1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63 
64 #include <asm/cacheflush.h>
65 
66 #include "fec.h"
67 
68 static void set_multicast_list(struct net_device *ndev);
69 static void fec_enet_itr_coal_init(struct net_device *ndev);
70 
71 #define DRIVER_NAME	"fec"
72 
73 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
74 
75 /* Pause frame feild and FIFO threshold */
76 #define FEC_ENET_FCE	(1 << 5)
77 #define FEC_ENET_RSEM_V	0x84
78 #define FEC_ENET_RSFL_V	16
79 #define FEC_ENET_RAEM_V	0x8
80 #define FEC_ENET_RAFL_V	0x8
81 #define FEC_ENET_OPD_V	0xFFF0
82 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
83 
84 static struct platform_device_id fec_devtype[] = {
85 	{
86 		/* keep it for coldfire */
87 		.name = DRIVER_NAME,
88 		.driver_data = 0,
89 	}, {
90 		.name = "imx25-fec",
91 		.driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
92 	}, {
93 		.name = "imx27-fec",
94 		.driver_data = FEC_QUIRK_HAS_RACC,
95 	}, {
96 		.name = "imx28-fec",
97 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
98 				FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
99 	}, {
100 		.name = "imx6q-fec",
101 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
102 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
103 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
104 				FEC_QUIRK_HAS_RACC,
105 	}, {
106 		.name = "mvf600-fec",
107 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
108 	}, {
109 		.name = "imx6sx-fec",
110 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
111 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
112 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
113 				FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
114 				FEC_QUIRK_HAS_RACC,
115 	}, {
116 		/* sentinel */
117 	}
118 };
119 MODULE_DEVICE_TABLE(platform, fec_devtype);
120 
121 enum imx_fec_type {
122 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
123 	IMX27_FEC,	/* runs on i.mx27/35/51 */
124 	IMX28_FEC,
125 	IMX6Q_FEC,
126 	MVF600_FEC,
127 	IMX6SX_FEC,
128 };
129 
130 static const struct of_device_id fec_dt_ids[] = {
131 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
132 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
133 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
134 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
135 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
136 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
137 	{ /* sentinel */ }
138 };
139 MODULE_DEVICE_TABLE(of, fec_dt_ids);
140 
141 static unsigned char macaddr[ETH_ALEN];
142 module_param_array(macaddr, byte, NULL, 0);
143 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
144 
145 #if defined(CONFIG_M5272)
146 /*
147  * Some hardware gets it MAC address out of local flash memory.
148  * if this is non-zero then assume it is the address to get MAC from.
149  */
150 #if defined(CONFIG_NETtel)
151 #define	FEC_FLASHMAC	0xf0006006
152 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
153 #define	FEC_FLASHMAC	0xf0006000
154 #elif defined(CONFIG_CANCam)
155 #define	FEC_FLASHMAC	0xf0020000
156 #elif defined (CONFIG_M5272C3)
157 #define	FEC_FLASHMAC	(0xffe04000 + 4)
158 #elif defined(CONFIG_MOD5272)
159 #define FEC_FLASHMAC	0xffc0406b
160 #else
161 #define	FEC_FLASHMAC	0
162 #endif
163 #endif /* CONFIG_M5272 */
164 
165 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
166  */
167 #define PKT_MAXBUF_SIZE		1522
168 #define PKT_MINBUF_SIZE		64
169 #define PKT_MAXBLR_SIZE		1536
170 
171 /* FEC receive acceleration */
172 #define FEC_RACC_IPDIS		(1 << 1)
173 #define FEC_RACC_PRODIS		(1 << 2)
174 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
175 
176 /*
177  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
178  * size bits. Other FEC hardware does not, so we need to take that into
179  * account when setting it.
180  */
181 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
182     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
183 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
184 #else
185 #define	OPT_FRAME_SIZE	0
186 #endif
187 
188 /* FEC MII MMFR bits definition */
189 #define FEC_MMFR_ST		(1 << 30)
190 #define FEC_MMFR_OP_READ	(2 << 28)
191 #define FEC_MMFR_OP_WRITE	(1 << 28)
192 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
193 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
194 #define FEC_MMFR_TA		(2 << 16)
195 #define FEC_MMFR_DATA(v)	(v & 0xffff)
196 /* FEC ECR bits definition */
197 #define FEC_ECR_MAGICEN		(1 << 2)
198 #define FEC_ECR_SLEEP		(1 << 3)
199 
200 #define FEC_MII_TIMEOUT		30000 /* us */
201 
202 /* Transmitter timeout */
203 #define TX_TIMEOUT (2 * HZ)
204 
205 #define FEC_PAUSE_FLAG_AUTONEG	0x1
206 #define FEC_PAUSE_FLAG_ENABLE	0x2
207 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
208 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
209 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
210 
211 #define COPYBREAK_DEFAULT	256
212 
213 #define TSO_HEADER_SIZE		128
214 /* Max number of allowed TCP segments for software TSO */
215 #define FEC_MAX_TSO_SEGS	100
216 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
217 
218 #define IS_TSO_HEADER(txq, addr) \
219 	((addr >= txq->tso_hdrs_dma) && \
220 	(addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
221 
222 static int mii_cnt;
223 
224 static inline
225 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
226 				      struct fec_enet_private *fep,
227 				      int queue_id)
228 {
229 	struct bufdesc *new_bd = bdp + 1;
230 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
231 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
232 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
233 	struct bufdesc_ex *ex_base;
234 	struct bufdesc *base;
235 	int ring_size;
236 
237 	if (bdp >= txq->tx_bd_base) {
238 		base = txq->tx_bd_base;
239 		ring_size = txq->tx_ring_size;
240 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
241 	} else {
242 		base = rxq->rx_bd_base;
243 		ring_size = rxq->rx_ring_size;
244 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
245 	}
246 
247 	if (fep->bufdesc_ex)
248 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
249 			ex_base : ex_new_bd);
250 	else
251 		return (new_bd >= (base + ring_size)) ?
252 			base : new_bd;
253 }
254 
255 static inline
256 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
257 				      struct fec_enet_private *fep,
258 				      int queue_id)
259 {
260 	struct bufdesc *new_bd = bdp - 1;
261 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
262 	struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
263 	struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
264 	struct bufdesc_ex *ex_base;
265 	struct bufdesc *base;
266 	int ring_size;
267 
268 	if (bdp >= txq->tx_bd_base) {
269 		base = txq->tx_bd_base;
270 		ring_size = txq->tx_ring_size;
271 		ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
272 	} else {
273 		base = rxq->rx_bd_base;
274 		ring_size = rxq->rx_ring_size;
275 		ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
276 	}
277 
278 	if (fep->bufdesc_ex)
279 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
280 			(ex_new_bd + ring_size) : ex_new_bd);
281 	else
282 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
283 }
284 
285 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
286 				struct fec_enet_private *fep)
287 {
288 	return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
289 }
290 
291 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
292 					struct fec_enet_priv_tx_q *txq)
293 {
294 	int entries;
295 
296 	entries = ((const char *)txq->dirty_tx -
297 			(const char *)txq->cur_tx) / fep->bufdesc_size - 1;
298 
299 	return entries > 0 ? entries : entries + txq->tx_ring_size;
300 }
301 
302 static void swap_buffer(void *bufaddr, int len)
303 {
304 	int i;
305 	unsigned int *buf = bufaddr;
306 
307 	for (i = 0; i < len; i += 4, buf++)
308 		swab32s(buf);
309 }
310 
311 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
312 {
313 	int i;
314 	unsigned int *src = src_buf;
315 	unsigned int *dst = dst_buf;
316 
317 	for (i = 0; i < len; i += 4, src++, dst++)
318 		*dst = swab32p(src);
319 }
320 
321 static void fec_dump(struct net_device *ndev)
322 {
323 	struct fec_enet_private *fep = netdev_priv(ndev);
324 	struct bufdesc *bdp;
325 	struct fec_enet_priv_tx_q *txq;
326 	int index = 0;
327 
328 	netdev_info(ndev, "TX ring dump\n");
329 	pr_info("Nr     SC     addr       len  SKB\n");
330 
331 	txq = fep->tx_queue[0];
332 	bdp = txq->tx_bd_base;
333 
334 	do {
335 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
336 			index,
337 			bdp == txq->cur_tx ? 'S' : ' ',
338 			bdp == txq->dirty_tx ? 'H' : ' ',
339 			fec16_to_cpu(bdp->cbd_sc),
340 			fec32_to_cpu(bdp->cbd_bufaddr),
341 			fec16_to_cpu(bdp->cbd_datlen),
342 			txq->tx_skbuff[index]);
343 		bdp = fec_enet_get_nextdesc(bdp, fep, 0);
344 		index++;
345 	} while (bdp != txq->tx_bd_base);
346 }
347 
348 static inline bool is_ipv4_pkt(struct sk_buff *skb)
349 {
350 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
351 }
352 
353 static int
354 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
355 {
356 	/* Only run for packets requiring a checksum. */
357 	if (skb->ip_summed != CHECKSUM_PARTIAL)
358 		return 0;
359 
360 	if (unlikely(skb_cow_head(skb, 0)))
361 		return -1;
362 
363 	if (is_ipv4_pkt(skb))
364 		ip_hdr(skb)->check = 0;
365 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
366 
367 	return 0;
368 }
369 
370 static struct bufdesc *
371 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
372 			     struct sk_buff *skb,
373 			     struct net_device *ndev)
374 {
375 	struct fec_enet_private *fep = netdev_priv(ndev);
376 	struct bufdesc *bdp = txq->cur_tx;
377 	struct bufdesc_ex *ebdp;
378 	int nr_frags = skb_shinfo(skb)->nr_frags;
379 	unsigned short queue = skb_get_queue_mapping(skb);
380 	int frag, frag_len;
381 	unsigned short status;
382 	unsigned int estatus = 0;
383 	skb_frag_t *this_frag;
384 	unsigned int index;
385 	void *bufaddr;
386 	dma_addr_t addr;
387 	int i;
388 
389 	for (frag = 0; frag < nr_frags; frag++) {
390 		this_frag = &skb_shinfo(skb)->frags[frag];
391 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
392 		ebdp = (struct bufdesc_ex *)bdp;
393 
394 		status = fec16_to_cpu(bdp->cbd_sc);
395 		status &= ~BD_ENET_TX_STATS;
396 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
397 		frag_len = skb_shinfo(skb)->frags[frag].size;
398 
399 		/* Handle the last BD specially */
400 		if (frag == nr_frags - 1) {
401 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
402 			if (fep->bufdesc_ex) {
403 				estatus |= BD_ENET_TX_INT;
404 				if (unlikely(skb_shinfo(skb)->tx_flags &
405 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
406 					estatus |= BD_ENET_TX_TS;
407 			}
408 		}
409 
410 		if (fep->bufdesc_ex) {
411 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
412 				estatus |= FEC_TX_BD_FTYPE(queue);
413 			if (skb->ip_summed == CHECKSUM_PARTIAL)
414 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
415 			ebdp->cbd_bdu = 0;
416 			ebdp->cbd_esc = cpu_to_fec32(estatus);
417 		}
418 
419 		bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
420 
421 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
422 		if (((unsigned long) bufaddr) & fep->tx_align ||
423 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
424 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
425 			bufaddr = txq->tx_bounce[index];
426 
427 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
428 				swap_buffer(bufaddr, frag_len);
429 		}
430 
431 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
432 				      DMA_TO_DEVICE);
433 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
434 			dev_kfree_skb_any(skb);
435 			if (net_ratelimit())
436 				netdev_err(ndev, "Tx DMA memory map failed\n");
437 			goto dma_mapping_error;
438 		}
439 
440 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
441 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
442 		bdp->cbd_sc = cpu_to_fec16(status);
443 	}
444 
445 	return bdp;
446 dma_mapping_error:
447 	bdp = txq->cur_tx;
448 	for (i = 0; i < frag; i++) {
449 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
450 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
451 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
452 	}
453 	return ERR_PTR(-ENOMEM);
454 }
455 
456 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
457 				   struct sk_buff *skb, struct net_device *ndev)
458 {
459 	struct fec_enet_private *fep = netdev_priv(ndev);
460 	int nr_frags = skb_shinfo(skb)->nr_frags;
461 	struct bufdesc *bdp, *last_bdp;
462 	void *bufaddr;
463 	dma_addr_t addr;
464 	unsigned short status;
465 	unsigned short buflen;
466 	unsigned short queue;
467 	unsigned int estatus = 0;
468 	unsigned int index;
469 	int entries_free;
470 
471 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
472 	if (entries_free < MAX_SKB_FRAGS + 1) {
473 		dev_kfree_skb_any(skb);
474 		if (net_ratelimit())
475 			netdev_err(ndev, "NOT enough BD for SG!\n");
476 		return NETDEV_TX_OK;
477 	}
478 
479 	/* Protocol checksum off-load for TCP and UDP. */
480 	if (fec_enet_clear_csum(skb, ndev)) {
481 		dev_kfree_skb_any(skb);
482 		return NETDEV_TX_OK;
483 	}
484 
485 	/* Fill in a Tx ring entry */
486 	bdp = txq->cur_tx;
487 	last_bdp = bdp;
488 	status = fec16_to_cpu(bdp->cbd_sc);
489 	status &= ~BD_ENET_TX_STATS;
490 
491 	/* Set buffer length and buffer pointer */
492 	bufaddr = skb->data;
493 	buflen = skb_headlen(skb);
494 
495 	queue = skb_get_queue_mapping(skb);
496 	index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
497 	if (((unsigned long) bufaddr) & fep->tx_align ||
498 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
499 		memcpy(txq->tx_bounce[index], skb->data, buflen);
500 		bufaddr = txq->tx_bounce[index];
501 
502 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
503 			swap_buffer(bufaddr, buflen);
504 	}
505 
506 	/* Push the data cache so the CPM does not get stale memory data. */
507 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
508 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
509 		dev_kfree_skb_any(skb);
510 		if (net_ratelimit())
511 			netdev_err(ndev, "Tx DMA memory map failed\n");
512 		return NETDEV_TX_OK;
513 	}
514 
515 	if (nr_frags) {
516 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
517 		if (IS_ERR(last_bdp))
518 			return NETDEV_TX_OK;
519 	} else {
520 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
521 		if (fep->bufdesc_ex) {
522 			estatus = BD_ENET_TX_INT;
523 			if (unlikely(skb_shinfo(skb)->tx_flags &
524 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
525 				estatus |= BD_ENET_TX_TS;
526 		}
527 	}
528 
529 	if (fep->bufdesc_ex) {
530 
531 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
532 
533 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
534 			fep->hwts_tx_en))
535 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
536 
537 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
538 			estatus |= FEC_TX_BD_FTYPE(queue);
539 
540 		if (skb->ip_summed == CHECKSUM_PARTIAL)
541 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
542 
543 		ebdp->cbd_bdu = 0;
544 		ebdp->cbd_esc = cpu_to_fec32(estatus);
545 	}
546 
547 	index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
548 	/* Save skb pointer */
549 	txq->tx_skbuff[index] = skb;
550 
551 	bdp->cbd_datlen = cpu_to_fec16(buflen);
552 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
553 
554 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
555 	 * it's the last BD of the frame, and to put the CRC on the end.
556 	 */
557 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
558 	bdp->cbd_sc = cpu_to_fec16(status);
559 
560 	/* If this was the last BD in the ring, start at the beginning again. */
561 	bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
562 
563 	skb_tx_timestamp(skb);
564 
565 	/* Make sure the update to bdp and tx_skbuff are performed before
566 	 * cur_tx.
567 	 */
568 	wmb();
569 	txq->cur_tx = bdp;
570 
571 	/* Trigger transmission start */
572 	writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
573 
574 	return 0;
575 }
576 
577 static int
578 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
579 			  struct net_device *ndev,
580 			  struct bufdesc *bdp, int index, char *data,
581 			  int size, bool last_tcp, bool is_last)
582 {
583 	struct fec_enet_private *fep = netdev_priv(ndev);
584 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
585 	unsigned short queue = skb_get_queue_mapping(skb);
586 	unsigned short status;
587 	unsigned int estatus = 0;
588 	dma_addr_t addr;
589 
590 	status = fec16_to_cpu(bdp->cbd_sc);
591 	status &= ~BD_ENET_TX_STATS;
592 
593 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
594 
595 	if (((unsigned long) data) & fep->tx_align ||
596 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
597 		memcpy(txq->tx_bounce[index], data, size);
598 		data = txq->tx_bounce[index];
599 
600 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
601 			swap_buffer(data, size);
602 	}
603 
604 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
605 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
606 		dev_kfree_skb_any(skb);
607 		if (net_ratelimit())
608 			netdev_err(ndev, "Tx DMA memory map failed\n");
609 		return NETDEV_TX_BUSY;
610 	}
611 
612 	bdp->cbd_datlen = cpu_to_fec16(size);
613 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
614 
615 	if (fep->bufdesc_ex) {
616 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
617 			estatus |= FEC_TX_BD_FTYPE(queue);
618 		if (skb->ip_summed == CHECKSUM_PARTIAL)
619 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
620 		ebdp->cbd_bdu = 0;
621 		ebdp->cbd_esc = cpu_to_fec32(estatus);
622 	}
623 
624 	/* Handle the last BD specially */
625 	if (last_tcp)
626 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
627 	if (is_last) {
628 		status |= BD_ENET_TX_INTR;
629 		if (fep->bufdesc_ex)
630 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
631 	}
632 
633 	bdp->cbd_sc = cpu_to_fec16(status);
634 
635 	return 0;
636 }
637 
638 static int
639 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
640 			 struct sk_buff *skb, struct net_device *ndev,
641 			 struct bufdesc *bdp, int index)
642 {
643 	struct fec_enet_private *fep = netdev_priv(ndev);
644 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
645 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
646 	unsigned short queue = skb_get_queue_mapping(skb);
647 	void *bufaddr;
648 	unsigned long dmabuf;
649 	unsigned short status;
650 	unsigned int estatus = 0;
651 
652 	status = fec16_to_cpu(bdp->cbd_sc);
653 	status &= ~BD_ENET_TX_STATS;
654 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
655 
656 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
657 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
658 	if (((unsigned long)bufaddr) & fep->tx_align ||
659 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
660 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
661 		bufaddr = txq->tx_bounce[index];
662 
663 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
664 			swap_buffer(bufaddr, hdr_len);
665 
666 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
667 					hdr_len, DMA_TO_DEVICE);
668 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
669 			dev_kfree_skb_any(skb);
670 			if (net_ratelimit())
671 				netdev_err(ndev, "Tx DMA memory map failed\n");
672 			return NETDEV_TX_BUSY;
673 		}
674 	}
675 
676 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
677 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
678 
679 	if (fep->bufdesc_ex) {
680 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
681 			estatus |= FEC_TX_BD_FTYPE(queue);
682 		if (skb->ip_summed == CHECKSUM_PARTIAL)
683 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
684 		ebdp->cbd_bdu = 0;
685 		ebdp->cbd_esc = cpu_to_fec32(estatus);
686 	}
687 
688 	bdp->cbd_sc = cpu_to_fec16(status);
689 
690 	return 0;
691 }
692 
693 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
694 				   struct sk_buff *skb,
695 				   struct net_device *ndev)
696 {
697 	struct fec_enet_private *fep = netdev_priv(ndev);
698 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
699 	int total_len, data_left;
700 	struct bufdesc *bdp = txq->cur_tx;
701 	unsigned short queue = skb_get_queue_mapping(skb);
702 	struct tso_t tso;
703 	unsigned int index = 0;
704 	int ret;
705 
706 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
707 		dev_kfree_skb_any(skb);
708 		if (net_ratelimit())
709 			netdev_err(ndev, "NOT enough BD for TSO!\n");
710 		return NETDEV_TX_OK;
711 	}
712 
713 	/* Protocol checksum off-load for TCP and UDP. */
714 	if (fec_enet_clear_csum(skb, ndev)) {
715 		dev_kfree_skb_any(skb);
716 		return NETDEV_TX_OK;
717 	}
718 
719 	/* Initialize the TSO handler, and prepare the first payload */
720 	tso_start(skb, &tso);
721 
722 	total_len = skb->len - hdr_len;
723 	while (total_len > 0) {
724 		char *hdr;
725 
726 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
727 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
728 		total_len -= data_left;
729 
730 		/* prepare packet headers: MAC + IP + TCP */
731 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
732 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
733 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
734 		if (ret)
735 			goto err_release;
736 
737 		while (data_left > 0) {
738 			int size;
739 
740 			size = min_t(int, tso.size, data_left);
741 			bdp = fec_enet_get_nextdesc(bdp, fep, queue);
742 			index = fec_enet_get_bd_index(txq->tx_bd_base,
743 						      bdp, fep);
744 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
745 							bdp, index,
746 							tso.data, size,
747 							size == data_left,
748 							total_len == 0);
749 			if (ret)
750 				goto err_release;
751 
752 			data_left -= size;
753 			tso_build_data(skb, &tso, size);
754 		}
755 
756 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
757 	}
758 
759 	/* Save skb pointer */
760 	txq->tx_skbuff[index] = skb;
761 
762 	skb_tx_timestamp(skb);
763 	txq->cur_tx = bdp;
764 
765 	/* Trigger transmission start */
766 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
767 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
768 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
769 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
770 	    !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
771 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
772 
773 	return 0;
774 
775 err_release:
776 	/* TODO: Release all used data descriptors for TSO */
777 	return ret;
778 }
779 
780 static netdev_tx_t
781 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
782 {
783 	struct fec_enet_private *fep = netdev_priv(ndev);
784 	int entries_free;
785 	unsigned short queue;
786 	struct fec_enet_priv_tx_q *txq;
787 	struct netdev_queue *nq;
788 	int ret;
789 
790 	queue = skb_get_queue_mapping(skb);
791 	txq = fep->tx_queue[queue];
792 	nq = netdev_get_tx_queue(ndev, queue);
793 
794 	if (skb_is_gso(skb))
795 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
796 	else
797 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
798 	if (ret)
799 		return ret;
800 
801 	entries_free = fec_enet_get_free_txdesc_num(fep, txq);
802 	if (entries_free <= txq->tx_stop_threshold)
803 		netif_tx_stop_queue(nq);
804 
805 	return NETDEV_TX_OK;
806 }
807 
808 /* Init RX & TX buffer descriptors
809  */
810 static void fec_enet_bd_init(struct net_device *dev)
811 {
812 	struct fec_enet_private *fep = netdev_priv(dev);
813 	struct fec_enet_priv_tx_q *txq;
814 	struct fec_enet_priv_rx_q *rxq;
815 	struct bufdesc *bdp;
816 	unsigned int i;
817 	unsigned int q;
818 
819 	for (q = 0; q < fep->num_rx_queues; q++) {
820 		/* Initialize the receive buffer descriptors. */
821 		rxq = fep->rx_queue[q];
822 		bdp = rxq->rx_bd_base;
823 
824 		for (i = 0; i < rxq->rx_ring_size; i++) {
825 
826 			/* Initialize the BD for every fragment in the page. */
827 			if (bdp->cbd_bufaddr)
828 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
829 			else
830 				bdp->cbd_sc = cpu_to_fec16(0);
831 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
832 		}
833 
834 		/* Set the last buffer to wrap */
835 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
836 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
837 
838 		rxq->cur_rx = rxq->rx_bd_base;
839 	}
840 
841 	for (q = 0; q < fep->num_tx_queues; q++) {
842 		/* ...and the same for transmit */
843 		txq = fep->tx_queue[q];
844 		bdp = txq->tx_bd_base;
845 		txq->cur_tx = bdp;
846 
847 		for (i = 0; i < txq->tx_ring_size; i++) {
848 			/* Initialize the BD for every fragment in the page. */
849 			bdp->cbd_sc = cpu_to_fec16(0);
850 			if (txq->tx_skbuff[i]) {
851 				dev_kfree_skb_any(txq->tx_skbuff[i]);
852 				txq->tx_skbuff[i] = NULL;
853 			}
854 			bdp->cbd_bufaddr = cpu_to_fec32(0);
855 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
856 		}
857 
858 		/* Set the last buffer to wrap */
859 		bdp = fec_enet_get_prevdesc(bdp, fep, q);
860 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
861 		txq->dirty_tx = bdp;
862 	}
863 }
864 
865 static void fec_enet_active_rxring(struct net_device *ndev)
866 {
867 	struct fec_enet_private *fep = netdev_priv(ndev);
868 	int i;
869 
870 	for (i = 0; i < fep->num_rx_queues; i++)
871 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
872 }
873 
874 static void fec_enet_enable_ring(struct net_device *ndev)
875 {
876 	struct fec_enet_private *fep = netdev_priv(ndev);
877 	struct fec_enet_priv_tx_q *txq;
878 	struct fec_enet_priv_rx_q *rxq;
879 	int i;
880 
881 	for (i = 0; i < fep->num_rx_queues; i++) {
882 		rxq = fep->rx_queue[i];
883 		writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
884 		writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
885 
886 		/* enable DMA1/2 */
887 		if (i)
888 			writel(RCMR_MATCHEN | RCMR_CMP(i),
889 			       fep->hwp + FEC_RCMR(i));
890 	}
891 
892 	for (i = 0; i < fep->num_tx_queues; i++) {
893 		txq = fep->tx_queue[i];
894 		writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
895 
896 		/* enable DMA1/2 */
897 		if (i)
898 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
899 			       fep->hwp + FEC_DMA_CFG(i));
900 	}
901 }
902 
903 static void fec_enet_reset_skb(struct net_device *ndev)
904 {
905 	struct fec_enet_private *fep = netdev_priv(ndev);
906 	struct fec_enet_priv_tx_q *txq;
907 	int i, j;
908 
909 	for (i = 0; i < fep->num_tx_queues; i++) {
910 		txq = fep->tx_queue[i];
911 
912 		for (j = 0; j < txq->tx_ring_size; j++) {
913 			if (txq->tx_skbuff[j]) {
914 				dev_kfree_skb_any(txq->tx_skbuff[j]);
915 				txq->tx_skbuff[j] = NULL;
916 			}
917 		}
918 	}
919 }
920 
921 /*
922  * This function is called to start or restart the FEC during a link
923  * change, transmit timeout, or to reconfigure the FEC.  The network
924  * packet processing for this device must be stopped before this call.
925  */
926 static void
927 fec_restart(struct net_device *ndev)
928 {
929 	struct fec_enet_private *fep = netdev_priv(ndev);
930 	u32 val;
931 	u32 temp_mac[2];
932 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
933 	u32 ecntl = 0x2; /* ETHEREN */
934 
935 	/* Whack a reset.  We should wait for this.
936 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
937 	 * instead of reset MAC itself.
938 	 */
939 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
940 		writel(0, fep->hwp + FEC_ECNTRL);
941 	} else {
942 		writel(1, fep->hwp + FEC_ECNTRL);
943 		udelay(10);
944 	}
945 
946 	/*
947 	 * enet-mac reset will reset mac address registers too,
948 	 * so need to reconfigure it.
949 	 */
950 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
951 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
952 		writel((__force u32)cpu_to_be32(temp_mac[0]),
953 		       fep->hwp + FEC_ADDR_LOW);
954 		writel((__force u32)cpu_to_be32(temp_mac[1]),
955 		       fep->hwp + FEC_ADDR_HIGH);
956 	}
957 
958 	/* Clear any outstanding interrupt. */
959 	writel(0xffffffff, fep->hwp + FEC_IEVENT);
960 
961 	fec_enet_bd_init(ndev);
962 
963 	fec_enet_enable_ring(ndev);
964 
965 	/* Reset tx SKB buffers. */
966 	fec_enet_reset_skb(ndev);
967 
968 	/* Enable MII mode */
969 	if (fep->full_duplex == DUPLEX_FULL) {
970 		/* FD enable */
971 		writel(0x04, fep->hwp + FEC_X_CNTRL);
972 	} else {
973 		/* No Rcv on Xmit */
974 		rcntl |= 0x02;
975 		writel(0x0, fep->hwp + FEC_X_CNTRL);
976 	}
977 
978 	/* Set MII speed */
979 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
980 
981 #if !defined(CONFIG_M5272)
982 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
983 		/* set RX checksum */
984 		val = readl(fep->hwp + FEC_RACC);
985 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
986 			val |= FEC_RACC_OPTIONS;
987 		else
988 			val &= ~FEC_RACC_OPTIONS;
989 		writel(val, fep->hwp + FEC_RACC);
990 	}
991 #endif
992 
993 	/*
994 	 * The phy interface and speed need to get configured
995 	 * differently on enet-mac.
996 	 */
997 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
998 		/* Enable flow control and length check */
999 		rcntl |= 0x40000000 | 0x00000020;
1000 
1001 		/* RGMII, RMII or MII */
1002 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1003 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1004 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1005 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1006 			rcntl |= (1 << 6);
1007 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1008 			rcntl |= (1 << 8);
1009 		else
1010 			rcntl &= ~(1 << 8);
1011 
1012 		/* 1G, 100M or 10M */
1013 		if (fep->phy_dev) {
1014 			if (fep->phy_dev->speed == SPEED_1000)
1015 				ecntl |= (1 << 5);
1016 			else if (fep->phy_dev->speed == SPEED_100)
1017 				rcntl &= ~(1 << 9);
1018 			else
1019 				rcntl |= (1 << 9);
1020 		}
1021 	} else {
1022 #ifdef FEC_MIIGSK_ENR
1023 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1024 			u32 cfgr;
1025 			/* disable the gasket and wait */
1026 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1027 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1028 				udelay(1);
1029 
1030 			/*
1031 			 * configure the gasket:
1032 			 *   RMII, 50 MHz, no loopback, no echo
1033 			 *   MII, 25 MHz, no loopback, no echo
1034 			 */
1035 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1036 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1037 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1038 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1039 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1040 
1041 			/* re-enable the gasket */
1042 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1043 		}
1044 #endif
1045 	}
1046 
1047 #if !defined(CONFIG_M5272)
1048 	/* enable pause frame*/
1049 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1050 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1051 	     fep->phy_dev && fep->phy_dev->pause)) {
1052 		rcntl |= FEC_ENET_FCE;
1053 
1054 		/* set FIFO threshold parameter to reduce overrun */
1055 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1056 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1057 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1058 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1059 
1060 		/* OPD */
1061 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1062 	} else {
1063 		rcntl &= ~FEC_ENET_FCE;
1064 	}
1065 #endif /* !defined(CONFIG_M5272) */
1066 
1067 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1068 
1069 	/* Setup multicast filter. */
1070 	set_multicast_list(ndev);
1071 #ifndef CONFIG_M5272
1072 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1073 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1074 #endif
1075 
1076 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1077 		/* enable ENET endian swap */
1078 		ecntl |= (1 << 8);
1079 		/* enable ENET store and forward mode */
1080 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1081 	}
1082 
1083 	if (fep->bufdesc_ex)
1084 		ecntl |= (1 << 4);
1085 
1086 #ifndef CONFIG_M5272
1087 	/* Enable the MIB statistic event counters */
1088 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1089 #endif
1090 
1091 	/* And last, enable the transmit and receive processing */
1092 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1093 	fec_enet_active_rxring(ndev);
1094 
1095 	if (fep->bufdesc_ex)
1096 		fec_ptp_start_cyclecounter(ndev);
1097 
1098 	/* Enable interrupts we wish to service */
1099 	if (fep->link)
1100 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1101 	else
1102 		writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1103 
1104 	/* Init the interrupt coalescing */
1105 	fec_enet_itr_coal_init(ndev);
1106 
1107 }
1108 
1109 static void
1110 fec_stop(struct net_device *ndev)
1111 {
1112 	struct fec_enet_private *fep = netdev_priv(ndev);
1113 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1114 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1115 	u32 val;
1116 
1117 	/* We cannot expect a graceful transmit stop without link !!! */
1118 	if (fep->link) {
1119 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1120 		udelay(10);
1121 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1122 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1123 	}
1124 
1125 	/* Whack a reset.  We should wait for this.
1126 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1127 	 * instead of reset MAC itself.
1128 	 */
1129 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1130 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1131 			writel(0, fep->hwp + FEC_ECNTRL);
1132 		} else {
1133 			writel(1, fep->hwp + FEC_ECNTRL);
1134 			udelay(10);
1135 		}
1136 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1137 	} else {
1138 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1139 		val = readl(fep->hwp + FEC_ECNTRL);
1140 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1141 		writel(val, fep->hwp + FEC_ECNTRL);
1142 
1143 		if (pdata && pdata->sleep_mode_enable)
1144 			pdata->sleep_mode_enable(true);
1145 	}
1146 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1147 
1148 	/* We have to keep ENET enabled to have MII interrupt stay working */
1149 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1150 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1151 		writel(2, fep->hwp + FEC_ECNTRL);
1152 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1153 	}
1154 }
1155 
1156 
1157 static void
1158 fec_timeout(struct net_device *ndev)
1159 {
1160 	struct fec_enet_private *fep = netdev_priv(ndev);
1161 
1162 	fec_dump(ndev);
1163 
1164 	ndev->stats.tx_errors++;
1165 
1166 	schedule_work(&fep->tx_timeout_work);
1167 }
1168 
1169 static void fec_enet_timeout_work(struct work_struct *work)
1170 {
1171 	struct fec_enet_private *fep =
1172 		container_of(work, struct fec_enet_private, tx_timeout_work);
1173 	struct net_device *ndev = fep->netdev;
1174 
1175 	rtnl_lock();
1176 	if (netif_device_present(ndev) || netif_running(ndev)) {
1177 		napi_disable(&fep->napi);
1178 		netif_tx_lock_bh(ndev);
1179 		fec_restart(ndev);
1180 		netif_wake_queue(ndev);
1181 		netif_tx_unlock_bh(ndev);
1182 		napi_enable(&fep->napi);
1183 	}
1184 	rtnl_unlock();
1185 }
1186 
1187 static void
1188 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1189 	struct skb_shared_hwtstamps *hwtstamps)
1190 {
1191 	unsigned long flags;
1192 	u64 ns;
1193 
1194 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1195 	ns = timecounter_cyc2time(&fep->tc, ts);
1196 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1197 
1198 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1199 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1200 }
1201 
1202 static void
1203 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1204 {
1205 	struct	fec_enet_private *fep;
1206 	struct bufdesc *bdp;
1207 	unsigned short status;
1208 	struct	sk_buff	*skb;
1209 	struct fec_enet_priv_tx_q *txq;
1210 	struct netdev_queue *nq;
1211 	int	index = 0;
1212 	int	entries_free;
1213 
1214 	fep = netdev_priv(ndev);
1215 
1216 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1217 
1218 	txq = fep->tx_queue[queue_id];
1219 	/* get next bdp of dirty_tx */
1220 	nq = netdev_get_tx_queue(ndev, queue_id);
1221 	bdp = txq->dirty_tx;
1222 
1223 	/* get next bdp of dirty_tx */
1224 	bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1225 
1226 	while (bdp != READ_ONCE(txq->cur_tx)) {
1227 		/* Order the load of cur_tx and cbd_sc */
1228 		rmb();
1229 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1230 		if (status & BD_ENET_TX_READY)
1231 			break;
1232 
1233 		index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1234 
1235 		skb = txq->tx_skbuff[index];
1236 		txq->tx_skbuff[index] = NULL;
1237 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1238 			dma_unmap_single(&fep->pdev->dev,
1239 					 fec32_to_cpu(bdp->cbd_bufaddr),
1240 					 fec16_to_cpu(bdp->cbd_datlen),
1241 					 DMA_TO_DEVICE);
1242 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1243 		if (!skb) {
1244 			bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1245 			continue;
1246 		}
1247 
1248 		/* Check for errors. */
1249 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1250 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1251 				   BD_ENET_TX_CSL)) {
1252 			ndev->stats.tx_errors++;
1253 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1254 				ndev->stats.tx_heartbeat_errors++;
1255 			if (status & BD_ENET_TX_LC)  /* Late collision */
1256 				ndev->stats.tx_window_errors++;
1257 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1258 				ndev->stats.tx_aborted_errors++;
1259 			if (status & BD_ENET_TX_UN)  /* Underrun */
1260 				ndev->stats.tx_fifo_errors++;
1261 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1262 				ndev->stats.tx_carrier_errors++;
1263 		} else {
1264 			ndev->stats.tx_packets++;
1265 			ndev->stats.tx_bytes += skb->len;
1266 		}
1267 
1268 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1269 			fep->bufdesc_ex) {
1270 			struct skb_shared_hwtstamps shhwtstamps;
1271 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1272 
1273 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1274 			skb_tstamp_tx(skb, &shhwtstamps);
1275 		}
1276 
1277 		/* Deferred means some collisions occurred during transmit,
1278 		 * but we eventually sent the packet OK.
1279 		 */
1280 		if (status & BD_ENET_TX_DEF)
1281 			ndev->stats.collisions++;
1282 
1283 		/* Free the sk buffer associated with this last transmit */
1284 		dev_kfree_skb_any(skb);
1285 
1286 		/* Make sure the update to bdp and tx_skbuff are performed
1287 		 * before dirty_tx
1288 		 */
1289 		wmb();
1290 		txq->dirty_tx = bdp;
1291 
1292 		/* Update pointer to next buffer descriptor to be transmitted */
1293 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1294 
1295 		/* Since we have freed up a buffer, the ring is no longer full
1296 		 */
1297 		if (netif_queue_stopped(ndev)) {
1298 			entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1299 			if (entries_free >= txq->tx_wake_threshold)
1300 				netif_tx_wake_queue(nq);
1301 		}
1302 	}
1303 
1304 	/* ERR006538: Keep the transmitter going */
1305 	if (bdp != txq->cur_tx &&
1306 	    readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1307 		writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1308 }
1309 
1310 static void
1311 fec_enet_tx(struct net_device *ndev)
1312 {
1313 	struct fec_enet_private *fep = netdev_priv(ndev);
1314 	u16 queue_id;
1315 	/* First process class A queue, then Class B and Best Effort queue */
1316 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1317 		clear_bit(queue_id, &fep->work_tx);
1318 		fec_enet_tx_queue(ndev, queue_id);
1319 	}
1320 	return;
1321 }
1322 
1323 static int
1324 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1325 {
1326 	struct  fec_enet_private *fep = netdev_priv(ndev);
1327 	int off;
1328 
1329 	off = ((unsigned long)skb->data) & fep->rx_align;
1330 	if (off)
1331 		skb_reserve(skb, fep->rx_align + 1 - off);
1332 
1333 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1334 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1335 		if (net_ratelimit())
1336 			netdev_err(ndev, "Rx DMA memory map failed\n");
1337 		return -ENOMEM;
1338 	}
1339 
1340 	return 0;
1341 }
1342 
1343 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1344 			       struct bufdesc *bdp, u32 length, bool swap)
1345 {
1346 	struct  fec_enet_private *fep = netdev_priv(ndev);
1347 	struct sk_buff *new_skb;
1348 
1349 	if (length > fep->rx_copybreak)
1350 		return false;
1351 
1352 	new_skb = netdev_alloc_skb(ndev, length);
1353 	if (!new_skb)
1354 		return false;
1355 
1356 	dma_sync_single_for_cpu(&fep->pdev->dev,
1357 				fec32_to_cpu(bdp->cbd_bufaddr),
1358 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1359 				DMA_FROM_DEVICE);
1360 	if (!swap)
1361 		memcpy(new_skb->data, (*skb)->data, length);
1362 	else
1363 		swap_buffer2(new_skb->data, (*skb)->data, length);
1364 	*skb = new_skb;
1365 
1366 	return true;
1367 }
1368 
1369 /* During a receive, the cur_rx points to the current incoming buffer.
1370  * When we update through the ring, if the next incoming buffer has
1371  * not been given to the system, we just set the empty indicator,
1372  * effectively tossing the packet.
1373  */
1374 static int
1375 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1376 {
1377 	struct fec_enet_private *fep = netdev_priv(ndev);
1378 	struct fec_enet_priv_rx_q *rxq;
1379 	struct bufdesc *bdp;
1380 	unsigned short status;
1381 	struct  sk_buff *skb_new = NULL;
1382 	struct  sk_buff *skb;
1383 	ushort	pkt_len;
1384 	__u8 *data;
1385 	int	pkt_received = 0;
1386 	struct	bufdesc_ex *ebdp = NULL;
1387 	bool	vlan_packet_rcvd = false;
1388 	u16	vlan_tag;
1389 	int	index = 0;
1390 	bool	is_copybreak;
1391 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1392 
1393 #ifdef CONFIG_M532x
1394 	flush_cache_all();
1395 #endif
1396 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1397 	rxq = fep->rx_queue[queue_id];
1398 
1399 	/* First, grab all of the stats for the incoming packet.
1400 	 * These get messed up if we get called due to a busy condition.
1401 	 */
1402 	bdp = rxq->cur_rx;
1403 
1404 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1405 
1406 		if (pkt_received >= budget)
1407 			break;
1408 		pkt_received++;
1409 
1410 		/* Since we have allocated space to hold a complete frame,
1411 		 * the last indicator should be set.
1412 		 */
1413 		if ((status & BD_ENET_RX_LAST) == 0)
1414 			netdev_err(ndev, "rcv is not +last\n");
1415 
1416 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1417 
1418 		/* Check for errors. */
1419 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1420 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1421 			ndev->stats.rx_errors++;
1422 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1423 				/* Frame too long or too short. */
1424 				ndev->stats.rx_length_errors++;
1425 			}
1426 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
1427 				ndev->stats.rx_frame_errors++;
1428 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1429 				ndev->stats.rx_crc_errors++;
1430 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
1431 				ndev->stats.rx_fifo_errors++;
1432 		}
1433 
1434 		/* Report late collisions as a frame error.
1435 		 * On this error, the BD is closed, but we don't know what we
1436 		 * have in the buffer.  So, just drop this frame on the floor.
1437 		 */
1438 		if (status & BD_ENET_RX_CL) {
1439 			ndev->stats.rx_errors++;
1440 			ndev->stats.rx_frame_errors++;
1441 			goto rx_processing_done;
1442 		}
1443 
1444 		/* Process the incoming frame. */
1445 		ndev->stats.rx_packets++;
1446 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1447 		ndev->stats.rx_bytes += pkt_len;
1448 
1449 		index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1450 		skb = rxq->rx_skbuff[index];
1451 
1452 		/* The packet length includes FCS, but we don't want to
1453 		 * include that when passing upstream as it messes up
1454 		 * bridging applications.
1455 		 */
1456 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1457 						  need_swap);
1458 		if (!is_copybreak) {
1459 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1460 			if (unlikely(!skb_new)) {
1461 				ndev->stats.rx_dropped++;
1462 				goto rx_processing_done;
1463 			}
1464 			dma_unmap_single(&fep->pdev->dev,
1465 					 fec32_to_cpu(bdp->cbd_bufaddr),
1466 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1467 					 DMA_FROM_DEVICE);
1468 		}
1469 
1470 		prefetch(skb->data - NET_IP_ALIGN);
1471 		skb_put(skb, pkt_len - 4);
1472 		data = skb->data;
1473 		if (!is_copybreak && need_swap)
1474 			swap_buffer(data, pkt_len);
1475 
1476 		/* Extract the enhanced buffer descriptor */
1477 		ebdp = NULL;
1478 		if (fep->bufdesc_ex)
1479 			ebdp = (struct bufdesc_ex *)bdp;
1480 
1481 		/* If this is a VLAN packet remove the VLAN Tag */
1482 		vlan_packet_rcvd = false;
1483 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1484 		    fep->bufdesc_ex &&
1485 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1486 			/* Push and remove the vlan tag */
1487 			struct vlan_hdr *vlan_header =
1488 					(struct vlan_hdr *) (data + ETH_HLEN);
1489 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1490 
1491 			vlan_packet_rcvd = true;
1492 
1493 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1494 			skb_pull(skb, VLAN_HLEN);
1495 		}
1496 
1497 		skb->protocol = eth_type_trans(skb, ndev);
1498 
1499 		/* Get receive timestamp from the skb */
1500 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1501 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1502 					  skb_hwtstamps(skb));
1503 
1504 		if (fep->bufdesc_ex &&
1505 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1506 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1507 				/* don't check it */
1508 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1509 			} else {
1510 				skb_checksum_none_assert(skb);
1511 			}
1512 		}
1513 
1514 		/* Handle received VLAN packets */
1515 		if (vlan_packet_rcvd)
1516 			__vlan_hwaccel_put_tag(skb,
1517 					       htons(ETH_P_8021Q),
1518 					       vlan_tag);
1519 
1520 		napi_gro_receive(&fep->napi, skb);
1521 
1522 		if (is_copybreak) {
1523 			dma_sync_single_for_device(&fep->pdev->dev,
1524 						   fec32_to_cpu(bdp->cbd_bufaddr),
1525 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1526 						   DMA_FROM_DEVICE);
1527 		} else {
1528 			rxq->rx_skbuff[index] = skb_new;
1529 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1530 		}
1531 
1532 rx_processing_done:
1533 		/* Clear the status flags for this buffer */
1534 		status &= ~BD_ENET_RX_STATS;
1535 
1536 		/* Mark the buffer empty */
1537 		status |= BD_ENET_RX_EMPTY;
1538 		bdp->cbd_sc = cpu_to_fec16(status);
1539 
1540 		if (fep->bufdesc_ex) {
1541 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1542 
1543 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1544 			ebdp->cbd_prot = 0;
1545 			ebdp->cbd_bdu = 0;
1546 		}
1547 
1548 		/* Update BD pointer to next entry */
1549 		bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1550 
1551 		/* Doing this here will keep the FEC running while we process
1552 		 * incoming frames.  On a heavily loaded network, we should be
1553 		 * able to keep up at the expense of system resources.
1554 		 */
1555 		writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1556 	}
1557 	rxq->cur_rx = bdp;
1558 	return pkt_received;
1559 }
1560 
1561 static int
1562 fec_enet_rx(struct net_device *ndev, int budget)
1563 {
1564 	int     pkt_received = 0;
1565 	u16	queue_id;
1566 	struct fec_enet_private *fep = netdev_priv(ndev);
1567 
1568 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1569 		clear_bit(queue_id, &fep->work_rx);
1570 		pkt_received += fec_enet_rx_queue(ndev,
1571 					budget - pkt_received, queue_id);
1572 	}
1573 	return pkt_received;
1574 }
1575 
1576 static bool
1577 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1578 {
1579 	if (int_events == 0)
1580 		return false;
1581 
1582 	if (int_events & FEC_ENET_RXF)
1583 		fep->work_rx |= (1 << 2);
1584 	if (int_events & FEC_ENET_RXF_1)
1585 		fep->work_rx |= (1 << 0);
1586 	if (int_events & FEC_ENET_RXF_2)
1587 		fep->work_rx |= (1 << 1);
1588 
1589 	if (int_events & FEC_ENET_TXF)
1590 		fep->work_tx |= (1 << 2);
1591 	if (int_events & FEC_ENET_TXF_1)
1592 		fep->work_tx |= (1 << 0);
1593 	if (int_events & FEC_ENET_TXF_2)
1594 		fep->work_tx |= (1 << 1);
1595 
1596 	return true;
1597 }
1598 
1599 static irqreturn_t
1600 fec_enet_interrupt(int irq, void *dev_id)
1601 {
1602 	struct net_device *ndev = dev_id;
1603 	struct fec_enet_private *fep = netdev_priv(ndev);
1604 	uint int_events;
1605 	irqreturn_t ret = IRQ_NONE;
1606 
1607 	int_events = readl(fep->hwp + FEC_IEVENT);
1608 	writel(int_events, fep->hwp + FEC_IEVENT);
1609 	fec_enet_collect_events(fep, int_events);
1610 
1611 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1612 		ret = IRQ_HANDLED;
1613 
1614 		if (napi_schedule_prep(&fep->napi)) {
1615 			/* Disable the NAPI interrupts */
1616 			writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1617 			__napi_schedule(&fep->napi);
1618 		}
1619 	}
1620 
1621 	if (int_events & FEC_ENET_MII) {
1622 		ret = IRQ_HANDLED;
1623 		complete(&fep->mdio_done);
1624 	}
1625 
1626 	if (fep->ptp_clock)
1627 		fec_ptp_check_pps_event(fep);
1628 
1629 	return ret;
1630 }
1631 
1632 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1633 {
1634 	struct net_device *ndev = napi->dev;
1635 	struct fec_enet_private *fep = netdev_priv(ndev);
1636 	int pkts;
1637 
1638 	pkts = fec_enet_rx(ndev, budget);
1639 
1640 	fec_enet_tx(ndev);
1641 
1642 	if (pkts < budget) {
1643 		napi_complete(napi);
1644 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1645 	}
1646 	return pkts;
1647 }
1648 
1649 /* ------------------------------------------------------------------------- */
1650 static void fec_get_mac(struct net_device *ndev)
1651 {
1652 	struct fec_enet_private *fep = netdev_priv(ndev);
1653 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1654 	unsigned char *iap, tmpaddr[ETH_ALEN];
1655 
1656 	/*
1657 	 * try to get mac address in following order:
1658 	 *
1659 	 * 1) module parameter via kernel command line in form
1660 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1661 	 */
1662 	iap = macaddr;
1663 
1664 	/*
1665 	 * 2) from device tree data
1666 	 */
1667 	if (!is_valid_ether_addr(iap)) {
1668 		struct device_node *np = fep->pdev->dev.of_node;
1669 		if (np) {
1670 			const char *mac = of_get_mac_address(np);
1671 			if (mac)
1672 				iap = (unsigned char *) mac;
1673 		}
1674 	}
1675 
1676 	/*
1677 	 * 3) from flash or fuse (via platform data)
1678 	 */
1679 	if (!is_valid_ether_addr(iap)) {
1680 #ifdef CONFIG_M5272
1681 		if (FEC_FLASHMAC)
1682 			iap = (unsigned char *)FEC_FLASHMAC;
1683 #else
1684 		if (pdata)
1685 			iap = (unsigned char *)&pdata->mac;
1686 #endif
1687 	}
1688 
1689 	/*
1690 	 * 4) FEC mac registers set by bootloader
1691 	 */
1692 	if (!is_valid_ether_addr(iap)) {
1693 		*((__be32 *) &tmpaddr[0]) =
1694 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1695 		*((__be16 *) &tmpaddr[4]) =
1696 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1697 		iap = &tmpaddr[0];
1698 	}
1699 
1700 	/*
1701 	 * 5) random mac address
1702 	 */
1703 	if (!is_valid_ether_addr(iap)) {
1704 		/* Report it and use a random ethernet address instead */
1705 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1706 		eth_hw_addr_random(ndev);
1707 		netdev_info(ndev, "Using random MAC address: %pM\n",
1708 			    ndev->dev_addr);
1709 		return;
1710 	}
1711 
1712 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1713 
1714 	/* Adjust MAC if using macaddr */
1715 	if (iap == macaddr)
1716 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1717 }
1718 
1719 /* ------------------------------------------------------------------------- */
1720 
1721 /*
1722  * Phy section
1723  */
1724 static void fec_enet_adjust_link(struct net_device *ndev)
1725 {
1726 	struct fec_enet_private *fep = netdev_priv(ndev);
1727 	struct phy_device *phy_dev = fep->phy_dev;
1728 	int status_change = 0;
1729 
1730 	/* Prevent a state halted on mii error */
1731 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1732 		phy_dev->state = PHY_RESUMING;
1733 		return;
1734 	}
1735 
1736 	/*
1737 	 * If the netdev is down, or is going down, we're not interested
1738 	 * in link state events, so just mark our idea of the link as down
1739 	 * and ignore the event.
1740 	 */
1741 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1742 		fep->link = 0;
1743 	} else if (phy_dev->link) {
1744 		if (!fep->link) {
1745 			fep->link = phy_dev->link;
1746 			status_change = 1;
1747 		}
1748 
1749 		if (fep->full_duplex != phy_dev->duplex) {
1750 			fep->full_duplex = phy_dev->duplex;
1751 			status_change = 1;
1752 		}
1753 
1754 		if (phy_dev->speed != fep->speed) {
1755 			fep->speed = phy_dev->speed;
1756 			status_change = 1;
1757 		}
1758 
1759 		/* if any of the above changed restart the FEC */
1760 		if (status_change) {
1761 			napi_disable(&fep->napi);
1762 			netif_tx_lock_bh(ndev);
1763 			fec_restart(ndev);
1764 			netif_wake_queue(ndev);
1765 			netif_tx_unlock_bh(ndev);
1766 			napi_enable(&fep->napi);
1767 		}
1768 	} else {
1769 		if (fep->link) {
1770 			napi_disable(&fep->napi);
1771 			netif_tx_lock_bh(ndev);
1772 			fec_stop(ndev);
1773 			netif_tx_unlock_bh(ndev);
1774 			napi_enable(&fep->napi);
1775 			fep->link = phy_dev->link;
1776 			status_change = 1;
1777 		}
1778 	}
1779 
1780 	if (status_change)
1781 		phy_print_status(phy_dev);
1782 }
1783 
1784 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1785 {
1786 	struct fec_enet_private *fep = bus->priv;
1787 	struct device *dev = &fep->pdev->dev;
1788 	unsigned long time_left;
1789 	int ret = 0;
1790 
1791 	ret = pm_runtime_get_sync(dev);
1792 	if (ret < 0)
1793 		return ret;
1794 
1795 	fep->mii_timeout = 0;
1796 	reinit_completion(&fep->mdio_done);
1797 
1798 	/* start a read op */
1799 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1800 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1801 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1802 
1803 	/* wait for end of transfer */
1804 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1805 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1806 	if (time_left == 0) {
1807 		fep->mii_timeout = 1;
1808 		netdev_err(fep->netdev, "MDIO read timeout\n");
1809 		ret = -ETIMEDOUT;
1810 		goto out;
1811 	}
1812 
1813 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1814 
1815 out:
1816 	pm_runtime_mark_last_busy(dev);
1817 	pm_runtime_put_autosuspend(dev);
1818 
1819 	return ret;
1820 }
1821 
1822 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1823 			   u16 value)
1824 {
1825 	struct fec_enet_private *fep = bus->priv;
1826 	struct device *dev = &fep->pdev->dev;
1827 	unsigned long time_left;
1828 	int ret;
1829 
1830 	ret = pm_runtime_get_sync(dev);
1831 	if (ret < 0)
1832 		return ret;
1833 	else
1834 		ret = 0;
1835 
1836 	fep->mii_timeout = 0;
1837 	reinit_completion(&fep->mdio_done);
1838 
1839 	/* start a write op */
1840 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1841 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1842 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1843 		fep->hwp + FEC_MII_DATA);
1844 
1845 	/* wait for end of transfer */
1846 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1847 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1848 	if (time_left == 0) {
1849 		fep->mii_timeout = 1;
1850 		netdev_err(fep->netdev, "MDIO write timeout\n");
1851 		ret  = -ETIMEDOUT;
1852 	}
1853 
1854 	pm_runtime_mark_last_busy(dev);
1855 	pm_runtime_put_autosuspend(dev);
1856 
1857 	return ret;
1858 }
1859 
1860 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1861 {
1862 	struct fec_enet_private *fep = netdev_priv(ndev);
1863 	int ret;
1864 
1865 	if (enable) {
1866 		ret = clk_prepare_enable(fep->clk_ahb);
1867 		if (ret)
1868 			return ret;
1869 		if (fep->clk_enet_out) {
1870 			ret = clk_prepare_enable(fep->clk_enet_out);
1871 			if (ret)
1872 				goto failed_clk_enet_out;
1873 		}
1874 		if (fep->clk_ptp) {
1875 			mutex_lock(&fep->ptp_clk_mutex);
1876 			ret = clk_prepare_enable(fep->clk_ptp);
1877 			if (ret) {
1878 				mutex_unlock(&fep->ptp_clk_mutex);
1879 				goto failed_clk_ptp;
1880 			} else {
1881 				fep->ptp_clk_on = true;
1882 			}
1883 			mutex_unlock(&fep->ptp_clk_mutex);
1884 		}
1885 		if (fep->clk_ref) {
1886 			ret = clk_prepare_enable(fep->clk_ref);
1887 			if (ret)
1888 				goto failed_clk_ref;
1889 		}
1890 	} else {
1891 		clk_disable_unprepare(fep->clk_ahb);
1892 		if (fep->clk_enet_out)
1893 			clk_disable_unprepare(fep->clk_enet_out);
1894 		if (fep->clk_ptp) {
1895 			mutex_lock(&fep->ptp_clk_mutex);
1896 			clk_disable_unprepare(fep->clk_ptp);
1897 			fep->ptp_clk_on = false;
1898 			mutex_unlock(&fep->ptp_clk_mutex);
1899 		}
1900 		if (fep->clk_ref)
1901 			clk_disable_unprepare(fep->clk_ref);
1902 	}
1903 
1904 	return 0;
1905 
1906 failed_clk_ref:
1907 	if (fep->clk_ref)
1908 		clk_disable_unprepare(fep->clk_ref);
1909 failed_clk_ptp:
1910 	if (fep->clk_enet_out)
1911 		clk_disable_unprepare(fep->clk_enet_out);
1912 failed_clk_enet_out:
1913 		clk_disable_unprepare(fep->clk_ahb);
1914 
1915 	return ret;
1916 }
1917 
1918 static int fec_enet_mii_probe(struct net_device *ndev)
1919 {
1920 	struct fec_enet_private *fep = netdev_priv(ndev);
1921 	struct phy_device *phy_dev = NULL;
1922 	char mdio_bus_id[MII_BUS_ID_SIZE];
1923 	char phy_name[MII_BUS_ID_SIZE + 3];
1924 	int phy_id;
1925 	int dev_id = fep->dev_id;
1926 
1927 	fep->phy_dev = NULL;
1928 
1929 	if (fep->phy_node) {
1930 		phy_dev = of_phy_connect(ndev, fep->phy_node,
1931 					 &fec_enet_adjust_link, 0,
1932 					 fep->phy_interface);
1933 		if (!phy_dev)
1934 			return -ENODEV;
1935 	} else {
1936 		/* check for attached phy */
1937 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1938 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1939 				continue;
1940 			if (dev_id--)
1941 				continue;
1942 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1943 			break;
1944 		}
1945 
1946 		if (phy_id >= PHY_MAX_ADDR) {
1947 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1948 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1949 			phy_id = 0;
1950 		}
1951 
1952 		snprintf(phy_name, sizeof(phy_name),
1953 			 PHY_ID_FMT, mdio_bus_id, phy_id);
1954 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1955 				      fep->phy_interface);
1956 	}
1957 
1958 	if (IS_ERR(phy_dev)) {
1959 		netdev_err(ndev, "could not attach to PHY\n");
1960 		return PTR_ERR(phy_dev);
1961 	}
1962 
1963 	/* mask with MAC supported features */
1964 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1965 		phy_dev->supported &= PHY_GBIT_FEATURES;
1966 		phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1967 #if !defined(CONFIG_M5272)
1968 		phy_dev->supported |= SUPPORTED_Pause;
1969 #endif
1970 	}
1971 	else
1972 		phy_dev->supported &= PHY_BASIC_FEATURES;
1973 
1974 	phy_dev->advertising = phy_dev->supported;
1975 
1976 	fep->phy_dev = phy_dev;
1977 	fep->link = 0;
1978 	fep->full_duplex = 0;
1979 
1980 	phy_attached_info(phy_dev);
1981 
1982 	return 0;
1983 }
1984 
1985 static int fec_enet_mii_init(struct platform_device *pdev)
1986 {
1987 	static struct mii_bus *fec0_mii_bus;
1988 	struct net_device *ndev = platform_get_drvdata(pdev);
1989 	struct fec_enet_private *fep = netdev_priv(ndev);
1990 	struct device_node *node;
1991 	int err = -ENXIO;
1992 	u32 mii_speed, holdtime;
1993 
1994 	/*
1995 	 * The i.MX28 dual fec interfaces are not equal.
1996 	 * Here are the differences:
1997 	 *
1998 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1999 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2000 	 *  - external phys can only be configured by fec0
2001 	 *
2002 	 * That is to say fec1 can not work independently. It only works
2003 	 * when fec0 is working. The reason behind this design is that the
2004 	 * second interface is added primarily for Switch mode.
2005 	 *
2006 	 * Because of the last point above, both phys are attached on fec0
2007 	 * mdio interface in board design, and need to be configured by
2008 	 * fec0 mii_bus.
2009 	 */
2010 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2011 		/* fec1 uses fec0 mii_bus */
2012 		if (mii_cnt && fec0_mii_bus) {
2013 			fep->mii_bus = fec0_mii_bus;
2014 			mii_cnt++;
2015 			return 0;
2016 		}
2017 		return -ENOENT;
2018 	}
2019 
2020 	fep->mii_timeout = 0;
2021 
2022 	/*
2023 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2024 	 *
2025 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2026 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2027 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2028 	 * document.
2029 	 */
2030 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2031 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2032 		mii_speed--;
2033 	if (mii_speed > 63) {
2034 		dev_err(&pdev->dev,
2035 			"fec clock (%lu) to fast to get right mii speed\n",
2036 			clk_get_rate(fep->clk_ipg));
2037 		err = -EINVAL;
2038 		goto err_out;
2039 	}
2040 
2041 	/*
2042 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2043 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2044 	 * versions are RAZ there, so just ignore the difference and write the
2045 	 * register always.
2046 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2047 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2048 	 * output.
2049 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2050 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2051 	 * holdtime cannot result in a value greater than 3.
2052 	 */
2053 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2054 
2055 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2056 
2057 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2058 
2059 	fep->mii_bus = mdiobus_alloc();
2060 	if (fep->mii_bus == NULL) {
2061 		err = -ENOMEM;
2062 		goto err_out;
2063 	}
2064 
2065 	fep->mii_bus->name = "fec_enet_mii_bus";
2066 	fep->mii_bus->read = fec_enet_mdio_read;
2067 	fep->mii_bus->write = fec_enet_mdio_write;
2068 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2069 		pdev->name, fep->dev_id + 1);
2070 	fep->mii_bus->priv = fep;
2071 	fep->mii_bus->parent = &pdev->dev;
2072 
2073 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2074 	if (node) {
2075 		err = of_mdiobus_register(fep->mii_bus, node);
2076 		of_node_put(node);
2077 	} else {
2078 		err = mdiobus_register(fep->mii_bus);
2079 	}
2080 
2081 	if (err)
2082 		goto err_out_free_mdiobus;
2083 
2084 	mii_cnt++;
2085 
2086 	/* save fec0 mii_bus */
2087 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2088 		fec0_mii_bus = fep->mii_bus;
2089 
2090 	return 0;
2091 
2092 err_out_free_mdiobus:
2093 	mdiobus_free(fep->mii_bus);
2094 err_out:
2095 	return err;
2096 }
2097 
2098 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2099 {
2100 	if (--mii_cnt == 0) {
2101 		mdiobus_unregister(fep->mii_bus);
2102 		mdiobus_free(fep->mii_bus);
2103 	}
2104 }
2105 
2106 static int fec_enet_get_settings(struct net_device *ndev,
2107 				  struct ethtool_cmd *cmd)
2108 {
2109 	struct fec_enet_private *fep = netdev_priv(ndev);
2110 	struct phy_device *phydev = fep->phy_dev;
2111 
2112 	if (!phydev)
2113 		return -ENODEV;
2114 
2115 	return phy_ethtool_gset(phydev, cmd);
2116 }
2117 
2118 static int fec_enet_set_settings(struct net_device *ndev,
2119 				 struct ethtool_cmd *cmd)
2120 {
2121 	struct fec_enet_private *fep = netdev_priv(ndev);
2122 	struct phy_device *phydev = fep->phy_dev;
2123 
2124 	if (!phydev)
2125 		return -ENODEV;
2126 
2127 	return phy_ethtool_sset(phydev, cmd);
2128 }
2129 
2130 static void fec_enet_get_drvinfo(struct net_device *ndev,
2131 				 struct ethtool_drvinfo *info)
2132 {
2133 	struct fec_enet_private *fep = netdev_priv(ndev);
2134 
2135 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2136 		sizeof(info->driver));
2137 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2138 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2139 }
2140 
2141 static int fec_enet_get_regs_len(struct net_device *ndev)
2142 {
2143 	struct fec_enet_private *fep = netdev_priv(ndev);
2144 	struct resource *r;
2145 	int s = 0;
2146 
2147 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2148 	if (r)
2149 		s = resource_size(r);
2150 
2151 	return s;
2152 }
2153 
2154 /* List of registers that can be safety be read to dump them with ethtool */
2155 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2156 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2157 static u32 fec_enet_register_offset[] = {
2158 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2159 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2160 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2161 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2162 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2163 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2164 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2165 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2166 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2167 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2168 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2169 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2170 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2171 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2172 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2173 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2174 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2175 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2176 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2177 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2178 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2179 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2180 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2181 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2182 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2183 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2184 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2185 };
2186 #else
2187 static u32 fec_enet_register_offset[] = {
2188 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2189 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2190 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2191 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2192 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2193 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2194 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2195 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2196 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2197 };
2198 #endif
2199 
2200 static void fec_enet_get_regs(struct net_device *ndev,
2201 			      struct ethtool_regs *regs, void *regbuf)
2202 {
2203 	struct fec_enet_private *fep = netdev_priv(ndev);
2204 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2205 	u32 *buf = (u32 *)regbuf;
2206 	u32 i, off;
2207 
2208 	memset(buf, 0, regs->len);
2209 
2210 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2211 		off = fec_enet_register_offset[i] / 4;
2212 		buf[off] = readl(&theregs[off]);
2213 	}
2214 }
2215 
2216 static int fec_enet_get_ts_info(struct net_device *ndev,
2217 				struct ethtool_ts_info *info)
2218 {
2219 	struct fec_enet_private *fep = netdev_priv(ndev);
2220 
2221 	if (fep->bufdesc_ex) {
2222 
2223 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2224 					SOF_TIMESTAMPING_RX_SOFTWARE |
2225 					SOF_TIMESTAMPING_SOFTWARE |
2226 					SOF_TIMESTAMPING_TX_HARDWARE |
2227 					SOF_TIMESTAMPING_RX_HARDWARE |
2228 					SOF_TIMESTAMPING_RAW_HARDWARE;
2229 		if (fep->ptp_clock)
2230 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2231 		else
2232 			info->phc_index = -1;
2233 
2234 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2235 				 (1 << HWTSTAMP_TX_ON);
2236 
2237 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2238 				   (1 << HWTSTAMP_FILTER_ALL);
2239 		return 0;
2240 	} else {
2241 		return ethtool_op_get_ts_info(ndev, info);
2242 	}
2243 }
2244 
2245 #if !defined(CONFIG_M5272)
2246 
2247 static void fec_enet_get_pauseparam(struct net_device *ndev,
2248 				    struct ethtool_pauseparam *pause)
2249 {
2250 	struct fec_enet_private *fep = netdev_priv(ndev);
2251 
2252 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2253 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2254 	pause->rx_pause = pause->tx_pause;
2255 }
2256 
2257 static int fec_enet_set_pauseparam(struct net_device *ndev,
2258 				   struct ethtool_pauseparam *pause)
2259 {
2260 	struct fec_enet_private *fep = netdev_priv(ndev);
2261 
2262 	if (!fep->phy_dev)
2263 		return -ENODEV;
2264 
2265 	if (pause->tx_pause != pause->rx_pause) {
2266 		netdev_info(ndev,
2267 			"hardware only support enable/disable both tx and rx");
2268 		return -EINVAL;
2269 	}
2270 
2271 	fep->pause_flag = 0;
2272 
2273 	/* tx pause must be same as rx pause */
2274 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2275 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2276 
2277 	if (pause->rx_pause || pause->autoneg) {
2278 		fep->phy_dev->supported |= ADVERTISED_Pause;
2279 		fep->phy_dev->advertising |= ADVERTISED_Pause;
2280 	} else {
2281 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
2282 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2283 	}
2284 
2285 	if (pause->autoneg) {
2286 		if (netif_running(ndev))
2287 			fec_stop(ndev);
2288 		phy_start_aneg(fep->phy_dev);
2289 	}
2290 	if (netif_running(ndev)) {
2291 		napi_disable(&fep->napi);
2292 		netif_tx_lock_bh(ndev);
2293 		fec_restart(ndev);
2294 		netif_wake_queue(ndev);
2295 		netif_tx_unlock_bh(ndev);
2296 		napi_enable(&fep->napi);
2297 	}
2298 
2299 	return 0;
2300 }
2301 
2302 static const struct fec_stat {
2303 	char name[ETH_GSTRING_LEN];
2304 	u16 offset;
2305 } fec_stats[] = {
2306 	/* RMON TX */
2307 	{ "tx_dropped", RMON_T_DROP },
2308 	{ "tx_packets", RMON_T_PACKETS },
2309 	{ "tx_broadcast", RMON_T_BC_PKT },
2310 	{ "tx_multicast", RMON_T_MC_PKT },
2311 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2312 	{ "tx_undersize", RMON_T_UNDERSIZE },
2313 	{ "tx_oversize", RMON_T_OVERSIZE },
2314 	{ "tx_fragment", RMON_T_FRAG },
2315 	{ "tx_jabber", RMON_T_JAB },
2316 	{ "tx_collision", RMON_T_COL },
2317 	{ "tx_64byte", RMON_T_P64 },
2318 	{ "tx_65to127byte", RMON_T_P65TO127 },
2319 	{ "tx_128to255byte", RMON_T_P128TO255 },
2320 	{ "tx_256to511byte", RMON_T_P256TO511 },
2321 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2322 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2323 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2324 	{ "tx_octets", RMON_T_OCTETS },
2325 
2326 	/* IEEE TX */
2327 	{ "IEEE_tx_drop", IEEE_T_DROP },
2328 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2329 	{ "IEEE_tx_1col", IEEE_T_1COL },
2330 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2331 	{ "IEEE_tx_def", IEEE_T_DEF },
2332 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2333 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2334 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2335 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2336 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2337 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2338 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2339 
2340 	/* RMON RX */
2341 	{ "rx_packets", RMON_R_PACKETS },
2342 	{ "rx_broadcast", RMON_R_BC_PKT },
2343 	{ "rx_multicast", RMON_R_MC_PKT },
2344 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2345 	{ "rx_undersize", RMON_R_UNDERSIZE },
2346 	{ "rx_oversize", RMON_R_OVERSIZE },
2347 	{ "rx_fragment", RMON_R_FRAG },
2348 	{ "rx_jabber", RMON_R_JAB },
2349 	{ "rx_64byte", RMON_R_P64 },
2350 	{ "rx_65to127byte", RMON_R_P65TO127 },
2351 	{ "rx_128to255byte", RMON_R_P128TO255 },
2352 	{ "rx_256to511byte", RMON_R_P256TO511 },
2353 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2354 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2355 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2356 	{ "rx_octets", RMON_R_OCTETS },
2357 
2358 	/* IEEE RX */
2359 	{ "IEEE_rx_drop", IEEE_R_DROP },
2360 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2361 	{ "IEEE_rx_crc", IEEE_R_CRC },
2362 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2363 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2364 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2365 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2366 };
2367 
2368 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2369 	struct ethtool_stats *stats, u64 *data)
2370 {
2371 	struct fec_enet_private *fep = netdev_priv(dev);
2372 	int i;
2373 
2374 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2375 		data[i] = readl(fep->hwp + fec_stats[i].offset);
2376 }
2377 
2378 static void fec_enet_get_strings(struct net_device *netdev,
2379 	u32 stringset, u8 *data)
2380 {
2381 	int i;
2382 	switch (stringset) {
2383 	case ETH_SS_STATS:
2384 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2385 			memcpy(data + i * ETH_GSTRING_LEN,
2386 				fec_stats[i].name, ETH_GSTRING_LEN);
2387 		break;
2388 	}
2389 }
2390 
2391 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2392 {
2393 	switch (sset) {
2394 	case ETH_SS_STATS:
2395 		return ARRAY_SIZE(fec_stats);
2396 	default:
2397 		return -EOPNOTSUPP;
2398 	}
2399 }
2400 #endif /* !defined(CONFIG_M5272) */
2401 
2402 static int fec_enet_nway_reset(struct net_device *dev)
2403 {
2404 	struct fec_enet_private *fep = netdev_priv(dev);
2405 	struct phy_device *phydev = fep->phy_dev;
2406 
2407 	if (!phydev)
2408 		return -ENODEV;
2409 
2410 	return genphy_restart_aneg(phydev);
2411 }
2412 
2413 /* ITR clock source is enet system clock (clk_ahb).
2414  * TCTT unit is cycle_ns * 64 cycle
2415  * So, the ICTT value = X us / (cycle_ns * 64)
2416  */
2417 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2418 {
2419 	struct fec_enet_private *fep = netdev_priv(ndev);
2420 
2421 	return us * (fep->itr_clk_rate / 64000) / 1000;
2422 }
2423 
2424 /* Set threshold for interrupt coalescing */
2425 static void fec_enet_itr_coal_set(struct net_device *ndev)
2426 {
2427 	struct fec_enet_private *fep = netdev_priv(ndev);
2428 	int rx_itr, tx_itr;
2429 
2430 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2431 		return;
2432 
2433 	/* Must be greater than zero to avoid unpredictable behavior */
2434 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2435 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2436 		return;
2437 
2438 	/* Select enet system clock as Interrupt Coalescing
2439 	 * timer Clock Source
2440 	 */
2441 	rx_itr = FEC_ITR_CLK_SEL;
2442 	tx_itr = FEC_ITR_CLK_SEL;
2443 
2444 	/* set ICFT and ICTT */
2445 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2446 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2447 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2448 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2449 
2450 	rx_itr |= FEC_ITR_EN;
2451 	tx_itr |= FEC_ITR_EN;
2452 
2453 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2454 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2455 	writel(tx_itr, fep->hwp + FEC_TXIC1);
2456 	writel(rx_itr, fep->hwp + FEC_RXIC1);
2457 	writel(tx_itr, fep->hwp + FEC_TXIC2);
2458 	writel(rx_itr, fep->hwp + FEC_RXIC2);
2459 }
2460 
2461 static int
2462 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2463 {
2464 	struct fec_enet_private *fep = netdev_priv(ndev);
2465 
2466 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2467 		return -EOPNOTSUPP;
2468 
2469 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2470 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2471 
2472 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2473 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2474 
2475 	return 0;
2476 }
2477 
2478 static int
2479 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2480 {
2481 	struct fec_enet_private *fep = netdev_priv(ndev);
2482 	unsigned int cycle;
2483 
2484 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2485 		return -EOPNOTSUPP;
2486 
2487 	if (ec->rx_max_coalesced_frames > 255) {
2488 		pr_err("Rx coalesced frames exceed hardware limiation");
2489 		return -EINVAL;
2490 	}
2491 
2492 	if (ec->tx_max_coalesced_frames > 255) {
2493 		pr_err("Tx coalesced frame exceed hardware limiation");
2494 		return -EINVAL;
2495 	}
2496 
2497 	cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2498 	if (cycle > 0xFFFF) {
2499 		pr_err("Rx coalesed usec exceeed hardware limiation");
2500 		return -EINVAL;
2501 	}
2502 
2503 	cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2504 	if (cycle > 0xFFFF) {
2505 		pr_err("Rx coalesed usec exceeed hardware limiation");
2506 		return -EINVAL;
2507 	}
2508 
2509 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2510 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2511 
2512 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2513 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2514 
2515 	fec_enet_itr_coal_set(ndev);
2516 
2517 	return 0;
2518 }
2519 
2520 static void fec_enet_itr_coal_init(struct net_device *ndev)
2521 {
2522 	struct ethtool_coalesce ec;
2523 
2524 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2525 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2526 
2527 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2528 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2529 
2530 	fec_enet_set_coalesce(ndev, &ec);
2531 }
2532 
2533 static int fec_enet_get_tunable(struct net_device *netdev,
2534 				const struct ethtool_tunable *tuna,
2535 				void *data)
2536 {
2537 	struct fec_enet_private *fep = netdev_priv(netdev);
2538 	int ret = 0;
2539 
2540 	switch (tuna->id) {
2541 	case ETHTOOL_RX_COPYBREAK:
2542 		*(u32 *)data = fep->rx_copybreak;
2543 		break;
2544 	default:
2545 		ret = -EINVAL;
2546 		break;
2547 	}
2548 
2549 	return ret;
2550 }
2551 
2552 static int fec_enet_set_tunable(struct net_device *netdev,
2553 				const struct ethtool_tunable *tuna,
2554 				const void *data)
2555 {
2556 	struct fec_enet_private *fep = netdev_priv(netdev);
2557 	int ret = 0;
2558 
2559 	switch (tuna->id) {
2560 	case ETHTOOL_RX_COPYBREAK:
2561 		fep->rx_copybreak = *(u32 *)data;
2562 		break;
2563 	default:
2564 		ret = -EINVAL;
2565 		break;
2566 	}
2567 
2568 	return ret;
2569 }
2570 
2571 static void
2572 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2573 {
2574 	struct fec_enet_private *fep = netdev_priv(ndev);
2575 
2576 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2577 		wol->supported = WAKE_MAGIC;
2578 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2579 	} else {
2580 		wol->supported = wol->wolopts = 0;
2581 	}
2582 }
2583 
2584 static int
2585 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2586 {
2587 	struct fec_enet_private *fep = netdev_priv(ndev);
2588 
2589 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2590 		return -EINVAL;
2591 
2592 	if (wol->wolopts & ~WAKE_MAGIC)
2593 		return -EINVAL;
2594 
2595 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2596 	if (device_may_wakeup(&ndev->dev)) {
2597 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2598 		if (fep->irq[0] > 0)
2599 			enable_irq_wake(fep->irq[0]);
2600 	} else {
2601 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2602 		if (fep->irq[0] > 0)
2603 			disable_irq_wake(fep->irq[0]);
2604 	}
2605 
2606 	return 0;
2607 }
2608 
2609 static const struct ethtool_ops fec_enet_ethtool_ops = {
2610 	.get_settings		= fec_enet_get_settings,
2611 	.set_settings		= fec_enet_set_settings,
2612 	.get_drvinfo		= fec_enet_get_drvinfo,
2613 	.get_regs_len		= fec_enet_get_regs_len,
2614 	.get_regs		= fec_enet_get_regs,
2615 	.nway_reset		= fec_enet_nway_reset,
2616 	.get_link		= ethtool_op_get_link,
2617 	.get_coalesce		= fec_enet_get_coalesce,
2618 	.set_coalesce		= fec_enet_set_coalesce,
2619 #ifndef CONFIG_M5272
2620 	.get_pauseparam		= fec_enet_get_pauseparam,
2621 	.set_pauseparam		= fec_enet_set_pauseparam,
2622 	.get_strings		= fec_enet_get_strings,
2623 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2624 	.get_sset_count		= fec_enet_get_sset_count,
2625 #endif
2626 	.get_ts_info		= fec_enet_get_ts_info,
2627 	.get_tunable		= fec_enet_get_tunable,
2628 	.set_tunable		= fec_enet_set_tunable,
2629 	.get_wol		= fec_enet_get_wol,
2630 	.set_wol		= fec_enet_set_wol,
2631 };
2632 
2633 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2634 {
2635 	struct fec_enet_private *fep = netdev_priv(ndev);
2636 	struct phy_device *phydev = fep->phy_dev;
2637 
2638 	if (!netif_running(ndev))
2639 		return -EINVAL;
2640 
2641 	if (!phydev)
2642 		return -ENODEV;
2643 
2644 	if (fep->bufdesc_ex) {
2645 		if (cmd == SIOCSHWTSTAMP)
2646 			return fec_ptp_set(ndev, rq);
2647 		if (cmd == SIOCGHWTSTAMP)
2648 			return fec_ptp_get(ndev, rq);
2649 	}
2650 
2651 	return phy_mii_ioctl(phydev, rq, cmd);
2652 }
2653 
2654 static void fec_enet_free_buffers(struct net_device *ndev)
2655 {
2656 	struct fec_enet_private *fep = netdev_priv(ndev);
2657 	unsigned int i;
2658 	struct sk_buff *skb;
2659 	struct bufdesc	*bdp;
2660 	struct fec_enet_priv_tx_q *txq;
2661 	struct fec_enet_priv_rx_q *rxq;
2662 	unsigned int q;
2663 
2664 	for (q = 0; q < fep->num_rx_queues; q++) {
2665 		rxq = fep->rx_queue[q];
2666 		bdp = rxq->rx_bd_base;
2667 		for (i = 0; i < rxq->rx_ring_size; i++) {
2668 			skb = rxq->rx_skbuff[i];
2669 			rxq->rx_skbuff[i] = NULL;
2670 			if (skb) {
2671 				dma_unmap_single(&fep->pdev->dev,
2672 						 fec32_to_cpu(bdp->cbd_bufaddr),
2673 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2674 						 DMA_FROM_DEVICE);
2675 				dev_kfree_skb(skb);
2676 			}
2677 			bdp = fec_enet_get_nextdesc(bdp, fep, q);
2678 		}
2679 	}
2680 
2681 	for (q = 0; q < fep->num_tx_queues; q++) {
2682 		txq = fep->tx_queue[q];
2683 		bdp = txq->tx_bd_base;
2684 		for (i = 0; i < txq->tx_ring_size; i++) {
2685 			kfree(txq->tx_bounce[i]);
2686 			txq->tx_bounce[i] = NULL;
2687 			skb = txq->tx_skbuff[i];
2688 			txq->tx_skbuff[i] = NULL;
2689 			dev_kfree_skb(skb);
2690 		}
2691 	}
2692 }
2693 
2694 static void fec_enet_free_queue(struct net_device *ndev)
2695 {
2696 	struct fec_enet_private *fep = netdev_priv(ndev);
2697 	int i;
2698 	struct fec_enet_priv_tx_q *txq;
2699 
2700 	for (i = 0; i < fep->num_tx_queues; i++)
2701 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2702 			txq = fep->tx_queue[i];
2703 			dma_free_coherent(NULL,
2704 					  txq->tx_ring_size * TSO_HEADER_SIZE,
2705 					  txq->tso_hdrs,
2706 					  txq->tso_hdrs_dma);
2707 		}
2708 
2709 	for (i = 0; i < fep->num_rx_queues; i++)
2710 		kfree(fep->rx_queue[i]);
2711 	for (i = 0; i < fep->num_tx_queues; i++)
2712 		kfree(fep->tx_queue[i]);
2713 }
2714 
2715 static int fec_enet_alloc_queue(struct net_device *ndev)
2716 {
2717 	struct fec_enet_private *fep = netdev_priv(ndev);
2718 	int i;
2719 	int ret = 0;
2720 	struct fec_enet_priv_tx_q *txq;
2721 
2722 	for (i = 0; i < fep->num_tx_queues; i++) {
2723 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2724 		if (!txq) {
2725 			ret = -ENOMEM;
2726 			goto alloc_failed;
2727 		}
2728 
2729 		fep->tx_queue[i] = txq;
2730 		txq->tx_ring_size = TX_RING_SIZE;
2731 		fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2732 
2733 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2734 		txq->tx_wake_threshold =
2735 				(txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2736 
2737 		txq->tso_hdrs = dma_alloc_coherent(NULL,
2738 					txq->tx_ring_size * TSO_HEADER_SIZE,
2739 					&txq->tso_hdrs_dma,
2740 					GFP_KERNEL);
2741 		if (!txq->tso_hdrs) {
2742 			ret = -ENOMEM;
2743 			goto alloc_failed;
2744 		}
2745 	}
2746 
2747 	for (i = 0; i < fep->num_rx_queues; i++) {
2748 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2749 					   GFP_KERNEL);
2750 		if (!fep->rx_queue[i]) {
2751 			ret = -ENOMEM;
2752 			goto alloc_failed;
2753 		}
2754 
2755 		fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2756 		fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2757 	}
2758 	return ret;
2759 
2760 alloc_failed:
2761 	fec_enet_free_queue(ndev);
2762 	return ret;
2763 }
2764 
2765 static int
2766 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2767 {
2768 	struct fec_enet_private *fep = netdev_priv(ndev);
2769 	unsigned int i;
2770 	struct sk_buff *skb;
2771 	struct bufdesc	*bdp;
2772 	struct fec_enet_priv_rx_q *rxq;
2773 
2774 	rxq = fep->rx_queue[queue];
2775 	bdp = rxq->rx_bd_base;
2776 	for (i = 0; i < rxq->rx_ring_size; i++) {
2777 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2778 		if (!skb)
2779 			goto err_alloc;
2780 
2781 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2782 			dev_kfree_skb(skb);
2783 			goto err_alloc;
2784 		}
2785 
2786 		rxq->rx_skbuff[i] = skb;
2787 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2788 
2789 		if (fep->bufdesc_ex) {
2790 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2791 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2792 		}
2793 
2794 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2795 	}
2796 
2797 	/* Set the last buffer to wrap. */
2798 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2799 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2800 	return 0;
2801 
2802  err_alloc:
2803 	fec_enet_free_buffers(ndev);
2804 	return -ENOMEM;
2805 }
2806 
2807 static int
2808 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2809 {
2810 	struct fec_enet_private *fep = netdev_priv(ndev);
2811 	unsigned int i;
2812 	struct bufdesc  *bdp;
2813 	struct fec_enet_priv_tx_q *txq;
2814 
2815 	txq = fep->tx_queue[queue];
2816 	bdp = txq->tx_bd_base;
2817 	for (i = 0; i < txq->tx_ring_size; i++) {
2818 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2819 		if (!txq->tx_bounce[i])
2820 			goto err_alloc;
2821 
2822 		bdp->cbd_sc = cpu_to_fec16(0);
2823 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2824 
2825 		if (fep->bufdesc_ex) {
2826 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2827 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2828 		}
2829 
2830 		bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2831 	}
2832 
2833 	/* Set the last buffer to wrap. */
2834 	bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2835 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2836 
2837 	return 0;
2838 
2839  err_alloc:
2840 	fec_enet_free_buffers(ndev);
2841 	return -ENOMEM;
2842 }
2843 
2844 static int fec_enet_alloc_buffers(struct net_device *ndev)
2845 {
2846 	struct fec_enet_private *fep = netdev_priv(ndev);
2847 	unsigned int i;
2848 
2849 	for (i = 0; i < fep->num_rx_queues; i++)
2850 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2851 			return -ENOMEM;
2852 
2853 	for (i = 0; i < fep->num_tx_queues; i++)
2854 		if (fec_enet_alloc_txq_buffers(ndev, i))
2855 			return -ENOMEM;
2856 	return 0;
2857 }
2858 
2859 static int
2860 fec_enet_open(struct net_device *ndev)
2861 {
2862 	struct fec_enet_private *fep = netdev_priv(ndev);
2863 	int ret;
2864 
2865 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2866 	if (ret < 0)
2867 		return ret;
2868 
2869 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2870 	ret = fec_enet_clk_enable(ndev, true);
2871 	if (ret)
2872 		goto clk_enable;
2873 
2874 	/* I should reset the ring buffers here, but I don't yet know
2875 	 * a simple way to do that.
2876 	 */
2877 
2878 	ret = fec_enet_alloc_buffers(ndev);
2879 	if (ret)
2880 		goto err_enet_alloc;
2881 
2882 	/* Init MAC prior to mii bus probe */
2883 	fec_restart(ndev);
2884 
2885 	/* Probe and connect to PHY when open the interface */
2886 	ret = fec_enet_mii_probe(ndev);
2887 	if (ret)
2888 		goto err_enet_mii_probe;
2889 
2890 	napi_enable(&fep->napi);
2891 	phy_start(fep->phy_dev);
2892 	netif_tx_start_all_queues(ndev);
2893 
2894 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2895 				 FEC_WOL_FLAG_ENABLE);
2896 
2897 	return 0;
2898 
2899 err_enet_mii_probe:
2900 	fec_enet_free_buffers(ndev);
2901 err_enet_alloc:
2902 	fec_enet_clk_enable(ndev, false);
2903 clk_enable:
2904 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2905 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2906 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2907 	return ret;
2908 }
2909 
2910 static int
2911 fec_enet_close(struct net_device *ndev)
2912 {
2913 	struct fec_enet_private *fep = netdev_priv(ndev);
2914 
2915 	phy_stop(fep->phy_dev);
2916 
2917 	if (netif_device_present(ndev)) {
2918 		napi_disable(&fep->napi);
2919 		netif_tx_disable(ndev);
2920 		fec_stop(ndev);
2921 	}
2922 
2923 	phy_disconnect(fep->phy_dev);
2924 	fep->phy_dev = NULL;
2925 
2926 	fec_enet_clk_enable(ndev, false);
2927 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2928 	pm_runtime_mark_last_busy(&fep->pdev->dev);
2929 	pm_runtime_put_autosuspend(&fep->pdev->dev);
2930 
2931 	fec_enet_free_buffers(ndev);
2932 
2933 	return 0;
2934 }
2935 
2936 /* Set or clear the multicast filter for this adaptor.
2937  * Skeleton taken from sunlance driver.
2938  * The CPM Ethernet implementation allows Multicast as well as individual
2939  * MAC address filtering.  Some of the drivers check to make sure it is
2940  * a group multicast address, and discard those that are not.  I guess I
2941  * will do the same for now, but just remove the test if you want
2942  * individual filtering as well (do the upper net layers want or support
2943  * this kind of feature?).
2944  */
2945 
2946 #define HASH_BITS	6		/* #bits in hash */
2947 #define CRC32_POLY	0xEDB88320
2948 
2949 static void set_multicast_list(struct net_device *ndev)
2950 {
2951 	struct fec_enet_private *fep = netdev_priv(ndev);
2952 	struct netdev_hw_addr *ha;
2953 	unsigned int i, bit, data, crc, tmp;
2954 	unsigned char hash;
2955 
2956 	if (ndev->flags & IFF_PROMISC) {
2957 		tmp = readl(fep->hwp + FEC_R_CNTRL);
2958 		tmp |= 0x8;
2959 		writel(tmp, fep->hwp + FEC_R_CNTRL);
2960 		return;
2961 	}
2962 
2963 	tmp = readl(fep->hwp + FEC_R_CNTRL);
2964 	tmp &= ~0x8;
2965 	writel(tmp, fep->hwp + FEC_R_CNTRL);
2966 
2967 	if (ndev->flags & IFF_ALLMULTI) {
2968 		/* Catch all multicast addresses, so set the
2969 		 * filter to all 1's
2970 		 */
2971 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2972 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2973 
2974 		return;
2975 	}
2976 
2977 	/* Clear filter and add the addresses in hash register
2978 	 */
2979 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2980 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2981 
2982 	netdev_for_each_mc_addr(ha, ndev) {
2983 		/* calculate crc32 value of mac address */
2984 		crc = 0xffffffff;
2985 
2986 		for (i = 0; i < ndev->addr_len; i++) {
2987 			data = ha->addr[i];
2988 			for (bit = 0; bit < 8; bit++, data >>= 1) {
2989 				crc = (crc >> 1) ^
2990 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
2991 			}
2992 		}
2993 
2994 		/* only upper 6 bits (HASH_BITS) are used
2995 		 * which point to specific bit in he hash registers
2996 		 */
2997 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2998 
2999 		if (hash > 31) {
3000 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3001 			tmp |= 1 << (hash - 32);
3002 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3003 		} else {
3004 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3005 			tmp |= 1 << hash;
3006 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3007 		}
3008 	}
3009 }
3010 
3011 /* Set a MAC change in hardware. */
3012 static int
3013 fec_set_mac_address(struct net_device *ndev, void *p)
3014 {
3015 	struct fec_enet_private *fep = netdev_priv(ndev);
3016 	struct sockaddr *addr = p;
3017 
3018 	if (addr) {
3019 		if (!is_valid_ether_addr(addr->sa_data))
3020 			return -EADDRNOTAVAIL;
3021 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3022 	}
3023 
3024 	/* Add netif status check here to avoid system hang in below case:
3025 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3026 	 * After ethx down, fec all clocks are gated off and then register
3027 	 * access causes system hang.
3028 	 */
3029 	if (!netif_running(ndev))
3030 		return 0;
3031 
3032 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3033 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3034 		fep->hwp + FEC_ADDR_LOW);
3035 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3036 		fep->hwp + FEC_ADDR_HIGH);
3037 	return 0;
3038 }
3039 
3040 #ifdef CONFIG_NET_POLL_CONTROLLER
3041 /**
3042  * fec_poll_controller - FEC Poll controller function
3043  * @dev: The FEC network adapter
3044  *
3045  * Polled functionality used by netconsole and others in non interrupt mode
3046  *
3047  */
3048 static void fec_poll_controller(struct net_device *dev)
3049 {
3050 	int i;
3051 	struct fec_enet_private *fep = netdev_priv(dev);
3052 
3053 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3054 		if (fep->irq[i] > 0) {
3055 			disable_irq(fep->irq[i]);
3056 			fec_enet_interrupt(fep->irq[i], dev);
3057 			enable_irq(fep->irq[i]);
3058 		}
3059 	}
3060 }
3061 #endif
3062 
3063 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3064 	netdev_features_t features)
3065 {
3066 	struct fec_enet_private *fep = netdev_priv(netdev);
3067 	netdev_features_t changed = features ^ netdev->features;
3068 
3069 	netdev->features = features;
3070 
3071 	/* Receive checksum has been changed */
3072 	if (changed & NETIF_F_RXCSUM) {
3073 		if (features & NETIF_F_RXCSUM)
3074 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3075 		else
3076 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3077 	}
3078 }
3079 
3080 static int fec_set_features(struct net_device *netdev,
3081 	netdev_features_t features)
3082 {
3083 	struct fec_enet_private *fep = netdev_priv(netdev);
3084 	netdev_features_t changed = features ^ netdev->features;
3085 
3086 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3087 		napi_disable(&fep->napi);
3088 		netif_tx_lock_bh(netdev);
3089 		fec_stop(netdev);
3090 		fec_enet_set_netdev_features(netdev, features);
3091 		fec_restart(netdev);
3092 		netif_tx_wake_all_queues(netdev);
3093 		netif_tx_unlock_bh(netdev);
3094 		napi_enable(&fep->napi);
3095 	} else {
3096 		fec_enet_set_netdev_features(netdev, features);
3097 	}
3098 
3099 	return 0;
3100 }
3101 
3102 static const struct net_device_ops fec_netdev_ops = {
3103 	.ndo_open		= fec_enet_open,
3104 	.ndo_stop		= fec_enet_close,
3105 	.ndo_start_xmit		= fec_enet_start_xmit,
3106 	.ndo_set_rx_mode	= set_multicast_list,
3107 	.ndo_change_mtu		= eth_change_mtu,
3108 	.ndo_validate_addr	= eth_validate_addr,
3109 	.ndo_tx_timeout		= fec_timeout,
3110 	.ndo_set_mac_address	= fec_set_mac_address,
3111 	.ndo_do_ioctl		= fec_enet_ioctl,
3112 #ifdef CONFIG_NET_POLL_CONTROLLER
3113 	.ndo_poll_controller	= fec_poll_controller,
3114 #endif
3115 	.ndo_set_features	= fec_set_features,
3116 };
3117 
3118  /*
3119   * XXX:  We need to clean up on failure exits here.
3120   *
3121   */
3122 static int fec_enet_init(struct net_device *ndev)
3123 {
3124 	struct fec_enet_private *fep = netdev_priv(ndev);
3125 	struct fec_enet_priv_tx_q *txq;
3126 	struct fec_enet_priv_rx_q *rxq;
3127 	struct bufdesc *cbd_base;
3128 	dma_addr_t bd_dma;
3129 	int bd_size;
3130 	unsigned int i;
3131 
3132 #if defined(CONFIG_ARM)
3133 	fep->rx_align = 0xf;
3134 	fep->tx_align = 0xf;
3135 #else
3136 	fep->rx_align = 0x3;
3137 	fep->tx_align = 0x3;
3138 #endif
3139 
3140 	fec_enet_alloc_queue(ndev);
3141 
3142 	if (fep->bufdesc_ex)
3143 		fep->bufdesc_size = sizeof(struct bufdesc_ex);
3144 	else
3145 		fep->bufdesc_size = sizeof(struct bufdesc);
3146 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
3147 			fep->bufdesc_size;
3148 
3149 	/* Allocate memory for buffer descriptors. */
3150 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3151 				       GFP_KERNEL);
3152 	if (!cbd_base) {
3153 		return -ENOMEM;
3154 	}
3155 
3156 	memset(cbd_base, 0, bd_size);
3157 
3158 	/* Get the Ethernet address */
3159 	fec_get_mac(ndev);
3160 	/* make sure MAC we just acquired is programmed into the hw */
3161 	fec_set_mac_address(ndev, NULL);
3162 
3163 	/* Set receive and transmit descriptor base. */
3164 	for (i = 0; i < fep->num_rx_queues; i++) {
3165 		rxq = fep->rx_queue[i];
3166 		rxq->index = i;
3167 		rxq->rx_bd_base = (struct bufdesc *)cbd_base;
3168 		rxq->bd_dma = bd_dma;
3169 		if (fep->bufdesc_ex) {
3170 			bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3171 			cbd_base = (struct bufdesc *)
3172 				(((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3173 		} else {
3174 			bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3175 			cbd_base += rxq->rx_ring_size;
3176 		}
3177 	}
3178 
3179 	for (i = 0; i < fep->num_tx_queues; i++) {
3180 		txq = fep->tx_queue[i];
3181 		txq->index = i;
3182 		txq->tx_bd_base = (struct bufdesc *)cbd_base;
3183 		txq->bd_dma = bd_dma;
3184 		if (fep->bufdesc_ex) {
3185 			bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3186 			cbd_base = (struct bufdesc *)
3187 			 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3188 		} else {
3189 			bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3190 			cbd_base += txq->tx_ring_size;
3191 		}
3192 	}
3193 
3194 
3195 	/* The FEC Ethernet specific entries in the device structure */
3196 	ndev->watchdog_timeo = TX_TIMEOUT;
3197 	ndev->netdev_ops = &fec_netdev_ops;
3198 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3199 
3200 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3201 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3202 
3203 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3204 		/* enable hw VLAN support */
3205 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3206 
3207 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3208 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3209 
3210 		/* enable hw accelerator */
3211 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3212 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3213 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3214 	}
3215 
3216 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3217 		fep->tx_align = 0;
3218 		fep->rx_align = 0x3f;
3219 	}
3220 
3221 	ndev->hw_features = ndev->features;
3222 
3223 	fec_restart(ndev);
3224 
3225 	return 0;
3226 }
3227 
3228 #ifdef CONFIG_OF
3229 static void fec_reset_phy(struct platform_device *pdev)
3230 {
3231 	int err, phy_reset;
3232 	int msec = 1;
3233 	struct device_node *np = pdev->dev.of_node;
3234 
3235 	if (!np)
3236 		return;
3237 
3238 	of_property_read_u32(np, "phy-reset-duration", &msec);
3239 	/* A sane reset duration should not be longer than 1s */
3240 	if (msec > 1000)
3241 		msec = 1;
3242 
3243 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3244 	if (!gpio_is_valid(phy_reset))
3245 		return;
3246 
3247 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3248 				    GPIOF_OUT_INIT_LOW, "phy-reset");
3249 	if (err) {
3250 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3251 		return;
3252 	}
3253 	msleep(msec);
3254 	gpio_set_value_cansleep(phy_reset, 1);
3255 }
3256 #else /* CONFIG_OF */
3257 static void fec_reset_phy(struct platform_device *pdev)
3258 {
3259 	/*
3260 	 * In case of platform probe, the reset has been done
3261 	 * by machine code.
3262 	 */
3263 }
3264 #endif /* CONFIG_OF */
3265 
3266 static void
3267 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3268 {
3269 	struct device_node *np = pdev->dev.of_node;
3270 
3271 	*num_tx = *num_rx = 1;
3272 
3273 	if (!np || !of_device_is_available(np))
3274 		return;
3275 
3276 	/* parse the num of tx and rx queues */
3277 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3278 
3279 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3280 
3281 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3282 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3283 			 *num_tx);
3284 		*num_tx = 1;
3285 		return;
3286 	}
3287 
3288 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3289 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3290 			 *num_rx);
3291 		*num_rx = 1;
3292 		return;
3293 	}
3294 
3295 }
3296 
3297 static int
3298 fec_probe(struct platform_device *pdev)
3299 {
3300 	struct fec_enet_private *fep;
3301 	struct fec_platform_data *pdata;
3302 	struct net_device *ndev;
3303 	int i, irq, ret = 0;
3304 	struct resource *r;
3305 	const struct of_device_id *of_id;
3306 	static int dev_id;
3307 	struct device_node *np = pdev->dev.of_node, *phy_node;
3308 	int num_tx_qs;
3309 	int num_rx_qs;
3310 
3311 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3312 
3313 	/* Init network device */
3314 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3315 				  num_tx_qs, num_rx_qs);
3316 	if (!ndev)
3317 		return -ENOMEM;
3318 
3319 	SET_NETDEV_DEV(ndev, &pdev->dev);
3320 
3321 	/* setup board info structure */
3322 	fep = netdev_priv(ndev);
3323 
3324 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3325 	if (of_id)
3326 		pdev->id_entry = of_id->data;
3327 	fep->quirks = pdev->id_entry->driver_data;
3328 
3329 	fep->netdev = ndev;
3330 	fep->num_rx_queues = num_rx_qs;
3331 	fep->num_tx_queues = num_tx_qs;
3332 
3333 #if !defined(CONFIG_M5272)
3334 	/* default enable pause frame auto negotiation */
3335 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3336 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3337 #endif
3338 
3339 	/* Select default pin state */
3340 	pinctrl_pm_select_default_state(&pdev->dev);
3341 
3342 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3343 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3344 	if (IS_ERR(fep->hwp)) {
3345 		ret = PTR_ERR(fep->hwp);
3346 		goto failed_ioremap;
3347 	}
3348 
3349 	fep->pdev = pdev;
3350 	fep->dev_id = dev_id++;
3351 
3352 	platform_set_drvdata(pdev, ndev);
3353 
3354 	if (of_get_property(np, "fsl,magic-packet", NULL))
3355 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3356 
3357 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3358 	if (!phy_node && of_phy_is_fixed_link(np)) {
3359 		ret = of_phy_register_fixed_link(np);
3360 		if (ret < 0) {
3361 			dev_err(&pdev->dev,
3362 				"broken fixed-link specification\n");
3363 			goto failed_phy;
3364 		}
3365 		phy_node = of_node_get(np);
3366 	}
3367 	fep->phy_node = phy_node;
3368 
3369 	ret = of_get_phy_mode(pdev->dev.of_node);
3370 	if (ret < 0) {
3371 		pdata = dev_get_platdata(&pdev->dev);
3372 		if (pdata)
3373 			fep->phy_interface = pdata->phy;
3374 		else
3375 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3376 	} else {
3377 		fep->phy_interface = ret;
3378 	}
3379 
3380 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3381 	if (IS_ERR(fep->clk_ipg)) {
3382 		ret = PTR_ERR(fep->clk_ipg);
3383 		goto failed_clk;
3384 	}
3385 
3386 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3387 	if (IS_ERR(fep->clk_ahb)) {
3388 		ret = PTR_ERR(fep->clk_ahb);
3389 		goto failed_clk;
3390 	}
3391 
3392 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3393 
3394 	/* enet_out is optional, depends on board */
3395 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3396 	if (IS_ERR(fep->clk_enet_out))
3397 		fep->clk_enet_out = NULL;
3398 
3399 	fep->ptp_clk_on = false;
3400 	mutex_init(&fep->ptp_clk_mutex);
3401 
3402 	/* clk_ref is optional, depends on board */
3403 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3404 	if (IS_ERR(fep->clk_ref))
3405 		fep->clk_ref = NULL;
3406 
3407 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3408 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3409 	if (IS_ERR(fep->clk_ptp)) {
3410 		fep->clk_ptp = NULL;
3411 		fep->bufdesc_ex = false;
3412 	}
3413 
3414 	ret = fec_enet_clk_enable(ndev, true);
3415 	if (ret)
3416 		goto failed_clk;
3417 
3418 	ret = clk_prepare_enable(fep->clk_ipg);
3419 	if (ret)
3420 		goto failed_clk_ipg;
3421 
3422 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3423 	if (!IS_ERR(fep->reg_phy)) {
3424 		ret = regulator_enable(fep->reg_phy);
3425 		if (ret) {
3426 			dev_err(&pdev->dev,
3427 				"Failed to enable phy regulator: %d\n", ret);
3428 			goto failed_regulator;
3429 		}
3430 	} else {
3431 		fep->reg_phy = NULL;
3432 	}
3433 
3434 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3435 	pm_runtime_use_autosuspend(&pdev->dev);
3436 	pm_runtime_get_noresume(&pdev->dev);
3437 	pm_runtime_set_active(&pdev->dev);
3438 	pm_runtime_enable(&pdev->dev);
3439 
3440 	fec_reset_phy(pdev);
3441 
3442 	if (fep->bufdesc_ex)
3443 		fec_ptp_init(pdev);
3444 
3445 	ret = fec_enet_init(ndev);
3446 	if (ret)
3447 		goto failed_init;
3448 
3449 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3450 		irq = platform_get_irq(pdev, i);
3451 		if (irq < 0) {
3452 			if (i)
3453 				break;
3454 			ret = irq;
3455 			goto failed_irq;
3456 		}
3457 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3458 				       0, pdev->name, ndev);
3459 		if (ret)
3460 			goto failed_irq;
3461 
3462 		fep->irq[i] = irq;
3463 	}
3464 
3465 	init_completion(&fep->mdio_done);
3466 	ret = fec_enet_mii_init(pdev);
3467 	if (ret)
3468 		goto failed_mii_init;
3469 
3470 	/* Carrier starts down, phylib will bring it up */
3471 	netif_carrier_off(ndev);
3472 	fec_enet_clk_enable(ndev, false);
3473 	pinctrl_pm_select_sleep_state(&pdev->dev);
3474 
3475 	ret = register_netdev(ndev);
3476 	if (ret)
3477 		goto failed_register;
3478 
3479 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3480 			   FEC_WOL_HAS_MAGIC_PACKET);
3481 
3482 	if (fep->bufdesc_ex && fep->ptp_clock)
3483 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3484 
3485 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3486 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3487 
3488 	pm_runtime_mark_last_busy(&pdev->dev);
3489 	pm_runtime_put_autosuspend(&pdev->dev);
3490 
3491 	return 0;
3492 
3493 failed_register:
3494 	fec_enet_mii_remove(fep);
3495 failed_mii_init:
3496 failed_irq:
3497 failed_init:
3498 	fec_ptp_stop(pdev);
3499 	if (fep->reg_phy)
3500 		regulator_disable(fep->reg_phy);
3501 failed_regulator:
3502 	clk_disable_unprepare(fep->clk_ipg);
3503 failed_clk_ipg:
3504 	fec_enet_clk_enable(ndev, false);
3505 failed_clk:
3506 failed_phy:
3507 	of_node_put(phy_node);
3508 failed_ioremap:
3509 	free_netdev(ndev);
3510 
3511 	return ret;
3512 }
3513 
3514 static int
3515 fec_drv_remove(struct platform_device *pdev)
3516 {
3517 	struct net_device *ndev = platform_get_drvdata(pdev);
3518 	struct fec_enet_private *fep = netdev_priv(ndev);
3519 
3520 	cancel_work_sync(&fep->tx_timeout_work);
3521 	fec_ptp_stop(pdev);
3522 	unregister_netdev(ndev);
3523 	fec_enet_mii_remove(fep);
3524 	if (fep->reg_phy)
3525 		regulator_disable(fep->reg_phy);
3526 	of_node_put(fep->phy_node);
3527 	free_netdev(ndev);
3528 
3529 	return 0;
3530 }
3531 
3532 static int __maybe_unused fec_suspend(struct device *dev)
3533 {
3534 	struct net_device *ndev = dev_get_drvdata(dev);
3535 	struct fec_enet_private *fep = netdev_priv(ndev);
3536 
3537 	rtnl_lock();
3538 	if (netif_running(ndev)) {
3539 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3540 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3541 		phy_stop(fep->phy_dev);
3542 		napi_disable(&fep->napi);
3543 		netif_tx_lock_bh(ndev);
3544 		netif_device_detach(ndev);
3545 		netif_tx_unlock_bh(ndev);
3546 		fec_stop(ndev);
3547 		fec_enet_clk_enable(ndev, false);
3548 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3549 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3550 	}
3551 	rtnl_unlock();
3552 
3553 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3554 		regulator_disable(fep->reg_phy);
3555 
3556 	/* SOC supply clock to phy, when clock is disabled, phy link down
3557 	 * SOC control phy regulator, when regulator is disabled, phy link down
3558 	 */
3559 	if (fep->clk_enet_out || fep->reg_phy)
3560 		fep->link = 0;
3561 
3562 	return 0;
3563 }
3564 
3565 static int __maybe_unused fec_resume(struct device *dev)
3566 {
3567 	struct net_device *ndev = dev_get_drvdata(dev);
3568 	struct fec_enet_private *fep = netdev_priv(ndev);
3569 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3570 	int ret;
3571 	int val;
3572 
3573 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3574 		ret = regulator_enable(fep->reg_phy);
3575 		if (ret)
3576 			return ret;
3577 	}
3578 
3579 	rtnl_lock();
3580 	if (netif_running(ndev)) {
3581 		ret = fec_enet_clk_enable(ndev, true);
3582 		if (ret) {
3583 			rtnl_unlock();
3584 			goto failed_clk;
3585 		}
3586 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3587 			if (pdata && pdata->sleep_mode_enable)
3588 				pdata->sleep_mode_enable(false);
3589 			val = readl(fep->hwp + FEC_ECNTRL);
3590 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3591 			writel(val, fep->hwp + FEC_ECNTRL);
3592 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3593 		} else {
3594 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3595 		}
3596 		fec_restart(ndev);
3597 		netif_tx_lock_bh(ndev);
3598 		netif_device_attach(ndev);
3599 		netif_tx_unlock_bh(ndev);
3600 		napi_enable(&fep->napi);
3601 		phy_start(fep->phy_dev);
3602 	}
3603 	rtnl_unlock();
3604 
3605 	return 0;
3606 
3607 failed_clk:
3608 	if (fep->reg_phy)
3609 		regulator_disable(fep->reg_phy);
3610 	return ret;
3611 }
3612 
3613 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3614 {
3615 	struct net_device *ndev = dev_get_drvdata(dev);
3616 	struct fec_enet_private *fep = netdev_priv(ndev);
3617 
3618 	clk_disable_unprepare(fep->clk_ipg);
3619 
3620 	return 0;
3621 }
3622 
3623 static int __maybe_unused fec_runtime_resume(struct device *dev)
3624 {
3625 	struct net_device *ndev = dev_get_drvdata(dev);
3626 	struct fec_enet_private *fep = netdev_priv(ndev);
3627 
3628 	return clk_prepare_enable(fep->clk_ipg);
3629 }
3630 
3631 static const struct dev_pm_ops fec_pm_ops = {
3632 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3633 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3634 };
3635 
3636 static struct platform_driver fec_driver = {
3637 	.driver	= {
3638 		.name	= DRIVER_NAME,
3639 		.pm	= &fec_pm_ops,
3640 		.of_match_table = fec_dt_ids,
3641 	},
3642 	.id_table = fec_devtype,
3643 	.probe	= fec_probe,
3644 	.remove	= fec_drv_remove,
3645 };
3646 
3647 module_platform_driver(fec_driver);
3648 
3649 MODULE_ALIAS("platform:"DRIVER_NAME);
3650 MODULE_LICENSE("GPL");
3651