1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 #include <soc/imx/cpuidle.h>
64 
65 #include <asm/cacheflush.h>
66 
67 #include "fec.h"
68 
69 static void set_multicast_list(struct net_device *ndev);
70 static void fec_enet_itr_coal_init(struct net_device *ndev);
71 
72 #define DRIVER_NAME	"fec"
73 
74 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
75 
76 /* Pause frame feild and FIFO threshold */
77 #define FEC_ENET_FCE	(1 << 5)
78 #define FEC_ENET_RSEM_V	0x84
79 #define FEC_ENET_RSFL_V	16
80 #define FEC_ENET_RAEM_V	0x8
81 #define FEC_ENET_RAFL_V	0x8
82 #define FEC_ENET_OPD_V	0xFFF0
83 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
84 
85 static struct platform_device_id fec_devtype[] = {
86 	{
87 		/* keep it for coldfire */
88 		.name = DRIVER_NAME,
89 		.driver_data = 0,
90 	}, {
91 		.name = "imx25-fec",
92 		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
93 	}, {
94 		.name = "imx27-fec",
95 		.driver_data = FEC_QUIRK_HAS_RACC,
96 	}, {
97 		.name = "imx28-fec",
98 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
99 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
100 	}, {
101 		.name = "imx6q-fec",
102 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
103 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
104 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
105 				FEC_QUIRK_HAS_RACC,
106 	}, {
107 		.name = "mvf600-fec",
108 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
109 	}, {
110 		.name = "imx6sx-fec",
111 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
114 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
115 				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
116 	}, {
117 		.name = "imx6ul-fec",
118 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_BUG_CAPTURE |
121 				FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
122 	}, {
123 		/* sentinel */
124 	}
125 };
126 MODULE_DEVICE_TABLE(platform, fec_devtype);
127 
128 enum imx_fec_type {
129 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
130 	IMX27_FEC,	/* runs on i.mx27/35/51 */
131 	IMX28_FEC,
132 	IMX6Q_FEC,
133 	MVF600_FEC,
134 	IMX6SX_FEC,
135 	IMX6UL_FEC,
136 };
137 
138 static const struct of_device_id fec_dt_ids[] = {
139 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
140 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
141 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
142 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
143 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
144 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
145 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
146 	{ /* sentinel */ }
147 };
148 MODULE_DEVICE_TABLE(of, fec_dt_ids);
149 
150 static unsigned char macaddr[ETH_ALEN];
151 module_param_array(macaddr, byte, NULL, 0);
152 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
153 
154 #if defined(CONFIG_M5272)
155 /*
156  * Some hardware gets it MAC address out of local flash memory.
157  * if this is non-zero then assume it is the address to get MAC from.
158  */
159 #if defined(CONFIG_NETtel)
160 #define	FEC_FLASHMAC	0xf0006006
161 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
162 #define	FEC_FLASHMAC	0xf0006000
163 #elif defined(CONFIG_CANCam)
164 #define	FEC_FLASHMAC	0xf0020000
165 #elif defined (CONFIG_M5272C3)
166 #define	FEC_FLASHMAC	(0xffe04000 + 4)
167 #elif defined(CONFIG_MOD5272)
168 #define FEC_FLASHMAC	0xffc0406b
169 #else
170 #define	FEC_FLASHMAC	0
171 #endif
172 #endif /* CONFIG_M5272 */
173 
174 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
175  */
176 #define PKT_MAXBUF_SIZE		1522
177 #define PKT_MINBUF_SIZE		64
178 #define PKT_MAXBLR_SIZE		1536
179 
180 /* FEC receive acceleration */
181 #define FEC_RACC_IPDIS		(1 << 1)
182 #define FEC_RACC_PRODIS		(1 << 2)
183 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
184 
185 /*
186  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
187  * size bits. Other FEC hardware does not, so we need to take that into
188  * account when setting it.
189  */
190 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
191     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
192 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
193 #else
194 #define	OPT_FRAME_SIZE	0
195 #endif
196 
197 /* FEC MII MMFR bits definition */
198 #define FEC_MMFR_ST		(1 << 30)
199 #define FEC_MMFR_OP_READ	(2 << 28)
200 #define FEC_MMFR_OP_WRITE	(1 << 28)
201 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
202 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
203 #define FEC_MMFR_TA		(2 << 16)
204 #define FEC_MMFR_DATA(v)	(v & 0xffff)
205 /* FEC ECR bits definition */
206 #define FEC_ECR_MAGICEN		(1 << 2)
207 #define FEC_ECR_SLEEP		(1 << 3)
208 
209 #define FEC_MII_TIMEOUT		30000 /* us */
210 
211 /* Transmitter timeout */
212 #define TX_TIMEOUT (2 * HZ)
213 
214 #define FEC_PAUSE_FLAG_AUTONEG	0x1
215 #define FEC_PAUSE_FLAG_ENABLE	0x2
216 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
217 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
218 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
219 
220 #define COPYBREAK_DEFAULT	256
221 
222 #define TSO_HEADER_SIZE		128
223 /* Max number of allowed TCP segments for software TSO */
224 #define FEC_MAX_TSO_SEGS	100
225 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
226 
227 #define IS_TSO_HEADER(txq, addr) \
228 	((addr >= txq->tso_hdrs_dma) && \
229 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
230 
231 static int mii_cnt;
232 
233 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
234 					     struct bufdesc_prop *bd)
235 {
236 	return (bdp >= bd->last) ? bd->base
237 			: (struct bufdesc *)(((unsigned)bdp) + bd->dsize);
238 }
239 
240 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
241 					     struct bufdesc_prop *bd)
242 {
243 	return (bdp <= bd->base) ? bd->last
244 			: (struct bufdesc *)(((unsigned)bdp) - bd->dsize);
245 }
246 
247 static int fec_enet_get_bd_index(struct bufdesc *bdp,
248 				 struct bufdesc_prop *bd)
249 {
250 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
251 }
252 
253 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
254 {
255 	int entries;
256 
257 	entries = (((const char *)txq->dirty_tx -
258 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
259 
260 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
261 }
262 
263 static void swap_buffer(void *bufaddr, int len)
264 {
265 	int i;
266 	unsigned int *buf = bufaddr;
267 
268 	for (i = 0; i < len; i += 4, buf++)
269 		swab32s(buf);
270 }
271 
272 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
273 {
274 	int i;
275 	unsigned int *src = src_buf;
276 	unsigned int *dst = dst_buf;
277 
278 	for (i = 0; i < len; i += 4, src++, dst++)
279 		*dst = swab32p(src);
280 }
281 
282 static void fec_dump(struct net_device *ndev)
283 {
284 	struct fec_enet_private *fep = netdev_priv(ndev);
285 	struct bufdesc *bdp;
286 	struct fec_enet_priv_tx_q *txq;
287 	int index = 0;
288 
289 	netdev_info(ndev, "TX ring dump\n");
290 	pr_info("Nr     SC     addr       len  SKB\n");
291 
292 	txq = fep->tx_queue[0];
293 	bdp = txq->bd.base;
294 
295 	do {
296 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
297 			index,
298 			bdp == txq->bd.cur ? 'S' : ' ',
299 			bdp == txq->dirty_tx ? 'H' : ' ',
300 			fec16_to_cpu(bdp->cbd_sc),
301 			fec32_to_cpu(bdp->cbd_bufaddr),
302 			fec16_to_cpu(bdp->cbd_datlen),
303 			txq->tx_skbuff[index]);
304 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
305 		index++;
306 	} while (bdp != txq->bd.base);
307 }
308 
309 static inline bool is_ipv4_pkt(struct sk_buff *skb)
310 {
311 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
312 }
313 
314 static int
315 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
316 {
317 	/* Only run for packets requiring a checksum. */
318 	if (skb->ip_summed != CHECKSUM_PARTIAL)
319 		return 0;
320 
321 	if (unlikely(skb_cow_head(skb, 0)))
322 		return -1;
323 
324 	if (is_ipv4_pkt(skb))
325 		ip_hdr(skb)->check = 0;
326 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
327 
328 	return 0;
329 }
330 
331 static struct bufdesc *
332 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
333 			     struct sk_buff *skb,
334 			     struct net_device *ndev)
335 {
336 	struct fec_enet_private *fep = netdev_priv(ndev);
337 	struct bufdesc *bdp = txq->bd.cur;
338 	struct bufdesc_ex *ebdp;
339 	int nr_frags = skb_shinfo(skb)->nr_frags;
340 	int frag, frag_len;
341 	unsigned short status;
342 	unsigned int estatus = 0;
343 	skb_frag_t *this_frag;
344 	unsigned int index;
345 	void *bufaddr;
346 	dma_addr_t addr;
347 	int i;
348 
349 	for (frag = 0; frag < nr_frags; frag++) {
350 		this_frag = &skb_shinfo(skb)->frags[frag];
351 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
352 		ebdp = (struct bufdesc_ex *)bdp;
353 
354 		status = fec16_to_cpu(bdp->cbd_sc);
355 		status &= ~BD_ENET_TX_STATS;
356 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
357 		frag_len = skb_shinfo(skb)->frags[frag].size;
358 
359 		/* Handle the last BD specially */
360 		if (frag == nr_frags - 1) {
361 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
362 			if (fep->bufdesc_ex) {
363 				estatus |= BD_ENET_TX_INT;
364 				if (unlikely(skb_shinfo(skb)->tx_flags &
365 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
366 					estatus |= BD_ENET_TX_TS;
367 			}
368 		}
369 
370 		if (fep->bufdesc_ex) {
371 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
372 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
373 			if (skb->ip_summed == CHECKSUM_PARTIAL)
374 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
375 			ebdp->cbd_bdu = 0;
376 			ebdp->cbd_esc = cpu_to_fec32(estatus);
377 		}
378 
379 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
380 
381 		index = fec_enet_get_bd_index(bdp, &txq->bd);
382 		if (((unsigned long) bufaddr) & fep->tx_align ||
383 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
384 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
385 			bufaddr = txq->tx_bounce[index];
386 
387 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
388 				swap_buffer(bufaddr, frag_len);
389 		}
390 
391 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
392 				      DMA_TO_DEVICE);
393 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
394 			if (net_ratelimit())
395 				netdev_err(ndev, "Tx DMA memory map failed\n");
396 			goto dma_mapping_error;
397 		}
398 
399 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
400 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
401 		/* Make sure the updates to rest of the descriptor are
402 		 * performed before transferring ownership.
403 		 */
404 		wmb();
405 		bdp->cbd_sc = cpu_to_fec16(status);
406 	}
407 
408 	return bdp;
409 dma_mapping_error:
410 	bdp = txq->bd.cur;
411 	for (i = 0; i < frag; i++) {
412 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
413 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
414 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
415 	}
416 	return ERR_PTR(-ENOMEM);
417 }
418 
419 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
420 				   struct sk_buff *skb, struct net_device *ndev)
421 {
422 	struct fec_enet_private *fep = netdev_priv(ndev);
423 	int nr_frags = skb_shinfo(skb)->nr_frags;
424 	struct bufdesc *bdp, *last_bdp;
425 	void *bufaddr;
426 	dma_addr_t addr;
427 	unsigned short status;
428 	unsigned short buflen;
429 	unsigned int estatus = 0;
430 	unsigned int index;
431 	int entries_free;
432 
433 	entries_free = fec_enet_get_free_txdesc_num(txq);
434 	if (entries_free < MAX_SKB_FRAGS + 1) {
435 		dev_kfree_skb_any(skb);
436 		if (net_ratelimit())
437 			netdev_err(ndev, "NOT enough BD for SG!\n");
438 		return NETDEV_TX_OK;
439 	}
440 
441 	/* Protocol checksum off-load for TCP and UDP. */
442 	if (fec_enet_clear_csum(skb, ndev)) {
443 		dev_kfree_skb_any(skb);
444 		return NETDEV_TX_OK;
445 	}
446 
447 	/* Fill in a Tx ring entry */
448 	bdp = txq->bd.cur;
449 	last_bdp = bdp;
450 	status = fec16_to_cpu(bdp->cbd_sc);
451 	status &= ~BD_ENET_TX_STATS;
452 
453 	/* Set buffer length and buffer pointer */
454 	bufaddr = skb->data;
455 	buflen = skb_headlen(skb);
456 
457 	index = fec_enet_get_bd_index(bdp, &txq->bd);
458 	if (((unsigned long) bufaddr) & fep->tx_align ||
459 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
460 		memcpy(txq->tx_bounce[index], skb->data, buflen);
461 		bufaddr = txq->tx_bounce[index];
462 
463 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
464 			swap_buffer(bufaddr, buflen);
465 	}
466 
467 	/* Push the data cache so the CPM does not get stale memory data. */
468 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
469 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
470 		dev_kfree_skb_any(skb);
471 		if (net_ratelimit())
472 			netdev_err(ndev, "Tx DMA memory map failed\n");
473 		return NETDEV_TX_OK;
474 	}
475 
476 	if (nr_frags) {
477 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
478 		if (IS_ERR(last_bdp)) {
479 			dma_unmap_single(&fep->pdev->dev, addr,
480 					 buflen, DMA_TO_DEVICE);
481 			dev_kfree_skb_any(skb);
482 			return NETDEV_TX_OK;
483 		}
484 	} else {
485 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
486 		if (fep->bufdesc_ex) {
487 			estatus = BD_ENET_TX_INT;
488 			if (unlikely(skb_shinfo(skb)->tx_flags &
489 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
490 				estatus |= BD_ENET_TX_TS;
491 		}
492 	}
493 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
494 	bdp->cbd_datlen = cpu_to_fec16(buflen);
495 
496 	if (fep->bufdesc_ex) {
497 
498 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
499 
500 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
501 			fep->hwts_tx_en))
502 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
503 
504 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
505 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
506 
507 		if (skb->ip_summed == CHECKSUM_PARTIAL)
508 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
509 
510 		ebdp->cbd_bdu = 0;
511 		ebdp->cbd_esc = cpu_to_fec32(estatus);
512 	}
513 
514 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
515 	/* Save skb pointer */
516 	txq->tx_skbuff[index] = skb;
517 
518 	/* Make sure the updates to rest of the descriptor are performed before
519 	 * transferring ownership.
520 	 */
521 	wmb();
522 
523 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
524 	 * it's the last BD of the frame, and to put the CRC on the end.
525 	 */
526 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
527 	bdp->cbd_sc = cpu_to_fec16(status);
528 
529 	/* If this was the last BD in the ring, start at the beginning again. */
530 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
531 
532 	skb_tx_timestamp(skb);
533 
534 	/* Make sure the update to bdp and tx_skbuff are performed before
535 	 * txq->bd.cur.
536 	 */
537 	wmb();
538 	txq->bd.cur = bdp;
539 
540 	/* Trigger transmission start */
541 	writel(0, txq->bd.reg_desc_active);
542 
543 	return 0;
544 }
545 
546 static int
547 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
548 			  struct net_device *ndev,
549 			  struct bufdesc *bdp, int index, char *data,
550 			  int size, bool last_tcp, bool is_last)
551 {
552 	struct fec_enet_private *fep = netdev_priv(ndev);
553 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
554 	unsigned short status;
555 	unsigned int estatus = 0;
556 	dma_addr_t addr;
557 
558 	status = fec16_to_cpu(bdp->cbd_sc);
559 	status &= ~BD_ENET_TX_STATS;
560 
561 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
562 
563 	if (((unsigned long) data) & fep->tx_align ||
564 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
565 		memcpy(txq->tx_bounce[index], data, size);
566 		data = txq->tx_bounce[index];
567 
568 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
569 			swap_buffer(data, size);
570 	}
571 
572 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
573 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
574 		dev_kfree_skb_any(skb);
575 		if (net_ratelimit())
576 			netdev_err(ndev, "Tx DMA memory map failed\n");
577 		return NETDEV_TX_BUSY;
578 	}
579 
580 	bdp->cbd_datlen = cpu_to_fec16(size);
581 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
582 
583 	if (fep->bufdesc_ex) {
584 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
585 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
586 		if (skb->ip_summed == CHECKSUM_PARTIAL)
587 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
588 		ebdp->cbd_bdu = 0;
589 		ebdp->cbd_esc = cpu_to_fec32(estatus);
590 	}
591 
592 	/* Handle the last BD specially */
593 	if (last_tcp)
594 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
595 	if (is_last) {
596 		status |= BD_ENET_TX_INTR;
597 		if (fep->bufdesc_ex)
598 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
599 	}
600 
601 	bdp->cbd_sc = cpu_to_fec16(status);
602 
603 	return 0;
604 }
605 
606 static int
607 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
608 			 struct sk_buff *skb, struct net_device *ndev,
609 			 struct bufdesc *bdp, int index)
610 {
611 	struct fec_enet_private *fep = netdev_priv(ndev);
612 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
613 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
614 	void *bufaddr;
615 	unsigned long dmabuf;
616 	unsigned short status;
617 	unsigned int estatus = 0;
618 
619 	status = fec16_to_cpu(bdp->cbd_sc);
620 	status &= ~BD_ENET_TX_STATS;
621 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
622 
623 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
624 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
625 	if (((unsigned long)bufaddr) & fep->tx_align ||
626 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
627 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
628 		bufaddr = txq->tx_bounce[index];
629 
630 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
631 			swap_buffer(bufaddr, hdr_len);
632 
633 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
634 					hdr_len, DMA_TO_DEVICE);
635 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
636 			dev_kfree_skb_any(skb);
637 			if (net_ratelimit())
638 				netdev_err(ndev, "Tx DMA memory map failed\n");
639 			return NETDEV_TX_BUSY;
640 		}
641 	}
642 
643 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
644 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
645 
646 	if (fep->bufdesc_ex) {
647 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
648 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
649 		if (skb->ip_summed == CHECKSUM_PARTIAL)
650 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
651 		ebdp->cbd_bdu = 0;
652 		ebdp->cbd_esc = cpu_to_fec32(estatus);
653 	}
654 
655 	bdp->cbd_sc = cpu_to_fec16(status);
656 
657 	return 0;
658 }
659 
660 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
661 				   struct sk_buff *skb,
662 				   struct net_device *ndev)
663 {
664 	struct fec_enet_private *fep = netdev_priv(ndev);
665 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
666 	int total_len, data_left;
667 	struct bufdesc *bdp = txq->bd.cur;
668 	struct tso_t tso;
669 	unsigned int index = 0;
670 	int ret;
671 
672 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
673 		dev_kfree_skb_any(skb);
674 		if (net_ratelimit())
675 			netdev_err(ndev, "NOT enough BD for TSO!\n");
676 		return NETDEV_TX_OK;
677 	}
678 
679 	/* Protocol checksum off-load for TCP and UDP. */
680 	if (fec_enet_clear_csum(skb, ndev)) {
681 		dev_kfree_skb_any(skb);
682 		return NETDEV_TX_OK;
683 	}
684 
685 	/* Initialize the TSO handler, and prepare the first payload */
686 	tso_start(skb, &tso);
687 
688 	total_len = skb->len - hdr_len;
689 	while (total_len > 0) {
690 		char *hdr;
691 
692 		index = fec_enet_get_bd_index(bdp, &txq->bd);
693 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
694 		total_len -= data_left;
695 
696 		/* prepare packet headers: MAC + IP + TCP */
697 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
698 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
699 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
700 		if (ret)
701 			goto err_release;
702 
703 		while (data_left > 0) {
704 			int size;
705 
706 			size = min_t(int, tso.size, data_left);
707 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
708 			index = fec_enet_get_bd_index(bdp, &txq->bd);
709 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
710 							bdp, index,
711 							tso.data, size,
712 							size == data_left,
713 							total_len == 0);
714 			if (ret)
715 				goto err_release;
716 
717 			data_left -= size;
718 			tso_build_data(skb, &tso, size);
719 		}
720 
721 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
722 	}
723 
724 	/* Save skb pointer */
725 	txq->tx_skbuff[index] = skb;
726 
727 	skb_tx_timestamp(skb);
728 	txq->bd.cur = bdp;
729 
730 	/* Trigger transmission start */
731 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
732 	    !readl(txq->bd.reg_desc_active) ||
733 	    !readl(txq->bd.reg_desc_active) ||
734 	    !readl(txq->bd.reg_desc_active) ||
735 	    !readl(txq->bd.reg_desc_active))
736 		writel(0, txq->bd.reg_desc_active);
737 
738 	return 0;
739 
740 err_release:
741 	/* TODO: Release all used data descriptors for TSO */
742 	return ret;
743 }
744 
745 static netdev_tx_t
746 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
747 {
748 	struct fec_enet_private *fep = netdev_priv(ndev);
749 	int entries_free;
750 	unsigned short queue;
751 	struct fec_enet_priv_tx_q *txq;
752 	struct netdev_queue *nq;
753 	int ret;
754 
755 	queue = skb_get_queue_mapping(skb);
756 	txq = fep->tx_queue[queue];
757 	nq = netdev_get_tx_queue(ndev, queue);
758 
759 	if (skb_is_gso(skb))
760 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
761 	else
762 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
763 	if (ret)
764 		return ret;
765 
766 	entries_free = fec_enet_get_free_txdesc_num(txq);
767 	if (entries_free <= txq->tx_stop_threshold)
768 		netif_tx_stop_queue(nq);
769 
770 	return NETDEV_TX_OK;
771 }
772 
773 /* Init RX & TX buffer descriptors
774  */
775 static void fec_enet_bd_init(struct net_device *dev)
776 {
777 	struct fec_enet_private *fep = netdev_priv(dev);
778 	struct fec_enet_priv_tx_q *txq;
779 	struct fec_enet_priv_rx_q *rxq;
780 	struct bufdesc *bdp;
781 	unsigned int i;
782 	unsigned int q;
783 
784 	for (q = 0; q < fep->num_rx_queues; q++) {
785 		/* Initialize the receive buffer descriptors. */
786 		rxq = fep->rx_queue[q];
787 		bdp = rxq->bd.base;
788 
789 		for (i = 0; i < rxq->bd.ring_size; i++) {
790 
791 			/* Initialize the BD for every fragment in the page. */
792 			if (bdp->cbd_bufaddr)
793 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
794 			else
795 				bdp->cbd_sc = cpu_to_fec16(0);
796 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
797 		}
798 
799 		/* Set the last buffer to wrap */
800 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
801 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
802 
803 		rxq->bd.cur = rxq->bd.base;
804 	}
805 
806 	for (q = 0; q < fep->num_tx_queues; q++) {
807 		/* ...and the same for transmit */
808 		txq = fep->tx_queue[q];
809 		bdp = txq->bd.base;
810 		txq->bd.cur = bdp;
811 
812 		for (i = 0; i < txq->bd.ring_size; i++) {
813 			/* Initialize the BD for every fragment in the page. */
814 			bdp->cbd_sc = cpu_to_fec16(0);
815 			if (txq->tx_skbuff[i]) {
816 				dev_kfree_skb_any(txq->tx_skbuff[i]);
817 				txq->tx_skbuff[i] = NULL;
818 			}
819 			bdp->cbd_bufaddr = cpu_to_fec32(0);
820 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
821 		}
822 
823 		/* Set the last buffer to wrap */
824 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
825 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
826 		txq->dirty_tx = bdp;
827 	}
828 }
829 
830 static void fec_enet_active_rxring(struct net_device *ndev)
831 {
832 	struct fec_enet_private *fep = netdev_priv(ndev);
833 	int i;
834 
835 	for (i = 0; i < fep->num_rx_queues; i++)
836 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
837 }
838 
839 static void fec_enet_enable_ring(struct net_device *ndev)
840 {
841 	struct fec_enet_private *fep = netdev_priv(ndev);
842 	struct fec_enet_priv_tx_q *txq;
843 	struct fec_enet_priv_rx_q *rxq;
844 	int i;
845 
846 	for (i = 0; i < fep->num_rx_queues; i++) {
847 		rxq = fep->rx_queue[i];
848 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
849 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
850 
851 		/* enable DMA1/2 */
852 		if (i)
853 			writel(RCMR_MATCHEN | RCMR_CMP(i),
854 			       fep->hwp + FEC_RCMR(i));
855 	}
856 
857 	for (i = 0; i < fep->num_tx_queues; i++) {
858 		txq = fep->tx_queue[i];
859 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
860 
861 		/* enable DMA1/2 */
862 		if (i)
863 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
864 			       fep->hwp + FEC_DMA_CFG(i));
865 	}
866 }
867 
868 static void fec_enet_reset_skb(struct net_device *ndev)
869 {
870 	struct fec_enet_private *fep = netdev_priv(ndev);
871 	struct fec_enet_priv_tx_q *txq;
872 	int i, j;
873 
874 	for (i = 0; i < fep->num_tx_queues; i++) {
875 		txq = fep->tx_queue[i];
876 
877 		for (j = 0; j < txq->bd.ring_size; j++) {
878 			if (txq->tx_skbuff[j]) {
879 				dev_kfree_skb_any(txq->tx_skbuff[j]);
880 				txq->tx_skbuff[j] = NULL;
881 			}
882 		}
883 	}
884 }
885 
886 /*
887  * This function is called to start or restart the FEC during a link
888  * change, transmit timeout, or to reconfigure the FEC.  The network
889  * packet processing for this device must be stopped before this call.
890  */
891 static void
892 fec_restart(struct net_device *ndev)
893 {
894 	struct fec_enet_private *fep = netdev_priv(ndev);
895 	u32 val;
896 	u32 temp_mac[2];
897 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
898 	u32 ecntl = 0x2; /* ETHEREN */
899 
900 	/* Whack a reset.  We should wait for this.
901 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
902 	 * instead of reset MAC itself.
903 	 */
904 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
905 		writel(0, fep->hwp + FEC_ECNTRL);
906 	} else {
907 		writel(1, fep->hwp + FEC_ECNTRL);
908 		udelay(10);
909 	}
910 
911 	/*
912 	 * enet-mac reset will reset mac address registers too,
913 	 * so need to reconfigure it.
914 	 */
915 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
916 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
917 		writel((__force u32)cpu_to_be32(temp_mac[0]),
918 		       fep->hwp + FEC_ADDR_LOW);
919 		writel((__force u32)cpu_to_be32(temp_mac[1]),
920 		       fep->hwp + FEC_ADDR_HIGH);
921 	}
922 
923 	/* Clear any outstanding interrupt. */
924 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
925 
926 	fec_enet_bd_init(ndev);
927 
928 	fec_enet_enable_ring(ndev);
929 
930 	/* Reset tx SKB buffers. */
931 	fec_enet_reset_skb(ndev);
932 
933 	/* Enable MII mode */
934 	if (fep->full_duplex == DUPLEX_FULL) {
935 		/* FD enable */
936 		writel(0x04, fep->hwp + FEC_X_CNTRL);
937 	} else {
938 		/* No Rcv on Xmit */
939 		rcntl |= 0x02;
940 		writel(0x0, fep->hwp + FEC_X_CNTRL);
941 	}
942 
943 	/* Set MII speed */
944 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
945 
946 #if !defined(CONFIG_M5272)
947 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
948 		/* set RX checksum */
949 		val = readl(fep->hwp + FEC_RACC);
950 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
951 			val |= FEC_RACC_OPTIONS;
952 		else
953 			val &= ~FEC_RACC_OPTIONS;
954 		writel(val, fep->hwp + FEC_RACC);
955 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
956 	}
957 #endif
958 
959 	/*
960 	 * The phy interface and speed need to get configured
961 	 * differently on enet-mac.
962 	 */
963 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
964 		/* Enable flow control and length check */
965 		rcntl |= 0x40000000 | 0x00000020;
966 
967 		/* RGMII, RMII or MII */
968 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
969 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
970 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
971 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
972 			rcntl |= (1 << 6);
973 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
974 			rcntl |= (1 << 8);
975 		else
976 			rcntl &= ~(1 << 8);
977 
978 		/* 1G, 100M or 10M */
979 		if (ndev->phydev) {
980 			if (ndev->phydev->speed == SPEED_1000)
981 				ecntl |= (1 << 5);
982 			else if (ndev->phydev->speed == SPEED_100)
983 				rcntl &= ~(1 << 9);
984 			else
985 				rcntl |= (1 << 9);
986 		}
987 	} else {
988 #ifdef FEC_MIIGSK_ENR
989 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
990 			u32 cfgr;
991 			/* disable the gasket and wait */
992 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
993 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
994 				udelay(1);
995 
996 			/*
997 			 * configure the gasket:
998 			 *   RMII, 50 MHz, no loopback, no echo
999 			 *   MII, 25 MHz, no loopback, no echo
1000 			 */
1001 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1002 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1003 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1004 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1005 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1006 
1007 			/* re-enable the gasket */
1008 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1009 		}
1010 #endif
1011 	}
1012 
1013 #if !defined(CONFIG_M5272)
1014 	/* enable pause frame*/
1015 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1016 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1017 	     ndev->phydev && ndev->phydev->pause)) {
1018 		rcntl |= FEC_ENET_FCE;
1019 
1020 		/* set FIFO threshold parameter to reduce overrun */
1021 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1022 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1023 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1024 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1025 
1026 		/* OPD */
1027 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1028 	} else {
1029 		rcntl &= ~FEC_ENET_FCE;
1030 	}
1031 #endif /* !defined(CONFIG_M5272) */
1032 
1033 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1034 
1035 	/* Setup multicast filter. */
1036 	set_multicast_list(ndev);
1037 #ifndef CONFIG_M5272
1038 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1039 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1040 #endif
1041 
1042 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1043 		/* enable ENET endian swap */
1044 		ecntl |= (1 << 8);
1045 		/* enable ENET store and forward mode */
1046 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1047 	}
1048 
1049 	if (fep->bufdesc_ex)
1050 		ecntl |= (1 << 4);
1051 
1052 #ifndef CONFIG_M5272
1053 	/* Enable the MIB statistic event counters */
1054 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1055 #endif
1056 
1057 	/* And last, enable the transmit and receive processing */
1058 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1059 	fec_enet_active_rxring(ndev);
1060 
1061 	if (fep->bufdesc_ex)
1062 		fec_ptp_start_cyclecounter(ndev);
1063 
1064 	/* Enable interrupts we wish to service */
1065 	if (fep->link)
1066 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1067 	else
1068 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1069 
1070 	/* Init the interrupt coalescing */
1071 	fec_enet_itr_coal_init(ndev);
1072 
1073 }
1074 
1075 static void
1076 fec_stop(struct net_device *ndev)
1077 {
1078 	struct fec_enet_private *fep = netdev_priv(ndev);
1079 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1080 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1081 	u32 val;
1082 
1083 	/* We cannot expect a graceful transmit stop without link !!! */
1084 	if (fep->link) {
1085 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1086 		udelay(10);
1087 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1088 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1089 	}
1090 
1091 	/* Whack a reset.  We should wait for this.
1092 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1093 	 * instead of reset MAC itself.
1094 	 */
1095 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1096 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1097 			writel(0, fep->hwp + FEC_ECNTRL);
1098 		} else {
1099 			writel(1, fep->hwp + FEC_ECNTRL);
1100 			udelay(10);
1101 		}
1102 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1103 	} else {
1104 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1105 		val = readl(fep->hwp + FEC_ECNTRL);
1106 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1107 		writel(val, fep->hwp + FEC_ECNTRL);
1108 
1109 		if (pdata && pdata->sleep_mode_enable)
1110 			pdata->sleep_mode_enable(true);
1111 	}
1112 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1113 
1114 	/* We have to keep ENET enabled to have MII interrupt stay working */
1115 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1116 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1117 		writel(2, fep->hwp + FEC_ECNTRL);
1118 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1119 	}
1120 }
1121 
1122 
1123 static void
1124 fec_timeout(struct net_device *ndev)
1125 {
1126 	struct fec_enet_private *fep = netdev_priv(ndev);
1127 
1128 	fec_dump(ndev);
1129 
1130 	ndev->stats.tx_errors++;
1131 
1132 	schedule_work(&fep->tx_timeout_work);
1133 }
1134 
1135 static void fec_enet_timeout_work(struct work_struct *work)
1136 {
1137 	struct fec_enet_private *fep =
1138 		container_of(work, struct fec_enet_private, tx_timeout_work);
1139 	struct net_device *ndev = fep->netdev;
1140 
1141 	rtnl_lock();
1142 	if (netif_device_present(ndev) || netif_running(ndev)) {
1143 		napi_disable(&fep->napi);
1144 		netif_tx_lock_bh(ndev);
1145 		fec_restart(ndev);
1146 		netif_wake_queue(ndev);
1147 		netif_tx_unlock_bh(ndev);
1148 		napi_enable(&fep->napi);
1149 	}
1150 	rtnl_unlock();
1151 }
1152 
1153 static void
1154 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1155 	struct skb_shared_hwtstamps *hwtstamps)
1156 {
1157 	unsigned long flags;
1158 	u64 ns;
1159 
1160 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1161 	ns = timecounter_cyc2time(&fep->tc, ts);
1162 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1163 
1164 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1165 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1166 }
1167 
1168 static void
1169 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1170 {
1171 	struct	fec_enet_private *fep;
1172 	struct bufdesc *bdp;
1173 	unsigned short status;
1174 	struct	sk_buff	*skb;
1175 	struct fec_enet_priv_tx_q *txq;
1176 	struct netdev_queue *nq;
1177 	int	index = 0;
1178 	int	entries_free;
1179 
1180 	fep = netdev_priv(ndev);
1181 
1182 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1183 
1184 	txq = fep->tx_queue[queue_id];
1185 	/* get next bdp of dirty_tx */
1186 	nq = netdev_get_tx_queue(ndev, queue_id);
1187 	bdp = txq->dirty_tx;
1188 
1189 	/* get next bdp of dirty_tx */
1190 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1191 
1192 	while (bdp != READ_ONCE(txq->bd.cur)) {
1193 		/* Order the load of bd.cur and cbd_sc */
1194 		rmb();
1195 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1196 		if (status & BD_ENET_TX_READY)
1197 			break;
1198 
1199 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1200 
1201 		skb = txq->tx_skbuff[index];
1202 		txq->tx_skbuff[index] = NULL;
1203 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1204 			dma_unmap_single(&fep->pdev->dev,
1205 					 fec32_to_cpu(bdp->cbd_bufaddr),
1206 					 fec16_to_cpu(bdp->cbd_datlen),
1207 					 DMA_TO_DEVICE);
1208 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1209 		if (!skb)
1210 			goto skb_done;
1211 
1212 		/* Check for errors. */
1213 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1214 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1215 				   BD_ENET_TX_CSL)) {
1216 			ndev->stats.tx_errors++;
1217 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1218 				ndev->stats.tx_heartbeat_errors++;
1219 			if (status & BD_ENET_TX_LC)  /* Late collision */
1220 				ndev->stats.tx_window_errors++;
1221 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1222 				ndev->stats.tx_aborted_errors++;
1223 			if (status & BD_ENET_TX_UN)  /* Underrun */
1224 				ndev->stats.tx_fifo_errors++;
1225 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1226 				ndev->stats.tx_carrier_errors++;
1227 		} else {
1228 			ndev->stats.tx_packets++;
1229 			ndev->stats.tx_bytes += skb->len;
1230 		}
1231 
1232 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1233 			fep->bufdesc_ex) {
1234 			struct skb_shared_hwtstamps shhwtstamps;
1235 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1236 
1237 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1238 			skb_tstamp_tx(skb, &shhwtstamps);
1239 		}
1240 
1241 		/* Deferred means some collisions occurred during transmit,
1242 		 * but we eventually sent the packet OK.
1243 		 */
1244 		if (status & BD_ENET_TX_DEF)
1245 			ndev->stats.collisions++;
1246 
1247 		/* Free the sk buffer associated with this last transmit */
1248 		dev_kfree_skb_any(skb);
1249 skb_done:
1250 		/* Make sure the update to bdp and tx_skbuff are performed
1251 		 * before dirty_tx
1252 		 */
1253 		wmb();
1254 		txq->dirty_tx = bdp;
1255 
1256 		/* Update pointer to next buffer descriptor to be transmitted */
1257 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1258 
1259 		/* Since we have freed up a buffer, the ring is no longer full
1260 		 */
1261 		if (netif_queue_stopped(ndev)) {
1262 			entries_free = fec_enet_get_free_txdesc_num(txq);
1263 			if (entries_free >= txq->tx_wake_threshold)
1264 				netif_tx_wake_queue(nq);
1265 		}
1266 	}
1267 
1268 	/* ERR006538: Keep the transmitter going */
1269 	if (bdp != txq->bd.cur &&
1270 	    readl(txq->bd.reg_desc_active) == 0)
1271 		writel(0, txq->bd.reg_desc_active);
1272 }
1273 
1274 static void
1275 fec_enet_tx(struct net_device *ndev)
1276 {
1277 	struct fec_enet_private *fep = netdev_priv(ndev);
1278 	u16 queue_id;
1279 	/* First process class A queue, then Class B and Best Effort queue */
1280 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1281 		clear_bit(queue_id, &fep->work_tx);
1282 		fec_enet_tx_queue(ndev, queue_id);
1283 	}
1284 	return;
1285 }
1286 
1287 static int
1288 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1289 {
1290 	struct  fec_enet_private *fep = netdev_priv(ndev);
1291 	int off;
1292 
1293 	off = ((unsigned long)skb->data) & fep->rx_align;
1294 	if (off)
1295 		skb_reserve(skb, fep->rx_align + 1 - off);
1296 
1297 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1298 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1299 		if (net_ratelimit())
1300 			netdev_err(ndev, "Rx DMA memory map failed\n");
1301 		return -ENOMEM;
1302 	}
1303 
1304 	return 0;
1305 }
1306 
1307 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1308 			       struct bufdesc *bdp, u32 length, bool swap)
1309 {
1310 	struct  fec_enet_private *fep = netdev_priv(ndev);
1311 	struct sk_buff *new_skb;
1312 
1313 	if (length > fep->rx_copybreak)
1314 		return false;
1315 
1316 	new_skb = netdev_alloc_skb(ndev, length);
1317 	if (!new_skb)
1318 		return false;
1319 
1320 	dma_sync_single_for_cpu(&fep->pdev->dev,
1321 				fec32_to_cpu(bdp->cbd_bufaddr),
1322 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1323 				DMA_FROM_DEVICE);
1324 	if (!swap)
1325 		memcpy(new_skb->data, (*skb)->data, length);
1326 	else
1327 		swap_buffer2(new_skb->data, (*skb)->data, length);
1328 	*skb = new_skb;
1329 
1330 	return true;
1331 }
1332 
1333 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1334  * When we update through the ring, if the next incoming buffer has
1335  * not been given to the system, we just set the empty indicator,
1336  * effectively tossing the packet.
1337  */
1338 static int
1339 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1340 {
1341 	struct fec_enet_private *fep = netdev_priv(ndev);
1342 	struct fec_enet_priv_rx_q *rxq;
1343 	struct bufdesc *bdp;
1344 	unsigned short status;
1345 	struct  sk_buff *skb_new = NULL;
1346 	struct  sk_buff *skb;
1347 	ushort	pkt_len;
1348 	__u8 *data;
1349 	int	pkt_received = 0;
1350 	struct	bufdesc_ex *ebdp = NULL;
1351 	bool	vlan_packet_rcvd = false;
1352 	u16	vlan_tag;
1353 	int	index = 0;
1354 	bool	is_copybreak;
1355 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1356 
1357 #ifdef CONFIG_M532x
1358 	flush_cache_all();
1359 #endif
1360 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1361 	rxq = fep->rx_queue[queue_id];
1362 
1363 	/* First, grab all of the stats for the incoming packet.
1364 	 * These get messed up if we get called due to a busy condition.
1365 	 */
1366 	bdp = rxq->bd.cur;
1367 
1368 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1369 
1370 		if (pkt_received >= budget)
1371 			break;
1372 		pkt_received++;
1373 
1374 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1375 
1376 		/* Check for errors. */
1377 		status ^= BD_ENET_RX_LAST;
1378 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1379 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1380 			   BD_ENET_RX_CL)) {
1381 			ndev->stats.rx_errors++;
1382 			if (status & BD_ENET_RX_OV) {
1383 				/* FIFO overrun */
1384 				ndev->stats.rx_fifo_errors++;
1385 				goto rx_processing_done;
1386 			}
1387 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1388 						| BD_ENET_RX_LAST)) {
1389 				/* Frame too long or too short. */
1390 				ndev->stats.rx_length_errors++;
1391 				if (status & BD_ENET_RX_LAST)
1392 					netdev_err(ndev, "rcv is not +last\n");
1393 			}
1394 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1395 				ndev->stats.rx_crc_errors++;
1396 			/* Report late collisions as a frame error. */
1397 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1398 				ndev->stats.rx_frame_errors++;
1399 			goto rx_processing_done;
1400 		}
1401 
1402 		/* Process the incoming frame. */
1403 		ndev->stats.rx_packets++;
1404 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1405 		ndev->stats.rx_bytes += pkt_len;
1406 
1407 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1408 		skb = rxq->rx_skbuff[index];
1409 
1410 		/* The packet length includes FCS, but we don't want to
1411 		 * include that when passing upstream as it messes up
1412 		 * bridging applications.
1413 		 */
1414 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1415 						  need_swap);
1416 		if (!is_copybreak) {
1417 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1418 			if (unlikely(!skb_new)) {
1419 				ndev->stats.rx_dropped++;
1420 				goto rx_processing_done;
1421 			}
1422 			dma_unmap_single(&fep->pdev->dev,
1423 					 fec32_to_cpu(bdp->cbd_bufaddr),
1424 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1425 					 DMA_FROM_DEVICE);
1426 		}
1427 
1428 		prefetch(skb->data - NET_IP_ALIGN);
1429 		skb_put(skb, pkt_len - 4);
1430 		data = skb->data;
1431 		if (!is_copybreak && need_swap)
1432 			swap_buffer(data, pkt_len);
1433 
1434 		/* Extract the enhanced buffer descriptor */
1435 		ebdp = NULL;
1436 		if (fep->bufdesc_ex)
1437 			ebdp = (struct bufdesc_ex *)bdp;
1438 
1439 		/* If this is a VLAN packet remove the VLAN Tag */
1440 		vlan_packet_rcvd = false;
1441 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1442 		    fep->bufdesc_ex &&
1443 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1444 			/* Push and remove the vlan tag */
1445 			struct vlan_hdr *vlan_header =
1446 					(struct vlan_hdr *) (data + ETH_HLEN);
1447 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1448 
1449 			vlan_packet_rcvd = true;
1450 
1451 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1452 			skb_pull(skb, VLAN_HLEN);
1453 		}
1454 
1455 		skb->protocol = eth_type_trans(skb, ndev);
1456 
1457 		/* Get receive timestamp from the skb */
1458 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1459 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1460 					  skb_hwtstamps(skb));
1461 
1462 		if (fep->bufdesc_ex &&
1463 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1464 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1465 				/* don't check it */
1466 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1467 			} else {
1468 				skb_checksum_none_assert(skb);
1469 			}
1470 		}
1471 
1472 		/* Handle received VLAN packets */
1473 		if (vlan_packet_rcvd)
1474 			__vlan_hwaccel_put_tag(skb,
1475 					       htons(ETH_P_8021Q),
1476 					       vlan_tag);
1477 
1478 		napi_gro_receive(&fep->napi, skb);
1479 
1480 		if (is_copybreak) {
1481 			dma_sync_single_for_device(&fep->pdev->dev,
1482 						   fec32_to_cpu(bdp->cbd_bufaddr),
1483 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1484 						   DMA_FROM_DEVICE);
1485 		} else {
1486 			rxq->rx_skbuff[index] = skb_new;
1487 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1488 		}
1489 
1490 rx_processing_done:
1491 		/* Clear the status flags for this buffer */
1492 		status &= ~BD_ENET_RX_STATS;
1493 
1494 		/* Mark the buffer empty */
1495 		status |= BD_ENET_RX_EMPTY;
1496 
1497 		if (fep->bufdesc_ex) {
1498 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1499 
1500 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1501 			ebdp->cbd_prot = 0;
1502 			ebdp->cbd_bdu = 0;
1503 		}
1504 		/* Make sure the updates to rest of the descriptor are
1505 		 * performed before transferring ownership.
1506 		 */
1507 		wmb();
1508 		bdp->cbd_sc = cpu_to_fec16(status);
1509 
1510 		/* Update BD pointer to next entry */
1511 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1512 
1513 		/* Doing this here will keep the FEC running while we process
1514 		 * incoming frames.  On a heavily loaded network, we should be
1515 		 * able to keep up at the expense of system resources.
1516 		 */
1517 		writel(0, rxq->bd.reg_desc_active);
1518 	}
1519 	rxq->bd.cur = bdp;
1520 	return pkt_received;
1521 }
1522 
1523 static int
1524 fec_enet_rx(struct net_device *ndev, int budget)
1525 {
1526 	int     pkt_received = 0;
1527 	u16	queue_id;
1528 	struct fec_enet_private *fep = netdev_priv(ndev);
1529 
1530 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1531 		int ret;
1532 
1533 		ret = fec_enet_rx_queue(ndev,
1534 					budget - pkt_received, queue_id);
1535 
1536 		if (ret < budget - pkt_received)
1537 			clear_bit(queue_id, &fep->work_rx);
1538 
1539 		pkt_received += ret;
1540 	}
1541 	return pkt_received;
1542 }
1543 
1544 static bool
1545 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1546 {
1547 	if (int_events == 0)
1548 		return false;
1549 
1550 	if (int_events & FEC_ENET_RXF)
1551 		fep->work_rx |= (1 << 2);
1552 	if (int_events & FEC_ENET_RXF_1)
1553 		fep->work_rx |= (1 << 0);
1554 	if (int_events & FEC_ENET_RXF_2)
1555 		fep->work_rx |= (1 << 1);
1556 
1557 	if (int_events & FEC_ENET_TXF)
1558 		fep->work_tx |= (1 << 2);
1559 	if (int_events & FEC_ENET_TXF_1)
1560 		fep->work_tx |= (1 << 0);
1561 	if (int_events & FEC_ENET_TXF_2)
1562 		fep->work_tx |= (1 << 1);
1563 
1564 	return true;
1565 }
1566 
1567 static irqreturn_t
1568 fec_enet_interrupt(int irq, void *dev_id)
1569 {
1570 	struct net_device *ndev = dev_id;
1571 	struct fec_enet_private *fep = netdev_priv(ndev);
1572 	uint int_events;
1573 	irqreturn_t ret = IRQ_NONE;
1574 
1575 	int_events = readl(fep->hwp + FEC_IEVENT);
1576 	writel(int_events, fep->hwp + FEC_IEVENT);
1577 	fec_enet_collect_events(fep, int_events);
1578 
1579 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1580 		ret = IRQ_HANDLED;
1581 
1582 		if (napi_schedule_prep(&fep->napi)) {
1583 			/* Disable the NAPI interrupts */
1584 			writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1585 			__napi_schedule(&fep->napi);
1586 		}
1587 	}
1588 
1589 	if (int_events & FEC_ENET_MII) {
1590 		ret = IRQ_HANDLED;
1591 		complete(&fep->mdio_done);
1592 	}
1593 
1594 	if (fep->ptp_clock)
1595 		fec_ptp_check_pps_event(fep);
1596 
1597 	return ret;
1598 }
1599 
1600 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1601 {
1602 	struct net_device *ndev = napi->dev;
1603 	struct fec_enet_private *fep = netdev_priv(ndev);
1604 	int pkts;
1605 
1606 	pkts = fec_enet_rx(ndev, budget);
1607 
1608 	fec_enet_tx(ndev);
1609 
1610 	if (pkts < budget) {
1611 		napi_complete(napi);
1612 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1613 	}
1614 	return pkts;
1615 }
1616 
1617 /* ------------------------------------------------------------------------- */
1618 static void fec_get_mac(struct net_device *ndev)
1619 {
1620 	struct fec_enet_private *fep = netdev_priv(ndev);
1621 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1622 	unsigned char *iap, tmpaddr[ETH_ALEN];
1623 
1624 	/*
1625 	 * try to get mac address in following order:
1626 	 *
1627 	 * 1) module parameter via kernel command line in form
1628 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1629 	 */
1630 	iap = macaddr;
1631 
1632 	/*
1633 	 * 2) from device tree data
1634 	 */
1635 	if (!is_valid_ether_addr(iap)) {
1636 		struct device_node *np = fep->pdev->dev.of_node;
1637 		if (np) {
1638 			const char *mac = of_get_mac_address(np);
1639 			if (mac)
1640 				iap = (unsigned char *) mac;
1641 		}
1642 	}
1643 
1644 	/*
1645 	 * 3) from flash or fuse (via platform data)
1646 	 */
1647 	if (!is_valid_ether_addr(iap)) {
1648 #ifdef CONFIG_M5272
1649 		if (FEC_FLASHMAC)
1650 			iap = (unsigned char *)FEC_FLASHMAC;
1651 #else
1652 		if (pdata)
1653 			iap = (unsigned char *)&pdata->mac;
1654 #endif
1655 	}
1656 
1657 	/*
1658 	 * 4) FEC mac registers set by bootloader
1659 	 */
1660 	if (!is_valid_ether_addr(iap)) {
1661 		*((__be32 *) &tmpaddr[0]) =
1662 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1663 		*((__be16 *) &tmpaddr[4]) =
1664 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1665 		iap = &tmpaddr[0];
1666 	}
1667 
1668 	/*
1669 	 * 5) random mac address
1670 	 */
1671 	if (!is_valid_ether_addr(iap)) {
1672 		/* Report it and use a random ethernet address instead */
1673 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1674 		eth_hw_addr_random(ndev);
1675 		netdev_info(ndev, "Using random MAC address: %pM\n",
1676 			    ndev->dev_addr);
1677 		return;
1678 	}
1679 
1680 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1681 
1682 	/* Adjust MAC if using macaddr */
1683 	if (iap == macaddr)
1684 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1685 }
1686 
1687 /* ------------------------------------------------------------------------- */
1688 
1689 /*
1690  * Phy section
1691  */
1692 static void fec_enet_adjust_link(struct net_device *ndev)
1693 {
1694 	struct fec_enet_private *fep = netdev_priv(ndev);
1695 	struct phy_device *phy_dev = ndev->phydev;
1696 	int status_change = 0;
1697 
1698 	/* Prevent a state halted on mii error */
1699 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1700 		phy_dev->state = PHY_RESUMING;
1701 		return;
1702 	}
1703 
1704 	/*
1705 	 * If the netdev is down, or is going down, we're not interested
1706 	 * in link state events, so just mark our idea of the link as down
1707 	 * and ignore the event.
1708 	 */
1709 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1710 		fep->link = 0;
1711 	} else if (phy_dev->link) {
1712 		if (!fep->link) {
1713 			fep->link = phy_dev->link;
1714 			status_change = 1;
1715 		}
1716 
1717 		if (fep->full_duplex != phy_dev->duplex) {
1718 			fep->full_duplex = phy_dev->duplex;
1719 			status_change = 1;
1720 		}
1721 
1722 		if (phy_dev->speed != fep->speed) {
1723 			fep->speed = phy_dev->speed;
1724 			status_change = 1;
1725 		}
1726 
1727 		/* if any of the above changed restart the FEC */
1728 		if (status_change) {
1729 			napi_disable(&fep->napi);
1730 			netif_tx_lock_bh(ndev);
1731 			fec_restart(ndev);
1732 			netif_wake_queue(ndev);
1733 			netif_tx_unlock_bh(ndev);
1734 			napi_enable(&fep->napi);
1735 		}
1736 	} else {
1737 		if (fep->link) {
1738 			napi_disable(&fep->napi);
1739 			netif_tx_lock_bh(ndev);
1740 			fec_stop(ndev);
1741 			netif_tx_unlock_bh(ndev);
1742 			napi_enable(&fep->napi);
1743 			fep->link = phy_dev->link;
1744 			status_change = 1;
1745 		}
1746 	}
1747 
1748 	if (status_change)
1749 		phy_print_status(phy_dev);
1750 }
1751 
1752 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1753 {
1754 	struct fec_enet_private *fep = bus->priv;
1755 	struct device *dev = &fep->pdev->dev;
1756 	unsigned long time_left;
1757 	int ret = 0;
1758 
1759 	ret = pm_runtime_get_sync(dev);
1760 	if (ret < 0)
1761 		return ret;
1762 
1763 	fep->mii_timeout = 0;
1764 	reinit_completion(&fep->mdio_done);
1765 
1766 	/* start a read op */
1767 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1768 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1769 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1770 
1771 	/* wait for end of transfer */
1772 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1773 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1774 	if (time_left == 0) {
1775 		fep->mii_timeout = 1;
1776 		netdev_err(fep->netdev, "MDIO read timeout\n");
1777 		ret = -ETIMEDOUT;
1778 		goto out;
1779 	}
1780 
1781 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1782 
1783 out:
1784 	pm_runtime_mark_last_busy(dev);
1785 	pm_runtime_put_autosuspend(dev);
1786 
1787 	return ret;
1788 }
1789 
1790 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1791 			   u16 value)
1792 {
1793 	struct fec_enet_private *fep = bus->priv;
1794 	struct device *dev = &fep->pdev->dev;
1795 	unsigned long time_left;
1796 	int ret;
1797 
1798 	ret = pm_runtime_get_sync(dev);
1799 	if (ret < 0)
1800 		return ret;
1801 	else
1802 		ret = 0;
1803 
1804 	fep->mii_timeout = 0;
1805 	reinit_completion(&fep->mdio_done);
1806 
1807 	/* start a write op */
1808 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1809 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1810 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1811 		fep->hwp + FEC_MII_DATA);
1812 
1813 	/* wait for end of transfer */
1814 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1815 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1816 	if (time_left == 0) {
1817 		fep->mii_timeout = 1;
1818 		netdev_err(fep->netdev, "MDIO write timeout\n");
1819 		ret  = -ETIMEDOUT;
1820 	}
1821 
1822 	pm_runtime_mark_last_busy(dev);
1823 	pm_runtime_put_autosuspend(dev);
1824 
1825 	return ret;
1826 }
1827 
1828 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1829 {
1830 	struct fec_enet_private *fep = netdev_priv(ndev);
1831 	int ret;
1832 
1833 	if (enable) {
1834 		ret = clk_prepare_enable(fep->clk_ahb);
1835 		if (ret)
1836 			return ret;
1837 		if (fep->clk_enet_out) {
1838 			ret = clk_prepare_enable(fep->clk_enet_out);
1839 			if (ret)
1840 				goto failed_clk_enet_out;
1841 		}
1842 		if (fep->clk_ptp) {
1843 			mutex_lock(&fep->ptp_clk_mutex);
1844 			ret = clk_prepare_enable(fep->clk_ptp);
1845 			if (ret) {
1846 				mutex_unlock(&fep->ptp_clk_mutex);
1847 				goto failed_clk_ptp;
1848 			} else {
1849 				fep->ptp_clk_on = true;
1850 			}
1851 			mutex_unlock(&fep->ptp_clk_mutex);
1852 		}
1853 		if (fep->clk_ref) {
1854 			ret = clk_prepare_enable(fep->clk_ref);
1855 			if (ret)
1856 				goto failed_clk_ref;
1857 		}
1858 	} else {
1859 		clk_disable_unprepare(fep->clk_ahb);
1860 		if (fep->clk_enet_out)
1861 			clk_disable_unprepare(fep->clk_enet_out);
1862 		if (fep->clk_ptp) {
1863 			mutex_lock(&fep->ptp_clk_mutex);
1864 			clk_disable_unprepare(fep->clk_ptp);
1865 			fep->ptp_clk_on = false;
1866 			mutex_unlock(&fep->ptp_clk_mutex);
1867 		}
1868 		if (fep->clk_ref)
1869 			clk_disable_unprepare(fep->clk_ref);
1870 	}
1871 
1872 	return 0;
1873 
1874 failed_clk_ref:
1875 	if (fep->clk_ref)
1876 		clk_disable_unprepare(fep->clk_ref);
1877 failed_clk_ptp:
1878 	if (fep->clk_enet_out)
1879 		clk_disable_unprepare(fep->clk_enet_out);
1880 failed_clk_enet_out:
1881 		clk_disable_unprepare(fep->clk_ahb);
1882 
1883 	return ret;
1884 }
1885 
1886 static int fec_enet_mii_probe(struct net_device *ndev)
1887 {
1888 	struct fec_enet_private *fep = netdev_priv(ndev);
1889 	struct phy_device *phy_dev = NULL;
1890 	char mdio_bus_id[MII_BUS_ID_SIZE];
1891 	char phy_name[MII_BUS_ID_SIZE + 3];
1892 	int phy_id;
1893 	int dev_id = fep->dev_id;
1894 
1895 	if (fep->phy_node) {
1896 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1897 					 &fec_enet_adjust_link, 0,
1898 					 fep->phy_interface);
1899 		if (!phy_dev)
1900 			return -ENODEV;
1901 	} else {
1902 		/* check for attached phy */
1903 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1904 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1905 				continue;
1906 			if (dev_id--)
1907 				continue;
1908 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1909 			break;
1910 		}
1911 
1912 		if (phy_id >= PHY_MAX_ADDR) {
1913 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1914 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1915 			phy_id = 0;
1916 		}
1917 
1918 		snprintf(phy_name, sizeof(phy_name),
1919 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1920 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1921 				      fep->phy_interface);
1922 	}
1923 
1924 	if (IS_ERR(phy_dev)) {
1925 		netdev_err(ndev, "could not attach to PHY\n");
1926 		return PTR_ERR(phy_dev);
1927 	}
1928 
1929 	/* mask with MAC supported features */
1930 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1931 		phy_dev->supported &= PHY_GBIT_FEATURES;
1932 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1933 #if !defined(CONFIG_M5272)
1934 		phy_dev->supported |= SUPPORTED_Pause;
1935 #endif
1936 	}
1937 	else
1938 		phy_dev->supported &= PHY_BASIC_FEATURES;
1939 
1940 	phy_dev->advertising = phy_dev->supported;
1941 
1942 	fep->link = 0;
1943 	fep->full_duplex = 0;
1944 
1945 	phy_attached_info(phy_dev);
1946 
1947 	return 0;
1948 }
1949 
1950 static int fec_enet_mii_init(struct platform_device *pdev)
1951 {
1952 	static struct mii_bus *fec0_mii_bus;
1953 	struct net_device *ndev = platform_get_drvdata(pdev);
1954 	struct fec_enet_private *fep = netdev_priv(ndev);
1955 	struct device_node *node;
1956 	int err = -ENXIO;
1957 	u32 mii_speed, holdtime;
1958 
1959 	/*
1960 	 * The i.MX28 dual fec interfaces are not equal.
1961 	 * Here are the differences:
1962 	 *
1963 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1964 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1965 	 *  - external phys can only be configured by fec0
1966 	 *
1967 	 * That is to say fec1 can not work independently. It only works
1968 	 * when fec0 is working. The reason behind this design is that the
1969 	 * second interface is added primarily for Switch mode.
1970 	 *
1971 	 * Because of the last point above, both phys are attached on fec0
1972 	 * mdio interface in board design, and need to be configured by
1973 	 * fec0 mii_bus.
1974 	 */
1975 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1976 		/* fec1 uses fec0 mii_bus */
1977 		if (mii_cnt && fec0_mii_bus) {
1978 			fep->mii_bus = fec0_mii_bus;
1979 			mii_cnt++;
1980 			return 0;
1981 		}
1982 		return -ENOENT;
1983 	}
1984 
1985 	fep->mii_timeout = 0;
1986 
1987 	/*
1988 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1989 	 *
1990 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1991 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1992 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1993 	 * document.
1994 	 */
1995 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1996 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
1997 		mii_speed--;
1998 	if (mii_speed > 63) {
1999 		dev_err(&pdev->dev,
2000 			"fec clock (%lu) to fast to get right mii speed\n",
2001 			clk_get_rate(fep->clk_ipg));
2002 		err = -EINVAL;
2003 		goto err_out;
2004 	}
2005 
2006 	/*
2007 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2008 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2009 	 * versions are RAZ there, so just ignore the difference and write the
2010 	 * register always.
2011 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2012 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2013 	 * output.
2014 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2015 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2016 	 * holdtime cannot result in a value greater than 3.
2017 	 */
2018 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2019 
2020 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2021 
2022 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2023 
2024 	fep->mii_bus = mdiobus_alloc();
2025 	if (fep->mii_bus == NULL) {
2026 		err = -ENOMEM;
2027 		goto err_out;
2028 	}
2029 
2030 	fep->mii_bus->name = "fec_enet_mii_bus";
2031 	fep->mii_bus->read = fec_enet_mdio_read;
2032 	fep->mii_bus->write = fec_enet_mdio_write;
2033 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2034 		pdev->name, fep->dev_id + 1);
2035 	fep->mii_bus->priv = fep;
2036 	fep->mii_bus->parent = &pdev->dev;
2037 
2038 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2039 	if (node) {
2040 		err = of_mdiobus_register(fep->mii_bus, node);
2041 		of_node_put(node);
2042 	} else {
2043 		err = mdiobus_register(fep->mii_bus);
2044 	}
2045 
2046 	if (err)
2047 		goto err_out_free_mdiobus;
2048 
2049 	mii_cnt++;
2050 
2051 	/* save fec0 mii_bus */
2052 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2053 		fec0_mii_bus = fep->mii_bus;
2054 
2055 	return 0;
2056 
2057 err_out_free_mdiobus:
2058 	mdiobus_free(fep->mii_bus);
2059 err_out:
2060 	return err;
2061 }
2062 
2063 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2064 {
2065 	if (--mii_cnt == 0) {
2066 		mdiobus_unregister(fep->mii_bus);
2067 		mdiobus_free(fep->mii_bus);
2068 	}
2069 }
2070 
2071 static void fec_enet_get_drvinfo(struct net_device *ndev,
2072 				 struct ethtool_drvinfo *info)
2073 {
2074 	struct fec_enet_private *fep = netdev_priv(ndev);
2075 
2076 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2077 		sizeof(info->driver));
2078 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2079 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2080 }
2081 
2082 static int fec_enet_get_regs_len(struct net_device *ndev)
2083 {
2084 	struct fec_enet_private *fep = netdev_priv(ndev);
2085 	struct resource *r;
2086 	int s = 0;
2087 
2088 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2089 	if (r)
2090 		s = resource_size(r);
2091 
2092 	return s;
2093 }
2094 
2095 /* List of registers that can be safety be read to dump them with ethtool */
2096 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2097 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2098 static u32 fec_enet_register_offset[] = {
2099 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2100 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2101 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2102 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2103 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2104 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2105 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2106 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2107 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2108 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2109 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2110 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2111 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2112 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2113 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2114 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2115 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2116 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2117 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2118 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2119 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2120 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2121 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2122 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2123 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2124 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2125 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2126 };
2127 #else
2128 static u32 fec_enet_register_offset[] = {
2129 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2130 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2131 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2132 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2133 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2134 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2135 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2136 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2137 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2138 };
2139 #endif
2140 
2141 static void fec_enet_get_regs(struct net_device *ndev,
2142 			      struct ethtool_regs *regs, void *regbuf)
2143 {
2144 	struct fec_enet_private *fep = netdev_priv(ndev);
2145 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2146 	u32 *buf = (u32 *)regbuf;
2147 	u32 i, off;
2148 
2149 	memset(buf, 0, regs->len);
2150 
2151 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2152 		off = fec_enet_register_offset[i] / 4;
2153 		buf[off] = readl(&theregs[off]);
2154 	}
2155 }
2156 
2157 static int fec_enet_get_ts_info(struct net_device *ndev,
2158 				struct ethtool_ts_info *info)
2159 {
2160 	struct fec_enet_private *fep = netdev_priv(ndev);
2161 
2162 	if (fep->bufdesc_ex) {
2163 
2164 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2165 					SOF_TIMESTAMPING_RX_SOFTWARE |
2166 					SOF_TIMESTAMPING_SOFTWARE |
2167 					SOF_TIMESTAMPING_TX_HARDWARE |
2168 					SOF_TIMESTAMPING_RX_HARDWARE |
2169 					SOF_TIMESTAMPING_RAW_HARDWARE;
2170 		if (fep->ptp_clock)
2171 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2172 		else
2173 			info->phc_index = -1;
2174 
2175 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2176 				 (1 << HWTSTAMP_TX_ON);
2177 
2178 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2179 				   (1 << HWTSTAMP_FILTER_ALL);
2180 		return 0;
2181 	} else {
2182 		return ethtool_op_get_ts_info(ndev, info);
2183 	}
2184 }
2185 
2186 #if !defined(CONFIG_M5272)
2187 
2188 static void fec_enet_get_pauseparam(struct net_device *ndev,
2189 				    struct ethtool_pauseparam *pause)
2190 {
2191 	struct fec_enet_private *fep = netdev_priv(ndev);
2192 
2193 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2194 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2195 	pause->rx_pause = pause->tx_pause;
2196 }
2197 
2198 static int fec_enet_set_pauseparam(struct net_device *ndev,
2199 				   struct ethtool_pauseparam *pause)
2200 {
2201 	struct fec_enet_private *fep = netdev_priv(ndev);
2202 
2203 	if (!ndev->phydev)
2204 		return -ENODEV;
2205 
2206 	if (pause->tx_pause != pause->rx_pause) {
2207 		netdev_info(ndev,
2208 			"hardware only support enable/disable both tx and rx");
2209 		return -EINVAL;
2210 	}
2211 
2212 	fep->pause_flag = 0;
2213 
2214 	/* tx pause must be same as rx pause */
2215 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2216 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2217 
2218 	if (pause->rx_pause || pause->autoneg) {
2219 		ndev->phydev->supported |= ADVERTISED_Pause;
2220 		ndev->phydev->advertising |= ADVERTISED_Pause;
2221 	} else {
2222 		ndev->phydev->supported &= ~ADVERTISED_Pause;
2223 		ndev->phydev->advertising &= ~ADVERTISED_Pause;
2224 	}
2225 
2226 	if (pause->autoneg) {
2227 		if (netif_running(ndev))
2228 			fec_stop(ndev);
2229 		phy_start_aneg(ndev->phydev);
2230 	}
2231 	if (netif_running(ndev)) {
2232 		napi_disable(&fep->napi);
2233 		netif_tx_lock_bh(ndev);
2234 		fec_restart(ndev);
2235 		netif_wake_queue(ndev);
2236 		netif_tx_unlock_bh(ndev);
2237 		napi_enable(&fep->napi);
2238 	}
2239 
2240 	return 0;
2241 }
2242 
2243 static const struct fec_stat {
2244 	char name[ETH_GSTRING_LEN];
2245 	u16 offset;
2246 } fec_stats[] = {
2247 	/* RMON TX */
2248 	{ "tx_dropped", RMON_T_DROP },
2249 	{ "tx_packets", RMON_T_PACKETS },
2250 	{ "tx_broadcast", RMON_T_BC_PKT },
2251 	{ "tx_multicast", RMON_T_MC_PKT },
2252 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2253 	{ "tx_undersize", RMON_T_UNDERSIZE },
2254 	{ "tx_oversize", RMON_T_OVERSIZE },
2255 	{ "tx_fragment", RMON_T_FRAG },
2256 	{ "tx_jabber", RMON_T_JAB },
2257 	{ "tx_collision", RMON_T_COL },
2258 	{ "tx_64byte", RMON_T_P64 },
2259 	{ "tx_65to127byte", RMON_T_P65TO127 },
2260 	{ "tx_128to255byte", RMON_T_P128TO255 },
2261 	{ "tx_256to511byte", RMON_T_P256TO511 },
2262 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2263 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2264 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2265 	{ "tx_octets", RMON_T_OCTETS },
2266 
2267 	/* IEEE TX */
2268 	{ "IEEE_tx_drop", IEEE_T_DROP },
2269 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2270 	{ "IEEE_tx_1col", IEEE_T_1COL },
2271 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2272 	{ "IEEE_tx_def", IEEE_T_DEF },
2273 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2274 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2275 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2276 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2277 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2278 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2279 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2280 
2281 	/* RMON RX */
2282 	{ "rx_packets", RMON_R_PACKETS },
2283 	{ "rx_broadcast", RMON_R_BC_PKT },
2284 	{ "rx_multicast", RMON_R_MC_PKT },
2285 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2286 	{ "rx_undersize", RMON_R_UNDERSIZE },
2287 	{ "rx_oversize", RMON_R_OVERSIZE },
2288 	{ "rx_fragment", RMON_R_FRAG },
2289 	{ "rx_jabber", RMON_R_JAB },
2290 	{ "rx_64byte", RMON_R_P64 },
2291 	{ "rx_65to127byte", RMON_R_P65TO127 },
2292 	{ "rx_128to255byte", RMON_R_P128TO255 },
2293 	{ "rx_256to511byte", RMON_R_P256TO511 },
2294 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2295 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2296 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2297 	{ "rx_octets", RMON_R_OCTETS },
2298 
2299 	/* IEEE RX */
2300 	{ "IEEE_rx_drop", IEEE_R_DROP },
2301 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2302 	{ "IEEE_rx_crc", IEEE_R_CRC },
2303 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2304 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2305 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2306 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2307 };
2308 
2309 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2310 	struct ethtool_stats *stats, u64 *data)
2311 {
2312 	struct fec_enet_private *fep = netdev_priv(dev);
2313 	int i;
2314 
2315 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2316 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2317 }
2318 
2319 static void fec_enet_get_strings(struct net_device *netdev,
2320 	u32 stringset, u8 *data)
2321 {
2322 	int i;
2323 	switch (stringset) {
2324 	case ETH_SS_STATS:
2325 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2326 			memcpy(data + i * ETH_GSTRING_LEN,
2327 				fec_stats[i].name, ETH_GSTRING_LEN);
2328 		break;
2329 	}
2330 }
2331 
2332 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2333 {
2334 	switch (sset) {
2335 	case ETH_SS_STATS:
2336 		return ARRAY_SIZE(fec_stats);
2337 	default:
2338 		return -EOPNOTSUPP;
2339 	}
2340 }
2341 #endif /* !defined(CONFIG_M5272) */
2342 
2343 static int fec_enet_nway_reset(struct net_device *dev)
2344 {
2345 	struct phy_device *phydev = dev->phydev;
2346 
2347 	if (!phydev)
2348 		return -ENODEV;
2349 
2350 	return genphy_restart_aneg(phydev);
2351 }
2352 
2353 /* ITR clock source is enet system clock (clk_ahb).
2354  * TCTT unit is cycle_ns * 64 cycle
2355  * So, the ICTT value = X us / (cycle_ns * 64)
2356  */
2357 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2358 {
2359 	struct fec_enet_private *fep = netdev_priv(ndev);
2360 
2361 	return us * (fep->itr_clk_rate / 64000) / 1000;
2362 }
2363 
2364 /* Set threshold for interrupt coalescing */
2365 static void fec_enet_itr_coal_set(struct net_device *ndev)
2366 {
2367 	struct fec_enet_private *fep = netdev_priv(ndev);
2368 	int rx_itr, tx_itr;
2369 
2370 	/* Must be greater than zero to avoid unpredictable behavior */
2371 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2372 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2373 		return;
2374 
2375 	/* Select enet system clock as Interrupt Coalescing
2376 	 * timer Clock Source
2377 	 */
2378 	rx_itr = FEC_ITR_CLK_SEL;
2379 	tx_itr = FEC_ITR_CLK_SEL;
2380 
2381 	/* set ICFT and ICTT */
2382 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2383 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2384 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2385 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2386 
2387 	rx_itr |= FEC_ITR_EN;
2388 	tx_itr |= FEC_ITR_EN;
2389 
2390 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2391 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2392 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2393 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2394 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2395 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2396 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2397 	}
2398 }
2399 
2400 static int
2401 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2402 {
2403 	struct fec_enet_private *fep = netdev_priv(ndev);
2404 
2405 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2406 		return -EOPNOTSUPP;
2407 
2408 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2409 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2410 
2411 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2412 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2413 
2414 	return 0;
2415 }
2416 
2417 static int
2418 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2419 {
2420 	struct fec_enet_private *fep = netdev_priv(ndev);
2421 	unsigned int cycle;
2422 
2423 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2424 		return -EOPNOTSUPP;
2425 
2426 	if (ec->rx_max_coalesced_frames > 255) {
2427 		pr_err("Rx coalesced frames exceed hardware limitation\n");
2428 		return -EINVAL;
2429 	}
2430 
2431 	if (ec->tx_max_coalesced_frames > 255) {
2432 		pr_err("Tx coalesced frame exceed hardware limitation\n");
2433 		return -EINVAL;
2434 	}
2435 
2436 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2437 	if (cycle > 0xFFFF) {
2438 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2439 		return -EINVAL;
2440 	}
2441 
2442 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2443 	if (cycle > 0xFFFF) {
2444 		pr_err("Rx coalesced usec exceed hardware limitation\n");
2445 		return -EINVAL;
2446 	}
2447 
2448 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2449 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2450 
2451 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2452 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2453 
2454 	fec_enet_itr_coal_set(ndev);
2455 
2456 	return 0;
2457 }
2458 
2459 static void fec_enet_itr_coal_init(struct net_device *ndev)
2460 {
2461 	struct ethtool_coalesce ec;
2462 
2463 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2464 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2465 
2466 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2467 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2468 
2469 	fec_enet_set_coalesce(ndev, &ec);
2470 }
2471 
2472 static int fec_enet_get_tunable(struct net_device *netdev,
2473 				const struct ethtool_tunable *tuna,
2474 				void *data)
2475 {
2476 	struct fec_enet_private *fep = netdev_priv(netdev);
2477 	int ret = 0;
2478 
2479 	switch (tuna->id) {
2480 	case ETHTOOL_RX_COPYBREAK:
2481 		*(u32 *)data = fep->rx_copybreak;
2482 		break;
2483 	default:
2484 		ret = -EINVAL;
2485 		break;
2486 	}
2487 
2488 	return ret;
2489 }
2490 
2491 static int fec_enet_set_tunable(struct net_device *netdev,
2492 				const struct ethtool_tunable *tuna,
2493 				const void *data)
2494 {
2495 	struct fec_enet_private *fep = netdev_priv(netdev);
2496 	int ret = 0;
2497 
2498 	switch (tuna->id) {
2499 	case ETHTOOL_RX_COPYBREAK:
2500 		fep->rx_copybreak = *(u32 *)data;
2501 		break;
2502 	default:
2503 		ret = -EINVAL;
2504 		break;
2505 	}
2506 
2507 	return ret;
2508 }
2509 
2510 static void
2511 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2512 {
2513 	struct fec_enet_private *fep = netdev_priv(ndev);
2514 
2515 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2516 		wol->supported = WAKE_MAGIC;
2517 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2518 	} else {
2519 		wol->supported = wol->wolopts = 0;
2520 	}
2521 }
2522 
2523 static int
2524 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2525 {
2526 	struct fec_enet_private *fep = netdev_priv(ndev);
2527 
2528 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2529 		return -EINVAL;
2530 
2531 	if (wol->wolopts & ~WAKE_MAGIC)
2532 		return -EINVAL;
2533 
2534 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2535 	if (device_may_wakeup(&ndev->dev)) {
2536 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2537 		if (fep->irq[0] > 0)
2538 			enable_irq_wake(fep->irq[0]);
2539 	} else {
2540 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2541 		if (fep->irq[0] > 0)
2542 			disable_irq_wake(fep->irq[0]);
2543 	}
2544 
2545 	return 0;
2546 }
2547 
2548 static const struct ethtool_ops fec_enet_ethtool_ops = {
2549 	.get_drvinfo		= fec_enet_get_drvinfo,
2550 	.get_regs_len		= fec_enet_get_regs_len,
2551 	.get_regs		= fec_enet_get_regs,
2552 	.nway_reset		= fec_enet_nway_reset,
2553 	.get_link		= ethtool_op_get_link,
2554 	.get_coalesce		= fec_enet_get_coalesce,
2555 	.set_coalesce		= fec_enet_set_coalesce,
2556 #ifndef CONFIG_M5272
2557 	.get_pauseparam		= fec_enet_get_pauseparam,
2558 	.set_pauseparam		= fec_enet_set_pauseparam,
2559 	.get_strings		= fec_enet_get_strings,
2560 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2561 	.get_sset_count		= fec_enet_get_sset_count,
2562 #endif
2563 	.get_ts_info		= fec_enet_get_ts_info,
2564 	.get_tunable		= fec_enet_get_tunable,
2565 	.set_tunable		= fec_enet_set_tunable,
2566 	.get_wol		= fec_enet_get_wol,
2567 	.set_wol		= fec_enet_set_wol,
2568 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2569 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2570 };
2571 
2572 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2573 {
2574 	struct fec_enet_private *fep = netdev_priv(ndev);
2575 	struct phy_device *phydev = ndev->phydev;
2576 
2577 	if (!netif_running(ndev))
2578 		return -EINVAL;
2579 
2580 	if (!phydev)
2581 		return -ENODEV;
2582 
2583 	if (fep->bufdesc_ex) {
2584 		if (cmd == SIOCSHWTSTAMP)
2585 			return fec_ptp_set(ndev, rq);
2586 		if (cmd == SIOCGHWTSTAMP)
2587 			return fec_ptp_get(ndev, rq);
2588 	}
2589 
2590 	return phy_mii_ioctl(phydev, rq, cmd);
2591 }
2592 
2593 static void fec_enet_free_buffers(struct net_device *ndev)
2594 {
2595 	struct fec_enet_private *fep = netdev_priv(ndev);
2596 	unsigned int i;
2597 	struct sk_buff *skb;
2598 	struct bufdesc	*bdp;
2599 	struct fec_enet_priv_tx_q *txq;
2600 	struct fec_enet_priv_rx_q *rxq;
2601 	unsigned int q;
2602 
2603 	for (q = 0; q < fep->num_rx_queues; q++) {
2604 		rxq = fep->rx_queue[q];
2605 		bdp = rxq->bd.base;
2606 		for (i = 0; i < rxq->bd.ring_size; i++) {
2607 			skb = rxq->rx_skbuff[i];
2608 			rxq->rx_skbuff[i] = NULL;
2609 			if (skb) {
2610 				dma_unmap_single(&fep->pdev->dev,
2611 						 fec32_to_cpu(bdp->cbd_bufaddr),
2612 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2613 						 DMA_FROM_DEVICE);
2614 				dev_kfree_skb(skb);
2615 			}
2616 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2617 		}
2618 	}
2619 
2620 	for (q = 0; q < fep->num_tx_queues; q++) {
2621 		txq = fep->tx_queue[q];
2622 		bdp = txq->bd.base;
2623 		for (i = 0; i < txq->bd.ring_size; i++) {
2624 			kfree(txq->tx_bounce[i]);
2625 			txq->tx_bounce[i] = NULL;
2626 			skb = txq->tx_skbuff[i];
2627 			txq->tx_skbuff[i] = NULL;
2628 			dev_kfree_skb(skb);
2629 		}
2630 	}
2631 }
2632 
2633 static void fec_enet_free_queue(struct net_device *ndev)
2634 {
2635 	struct fec_enet_private *fep = netdev_priv(ndev);
2636 	int i;
2637 	struct fec_enet_priv_tx_q *txq;
2638 
2639 	for (i = 0; i < fep->num_tx_queues; i++)
2640 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2641 			txq = fep->tx_queue[i];
2642 			dma_free_coherent(NULL,
2643 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2644 					  txq->tso_hdrs,
2645 					  txq->tso_hdrs_dma);
2646 		}
2647 
2648 	for (i = 0; i < fep->num_rx_queues; i++)
2649 		kfree(fep->rx_queue[i]);
2650 	for (i = 0; i < fep->num_tx_queues; i++)
2651 		kfree(fep->tx_queue[i]);
2652 }
2653 
2654 static int fec_enet_alloc_queue(struct net_device *ndev)
2655 {
2656 	struct fec_enet_private *fep = netdev_priv(ndev);
2657 	int i;
2658 	int ret = 0;
2659 	struct fec_enet_priv_tx_q *txq;
2660 
2661 	for (i = 0; i < fep->num_tx_queues; i++) {
2662 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2663 		if (!txq) {
2664 			ret = -ENOMEM;
2665 			goto alloc_failed;
2666 		}
2667 
2668 		fep->tx_queue[i] = txq;
2669 		txq->bd.ring_size = TX_RING_SIZE;
2670 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2671 
2672 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2673 		txq->tx_wake_threshold =
2674 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2675 
2676 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2677 					txq->bd.ring_size * TSO_HEADER_SIZE,
2678 					&txq->tso_hdrs_dma,
2679 					GFP_KERNEL);
2680 		if (!txq->tso_hdrs) {
2681 			ret = -ENOMEM;
2682 			goto alloc_failed;
2683 		}
2684 	}
2685 
2686 	for (i = 0; i < fep->num_rx_queues; i++) {
2687 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2688 					   GFP_KERNEL);
2689 		if (!fep->rx_queue[i]) {
2690 			ret = -ENOMEM;
2691 			goto alloc_failed;
2692 		}
2693 
2694 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2695 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2696 	}
2697 	return ret;
2698 
2699 alloc_failed:
2700 	fec_enet_free_queue(ndev);
2701 	return ret;
2702 }
2703 
2704 static int
2705 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2706 {
2707 	struct fec_enet_private *fep = netdev_priv(ndev);
2708 	unsigned int i;
2709 	struct sk_buff *skb;
2710 	struct bufdesc	*bdp;
2711 	struct fec_enet_priv_rx_q *rxq;
2712 
2713 	rxq = fep->rx_queue[queue];
2714 	bdp = rxq->bd.base;
2715 	for (i = 0; i < rxq->bd.ring_size; i++) {
2716 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2717 		if (!skb)
2718 			goto err_alloc;
2719 
2720 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2721 			dev_kfree_skb(skb);
2722 			goto err_alloc;
2723 		}
2724 
2725 		rxq->rx_skbuff[i] = skb;
2726 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2727 
2728 		if (fep->bufdesc_ex) {
2729 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2730 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2731 		}
2732 
2733 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2734 	}
2735 
2736 	/* Set the last buffer to wrap. */
2737 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2738 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2739 	return 0;
2740 
2741  err_alloc:
2742 	fec_enet_free_buffers(ndev);
2743 	return -ENOMEM;
2744 }
2745 
2746 static int
2747 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2748 {
2749 	struct fec_enet_private *fep = netdev_priv(ndev);
2750 	unsigned int i;
2751 	struct bufdesc  *bdp;
2752 	struct fec_enet_priv_tx_q *txq;
2753 
2754 	txq = fep->tx_queue[queue];
2755 	bdp = txq->bd.base;
2756 	for (i = 0; i < txq->bd.ring_size; i++) {
2757 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2758 		if (!txq->tx_bounce[i])
2759 			goto err_alloc;
2760 
2761 		bdp->cbd_sc = cpu_to_fec16(0);
2762 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2763 
2764 		if (fep->bufdesc_ex) {
2765 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2766 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2767 		}
2768 
2769 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2770 	}
2771 
2772 	/* Set the last buffer to wrap. */
2773 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2774 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2775 
2776 	return 0;
2777 
2778  err_alloc:
2779 	fec_enet_free_buffers(ndev);
2780 	return -ENOMEM;
2781 }
2782 
2783 static int fec_enet_alloc_buffers(struct net_device *ndev)
2784 {
2785 	struct fec_enet_private *fep = netdev_priv(ndev);
2786 	unsigned int i;
2787 
2788 	for (i = 0; i < fep->num_rx_queues; i++)
2789 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2790 			return -ENOMEM;
2791 
2792 	for (i = 0; i < fep->num_tx_queues; i++)
2793 		if (fec_enet_alloc_txq_buffers(ndev, i))
2794 			return -ENOMEM;
2795 	return 0;
2796 }
2797 
2798 static int
2799 fec_enet_open(struct net_device *ndev)
2800 {
2801 	struct fec_enet_private *fep = netdev_priv(ndev);
2802 	int ret;
2803 
2804 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2805 	if (ret < 0)
2806 		return ret;
2807 
2808 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2809 	ret = fec_enet_clk_enable(ndev, true);
2810 	if (ret)
2811 		goto clk_enable;
2812 
2813 	/* I should reset the ring buffers here, but I don't yet know
2814 	 * a simple way to do that.
2815 	 */
2816 
2817 	ret = fec_enet_alloc_buffers(ndev);
2818 	if (ret)
2819 		goto err_enet_alloc;
2820 
2821 	/* Init MAC prior to mii bus probe */
2822 	fec_restart(ndev);
2823 
2824 	/* Probe and connect to PHY when open the interface */
2825 	ret = fec_enet_mii_probe(ndev);
2826 	if (ret)
2827 		goto err_enet_mii_probe;
2828 
2829 	if (fep->quirks & FEC_QUIRK_ERR006687)
2830 		imx6q_cpuidle_fec_irqs_used();
2831 
2832 	napi_enable(&fep->napi);
2833 	phy_start(ndev->phydev);
2834 	netif_tx_start_all_queues(ndev);
2835 
2836 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2837 				 FEC_WOL_FLAG_ENABLE);
2838 
2839 	return 0;
2840 
2841 err_enet_mii_probe:
2842 	fec_enet_free_buffers(ndev);
2843 err_enet_alloc:
2844 	fec_enet_clk_enable(ndev, false);
2845 clk_enable:
2846 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2847 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2848 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2849 	return ret;
2850 }
2851 
2852 static int
2853 fec_enet_close(struct net_device *ndev)
2854 {
2855 	struct fec_enet_private *fep = netdev_priv(ndev);
2856 
2857 	phy_stop(ndev->phydev);
2858 
2859 	if (netif_device_present(ndev)) {
2860 		napi_disable(&fep->napi);
2861 		netif_tx_disable(ndev);
2862 		fec_stop(ndev);
2863 	}
2864 
2865 	phy_disconnect(ndev->phydev);
2866 
2867 	if (fep->quirks & FEC_QUIRK_ERR006687)
2868 		imx6q_cpuidle_fec_irqs_unused();
2869 
2870 	fec_enet_clk_enable(ndev, false);
2871 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2872 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2873 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2874 
2875 	fec_enet_free_buffers(ndev);
2876 
2877 	return 0;
2878 }
2879 
2880 /* Set or clear the multicast filter for this adaptor.
2881  * Skeleton taken from sunlance driver.
2882  * The CPM Ethernet implementation allows Multicast as well as individual
2883  * MAC address filtering.  Some of the drivers check to make sure it is
2884  * a group multicast address, and discard those that are not.  I guess I
2885  * will do the same for now, but just remove the test if you want
2886  * individual filtering as well (do the upper net layers want or support
2887  * this kind of feature?).
2888  */
2889 
2890 #define HASH_BITS	6		/* #bits in hash */
2891 #define CRC32_POLY	0xEDB88320
2892 
2893 static void set_multicast_list(struct net_device *ndev)
2894 {
2895 	struct fec_enet_private *fep = netdev_priv(ndev);
2896 	struct netdev_hw_addr *ha;
2897 	unsigned int i, bit, data, crc, tmp;
2898 	unsigned char hash;
2899 
2900 	if (ndev->flags & IFF_PROMISC) {
2901 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2902 		tmp |= 0x8;
2903 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2904 		return;
2905 	}
2906 
2907 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2908 	tmp &= ~0x8;
2909 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2910 
2911 	if (ndev->flags & IFF_ALLMULTI) {
2912 		/* Catch all multicast addresses, so set the
2913 		 * filter to all 1's
2914 		 */
2915 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2916 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2917 
2918 		return;
2919 	}
2920 
2921 	/* Clear filter and add the addresses in hash register
2922 	 */
2923 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2924 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2925 
2926 	netdev_for_each_mc_addr(ha, ndev) {
2927 		/* calculate crc32 value of mac address */
2928 		crc = 0xffffffff;
2929 
2930 		for (i = 0; i < ndev->addr_len; i++) {
2931 			data = ha->addr[i];
2932 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2933 				crc = (crc >> 1) ^
2934 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2935 			}
2936 		}
2937 
2938 		/* only upper 6 bits (HASH_BITS) are used
2939 		 * which point to specific bit in he hash registers
2940 		 */
2941 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2942 
2943 		if (hash > 31) {
2944 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2945 			tmp |= 1 << (hash - 32);
2946 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2947 		} else {
2948 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2949 			tmp |= 1 << hash;
2950 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2951 		}
2952 	}
2953 }
2954 
2955 /* Set a MAC change in hardware. */
2956 static int
2957 fec_set_mac_address(struct net_device *ndev, void *p)
2958 {
2959 	struct fec_enet_private *fep = netdev_priv(ndev);
2960 	struct sockaddr *addr = p;
2961 
2962 	if (addr) {
2963 		if (!is_valid_ether_addr(addr->sa_data))
2964 			return -EADDRNOTAVAIL;
2965 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2966 	}
2967 
2968 	/* Add netif status check here to avoid system hang in below case:
2969 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
2970 	 * After ethx down, fec all clocks are gated off and then register
2971 	 * access causes system hang.
2972 	 */
2973 	if (!netif_running(ndev))
2974 		return 0;
2975 
2976 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2977 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2978 		fep->hwp + FEC_ADDR_LOW);
2979 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2980 		fep->hwp + FEC_ADDR_HIGH);
2981 	return 0;
2982 }
2983 
2984 #ifdef CONFIG_NET_POLL_CONTROLLER
2985 /**
2986  * fec_poll_controller - FEC Poll controller function
2987  * @dev: The FEC network adapter
2988  *
2989  * Polled functionality used by netconsole and others in non interrupt mode
2990  *
2991  */
2992 static void fec_poll_controller(struct net_device *dev)
2993 {
2994 	int i;
2995 	struct fec_enet_private *fep = netdev_priv(dev);
2996 
2997 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2998 		if (fep->irq[i] > 0) {
2999 			disable_irq(fep->irq[i]);
3000 			fec_enet_interrupt(fep->irq[i], dev);
3001 			enable_irq(fep->irq[i]);
3002 		}
3003 	}
3004 }
3005 #endif
3006 
3007 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3008 	netdev_features_t features)
3009 {
3010 	struct fec_enet_private *fep = netdev_priv(netdev);
3011 	netdev_features_t changed = features ^ netdev->features;
3012 
3013 	netdev->features = features;
3014 
3015 	/* Receive checksum has been changed */
3016 	if (changed & NETIF_F_RXCSUM) {
3017 		if (features & NETIF_F_RXCSUM)
3018 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3019 		else
3020 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3021 	}
3022 }
3023 
3024 static int fec_set_features(struct net_device *netdev,
3025 	netdev_features_t features)
3026 {
3027 	struct fec_enet_private *fep = netdev_priv(netdev);
3028 	netdev_features_t changed = features ^ netdev->features;
3029 
3030 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3031 		napi_disable(&fep->napi);
3032 		netif_tx_lock_bh(netdev);
3033 		fec_stop(netdev);
3034 		fec_enet_set_netdev_features(netdev, features);
3035 		fec_restart(netdev);
3036 		netif_tx_wake_all_queues(netdev);
3037 		netif_tx_unlock_bh(netdev);
3038 		napi_enable(&fep->napi);
3039 	} else {
3040 		fec_enet_set_netdev_features(netdev, features);
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 static const struct net_device_ops fec_netdev_ops = {
3047 	.ndo_open		= fec_enet_open,
3048 	.ndo_stop		= fec_enet_close,
3049 	.ndo_start_xmit		= fec_enet_start_xmit,
3050 	.ndo_set_rx_mode	= set_multicast_list,
3051 	.ndo_change_mtu		= eth_change_mtu,
3052 	.ndo_validate_addr	= eth_validate_addr,
3053 	.ndo_tx_timeout		= fec_timeout,
3054 	.ndo_set_mac_address	= fec_set_mac_address,
3055 	.ndo_do_ioctl		= fec_enet_ioctl,
3056 #ifdef CONFIG_NET_POLL_CONTROLLER
3057 	.ndo_poll_controller	= fec_poll_controller,
3058 #endif
3059 	.ndo_set_features	= fec_set_features,
3060 };
3061 
3062 static const unsigned short offset_des_active_rxq[] = {
3063 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3064 };
3065 
3066 static const unsigned short offset_des_active_txq[] = {
3067 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3068 };
3069 
3070  /*
3071   * XXX:  We need to clean up on failure exits here.
3072   *
3073   */
3074 static int fec_enet_init(struct net_device *ndev)
3075 {
3076 	struct fec_enet_private *fep = netdev_priv(ndev);
3077 	struct bufdesc *cbd_base;
3078 	dma_addr_t bd_dma;
3079 	int bd_size;
3080 	unsigned int i;
3081 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3082 			sizeof(struct bufdesc);
3083 	unsigned dsize_log2 = __fls(dsize);
3084 
3085 	WARN_ON(dsize != (1 << dsize_log2));
3086 #if defined(CONFIG_ARM)
3087 	fep->rx_align = 0xf;
3088 	fep->tx_align = 0xf;
3089 #else
3090 	fep->rx_align = 0x3;
3091 	fep->tx_align = 0x3;
3092 #endif
3093 
3094 	fec_enet_alloc_queue(ndev);
3095 
3096 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3097 
3098 	/* Allocate memory for buffer descriptors. */
3099 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3100 				       GFP_KERNEL);
3101 	if (!cbd_base) {
3102 		return -ENOMEM;
3103 	}
3104 
3105 	memset(cbd_base, 0, bd_size);
3106 
3107 	/* Get the Ethernet address */
3108 	fec_get_mac(ndev);
3109 	/* make sure MAC we just acquired is programmed into the hw */
3110 	fec_set_mac_address(ndev, NULL);
3111 
3112 	/* Set receive and transmit descriptor base. */
3113 	for (i = 0; i < fep->num_rx_queues; i++) {
3114 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3115 		unsigned size = dsize * rxq->bd.ring_size;
3116 
3117 		rxq->bd.qid = i;
3118 		rxq->bd.base = cbd_base;
3119 		rxq->bd.cur = cbd_base;
3120 		rxq->bd.dma = bd_dma;
3121 		rxq->bd.dsize = dsize;
3122 		rxq->bd.dsize_log2 = dsize_log2;
3123 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3124 		bd_dma += size;
3125 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3126 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3127 	}
3128 
3129 	for (i = 0; i < fep->num_tx_queues; i++) {
3130 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3131 		unsigned size = dsize * txq->bd.ring_size;
3132 
3133 		txq->bd.qid = i;
3134 		txq->bd.base = cbd_base;
3135 		txq->bd.cur = cbd_base;
3136 		txq->bd.dma = bd_dma;
3137 		txq->bd.dsize = dsize;
3138 		txq->bd.dsize_log2 = dsize_log2;
3139 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3140 		bd_dma += size;
3141 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3142 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3143 	}
3144 
3145 
3146 	/* The FEC Ethernet specific entries in the device structure */
3147 	ndev->watchdog_timeo = TX_TIMEOUT;
3148 	ndev->netdev_ops = &fec_netdev_ops;
3149 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3150 
3151 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3152 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3153 
3154 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3155 		/* enable hw VLAN support */
3156 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3157 
3158 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3159 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3160 
3161 		/* enable hw accelerator */
3162 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3163 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3164 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3165 	}
3166 
3167 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3168 		fep->tx_align = 0;
3169 		fep->rx_align = 0x3f;
3170 	}
3171 
3172 	ndev->hw_features = ndev->features;
3173 
3174 	fec_restart(ndev);
3175 
3176 	return 0;
3177 }
3178 
3179 #ifdef CONFIG_OF
3180 static void fec_reset_phy(struct platform_device *pdev)
3181 {
3182 	int err, phy_reset;
3183 	bool active_high = false;
3184 	int msec = 1;
3185 	struct device_node *np = pdev->dev.of_node;
3186 
3187 	if (!np)
3188 		return;
3189 
3190 	of_property_read_u32(np, "phy-reset-duration", &msec);
3191 	/* A sane reset duration should not be longer than 1s */
3192 	if (msec > 1000)
3193 		msec = 1;
3194 
3195 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3196 	if (!gpio_is_valid(phy_reset))
3197 		return;
3198 
3199 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3200 
3201 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3202 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3203 			"phy-reset");
3204 	if (err) {
3205 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3206 		return;
3207 	}
3208 
3209 	if (msec > 20)
3210 		msleep(msec);
3211 	else
3212 		usleep_range(msec * 1000, msec * 1000 + 1000);
3213 
3214 	gpio_set_value_cansleep(phy_reset, !active_high);
3215 }
3216 #else /* CONFIG_OF */
3217 static void fec_reset_phy(struct platform_device *pdev)
3218 {
3219 	/*
3220 	 * In case of platform probe, the reset has been done
3221 	 * by machine code.
3222 	 */
3223 }
3224 #endif /* CONFIG_OF */
3225 
3226 static void
3227 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3228 {
3229 	struct device_node *np = pdev->dev.of_node;
3230 
3231 	*num_tx = *num_rx = 1;
3232 
3233 	if (!np || !of_device_is_available(np))
3234 		return;
3235 
3236 	/* parse the num of tx and rx queues */
3237 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3238 
3239 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3240 
3241 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3242 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3243 			 *num_tx);
3244 		*num_tx = 1;
3245 		return;
3246 	}
3247 
3248 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3249 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3250 			 *num_rx);
3251 		*num_rx = 1;
3252 		return;
3253 	}
3254 
3255 }
3256 
3257 static int
3258 fec_probe(struct platform_device *pdev)
3259 {
3260 	struct fec_enet_private *fep;
3261 	struct fec_platform_data *pdata;
3262 	struct net_device *ndev;
3263 	int i, irq, ret = 0;
3264 	struct resource *r;
3265 	const struct of_device_id *of_id;
3266 	static int dev_id;
3267 	struct device_node *np = pdev->dev.of_node, *phy_node;
3268 	int num_tx_qs;
3269 	int num_rx_qs;
3270 
3271 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3272 
3273 	/* Init network device */
3274 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3275 				  num_tx_qs, num_rx_qs);
3276 	if (!ndev)
3277 		return -ENOMEM;
3278 
3279 	SET_NETDEV_DEV(ndev, &pdev->dev);
3280 
3281 	/* setup board info structure */
3282 	fep = netdev_priv(ndev);
3283 
3284 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3285 	if (of_id)
3286 		pdev->id_entry = of_id->data;
3287 	fep->quirks = pdev->id_entry->driver_data;
3288 
3289 	fep->netdev = ndev;
3290 	fep->num_rx_queues = num_rx_qs;
3291 	fep->num_tx_queues = num_tx_qs;
3292 
3293 #if !defined(CONFIG_M5272)
3294 	/* default enable pause frame auto negotiation */
3295 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3296 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3297 #endif
3298 
3299 	/* Select default pin state */
3300 	pinctrl_pm_select_default_state(&pdev->dev);
3301 
3302 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3303 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3304 	if (IS_ERR(fep->hwp)) {
3305 		ret = PTR_ERR(fep->hwp);
3306 		goto failed_ioremap;
3307 	}
3308 
3309 	fep->pdev = pdev;
3310 	fep->dev_id = dev_id++;
3311 
3312 	platform_set_drvdata(pdev, ndev);
3313 
3314 	if ((of_machine_is_compatible("fsl,imx6q") ||
3315 	     of_machine_is_compatible("fsl,imx6dl")) &&
3316 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3317 		fep->quirks |= FEC_QUIRK_ERR006687;
3318 
3319 	if (of_get_property(np, "fsl,magic-packet", NULL))
3320 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3321 
3322 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3323 	if (!phy_node && of_phy_is_fixed_link(np)) {
3324 		ret = of_phy_register_fixed_link(np);
3325 		if (ret < 0) {
3326 			dev_err(&pdev->dev,
3327 				"broken fixed-link specification\n");
3328 			goto failed_phy;
3329 		}
3330 		phy_node = of_node_get(np);
3331 	}
3332 	fep->phy_node = phy_node;
3333 
3334 	ret = of_get_phy_mode(pdev->dev.of_node);
3335 	if (ret < 0) {
3336 		pdata = dev_get_platdata(&pdev->dev);
3337 		if (pdata)
3338 			fep->phy_interface = pdata->phy;
3339 		else
3340 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3341 	} else {
3342 		fep->phy_interface = ret;
3343 	}
3344 
3345 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3346 	if (IS_ERR(fep->clk_ipg)) {
3347 		ret = PTR_ERR(fep->clk_ipg);
3348 		goto failed_clk;
3349 	}
3350 
3351 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3352 	if (IS_ERR(fep->clk_ahb)) {
3353 		ret = PTR_ERR(fep->clk_ahb);
3354 		goto failed_clk;
3355 	}
3356 
3357 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3358 
3359 	/* enet_out is optional, depends on board */
3360 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3361 	if (IS_ERR(fep->clk_enet_out))
3362 		fep->clk_enet_out = NULL;
3363 
3364 	fep->ptp_clk_on = false;
3365 	mutex_init(&fep->ptp_clk_mutex);
3366 
3367 	/* clk_ref is optional, depends on board */
3368 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3369 	if (IS_ERR(fep->clk_ref))
3370 		fep->clk_ref = NULL;
3371 
3372 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3373 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3374 	if (IS_ERR(fep->clk_ptp)) {
3375 		fep->clk_ptp = NULL;
3376 		fep->bufdesc_ex = false;
3377 	}
3378 
3379 	ret = fec_enet_clk_enable(ndev, true);
3380 	if (ret)
3381 		goto failed_clk;
3382 
3383 	ret = clk_prepare_enable(fep->clk_ipg);
3384 	if (ret)
3385 		goto failed_clk_ipg;
3386 
3387 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3388 	if (!IS_ERR(fep->reg_phy)) {
3389 		ret = regulator_enable(fep->reg_phy);
3390 		if (ret) {
3391 			dev_err(&pdev->dev,
3392 				"Failed to enable phy regulator: %d\n", ret);
3393 			goto failed_regulator;
3394 		}
3395 	} else {
3396 		fep->reg_phy = NULL;
3397 	}
3398 
3399 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3400 	pm_runtime_use_autosuspend(&pdev->dev);
3401 	pm_runtime_get_noresume(&pdev->dev);
3402 	pm_runtime_set_active(&pdev->dev);
3403 	pm_runtime_enable(&pdev->dev);
3404 
3405 	fec_reset_phy(pdev);
3406 
3407 	if (fep->bufdesc_ex)
3408 		fec_ptp_init(pdev);
3409 
3410 	ret = fec_enet_init(ndev);
3411 	if (ret)
3412 		goto failed_init;
3413 
3414 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3415 		irq = platform_get_irq(pdev, i);
3416 		if (irq < 0) {
3417 			if (i)
3418 				break;
3419 			ret = irq;
3420 			goto failed_irq;
3421 		}
3422 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3423 				       0, pdev->name, ndev);
3424 		if (ret)
3425 			goto failed_irq;
3426 
3427 		fep->irq[i] = irq;
3428 	}
3429 
3430 	init_completion(&fep->mdio_done);
3431 	ret = fec_enet_mii_init(pdev);
3432 	if (ret)
3433 		goto failed_mii_init;
3434 
3435 	/* Carrier starts down, phylib will bring it up */
3436 	netif_carrier_off(ndev);
3437 	fec_enet_clk_enable(ndev, false);
3438 	pinctrl_pm_select_sleep_state(&pdev->dev);
3439 
3440 	ret = register_netdev(ndev);
3441 	if (ret)
3442 		goto failed_register;
3443 
3444 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3445 			   FEC_WOL_HAS_MAGIC_PACKET);
3446 
3447 	if (fep->bufdesc_ex && fep->ptp_clock)
3448 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3449 
3450 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3451 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3452 
3453 	pm_runtime_mark_last_busy(&pdev->dev);
3454 	pm_runtime_put_autosuspend(&pdev->dev);
3455 
3456 	return 0;
3457 
3458 failed_register:
3459 	fec_enet_mii_remove(fep);
3460 failed_mii_init:
3461 failed_irq:
3462 failed_init:
3463 	fec_ptp_stop(pdev);
3464 	if (fep->reg_phy)
3465 		regulator_disable(fep->reg_phy);
3466 failed_regulator:
3467 	clk_disable_unprepare(fep->clk_ipg);
3468 failed_clk_ipg:
3469 	fec_enet_clk_enable(ndev, false);
3470 failed_clk:
3471 failed_phy:
3472 	of_node_put(phy_node);
3473 failed_ioremap:
3474 	free_netdev(ndev);
3475 
3476 	return ret;
3477 }
3478 
3479 static int
3480 fec_drv_remove(struct platform_device *pdev)
3481 {
3482 	struct net_device *ndev = platform_get_drvdata(pdev);
3483 	struct fec_enet_private *fep = netdev_priv(ndev);
3484 
3485 	cancel_work_sync(&fep->tx_timeout_work);
3486 	fec_ptp_stop(pdev);
3487 	unregister_netdev(ndev);
3488 	fec_enet_mii_remove(fep);
3489 	if (fep->reg_phy)
3490 		regulator_disable(fep->reg_phy);
3491 	of_node_put(fep->phy_node);
3492 	free_netdev(ndev);
3493 
3494 	return 0;
3495 }
3496 
3497 static int __maybe_unused fec_suspend(struct device *dev)
3498 {
3499 	struct net_device *ndev = dev_get_drvdata(dev);
3500 	struct fec_enet_private *fep = netdev_priv(ndev);
3501 
3502 	rtnl_lock();
3503 	if (netif_running(ndev)) {
3504 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3505 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3506 		phy_stop(ndev->phydev);
3507 		napi_disable(&fep->napi);
3508 		netif_tx_lock_bh(ndev);
3509 		netif_device_detach(ndev);
3510 		netif_tx_unlock_bh(ndev);
3511 		fec_stop(ndev);
3512 		fec_enet_clk_enable(ndev, false);
3513 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3514 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3515 	}
3516 	rtnl_unlock();
3517 
3518 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3519 		regulator_disable(fep->reg_phy);
3520 
3521 	/* SOC supply clock to phy, when clock is disabled, phy link down
3522 	 * SOC control phy regulator, when regulator is disabled, phy link down
3523 	 */
3524 	if (fep->clk_enet_out || fep->reg_phy)
3525 		fep->link = 0;
3526 
3527 	return 0;
3528 }
3529 
3530 static int __maybe_unused fec_resume(struct device *dev)
3531 {
3532 	struct net_device *ndev = dev_get_drvdata(dev);
3533 	struct fec_enet_private *fep = netdev_priv(ndev);
3534 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3535 	int ret;
3536 	int val;
3537 
3538 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3539 		ret = regulator_enable(fep->reg_phy);
3540 		if (ret)
3541 			return ret;
3542 	}
3543 
3544 	rtnl_lock();
3545 	if (netif_running(ndev)) {
3546 		ret = fec_enet_clk_enable(ndev, true);
3547 		if (ret) {
3548 			rtnl_unlock();
3549 			goto failed_clk;
3550 		}
3551 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3552 			if (pdata && pdata->sleep_mode_enable)
3553 				pdata->sleep_mode_enable(false);
3554 			val = readl(fep->hwp + FEC_ECNTRL);
3555 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3556 			writel(val, fep->hwp + FEC_ECNTRL);
3557 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3558 		} else {
3559 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3560 		}
3561 		fec_restart(ndev);
3562 		netif_tx_lock_bh(ndev);
3563 		netif_device_attach(ndev);
3564 		netif_tx_unlock_bh(ndev);
3565 		napi_enable(&fep->napi);
3566 		phy_start(ndev->phydev);
3567 	}
3568 	rtnl_unlock();
3569 
3570 	return 0;
3571 
3572 failed_clk:
3573 	if (fep->reg_phy)
3574 		regulator_disable(fep->reg_phy);
3575 	return ret;
3576 }
3577 
3578 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3579 {
3580 	struct net_device *ndev = dev_get_drvdata(dev);
3581 	struct fec_enet_private *fep = netdev_priv(ndev);
3582 
3583 	clk_disable_unprepare(fep->clk_ipg);
3584 
3585 	return 0;
3586 }
3587 
3588 static int __maybe_unused fec_runtime_resume(struct device *dev)
3589 {
3590 	struct net_device *ndev = dev_get_drvdata(dev);
3591 	struct fec_enet_private *fep = netdev_priv(ndev);
3592 
3593 	return clk_prepare_enable(fep->clk_ipg);
3594 }
3595 
3596 static const struct dev_pm_ops fec_pm_ops = {
3597 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3598 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3599 };
3600 
3601 static struct platform_driver fec_driver = {
3602 	.driver	= {
3603 		.name	= DRIVER_NAME,
3604 		.pm	= &fec_pm_ops,
3605 		.of_match_table = fec_dt_ids,
3606 	},
3607 	.id_table = fec_devtype,
3608 	.probe	= fec_probe,
3609 	.remove	= fec_drv_remove,
3610 };
3611 
3612 module_platform_driver(fec_driver);
3613 
3614 MODULE_ALIAS("platform:"DRIVER_NAME);
3615 MODULE_LICENSE("GPL");
3616