1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/selftests.h> 42 #include <net/tso.h> 43 #include <linux/tcp.h> 44 #include <linux/udp.h> 45 #include <linux/icmp.h> 46 #include <linux/spinlock.h> 47 #include <linux/workqueue.h> 48 #include <linux/bitops.h> 49 #include <linux/io.h> 50 #include <linux/irq.h> 51 #include <linux/clk.h> 52 #include <linux/crc32.h> 53 #include <linux/platform_device.h> 54 #include <linux/mdio.h> 55 #include <linux/phy.h> 56 #include <linux/fec.h> 57 #include <linux/of.h> 58 #include <linux/of_device.h> 59 #include <linux/of_gpio.h> 60 #include <linux/of_mdio.h> 61 #include <linux/of_net.h> 62 #include <linux/regulator/consumer.h> 63 #include <linux/if_vlan.h> 64 #include <linux/pinctrl/consumer.h> 65 #include <linux/prefetch.h> 66 #include <linux/mfd/syscon.h> 67 #include <linux/regmap.h> 68 #include <soc/imx/cpuidle.h> 69 70 #include <asm/cacheflush.h> 71 72 #include "fec.h" 73 74 static void set_multicast_list(struct net_device *ndev); 75 static void fec_enet_itr_coal_init(struct net_device *ndev); 76 77 #define DRIVER_NAME "fec" 78 79 /* Pause frame feild and FIFO threshold */ 80 #define FEC_ENET_FCE (1 << 5) 81 #define FEC_ENET_RSEM_V 0x84 82 #define FEC_ENET_RSFL_V 16 83 #define FEC_ENET_RAEM_V 0x8 84 #define FEC_ENET_RAFL_V 0x8 85 #define FEC_ENET_OPD_V 0xFFF0 86 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 87 88 struct fec_devinfo { 89 u32 quirks; 90 }; 91 92 static const struct fec_devinfo fec_imx25_info = { 93 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 94 FEC_QUIRK_HAS_FRREG, 95 }; 96 97 static const struct fec_devinfo fec_imx27_info = { 98 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 99 }; 100 101 static const struct fec_devinfo fec_imx28_info = { 102 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 103 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 104 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 105 FEC_QUIRK_NO_HARD_RESET, 106 }; 107 108 static const struct fec_devinfo fec_imx6q_info = { 109 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 110 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 111 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 112 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII, 113 }; 114 115 static const struct fec_devinfo fec_mvf600_info = { 116 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 117 }; 118 119 static const struct fec_devinfo fec_imx6x_info = { 120 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 121 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 122 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 123 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 124 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 125 FEC_QUIRK_CLEAR_SETUP_MII, 126 }; 127 128 static const struct fec_devinfo fec_imx6ul_info = { 129 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 130 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 131 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 132 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 133 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII, 134 }; 135 136 static struct platform_device_id fec_devtype[] = { 137 { 138 /* keep it for coldfire */ 139 .name = DRIVER_NAME, 140 .driver_data = 0, 141 }, { 142 .name = "imx25-fec", 143 .driver_data = (kernel_ulong_t)&fec_imx25_info, 144 }, { 145 .name = "imx27-fec", 146 .driver_data = (kernel_ulong_t)&fec_imx27_info, 147 }, { 148 .name = "imx28-fec", 149 .driver_data = (kernel_ulong_t)&fec_imx28_info, 150 }, { 151 .name = "imx6q-fec", 152 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 153 }, { 154 .name = "mvf600-fec", 155 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 156 }, { 157 .name = "imx6sx-fec", 158 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 159 }, { 160 .name = "imx6ul-fec", 161 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 162 }, { 163 /* sentinel */ 164 } 165 }; 166 MODULE_DEVICE_TABLE(platform, fec_devtype); 167 168 enum imx_fec_type { 169 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 170 IMX27_FEC, /* runs on i.mx27/35/51 */ 171 IMX28_FEC, 172 IMX6Q_FEC, 173 MVF600_FEC, 174 IMX6SX_FEC, 175 IMX6UL_FEC, 176 }; 177 178 static const struct of_device_id fec_dt_ids[] = { 179 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 180 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 181 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 182 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 183 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 184 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 185 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 186 { /* sentinel */ } 187 }; 188 MODULE_DEVICE_TABLE(of, fec_dt_ids); 189 190 static unsigned char macaddr[ETH_ALEN]; 191 module_param_array(macaddr, byte, NULL, 0); 192 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 193 194 #if defined(CONFIG_M5272) 195 /* 196 * Some hardware gets it MAC address out of local flash memory. 197 * if this is non-zero then assume it is the address to get MAC from. 198 */ 199 #if defined(CONFIG_NETtel) 200 #define FEC_FLASHMAC 0xf0006006 201 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 202 #define FEC_FLASHMAC 0xf0006000 203 #elif defined(CONFIG_CANCam) 204 #define FEC_FLASHMAC 0xf0020000 205 #elif defined (CONFIG_M5272C3) 206 #define FEC_FLASHMAC (0xffe04000 + 4) 207 #elif defined(CONFIG_MOD5272) 208 #define FEC_FLASHMAC 0xffc0406b 209 #else 210 #define FEC_FLASHMAC 0 211 #endif 212 #endif /* CONFIG_M5272 */ 213 214 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 215 * 216 * 2048 byte skbufs are allocated. However, alignment requirements 217 * varies between FEC variants. Worst case is 64, so round down by 64. 218 */ 219 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 220 #define PKT_MINBUF_SIZE 64 221 222 /* FEC receive acceleration */ 223 #define FEC_RACC_IPDIS (1 << 1) 224 #define FEC_RACC_PRODIS (1 << 2) 225 #define FEC_RACC_SHIFT16 BIT(7) 226 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 227 228 /* MIB Control Register */ 229 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 230 231 /* 232 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 233 * size bits. Other FEC hardware does not, so we need to take that into 234 * account when setting it. 235 */ 236 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 237 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 238 defined(CONFIG_ARM64) 239 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 240 #else 241 #define OPT_FRAME_SIZE 0 242 #endif 243 244 /* FEC MII MMFR bits definition */ 245 #define FEC_MMFR_ST (1 << 30) 246 #define FEC_MMFR_ST_C45 (0) 247 #define FEC_MMFR_OP_READ (2 << 28) 248 #define FEC_MMFR_OP_READ_C45 (3 << 28) 249 #define FEC_MMFR_OP_WRITE (1 << 28) 250 #define FEC_MMFR_OP_ADDR_WRITE (0) 251 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 252 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 253 #define FEC_MMFR_TA (2 << 16) 254 #define FEC_MMFR_DATA(v) (v & 0xffff) 255 /* FEC ECR bits definition */ 256 #define FEC_ECR_MAGICEN (1 << 2) 257 #define FEC_ECR_SLEEP (1 << 3) 258 259 #define FEC_MII_TIMEOUT 30000 /* us */ 260 261 /* Transmitter timeout */ 262 #define TX_TIMEOUT (2 * HZ) 263 264 #define FEC_PAUSE_FLAG_AUTONEG 0x1 265 #define FEC_PAUSE_FLAG_ENABLE 0x2 266 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 267 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 268 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 269 270 #define COPYBREAK_DEFAULT 256 271 272 /* Max number of allowed TCP segments for software TSO */ 273 #define FEC_MAX_TSO_SEGS 100 274 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 275 276 #define IS_TSO_HEADER(txq, addr) \ 277 ((addr >= txq->tso_hdrs_dma) && \ 278 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 279 280 static int mii_cnt; 281 282 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 283 struct bufdesc_prop *bd) 284 { 285 return (bdp >= bd->last) ? bd->base 286 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 287 } 288 289 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 290 struct bufdesc_prop *bd) 291 { 292 return (bdp <= bd->base) ? bd->last 293 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 294 } 295 296 static int fec_enet_get_bd_index(struct bufdesc *bdp, 297 struct bufdesc_prop *bd) 298 { 299 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 300 } 301 302 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 303 { 304 int entries; 305 306 entries = (((const char *)txq->dirty_tx - 307 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 308 309 return entries >= 0 ? entries : entries + txq->bd.ring_size; 310 } 311 312 static void swap_buffer(void *bufaddr, int len) 313 { 314 int i; 315 unsigned int *buf = bufaddr; 316 317 for (i = 0; i < len; i += 4, buf++) 318 swab32s(buf); 319 } 320 321 static void swap_buffer2(void *dst_buf, void *src_buf, int len) 322 { 323 int i; 324 unsigned int *src = src_buf; 325 unsigned int *dst = dst_buf; 326 327 for (i = 0; i < len; i += 4, src++, dst++) 328 *dst = swab32p(src); 329 } 330 331 static void fec_dump(struct net_device *ndev) 332 { 333 struct fec_enet_private *fep = netdev_priv(ndev); 334 struct bufdesc *bdp; 335 struct fec_enet_priv_tx_q *txq; 336 int index = 0; 337 338 netdev_info(ndev, "TX ring dump\n"); 339 pr_info("Nr SC addr len SKB\n"); 340 341 txq = fep->tx_queue[0]; 342 bdp = txq->bd.base; 343 344 do { 345 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 346 index, 347 bdp == txq->bd.cur ? 'S' : ' ', 348 bdp == txq->dirty_tx ? 'H' : ' ', 349 fec16_to_cpu(bdp->cbd_sc), 350 fec32_to_cpu(bdp->cbd_bufaddr), 351 fec16_to_cpu(bdp->cbd_datlen), 352 txq->tx_skbuff[index]); 353 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 354 index++; 355 } while (bdp != txq->bd.base); 356 } 357 358 static inline bool is_ipv4_pkt(struct sk_buff *skb) 359 { 360 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 361 } 362 363 static int 364 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 365 { 366 /* Only run for packets requiring a checksum. */ 367 if (skb->ip_summed != CHECKSUM_PARTIAL) 368 return 0; 369 370 if (unlikely(skb_cow_head(skb, 0))) 371 return -1; 372 373 if (is_ipv4_pkt(skb)) 374 ip_hdr(skb)->check = 0; 375 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 376 377 return 0; 378 } 379 380 static struct bufdesc * 381 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 382 struct sk_buff *skb, 383 struct net_device *ndev) 384 { 385 struct fec_enet_private *fep = netdev_priv(ndev); 386 struct bufdesc *bdp = txq->bd.cur; 387 struct bufdesc_ex *ebdp; 388 int nr_frags = skb_shinfo(skb)->nr_frags; 389 int frag, frag_len; 390 unsigned short status; 391 unsigned int estatus = 0; 392 skb_frag_t *this_frag; 393 unsigned int index; 394 void *bufaddr; 395 dma_addr_t addr; 396 int i; 397 398 for (frag = 0; frag < nr_frags; frag++) { 399 this_frag = &skb_shinfo(skb)->frags[frag]; 400 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 401 ebdp = (struct bufdesc_ex *)bdp; 402 403 status = fec16_to_cpu(bdp->cbd_sc); 404 status &= ~BD_ENET_TX_STATS; 405 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 406 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 407 408 /* Handle the last BD specially */ 409 if (frag == nr_frags - 1) { 410 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 411 if (fep->bufdesc_ex) { 412 estatus |= BD_ENET_TX_INT; 413 if (unlikely(skb_shinfo(skb)->tx_flags & 414 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 415 estatus |= BD_ENET_TX_TS; 416 } 417 } 418 419 if (fep->bufdesc_ex) { 420 if (fep->quirks & FEC_QUIRK_HAS_AVB) 421 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 422 if (skb->ip_summed == CHECKSUM_PARTIAL) 423 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 424 ebdp->cbd_bdu = 0; 425 ebdp->cbd_esc = cpu_to_fec32(estatus); 426 } 427 428 bufaddr = skb_frag_address(this_frag); 429 430 index = fec_enet_get_bd_index(bdp, &txq->bd); 431 if (((unsigned long) bufaddr) & fep->tx_align || 432 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 433 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 434 bufaddr = txq->tx_bounce[index]; 435 436 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 437 swap_buffer(bufaddr, frag_len); 438 } 439 440 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 441 DMA_TO_DEVICE); 442 if (dma_mapping_error(&fep->pdev->dev, addr)) { 443 if (net_ratelimit()) 444 netdev_err(ndev, "Tx DMA memory map failed\n"); 445 goto dma_mapping_error; 446 } 447 448 bdp->cbd_bufaddr = cpu_to_fec32(addr); 449 bdp->cbd_datlen = cpu_to_fec16(frag_len); 450 /* Make sure the updates to rest of the descriptor are 451 * performed before transferring ownership. 452 */ 453 wmb(); 454 bdp->cbd_sc = cpu_to_fec16(status); 455 } 456 457 return bdp; 458 dma_mapping_error: 459 bdp = txq->bd.cur; 460 for (i = 0; i < frag; i++) { 461 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 462 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 463 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 464 } 465 return ERR_PTR(-ENOMEM); 466 } 467 468 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 469 struct sk_buff *skb, struct net_device *ndev) 470 { 471 struct fec_enet_private *fep = netdev_priv(ndev); 472 int nr_frags = skb_shinfo(skb)->nr_frags; 473 struct bufdesc *bdp, *last_bdp; 474 void *bufaddr; 475 dma_addr_t addr; 476 unsigned short status; 477 unsigned short buflen; 478 unsigned int estatus = 0; 479 unsigned int index; 480 int entries_free; 481 482 entries_free = fec_enet_get_free_txdesc_num(txq); 483 if (entries_free < MAX_SKB_FRAGS + 1) { 484 dev_kfree_skb_any(skb); 485 if (net_ratelimit()) 486 netdev_err(ndev, "NOT enough BD for SG!\n"); 487 return NETDEV_TX_OK; 488 } 489 490 /* Protocol checksum off-load for TCP and UDP. */ 491 if (fec_enet_clear_csum(skb, ndev)) { 492 dev_kfree_skb_any(skb); 493 return NETDEV_TX_OK; 494 } 495 496 /* Fill in a Tx ring entry */ 497 bdp = txq->bd.cur; 498 last_bdp = bdp; 499 status = fec16_to_cpu(bdp->cbd_sc); 500 status &= ~BD_ENET_TX_STATS; 501 502 /* Set buffer length and buffer pointer */ 503 bufaddr = skb->data; 504 buflen = skb_headlen(skb); 505 506 index = fec_enet_get_bd_index(bdp, &txq->bd); 507 if (((unsigned long) bufaddr) & fep->tx_align || 508 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 509 memcpy(txq->tx_bounce[index], skb->data, buflen); 510 bufaddr = txq->tx_bounce[index]; 511 512 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 513 swap_buffer(bufaddr, buflen); 514 } 515 516 /* Push the data cache so the CPM does not get stale memory data. */ 517 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 518 if (dma_mapping_error(&fep->pdev->dev, addr)) { 519 dev_kfree_skb_any(skb); 520 if (net_ratelimit()) 521 netdev_err(ndev, "Tx DMA memory map failed\n"); 522 return NETDEV_TX_OK; 523 } 524 525 if (nr_frags) { 526 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 527 if (IS_ERR(last_bdp)) { 528 dma_unmap_single(&fep->pdev->dev, addr, 529 buflen, DMA_TO_DEVICE); 530 dev_kfree_skb_any(skb); 531 return NETDEV_TX_OK; 532 } 533 } else { 534 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 535 if (fep->bufdesc_ex) { 536 estatus = BD_ENET_TX_INT; 537 if (unlikely(skb_shinfo(skb)->tx_flags & 538 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 539 estatus |= BD_ENET_TX_TS; 540 } 541 } 542 bdp->cbd_bufaddr = cpu_to_fec32(addr); 543 bdp->cbd_datlen = cpu_to_fec16(buflen); 544 545 if (fep->bufdesc_ex) { 546 547 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 548 549 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 550 fep->hwts_tx_en)) 551 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 552 553 if (fep->quirks & FEC_QUIRK_HAS_AVB) 554 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 555 556 if (skb->ip_summed == CHECKSUM_PARTIAL) 557 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 558 559 ebdp->cbd_bdu = 0; 560 ebdp->cbd_esc = cpu_to_fec32(estatus); 561 } 562 563 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 564 /* Save skb pointer */ 565 txq->tx_skbuff[index] = skb; 566 567 /* Make sure the updates to rest of the descriptor are performed before 568 * transferring ownership. 569 */ 570 wmb(); 571 572 /* Send it on its way. Tell FEC it's ready, interrupt when done, 573 * it's the last BD of the frame, and to put the CRC on the end. 574 */ 575 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 576 bdp->cbd_sc = cpu_to_fec16(status); 577 578 /* If this was the last BD in the ring, start at the beginning again. */ 579 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 580 581 skb_tx_timestamp(skb); 582 583 /* Make sure the update to bdp and tx_skbuff are performed before 584 * txq->bd.cur. 585 */ 586 wmb(); 587 txq->bd.cur = bdp; 588 589 /* Trigger transmission start */ 590 writel(0, txq->bd.reg_desc_active); 591 592 return 0; 593 } 594 595 static int 596 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 597 struct net_device *ndev, 598 struct bufdesc *bdp, int index, char *data, 599 int size, bool last_tcp, bool is_last) 600 { 601 struct fec_enet_private *fep = netdev_priv(ndev); 602 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 603 unsigned short status; 604 unsigned int estatus = 0; 605 dma_addr_t addr; 606 607 status = fec16_to_cpu(bdp->cbd_sc); 608 status &= ~BD_ENET_TX_STATS; 609 610 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 611 612 if (((unsigned long) data) & fep->tx_align || 613 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 614 memcpy(txq->tx_bounce[index], data, size); 615 data = txq->tx_bounce[index]; 616 617 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 618 swap_buffer(data, size); 619 } 620 621 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 622 if (dma_mapping_error(&fep->pdev->dev, addr)) { 623 dev_kfree_skb_any(skb); 624 if (net_ratelimit()) 625 netdev_err(ndev, "Tx DMA memory map failed\n"); 626 return NETDEV_TX_BUSY; 627 } 628 629 bdp->cbd_datlen = cpu_to_fec16(size); 630 bdp->cbd_bufaddr = cpu_to_fec32(addr); 631 632 if (fep->bufdesc_ex) { 633 if (fep->quirks & FEC_QUIRK_HAS_AVB) 634 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 635 if (skb->ip_summed == CHECKSUM_PARTIAL) 636 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 637 ebdp->cbd_bdu = 0; 638 ebdp->cbd_esc = cpu_to_fec32(estatus); 639 } 640 641 /* Handle the last BD specially */ 642 if (last_tcp) 643 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 644 if (is_last) { 645 status |= BD_ENET_TX_INTR; 646 if (fep->bufdesc_ex) 647 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 648 } 649 650 bdp->cbd_sc = cpu_to_fec16(status); 651 652 return 0; 653 } 654 655 static int 656 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 657 struct sk_buff *skb, struct net_device *ndev, 658 struct bufdesc *bdp, int index) 659 { 660 struct fec_enet_private *fep = netdev_priv(ndev); 661 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 662 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 663 void *bufaddr; 664 unsigned long dmabuf; 665 unsigned short status; 666 unsigned int estatus = 0; 667 668 status = fec16_to_cpu(bdp->cbd_sc); 669 status &= ~BD_ENET_TX_STATS; 670 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 671 672 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 673 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 674 if (((unsigned long)bufaddr) & fep->tx_align || 675 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 676 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 677 bufaddr = txq->tx_bounce[index]; 678 679 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 680 swap_buffer(bufaddr, hdr_len); 681 682 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 683 hdr_len, DMA_TO_DEVICE); 684 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 685 dev_kfree_skb_any(skb); 686 if (net_ratelimit()) 687 netdev_err(ndev, "Tx DMA memory map failed\n"); 688 return NETDEV_TX_BUSY; 689 } 690 } 691 692 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 693 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 694 695 if (fep->bufdesc_ex) { 696 if (fep->quirks & FEC_QUIRK_HAS_AVB) 697 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 698 if (skb->ip_summed == CHECKSUM_PARTIAL) 699 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 700 ebdp->cbd_bdu = 0; 701 ebdp->cbd_esc = cpu_to_fec32(estatus); 702 } 703 704 bdp->cbd_sc = cpu_to_fec16(status); 705 706 return 0; 707 } 708 709 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 710 struct sk_buff *skb, 711 struct net_device *ndev) 712 { 713 struct fec_enet_private *fep = netdev_priv(ndev); 714 int hdr_len, total_len, data_left; 715 struct bufdesc *bdp = txq->bd.cur; 716 struct tso_t tso; 717 unsigned int index = 0; 718 int ret; 719 720 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 721 dev_kfree_skb_any(skb); 722 if (net_ratelimit()) 723 netdev_err(ndev, "NOT enough BD for TSO!\n"); 724 return NETDEV_TX_OK; 725 } 726 727 /* Protocol checksum off-load for TCP and UDP. */ 728 if (fec_enet_clear_csum(skb, ndev)) { 729 dev_kfree_skb_any(skb); 730 return NETDEV_TX_OK; 731 } 732 733 /* Initialize the TSO handler, and prepare the first payload */ 734 hdr_len = tso_start(skb, &tso); 735 736 total_len = skb->len - hdr_len; 737 while (total_len > 0) { 738 char *hdr; 739 740 index = fec_enet_get_bd_index(bdp, &txq->bd); 741 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 742 total_len -= data_left; 743 744 /* prepare packet headers: MAC + IP + TCP */ 745 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 746 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 747 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 748 if (ret) 749 goto err_release; 750 751 while (data_left > 0) { 752 int size; 753 754 size = min_t(int, tso.size, data_left); 755 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 756 index = fec_enet_get_bd_index(bdp, &txq->bd); 757 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 758 bdp, index, 759 tso.data, size, 760 size == data_left, 761 total_len == 0); 762 if (ret) 763 goto err_release; 764 765 data_left -= size; 766 tso_build_data(skb, &tso, size); 767 } 768 769 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 770 } 771 772 /* Save skb pointer */ 773 txq->tx_skbuff[index] = skb; 774 775 skb_tx_timestamp(skb); 776 txq->bd.cur = bdp; 777 778 /* Trigger transmission start */ 779 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 780 !readl(txq->bd.reg_desc_active) || 781 !readl(txq->bd.reg_desc_active) || 782 !readl(txq->bd.reg_desc_active) || 783 !readl(txq->bd.reg_desc_active)) 784 writel(0, txq->bd.reg_desc_active); 785 786 return 0; 787 788 err_release: 789 /* TODO: Release all used data descriptors for TSO */ 790 return ret; 791 } 792 793 static netdev_tx_t 794 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 795 { 796 struct fec_enet_private *fep = netdev_priv(ndev); 797 int entries_free; 798 unsigned short queue; 799 struct fec_enet_priv_tx_q *txq; 800 struct netdev_queue *nq; 801 int ret; 802 803 queue = skb_get_queue_mapping(skb); 804 txq = fep->tx_queue[queue]; 805 nq = netdev_get_tx_queue(ndev, queue); 806 807 if (skb_is_gso(skb)) 808 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 809 else 810 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 811 if (ret) 812 return ret; 813 814 entries_free = fec_enet_get_free_txdesc_num(txq); 815 if (entries_free <= txq->tx_stop_threshold) 816 netif_tx_stop_queue(nq); 817 818 return NETDEV_TX_OK; 819 } 820 821 /* Init RX & TX buffer descriptors 822 */ 823 static void fec_enet_bd_init(struct net_device *dev) 824 { 825 struct fec_enet_private *fep = netdev_priv(dev); 826 struct fec_enet_priv_tx_q *txq; 827 struct fec_enet_priv_rx_q *rxq; 828 struct bufdesc *bdp; 829 unsigned int i; 830 unsigned int q; 831 832 for (q = 0; q < fep->num_rx_queues; q++) { 833 /* Initialize the receive buffer descriptors. */ 834 rxq = fep->rx_queue[q]; 835 bdp = rxq->bd.base; 836 837 for (i = 0; i < rxq->bd.ring_size; i++) { 838 839 /* Initialize the BD for every fragment in the page. */ 840 if (bdp->cbd_bufaddr) 841 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 842 else 843 bdp->cbd_sc = cpu_to_fec16(0); 844 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 845 } 846 847 /* Set the last buffer to wrap */ 848 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 849 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 850 851 rxq->bd.cur = rxq->bd.base; 852 } 853 854 for (q = 0; q < fep->num_tx_queues; q++) { 855 /* ...and the same for transmit */ 856 txq = fep->tx_queue[q]; 857 bdp = txq->bd.base; 858 txq->bd.cur = bdp; 859 860 for (i = 0; i < txq->bd.ring_size; i++) { 861 /* Initialize the BD for every fragment in the page. */ 862 bdp->cbd_sc = cpu_to_fec16(0); 863 if (bdp->cbd_bufaddr && 864 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 865 dma_unmap_single(&fep->pdev->dev, 866 fec32_to_cpu(bdp->cbd_bufaddr), 867 fec16_to_cpu(bdp->cbd_datlen), 868 DMA_TO_DEVICE); 869 if (txq->tx_skbuff[i]) { 870 dev_kfree_skb_any(txq->tx_skbuff[i]); 871 txq->tx_skbuff[i] = NULL; 872 } 873 bdp->cbd_bufaddr = cpu_to_fec32(0); 874 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 875 } 876 877 /* Set the last buffer to wrap */ 878 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 879 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 880 txq->dirty_tx = bdp; 881 } 882 } 883 884 static void fec_enet_active_rxring(struct net_device *ndev) 885 { 886 struct fec_enet_private *fep = netdev_priv(ndev); 887 int i; 888 889 for (i = 0; i < fep->num_rx_queues; i++) 890 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 891 } 892 893 static void fec_enet_enable_ring(struct net_device *ndev) 894 { 895 struct fec_enet_private *fep = netdev_priv(ndev); 896 struct fec_enet_priv_tx_q *txq; 897 struct fec_enet_priv_rx_q *rxq; 898 int i; 899 900 for (i = 0; i < fep->num_rx_queues; i++) { 901 rxq = fep->rx_queue[i]; 902 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 903 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 904 905 /* enable DMA1/2 */ 906 if (i) 907 writel(RCMR_MATCHEN | RCMR_CMP(i), 908 fep->hwp + FEC_RCMR(i)); 909 } 910 911 for (i = 0; i < fep->num_tx_queues; i++) { 912 txq = fep->tx_queue[i]; 913 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 914 915 /* enable DMA1/2 */ 916 if (i) 917 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 918 fep->hwp + FEC_DMA_CFG(i)); 919 } 920 } 921 922 static void fec_enet_reset_skb(struct net_device *ndev) 923 { 924 struct fec_enet_private *fep = netdev_priv(ndev); 925 struct fec_enet_priv_tx_q *txq; 926 int i, j; 927 928 for (i = 0; i < fep->num_tx_queues; i++) { 929 txq = fep->tx_queue[i]; 930 931 for (j = 0; j < txq->bd.ring_size; j++) { 932 if (txq->tx_skbuff[j]) { 933 dev_kfree_skb_any(txq->tx_skbuff[j]); 934 txq->tx_skbuff[j] = NULL; 935 } 936 } 937 } 938 } 939 940 /* 941 * This function is called to start or restart the FEC during a link 942 * change, transmit timeout, or to reconfigure the FEC. The network 943 * packet processing for this device must be stopped before this call. 944 */ 945 static void 946 fec_restart(struct net_device *ndev) 947 { 948 struct fec_enet_private *fep = netdev_priv(ndev); 949 u32 temp_mac[2]; 950 u32 rcntl = OPT_FRAME_SIZE | 0x04; 951 u32 ecntl = 0x2; /* ETHEREN */ 952 953 /* Whack a reset. We should wait for this. 954 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 955 * instead of reset MAC itself. 956 */ 957 if (fep->quirks & FEC_QUIRK_HAS_AVB || 958 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 959 writel(0, fep->hwp + FEC_ECNTRL); 960 } else { 961 writel(1, fep->hwp + FEC_ECNTRL); 962 udelay(10); 963 } 964 965 /* 966 * enet-mac reset will reset mac address registers too, 967 * so need to reconfigure it. 968 */ 969 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 970 writel((__force u32)cpu_to_be32(temp_mac[0]), 971 fep->hwp + FEC_ADDR_LOW); 972 writel((__force u32)cpu_to_be32(temp_mac[1]), 973 fep->hwp + FEC_ADDR_HIGH); 974 975 /* Clear any outstanding interrupt, except MDIO. */ 976 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 977 978 fec_enet_bd_init(ndev); 979 980 fec_enet_enable_ring(ndev); 981 982 /* Reset tx SKB buffers. */ 983 fec_enet_reset_skb(ndev); 984 985 /* Enable MII mode */ 986 if (fep->full_duplex == DUPLEX_FULL) { 987 /* FD enable */ 988 writel(0x04, fep->hwp + FEC_X_CNTRL); 989 } else { 990 /* No Rcv on Xmit */ 991 rcntl |= 0x02; 992 writel(0x0, fep->hwp + FEC_X_CNTRL); 993 } 994 995 /* Set MII speed */ 996 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 997 998 #if !defined(CONFIG_M5272) 999 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1000 u32 val = readl(fep->hwp + FEC_RACC); 1001 1002 /* align IP header */ 1003 val |= FEC_RACC_SHIFT16; 1004 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1005 /* set RX checksum */ 1006 val |= FEC_RACC_OPTIONS; 1007 else 1008 val &= ~FEC_RACC_OPTIONS; 1009 writel(val, fep->hwp + FEC_RACC); 1010 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1011 } 1012 #endif 1013 1014 /* 1015 * The phy interface and speed need to get configured 1016 * differently on enet-mac. 1017 */ 1018 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1019 /* Enable flow control and length check */ 1020 rcntl |= 0x40000000 | 0x00000020; 1021 1022 /* RGMII, RMII or MII */ 1023 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1024 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1025 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1026 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1027 rcntl |= (1 << 6); 1028 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1029 rcntl |= (1 << 8); 1030 else 1031 rcntl &= ~(1 << 8); 1032 1033 /* 1G, 100M or 10M */ 1034 if (ndev->phydev) { 1035 if (ndev->phydev->speed == SPEED_1000) 1036 ecntl |= (1 << 5); 1037 else if (ndev->phydev->speed == SPEED_100) 1038 rcntl &= ~(1 << 9); 1039 else 1040 rcntl |= (1 << 9); 1041 } 1042 } else { 1043 #ifdef FEC_MIIGSK_ENR 1044 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1045 u32 cfgr; 1046 /* disable the gasket and wait */ 1047 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1048 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1049 udelay(1); 1050 1051 /* 1052 * configure the gasket: 1053 * RMII, 50 MHz, no loopback, no echo 1054 * MII, 25 MHz, no loopback, no echo 1055 */ 1056 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1057 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1058 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1059 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1060 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1061 1062 /* re-enable the gasket */ 1063 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1064 } 1065 #endif 1066 } 1067 1068 #if !defined(CONFIG_M5272) 1069 /* enable pause frame*/ 1070 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1071 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1072 ndev->phydev && ndev->phydev->pause)) { 1073 rcntl |= FEC_ENET_FCE; 1074 1075 /* set FIFO threshold parameter to reduce overrun */ 1076 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1077 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1078 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1079 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1080 1081 /* OPD */ 1082 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1083 } else { 1084 rcntl &= ~FEC_ENET_FCE; 1085 } 1086 #endif /* !defined(CONFIG_M5272) */ 1087 1088 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1089 1090 /* Setup multicast filter. */ 1091 set_multicast_list(ndev); 1092 #ifndef CONFIG_M5272 1093 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1094 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1095 #endif 1096 1097 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1098 /* enable ENET endian swap */ 1099 ecntl |= (1 << 8); 1100 /* enable ENET store and forward mode */ 1101 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1102 } 1103 1104 if (fep->bufdesc_ex) 1105 ecntl |= (1 << 4); 1106 1107 #ifndef CONFIG_M5272 1108 /* Enable the MIB statistic event counters */ 1109 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1110 #endif 1111 1112 /* And last, enable the transmit and receive processing */ 1113 writel(ecntl, fep->hwp + FEC_ECNTRL); 1114 fec_enet_active_rxring(ndev); 1115 1116 if (fep->bufdesc_ex) 1117 fec_ptp_start_cyclecounter(ndev); 1118 1119 /* Enable interrupts we wish to service */ 1120 if (fep->link) 1121 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1122 else 1123 writel(0, fep->hwp + FEC_IMASK); 1124 1125 /* Init the interrupt coalescing */ 1126 fec_enet_itr_coal_init(ndev); 1127 1128 } 1129 1130 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1131 { 1132 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1133 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1134 1135 if (stop_gpr->gpr) { 1136 if (enabled) 1137 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1138 BIT(stop_gpr->bit), 1139 BIT(stop_gpr->bit)); 1140 else 1141 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1142 BIT(stop_gpr->bit), 0); 1143 } else if (pdata && pdata->sleep_mode_enable) { 1144 pdata->sleep_mode_enable(enabled); 1145 } 1146 } 1147 1148 static void 1149 fec_stop(struct net_device *ndev) 1150 { 1151 struct fec_enet_private *fep = netdev_priv(ndev); 1152 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1153 u32 val; 1154 1155 /* We cannot expect a graceful transmit stop without link !!! */ 1156 if (fep->link) { 1157 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1158 udelay(10); 1159 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1160 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1161 } 1162 1163 /* Whack a reset. We should wait for this. 1164 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1165 * instead of reset MAC itself. 1166 */ 1167 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1168 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 1169 writel(0, fep->hwp + FEC_ECNTRL); 1170 } else { 1171 writel(1, fep->hwp + FEC_ECNTRL); 1172 udelay(10); 1173 } 1174 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1175 } else { 1176 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1177 val = readl(fep->hwp + FEC_ECNTRL); 1178 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1179 writel(val, fep->hwp + FEC_ECNTRL); 1180 fec_enet_stop_mode(fep, true); 1181 } 1182 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1183 1184 /* We have to keep ENET enabled to have MII interrupt stay working */ 1185 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1186 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1187 writel(2, fep->hwp + FEC_ECNTRL); 1188 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1189 } 1190 } 1191 1192 1193 static void 1194 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1195 { 1196 struct fec_enet_private *fep = netdev_priv(ndev); 1197 1198 fec_dump(ndev); 1199 1200 ndev->stats.tx_errors++; 1201 1202 schedule_work(&fep->tx_timeout_work); 1203 } 1204 1205 static void fec_enet_timeout_work(struct work_struct *work) 1206 { 1207 struct fec_enet_private *fep = 1208 container_of(work, struct fec_enet_private, tx_timeout_work); 1209 struct net_device *ndev = fep->netdev; 1210 1211 rtnl_lock(); 1212 if (netif_device_present(ndev) || netif_running(ndev)) { 1213 napi_disable(&fep->napi); 1214 netif_tx_lock_bh(ndev); 1215 fec_restart(ndev); 1216 netif_tx_wake_all_queues(ndev); 1217 netif_tx_unlock_bh(ndev); 1218 napi_enable(&fep->napi); 1219 } 1220 rtnl_unlock(); 1221 } 1222 1223 static void 1224 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1225 struct skb_shared_hwtstamps *hwtstamps) 1226 { 1227 unsigned long flags; 1228 u64 ns; 1229 1230 spin_lock_irqsave(&fep->tmreg_lock, flags); 1231 ns = timecounter_cyc2time(&fep->tc, ts); 1232 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1233 1234 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1235 hwtstamps->hwtstamp = ns_to_ktime(ns); 1236 } 1237 1238 static void 1239 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1240 { 1241 struct fec_enet_private *fep; 1242 struct bufdesc *bdp; 1243 unsigned short status; 1244 struct sk_buff *skb; 1245 struct fec_enet_priv_tx_q *txq; 1246 struct netdev_queue *nq; 1247 int index = 0; 1248 int entries_free; 1249 1250 fep = netdev_priv(ndev); 1251 1252 txq = fep->tx_queue[queue_id]; 1253 /* get next bdp of dirty_tx */ 1254 nq = netdev_get_tx_queue(ndev, queue_id); 1255 bdp = txq->dirty_tx; 1256 1257 /* get next bdp of dirty_tx */ 1258 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1259 1260 while (bdp != READ_ONCE(txq->bd.cur)) { 1261 /* Order the load of bd.cur and cbd_sc */ 1262 rmb(); 1263 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1264 if (status & BD_ENET_TX_READY) 1265 break; 1266 1267 index = fec_enet_get_bd_index(bdp, &txq->bd); 1268 1269 skb = txq->tx_skbuff[index]; 1270 txq->tx_skbuff[index] = NULL; 1271 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1272 dma_unmap_single(&fep->pdev->dev, 1273 fec32_to_cpu(bdp->cbd_bufaddr), 1274 fec16_to_cpu(bdp->cbd_datlen), 1275 DMA_TO_DEVICE); 1276 bdp->cbd_bufaddr = cpu_to_fec32(0); 1277 if (!skb) 1278 goto skb_done; 1279 1280 /* Check for errors. */ 1281 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1282 BD_ENET_TX_RL | BD_ENET_TX_UN | 1283 BD_ENET_TX_CSL)) { 1284 ndev->stats.tx_errors++; 1285 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1286 ndev->stats.tx_heartbeat_errors++; 1287 if (status & BD_ENET_TX_LC) /* Late collision */ 1288 ndev->stats.tx_window_errors++; 1289 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1290 ndev->stats.tx_aborted_errors++; 1291 if (status & BD_ENET_TX_UN) /* Underrun */ 1292 ndev->stats.tx_fifo_errors++; 1293 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1294 ndev->stats.tx_carrier_errors++; 1295 } else { 1296 ndev->stats.tx_packets++; 1297 ndev->stats.tx_bytes += skb->len; 1298 } 1299 1300 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1301 * are to time stamp the packet, so we still need to check time 1302 * stamping enabled flag. 1303 */ 1304 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1305 fep->hwts_tx_en) && 1306 fep->bufdesc_ex) { 1307 struct skb_shared_hwtstamps shhwtstamps; 1308 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1309 1310 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1311 skb_tstamp_tx(skb, &shhwtstamps); 1312 } 1313 1314 /* Deferred means some collisions occurred during transmit, 1315 * but we eventually sent the packet OK. 1316 */ 1317 if (status & BD_ENET_TX_DEF) 1318 ndev->stats.collisions++; 1319 1320 /* Free the sk buffer associated with this last transmit */ 1321 dev_kfree_skb_any(skb); 1322 skb_done: 1323 /* Make sure the update to bdp and tx_skbuff are performed 1324 * before dirty_tx 1325 */ 1326 wmb(); 1327 txq->dirty_tx = bdp; 1328 1329 /* Update pointer to next buffer descriptor to be transmitted */ 1330 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1331 1332 /* Since we have freed up a buffer, the ring is no longer full 1333 */ 1334 if (netif_tx_queue_stopped(nq)) { 1335 entries_free = fec_enet_get_free_txdesc_num(txq); 1336 if (entries_free >= txq->tx_wake_threshold) 1337 netif_tx_wake_queue(nq); 1338 } 1339 } 1340 1341 /* ERR006358: Keep the transmitter going */ 1342 if (bdp != txq->bd.cur && 1343 readl(txq->bd.reg_desc_active) == 0) 1344 writel(0, txq->bd.reg_desc_active); 1345 } 1346 1347 static void fec_enet_tx(struct net_device *ndev) 1348 { 1349 struct fec_enet_private *fep = netdev_priv(ndev); 1350 int i; 1351 1352 /* Make sure that AVB queues are processed first. */ 1353 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1354 fec_enet_tx_queue(ndev, i); 1355 } 1356 1357 static int 1358 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) 1359 { 1360 struct fec_enet_private *fep = netdev_priv(ndev); 1361 int off; 1362 1363 off = ((unsigned long)skb->data) & fep->rx_align; 1364 if (off) 1365 skb_reserve(skb, fep->rx_align + 1 - off); 1366 1367 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE)); 1368 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) { 1369 if (net_ratelimit()) 1370 netdev_err(ndev, "Rx DMA memory map failed\n"); 1371 return -ENOMEM; 1372 } 1373 1374 return 0; 1375 } 1376 1377 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, 1378 struct bufdesc *bdp, u32 length, bool swap) 1379 { 1380 struct fec_enet_private *fep = netdev_priv(ndev); 1381 struct sk_buff *new_skb; 1382 1383 if (length > fep->rx_copybreak) 1384 return false; 1385 1386 new_skb = netdev_alloc_skb(ndev, length); 1387 if (!new_skb) 1388 return false; 1389 1390 dma_sync_single_for_cpu(&fep->pdev->dev, 1391 fec32_to_cpu(bdp->cbd_bufaddr), 1392 FEC_ENET_RX_FRSIZE - fep->rx_align, 1393 DMA_FROM_DEVICE); 1394 if (!swap) 1395 memcpy(new_skb->data, (*skb)->data, length); 1396 else 1397 swap_buffer2(new_skb->data, (*skb)->data, length); 1398 *skb = new_skb; 1399 1400 return true; 1401 } 1402 1403 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1404 * When we update through the ring, if the next incoming buffer has 1405 * not been given to the system, we just set the empty indicator, 1406 * effectively tossing the packet. 1407 */ 1408 static int 1409 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1410 { 1411 struct fec_enet_private *fep = netdev_priv(ndev); 1412 struct fec_enet_priv_rx_q *rxq; 1413 struct bufdesc *bdp; 1414 unsigned short status; 1415 struct sk_buff *skb_new = NULL; 1416 struct sk_buff *skb; 1417 ushort pkt_len; 1418 __u8 *data; 1419 int pkt_received = 0; 1420 struct bufdesc_ex *ebdp = NULL; 1421 bool vlan_packet_rcvd = false; 1422 u16 vlan_tag; 1423 int index = 0; 1424 bool is_copybreak; 1425 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1426 1427 #ifdef CONFIG_M532x 1428 flush_cache_all(); 1429 #endif 1430 rxq = fep->rx_queue[queue_id]; 1431 1432 /* First, grab all of the stats for the incoming packet. 1433 * These get messed up if we get called due to a busy condition. 1434 */ 1435 bdp = rxq->bd.cur; 1436 1437 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1438 1439 if (pkt_received >= budget) 1440 break; 1441 pkt_received++; 1442 1443 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT); 1444 1445 /* Check for errors. */ 1446 status ^= BD_ENET_RX_LAST; 1447 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1448 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1449 BD_ENET_RX_CL)) { 1450 ndev->stats.rx_errors++; 1451 if (status & BD_ENET_RX_OV) { 1452 /* FIFO overrun */ 1453 ndev->stats.rx_fifo_errors++; 1454 goto rx_processing_done; 1455 } 1456 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1457 | BD_ENET_RX_LAST)) { 1458 /* Frame too long or too short. */ 1459 ndev->stats.rx_length_errors++; 1460 if (status & BD_ENET_RX_LAST) 1461 netdev_err(ndev, "rcv is not +last\n"); 1462 } 1463 if (status & BD_ENET_RX_CR) /* CRC Error */ 1464 ndev->stats.rx_crc_errors++; 1465 /* Report late collisions as a frame error. */ 1466 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1467 ndev->stats.rx_frame_errors++; 1468 goto rx_processing_done; 1469 } 1470 1471 /* Process the incoming frame. */ 1472 ndev->stats.rx_packets++; 1473 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1474 ndev->stats.rx_bytes += pkt_len; 1475 1476 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1477 skb = rxq->rx_skbuff[index]; 1478 1479 /* The packet length includes FCS, but we don't want to 1480 * include that when passing upstream as it messes up 1481 * bridging applications. 1482 */ 1483 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, 1484 need_swap); 1485 if (!is_copybreak) { 1486 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 1487 if (unlikely(!skb_new)) { 1488 ndev->stats.rx_dropped++; 1489 goto rx_processing_done; 1490 } 1491 dma_unmap_single(&fep->pdev->dev, 1492 fec32_to_cpu(bdp->cbd_bufaddr), 1493 FEC_ENET_RX_FRSIZE - fep->rx_align, 1494 DMA_FROM_DEVICE); 1495 } 1496 1497 prefetch(skb->data - NET_IP_ALIGN); 1498 skb_put(skb, pkt_len - 4); 1499 data = skb->data; 1500 1501 if (!is_copybreak && need_swap) 1502 swap_buffer(data, pkt_len); 1503 1504 #if !defined(CONFIG_M5272) 1505 if (fep->quirks & FEC_QUIRK_HAS_RACC) 1506 data = skb_pull_inline(skb, 2); 1507 #endif 1508 1509 /* Extract the enhanced buffer descriptor */ 1510 ebdp = NULL; 1511 if (fep->bufdesc_ex) 1512 ebdp = (struct bufdesc_ex *)bdp; 1513 1514 /* If this is a VLAN packet remove the VLAN Tag */ 1515 vlan_packet_rcvd = false; 1516 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1517 fep->bufdesc_ex && 1518 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1519 /* Push and remove the vlan tag */ 1520 struct vlan_hdr *vlan_header = 1521 (struct vlan_hdr *) (data + ETH_HLEN); 1522 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1523 1524 vlan_packet_rcvd = true; 1525 1526 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1527 skb_pull(skb, VLAN_HLEN); 1528 } 1529 1530 skb->protocol = eth_type_trans(skb, ndev); 1531 1532 /* Get receive timestamp from the skb */ 1533 if (fep->hwts_rx_en && fep->bufdesc_ex) 1534 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1535 skb_hwtstamps(skb)); 1536 1537 if (fep->bufdesc_ex && 1538 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1539 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1540 /* don't check it */ 1541 skb->ip_summed = CHECKSUM_UNNECESSARY; 1542 } else { 1543 skb_checksum_none_assert(skb); 1544 } 1545 } 1546 1547 /* Handle received VLAN packets */ 1548 if (vlan_packet_rcvd) 1549 __vlan_hwaccel_put_tag(skb, 1550 htons(ETH_P_8021Q), 1551 vlan_tag); 1552 1553 skb_record_rx_queue(skb, queue_id); 1554 napi_gro_receive(&fep->napi, skb); 1555 1556 if (is_copybreak) { 1557 dma_sync_single_for_device(&fep->pdev->dev, 1558 fec32_to_cpu(bdp->cbd_bufaddr), 1559 FEC_ENET_RX_FRSIZE - fep->rx_align, 1560 DMA_FROM_DEVICE); 1561 } else { 1562 rxq->rx_skbuff[index] = skb_new; 1563 fec_enet_new_rxbdp(ndev, bdp, skb_new); 1564 } 1565 1566 rx_processing_done: 1567 /* Clear the status flags for this buffer */ 1568 status &= ~BD_ENET_RX_STATS; 1569 1570 /* Mark the buffer empty */ 1571 status |= BD_ENET_RX_EMPTY; 1572 1573 if (fep->bufdesc_ex) { 1574 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1575 1576 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1577 ebdp->cbd_prot = 0; 1578 ebdp->cbd_bdu = 0; 1579 } 1580 /* Make sure the updates to rest of the descriptor are 1581 * performed before transferring ownership. 1582 */ 1583 wmb(); 1584 bdp->cbd_sc = cpu_to_fec16(status); 1585 1586 /* Update BD pointer to next entry */ 1587 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1588 1589 /* Doing this here will keep the FEC running while we process 1590 * incoming frames. On a heavily loaded network, we should be 1591 * able to keep up at the expense of system resources. 1592 */ 1593 writel(0, rxq->bd.reg_desc_active); 1594 } 1595 rxq->bd.cur = bdp; 1596 return pkt_received; 1597 } 1598 1599 static int fec_enet_rx(struct net_device *ndev, int budget) 1600 { 1601 struct fec_enet_private *fep = netdev_priv(ndev); 1602 int i, done = 0; 1603 1604 /* Make sure that AVB queues are processed first. */ 1605 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1606 done += fec_enet_rx_queue(ndev, budget - done, i); 1607 1608 return done; 1609 } 1610 1611 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1612 { 1613 uint int_events; 1614 1615 int_events = readl(fep->hwp + FEC_IEVENT); 1616 1617 /* Don't clear MDIO events, we poll for those */ 1618 int_events &= ~FEC_ENET_MII; 1619 1620 writel(int_events, fep->hwp + FEC_IEVENT); 1621 1622 return int_events != 0; 1623 } 1624 1625 static irqreturn_t 1626 fec_enet_interrupt(int irq, void *dev_id) 1627 { 1628 struct net_device *ndev = dev_id; 1629 struct fec_enet_private *fep = netdev_priv(ndev); 1630 irqreturn_t ret = IRQ_NONE; 1631 1632 if (fec_enet_collect_events(fep) && fep->link) { 1633 ret = IRQ_HANDLED; 1634 1635 if (napi_schedule_prep(&fep->napi)) { 1636 /* Disable interrupts */ 1637 writel(0, fep->hwp + FEC_IMASK); 1638 __napi_schedule(&fep->napi); 1639 } 1640 } 1641 1642 return ret; 1643 } 1644 1645 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1646 { 1647 struct net_device *ndev = napi->dev; 1648 struct fec_enet_private *fep = netdev_priv(ndev); 1649 int done = 0; 1650 1651 do { 1652 done += fec_enet_rx(ndev, budget - done); 1653 fec_enet_tx(ndev); 1654 } while ((done < budget) && fec_enet_collect_events(fep)); 1655 1656 if (done < budget) { 1657 napi_complete_done(napi, done); 1658 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1659 } 1660 1661 return done; 1662 } 1663 1664 /* ------------------------------------------------------------------------- */ 1665 static void fec_get_mac(struct net_device *ndev) 1666 { 1667 struct fec_enet_private *fep = netdev_priv(ndev); 1668 unsigned char *iap, tmpaddr[ETH_ALEN]; 1669 int ret; 1670 1671 /* 1672 * try to get mac address in following order: 1673 * 1674 * 1) module parameter via kernel command line in form 1675 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1676 */ 1677 iap = macaddr; 1678 1679 /* 1680 * 2) from device tree data 1681 */ 1682 if (!is_valid_ether_addr(iap)) { 1683 struct device_node *np = fep->pdev->dev.of_node; 1684 if (np) { 1685 ret = of_get_mac_address(np, tmpaddr); 1686 if (!ret) 1687 iap = tmpaddr; 1688 } 1689 } 1690 1691 /* 1692 * 3) from flash or fuse (via platform data) 1693 */ 1694 if (!is_valid_ether_addr(iap)) { 1695 #ifdef CONFIG_M5272 1696 if (FEC_FLASHMAC) 1697 iap = (unsigned char *)FEC_FLASHMAC; 1698 #else 1699 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1700 1701 if (pdata) 1702 iap = (unsigned char *)&pdata->mac; 1703 #endif 1704 } 1705 1706 /* 1707 * 4) FEC mac registers set by bootloader 1708 */ 1709 if (!is_valid_ether_addr(iap)) { 1710 *((__be32 *) &tmpaddr[0]) = 1711 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1712 *((__be16 *) &tmpaddr[4]) = 1713 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1714 iap = &tmpaddr[0]; 1715 } 1716 1717 /* 1718 * 5) random mac address 1719 */ 1720 if (!is_valid_ether_addr(iap)) { 1721 /* Report it and use a random ethernet address instead */ 1722 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1723 eth_hw_addr_random(ndev); 1724 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1725 ndev->dev_addr); 1726 return; 1727 } 1728 1729 memcpy(ndev->dev_addr, iap, ETH_ALEN); 1730 1731 /* Adjust MAC if using macaddr */ 1732 if (iap == macaddr) 1733 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; 1734 } 1735 1736 /* ------------------------------------------------------------------------- */ 1737 1738 /* 1739 * Phy section 1740 */ 1741 static void fec_enet_adjust_link(struct net_device *ndev) 1742 { 1743 struct fec_enet_private *fep = netdev_priv(ndev); 1744 struct phy_device *phy_dev = ndev->phydev; 1745 int status_change = 0; 1746 1747 /* 1748 * If the netdev is down, or is going down, we're not interested 1749 * in link state events, so just mark our idea of the link as down 1750 * and ignore the event. 1751 */ 1752 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1753 fep->link = 0; 1754 } else if (phy_dev->link) { 1755 if (!fep->link) { 1756 fep->link = phy_dev->link; 1757 status_change = 1; 1758 } 1759 1760 if (fep->full_duplex != phy_dev->duplex) { 1761 fep->full_duplex = phy_dev->duplex; 1762 status_change = 1; 1763 } 1764 1765 if (phy_dev->speed != fep->speed) { 1766 fep->speed = phy_dev->speed; 1767 status_change = 1; 1768 } 1769 1770 /* if any of the above changed restart the FEC */ 1771 if (status_change) { 1772 napi_disable(&fep->napi); 1773 netif_tx_lock_bh(ndev); 1774 fec_restart(ndev); 1775 netif_tx_wake_all_queues(ndev); 1776 netif_tx_unlock_bh(ndev); 1777 napi_enable(&fep->napi); 1778 } 1779 } else { 1780 if (fep->link) { 1781 napi_disable(&fep->napi); 1782 netif_tx_lock_bh(ndev); 1783 fec_stop(ndev); 1784 netif_tx_unlock_bh(ndev); 1785 napi_enable(&fep->napi); 1786 fep->link = phy_dev->link; 1787 status_change = 1; 1788 } 1789 } 1790 1791 if (status_change) 1792 phy_print_status(phy_dev); 1793 } 1794 1795 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1796 { 1797 uint ievent; 1798 int ret; 1799 1800 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1801 ievent & FEC_ENET_MII, 2, 30000); 1802 1803 if (!ret) 1804 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1805 1806 return ret; 1807 } 1808 1809 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1810 { 1811 struct fec_enet_private *fep = bus->priv; 1812 struct device *dev = &fep->pdev->dev; 1813 int ret = 0, frame_start, frame_addr, frame_op; 1814 bool is_c45 = !!(regnum & MII_ADDR_C45); 1815 1816 ret = pm_runtime_resume_and_get(dev); 1817 if (ret < 0) 1818 return ret; 1819 1820 if (is_c45) { 1821 frame_start = FEC_MMFR_ST_C45; 1822 1823 /* write address */ 1824 frame_addr = (regnum >> 16); 1825 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1826 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1827 FEC_MMFR_TA | (regnum & 0xFFFF), 1828 fep->hwp + FEC_MII_DATA); 1829 1830 /* wait for end of transfer */ 1831 ret = fec_enet_mdio_wait(fep); 1832 if (ret) { 1833 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1834 goto out; 1835 } 1836 1837 frame_op = FEC_MMFR_OP_READ_C45; 1838 1839 } else { 1840 /* C22 read */ 1841 frame_op = FEC_MMFR_OP_READ; 1842 frame_start = FEC_MMFR_ST; 1843 frame_addr = regnum; 1844 } 1845 1846 /* start a read op */ 1847 writel(frame_start | frame_op | 1848 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1849 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 1850 1851 /* wait for end of transfer */ 1852 ret = fec_enet_mdio_wait(fep); 1853 if (ret) { 1854 netdev_err(fep->netdev, "MDIO read timeout\n"); 1855 goto out; 1856 } 1857 1858 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 1859 1860 out: 1861 pm_runtime_mark_last_busy(dev); 1862 pm_runtime_put_autosuspend(dev); 1863 1864 return ret; 1865 } 1866 1867 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 1868 u16 value) 1869 { 1870 struct fec_enet_private *fep = bus->priv; 1871 struct device *dev = &fep->pdev->dev; 1872 int ret, frame_start, frame_addr; 1873 bool is_c45 = !!(regnum & MII_ADDR_C45); 1874 1875 ret = pm_runtime_resume_and_get(dev); 1876 if (ret < 0) 1877 return ret; 1878 1879 if (is_c45) { 1880 frame_start = FEC_MMFR_ST_C45; 1881 1882 /* write address */ 1883 frame_addr = (regnum >> 16); 1884 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1885 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1886 FEC_MMFR_TA | (regnum & 0xFFFF), 1887 fep->hwp + FEC_MII_DATA); 1888 1889 /* wait for end of transfer */ 1890 ret = fec_enet_mdio_wait(fep); 1891 if (ret) { 1892 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1893 goto out; 1894 } 1895 } else { 1896 /* C22 write */ 1897 frame_start = FEC_MMFR_ST; 1898 frame_addr = regnum; 1899 } 1900 1901 /* start a write op */ 1902 writel(frame_start | FEC_MMFR_OP_WRITE | 1903 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1904 FEC_MMFR_TA | FEC_MMFR_DATA(value), 1905 fep->hwp + FEC_MII_DATA); 1906 1907 /* wait for end of transfer */ 1908 ret = fec_enet_mdio_wait(fep); 1909 if (ret) 1910 netdev_err(fep->netdev, "MDIO write timeout\n"); 1911 1912 out: 1913 pm_runtime_mark_last_busy(dev); 1914 pm_runtime_put_autosuspend(dev); 1915 1916 return ret; 1917 } 1918 1919 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 1920 { 1921 struct fec_enet_private *fep = netdev_priv(ndev); 1922 struct phy_device *phy_dev = ndev->phydev; 1923 1924 if (phy_dev) { 1925 phy_reset_after_clk_enable(phy_dev); 1926 } else if (fep->phy_node) { 1927 /* 1928 * If the PHY still is not bound to the MAC, but there is 1929 * OF PHY node and a matching PHY device instance already, 1930 * use the OF PHY node to obtain the PHY device instance, 1931 * and then use that PHY device instance when triggering 1932 * the PHY reset. 1933 */ 1934 phy_dev = of_phy_find_device(fep->phy_node); 1935 phy_reset_after_clk_enable(phy_dev); 1936 put_device(&phy_dev->mdio.dev); 1937 } 1938 } 1939 1940 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 1941 { 1942 struct fec_enet_private *fep = netdev_priv(ndev); 1943 int ret; 1944 1945 if (enable) { 1946 ret = clk_prepare_enable(fep->clk_enet_out); 1947 if (ret) 1948 return ret; 1949 1950 if (fep->clk_ptp) { 1951 mutex_lock(&fep->ptp_clk_mutex); 1952 ret = clk_prepare_enable(fep->clk_ptp); 1953 if (ret) { 1954 mutex_unlock(&fep->ptp_clk_mutex); 1955 goto failed_clk_ptp; 1956 } else { 1957 fep->ptp_clk_on = true; 1958 } 1959 mutex_unlock(&fep->ptp_clk_mutex); 1960 } 1961 1962 ret = clk_prepare_enable(fep->clk_ref); 1963 if (ret) 1964 goto failed_clk_ref; 1965 1966 fec_enet_phy_reset_after_clk_enable(ndev); 1967 } else { 1968 clk_disable_unprepare(fep->clk_enet_out); 1969 if (fep->clk_ptp) { 1970 mutex_lock(&fep->ptp_clk_mutex); 1971 clk_disable_unprepare(fep->clk_ptp); 1972 fep->ptp_clk_on = false; 1973 mutex_unlock(&fep->ptp_clk_mutex); 1974 } 1975 clk_disable_unprepare(fep->clk_ref); 1976 } 1977 1978 return 0; 1979 1980 failed_clk_ref: 1981 if (fep->clk_ptp) { 1982 mutex_lock(&fep->ptp_clk_mutex); 1983 clk_disable_unprepare(fep->clk_ptp); 1984 fep->ptp_clk_on = false; 1985 mutex_unlock(&fep->ptp_clk_mutex); 1986 } 1987 failed_clk_ptp: 1988 clk_disable_unprepare(fep->clk_enet_out); 1989 1990 return ret; 1991 } 1992 1993 static int fec_enet_mii_probe(struct net_device *ndev) 1994 { 1995 struct fec_enet_private *fep = netdev_priv(ndev); 1996 struct phy_device *phy_dev = NULL; 1997 char mdio_bus_id[MII_BUS_ID_SIZE]; 1998 char phy_name[MII_BUS_ID_SIZE + 3]; 1999 int phy_id; 2000 int dev_id = fep->dev_id; 2001 2002 if (fep->phy_node) { 2003 phy_dev = of_phy_connect(ndev, fep->phy_node, 2004 &fec_enet_adjust_link, 0, 2005 fep->phy_interface); 2006 if (!phy_dev) { 2007 netdev_err(ndev, "Unable to connect to phy\n"); 2008 return -ENODEV; 2009 } 2010 } else { 2011 /* check for attached phy */ 2012 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2013 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2014 continue; 2015 if (dev_id--) 2016 continue; 2017 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2018 break; 2019 } 2020 2021 if (phy_id >= PHY_MAX_ADDR) { 2022 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2023 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2024 phy_id = 0; 2025 } 2026 2027 snprintf(phy_name, sizeof(phy_name), 2028 PHY_ID_FMT, mdio_bus_id, phy_id); 2029 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2030 fep->phy_interface); 2031 } 2032 2033 if (IS_ERR(phy_dev)) { 2034 netdev_err(ndev, "could not attach to PHY\n"); 2035 return PTR_ERR(phy_dev); 2036 } 2037 2038 /* mask with MAC supported features */ 2039 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2040 phy_set_max_speed(phy_dev, 1000); 2041 phy_remove_link_mode(phy_dev, 2042 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2043 #if !defined(CONFIG_M5272) 2044 phy_support_sym_pause(phy_dev); 2045 #endif 2046 } 2047 else 2048 phy_set_max_speed(phy_dev, 100); 2049 2050 fep->link = 0; 2051 fep->full_duplex = 0; 2052 2053 phy_dev->mac_managed_pm = 1; 2054 2055 phy_attached_info(phy_dev); 2056 2057 return 0; 2058 } 2059 2060 static int fec_enet_mii_init(struct platform_device *pdev) 2061 { 2062 static struct mii_bus *fec0_mii_bus; 2063 struct net_device *ndev = platform_get_drvdata(pdev); 2064 struct fec_enet_private *fep = netdev_priv(ndev); 2065 bool suppress_preamble = false; 2066 struct device_node *node; 2067 int err = -ENXIO; 2068 u32 mii_speed, holdtime; 2069 u32 bus_freq; 2070 2071 /* 2072 * The i.MX28 dual fec interfaces are not equal. 2073 * Here are the differences: 2074 * 2075 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2076 * - fec0 acts as the 1588 time master while fec1 is slave 2077 * - external phys can only be configured by fec0 2078 * 2079 * That is to say fec1 can not work independently. It only works 2080 * when fec0 is working. The reason behind this design is that the 2081 * second interface is added primarily for Switch mode. 2082 * 2083 * Because of the last point above, both phys are attached on fec0 2084 * mdio interface in board design, and need to be configured by 2085 * fec0 mii_bus. 2086 */ 2087 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2088 /* fec1 uses fec0 mii_bus */ 2089 if (mii_cnt && fec0_mii_bus) { 2090 fep->mii_bus = fec0_mii_bus; 2091 mii_cnt++; 2092 return 0; 2093 } 2094 return -ENOENT; 2095 } 2096 2097 bus_freq = 2500000; /* 2.5MHz by default */ 2098 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2099 if (node) { 2100 of_property_read_u32(node, "clock-frequency", &bus_freq); 2101 suppress_preamble = of_property_read_bool(node, 2102 "suppress-preamble"); 2103 } 2104 2105 /* 2106 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2107 * 2108 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2109 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2110 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2111 * document. 2112 */ 2113 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2114 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2115 mii_speed--; 2116 if (mii_speed > 63) { 2117 dev_err(&pdev->dev, 2118 "fec clock (%lu) too fast to get right mii speed\n", 2119 clk_get_rate(fep->clk_ipg)); 2120 err = -EINVAL; 2121 goto err_out; 2122 } 2123 2124 /* 2125 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2126 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2127 * versions are RAZ there, so just ignore the difference and write the 2128 * register always. 2129 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2130 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2131 * output. 2132 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2133 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2134 * holdtime cannot result in a value greater than 3. 2135 */ 2136 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2137 2138 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2139 2140 if (suppress_preamble) 2141 fep->phy_speed |= BIT(7); 2142 2143 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2144 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2145 * MII event generation condition: 2146 * - writing MSCR: 2147 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2148 * mscr_reg_data_in[7:0] != 0 2149 * - writing MMFR: 2150 * - mscr[7:0]_not_zero 2151 */ 2152 writel(0, fep->hwp + FEC_MII_DATA); 2153 } 2154 2155 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2156 2157 /* Clear any pending transaction complete indication */ 2158 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2159 2160 fep->mii_bus = mdiobus_alloc(); 2161 if (fep->mii_bus == NULL) { 2162 err = -ENOMEM; 2163 goto err_out; 2164 } 2165 2166 fep->mii_bus->name = "fec_enet_mii_bus"; 2167 fep->mii_bus->read = fec_enet_mdio_read; 2168 fep->mii_bus->write = fec_enet_mdio_write; 2169 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2170 pdev->name, fep->dev_id + 1); 2171 fep->mii_bus->priv = fep; 2172 fep->mii_bus->parent = &pdev->dev; 2173 2174 err = of_mdiobus_register(fep->mii_bus, node); 2175 if (err) 2176 goto err_out_free_mdiobus; 2177 of_node_put(node); 2178 2179 mii_cnt++; 2180 2181 /* save fec0 mii_bus */ 2182 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2183 fec0_mii_bus = fep->mii_bus; 2184 2185 return 0; 2186 2187 err_out_free_mdiobus: 2188 mdiobus_free(fep->mii_bus); 2189 err_out: 2190 of_node_put(node); 2191 return err; 2192 } 2193 2194 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2195 { 2196 if (--mii_cnt == 0) { 2197 mdiobus_unregister(fep->mii_bus); 2198 mdiobus_free(fep->mii_bus); 2199 } 2200 } 2201 2202 static void fec_enet_get_drvinfo(struct net_device *ndev, 2203 struct ethtool_drvinfo *info) 2204 { 2205 struct fec_enet_private *fep = netdev_priv(ndev); 2206 2207 strlcpy(info->driver, fep->pdev->dev.driver->name, 2208 sizeof(info->driver)); 2209 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2210 } 2211 2212 static int fec_enet_get_regs_len(struct net_device *ndev) 2213 { 2214 struct fec_enet_private *fep = netdev_priv(ndev); 2215 struct resource *r; 2216 int s = 0; 2217 2218 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2219 if (r) 2220 s = resource_size(r); 2221 2222 return s; 2223 } 2224 2225 /* List of registers that can be safety be read to dump them with ethtool */ 2226 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2227 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2228 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2229 static __u32 fec_enet_register_version = 2; 2230 static u32 fec_enet_register_offset[] = { 2231 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2232 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2233 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2234 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2235 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2236 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2237 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2238 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2239 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2240 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2241 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2242 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2243 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2244 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2245 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2246 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2247 RMON_T_P_GTE2048, RMON_T_OCTETS, 2248 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2249 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2250 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2251 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2252 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2253 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2254 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2255 RMON_R_P_GTE2048, RMON_R_OCTETS, 2256 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2257 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2258 }; 2259 #else 2260 static __u32 fec_enet_register_version = 1; 2261 static u32 fec_enet_register_offset[] = { 2262 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2263 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2264 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2265 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2266 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2267 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2268 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2269 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2270 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2271 }; 2272 #endif 2273 2274 static void fec_enet_get_regs(struct net_device *ndev, 2275 struct ethtool_regs *regs, void *regbuf) 2276 { 2277 struct fec_enet_private *fep = netdev_priv(ndev); 2278 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2279 struct device *dev = &fep->pdev->dev; 2280 u32 *buf = (u32 *)regbuf; 2281 u32 i, off; 2282 int ret; 2283 2284 ret = pm_runtime_resume_and_get(dev); 2285 if (ret < 0) 2286 return; 2287 2288 regs->version = fec_enet_register_version; 2289 2290 memset(buf, 0, regs->len); 2291 2292 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { 2293 off = fec_enet_register_offset[i]; 2294 2295 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2296 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2297 continue; 2298 2299 off >>= 2; 2300 buf[off] = readl(&theregs[off]); 2301 } 2302 2303 pm_runtime_mark_last_busy(dev); 2304 pm_runtime_put_autosuspend(dev); 2305 } 2306 2307 static int fec_enet_get_ts_info(struct net_device *ndev, 2308 struct ethtool_ts_info *info) 2309 { 2310 struct fec_enet_private *fep = netdev_priv(ndev); 2311 2312 if (fep->bufdesc_ex) { 2313 2314 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2315 SOF_TIMESTAMPING_RX_SOFTWARE | 2316 SOF_TIMESTAMPING_SOFTWARE | 2317 SOF_TIMESTAMPING_TX_HARDWARE | 2318 SOF_TIMESTAMPING_RX_HARDWARE | 2319 SOF_TIMESTAMPING_RAW_HARDWARE; 2320 if (fep->ptp_clock) 2321 info->phc_index = ptp_clock_index(fep->ptp_clock); 2322 else 2323 info->phc_index = -1; 2324 2325 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2326 (1 << HWTSTAMP_TX_ON); 2327 2328 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2329 (1 << HWTSTAMP_FILTER_ALL); 2330 return 0; 2331 } else { 2332 return ethtool_op_get_ts_info(ndev, info); 2333 } 2334 } 2335 2336 #if !defined(CONFIG_M5272) 2337 2338 static void fec_enet_get_pauseparam(struct net_device *ndev, 2339 struct ethtool_pauseparam *pause) 2340 { 2341 struct fec_enet_private *fep = netdev_priv(ndev); 2342 2343 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2344 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2345 pause->rx_pause = pause->tx_pause; 2346 } 2347 2348 static int fec_enet_set_pauseparam(struct net_device *ndev, 2349 struct ethtool_pauseparam *pause) 2350 { 2351 struct fec_enet_private *fep = netdev_priv(ndev); 2352 2353 if (!ndev->phydev) 2354 return -ENODEV; 2355 2356 if (pause->tx_pause != pause->rx_pause) { 2357 netdev_info(ndev, 2358 "hardware only support enable/disable both tx and rx"); 2359 return -EINVAL; 2360 } 2361 2362 fep->pause_flag = 0; 2363 2364 /* tx pause must be same as rx pause */ 2365 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2366 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2367 2368 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2369 pause->autoneg); 2370 2371 if (pause->autoneg) { 2372 if (netif_running(ndev)) 2373 fec_stop(ndev); 2374 phy_start_aneg(ndev->phydev); 2375 } 2376 if (netif_running(ndev)) { 2377 napi_disable(&fep->napi); 2378 netif_tx_lock_bh(ndev); 2379 fec_restart(ndev); 2380 netif_tx_wake_all_queues(ndev); 2381 netif_tx_unlock_bh(ndev); 2382 napi_enable(&fep->napi); 2383 } 2384 2385 return 0; 2386 } 2387 2388 static const struct fec_stat { 2389 char name[ETH_GSTRING_LEN]; 2390 u16 offset; 2391 } fec_stats[] = { 2392 /* RMON TX */ 2393 { "tx_dropped", RMON_T_DROP }, 2394 { "tx_packets", RMON_T_PACKETS }, 2395 { "tx_broadcast", RMON_T_BC_PKT }, 2396 { "tx_multicast", RMON_T_MC_PKT }, 2397 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2398 { "tx_undersize", RMON_T_UNDERSIZE }, 2399 { "tx_oversize", RMON_T_OVERSIZE }, 2400 { "tx_fragment", RMON_T_FRAG }, 2401 { "tx_jabber", RMON_T_JAB }, 2402 { "tx_collision", RMON_T_COL }, 2403 { "tx_64byte", RMON_T_P64 }, 2404 { "tx_65to127byte", RMON_T_P65TO127 }, 2405 { "tx_128to255byte", RMON_T_P128TO255 }, 2406 { "tx_256to511byte", RMON_T_P256TO511 }, 2407 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2408 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2409 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2410 { "tx_octets", RMON_T_OCTETS }, 2411 2412 /* IEEE TX */ 2413 { "IEEE_tx_drop", IEEE_T_DROP }, 2414 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2415 { "IEEE_tx_1col", IEEE_T_1COL }, 2416 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2417 { "IEEE_tx_def", IEEE_T_DEF }, 2418 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2419 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2420 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2421 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2422 { "IEEE_tx_sqe", IEEE_T_SQE }, 2423 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2424 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2425 2426 /* RMON RX */ 2427 { "rx_packets", RMON_R_PACKETS }, 2428 { "rx_broadcast", RMON_R_BC_PKT }, 2429 { "rx_multicast", RMON_R_MC_PKT }, 2430 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2431 { "rx_undersize", RMON_R_UNDERSIZE }, 2432 { "rx_oversize", RMON_R_OVERSIZE }, 2433 { "rx_fragment", RMON_R_FRAG }, 2434 { "rx_jabber", RMON_R_JAB }, 2435 { "rx_64byte", RMON_R_P64 }, 2436 { "rx_65to127byte", RMON_R_P65TO127 }, 2437 { "rx_128to255byte", RMON_R_P128TO255 }, 2438 { "rx_256to511byte", RMON_R_P256TO511 }, 2439 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2440 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2441 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2442 { "rx_octets", RMON_R_OCTETS }, 2443 2444 /* IEEE RX */ 2445 { "IEEE_rx_drop", IEEE_R_DROP }, 2446 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2447 { "IEEE_rx_crc", IEEE_R_CRC }, 2448 { "IEEE_rx_align", IEEE_R_ALIGN }, 2449 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2450 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2451 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2452 }; 2453 2454 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2455 2456 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2457 { 2458 struct fec_enet_private *fep = netdev_priv(dev); 2459 int i; 2460 2461 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2462 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2463 } 2464 2465 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2466 struct ethtool_stats *stats, u64 *data) 2467 { 2468 struct fec_enet_private *fep = netdev_priv(dev); 2469 2470 if (netif_running(dev)) 2471 fec_enet_update_ethtool_stats(dev); 2472 2473 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2474 } 2475 2476 static void fec_enet_get_strings(struct net_device *netdev, 2477 u32 stringset, u8 *data) 2478 { 2479 int i; 2480 switch (stringset) { 2481 case ETH_SS_STATS: 2482 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2483 memcpy(data + i * ETH_GSTRING_LEN, 2484 fec_stats[i].name, ETH_GSTRING_LEN); 2485 break; 2486 case ETH_SS_TEST: 2487 net_selftest_get_strings(data); 2488 break; 2489 } 2490 } 2491 2492 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2493 { 2494 switch (sset) { 2495 case ETH_SS_STATS: 2496 return ARRAY_SIZE(fec_stats); 2497 case ETH_SS_TEST: 2498 return net_selftest_get_count(); 2499 default: 2500 return -EOPNOTSUPP; 2501 } 2502 } 2503 2504 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2505 { 2506 struct fec_enet_private *fep = netdev_priv(dev); 2507 int i; 2508 2509 /* Disable MIB statistics counters */ 2510 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2511 2512 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2513 writel(0, fep->hwp + fec_stats[i].offset); 2514 2515 /* Don't disable MIB statistics counters */ 2516 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2517 } 2518 2519 #else /* !defined(CONFIG_M5272) */ 2520 #define FEC_STATS_SIZE 0 2521 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2522 { 2523 } 2524 2525 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2526 { 2527 } 2528 #endif /* !defined(CONFIG_M5272) */ 2529 2530 /* ITR clock source is enet system clock (clk_ahb). 2531 * TCTT unit is cycle_ns * 64 cycle 2532 * So, the ICTT value = X us / (cycle_ns * 64) 2533 */ 2534 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2535 { 2536 struct fec_enet_private *fep = netdev_priv(ndev); 2537 2538 return us * (fep->itr_clk_rate / 64000) / 1000; 2539 } 2540 2541 /* Set threshold for interrupt coalescing */ 2542 static void fec_enet_itr_coal_set(struct net_device *ndev) 2543 { 2544 struct fec_enet_private *fep = netdev_priv(ndev); 2545 int rx_itr, tx_itr; 2546 2547 /* Must be greater than zero to avoid unpredictable behavior */ 2548 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2549 !fep->tx_time_itr || !fep->tx_pkts_itr) 2550 return; 2551 2552 /* Select enet system clock as Interrupt Coalescing 2553 * timer Clock Source 2554 */ 2555 rx_itr = FEC_ITR_CLK_SEL; 2556 tx_itr = FEC_ITR_CLK_SEL; 2557 2558 /* set ICFT and ICTT */ 2559 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2560 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2561 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2562 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2563 2564 rx_itr |= FEC_ITR_EN; 2565 tx_itr |= FEC_ITR_EN; 2566 2567 writel(tx_itr, fep->hwp + FEC_TXIC0); 2568 writel(rx_itr, fep->hwp + FEC_RXIC0); 2569 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 2570 writel(tx_itr, fep->hwp + FEC_TXIC1); 2571 writel(rx_itr, fep->hwp + FEC_RXIC1); 2572 writel(tx_itr, fep->hwp + FEC_TXIC2); 2573 writel(rx_itr, fep->hwp + FEC_RXIC2); 2574 } 2575 } 2576 2577 static int 2578 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2579 { 2580 struct fec_enet_private *fep = netdev_priv(ndev); 2581 2582 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2583 return -EOPNOTSUPP; 2584 2585 ec->rx_coalesce_usecs = fep->rx_time_itr; 2586 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2587 2588 ec->tx_coalesce_usecs = fep->tx_time_itr; 2589 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2590 2591 return 0; 2592 } 2593 2594 static int 2595 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2596 { 2597 struct fec_enet_private *fep = netdev_priv(ndev); 2598 struct device *dev = &fep->pdev->dev; 2599 unsigned int cycle; 2600 2601 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2602 return -EOPNOTSUPP; 2603 2604 if (ec->rx_max_coalesced_frames > 255) { 2605 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2606 return -EINVAL; 2607 } 2608 2609 if (ec->tx_max_coalesced_frames > 255) { 2610 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2611 return -EINVAL; 2612 } 2613 2614 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 2615 if (cycle > 0xFFFF) { 2616 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 2617 return -EINVAL; 2618 } 2619 2620 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 2621 if (cycle > 0xFFFF) { 2622 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 2623 return -EINVAL; 2624 } 2625 2626 fep->rx_time_itr = ec->rx_coalesce_usecs; 2627 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2628 2629 fep->tx_time_itr = ec->tx_coalesce_usecs; 2630 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2631 2632 fec_enet_itr_coal_set(ndev); 2633 2634 return 0; 2635 } 2636 2637 static void fec_enet_itr_coal_init(struct net_device *ndev) 2638 { 2639 struct ethtool_coalesce ec; 2640 2641 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2642 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2643 2644 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2645 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2646 2647 fec_enet_set_coalesce(ndev, &ec); 2648 } 2649 2650 static int fec_enet_get_tunable(struct net_device *netdev, 2651 const struct ethtool_tunable *tuna, 2652 void *data) 2653 { 2654 struct fec_enet_private *fep = netdev_priv(netdev); 2655 int ret = 0; 2656 2657 switch (tuna->id) { 2658 case ETHTOOL_RX_COPYBREAK: 2659 *(u32 *)data = fep->rx_copybreak; 2660 break; 2661 default: 2662 ret = -EINVAL; 2663 break; 2664 } 2665 2666 return ret; 2667 } 2668 2669 static int fec_enet_set_tunable(struct net_device *netdev, 2670 const struct ethtool_tunable *tuna, 2671 const void *data) 2672 { 2673 struct fec_enet_private *fep = netdev_priv(netdev); 2674 int ret = 0; 2675 2676 switch (tuna->id) { 2677 case ETHTOOL_RX_COPYBREAK: 2678 fep->rx_copybreak = *(u32 *)data; 2679 break; 2680 default: 2681 ret = -EINVAL; 2682 break; 2683 } 2684 2685 return ret; 2686 } 2687 2688 static void 2689 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2690 { 2691 struct fec_enet_private *fep = netdev_priv(ndev); 2692 2693 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 2694 wol->supported = WAKE_MAGIC; 2695 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 2696 } else { 2697 wol->supported = wol->wolopts = 0; 2698 } 2699 } 2700 2701 static int 2702 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2703 { 2704 struct fec_enet_private *fep = netdev_priv(ndev); 2705 2706 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 2707 return -EINVAL; 2708 2709 if (wol->wolopts & ~WAKE_MAGIC) 2710 return -EINVAL; 2711 2712 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 2713 if (device_may_wakeup(&ndev->dev)) { 2714 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 2715 if (fep->irq[0] > 0) 2716 enable_irq_wake(fep->irq[0]); 2717 } else { 2718 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 2719 if (fep->irq[0] > 0) 2720 disable_irq_wake(fep->irq[0]); 2721 } 2722 2723 return 0; 2724 } 2725 2726 static const struct ethtool_ops fec_enet_ethtool_ops = { 2727 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 2728 ETHTOOL_COALESCE_MAX_FRAMES, 2729 .get_drvinfo = fec_enet_get_drvinfo, 2730 .get_regs_len = fec_enet_get_regs_len, 2731 .get_regs = fec_enet_get_regs, 2732 .nway_reset = phy_ethtool_nway_reset, 2733 .get_link = ethtool_op_get_link, 2734 .get_coalesce = fec_enet_get_coalesce, 2735 .set_coalesce = fec_enet_set_coalesce, 2736 #ifndef CONFIG_M5272 2737 .get_pauseparam = fec_enet_get_pauseparam, 2738 .set_pauseparam = fec_enet_set_pauseparam, 2739 .get_strings = fec_enet_get_strings, 2740 .get_ethtool_stats = fec_enet_get_ethtool_stats, 2741 .get_sset_count = fec_enet_get_sset_count, 2742 #endif 2743 .get_ts_info = fec_enet_get_ts_info, 2744 .get_tunable = fec_enet_get_tunable, 2745 .set_tunable = fec_enet_set_tunable, 2746 .get_wol = fec_enet_get_wol, 2747 .set_wol = fec_enet_set_wol, 2748 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2749 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2750 .self_test = net_selftest, 2751 }; 2752 2753 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2754 { 2755 struct fec_enet_private *fep = netdev_priv(ndev); 2756 struct phy_device *phydev = ndev->phydev; 2757 2758 if (!netif_running(ndev)) 2759 return -EINVAL; 2760 2761 if (!phydev) 2762 return -ENODEV; 2763 2764 if (fep->bufdesc_ex) { 2765 bool use_fec_hwts = !phy_has_hwtstamp(phydev); 2766 2767 if (cmd == SIOCSHWTSTAMP) { 2768 if (use_fec_hwts) 2769 return fec_ptp_set(ndev, rq); 2770 fec_ptp_disable_hwts(ndev); 2771 } else if (cmd == SIOCGHWTSTAMP) { 2772 if (use_fec_hwts) 2773 return fec_ptp_get(ndev, rq); 2774 } 2775 } 2776 2777 return phy_mii_ioctl(phydev, rq, cmd); 2778 } 2779 2780 static void fec_enet_free_buffers(struct net_device *ndev) 2781 { 2782 struct fec_enet_private *fep = netdev_priv(ndev); 2783 unsigned int i; 2784 struct sk_buff *skb; 2785 struct bufdesc *bdp; 2786 struct fec_enet_priv_tx_q *txq; 2787 struct fec_enet_priv_rx_q *rxq; 2788 unsigned int q; 2789 2790 for (q = 0; q < fep->num_rx_queues; q++) { 2791 rxq = fep->rx_queue[q]; 2792 bdp = rxq->bd.base; 2793 for (i = 0; i < rxq->bd.ring_size; i++) { 2794 skb = rxq->rx_skbuff[i]; 2795 rxq->rx_skbuff[i] = NULL; 2796 if (skb) { 2797 dma_unmap_single(&fep->pdev->dev, 2798 fec32_to_cpu(bdp->cbd_bufaddr), 2799 FEC_ENET_RX_FRSIZE - fep->rx_align, 2800 DMA_FROM_DEVICE); 2801 dev_kfree_skb(skb); 2802 } 2803 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2804 } 2805 } 2806 2807 for (q = 0; q < fep->num_tx_queues; q++) { 2808 txq = fep->tx_queue[q]; 2809 for (i = 0; i < txq->bd.ring_size; i++) { 2810 kfree(txq->tx_bounce[i]); 2811 txq->tx_bounce[i] = NULL; 2812 skb = txq->tx_skbuff[i]; 2813 txq->tx_skbuff[i] = NULL; 2814 dev_kfree_skb(skb); 2815 } 2816 } 2817 } 2818 2819 static void fec_enet_free_queue(struct net_device *ndev) 2820 { 2821 struct fec_enet_private *fep = netdev_priv(ndev); 2822 int i; 2823 struct fec_enet_priv_tx_q *txq; 2824 2825 for (i = 0; i < fep->num_tx_queues; i++) 2826 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 2827 txq = fep->tx_queue[i]; 2828 dma_free_coherent(&fep->pdev->dev, 2829 txq->bd.ring_size * TSO_HEADER_SIZE, 2830 txq->tso_hdrs, 2831 txq->tso_hdrs_dma); 2832 } 2833 2834 for (i = 0; i < fep->num_rx_queues; i++) 2835 kfree(fep->rx_queue[i]); 2836 for (i = 0; i < fep->num_tx_queues; i++) 2837 kfree(fep->tx_queue[i]); 2838 } 2839 2840 static int fec_enet_alloc_queue(struct net_device *ndev) 2841 { 2842 struct fec_enet_private *fep = netdev_priv(ndev); 2843 int i; 2844 int ret = 0; 2845 struct fec_enet_priv_tx_q *txq; 2846 2847 for (i = 0; i < fep->num_tx_queues; i++) { 2848 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 2849 if (!txq) { 2850 ret = -ENOMEM; 2851 goto alloc_failed; 2852 } 2853 2854 fep->tx_queue[i] = txq; 2855 txq->bd.ring_size = TX_RING_SIZE; 2856 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 2857 2858 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 2859 txq->tx_wake_threshold = 2860 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 2861 2862 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 2863 txq->bd.ring_size * TSO_HEADER_SIZE, 2864 &txq->tso_hdrs_dma, 2865 GFP_KERNEL); 2866 if (!txq->tso_hdrs) { 2867 ret = -ENOMEM; 2868 goto alloc_failed; 2869 } 2870 } 2871 2872 for (i = 0; i < fep->num_rx_queues; i++) { 2873 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 2874 GFP_KERNEL); 2875 if (!fep->rx_queue[i]) { 2876 ret = -ENOMEM; 2877 goto alloc_failed; 2878 } 2879 2880 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 2881 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 2882 } 2883 return ret; 2884 2885 alloc_failed: 2886 fec_enet_free_queue(ndev); 2887 return ret; 2888 } 2889 2890 static int 2891 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 2892 { 2893 struct fec_enet_private *fep = netdev_priv(ndev); 2894 unsigned int i; 2895 struct sk_buff *skb; 2896 struct bufdesc *bdp; 2897 struct fec_enet_priv_rx_q *rxq; 2898 2899 rxq = fep->rx_queue[queue]; 2900 bdp = rxq->bd.base; 2901 for (i = 0; i < rxq->bd.ring_size; i++) { 2902 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 2903 if (!skb) 2904 goto err_alloc; 2905 2906 if (fec_enet_new_rxbdp(ndev, bdp, skb)) { 2907 dev_kfree_skb(skb); 2908 goto err_alloc; 2909 } 2910 2911 rxq->rx_skbuff[i] = skb; 2912 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 2913 2914 if (fep->bufdesc_ex) { 2915 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2916 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 2917 } 2918 2919 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2920 } 2921 2922 /* Set the last buffer to wrap. */ 2923 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 2924 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2925 return 0; 2926 2927 err_alloc: 2928 fec_enet_free_buffers(ndev); 2929 return -ENOMEM; 2930 } 2931 2932 static int 2933 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 2934 { 2935 struct fec_enet_private *fep = netdev_priv(ndev); 2936 unsigned int i; 2937 struct bufdesc *bdp; 2938 struct fec_enet_priv_tx_q *txq; 2939 2940 txq = fep->tx_queue[queue]; 2941 bdp = txq->bd.base; 2942 for (i = 0; i < txq->bd.ring_size; i++) { 2943 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 2944 if (!txq->tx_bounce[i]) 2945 goto err_alloc; 2946 2947 bdp->cbd_sc = cpu_to_fec16(0); 2948 bdp->cbd_bufaddr = cpu_to_fec32(0); 2949 2950 if (fep->bufdesc_ex) { 2951 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2952 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 2953 } 2954 2955 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 2956 } 2957 2958 /* Set the last buffer to wrap. */ 2959 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 2960 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2961 2962 return 0; 2963 2964 err_alloc: 2965 fec_enet_free_buffers(ndev); 2966 return -ENOMEM; 2967 } 2968 2969 static int fec_enet_alloc_buffers(struct net_device *ndev) 2970 { 2971 struct fec_enet_private *fep = netdev_priv(ndev); 2972 unsigned int i; 2973 2974 for (i = 0; i < fep->num_rx_queues; i++) 2975 if (fec_enet_alloc_rxq_buffers(ndev, i)) 2976 return -ENOMEM; 2977 2978 for (i = 0; i < fep->num_tx_queues; i++) 2979 if (fec_enet_alloc_txq_buffers(ndev, i)) 2980 return -ENOMEM; 2981 return 0; 2982 } 2983 2984 static int 2985 fec_enet_open(struct net_device *ndev) 2986 { 2987 struct fec_enet_private *fep = netdev_priv(ndev); 2988 int ret; 2989 bool reset_again; 2990 2991 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 2992 if (ret < 0) 2993 return ret; 2994 2995 pinctrl_pm_select_default_state(&fep->pdev->dev); 2996 ret = fec_enet_clk_enable(ndev, true); 2997 if (ret) 2998 goto clk_enable; 2999 3000 /* During the first fec_enet_open call the PHY isn't probed at this 3001 * point. Therefore the phy_reset_after_clk_enable() call within 3002 * fec_enet_clk_enable() fails. As we need this reset in order to be 3003 * sure the PHY is working correctly we check if we need to reset again 3004 * later when the PHY is probed 3005 */ 3006 if (ndev->phydev && ndev->phydev->drv) 3007 reset_again = false; 3008 else 3009 reset_again = true; 3010 3011 /* I should reset the ring buffers here, but I don't yet know 3012 * a simple way to do that. 3013 */ 3014 3015 ret = fec_enet_alloc_buffers(ndev); 3016 if (ret) 3017 goto err_enet_alloc; 3018 3019 /* Init MAC prior to mii bus probe */ 3020 fec_restart(ndev); 3021 3022 /* Call phy_reset_after_clk_enable() again if it failed during 3023 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3024 */ 3025 if (reset_again) 3026 fec_enet_phy_reset_after_clk_enable(ndev); 3027 3028 /* Probe and connect to PHY when open the interface */ 3029 ret = fec_enet_mii_probe(ndev); 3030 if (ret) 3031 goto err_enet_mii_probe; 3032 3033 if (fep->quirks & FEC_QUIRK_ERR006687) 3034 imx6q_cpuidle_fec_irqs_used(); 3035 3036 napi_enable(&fep->napi); 3037 phy_start(ndev->phydev); 3038 netif_tx_start_all_queues(ndev); 3039 3040 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3041 FEC_WOL_FLAG_ENABLE); 3042 3043 return 0; 3044 3045 err_enet_mii_probe: 3046 fec_enet_free_buffers(ndev); 3047 err_enet_alloc: 3048 fec_enet_clk_enable(ndev, false); 3049 clk_enable: 3050 pm_runtime_mark_last_busy(&fep->pdev->dev); 3051 pm_runtime_put_autosuspend(&fep->pdev->dev); 3052 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3053 return ret; 3054 } 3055 3056 static int 3057 fec_enet_close(struct net_device *ndev) 3058 { 3059 struct fec_enet_private *fep = netdev_priv(ndev); 3060 3061 phy_stop(ndev->phydev); 3062 3063 if (netif_device_present(ndev)) { 3064 napi_disable(&fep->napi); 3065 netif_tx_disable(ndev); 3066 fec_stop(ndev); 3067 } 3068 3069 phy_disconnect(ndev->phydev); 3070 3071 if (fep->quirks & FEC_QUIRK_ERR006687) 3072 imx6q_cpuidle_fec_irqs_unused(); 3073 3074 fec_enet_update_ethtool_stats(ndev); 3075 3076 fec_enet_clk_enable(ndev, false); 3077 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3078 pm_runtime_mark_last_busy(&fep->pdev->dev); 3079 pm_runtime_put_autosuspend(&fep->pdev->dev); 3080 3081 fec_enet_free_buffers(ndev); 3082 3083 return 0; 3084 } 3085 3086 /* Set or clear the multicast filter for this adaptor. 3087 * Skeleton taken from sunlance driver. 3088 * The CPM Ethernet implementation allows Multicast as well as individual 3089 * MAC address filtering. Some of the drivers check to make sure it is 3090 * a group multicast address, and discard those that are not. I guess I 3091 * will do the same for now, but just remove the test if you want 3092 * individual filtering as well (do the upper net layers want or support 3093 * this kind of feature?). 3094 */ 3095 3096 #define FEC_HASH_BITS 6 /* #bits in hash */ 3097 3098 static void set_multicast_list(struct net_device *ndev) 3099 { 3100 struct fec_enet_private *fep = netdev_priv(ndev); 3101 struct netdev_hw_addr *ha; 3102 unsigned int crc, tmp; 3103 unsigned char hash; 3104 unsigned int hash_high = 0, hash_low = 0; 3105 3106 if (ndev->flags & IFF_PROMISC) { 3107 tmp = readl(fep->hwp + FEC_R_CNTRL); 3108 tmp |= 0x8; 3109 writel(tmp, fep->hwp + FEC_R_CNTRL); 3110 return; 3111 } 3112 3113 tmp = readl(fep->hwp + FEC_R_CNTRL); 3114 tmp &= ~0x8; 3115 writel(tmp, fep->hwp + FEC_R_CNTRL); 3116 3117 if (ndev->flags & IFF_ALLMULTI) { 3118 /* Catch all multicast addresses, so set the 3119 * filter to all 1's 3120 */ 3121 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3122 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3123 3124 return; 3125 } 3126 3127 /* Add the addresses in hash register */ 3128 netdev_for_each_mc_addr(ha, ndev) { 3129 /* calculate crc32 value of mac address */ 3130 crc = ether_crc_le(ndev->addr_len, ha->addr); 3131 3132 /* only upper 6 bits (FEC_HASH_BITS) are used 3133 * which point to specific bit in the hash registers 3134 */ 3135 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3136 3137 if (hash > 31) 3138 hash_high |= 1 << (hash - 32); 3139 else 3140 hash_low |= 1 << hash; 3141 } 3142 3143 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3144 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3145 } 3146 3147 /* Set a MAC change in hardware. */ 3148 static int 3149 fec_set_mac_address(struct net_device *ndev, void *p) 3150 { 3151 struct fec_enet_private *fep = netdev_priv(ndev); 3152 struct sockaddr *addr = p; 3153 3154 if (addr) { 3155 if (!is_valid_ether_addr(addr->sa_data)) 3156 return -EADDRNOTAVAIL; 3157 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 3158 } 3159 3160 /* Add netif status check here to avoid system hang in below case: 3161 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3162 * After ethx down, fec all clocks are gated off and then register 3163 * access causes system hang. 3164 */ 3165 if (!netif_running(ndev)) 3166 return 0; 3167 3168 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3169 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3170 fep->hwp + FEC_ADDR_LOW); 3171 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3172 fep->hwp + FEC_ADDR_HIGH); 3173 return 0; 3174 } 3175 3176 #ifdef CONFIG_NET_POLL_CONTROLLER 3177 /** 3178 * fec_poll_controller - FEC Poll controller function 3179 * @dev: The FEC network adapter 3180 * 3181 * Polled functionality used by netconsole and others in non interrupt mode 3182 * 3183 */ 3184 static void fec_poll_controller(struct net_device *dev) 3185 { 3186 int i; 3187 struct fec_enet_private *fep = netdev_priv(dev); 3188 3189 for (i = 0; i < FEC_IRQ_NUM; i++) { 3190 if (fep->irq[i] > 0) { 3191 disable_irq(fep->irq[i]); 3192 fec_enet_interrupt(fep->irq[i], dev); 3193 enable_irq(fep->irq[i]); 3194 } 3195 } 3196 } 3197 #endif 3198 3199 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3200 netdev_features_t features) 3201 { 3202 struct fec_enet_private *fep = netdev_priv(netdev); 3203 netdev_features_t changed = features ^ netdev->features; 3204 3205 netdev->features = features; 3206 3207 /* Receive checksum has been changed */ 3208 if (changed & NETIF_F_RXCSUM) { 3209 if (features & NETIF_F_RXCSUM) 3210 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3211 else 3212 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3213 } 3214 } 3215 3216 static int fec_set_features(struct net_device *netdev, 3217 netdev_features_t features) 3218 { 3219 struct fec_enet_private *fep = netdev_priv(netdev); 3220 netdev_features_t changed = features ^ netdev->features; 3221 3222 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3223 napi_disable(&fep->napi); 3224 netif_tx_lock_bh(netdev); 3225 fec_stop(netdev); 3226 fec_enet_set_netdev_features(netdev, features); 3227 fec_restart(netdev); 3228 netif_tx_wake_all_queues(netdev); 3229 netif_tx_unlock_bh(netdev); 3230 napi_enable(&fep->napi); 3231 } else { 3232 fec_enet_set_netdev_features(netdev, features); 3233 } 3234 3235 return 0; 3236 } 3237 3238 static const struct net_device_ops fec_netdev_ops = { 3239 .ndo_open = fec_enet_open, 3240 .ndo_stop = fec_enet_close, 3241 .ndo_start_xmit = fec_enet_start_xmit, 3242 .ndo_set_rx_mode = set_multicast_list, 3243 .ndo_validate_addr = eth_validate_addr, 3244 .ndo_tx_timeout = fec_timeout, 3245 .ndo_set_mac_address = fec_set_mac_address, 3246 .ndo_do_ioctl = fec_enet_ioctl, 3247 #ifdef CONFIG_NET_POLL_CONTROLLER 3248 .ndo_poll_controller = fec_poll_controller, 3249 #endif 3250 .ndo_set_features = fec_set_features, 3251 }; 3252 3253 static const unsigned short offset_des_active_rxq[] = { 3254 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3255 }; 3256 3257 static const unsigned short offset_des_active_txq[] = { 3258 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3259 }; 3260 3261 /* 3262 * XXX: We need to clean up on failure exits here. 3263 * 3264 */ 3265 static int fec_enet_init(struct net_device *ndev) 3266 { 3267 struct fec_enet_private *fep = netdev_priv(ndev); 3268 struct bufdesc *cbd_base; 3269 dma_addr_t bd_dma; 3270 int bd_size; 3271 unsigned int i; 3272 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3273 sizeof(struct bufdesc); 3274 unsigned dsize_log2 = __fls(dsize); 3275 int ret; 3276 3277 WARN_ON(dsize != (1 << dsize_log2)); 3278 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3279 fep->rx_align = 0xf; 3280 fep->tx_align = 0xf; 3281 #else 3282 fep->rx_align = 0x3; 3283 fep->tx_align = 0x3; 3284 #endif 3285 3286 /* Check mask of the streaming and coherent API */ 3287 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3288 if (ret < 0) { 3289 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3290 return ret; 3291 } 3292 3293 fec_enet_alloc_queue(ndev); 3294 3295 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3296 3297 /* Allocate memory for buffer descriptors. */ 3298 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3299 GFP_KERNEL); 3300 if (!cbd_base) { 3301 return -ENOMEM; 3302 } 3303 3304 /* Get the Ethernet address */ 3305 fec_get_mac(ndev); 3306 /* make sure MAC we just acquired is programmed into the hw */ 3307 fec_set_mac_address(ndev, NULL); 3308 3309 /* Set receive and transmit descriptor base. */ 3310 for (i = 0; i < fep->num_rx_queues; i++) { 3311 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3312 unsigned size = dsize * rxq->bd.ring_size; 3313 3314 rxq->bd.qid = i; 3315 rxq->bd.base = cbd_base; 3316 rxq->bd.cur = cbd_base; 3317 rxq->bd.dma = bd_dma; 3318 rxq->bd.dsize = dsize; 3319 rxq->bd.dsize_log2 = dsize_log2; 3320 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3321 bd_dma += size; 3322 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3323 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3324 } 3325 3326 for (i = 0; i < fep->num_tx_queues; i++) { 3327 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3328 unsigned size = dsize * txq->bd.ring_size; 3329 3330 txq->bd.qid = i; 3331 txq->bd.base = cbd_base; 3332 txq->bd.cur = cbd_base; 3333 txq->bd.dma = bd_dma; 3334 txq->bd.dsize = dsize; 3335 txq->bd.dsize_log2 = dsize_log2; 3336 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3337 bd_dma += size; 3338 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3339 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3340 } 3341 3342 3343 /* The FEC Ethernet specific entries in the device structure */ 3344 ndev->watchdog_timeo = TX_TIMEOUT; 3345 ndev->netdev_ops = &fec_netdev_ops; 3346 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3347 3348 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3349 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); 3350 3351 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3352 /* enable hw VLAN support */ 3353 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3354 3355 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3356 ndev->gso_max_segs = FEC_MAX_TSO_SEGS; 3357 3358 /* enable hw accelerator */ 3359 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3360 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3361 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3362 } 3363 3364 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 3365 fep->tx_align = 0; 3366 fep->rx_align = 0x3f; 3367 } 3368 3369 ndev->hw_features = ndev->features; 3370 3371 fec_restart(ndev); 3372 3373 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3374 fec_enet_clear_ethtool_stats(ndev); 3375 else 3376 fec_enet_update_ethtool_stats(ndev); 3377 3378 return 0; 3379 } 3380 3381 #ifdef CONFIG_OF 3382 static int fec_reset_phy(struct platform_device *pdev) 3383 { 3384 int err, phy_reset; 3385 bool active_high = false; 3386 int msec = 1, phy_post_delay = 0; 3387 struct device_node *np = pdev->dev.of_node; 3388 3389 if (!np) 3390 return 0; 3391 3392 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3393 /* A sane reset duration should not be longer than 1s */ 3394 if (!err && msec > 1000) 3395 msec = 1; 3396 3397 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3398 if (phy_reset == -EPROBE_DEFER) 3399 return phy_reset; 3400 else if (!gpio_is_valid(phy_reset)) 3401 return 0; 3402 3403 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 3404 /* valid reset duration should be less than 1s */ 3405 if (!err && phy_post_delay > 1000) 3406 return -EINVAL; 3407 3408 active_high = of_property_read_bool(np, "phy-reset-active-high"); 3409 3410 err = devm_gpio_request_one(&pdev->dev, phy_reset, 3411 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 3412 "phy-reset"); 3413 if (err) { 3414 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 3415 return err; 3416 } 3417 3418 if (msec > 20) 3419 msleep(msec); 3420 else 3421 usleep_range(msec * 1000, msec * 1000 + 1000); 3422 3423 gpio_set_value_cansleep(phy_reset, !active_high); 3424 3425 if (!phy_post_delay) 3426 return 0; 3427 3428 if (phy_post_delay > 20) 3429 msleep(phy_post_delay); 3430 else 3431 usleep_range(phy_post_delay * 1000, 3432 phy_post_delay * 1000 + 1000); 3433 3434 return 0; 3435 } 3436 #else /* CONFIG_OF */ 3437 static int fec_reset_phy(struct platform_device *pdev) 3438 { 3439 /* 3440 * In case of platform probe, the reset has been done 3441 * by machine code. 3442 */ 3443 return 0; 3444 } 3445 #endif /* CONFIG_OF */ 3446 3447 static void 3448 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 3449 { 3450 struct device_node *np = pdev->dev.of_node; 3451 3452 *num_tx = *num_rx = 1; 3453 3454 if (!np || !of_device_is_available(np)) 3455 return; 3456 3457 /* parse the num of tx and rx queues */ 3458 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 3459 3460 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 3461 3462 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 3463 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 3464 *num_tx); 3465 *num_tx = 1; 3466 return; 3467 } 3468 3469 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 3470 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 3471 *num_rx); 3472 *num_rx = 1; 3473 return; 3474 } 3475 3476 } 3477 3478 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 3479 { 3480 int irq_cnt = platform_irq_count(pdev); 3481 3482 if (irq_cnt > FEC_IRQ_NUM) 3483 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 3484 else if (irq_cnt == 2) 3485 irq_cnt = 1; /* last for pps */ 3486 else if (irq_cnt <= 0) 3487 irq_cnt = 1; /* At least 1 irq is needed */ 3488 return irq_cnt; 3489 } 3490 3491 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 3492 struct device_node *np) 3493 { 3494 struct device_node *gpr_np; 3495 u32 out_val[3]; 3496 int ret = 0; 3497 3498 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 3499 if (!gpr_np) 3500 return 0; 3501 3502 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 3503 ARRAY_SIZE(out_val)); 3504 if (ret) { 3505 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 3506 return ret; 3507 } 3508 3509 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 3510 if (IS_ERR(fep->stop_gpr.gpr)) { 3511 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 3512 ret = PTR_ERR(fep->stop_gpr.gpr); 3513 fep->stop_gpr.gpr = NULL; 3514 goto out; 3515 } 3516 3517 fep->stop_gpr.reg = out_val[1]; 3518 fep->stop_gpr.bit = out_val[2]; 3519 3520 out: 3521 of_node_put(gpr_np); 3522 3523 return ret; 3524 } 3525 3526 static int 3527 fec_probe(struct platform_device *pdev) 3528 { 3529 struct fec_enet_private *fep; 3530 struct fec_platform_data *pdata; 3531 phy_interface_t interface; 3532 struct net_device *ndev; 3533 int i, irq, ret = 0; 3534 const struct of_device_id *of_id; 3535 static int dev_id; 3536 struct device_node *np = pdev->dev.of_node, *phy_node; 3537 int num_tx_qs; 3538 int num_rx_qs; 3539 char irq_name[8]; 3540 int irq_cnt; 3541 struct fec_devinfo *dev_info; 3542 3543 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 3544 3545 /* Init network device */ 3546 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 3547 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 3548 if (!ndev) 3549 return -ENOMEM; 3550 3551 SET_NETDEV_DEV(ndev, &pdev->dev); 3552 3553 /* setup board info structure */ 3554 fep = netdev_priv(ndev); 3555 3556 of_id = of_match_device(fec_dt_ids, &pdev->dev); 3557 if (of_id) 3558 pdev->id_entry = of_id->data; 3559 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 3560 if (dev_info) 3561 fep->quirks = dev_info->quirks; 3562 3563 fep->netdev = ndev; 3564 fep->num_rx_queues = num_rx_qs; 3565 fep->num_tx_queues = num_tx_qs; 3566 3567 #if !defined(CONFIG_M5272) 3568 /* default enable pause frame auto negotiation */ 3569 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 3570 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 3571 #endif 3572 3573 /* Select default pin state */ 3574 pinctrl_pm_select_default_state(&pdev->dev); 3575 3576 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 3577 if (IS_ERR(fep->hwp)) { 3578 ret = PTR_ERR(fep->hwp); 3579 goto failed_ioremap; 3580 } 3581 3582 fep->pdev = pdev; 3583 fep->dev_id = dev_id++; 3584 3585 platform_set_drvdata(pdev, ndev); 3586 3587 if ((of_machine_is_compatible("fsl,imx6q") || 3588 of_machine_is_compatible("fsl,imx6dl")) && 3589 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 3590 fep->quirks |= FEC_QUIRK_ERR006687; 3591 3592 if (of_get_property(np, "fsl,magic-packet", NULL)) 3593 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 3594 3595 ret = fec_enet_init_stop_mode(fep, np); 3596 if (ret) 3597 goto failed_stop_mode; 3598 3599 phy_node = of_parse_phandle(np, "phy-handle", 0); 3600 if (!phy_node && of_phy_is_fixed_link(np)) { 3601 ret = of_phy_register_fixed_link(np); 3602 if (ret < 0) { 3603 dev_err(&pdev->dev, 3604 "broken fixed-link specification\n"); 3605 goto failed_phy; 3606 } 3607 phy_node = of_node_get(np); 3608 } 3609 fep->phy_node = phy_node; 3610 3611 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 3612 if (ret) { 3613 pdata = dev_get_platdata(&pdev->dev); 3614 if (pdata) 3615 fep->phy_interface = pdata->phy; 3616 else 3617 fep->phy_interface = PHY_INTERFACE_MODE_MII; 3618 } else { 3619 fep->phy_interface = interface; 3620 } 3621 3622 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 3623 if (IS_ERR(fep->clk_ipg)) { 3624 ret = PTR_ERR(fep->clk_ipg); 3625 goto failed_clk; 3626 } 3627 3628 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 3629 if (IS_ERR(fep->clk_ahb)) { 3630 ret = PTR_ERR(fep->clk_ahb); 3631 goto failed_clk; 3632 } 3633 3634 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 3635 3636 /* enet_out is optional, depends on board */ 3637 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); 3638 if (IS_ERR(fep->clk_enet_out)) 3639 fep->clk_enet_out = NULL; 3640 3641 fep->ptp_clk_on = false; 3642 mutex_init(&fep->ptp_clk_mutex); 3643 3644 /* clk_ref is optional, depends on board */ 3645 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); 3646 if (IS_ERR(fep->clk_ref)) 3647 fep->clk_ref = NULL; 3648 3649 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 3650 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 3651 if (IS_ERR(fep->clk_ptp)) { 3652 fep->clk_ptp = NULL; 3653 fep->bufdesc_ex = false; 3654 } 3655 3656 ret = fec_enet_clk_enable(ndev, true); 3657 if (ret) 3658 goto failed_clk; 3659 3660 ret = clk_prepare_enable(fep->clk_ipg); 3661 if (ret) 3662 goto failed_clk_ipg; 3663 ret = clk_prepare_enable(fep->clk_ahb); 3664 if (ret) 3665 goto failed_clk_ahb; 3666 3667 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 3668 if (!IS_ERR(fep->reg_phy)) { 3669 ret = regulator_enable(fep->reg_phy); 3670 if (ret) { 3671 dev_err(&pdev->dev, 3672 "Failed to enable phy regulator: %d\n", ret); 3673 goto failed_regulator; 3674 } 3675 } else { 3676 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 3677 ret = -EPROBE_DEFER; 3678 goto failed_regulator; 3679 } 3680 fep->reg_phy = NULL; 3681 } 3682 3683 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 3684 pm_runtime_use_autosuspend(&pdev->dev); 3685 pm_runtime_get_noresume(&pdev->dev); 3686 pm_runtime_set_active(&pdev->dev); 3687 pm_runtime_enable(&pdev->dev); 3688 3689 ret = fec_reset_phy(pdev); 3690 if (ret) 3691 goto failed_reset; 3692 3693 irq_cnt = fec_enet_get_irq_cnt(pdev); 3694 if (fep->bufdesc_ex) 3695 fec_ptp_init(pdev, irq_cnt); 3696 3697 ret = fec_enet_init(ndev); 3698 if (ret) 3699 goto failed_init; 3700 3701 for (i = 0; i < irq_cnt; i++) { 3702 snprintf(irq_name, sizeof(irq_name), "int%d", i); 3703 irq = platform_get_irq_byname_optional(pdev, irq_name); 3704 if (irq < 0) 3705 irq = platform_get_irq(pdev, i); 3706 if (irq < 0) { 3707 ret = irq; 3708 goto failed_irq; 3709 } 3710 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 3711 0, pdev->name, ndev); 3712 if (ret) 3713 goto failed_irq; 3714 3715 fep->irq[i] = irq; 3716 } 3717 3718 ret = fec_enet_mii_init(pdev); 3719 if (ret) 3720 goto failed_mii_init; 3721 3722 /* Carrier starts down, phylib will bring it up */ 3723 netif_carrier_off(ndev); 3724 fec_enet_clk_enable(ndev, false); 3725 pinctrl_pm_select_sleep_state(&pdev->dev); 3726 3727 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 3728 3729 ret = register_netdev(ndev); 3730 if (ret) 3731 goto failed_register; 3732 3733 device_init_wakeup(&ndev->dev, fep->wol_flag & 3734 FEC_WOL_HAS_MAGIC_PACKET); 3735 3736 if (fep->bufdesc_ex && fep->ptp_clock) 3737 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 3738 3739 fep->rx_copybreak = COPYBREAK_DEFAULT; 3740 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 3741 3742 pm_runtime_mark_last_busy(&pdev->dev); 3743 pm_runtime_put_autosuspend(&pdev->dev); 3744 3745 return 0; 3746 3747 failed_register: 3748 fec_enet_mii_remove(fep); 3749 failed_mii_init: 3750 failed_irq: 3751 failed_init: 3752 fec_ptp_stop(pdev); 3753 failed_reset: 3754 pm_runtime_put_noidle(&pdev->dev); 3755 pm_runtime_disable(&pdev->dev); 3756 if (fep->reg_phy) 3757 regulator_disable(fep->reg_phy); 3758 failed_regulator: 3759 clk_disable_unprepare(fep->clk_ahb); 3760 failed_clk_ahb: 3761 clk_disable_unprepare(fep->clk_ipg); 3762 failed_clk_ipg: 3763 fec_enet_clk_enable(ndev, false); 3764 failed_clk: 3765 if (of_phy_is_fixed_link(np)) 3766 of_phy_deregister_fixed_link(np); 3767 of_node_put(phy_node); 3768 failed_stop_mode: 3769 failed_phy: 3770 dev_id--; 3771 failed_ioremap: 3772 free_netdev(ndev); 3773 3774 return ret; 3775 } 3776 3777 static int 3778 fec_drv_remove(struct platform_device *pdev) 3779 { 3780 struct net_device *ndev = platform_get_drvdata(pdev); 3781 struct fec_enet_private *fep = netdev_priv(ndev); 3782 struct device_node *np = pdev->dev.of_node; 3783 int ret; 3784 3785 ret = pm_runtime_resume_and_get(&pdev->dev); 3786 if (ret < 0) 3787 return ret; 3788 3789 cancel_work_sync(&fep->tx_timeout_work); 3790 fec_ptp_stop(pdev); 3791 unregister_netdev(ndev); 3792 fec_enet_mii_remove(fep); 3793 if (fep->reg_phy) 3794 regulator_disable(fep->reg_phy); 3795 3796 if (of_phy_is_fixed_link(np)) 3797 of_phy_deregister_fixed_link(np); 3798 of_node_put(fep->phy_node); 3799 free_netdev(ndev); 3800 3801 clk_disable_unprepare(fep->clk_ahb); 3802 clk_disable_unprepare(fep->clk_ipg); 3803 pm_runtime_put_noidle(&pdev->dev); 3804 pm_runtime_disable(&pdev->dev); 3805 3806 return 0; 3807 } 3808 3809 static int __maybe_unused fec_suspend(struct device *dev) 3810 { 3811 struct net_device *ndev = dev_get_drvdata(dev); 3812 struct fec_enet_private *fep = netdev_priv(ndev); 3813 3814 rtnl_lock(); 3815 if (netif_running(ndev)) { 3816 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 3817 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 3818 phy_stop(ndev->phydev); 3819 napi_disable(&fep->napi); 3820 netif_tx_lock_bh(ndev); 3821 netif_device_detach(ndev); 3822 netif_tx_unlock_bh(ndev); 3823 fec_stop(ndev); 3824 fec_enet_clk_enable(ndev, false); 3825 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3826 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3827 } 3828 rtnl_unlock(); 3829 3830 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3831 regulator_disable(fep->reg_phy); 3832 3833 /* SOC supply clock to phy, when clock is disabled, phy link down 3834 * SOC control phy regulator, when regulator is disabled, phy link down 3835 */ 3836 if (fep->clk_enet_out || fep->reg_phy) 3837 fep->link = 0; 3838 3839 return 0; 3840 } 3841 3842 static int __maybe_unused fec_resume(struct device *dev) 3843 { 3844 struct net_device *ndev = dev_get_drvdata(dev); 3845 struct fec_enet_private *fep = netdev_priv(ndev); 3846 int ret; 3847 int val; 3848 3849 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 3850 ret = regulator_enable(fep->reg_phy); 3851 if (ret) 3852 return ret; 3853 } 3854 3855 rtnl_lock(); 3856 if (netif_running(ndev)) { 3857 ret = fec_enet_clk_enable(ndev, true); 3858 if (ret) { 3859 rtnl_unlock(); 3860 goto failed_clk; 3861 } 3862 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 3863 fec_enet_stop_mode(fep, false); 3864 3865 val = readl(fep->hwp + FEC_ECNTRL); 3866 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 3867 writel(val, fep->hwp + FEC_ECNTRL); 3868 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 3869 } else { 3870 pinctrl_pm_select_default_state(&fep->pdev->dev); 3871 } 3872 fec_restart(ndev); 3873 netif_tx_lock_bh(ndev); 3874 netif_device_attach(ndev); 3875 netif_tx_unlock_bh(ndev); 3876 napi_enable(&fep->napi); 3877 phy_init_hw(ndev->phydev); 3878 phy_start(ndev->phydev); 3879 } 3880 rtnl_unlock(); 3881 3882 return 0; 3883 3884 failed_clk: 3885 if (fep->reg_phy) 3886 regulator_disable(fep->reg_phy); 3887 return ret; 3888 } 3889 3890 static int __maybe_unused fec_runtime_suspend(struct device *dev) 3891 { 3892 struct net_device *ndev = dev_get_drvdata(dev); 3893 struct fec_enet_private *fep = netdev_priv(ndev); 3894 3895 clk_disable_unprepare(fep->clk_ahb); 3896 clk_disable_unprepare(fep->clk_ipg); 3897 3898 return 0; 3899 } 3900 3901 static int __maybe_unused fec_runtime_resume(struct device *dev) 3902 { 3903 struct net_device *ndev = dev_get_drvdata(dev); 3904 struct fec_enet_private *fep = netdev_priv(ndev); 3905 int ret; 3906 3907 ret = clk_prepare_enable(fep->clk_ahb); 3908 if (ret) 3909 return ret; 3910 ret = clk_prepare_enable(fep->clk_ipg); 3911 if (ret) 3912 goto failed_clk_ipg; 3913 3914 return 0; 3915 3916 failed_clk_ipg: 3917 clk_disable_unprepare(fep->clk_ahb); 3918 return ret; 3919 } 3920 3921 static const struct dev_pm_ops fec_pm_ops = { 3922 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 3923 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 3924 }; 3925 3926 static struct platform_driver fec_driver = { 3927 .driver = { 3928 .name = DRIVER_NAME, 3929 .pm = &fec_pm_ops, 3930 .of_match_table = fec_dt_ids, 3931 .suppress_bind_attrs = true, 3932 }, 3933 .id_table = fec_devtype, 3934 .probe = fec_probe, 3935 .remove = fec_drv_remove, 3936 }; 3937 3938 module_platform_driver(fec_driver); 3939 3940 MODULE_ALIAS("platform:"DRIVER_NAME); 3941 MODULE_LICENSE("GPL"); 3942