							 DMA_TO_DEVICE);
958 				if (txq->tx_buf[i].skb) {
959 					dev_kfree_skb_any(txq->tx_buf[i].skb);
960 					txq->tx_buf[i].skb = NULL;
961 				}
962 			} else {
963 				if (bdp->cbd_bufaddr)
964 					dma_unmap_single(&fep->pdev->dev,
965 							 fec32_to_cpu(bdp->cbd_bufaddr),
966 							 fec16_to_cpu(bdp->cbd_datlen),
967 							 DMA_TO_DEVICE);
968 
969 				if (txq->tx_buf[i].xdp) {
970 					xdp_return_frame(txq->tx_buf[i].xdp);
971 					txq->tx_buf[i].xdp = NULL;
972 				}
973 
974 				/* restore default tx buffer type: FEC_TXBUF_T_SKB */
975 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
976 			}
977 
978 			bdp->cbd_bufaddr = cpu_to_fec32(0);
979 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
980 		}
981 
982 		/* Set the last buffer to wrap */
983 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
984 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
985 		txq->dirty_tx = bdp;
986 	}
987 }
988 
989 static void fec_enet_active_rxring(struct net_device *ndev)
990 {
991 	struct fec_enet_private *fep = netdev_priv(ndev);
992 	int i;
993 
994 	for (i = 0; i < fep->num_rx_queues; i++)
995 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
996 }
997 
998 static void fec_enet_enable_ring(struct net_device *ndev)
999 {
1000 	struct fec_enet_private *fep = netdev_priv(ndev);
1001 	struct fec_enet_priv_tx_q *txq;
1002 	struct fec_enet_priv_rx_q *rxq;
1003 	int i;
1004 
1005 	for (i = 0; i < fep->num_rx_queues; i++) {
1006 		rxq = fep->rx_queue[i];
1007 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1008 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1009 
1010 		/* enable DMA1/2 */
1011 		if (i)
1012 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1013 			       fep->hwp + FEC_RCMR(i));
1014 	}
1015 
1016 	for (i = 0; i < fep->num_tx_queues; i++) {
1017 		txq = fep->tx_queue[i];
1018 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1019 
1020 		/* enable DMA1/2 */
1021 		if (i)
1022 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1023 			       fep->hwp + FEC_DMA_CFG(i));
1024 	}
1025 }
1026 
1027 /*
1028  * This function is called to start or restart the FEC during a link
1029  * change, transmit timeout, or to reconfigure the FEC.  The network
1030  * packet processing for this device must be stopped before this call.
1031  */
1032 static void
1033 fec_restart(struct net_device *ndev)
1034 {
1035 	struct fec_enet_private *fep = netdev_priv(ndev);
1036 	u32 temp_mac[2];
1037 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1038 	u32 ecntl = 0x2; /* ETHEREN */
1039 
1040 	/* Whack a reset.  We should wait for this.
1041 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1042 	 * instead of reset MAC itself.
1043 	 */
1044 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1045 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1046 		writel(0, fep->hwp + FEC_ECNTRL);
1047 	} else {
1048 		writel(1, fep->hwp + FEC_ECNTRL);
1049 		udelay(10);
1050 	}
1051 
1052 	/*
1053 	 * enet-mac reset will reset mac address registers too,
1054 	 * so need to reconfigure it.
1055 	 */
1056 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1057 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1058 	       fep->hwp + FEC_ADDR_LOW);
1059 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1060 	       fep->hwp + FEC_ADDR_HIGH);
1061 
1062 	/* Clear any outstanding interrupt, except MDIO. */
1063 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1064 
1065 	fec_enet_bd_init(ndev);
1066 
1067 	fec_enet_enable_ring(ndev);
1068 
1069 	/* Enable MII mode */
1070 	if (fep->full_duplex == DUPLEX_FULL) {
1071 		/* FD enable */
1072 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1073 	} else {
1074 		/* No Rcv on Xmit */
1075 		rcntl |= 0x02;
1076 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1077 	}
1078 
1079 	/* Set MII speed */
1080 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1081 
1082 #if !defined(CONFIG_M5272)
1083 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1084 		u32 val = readl(fep->hwp + FEC_RACC);
1085 
1086 		/* align IP header */
1087 		val |= FEC_RACC_SHIFT16;
1088 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1089 			/* set RX checksum */
1090 			val |= FEC_RACC_OPTIONS;
1091 		else
1092 			val &= ~FEC_RACC_OPTIONS;
1093 		writel(val, fep->hwp + FEC_RACC);
1094 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1095 	}
1096 #endif
1097 
1098 	/*
1099 	 * The phy interface and speed need to get configured
1100 	 * differently on enet-mac.
1101 	 */
1102 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1103 		/* Enable flow control and length check */
1104 		rcntl |= 0x40000000 | 0x00000020;
1105 
1106 		/* RGMII, RMII or MII */
1107 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1108 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1109 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1110 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1111 			rcntl |= (1 << 6);
1112 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1113 			rcntl |= (1 << 8);
1114 		else
1115 			rcntl &= ~(1 << 8);
1116 
1117 		/* 1G, 100M or 10M */
1118 		if (ndev->phydev) {
1119 			if (ndev->phydev->speed == SPEED_1000)
1120 				ecntl |= (1 << 5);
1121 			else if (ndev->phydev->speed == SPEED_100)
1122 				rcntl &= ~(1 << 9);
1123 			else
1124 				rcntl |= (1 << 9);
1125 		}
1126 	} else {
1127 #ifdef FEC_MIIGSK_ENR
1128 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1129 			u32 cfgr;
1130 			/* disable the gasket and wait */
1131 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1132 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1133 				udelay(1);
1134 
1135 			/*
1136 			 * configure the gasket:
1137 			 *   RMII, 50 MHz, no loopback, no echo
1138 			 *   MII, 25 MHz, no loopback, no echo
1139 			 */
1140 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1141 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1142 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1143 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1144 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1145 
1146 			/* re-enable the gasket */
1147 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1148 		}
1149 #endif
1150 	}
1151 
1152 #if !defined(CONFIG_M5272)
1153 	/* enable pause frame*/
1154 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1155 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1156 	     ndev->phydev && ndev->phydev->pause)) {
1157 		rcntl |= FEC_ENET_FCE;
1158 
1159 		/* set FIFO threshold parameter to reduce overrun */
1160 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1161 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1162 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1163 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1164 
1165 		/* OPD */
1166 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1167 	} else {
1168 		rcntl &= ~FEC_ENET_FCE;
1169 	}
1170 #endif /* !defined(CONFIG_M5272) */
1171 
1172 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1173 
1174 	/* Setup multicast filter. */
1175 	set_multicast_list(ndev);
1176 #ifndef CONFIG_M5272
1177 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1178 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1179 #endif
1180 
1181 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1182 		/* enable ENET endian swap */
1183 		ecntl |= (1 << 8);
1184 		/* enable ENET store and forward mode */
1185 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1186 	}
1187 
1188 	if (fep->bufdesc_ex)
1189 		ecntl |= (1 << 4);
1190 
1191 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1192 	    fep->rgmii_txc_dly)
1193 		ecntl |= FEC_ENET_TXC_DLY;
1194 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1195 	    fep->rgmii_rxc_dly)
1196 		ecntl |= FEC_ENET_RXC_DLY;
1197 
1198 #ifndef CONFIG_M5272
1199 	/* Enable the MIB statistic event counters */
1200 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1201 #endif
1202 
1203 	/* And last, enable the transmit and receive processing */
1204 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1205 	fec_enet_active_rxring(ndev);
1206 
1207 	if (fep->bufdesc_ex)
1208 		fec_ptp_start_cyclecounter(ndev);
1209 
1210 	/* Enable interrupts we wish to service */
1211 	if (fep->link)
1212 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1213 	else
1214 		writel(0, fep->hwp + FEC_IMASK);
1215 
1216 	/* Init the interrupt coalescing */
1217 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1218 		fec_enet_itr_coal_set(ndev);
1219 }
1220 
1221 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1222 {
1223 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1224 	      of_machine_is_compatible("fsl,imx8qxp") ||
1225 	      of_machine_is_compatible("fsl,imx8dxl")))
1226 		return 0;
1227 
1228 	return imx_scu_get_handle(&fep->ipc_handle);
1229 }
1230 
1231 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1232 {
1233 	struct device_node *np = fep->pdev->dev.of_node;
1234 	u32 rsrc_id, val;
1235 	int idx;
1236 
1237 	if (!np || !fep->ipc_handle)
1238 		return;
1239 
1240 	idx = of_alias_get_id(np, "ethernet");
1241 	if (idx < 0)
1242 		idx = 0;
1243 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1244 
1245 	val = enabled ? 1 : 0;
1246 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1247 }
1248 
1249 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1250 {
1251 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1252 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1253 
1254 	if (stop_gpr->gpr) {
1255 		if (enabled)
1256 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1257 					   BIT(stop_gpr->bit),
1258 					   BIT(stop_gpr->bit));
1259 		else
1260 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1261 					   BIT(stop_gpr->bit), 0);
1262 	} else if (pdata && pdata->sleep_mode_enable) {
1263 		pdata->sleep_mode_enable(enabled);
1264 	} else {
1265 		fec_enet_ipg_stop_set(fep, enabled);
1266 	}
1267 }
1268 
1269 static void fec_irqs_disable(struct net_device *ndev)
1270 {
1271 	struct fec_enet_private *fep = netdev_priv(ndev);
1272 
1273 	writel(0, fep->hwp + FEC_IMASK);
1274 }
1275 
1276 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1277 {
1278 	struct fec_enet_private *fep = netdev_priv(ndev);
1279 
1280 	writel(0, fep->hwp + FEC_IMASK);
1281 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1282 }
1283 
1284 static void
1285 fec_stop(struct net_device *ndev)
1286 {
1287 	struct fec_enet_private *fep = netdev_priv(ndev);
1288 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1289 	u32 val;
1290 
1291 	/* We cannot expect a graceful transmit stop without link !!! */
1292 	if (fep->link) {
1293 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1294 		udelay(10);
1295 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1296 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1297 	}
1298 
1299 	/* Whack a reset.  We should wait for this.
1300 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1301 	 * instead of reset MAC itself.
1302 	 */
1303 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1304 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1305 			writel(0, fep->hwp + FEC_ECNTRL);
1306 		} else {
1307 			writel(1, fep->hwp + FEC_ECNTRL);
1308 			udelay(10);
1309 		}
1310 	} else {
1311 		val = readl(fep->hwp + FEC_ECNTRL);
1312 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1313 		writel(val, fep->hwp + FEC_ECNTRL);
1314 	}
1315 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1316 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1317 
1318 	/* We have to keep ENET enabled to have MII interrupt stay working */
1319 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1320 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1321 		writel(2, fep->hwp + FEC_ECNTRL);
1322 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1323 	}
1324 }
1325 
1326 
1327 static void
1328 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1329 {
1330 	struct fec_enet_private *fep = netdev_priv(ndev);
1331 
1332 	fec_dump(ndev);
1333 
1334 	ndev->stats.tx_errors++;
1335 
1336 	schedule_work(&fep->tx_timeout_work);
1337 }
1338 
1339 static void fec_enet_timeout_work(struct work_struct *work)
1340 {
1341 	struct fec_enet_private *fep =
1342 		container_of(work, struct fec_enet_private, tx_timeout_work);
1343 	struct net_device *ndev = fep->netdev;
1344 
1345 	rtnl_lock();
1346 	if (netif_device_present(ndev) || netif_running(ndev)) {
1347 		napi_disable(&fep->napi);
1348 		netif_tx_lock_bh(ndev);
1349 		fec_restart(ndev);
1350 		netif_tx_wake_all_queues(ndev);
1351 		netif_tx_unlock_bh(ndev);
1352 		napi_enable(&fep->napi);
1353 	}
1354 	rtnl_unlock();
1355 }
1356 
1357 static void
1358 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1359 	struct skb_shared_hwtstamps *hwtstamps)
1360 {
1361 	unsigned long flags;
1362 	u64 ns;
1363 
1364 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1365 	ns = timecounter_cyc2time(&fep->tc, ts);
1366 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1367 
1368 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1369 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1370 }
1371 
1372 static void
1373 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1374 {
1375 	struct	fec_enet_private *fep;
1376 	struct xdp_frame *xdpf;
1377 	struct bufdesc *bdp;
1378 	unsigned short status;
1379 	struct	sk_buff	*skb;
1380 	struct fec_enet_priv_tx_q *txq;
1381 	struct netdev_queue *nq;
1382 	int	index = 0;
1383 	int	entries_free;
1384 
1385 	fep = netdev_priv(ndev);
1386 
1387 	txq = fep->tx_queue[queue_id];
1388 	/* get next bdp of dirty_tx */
1389 	nq = netdev_get_tx_queue(ndev, queue_id);
1390 	bdp = txq->dirty_tx;
1391 
1392 	/* get next bdp of dirty_tx */
1393 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1394 
1395 	while (bdp != READ_ONCE(txq->bd.cur)) {
1396 		/* Order the load of bd.cur and cbd_sc */
1397 		rmb();
1398 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1399 		if (status & BD_ENET_TX_READY)
1400 			break;
1401 
1402 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1403 
1404 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1405 			skb = txq->tx_buf[index].skb;
1406 			txq->tx_buf[index].skb = NULL;
1407 			if (bdp->cbd_bufaddr &&
1408 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1409 				dma_unmap_single(&fep->pdev->dev,
1410 						 fec32_to_cpu(bdp->cbd_bufaddr),
1411 						 fec16_to_cpu(bdp->cbd_datlen),
1412 						 DMA_TO_DEVICE);
1413 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1414 			if (!skb)
1415 				goto tx_buf_done;
1416 		} else {
1417 			xdpf = txq->tx_buf[index].xdp;
1418 			if (bdp->cbd_bufaddr)
1419 				dma_unmap_single(&fep->pdev->dev,
1420 						 fec32_to_cpu(bdp->cbd_bufaddr),
1421 						 fec16_to_cpu(bdp->cbd_datlen),
1422 						 DMA_TO_DEVICE);
1423 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1424 			if (!xdpf) {
1425 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1426 				goto tx_buf_done;
1427 			}
1428 		}
1429 
1430 		/* Check for errors. */
1431 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1432 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1433 				   BD_ENET_TX_CSL)) {
1434 			ndev->stats.tx_errors++;
1435 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1436 				ndev->stats.tx_heartbeat_errors++;
1437 			if (status & BD_ENET_TX_LC)  /* Late collision */
1438 				ndev->stats.tx_window_errors++;
1439 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1440 				ndev->stats.tx_aborted_errors++;
1441 			if (status & BD_ENET_TX_UN)  /* Underrun */
1442 				ndev->stats.tx_fifo_errors++;
1443 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1444 				ndev->stats.tx_carrier_errors++;
1445 		} else {
1446 			ndev->stats.tx_packets++;
1447 
1448 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1449 				ndev->stats.tx_bytes += skb->len;
1450 			else
1451 				ndev->stats.tx_bytes += xdpf->len;
1452 		}
1453 
1454 		/* Deferred means some collisions occurred during transmit,
1455 		 * but we eventually sent the packet OK.
1456 		 */
1457 		if (status & BD_ENET_TX_DEF)
1458 			ndev->stats.collisions++;
1459 
1460 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1461 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1462 			 * are to time stamp the packet, so we still need to check time
1463 			 * stamping enabled flag.
1464 			 */
1465 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1466 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1467 				struct skb_shared_hwtstamps shhwtstamps;
1468 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1469 
1470 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1471 				skb_tstamp_tx(skb, &shhwtstamps);
1472 			}
1473 
1474 			/* Free the sk buffer associated with this last transmit */
1475 			dev_kfree_skb_any(skb);
1476 		} else {
1477 			xdp_return_frame(xdpf);
1478 
1479 			txq->tx_buf[index].xdp = NULL;
1480 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1481 			txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1482 		}
1483 
1484 tx_buf_done:
1485 		/* Make sure the update to bdp and tx_buf are performed
1486 		 * before dirty_tx
1487 		 */
1488 		wmb();
1489 		txq->dirty_tx = bdp;
1490 
1491 		/* Update pointer to next buffer descriptor to be transmitted */
1492 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1493 
1494 		/* Since we have freed up a buffer, the ring is no longer full
1495 		 */
1496 		if (netif_tx_queue_stopped(nq)) {
1497 			entries_free = fec_enet_get_free_txdesc_num(txq);
1498 			if (entries_free >= txq->tx_wake_threshold)
1499 				netif_tx_wake_queue(nq);
1500 		}
1501 	}
1502 
1503 	/* ERR006358: Keep the transmitter going */
1504 	if (bdp != txq->bd.cur &&
1505 	    readl(txq->bd.reg_desc_active) == 0)
1506 		writel(0, txq->bd.reg_desc_active);
1507 }
1508 
1509 static void fec_enet_tx(struct net_device *ndev)
1510 {
1511 	struct fec_enet_private *fep = netdev_priv(ndev);
1512 	int i;
1513 
1514 	/* Make sure that AVB queues are processed first. */
1515 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1516 		fec_enet_tx_queue(ndev, i);
1517 }
1518 
1519 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1520 				struct bufdesc *bdp, int index)
1521 {
1522 	struct page *new_page;
1523 	dma_addr_t phys_addr;
1524 
1525 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1526 	WARN_ON(!new_page);
1527 	rxq->rx_skb_info[index].page = new_page;
1528 
1529 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1530 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1531 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1532 }
1533 
1534 static u32
1535 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1536 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int index)
1537 {
1538 	unsigned int sync, len = xdp->data_end - xdp->data;
1539 	u32 ret = FEC_ENET_XDP_PASS;
1540 	struct page *page;
1541 	int err;
1542 	u32 act;
1543 
1544 	act = bpf_prog_run_xdp(prog, xdp);
1545 
1546 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
1547 	sync = xdp->data_end - xdp->data_hard_start - FEC_ENET_XDP_HEADROOM;
1548 	sync = max(sync, len);
1549 
1550 	switch (act) {
1551 	case XDP_PASS:
1552 		rxq->stats[RX_XDP_PASS]++;
1553 		ret = FEC_ENET_XDP_PASS;
1554 		break;
1555 
1556 	case XDP_REDIRECT:
1557 		rxq->stats[RX_XDP_REDIRECT]++;
1558 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1559 		if (!err) {
1560 			ret = FEC_ENET_XDP_REDIR;
1561 		} else {
1562 			ret = FEC_ENET_XDP_CONSUMED;
1563 			page = virt_to_head_page(xdp->data);
1564 			page_pool_put_page(rxq->page_pool, page, sync, true);
1565 		}
1566 		break;
1567 
1568 	default:
1569 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1570 		fallthrough;
1571 
1572 	case XDP_TX:
1573 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1574 		fallthrough;
1575 
1576 	case XDP_ABORTED:
1577 		fallthrough;    /* handle aborts by dropping packet */
1578 
1579 	case XDP_DROP:
1580 		rxq->stats[RX_XDP_DROP]++;
1581 		ret = FEC_ENET_XDP_CONSUMED;
1582 		page = virt_to_head_page(xdp->data);
1583 		page_pool_put_page(rxq->page_pool, page, sync, true);
1584 		break;
1585 	}
1586 
1587 	return ret;
1588 }
1589 
1590 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1591  * When we update through the ring, if the next incoming buffer has
1592  * not been given to the system, we just set the empty indicator,
1593  * effectively tossing the packet.
1594  */
1595 static int
1596 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1597 {
1598 	struct fec_enet_private *fep = netdev_priv(ndev);
1599 	struct fec_enet_priv_rx_q *rxq;
1600 	struct bufdesc *bdp;
1601 	unsigned short status;
1602 	struct  sk_buff *skb;
1603 	ushort	pkt_len;
1604 	__u8 *data;
1605 	int	pkt_received = 0;
1606 	struct	bufdesc_ex *ebdp = NULL;
1607 	bool	vlan_packet_rcvd = false;
1608 	u16	vlan_tag;
1609 	int	index = 0;
1610 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1611 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1612 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1613 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1614 	struct xdp_buff xdp;
1615 	struct page *page;
1616 	u32 sub_len = 4;
1617 
1618 #if !defined(CONFIG_M5272)
1619 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1620 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1621 	 */
1622 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1623 		data_start += 2;
1624 		sub_len += 2;
1625 	}
1626 #endif
1627 
1628 #ifdef CONFIG_M532x
1629 	flush_cache_all();
1630 #endif
1631 	rxq = fep->rx_queue[queue_id];
1632 
1633 	/* First, grab all of the stats for the incoming packet.
1634 	 * These get messed up if we get called due to a busy condition.
1635 	 */
1636 	bdp = rxq->bd.cur;
1637 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1638 
1639 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1640 
1641 		if (pkt_received >= budget)
1642 			break;
1643 		pkt_received++;
1644 
1645 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1646 
1647 		/* Check for errors. */
1648 		status ^= BD_ENET_RX_LAST;
1649 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1650 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1651 			   BD_ENET_RX_CL)) {
1652 			ndev->stats.rx_errors++;
1653 			if (status & BD_ENET_RX_OV) {
1654 				/* FIFO overrun */
1655 				ndev->stats.rx_fifo_errors++;
1656 				goto rx_processing_done;
1657 			}
1658 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1659 						| BD_ENET_RX_LAST)) {
1660 				/* Frame too long or too short. */
1661 				ndev->stats.rx_length_errors++;
1662 				if (status & BD_ENET_RX_LAST)
1663 					netdev_err(ndev, "rcv is not +last\n");
1664 			}
1665 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1666 				ndev->stats.rx_crc_errors++;
1667 			/* Report late collisions as a frame error. */
1668 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1669 				ndev->stats.rx_frame_errors++;
1670 			goto rx_processing_done;
1671 		}
1672 
1673 		/* Process the incoming frame. */
1674 		ndev->stats.rx_packets++;
1675 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1676 		ndev->stats.rx_bytes += pkt_len;
1677 
1678 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1679 		page = rxq->rx_skb_info[index].page;
1680 		dma_sync_single_for_cpu(&fep->pdev->dev,
1681 					fec32_to_cpu(bdp->cbd_bufaddr),
1682 					pkt_len,
1683 					DMA_FROM_DEVICE);
1684 		prefetch(page_address(page));
1685 		fec_enet_update_cbd(rxq, bdp, index);
1686 
1687 		if (xdp_prog) {
1688 			xdp_buff_clear_frags_flag(&xdp);
1689 			/* subtract 16bit shift and FCS */
1690 			xdp_prepare_buff(&xdp, page_address(page),
1691 					 data_start, pkt_len - sub_len, false);
1692 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, index);
1693 			xdp_result |= ret;
1694 			if (ret != FEC_ENET_XDP_PASS)
1695 				goto rx_processing_done;
1696 		}
1697 
1698 		/* The packet length includes FCS, but we don't want to
1699 		 * include that when passing upstream as it messes up
1700 		 * bridging applications.
1701 		 */
1702 		skb = build_skb(page_address(page), PAGE_SIZE);
1703 		if (unlikely(!skb)) {
1704 			page_pool_recycle_direct(rxq->page_pool, page);
1705 			ndev->stats.rx_dropped++;
1706 
1707 			netdev_err_once(ndev, "build_skb failed!\n");
1708 			goto rx_processing_done;
1709 		}
1710 
1711 		skb_reserve(skb, data_start);
1712 		skb_put(skb, pkt_len - sub_len);
1713 		skb_mark_for_recycle(skb);
1714 
1715 		if (unlikely(need_swap)) {
1716 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1717 			swap_buffer(data, pkt_len);
1718 		}
1719 		data = skb->data;
1720 
1721 		/* Extract the enhanced buffer descriptor */
1722 		ebdp = NULL;
1723 		if (fep->bufdesc_ex)
1724 			ebdp = (struct bufdesc_ex *)bdp;
1725 
1726 		/* If this is a VLAN packet remove the VLAN Tag */
1727 		vlan_packet_rcvd = false;
1728 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1729 		    fep->bufdesc_ex &&
1730 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1731 			/* Push and remove the vlan tag */
1732 			struct vlan_hdr *vlan_header =
1733 					(struct vlan_hdr *) (data + ETH_HLEN);
1734 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1735 
1736 			vlan_packet_rcvd = true;
1737 
1738 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1739 			skb_pull(skb, VLAN_HLEN);
1740 		}
1741 
1742 		skb->protocol = eth_type_trans(skb, ndev);
1743 
1744 		/* Get receive timestamp from the skb */
1745 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1746 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1747 					  skb_hwtstamps(skb));
1748 
1749 		if (fep->bufdesc_ex &&
1750 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1751 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1752 				/* don't check it */
1753 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1754 			} else {
1755 				skb_checksum_none_assert(skb);
1756 			}
1757 		}
1758 
1759 		/* Handle received VLAN packets */
1760 		if (vlan_packet_rcvd)
1761 			__vlan_hwaccel_put_tag(skb,
1762 					       htons(ETH_P_8021Q),
1763 					       vlan_tag);
1764 
1765 		skb_record_rx_queue(skb, queue_id);
1766 		napi_gro_receive(&fep->napi, skb);
1767 
1768 rx_processing_done:
1769 		/* Clear the status flags for this buffer */
1770 		status &= ~BD_ENET_RX_STATS;
1771 
1772 		/* Mark the buffer empty */
1773 		status |= BD_ENET_RX_EMPTY;
1774 
1775 		if (fep->bufdesc_ex) {
1776 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1777 
1778 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1779 			ebdp->cbd_prot = 0;
1780 			ebdp->cbd_bdu = 0;
1781 		}
1782 		/* Make sure the updates to rest of the descriptor are
1783 		 * performed before transferring ownership.
1784 		 */
1785 		wmb();
1786 		bdp->cbd_sc = cpu_to_fec16(status);
1787 
1788 		/* Update BD pointer to next entry */
1789 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1790 
1791 		/* Doing this here will keep the FEC running while we process
1792 		 * incoming frames.  On a heavily loaded network, we should be
1793 		 * able to keep up at the expense of system resources.
1794 		 */
1795 		writel(0, rxq->bd.reg_desc_active);
1796 	}
1797 	rxq->bd.cur = bdp;
1798 
1799 	if (xdp_result & FEC_ENET_XDP_REDIR)
1800 		xdp_do_flush_map();
1801 
1802 	return pkt_received;
1803 }
1804 
1805 static int fec_enet_rx(struct net_device *ndev, int budget)
1806 {
1807 	struct fec_enet_private *fep = netdev_priv(ndev);
1808 	int i, done = 0;
1809 
1810 	/* Make sure that AVB queues are processed first. */
1811 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1812 		done += fec_enet_rx_queue(ndev, budget - done, i);
1813 
1814 	return done;
1815 }
1816 
1817 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1818 {
1819 	uint int_events;
1820 
1821 	int_events = readl(fep->hwp + FEC_IEVENT);
1822 
1823 	/* Don't clear MDIO events, we poll for those */
1824 	int_events &= ~FEC_ENET_MII;
1825 
1826 	writel(int_events, fep->hwp + FEC_IEVENT);
1827 
1828 	return int_events != 0;
1829 }
1830 
1831 static irqreturn_t
1832 fec_enet_interrupt(int irq, void *dev_id)
1833 {
1834 	struct net_device *ndev = dev_id;
1835 	struct fec_enet_private *fep = netdev_priv(ndev);
1836 	irqreturn_t ret = IRQ_NONE;
1837 
1838 	if (fec_enet_collect_events(fep) && fep->link) {
1839 		ret = IRQ_HANDLED;
1840 
1841 		if (napi_schedule_prep(&fep->napi)) {
1842 			/* Disable interrupts */
1843 			writel(0, fep->hwp + FEC_IMASK);
1844 			__napi_schedule(&fep->napi);
1845 		}
1846 	}
1847 
1848 	return ret;
1849 }
1850 
1851 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1852 {
1853 	struct net_device *ndev = napi->dev;
1854 	struct fec_enet_private *fep = netdev_priv(ndev);
1855 	int done = 0;
1856 
1857 	do {
1858 		done += fec_enet_rx(ndev, budget - done);
1859 		fec_enet_tx(ndev);
1860 	} while ((done < budget) && fec_enet_collect_events(fep));
1861 
1862 	if (done < budget) {
1863 		napi_complete_done(napi, done);
1864 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1865 	}
1866 
1867 	return done;
1868 }
1869 
1870 /* ------------------------------------------------------------------------- */
1871 static int fec_get_mac(struct net_device *ndev)
1872 {
1873 	struct fec_enet_private *fep = netdev_priv(ndev);
1874 	unsigned char *iap, tmpaddr[ETH_ALEN];
1875 	int ret;
1876 
1877 	/*
1878 	 * try to get mac address in following order:
1879 	 *
1880 	 * 1) module parameter via kernel command line in form
1881 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1882 	 */
1883 	iap = macaddr;
1884 
1885 	/*
1886 	 * 2) from device tree data
1887 	 */
1888 	if (!is_valid_ether_addr(iap)) {
1889 		struct device_node *np = fep->pdev->dev.of_node;
1890 		if (np) {
1891 			ret = of_get_mac_address(np, tmpaddr);
1892 			if (!ret)
1893 				iap = tmpaddr;
1894 			else if (ret == -EPROBE_DEFER)
1895 				return ret;
1896 		}
1897 	}
1898 
1899 	/*
1900 	 * 3) from flash or fuse (via platform data)
1901 	 */
1902 	if (!is_valid_ether_addr(iap)) {
1903 #ifdef CONFIG_M5272
1904 		if (FEC_FLASHMAC)
1905 			iap = (unsigned char *)FEC_FLASHMAC;
1906 #else
1907 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1908 
1909 		if (pdata)
1910 			iap = (unsigned char *)&pdata->mac;
1911 #endif
1912 	}
1913 
1914 	/*
1915 	 * 4) FEC mac registers set by bootloader
1916 	 */
1917 	if (!is_valid_ether_addr(iap)) {
1918 		*((__be32 *) &tmpaddr[0]) =
1919 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1920 		*((__be16 *) &tmpaddr[4]) =
1921 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1922 		iap = &tmpaddr[0];
1923 	}
1924 
1925 	/*
1926 	 * 5) random mac address
1927 	 */
1928 	if (!is_valid_ether_addr(iap)) {
1929 		/* Report it and use a random ethernet address instead */
1930 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1931 		eth_hw_addr_random(ndev);
1932 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1933 			 ndev->dev_addr);
1934 		return 0;
1935 	}
1936 
1937 	/* Adjust MAC if using macaddr */
1938 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
1939 
1940 	return 0;
1941 }
1942 
1943 /* ------------------------------------------------------------------------- */
1944 
1945 /*
1946  * Phy section
1947  */
1948 static void fec_enet_adjust_link(struct net_device *ndev)
1949 {
1950 	struct fec_enet_private *fep = netdev_priv(ndev);
1951 	struct phy_device *phy_dev = ndev->phydev;
1952 	int status_change = 0;
1953 
1954 	/*
1955 	 * If the netdev is down, or is going down, we're not interested
1956 	 * in link state events, so just mark our idea of the link as down
1957 	 * and ignore the event.
1958 	 */
1959 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1960 		fep->link = 0;
1961 	} else if (phy_dev->link) {
1962 		if (!fep->link) {
1963 			fep->link = phy_dev->link;
1964 			status_change = 1;
1965 		}
1966 
1967 		if (fep->full_duplex != phy_dev->duplex) {
1968 			fep->full_duplex = phy_dev->duplex;
1969 			status_change = 1;
1970 		}
1971 
1972 		if (phy_dev->speed != fep->speed) {
1973 			fep->speed = phy_dev->speed;
1974 			status_change = 1;
1975 		}
1976 
1977 		/* if any of the above changed restart the FEC */
1978 		if (status_change) {
1979 			napi_disable(&fep->napi);
1980 			netif_tx_lock_bh(ndev);
1981 			fec_restart(ndev);
1982 			netif_tx_wake_all_queues(ndev);
1983 			netif_tx_unlock_bh(ndev);
1984 			napi_enable(&fep->napi);
1985 		}
1986 	} else {
1987 		if (fep->link) {
1988 			napi_disable(&fep->napi);
1989 			netif_tx_lock_bh(ndev);
1990 			fec_stop(ndev);
1991 			netif_tx_unlock_bh(ndev);
1992 			napi_enable(&fep->napi);
1993 			fep->link = phy_dev->link;
1994 			status_change = 1;
1995 		}
1996 	}
1997 
1998 	if (status_change)
1999 		phy_print_status(phy_dev);
2000 }
2001 
2002 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2003 {
2004 	uint ievent;
2005 	int ret;
2006 
2007 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2008 					ievent & FEC_ENET_MII, 2, 30000);
2009 
2010 	if (!ret)
2011 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2012 
2013 	return ret;
2014 }
2015 
2016 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2017 {
2018 	struct fec_enet_private *fep = bus->priv;
2019 	struct device *dev = &fep->pdev->dev;
2020 	int ret = 0, frame_start, frame_addr, frame_op;
2021 
2022 	ret = pm_runtime_resume_and_get(dev);
2023 	if (ret < 0)
2024 		return ret;
2025 
2026 	/* C22 read */
2027 	frame_op = FEC_MMFR_OP_READ;
2028 	frame_start = FEC_MMFR_ST;
2029 	frame_addr = regnum;
2030 
2031 	/* start a read op */
2032 	writel(frame_start | frame_op |
2033 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2034 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2035 
2036 	/* wait for end of transfer */
2037 	ret = fec_enet_mdio_wait(fep);
2038 	if (ret) {
2039 		netdev_err(fep->netdev, "MDIO read timeout\n");
2040 		goto out;
2041 	}
2042 
2043 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2044 
2045 out:
2046 	pm_runtime_mark_last_busy(dev);
2047 	pm_runtime_put_autosuspend(dev);
2048 
2049 	return ret;
2050 }
2051 
2052 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2053 				  int devad, int regnum)
2054 {
2055 	struct fec_enet_private *fep = bus->priv;
2056 	struct device *dev = &fep->pdev->dev;
2057 	int ret = 0, frame_start, frame_op;
2058 
2059 	ret = pm_runtime_resume_and_get(dev);
2060 	if (ret < 0)
2061 		return ret;
2062 
2063 	frame_start = FEC_MMFR_ST_C45;
2064 
2065 	/* write address */
2066 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2067 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2068 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2069 	       fep->hwp + FEC_MII_DATA);
2070 
2071 	/* wait for end of transfer */
2072 	ret = fec_enet_mdio_wait(fep);
2073 	if (ret) {
2074 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2075 		goto out;
2076 	}
2077 
2078 	frame_op = FEC_MMFR_OP_READ_C45;
2079 
2080 	/* start a read op */
2081 	writel(frame_start | frame_op |
2082 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2083 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2084 
2085 	/* wait for end of transfer */
2086 	ret = fec_enet_mdio_wait(fep);
2087 	if (ret) {
2088 		netdev_err(fep->netdev, "MDIO read timeout\n");
2089 		goto out;
2090 	}
2091 
2092 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2093 
2094 out:
2095 	pm_runtime_mark_last_busy(dev);
2096 	pm_runtime_put_autosuspend(dev);
2097 
2098 	return ret;
2099 }
2100 
2101 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2102 				   u16 value)
2103 {
2104 	struct fec_enet_private *fep = bus->priv;
2105 	struct device *dev = &fep->pdev->dev;
2106 	int ret, frame_start, frame_addr;
2107 
2108 	ret = pm_runtime_resume_and_get(dev);
2109 	if (ret < 0)
2110 		return ret;
2111 
2112 	/* C22 write */
2113 	frame_start = FEC_MMFR_ST;
2114 	frame_addr = regnum;
2115 
2116 	/* start a write op */
2117 	writel(frame_start | FEC_MMFR_OP_WRITE |
2118 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2119 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2120 	       fep->hwp + FEC_MII_DATA);
2121 
2122 	/* wait for end of transfer */
2123 	ret = fec_enet_mdio_wait(fep);
2124 	if (ret)
2125 		netdev_err(fep->netdev, "MDIO write timeout\n");
2126 
2127 	pm_runtime_mark_last_busy(dev);
2128 	pm_runtime_put_autosuspend(dev);
2129 
2130 	return ret;
2131 }
2132 
2133 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2134 				   int devad, int regnum, u16 value)
2135 {
2136 	struct fec_enet_private *fep = bus->priv;
2137 	struct device *dev = &fep->pdev->dev;
2138 	int ret, frame_start;
2139 
2140 	ret = pm_runtime_resume_and_get(dev);
2141 	if (ret < 0)
2142 		return ret;
2143 
2144 	frame_start = FEC_MMFR_ST_C45;
2145 
2146 	/* write address */
2147 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2148 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2149 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2150 	       fep->hwp + FEC_MII_DATA);
2151 
2152 	/* wait for end of transfer */
2153 	ret = fec_enet_mdio_wait(fep);
2154 	if (ret) {
2155 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2156 		goto out;
2157 	}
2158 
2159 	/* start a write op */
2160 	writel(frame_start | FEC_MMFR_OP_WRITE |
2161 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2162 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2163 	       fep->hwp + FEC_MII_DATA);
2164 
2165 	/* wait for end of transfer */
2166 	ret = fec_enet_mdio_wait(fep);
2167 	if (ret)
2168 		netdev_err(fep->netdev, "MDIO write timeout\n");
2169 
2170 out:
2171 	pm_runtime_mark_last_busy(dev);
2172 	pm_runtime_put_autosuspend(dev);
2173 
2174 	return ret;
2175 }
2176 
2177 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2178 {
2179 	struct fec_enet_private *fep = netdev_priv(ndev);
2180 	struct phy_device *phy_dev = ndev->phydev;
2181 
2182 	if (phy_dev) {
2183 		phy_reset_after_clk_enable(phy_dev);
2184 	} else if (fep->phy_node) {
2185 		/*
2186 		 * If the PHY still is not bound to the MAC, but there is
2187 		 * OF PHY node and a matching PHY device instance already,
2188 		 * use the OF PHY node to obtain the PHY device instance,
2189 		 * and then use that PHY device instance when triggering
2190 		 * the PHY reset.
2191 		 */
2192 		phy_dev = of_phy_find_device(fep->phy_node);
2193 		phy_reset_after_clk_enable(phy_dev);
2194 		put_device(&phy_dev->mdio.dev);
2195 	}
2196 }
2197 
2198 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2199 {
2200 	struct fec_enet_private *fep = netdev_priv(ndev);
2201 	int ret;
2202 
2203 	if (enable) {
2204 		ret = clk_prepare_enable(fep->clk_enet_out);
2205 		if (ret)
2206 			return ret;
2207 
2208 		if (fep->clk_ptp) {
2209 			mutex_lock(&fep->ptp_clk_mutex);
2210 			ret = clk_prepare_enable(fep->clk_ptp);
2211 			if (ret) {
2212 				mutex_unlock(&fep->ptp_clk_mutex);
2213 				goto failed_clk_ptp;
2214 			} else {
2215 				fep->ptp_clk_on = true;
2216 			}
2217 			mutex_unlock(&fep->ptp_clk_mutex);
2218 		}
2219 
2220 		ret = clk_prepare_enable(fep->clk_ref);
2221 		if (ret)
2222 			goto failed_clk_ref;
2223 
2224 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2225 		if (ret)
2226 			goto failed_clk_2x_txclk;
2227 
2228 		fec_enet_phy_reset_after_clk_enable(ndev);
2229 	} else {
2230 		clk_disable_unprepare(fep->clk_enet_out);
2231 		if (fep->clk_ptp) {
2232 			mutex_lock(&fep->ptp_clk_mutex);
2233 			clk_disable_unprepare(fep->clk_ptp);
2234 			fep->ptp_clk_on = false;
2235 			mutex_unlock(&fep->ptp_clk_mutex);
2236 		}
2237 		clk_disable_unprepare(fep->clk_ref);
2238 		clk_disable_unprepare(fep->clk_2x_txclk);
2239 	}
2240 
2241 	return 0;
2242 
2243 failed_clk_2x_txclk:
2244 	if (fep->clk_ref)
2245 		clk_disable_unprepare(fep->clk_ref);
2246 failed_clk_ref:
2247 	if (fep->clk_ptp) {
2248 		mutex_lock(&fep->ptp_clk_mutex);
2249 		clk_disable_unprepare(fep->clk_ptp);
2250 		fep->ptp_clk_on = false;
2251 		mutex_unlock(&fep->ptp_clk_mutex);
2252 	}
2253 failed_clk_ptp:
2254 	clk_disable_unprepare(fep->clk_enet_out);
2255 
2256 	return ret;
2257 }
2258 
2259 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2260 				      struct device_node *np)
2261 {
2262 	u32 rgmii_tx_delay, rgmii_rx_delay;
2263 
2264 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2265 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2266 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2267 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2268 			return -EINVAL;
2269 		} else if (rgmii_tx_delay == 2000) {
2270 			fep->rgmii_txc_dly = true;
2271 		}
2272 	}
2273 
2274 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2275 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2276 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2277 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2278 			return -EINVAL;
2279 		} else if (rgmii_rx_delay == 2000) {
2280 			fep->rgmii_rxc_dly = true;
2281 		}
2282 	}
2283 
2284 	return 0;
2285 }
2286 
2287 static int fec_enet_mii_probe(struct net_device *ndev)
2288 {
2289 	struct fec_enet_private *fep = netdev_priv(ndev);
2290 	struct phy_device *phy_dev = NULL;
2291 	char mdio_bus_id[MII_BUS_ID_SIZE];
2292 	char phy_name[MII_BUS_ID_SIZE + 3];
2293 	int phy_id;
2294 	int dev_id = fep->dev_id;
2295 
2296 	if (fep->phy_node) {
2297 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2298 					 &fec_enet_adjust_link, 0,
2299 					 fep->phy_interface);
2300 		if (!phy_dev) {
2301 			netdev_err(ndev, "Unable to connect to phy\n");
2302 			return -ENODEV;
2303 		}
2304 	} else {
2305 		/* check for attached phy */
2306 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2307 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2308 				continue;
2309 			if (dev_id--)
2310 				continue;
2311 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2312 			break;
2313 		}
2314 
2315 		if (phy_id >= PHY_MAX_ADDR) {
2316 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2317 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2318 			phy_id = 0;
2319 		}
2320 
2321 		snprintf(phy_name, sizeof(phy_name),
2322 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2323 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2324 				      fep->phy_interface);
2325 	}
2326 
2327 	if (IS_ERR(phy_dev)) {
2328 		netdev_err(ndev, "could not attach to PHY\n");
2329 		return PTR_ERR(phy_dev);
2330 	}
2331 
2332 	/* mask with MAC supported features */
2333 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2334 		phy_set_max_speed(phy_dev, 1000);
2335 		phy_remove_link_mode(phy_dev,
2336 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2337 #if !defined(CONFIG_M5272)
2338 		phy_support_sym_pause(phy_dev);
2339 #endif
2340 	}
2341 	else
2342 		phy_set_max_speed(phy_dev, 100);
2343 
2344 	fep->link = 0;
2345 	fep->full_duplex = 0;
2346 
2347 	phy_dev->mac_managed_pm = true;
2348 
2349 	phy_attached_info(phy_dev);
2350 
2351 	return 0;
2352 }
2353 
2354 static int fec_enet_mii_init(struct platform_device *pdev)
2355 {
2356 	static struct mii_bus *fec0_mii_bus;
2357 	struct net_device *ndev = platform_get_drvdata(pdev);
2358 	struct fec_enet_private *fep = netdev_priv(ndev);
2359 	bool suppress_preamble = false;
2360 	struct device_node *node;
2361 	int err = -ENXIO;
2362 	u32 mii_speed, holdtime;
2363 	u32 bus_freq;
2364 
2365 	/*
2366 	 * The i.MX28 dual fec interfaces are not equal.
2367 	 * Here are the differences:
2368 	 *
2369 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2370 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2371 	 *  - external phys can only be configured by fec0
2372 	 *
2373 	 * That is to say fec1 can not work independently. It only works
2374 	 * when fec0 is working. The reason behind this design is that the
2375 	 * second interface is added primarily for Switch mode.
2376 	 *
2377 	 * Because of the last point above, both phys are attached on fec0
2378 	 * mdio interface in board design, and need to be configured by
2379 	 * fec0 mii_bus.
2380 	 */
2381 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2382 		/* fec1 uses fec0 mii_bus */
2383 		if (mii_cnt && fec0_mii_bus) {
2384 			fep->mii_bus = fec0_mii_bus;
2385 			mii_cnt++;
2386 			return 0;
2387 		}
2388 		return -ENOENT;
2389 	}
2390 
2391 	bus_freq = 2500000; /* 2.5MHz by default */
2392 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2393 	if (node) {
2394 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2395 		suppress_preamble = of_property_read_bool(node,
2396 							  "suppress-preamble");
2397 	}
2398 
2399 	/*
2400 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2401 	 *
2402 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2403 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2404 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2405 	 * document.
2406 	 */
2407 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2408 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2409 		mii_speed--;
2410 	if (mii_speed > 63) {
2411 		dev_err(&pdev->dev,
2412 			"fec clock (%lu) too fast to get right mii speed\n",
2413 			clk_get_rate(fep->clk_ipg));
2414 		err = -EINVAL;
2415 		goto err_out;
2416 	}
2417 
2418 	/*
2419 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2420 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2421 	 * versions are RAZ there, so just ignore the difference and write the
2422 	 * register always.
2423 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2424 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2425 	 * output.
2426 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2427 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2428 	 * holdtime cannot result in a value greater than 3.
2429 	 */
2430 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2431 
2432 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2433 
2434 	if (suppress_preamble)
2435 		fep->phy_speed |= BIT(7);
2436 
2437 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2438 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2439 		 * MII event generation condition:
2440 		 * - writing MSCR:
2441 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2442 		 *	  mscr_reg_data_in[7:0] != 0
2443 		 * - writing MMFR:
2444 		 *	- mscr[7:0]_not_zero
2445 		 */
2446 		writel(0, fep->hwp + FEC_MII_DATA);
2447 	}
2448 
2449 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2450 
2451 	/* Clear any pending transaction complete indication */
2452 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2453 
2454 	fep->mii_bus = mdiobus_alloc();
2455 	if (fep->mii_bus == NULL) {
2456 		err = -ENOMEM;
2457 		goto err_out;
2458 	}
2459 
2460 	fep->mii_bus->name = "fec_enet_mii_bus";
2461 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2462 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2463 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2464 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2465 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2466 	}
2467 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2468 		pdev->name, fep->dev_id + 1);
2469 	fep->mii_bus->priv = fep;
2470 	fep->mii_bus->parent = &pdev->dev;
2471 
2472 	err = of_mdiobus_register(fep->mii_bus, node);
2473 	if (err)
2474 		goto err_out_free_mdiobus;
2475 	of_node_put(node);
2476 
2477 	mii_cnt++;
2478 
2479 	/* save fec0 mii_bus */
2480 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2481 		fec0_mii_bus = fep->mii_bus;
2482 
2483 	return 0;
2484 
2485 err_out_free_mdiobus:
2486 	mdiobus_free(fep->mii_bus);
2487 err_out:
2488 	of_node_put(node);
2489 	return err;
2490 }
2491 
2492 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2493 {
2494 	if (--mii_cnt == 0) {
2495 		mdiobus_unregister(fep->mii_bus);
2496 		mdiobus_free(fep->mii_bus);
2497 	}
2498 }
2499 
2500 static void fec_enet_get_drvinfo(struct net_device *ndev,
2501 				 struct ethtool_drvinfo *info)
2502 {
2503 	struct fec_enet_private *fep = netdev_priv(ndev);
2504 
2505 	strscpy(info->driver, fep->pdev->dev.driver->name,
2506 		sizeof(info->driver));
2507 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2508 }
2509 
2510 static int fec_enet_get_regs_len(struct net_device *ndev)
2511 {
2512 	struct fec_enet_private *fep = netdev_priv(ndev);
2513 	struct resource *r;
2514 	int s = 0;
2515 
2516 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2517 	if (r)
2518 		s = resource_size(r);
2519 
2520 	return s;
2521 }
2522 
2523 /* List of registers that can be safety be read to dump them with ethtool */
2524 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2525 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2526 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2527 static __u32 fec_enet_register_version = 2;
2528 static u32 fec_enet_register_offset[] = {
2529 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2530 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2531 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2532 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2533 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2534 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2535 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2536 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2537 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2538 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2539 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2540 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2541 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2542 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2543 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2544 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2545 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2546 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2547 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2548 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2549 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2550 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2551 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2552 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2553 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2554 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2555 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2556 };
2557 /* for i.MX6ul */
2558 static u32 fec_enet_register_offset_6ul[] = {
2559 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2560 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2561 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2562 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2563 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2564 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2565 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2566 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2567 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2568 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2569 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2570 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2571 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2572 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2573 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2574 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2575 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2576 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2577 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2578 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2579 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2580 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2581 };
2582 #else
2583 static __u32 fec_enet_register_version = 1;
2584 static u32 fec_enet_register_offset[] = {
2585 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2586 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2587 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2588 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2589 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2590 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2591 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2592 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2593 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2594 };
2595 #endif
2596 
2597 static void fec_enet_get_regs(struct net_device *ndev,
2598 			      struct ethtool_regs *regs, void *regbuf)
2599 {
2600 	struct fec_enet_private *fep = netdev_priv(ndev);
2601 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2602 	struct device *dev = &fep->pdev->dev;
2603 	u32 *buf = (u32 *)regbuf;
2604 	u32 i, off;
2605 	int ret;
2606 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2607 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2608 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2609 	u32 *reg_list;
2610 	u32 reg_cnt;
2611 
2612 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2613 		reg_list = fec_enet_register_offset;
2614 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2615 	} else {
2616 		reg_list = fec_enet_register_offset_6ul;
2617 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2618 	}
2619 #else
2620 	/* coldfire */
2621 	static u32 *reg_list = fec_enet_register_offset;
2622 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2623 #endif
2624 	ret = pm_runtime_resume_and_get(dev);
2625 	if (ret < 0)
2626 		return;
2627 
2628 	regs->version = fec_enet_register_version;
2629 
2630 	memset(buf, 0, regs->len);
2631 
2632 	for (i = 0; i < reg_cnt; i++) {
2633 		off = reg_list[i];
2634 
2635 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2636 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2637 			continue;
2638 
2639 		off >>= 2;
2640 		buf[off] = readl(&theregs[off]);
2641 	}
2642 
2643 	pm_runtime_mark_last_busy(dev);
2644 	pm_runtime_put_autosuspend(dev);
2645 }
2646 
2647 static int fec_enet_get_ts_info(struct net_device *ndev,
2648 				struct ethtool_ts_info *info)
2649 {
2650 	struct fec_enet_private *fep = netdev_priv(ndev);
2651 
2652 	if (fep->bufdesc_ex) {
2653 
2654 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2655 					SOF_TIMESTAMPING_RX_SOFTWARE |
2656 					SOF_TIMESTAMPING_SOFTWARE |
2657 					SOF_TIMESTAMPING_TX_HARDWARE |
2658 					SOF_TIMESTAMPING_RX_HARDWARE |
2659 					SOF_TIMESTAMPING_RAW_HARDWARE;
2660 		if (fep->ptp_clock)
2661 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2662 		else
2663 			info->phc_index = -1;
2664 
2665 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2666 				 (1 << HWTSTAMP_TX_ON);
2667 
2668 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2669 				   (1 << HWTSTAMP_FILTER_ALL);
2670 		return 0;
2671 	} else {
2672 		return ethtool_op_get_ts_info(ndev, info);
2673 	}
2674 }
2675 
2676 #if !defined(CONFIG_M5272)
2677 
2678 static void fec_enet_get_pauseparam(struct net_device *ndev,
2679 				    struct ethtool_pauseparam *pause)
2680 {
2681 	struct fec_enet_private *fep = netdev_priv(ndev);
2682 
2683 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2684 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2685 	pause->rx_pause = pause->tx_pause;
2686 }
2687 
2688 static int fec_enet_set_pauseparam(struct net_device *ndev,
2689 				   struct ethtool_pauseparam *pause)
2690 {
2691 	struct fec_enet_private *fep = netdev_priv(ndev);
2692 
2693 	if (!ndev->phydev)
2694 		return -ENODEV;
2695 
2696 	if (pause->tx_pause != pause->rx_pause) {
2697 		netdev_info(ndev,
2698 			"hardware only support enable/disable both tx and rx");
2699 		return -EINVAL;
2700 	}
2701 
2702 	fep->pause_flag = 0;
2703 
2704 	/* tx pause must be same as rx pause */
2705 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2706 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2707 
2708 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2709 			  pause->autoneg);
2710 
2711 	if (pause->autoneg) {
2712 		if (netif_running(ndev))
2713 			fec_stop(ndev);
2714 		phy_start_aneg(ndev->phydev);
2715 	}
2716 	if (netif_running(ndev)) {
2717 		napi_disable(&fep->napi);
2718 		netif_tx_lock_bh(ndev);
2719 		fec_restart(ndev);
2720 		netif_tx_wake_all_queues(ndev);
2721 		netif_tx_unlock_bh(ndev);
2722 		napi_enable(&fep->napi);
2723 	}
2724 
2725 	return 0;
2726 }
2727 
2728 static const struct fec_stat {
2729 	char name[ETH_GSTRING_LEN];
2730 	u16 offset;
2731 } fec_stats[] = {
2732 	/* RMON TX */
2733 	{ "tx_dropped", RMON_T_DROP },
2734 	{ "tx_packets", RMON_T_PACKETS },
2735 	{ "tx_broadcast", RMON_T_BC_PKT },
2736 	{ "tx_multicast", RMON_T_MC_PKT },
2737 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2738 	{ "tx_undersize", RMON_T_UNDERSIZE },
2739 	{ "tx_oversize", RMON_T_OVERSIZE },
2740 	{ "tx_fragment", RMON_T_FRAG },
2741 	{ "tx_jabber", RMON_T_JAB },
2742 	{ "tx_collision", RMON_T_COL },
2743 	{ "tx_64byte", RMON_T_P64 },
2744 	{ "tx_65to127byte", RMON_T_P65TO127 },
2745 	{ "tx_128to255byte", RMON_T_P128TO255 },
2746 	{ "tx_256to511byte", RMON_T_P256TO511 },
2747 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2748 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2749 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2750 	{ "tx_octets", RMON_T_OCTETS },
2751 
2752 	/* IEEE TX */
2753 	{ "IEEE_tx_drop", IEEE_T_DROP },
2754 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2755 	{ "IEEE_tx_1col", IEEE_T_1COL },
2756 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2757 	{ "IEEE_tx_def", IEEE_T_DEF },
2758 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2759 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2760 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2761 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2762 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2763 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2764 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2765 
2766 	/* RMON RX */
2767 	{ "rx_packets", RMON_R_PACKETS },
2768 	{ "rx_broadcast", RMON_R_BC_PKT },
2769 	{ "rx_multicast", RMON_R_MC_PKT },
2770 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2771 	{ "rx_undersize", RMON_R_UNDERSIZE },
2772 	{ "rx_oversize", RMON_R_OVERSIZE },
2773 	{ "rx_fragment", RMON_R_FRAG },
2774 	{ "rx_jabber", RMON_R_JAB },
2775 	{ "rx_64byte", RMON_R_P64 },
2776 	{ "rx_65to127byte", RMON_R_P65TO127 },
2777 	{ "rx_128to255byte", RMON_R_P128TO255 },
2778 	{ "rx_256to511byte", RMON_R_P256TO511 },
2779 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2780 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2781 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2782 	{ "rx_octets", RMON_R_OCTETS },
2783 
2784 	/* IEEE RX */
2785 	{ "IEEE_rx_drop", IEEE_R_DROP },
2786 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2787 	{ "IEEE_rx_crc", IEEE_R_CRC },
2788 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2789 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2790 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2791 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2792 };
2793 
2794 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2795 
2796 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2797 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2798 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2799 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2800 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2801 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2802 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2803 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2804 };
2805 
2806 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2807 {
2808 	struct fec_enet_private *fep = netdev_priv(dev);
2809 	int i;
2810 
2811 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2812 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2813 }
2814 
2815 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2816 {
2817 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2818 	struct fec_enet_priv_rx_q *rxq;
2819 	int i, j;
2820 
2821 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2822 		rxq = fep->rx_queue[i];
2823 
2824 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2825 			xdp_stats[j] += rxq->stats[j];
2826 	}
2827 
2828 	memcpy(data, xdp_stats, sizeof(xdp_stats));
2829 }
2830 
2831 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2832 {
2833 #ifdef CONFIG_PAGE_POOL_STATS
2834 	struct page_pool_stats stats = {};
2835 	struct fec_enet_priv_rx_q *rxq;
2836 	int i;
2837 
2838 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2839 		rxq = fep->rx_queue[i];
2840 
2841 		if (!rxq->page_pool)
2842 			continue;
2843 
2844 		page_pool_get_stats(rxq->page_pool, &stats);
2845 	}
2846 
2847 	page_pool_ethtool_stats_get(data, &stats);
2848 #endif
2849 }
2850 
2851 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2852 				       struct ethtool_stats *stats, u64 *data)
2853 {
2854 	struct fec_enet_private *fep = netdev_priv(dev);
2855 
2856 	if (netif_running(dev))
2857 		fec_enet_update_ethtool_stats(dev);
2858 
2859 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2860 	data += FEC_STATS_SIZE / sizeof(u64);
2861 
2862 	fec_enet_get_xdp_stats(fep, data);
2863 	data += XDP_STATS_TOTAL;
2864 
2865 	fec_enet_page_pool_stats(fep, data);
2866 }
2867 
2868 static void fec_enet_get_strings(struct net_device *netdev,
2869 	u32 stringset, u8 *data)
2870 {
2871 	int i;
2872 	switch (stringset) {
2873 	case ETH_SS_STATS:
2874 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2875 			memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN);
2876 			data += ETH_GSTRING_LEN;
2877 		}
2878 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2879 			strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN);
2880 			data += ETH_GSTRING_LEN;
2881 		}
2882 		page_pool_ethtool_stats_get_strings(data);
2883 
2884 		break;
2885 	case ETH_SS_TEST:
2886 		net_selftest_get_strings(data);
2887 		break;
2888 	}
2889 }
2890 
2891 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2892 {
2893 	int count;
2894 
2895 	switch (sset) {
2896 	case ETH_SS_STATS:
2897 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
2898 		count += page_pool_ethtool_stats_get_count();
2899 		return count;
2900 
2901 	case ETH_SS_TEST:
2902 		return net_selftest_get_count();
2903 	default:
2904 		return -EOPNOTSUPP;
2905 	}
2906 }
2907 
2908 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2909 {
2910 	struct fec_enet_private *fep = netdev_priv(dev);
2911 	struct fec_enet_priv_rx_q *rxq;
2912 	int i, j;
2913 
2914 	/* Disable MIB statistics counters */
2915 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2916 
2917 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2918 		writel(0, fep->hwp + fec_stats[i].offset);
2919 
2920 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2921 		rxq = fep->rx_queue[i];
2922 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2923 			rxq->stats[j] = 0;
2924 	}
2925 
2926 	/* Don't disable MIB statistics counters */
2927 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2928 }
2929 
2930 #else	/* !defined(CONFIG_M5272) */
2931 #define FEC_STATS_SIZE	0
2932 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2933 {
2934 }
2935 
2936 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2937 {
2938 }
2939 #endif /* !defined(CONFIG_M5272) */
2940 
2941 /* ITR clock source is enet system clock (clk_ahb).
2942  * TCTT unit is cycle_ns * 64 cycle
2943  * So, the ICTT value = X us / (cycle_ns * 64)
2944  */
2945 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2946 {
2947 	struct fec_enet_private *fep = netdev_priv(ndev);
2948 
2949 	return us * (fep->itr_clk_rate / 64000) / 1000;
2950 }
2951 
2952 /* Set threshold for interrupt coalescing */
2953 static void fec_enet_itr_coal_set(struct net_device *ndev)
2954 {
2955 	struct fec_enet_private *fep = netdev_priv(ndev);
2956 	int rx_itr, tx_itr;
2957 
2958 	/* Must be greater than zero to avoid unpredictable behavior */
2959 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2960 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2961 		return;
2962 
2963 	/* Select enet system clock as Interrupt Coalescing
2964 	 * timer Clock Source
2965 	 */
2966 	rx_itr = FEC_ITR_CLK_SEL;
2967 	tx_itr = FEC_ITR_CLK_SEL;
2968 
2969 	/* set ICFT and ICTT */
2970 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2971 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2972 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2973 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2974 
2975 	rx_itr |= FEC_ITR_EN;
2976 	tx_itr |= FEC_ITR_EN;
2977 
2978 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2979 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2980 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
2981 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2982 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2983 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2984 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2985 	}
2986 }
2987 
2988 static int fec_enet_get_coalesce(struct net_device *ndev,
2989 				 struct ethtool_coalesce *ec,
2990 				 struct kernel_ethtool_coalesce *kernel_coal,
2991 				 struct netlink_ext_ack *extack)
2992 {
2993 	struct fec_enet_private *fep = netdev_priv(ndev);
2994 
2995 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2996 		return -EOPNOTSUPP;
2997 
2998 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2999 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3000 
3001 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3002 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3003 
3004 	return 0;
3005 }
3006 
3007 static int fec_enet_set_coalesce(struct net_device *ndev,
3008 				 struct ethtool_coalesce *ec,
3009 				 struct kernel_ethtool_coalesce *kernel_coal,
3010 				 struct netlink_ext_ack *extack)
3011 {
3012 	struct fec_enet_private *fep = netdev_priv(ndev);
3013 	struct device *dev = &fep->pdev->dev;
3014 	unsigned int cycle;
3015 
3016 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3017 		return -EOPNOTSUPP;
3018 
3019 	if (ec->rx_max_coalesced_frames > 255) {
3020 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3021 		return -EINVAL;
3022 	}
3023 
3024 	if (ec->tx_max_coalesced_frames > 255) {
3025 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3026 		return -EINVAL;
3027 	}
3028 
3029 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3030 	if (cycle > 0xFFFF) {
3031 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3032 		return -EINVAL;
3033 	}
3034 
3035 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3036 	if (cycle > 0xFFFF) {
3037 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3038 		return -EINVAL;
3039 	}
3040 
3041 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3042 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3043 
3044 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3045 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3046 
3047 	fec_enet_itr_coal_set(ndev);
3048 
3049 	return 0;
3050 }
3051 
3052 /* LPI Sleep Ts count base on tx clk (clk_ref).
3053  * The lpi sleep cnt value = X us / (cycle_ns).
3054  */
3055 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3056 {
3057 	struct fec_enet_private *fep = netdev_priv(ndev);
3058 
3059 	return us * (fep->clk_ref_rate / 1000) / 1000;
3060 }
3061 
3062 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3063 {
3064 	struct fec_enet_private *fep = netdev_priv(ndev);
3065 	struct ethtool_eee *p = &fep->eee;
3066 	unsigned int sleep_cycle, wake_cycle;
3067 	int ret = 0;
3068 
3069 	if (enable) {
3070 		ret = phy_init_eee(ndev->phydev, false);
3071 		if (ret)
3072 			return ret;
3073 
3074 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
3075 		wake_cycle = sleep_cycle;
3076 	} else {
3077 		sleep_cycle = 0;
3078 		wake_cycle = 0;
3079 	}
3080 
3081 	p->tx_lpi_enabled = enable;
3082 	p->eee_enabled = enable;
3083 	p->eee_active = enable;
3084 
3085 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
3086 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
3087 
3088 	return 0;
3089 }
3090 
3091 static int
3092 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
3093 {
3094 	struct fec_enet_private *fep = netdev_priv(ndev);
3095 	struct ethtool_eee *p = &fep->eee;
3096 
3097 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3098 		return -EOPNOTSUPP;
3099 
3100 	if (!netif_running(ndev))
3101 		return -ENETDOWN;
3102 
3103 	edata->eee_enabled = p->eee_enabled;
3104 	edata->eee_active = p->eee_active;
3105 	edata->tx_lpi_timer = p->tx_lpi_timer;
3106 	edata->tx_lpi_enabled = p->tx_lpi_enabled;
3107 
3108 	return phy_ethtool_get_eee(ndev->phydev, edata);
3109 }
3110 
3111 static int
3112 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
3113 {
3114 	struct fec_enet_private *fep = netdev_priv(ndev);
3115 	struct ethtool_eee *p = &fep->eee;
3116 	int ret = 0;
3117 
3118 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3119 		return -EOPNOTSUPP;
3120 
3121 	if (!netif_running(ndev))
3122 		return -ENETDOWN;
3123 
3124 	p->tx_lpi_timer = edata->tx_lpi_timer;
3125 
3126 	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3127 	    !edata->tx_lpi_timer)
3128 		ret = fec_enet_eee_mode_set(ndev, false);
3129 	else
3130 		ret = fec_enet_eee_mode_set(ndev, true);
3131 
3132 	if (ret)
3133 		return ret;
3134 
3135 	return phy_ethtool_set_eee(ndev->phydev, edata);
3136 }
3137 
3138 static void
3139 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3140 {
3141 	struct fec_enet_private *fep = netdev_priv(ndev);
3142 
3143 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3144 		wol->supported = WAKE_MAGIC;
3145 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3146 	} else {
3147 		wol->supported = wol->wolopts = 0;
3148 	}
3149 }
3150 
3151 static int
3152 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3153 {
3154 	struct fec_enet_private *fep = netdev_priv(ndev);
3155 
3156 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3157 		return -EINVAL;
3158 
3159 	if (wol->wolopts & ~WAKE_MAGIC)
3160 		return -EINVAL;
3161 
3162 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3163 	if (device_may_wakeup(&ndev->dev))
3164 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3165 	else
3166 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3167 
3168 	return 0;
3169 }
3170 
3171 static const struct ethtool_ops fec_enet_ethtool_ops = {
3172 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3173 				     ETHTOOL_COALESCE_MAX_FRAMES,
3174 	.get_drvinfo		= fec_enet_get_drvinfo,
3175 	.get_regs_len		= fec_enet_get_regs_len,
3176 	.get_regs		= fec_enet_get_regs,
3177 	.nway_reset		= phy_ethtool_nway_reset,
3178 	.get_link		= ethtool_op_get_link,
3179 	.get_coalesce		= fec_enet_get_coalesce,
3180 	.set_coalesce		= fec_enet_set_coalesce,
3181 #ifndef CONFIG_M5272
3182 	.get_pauseparam		= fec_enet_get_pauseparam,
3183 	.set_pauseparam		= fec_enet_set_pauseparam,
3184 	.get_strings		= fec_enet_get_strings,
3185 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3186 	.get_sset_count		= fec_enet_get_sset_count,
3187 #endif
3188 	.get_ts_info		= fec_enet_get_ts_info,
3189 	.get_wol		= fec_enet_get_wol,
3190 	.set_wol		= fec_enet_set_wol,
3191 	.get_eee		= fec_enet_get_eee,
3192 	.set_eee		= fec_enet_set_eee,
3193 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3194 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3195 	.self_test		= net_selftest,
3196 };
3197 
3198 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
3199 {
3200 	struct fec_enet_private *fep = netdev_priv(ndev);
3201 	struct phy_device *phydev = ndev->phydev;
3202 
3203 	if (!netif_running(ndev))
3204 		return -EINVAL;
3205 
3206 	if (!phydev)
3207 		return -ENODEV;
3208 
3209 	if (fep->bufdesc_ex) {
3210 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
3211 
3212 		if (cmd == SIOCSHWTSTAMP) {
3213 			if (use_fec_hwts)
3214 				return fec_ptp_set(ndev, rq);
3215 			fec_ptp_disable_hwts(ndev);
3216 		} else if (cmd == SIOCGHWTSTAMP) {
3217 			if (use_fec_hwts)
3218 				return fec_ptp_get(ndev, rq);
3219 		}
3220 	}
3221 
3222 	return phy_mii_ioctl(phydev, rq, cmd);
3223 }
3224 
3225 static void fec_enet_free_buffers(struct net_device *ndev)
3226 {
3227 	struct fec_enet_private *fep = netdev_priv(ndev);
3228 	unsigned int i;
3229 	struct sk_buff *skb;
3230 	struct fec_enet_priv_tx_q *txq;
3231 	struct fec_enet_priv_rx_q *rxq;
3232 	unsigned int q;
3233 
3234 	for (q = 0; q < fep->num_rx_queues; q++) {
3235 		rxq = fep->rx_queue[q];
3236 		for (i = 0; i < rxq->bd.ring_size; i++)
3237 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3238 
3239 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3240 			rxq->stats[i] = 0;
3241 
3242 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3243 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3244 		page_pool_destroy(rxq->page_pool);
3245 		rxq->page_pool = NULL;
3246 	}
3247 
3248 	for (q = 0; q < fep->num_tx_queues; q++) {
3249 		txq = fep->tx_queue[q];
3250 		for (i = 0; i < txq->bd.ring_size; i++) {
3251 			kfree(txq->tx_bounce[i]);
3252 			txq->tx_bounce[i] = NULL;
3253 
3254 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3255 				skb = txq->tx_buf[i].skb;
3256 				txq->tx_buf[i].skb = NULL;
3257 				dev_kfree_skb(skb);
3258 			} else {
3259 				if (txq->tx_buf[i].xdp) {
3260 					xdp_return_frame(txq->tx_buf[i].xdp);
3261 					txq->tx_buf[i].xdp = NULL;
3262 				}
3263 
3264 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3265 			}
3266 		}
3267 	}
3268 }
3269 
3270 static void fec_enet_free_queue(struct net_device *ndev)
3271 {
3272 	struct fec_enet_private *fep = netdev_priv(ndev);
3273 	int i;
3274 	struct fec_enet_priv_tx_q *txq;
3275 
3276 	for (i = 0; i < fep->num_tx_queues; i++)
3277 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3278 			txq = fep->tx_queue[i];
3279 			dma_free_coherent(&fep->pdev->dev,
3280 					  txq->bd.ring_size * TSO_HEADER_SIZE,
3281 					  txq->tso_hdrs,
3282 					  txq->tso_hdrs_dma);
3283 		}
3284 
3285 	for (i = 0; i < fep->num_rx_queues; i++)
3286 		kfree(fep->rx_queue[i]);
3287 	for (i = 0; i < fep->num_tx_queues; i++)
3288 		kfree(fep->tx_queue[i]);
3289 }
3290 
3291 static int fec_enet_alloc_queue(struct net_device *ndev)
3292 {
3293 	struct fec_enet_private *fep = netdev_priv(ndev);
3294 	int i;
3295 	int ret = 0;
3296 	struct fec_enet_priv_tx_q *txq;
3297 
3298 	for (i = 0; i < fep->num_tx_queues; i++) {
3299 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3300 		if (!txq) {
3301 			ret = -ENOMEM;
3302 			goto alloc_failed;
3303 		}
3304 
3305 		fep->tx_queue[i] = txq;
3306 		txq->bd.ring_size = TX_RING_SIZE;
3307 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3308 
3309 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3310 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3311 
3312 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3313 					txq->bd.ring_size * TSO_HEADER_SIZE,
3314 					&txq->tso_hdrs_dma,
3315 					GFP_KERNEL);
3316 		if (!txq->tso_hdrs) {
3317 			ret = -ENOMEM;
3318 			goto alloc_failed;
3319 		}
3320 	}
3321 
3322 	for (i = 0; i < fep->num_rx_queues; i++) {
3323 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3324 					   GFP_KERNEL);
3325 		if (!fep->rx_queue[i]) {
3326 			ret = -ENOMEM;
3327 			goto alloc_failed;
3328 		}
3329 
3330 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3331 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3332 	}
3333 	return ret;
3334 
3335 alloc_failed:
3336 	fec_enet_free_queue(ndev);
3337 	return ret;
3338 }
3339 
3340 static int
3341 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3342 {
3343 	struct fec_enet_private *fep = netdev_priv(ndev);
3344 	struct fec_enet_priv_rx_q *rxq;
3345 	dma_addr_t phys_addr;
3346 	struct bufdesc	*bdp;
3347 	struct page *page;
3348 	int i, err;
3349 
3350 	rxq = fep->rx_queue[queue];
3351 	bdp = rxq->bd.base;
3352 
3353 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3354 	if (err < 0) {
3355 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3356 		return err;
3357 	}
3358 
3359 	for (i = 0; i < rxq->bd.ring_size; i++) {
3360 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3361 		if (!page)
3362 			goto err_alloc;
3363 
3364 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3365 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3366 
3367 		rxq->rx_skb_info[i].page = page;
3368 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3369 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3370 
3371 		if (fep->bufdesc_ex) {
3372 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3373 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3374 		}
3375 
3376 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3377 	}
3378 
3379 	/* Set the last buffer to wrap. */
3380 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3381 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3382 	return 0;
3383 
3384  err_alloc:
3385 	fec_enet_free_buffers(ndev);
3386 	return -ENOMEM;
3387 }
3388 
3389 static int
3390 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3391 {
3392 	struct fec_enet_private *fep = netdev_priv(ndev);
3393 	unsigned int i;
3394 	struct bufdesc  *bdp;
3395 	struct fec_enet_priv_tx_q *txq;
3396 
3397 	txq = fep->tx_queue[queue];
3398 	bdp = txq->bd.base;
3399 	for (i = 0; i < txq->bd.ring_size; i++) {
3400 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3401 		if (!txq->tx_bounce[i])
3402 			goto err_alloc;
3403 
3404 		bdp->cbd_sc = cpu_to_fec16(0);
3405 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3406 
3407 		if (fep->bufdesc_ex) {
3408 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3409 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3410 		}
3411 
3412 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3413 	}
3414 
3415 	/* Set the last buffer to wrap. */
3416 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3417 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3418 
3419 	return 0;
3420 
3421  err_alloc:
3422 	fec_enet_free_buffers(ndev);
3423 	return -ENOMEM;
3424 }
3425 
3426 static int fec_enet_alloc_buffers(struct net_device *ndev)
3427 {
3428 	struct fec_enet_private *fep = netdev_priv(ndev);
3429 	unsigned int i;
3430 
3431 	for (i = 0; i < fep->num_rx_queues; i++)
3432 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3433 			return -ENOMEM;
3434 
3435 	for (i = 0; i < fep->num_tx_queues; i++)
3436 		if (fec_enet_alloc_txq_buffers(ndev, i))
3437 			return -ENOMEM;
3438 	return 0;
3439 }
3440 
3441 static int
3442 fec_enet_open(struct net_device *ndev)
3443 {
3444 	struct fec_enet_private *fep = netdev_priv(ndev);
3445 	int ret;
3446 	bool reset_again;
3447 
3448 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3449 	if (ret < 0)
3450 		return ret;
3451 
3452 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3453 	ret = fec_enet_clk_enable(ndev, true);
3454 	if (ret)
3455 		goto clk_enable;
3456 
3457 	/* During the first fec_enet_open call the PHY isn't probed at this
3458 	 * point. Therefore the phy_reset_after_clk_enable() call within
3459 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3460 	 * sure the PHY is working correctly we check if we need to reset again
3461 	 * later when the PHY is probed
3462 	 */
3463 	if (ndev->phydev && ndev->phydev->drv)
3464 		reset_again = false;
3465 	else
3466 		reset_again = true;
3467 
3468 	/* I should reset the ring buffers here, but I don't yet know
3469 	 * a simple way to do that.
3470 	 */
3471 
3472 	ret = fec_enet_alloc_buffers(ndev);
3473 	if (ret)
3474 		goto err_enet_alloc;
3475 
3476 	/* Init MAC prior to mii bus probe */
3477 	fec_restart(ndev);
3478 
3479 	/* Call phy_reset_after_clk_enable() again if it failed during
3480 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3481 	 */
3482 	if (reset_again)
3483 		fec_enet_phy_reset_after_clk_enable(ndev);
3484 
3485 	/* Probe and connect to PHY when open the interface */
3486 	ret = fec_enet_mii_probe(ndev);
3487 	if (ret)
3488 		goto err_enet_mii_probe;
3489 
3490 	if (fep->quirks & FEC_QUIRK_ERR006687)
3491 		imx6q_cpuidle_fec_irqs_used();
3492 
3493 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3494 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3495 
3496 	napi_enable(&fep->napi);
3497 	phy_start(ndev->phydev);
3498 	netif_tx_start_all_queues(ndev);
3499 
3500 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3501 				 FEC_WOL_FLAG_ENABLE);
3502 
3503 	return 0;
3504 
3505 err_enet_mii_probe:
3506 	fec_enet_free_buffers(ndev);
3507 err_enet_alloc:
3508 	fec_enet_clk_enable(ndev, false);
3509 clk_enable:
3510 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3511 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3512 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3513 	return ret;
3514 }
3515 
3516 static int
3517 fec_enet_close(struct net_device *ndev)
3518 {
3519 	struct fec_enet_private *fep = netdev_priv(ndev);
3520 
3521 	phy_stop(ndev->phydev);
3522 
3523 	if (netif_device_present(ndev)) {
3524 		napi_disable(&fep->napi);
3525 		netif_tx_disable(ndev);
3526 		fec_stop(ndev);
3527 	}
3528 
3529 	phy_disconnect(ndev->phydev);
3530 
3531 	if (fep->quirks & FEC_QUIRK_ERR006687)
3532 		imx6q_cpuidle_fec_irqs_unused();
3533 
3534 	fec_enet_update_ethtool_stats(ndev);
3535 
3536 	fec_enet_clk_enable(ndev, false);
3537 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3538 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3539 
3540 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3541 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3542 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3543 
3544 	fec_enet_free_buffers(ndev);
3545 
3546 	return 0;
3547 }
3548 
3549 /* Set or clear the multicast filter for this adaptor.
3550  * Skeleton taken from sunlance driver.
3551  * The CPM Ethernet implementation allows Multicast as well as individual
3552  * MAC address filtering.  Some of the drivers check to make sure it is
3553  * a group multicast address, and discard those that are not.  I guess I
3554  * will do the same for now, but just remove the test if you want
3555  * individual filtering as well (do the upper net layers want or support
3556  * this kind of feature?).
3557  */
3558 
3559 #define FEC_HASH_BITS	6		/* #bits in hash */
3560 
3561 static void set_multicast_list(struct net_device *ndev)
3562 {
3563 	struct fec_enet_private *fep = netdev_priv(ndev);
3564 	struct netdev_hw_addr *ha;
3565 	unsigned int crc, tmp;
3566 	unsigned char hash;
3567 	unsigned int hash_high = 0, hash_low = 0;
3568 
3569 	if (ndev->flags & IFF_PROMISC) {
3570 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3571 		tmp |= 0x8;
3572 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3573 		return;
3574 	}
3575 
3576 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3577 	tmp &= ~0x8;
3578 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3579 
3580 	if (ndev->flags & IFF_ALLMULTI) {
3581 		/* Catch all multicast addresses, so set the
3582 		 * filter to all 1's
3583 		 */
3584 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3585 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3586 
3587 		return;
3588 	}
3589 
3590 	/* Add the addresses in hash register */
3591 	netdev_for_each_mc_addr(ha, ndev) {
3592 		/* calculate crc32 value of mac address */
3593 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3594 
3595 		/* only upper 6 bits (FEC_HASH_BITS) are used
3596 		 * which point to specific bit in the hash registers
3597 		 */
3598 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3599 
3600 		if (hash > 31)
3601 			hash_high |= 1 << (hash - 32);
3602 		else
3603 			hash_low |= 1 << hash;
3604 	}
3605 
3606 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3607 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3608 }
3609 
3610 /* Set a MAC change in hardware. */
3611 static int
3612 fec_set_mac_address(struct net_device *ndev, void *p)
3613 {
3614 	struct fec_enet_private *fep = netdev_priv(ndev);
3615 	struct sockaddr *addr = p;
3616 
3617 	if (addr) {
3618 		if (!is_valid_ether_addr(addr->sa_data))
3619 			return -EADDRNOTAVAIL;
3620 		eth_hw_addr_set(ndev, addr->sa_data);
3621 	}
3622 
3623 	/* Add netif status check here to avoid system hang in below case:
3624 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3625 	 * After ethx down, fec all clocks are gated off and then register
3626 	 * access causes system hang.
3627 	 */
3628 	if (!netif_running(ndev))
3629 		return 0;
3630 
3631 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3632 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3633 		fep->hwp + FEC_ADDR_LOW);
3634 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3635 		fep->hwp + FEC_ADDR_HIGH);
3636 	return 0;
3637 }
3638 
3639 #ifdef CONFIG_NET_POLL_CONTROLLER
3640 /**
3641  * fec_poll_controller - FEC Poll controller function
3642  * @dev: The FEC network adapter
3643  *
3644  * Polled functionality used by netconsole and others in non interrupt mode
3645  *
3646  */
3647 static void fec_poll_controller(struct net_device *dev)
3648 {
3649 	int i;
3650 	struct fec_enet_private *fep = netdev_priv(dev);
3651 
3652 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3653 		if (fep->irq[i] > 0) {
3654 			disable_irq(fep->irq[i]);
3655 			fec_enet_interrupt(fep->irq[i], dev);
3656 			enable_irq(fep->irq[i]);
3657 		}
3658 	}
3659 }
3660 #endif
3661 
3662 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3663 	netdev_features_t features)
3664 {
3665 	struct fec_enet_private *fep = netdev_priv(netdev);
3666 	netdev_features_t changed = features ^ netdev->features;
3667 
3668 	netdev->features = features;
3669 
3670 	/* Receive checksum has been changed */
3671 	if (changed & NETIF_F_RXCSUM) {
3672 		if (features & NETIF_F_RXCSUM)
3673 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3674 		else
3675 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3676 	}
3677 }
3678 
3679 static int fec_set_features(struct net_device *netdev,
3680 	netdev_features_t features)
3681 {
3682 	struct fec_enet_private *fep = netdev_priv(netdev);
3683 	netdev_features_t changed = features ^ netdev->features;
3684 
3685 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3686 		napi_disable(&fep->napi);
3687 		netif_tx_lock_bh(netdev);
3688 		fec_stop(netdev);
3689 		fec_enet_set_netdev_features(netdev, features);
3690 		fec_restart(netdev);
3691 		netif_tx_wake_all_queues(netdev);
3692 		netif_tx_unlock_bh(netdev);
3693 		napi_enable(&fep->napi);
3694 	} else {
3695 		fec_enet_set_netdev_features(netdev, features);
3696 	}
3697 
3698 	return 0;
3699 }
3700 
3701 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb)
3702 {
3703 	struct vlan_ethhdr *vhdr;
3704 	unsigned short vlan_TCI = 0;
3705 
3706 	if (skb->protocol == htons(ETH_P_ALL)) {
3707 		vhdr = (struct vlan_ethhdr *)(skb->data);
3708 		vlan_TCI = ntohs(vhdr->h_vlan_TCI);
3709 	}
3710 
3711 	return vlan_TCI;
3712 }
3713 
3714 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3715 				 struct net_device *sb_dev)
3716 {
3717 	struct fec_enet_private *fep = netdev_priv(ndev);
3718 	u16 vlan_tag;
3719 
3720 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3721 		return netdev_pick_tx(ndev, skb, NULL);
3722 
3723 	vlan_tag = fec_enet_get_raw_vlan_tci(skb);
3724 	if (!vlan_tag)
3725 		return vlan_tag;
3726 
3727 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3728 }
3729 
3730 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3731 {
3732 	struct fec_enet_private *fep = netdev_priv(dev);
3733 	bool is_run = netif_running(dev);
3734 	struct bpf_prog *old_prog;
3735 
3736 	switch (bpf->command) {
3737 	case XDP_SETUP_PROG:
3738 		/* No need to support the SoCs that require to
3739 		 * do the frame swap because the performance wouldn't be
3740 		 * better than the skb mode.
3741 		 */
3742 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3743 			return -EOPNOTSUPP;
3744 
3745 		if (!bpf->prog)
3746 			xdp_features_clear_redirect_target(dev);
3747 
3748 		if (is_run) {
3749 			napi_disable(&fep->napi);
3750 			netif_tx_disable(dev);
3751 		}
3752 
3753 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3754 		if (old_prog)
3755 			bpf_prog_put(old_prog);
3756 
3757 		fec_restart(dev);
3758 
3759 		if (is_run) {
3760 			napi_enable(&fep->napi);
3761 			netif_tx_start_all_queues(dev);
3762 		}
3763 
3764 		if (bpf->prog)
3765 			xdp_features_set_redirect_target(dev, false);
3766 
3767 		return 0;
3768 
3769 	case XDP_SETUP_XSK_POOL:
3770 		return -EOPNOTSUPP;
3771 
3772 	default:
3773 		return -EOPNOTSUPP;
3774 	}
3775 }
3776 
3777 static int
3778 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3779 {
3780 	if (unlikely(index < 0))
3781 		return 0;
3782 
3783 	return (index % fep->num_tx_queues);
3784 }
3785 
3786 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3787 				   struct fec_enet_priv_tx_q *txq,
3788 				   struct xdp_frame *frame)
3789 {
3790 	unsigned int index, status, estatus;
3791 	struct bufdesc *bdp;
3792 	dma_addr_t dma_addr;
3793 	int entries_free;
3794 
3795 	entries_free = fec_enet_get_free_txdesc_num(txq);
3796 	if (entries_free < MAX_SKB_FRAGS + 1) {
3797 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3798 		return -EBUSY;
3799 	}
3800 
3801 	/* Fill in a Tx ring entry */
3802 	bdp = txq->bd.cur;
3803 	status = fec16_to_cpu(bdp->cbd_sc);
3804 	status &= ~BD_ENET_TX_STATS;
3805 
3806 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3807 
3808 	dma_addr = dma_map_single(&fep->pdev->dev, frame->data,
3809 				  frame->len, DMA_TO_DEVICE);
3810 	if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3811 		return -ENOMEM;
3812 
3813 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3814 	if (fep->bufdesc_ex)
3815 		estatus = BD_ENET_TX_INT;
3816 
3817 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3818 	bdp->cbd_datlen = cpu_to_fec16(frame->len);
3819 
3820 	if (fep->bufdesc_ex) {
3821 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3822 
3823 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3824 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3825 
3826 		ebdp->cbd_bdu = 0;
3827 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3828 	}
3829 
3830 	txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3831 	txq->tx_buf[index].xdp = frame;
3832 
3833 	/* Make sure the updates to rest of the descriptor are performed before
3834 	 * transferring ownership.
3835 	 */
3836 	dma_wmb();
3837 
3838 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3839 	 * it's the last BD of the frame, and to put the CRC on the end.
3840 	 */
3841 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3842 	bdp->cbd_sc = cpu_to_fec16(status);
3843 
3844 	/* If this was the last BD in the ring, start at the beginning again. */
3845 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3846 
3847 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3848 	dma_wmb();
3849 
3850 	txq->bd.cur = bdp;
3851 
3852 	/* Trigger transmission start */
3853 	writel(0, txq->bd.reg_desc_active);
3854 
3855 	return 0;
3856 }
3857 
3858 static int fec_enet_xdp_xmit(struct net_device *dev,
3859 			     int num_frames,
3860 			     struct xdp_frame **frames,
3861 			     u32 flags)
3862 {
3863 	struct fec_enet_private *fep = netdev_priv(dev);
3864 	struct fec_enet_priv_tx_q *txq;
3865 	int cpu = smp_processor_id();
3866 	unsigned int sent_frames = 0;
3867 	struct netdev_queue *nq;
3868 	unsigned int queue;
3869 	int i;
3870 
3871 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3872 	txq = fep->tx_queue[queue];
3873 	nq = netdev_get_tx_queue(fep->netdev, queue);
3874 
3875 	__netif_tx_lock(nq, cpu);
3876 
3877 	for (i = 0; i < num_frames; i++) {
3878 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i]) < 0)
3879 			break;
3880 		sent_frames++;
3881 	}
3882 
3883 	__netif_tx_unlock(nq);
3884 
3885 	return sent_frames;
3886 }
3887 
3888 static const struct net_device_ops fec_netdev_ops = {
3889 	.ndo_open		= fec_enet_open,
3890 	.ndo_stop		= fec_enet_close,
3891 	.ndo_start_xmit		= fec_enet_start_xmit,
3892 	.ndo_select_queue       = fec_enet_select_queue,
3893 	.ndo_set_rx_mode	= set_multicast_list,
3894 	.ndo_validate_addr	= eth_validate_addr,
3895 	.ndo_tx_timeout		= fec_timeout,
3896 	.ndo_set_mac_address	= fec_set_mac_address,
3897 	.ndo_eth_ioctl		= fec_enet_ioctl,
3898 #ifdef CONFIG_NET_POLL_CONTROLLER
3899 	.ndo_poll_controller	= fec_poll_controller,
3900 #endif
3901 	.ndo_set_features	= fec_set_features,
3902 	.ndo_bpf		= fec_enet_bpf,
3903 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
3904 };
3905 
3906 static const unsigned short offset_des_active_rxq[] = {
3907 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3908 };
3909 
3910 static const unsigned short offset_des_active_txq[] = {
3911 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3912 };
3913 
3914  /*
3915   * XXX:  We need to clean up on failure exits here.
3916   *
3917   */
3918 static int fec_enet_init(struct net_device *ndev)
3919 {
3920 	struct fec_enet_private *fep = netdev_priv(ndev);
3921 	struct bufdesc *cbd_base;
3922 	dma_addr_t bd_dma;
3923 	int bd_size;
3924 	unsigned int i;
3925 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3926 			sizeof(struct bufdesc);
3927 	unsigned dsize_log2 = __fls(dsize);
3928 	int ret;
3929 
3930 	WARN_ON(dsize != (1 << dsize_log2));
3931 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3932 	fep->rx_align = 0xf;
3933 	fep->tx_align = 0xf;
3934 #else
3935 	fep->rx_align = 0x3;
3936 	fep->tx_align = 0x3;
3937 #endif
3938 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
3939 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
3940 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
3941 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
3942 
3943 	/* Check mask of the streaming and coherent API */
3944 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3945 	if (ret < 0) {
3946 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3947 		return ret;
3948 	}
3949 
3950 	ret = fec_enet_alloc_queue(ndev);
3951 	if (ret)
3952 		return ret;
3953 
3954 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3955 
3956 	/* Allocate memory for buffer descriptors. */
3957 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3958 				       GFP_KERNEL);
3959 	if (!cbd_base) {
3960 		ret = -ENOMEM;
3961 		goto free_queue_mem;
3962 	}
3963 
3964 	/* Get the Ethernet address */
3965 	ret = fec_get_mac(ndev);
3966 	if (ret)
3967 		goto free_queue_mem;
3968 
3969 	/* Set receive and transmit descriptor base. */
3970 	for (i = 0; i < fep->num_rx_queues; i++) {
3971 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3972 		unsigned size = dsize * rxq->bd.ring_size;
3973 
3974 		rxq->bd.qid = i;
3975 		rxq->bd.base = cbd_base;
3976 		rxq->bd.cur = cbd_base;
3977 		rxq->bd.dma = bd_dma;
3978 		rxq->bd.dsize = dsize;
3979 		rxq->bd.dsize_log2 = dsize_log2;
3980 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3981 		bd_dma += size;
3982 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3983 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3984 	}
3985 
3986 	for (i = 0; i < fep->num_tx_queues; i++) {
3987 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3988 		unsigned size = dsize * txq->bd.ring_size;
3989 
3990 		txq->bd.qid = i;
3991 		txq->bd.base = cbd_base;
3992 		txq->bd.cur = cbd_base;
3993 		txq->bd.dma = bd_dma;
3994 		txq->bd.dsize = dsize;
3995 		txq->bd.dsize_log2 = dsize_log2;
3996 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3997 		bd_dma += size;
3998 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3999 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4000 	}
4001 
4002 
4003 	/* The FEC Ethernet specific entries in the device structure */
4004 	ndev->watchdog_timeo = TX_TIMEOUT;
4005 	ndev->netdev_ops = &fec_netdev_ops;
4006 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4007 
4008 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4009 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4010 
4011 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4012 		/* enable hw VLAN support */
4013 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4014 
4015 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4016 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4017 
4018 		/* enable hw accelerator */
4019 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4020 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4021 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4022 	}
4023 
4024 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4025 		fep->tx_align = 0;
4026 		fep->rx_align = 0x3f;
4027 	}
4028 
4029 	ndev->hw_features = ndev->features;
4030 
4031 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4032 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4033 				     NETDEV_XDP_ACT_REDIRECT;
4034 
4035 	fec_restart(ndev);
4036 
4037 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4038 		fec_enet_clear_ethtool_stats(ndev);
4039 	else
4040 		fec_enet_update_ethtool_stats(ndev);
4041 
4042 	return 0;
4043 
4044 free_queue_mem:
4045 	fec_enet_free_queue(ndev);
4046 	return ret;
4047 }
4048 
4049 #ifdef CONFIG_OF
4050 static int fec_reset_phy(struct platform_device *pdev)
4051 {
4052 	struct gpio_desc *phy_reset;
4053 	int msec = 1, phy_post_delay = 0;
4054 	struct device_node *np = pdev->dev.of_node;
4055 	int err;
4056 
4057 	if (!np)
4058 		return 0;
4059 
4060 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4061 	/* A sane reset duration should not be longer than 1s */
4062 	if (!err && msec > 1000)
4063 		msec = 1;
4064 
4065 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4066 	/* valid reset duration should be less than 1s */
4067 	if (!err && phy_post_delay > 1000)
4068 		return -EINVAL;
4069 
4070 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4071 					    GPIOD_OUT_HIGH);
4072 	if (IS_ERR(phy_reset))
4073 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4074 				     "failed to get phy-reset-gpios\n");
4075 
4076 	if (!phy_reset)
4077 		return 0;
4078 
4079 	if (msec > 20)
4080 		msleep(msec);
4081 	else
4082 		usleep_range(msec * 1000, msec * 1000 + 1000);
4083 
4084 	gpiod_set_value_cansleep(phy_reset, 0);
4085 
4086 	if (!phy_post_delay)
4087 		return 0;
4088 
4089 	if (phy_post_delay > 20)
4090 		msleep(phy_post_delay);
4091 	else
4092 		usleep_range(phy_post_delay * 1000,
4093 			     phy_post_delay * 1000 + 1000);
4094 
4095 	return 0;
4096 }
4097 #else /* CONFIG_OF */
4098 static int fec_reset_phy(struct platform_device *pdev)
4099 {
4100 	/*
4101 	 * In case of platform probe, the reset has been done
4102 	 * by machine code.
4103 	 */
4104 	return 0;
4105 }
4106 #endif /* CONFIG_OF */
4107 
4108 static void
4109 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4110 {
4111 	struct device_node *np = pdev->dev.of_node;
4112 
4113 	*num_tx = *num_rx = 1;
4114 
4115 	if (!np || !of_device_is_available(np))
4116 		return;
4117 
4118 	/* parse the num of tx and rx queues */
4119 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4120 
4121 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4122 
4123 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4124 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4125 			 *num_tx);
4126 		*num_tx = 1;
4127 		return;
4128 	}
4129 
4130 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4131 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4132 			 *num_rx);
4133 		*num_rx = 1;
4134 		return;
4135 	}
4136 
4137 }
4138 
4139 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4140 {
4141 	int irq_cnt = platform_irq_count(pdev);
4142 
4143 	if (irq_cnt > FEC_IRQ_NUM)
4144 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4145 	else if (irq_cnt == 2)
4146 		irq_cnt = 1;	/* last for pps */
4147 	else if (irq_cnt <= 0)
4148 		irq_cnt = 1;	/* At least 1 irq is needed */
4149 	return irq_cnt;
4150 }
4151 
4152 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4153 {
4154 	struct net_device *ndev = platform_get_drvdata(pdev);
4155 	struct fec_enet_private *fep = netdev_priv(ndev);
4156 
4157 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4158 		fep->wake_irq = fep->irq[2];
4159 	else
4160 		fep->wake_irq = fep->irq[0];
4161 }
4162 
4163 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4164 				   struct device_node *np)
4165 {
4166 	struct device_node *gpr_np;
4167 	u32 out_val[3];
4168 	int ret = 0;
4169 
4170 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4171 	if (!gpr_np)
4172 		return 0;
4173 
4174 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4175 					 ARRAY_SIZE(out_val));
4176 	if (ret) {
4177 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4178 		goto out;
4179 	}
4180 
4181 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4182 	if (IS_ERR(fep->stop_gpr.gpr)) {
4183 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4184 		ret = PTR_ERR(fep->stop_gpr.gpr);
4185 		fep->stop_gpr.gpr = NULL;
4186 		goto out;
4187 	}
4188 
4189 	fep->stop_gpr.reg = out_val[1];
4190 	fep->stop_gpr.bit = out_val[2];
4191 
4192 out:
4193 	of_node_put(gpr_np);
4194 
4195 	return ret;
4196 }
4197 
4198 static int
4199 fec_probe(struct platform_device *pdev)
4200 {
4201 	struct fec_enet_private *fep;
4202 	struct fec_platform_data *pdata;
4203 	phy_interface_t interface;
4204 	struct net_device *ndev;
4205 	int i, irq, ret = 0;
4206 	const struct of_device_id *of_id;
4207 	static int dev_id;
4208 	struct device_node *np = pdev->dev.of_node, *phy_node;
4209 	int num_tx_qs;
4210 	int num_rx_qs;
4211 	char irq_name[8];
4212 	int irq_cnt;
4213 	struct fec_devinfo *dev_info;
4214 
4215 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4216 
4217 	/* Init network device */
4218 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4219 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4220 	if (!ndev)
4221 		return -ENOMEM;
4222 
4223 	SET_NETDEV_DEV(ndev, &pdev->dev);
4224 
4225 	/* setup board info structure */
4226 	fep = netdev_priv(ndev);
4227 
4228 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
4229 	if (of_id)
4230 		pdev->id_entry = of_id->data;
4231 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
4232 	if (dev_info)
4233 		fep->quirks = dev_info->quirks;
4234 
4235 	fep->netdev = ndev;
4236 	fep->num_rx_queues = num_rx_qs;
4237 	fep->num_tx_queues = num_tx_qs;
4238 
4239 #if !defined(CONFIG_M5272)
4240 	/* default enable pause frame auto negotiation */
4241 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4242 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4243 #endif
4244 
4245 	/* Select default pin state */
4246 	pinctrl_pm_select_default_state(&pdev->dev);
4247 
4248 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4249 	if (IS_ERR(fep->hwp)) {
4250 		ret = PTR_ERR(fep->hwp);
4251 		goto failed_ioremap;
4252 	}
4253 
4254 	fep->pdev = pdev;
4255 	fep->dev_id = dev_id++;
4256 
4257 	platform_set_drvdata(pdev, ndev);
4258 
4259 	if ((of_machine_is_compatible("fsl,imx6q") ||
4260 	     of_machine_is_compatible("fsl,imx6dl")) &&
4261 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4262 		fep->quirks |= FEC_QUIRK_ERR006687;
4263 
4264 	ret = fec_enet_ipc_handle_init(fep);
4265 	if (ret)
4266 		goto failed_ipc_init;
4267 
4268 	if (of_property_read_bool(np, "fsl,magic-packet"))
4269 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4270 
4271 	ret = fec_enet_init_stop_mode(fep, np);
4272 	if (ret)
4273 		goto failed_stop_mode;
4274 
4275 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4276 	if (!phy_node && of_phy_is_fixed_link(np)) {
4277 		ret = of_phy_register_fixed_link(np);
4278 		if (ret < 0) {
4279 			dev_err(&pdev->dev,
4280 				"broken fixed-link specification\n");
4281 			goto failed_phy;
4282 		}
4283 		phy_node = of_node_get(np);
4284 	}
4285 	fep->phy_node = phy_node;
4286 
4287 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4288 	if (ret) {
4289 		pdata = dev_get_platdata(&pdev->dev);
4290 		if (pdata)
4291 			fep->phy_interface = pdata->phy;
4292 		else
4293 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4294 	} else {
4295 		fep->phy_interface = interface;
4296 	}
4297 
4298 	ret = fec_enet_parse_rgmii_delay(fep, np);
4299 	if (ret)
4300 		goto failed_rgmii_delay;
4301 
4302 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4303 	if (IS_ERR(fep->clk_ipg)) {
4304 		ret = PTR_ERR(fep->clk_ipg);
4305 		goto failed_clk;
4306 	}
4307 
4308 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4309 	if (IS_ERR(fep->clk_ahb)) {
4310 		ret = PTR_ERR(fep->clk_ahb);
4311 		goto failed_clk;
4312 	}
4313 
4314 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4315 
4316 	/* enet_out is optional, depends on board */
4317 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4318 	if (IS_ERR(fep->clk_enet_out)) {
4319 		ret = PTR_ERR(fep->clk_enet_out);
4320 		goto failed_clk;
4321 	}
4322 
4323 	fep->ptp_clk_on = false;
4324 	mutex_init(&fep->ptp_clk_mutex);
4325 
4326 	/* clk_ref is optional, depends on board */
4327 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4328 	if (IS_ERR(fep->clk_ref)) {
4329 		ret = PTR_ERR(fep->clk_ref);
4330 		goto failed_clk;
4331 	}
4332 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4333 
4334 	/* clk_2x_txclk is optional, depends on board */
4335 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4336 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4337 		if (IS_ERR(fep->clk_2x_txclk))
4338 			fep->clk_2x_txclk = NULL;
4339 	}
4340 
4341 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4342 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4343 	if (IS_ERR(fep->clk_ptp)) {
4344 		fep->clk_ptp = NULL;
4345 		fep->bufdesc_ex = false;
4346 	}
4347 
4348 	ret = fec_enet_clk_enable(ndev, true);
4349 	if (ret)
4350 		goto failed_clk;
4351 
4352 	ret = clk_prepare_enable(fep->clk_ipg);
4353 	if (ret)
4354 		goto failed_clk_ipg;
4355 	ret = clk_prepare_enable(fep->clk_ahb);
4356 	if (ret)
4357 		goto failed_clk_ahb;
4358 
4359 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4360 	if (!IS_ERR(fep->reg_phy)) {
4361 		ret = regulator_enable(fep->reg_phy);
4362 		if (ret) {
4363 			dev_err(&pdev->dev,
4364 				"Failed to enable phy regulator: %d\n", ret);
4365 			goto failed_regulator;
4366 		}
4367 	} else {
4368 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4369 			ret = -EPROBE_DEFER;
4370 			goto failed_regulator;
4371 		}
4372 		fep->reg_phy = NULL;
4373 	}
4374 
4375 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4376 	pm_runtime_use_autosuspend(&pdev->dev);
4377 	pm_runtime_get_noresume(&pdev->dev);
4378 	pm_runtime_set_active(&pdev->dev);
4379 	pm_runtime_enable(&pdev->dev);
4380 
4381 	ret = fec_reset_phy(pdev);
4382 	if (ret)
4383 		goto failed_reset;
4384 
4385 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4386 	if (fep->bufdesc_ex)
4387 		fec_ptp_init(pdev, irq_cnt);
4388 
4389 	ret = fec_enet_init(ndev);
4390 	if (ret)
4391 		goto failed_init;
4392 
4393 	for (i = 0; i < irq_cnt; i++) {
4394 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4395 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4396 		if (irq < 0)
4397 			irq = platform_get_irq(pdev, i);
4398 		if (irq < 0) {
4399 			ret = irq;
4400 			goto failed_irq;
4401 		}
4402 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4403 				       0, pdev->name, ndev);
4404 		if (ret)
4405 			goto failed_irq;
4406 
4407 		fep->irq[i] = irq;
4408 	}
4409 
4410 	/* Decide which interrupt line is wakeup capable */
4411 	fec_enet_get_wakeup_irq(pdev);
4412 
4413 	ret = fec_enet_mii_init(pdev);
4414 	if (ret)
4415 		goto failed_mii_init;
4416 
4417 	/* Carrier starts down, phylib will bring it up */
4418 	netif_carrier_off(ndev);
4419 	fec_enet_clk_enable(ndev, false);
4420 	pinctrl_pm_select_sleep_state(&pdev->dev);
4421 
4422 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4423 
4424 	ret = register_netdev(ndev);
4425 	if (ret)
4426 		goto failed_register;
4427 
4428 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4429 			   FEC_WOL_HAS_MAGIC_PACKET);
4430 
4431 	if (fep->bufdesc_ex && fep->ptp_clock)
4432 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4433 
4434 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4435 
4436 	pm_runtime_mark_last_busy(&pdev->dev);
4437 	pm_runtime_put_autosuspend(&pdev->dev);
4438 
4439 	return 0;
4440 
4441 failed_register:
4442 	fec_enet_mii_remove(fep);
4443 failed_mii_init:
4444 failed_irq:
4445 failed_init:
4446 	fec_ptp_stop(pdev);
4447 failed_reset:
4448 	pm_runtime_put_noidle(&pdev->dev);
4449 	pm_runtime_disable(&pdev->dev);
4450 	if (fep->reg_phy)
4451 		regulator_disable(fep->reg_phy);
4452 failed_regulator:
4453 	clk_disable_unprepare(fep->clk_ahb);
4454 failed_clk_ahb:
4455 	clk_disable_unprepare(fep->clk_ipg);
4456 failed_clk_ipg:
4457 	fec_enet_clk_enable(ndev, false);
4458 failed_clk:
4459 failed_rgmii_delay:
4460 	if (of_phy_is_fixed_link(np))
4461 		of_phy_deregister_fixed_link(np);
4462 	of_node_put(phy_node);
4463 failed_stop_mode:
4464 failed_ipc_init:
4465 failed_phy:
4466 	dev_id--;
4467 failed_ioremap:
4468 	free_netdev(ndev);
4469 
4470 	return ret;
4471 }
4472 
4473 static void
4474 fec_drv_remove(struct platform_device *pdev)
4475 {
4476 	struct net_device *ndev = platform_get_drvdata(pdev);
4477 	struct fec_enet_private *fep = netdev_priv(ndev);
4478 	struct device_node *np = pdev->dev.of_node;
4479 	int ret;
4480 
4481 	ret = pm_runtime_get_sync(&pdev->dev);
4482 	if (ret < 0)
4483 		dev_err(&pdev->dev,
4484 			"Failed to resume device in remove callback (%pe)\n",
4485 			ERR_PTR(ret));
4486 
4487 	cancel_work_sync(&fep->tx_timeout_work);
4488 	fec_ptp_stop(pdev);
4489 	unregister_netdev(ndev);
4490 	fec_enet_mii_remove(fep);
4491 	if (fep->reg_phy)
4492 		regulator_disable(fep->reg_phy);
4493 
4494 	if (of_phy_is_fixed_link(np))
4495 		of_phy_deregister_fixed_link(np);
4496 	of_node_put(fep->phy_node);
4497 
4498 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4499 	 * disabling them again.
4500 	 */
4501 	if (ret >= 0) {
4502 		clk_disable_unprepare(fep->clk_ahb);
4503 		clk_disable_unprepare(fep->clk_ipg);
4504 	}
4505 	pm_runtime_put_noidle(&pdev->dev);
4506 	pm_runtime_disable(&pdev->dev);
4507 
4508 	free_netdev(ndev);
4509 }
4510 
4511 static int __maybe_unused fec_suspend(struct device *dev)
4512 {
4513 	struct net_device *ndev = dev_get_drvdata(dev);
4514 	struct fec_enet_private *fep = netdev_priv(ndev);
4515 	int ret;
4516 
4517 	rtnl_lock();
4518 	if (netif_running(ndev)) {
4519 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4520 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4521 		phy_stop(ndev->phydev);
4522 		napi_disable(&fep->napi);
4523 		netif_tx_lock_bh(ndev);
4524 		netif_device_detach(ndev);
4525 		netif_tx_unlock_bh(ndev);
4526 		fec_stop(ndev);
4527 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4528 			fec_irqs_disable(ndev);
4529 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4530 		} else {
4531 			fec_irqs_disable_except_wakeup(ndev);
4532 			if (fep->wake_irq > 0) {
4533 				disable_irq(fep->wake_irq);
4534 				enable_irq_wake(fep->wake_irq);
4535 			}
4536 			fec_enet_stop_mode(fep, true);
4537 		}
4538 		/* It's safe to disable clocks since interrupts are masked */
4539 		fec_enet_clk_enable(ndev, false);
4540 
4541 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4542 		if (fep->rpm_active) {
4543 			ret = pm_runtime_force_suspend(dev);
4544 			if (ret < 0) {
4545 				rtnl_unlock();
4546 				return ret;
4547 			}
4548 		}
4549 	}
4550 	rtnl_unlock();
4551 
4552 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4553 		regulator_disable(fep->reg_phy);
4554 
4555 	/* SOC supply clock to phy, when clock is disabled, phy link down
4556 	 * SOC control phy regulator, when regulator is disabled, phy link down
4557 	 */
4558 	if (fep->clk_enet_out || fep->reg_phy)
4559 		fep->link = 0;
4560 
4561 	return 0;
4562 }
4563 
4564 static int __maybe_unused fec_resume(struct device *dev)
4565 {
4566 	struct net_device *ndev = dev_get_drvdata(dev);
4567 	struct fec_enet_private *fep = netdev_priv(ndev);
4568 	int ret;
4569 	int val;
4570 
4571 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4572 		ret = regulator_enable(fep->reg_phy);
4573 		if (ret)
4574 			return ret;
4575 	}
4576 
4577 	rtnl_lock();
4578 	if (netif_running(ndev)) {
4579 		if (fep->rpm_active)
4580 			pm_runtime_force_resume(dev);
4581 
4582 		ret = fec_enet_clk_enable(ndev, true);
4583 		if (ret) {
4584 			rtnl_unlock();
4585 			goto failed_clk;
4586 		}
4587 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4588 			fec_enet_stop_mode(fep, false);
4589 			if (fep->wake_irq) {
4590 				disable_irq_wake(fep->wake_irq);
4591 				enable_irq(fep->wake_irq);
4592 			}
4593 
4594 			val = readl(fep->hwp + FEC_ECNTRL);
4595 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4596 			writel(val, fep->hwp + FEC_ECNTRL);
4597 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4598 		} else {
4599 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4600 		}
4601 		fec_restart(ndev);
4602 		netif_tx_lock_bh(ndev);
4603 		netif_device_attach(ndev);
4604 		netif_tx_unlock_bh(ndev);
4605 		napi_enable(&fep->napi);
4606 		phy_init_hw(ndev->phydev);
4607 		phy_start(ndev->phydev);
4608 	}
4609 	rtnl_unlock();
4610 
4611 	return 0;
4612 
4613 failed_clk:
4614 	if (fep->reg_phy)
4615 		regulator_disable(fep->reg_phy);
4616 	return ret;
4617 }
4618 
4619 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4620 {
4621 	struct net_device *ndev = dev_get_drvdata(dev);
4622 	struct fec_enet_private *fep = netdev_priv(ndev);
4623 
4624 	clk_disable_unprepare(fep->clk_ahb);
4625 	clk_disable_unprepare(fep->clk_ipg);
4626 
4627 	return 0;
4628 }
4629 
4630 static int __maybe_unused fec_runtime_resume(struct device *dev)
4631 {
4632 	struct net_device *ndev = dev_get_drvdata(dev);
4633 	struct fec_enet_private *fep = netdev_priv(ndev);
4634 	int ret;
4635 
4636 	ret = clk_prepare_enable(fep->clk_ahb);
4637 	if (ret)
4638 		return ret;
4639 	ret = clk_prepare_enable(fep->clk_ipg);
4640 	if (ret)
4641 		goto failed_clk_ipg;
4642 
4643 	return 0;
4644 
4645 failed_clk_ipg:
4646 	clk_disable_unprepare(fep->clk_ahb);
4647 	return ret;
4648 }
4649 
4650 static const struct dev_pm_ops fec_pm_ops = {
4651 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4652 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4653 };
4654 
4655 static struct platform_driver fec_driver = {
4656 	.driver	= {
4657 		.name	= DRIVER_NAME,
4658 		.pm	= &fec_pm_ops,
4659 		.of_match_table = fec_dt_ids,
4660 		.suppress_bind_attrs = true,
4661 	},
4662 	.id_table = fec_devtype,
4663 	.probe	= fec_probe,
4664 	.remove_new = fec_drv_remove,
4665 };
4666 
4667 module_platform_driver(fec_driver);
4668 
4669 MODULE_LICENSE("GPL");
4670