1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/selftests.h>
42 #include <net/tso.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/icmp.h>
46 #include <linux/spinlock.h>
47 #include <linux/workqueue.h>
48 #include <linux/bitops.h>
49 #include <linux/io.h>
50 #include <linux/irq.h>
51 #include <linux/clk.h>
52 #include <linux/crc32.h>
53 #include <linux/platform_device.h>
54 #include <linux/mdio.h>
55 #include <linux/phy.h>
56 #include <linux/fec.h>
57 #include <linux/of.h>
58 #include <linux/of_device.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/gpio/consumer.h>
65 #include <linux/prefetch.h>
66 #include <linux/mfd/syscon.h>
67 #include <linux/regmap.h>
68 #include <soc/imx/cpuidle.h>
69 #include <linux/filter.h>
70 #include <linux/bpf.h>
71 
72 #include <asm/cacheflush.h>
73 
74 #include "fec.h"
75 
76 static void set_multicast_list(struct net_device *ndev);
77 static void fec_enet_itr_coal_set(struct net_device *ndev);
78 
79 #define DRIVER_NAME	"fec"
80 
81 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
82 
83 /* Pause frame feild and FIFO threshold */
84 #define FEC_ENET_FCE	(1 << 5)
85 #define FEC_ENET_RSEM_V	0x84
86 #define FEC_ENET_RSFL_V	16
87 #define FEC_ENET_RAEM_V	0x8
88 #define FEC_ENET_RAFL_V	0x8
89 #define FEC_ENET_OPD_V	0xFFF0
90 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
91 
92 #define FEC_ENET_XDP_PASS          0
93 #define FEC_ENET_XDP_CONSUMED      BIT(0)
94 #define FEC_ENET_XDP_TX            BIT(1)
95 #define FEC_ENET_XDP_REDIR         BIT(2)
96 
97 struct fec_devinfo {
98 	u32 quirks;
99 };
100 
101 static const struct fec_devinfo fec_imx25_info = {
102 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
103 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45,
104 };
105 
106 static const struct fec_devinfo fec_imx27_info = {
107 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG |
108 		  FEC_QUIRK_HAS_MDIO_C45,
109 };
110 
111 static const struct fec_devinfo fec_imx28_info = {
112 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
113 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
114 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
115 		  FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45,
116 };
117 
118 static const struct fec_devinfo fec_imx6q_info = {
119 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
120 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
121 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
122 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
123 		  FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45,
124 };
125 
126 static const struct fec_devinfo fec_mvf600_info = {
127 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC |
128 		  FEC_QUIRK_HAS_MDIO_C45,
129 };
130 
131 static const struct fec_devinfo fec_imx6x_info = {
132 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
133 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
134 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
135 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
136 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
137 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
138 		  FEC_QUIRK_HAS_MDIO_C45,
139 };
140 
141 static const struct fec_devinfo fec_imx6ul_info = {
142 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
143 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
144 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
145 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
146 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII |
147 		  FEC_QUIRK_HAS_MDIO_C45,
148 };
149 
150 static const struct fec_devinfo fec_imx8mq_info = {
151 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
152 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
153 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
154 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
155 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
156 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
157 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 |
158 		  FEC_QUIRK_HAS_MDIO_C45,
159 };
160 
161 static const struct fec_devinfo fec_imx8qm_info = {
162 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
163 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
164 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
165 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
166 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
167 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
168 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45,
169 };
170 
171 static const struct fec_devinfo fec_s32v234_info = {
172 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
173 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
174 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
175 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
176 		  FEC_QUIRK_HAS_MDIO_C45,
177 };
178 
179 static struct platform_device_id fec_devtype[] = {
180 	{
181 		/* keep it for coldfire */
182 		.name = DRIVER_NAME,
183 		.driver_data = 0,
184 	}, {
185 		.name = "imx25-fec",
186 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
187 	}, {
188 		.name = "imx27-fec",
189 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
190 	}, {
191 		.name = "imx28-fec",
192 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
193 	}, {
194 		.name = "imx6q-fec",
195 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
196 	}, {
197 		.name = "mvf600-fec",
198 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
199 	}, {
200 		.name = "imx6sx-fec",
201 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
202 	}, {
203 		.name = "imx6ul-fec",
204 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
205 	}, {
206 		.name = "imx8mq-fec",
207 		.driver_data = (kernel_ulong_t)&fec_imx8mq_info,
208 	}, {
209 		.name = "imx8qm-fec",
210 		.driver_data = (kernel_ulong_t)&fec_imx8qm_info,
211 	}, {
212 		.name = "s32v234-fec",
213 		.driver_data = (kernel_ulong_t)&fec_s32v234_info,
214 	}, {
215 		/* sentinel */
216 	}
217 };
218 MODULE_DEVICE_TABLE(platform, fec_devtype);
219 
220 enum imx_fec_type {
221 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
222 	IMX27_FEC,	/* runs on i.mx27/35/51 */
223 	IMX28_FEC,
224 	IMX6Q_FEC,
225 	MVF600_FEC,
226 	IMX6SX_FEC,
227 	IMX6UL_FEC,
228 	IMX8MQ_FEC,
229 	IMX8QM_FEC,
230 	S32V234_FEC,
231 };
232 
233 static const struct of_device_id fec_dt_ids[] = {
234 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
235 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
236 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
237 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
238 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
239 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
240 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
241 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
242 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
243 	{ .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], },
244 	{ /* sentinel */ }
245 };
246 MODULE_DEVICE_TABLE(of, fec_dt_ids);
247 
248 static unsigned char macaddr[ETH_ALEN];
249 module_param_array(macaddr, byte, NULL, 0);
250 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
251 
252 #if defined(CONFIG_M5272)
253 /*
254  * Some hardware gets it MAC address out of local flash memory.
255  * if this is non-zero then assume it is the address to get MAC from.
256  */
257 #if defined(CONFIG_NETtel)
258 #define	FEC_FLASHMAC	0xf0006006
259 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
260 #define	FEC_FLASHMAC	0xf0006000
261 #elif defined(CONFIG_CANCam)
262 #define	FEC_FLASHMAC	0xf0020000
263 #elif defined (CONFIG_M5272C3)
264 #define	FEC_FLASHMAC	(0xffe04000 + 4)
265 #elif defined(CONFIG_MOD5272)
266 #define FEC_FLASHMAC	0xffc0406b
267 #else
268 #define	FEC_FLASHMAC	0
269 #endif
270 #endif /* CONFIG_M5272 */
271 
272 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
273  *
274  * 2048 byte skbufs are allocated. However, alignment requirements
275  * varies between FEC variants. Worst case is 64, so round down by 64.
276  */
277 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
278 #define PKT_MINBUF_SIZE		64
279 
280 /* FEC receive acceleration */
281 #define FEC_RACC_IPDIS		(1 << 1)
282 #define FEC_RACC_PRODIS		(1 << 2)
283 #define FEC_RACC_SHIFT16	BIT(7)
284 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
285 
286 /* MIB Control Register */
287 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
288 
289 /*
290  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
291  * size bits. Other FEC hardware does not, so we need to take that into
292  * account when setting it.
293  */
294 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
295     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
296     defined(CONFIG_ARM64)
297 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
298 #else
299 #define	OPT_FRAME_SIZE	0
300 #endif
301 
302 /* FEC MII MMFR bits definition */
303 #define FEC_MMFR_ST		(1 << 30)
304 #define FEC_MMFR_ST_C45		(0)
305 #define FEC_MMFR_OP_READ	(2 << 28)
306 #define FEC_MMFR_OP_READ_C45	(3 << 28)
307 #define FEC_MMFR_OP_WRITE	(1 << 28)
308 #define FEC_MMFR_OP_ADDR_WRITE	(0)
309 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
310 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
311 #define FEC_MMFR_TA		(2 << 16)
312 #define FEC_MMFR_DATA(v)	(v & 0xffff)
313 /* FEC ECR bits definition */
314 #define FEC_ECR_MAGICEN		(1 << 2)
315 #define FEC_ECR_SLEEP		(1 << 3)
316 
317 #define FEC_MII_TIMEOUT		30000 /* us */
318 
319 /* Transmitter timeout */
320 #define TX_TIMEOUT (2 * HZ)
321 
322 #define FEC_PAUSE_FLAG_AUTONEG	0x1
323 #define FEC_PAUSE_FLAG_ENABLE	0x2
324 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
325 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
326 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
327 
328 #define COPYBREAK_DEFAULT	256
329 
330 /* Max number of allowed TCP segments for software TSO */
331 #define FEC_MAX_TSO_SEGS	100
332 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
333 
334 #define IS_TSO_HEADER(txq, addr) \
335 	((addr >= txq->tso_hdrs_dma) && \
336 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
337 
338 static int mii_cnt;
339 
340 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
341 					     struct bufdesc_prop *bd)
342 {
343 	return (bdp >= bd->last) ? bd->base
344 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
345 }
346 
347 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
348 					     struct bufdesc_prop *bd)
349 {
350 	return (bdp <= bd->base) ? bd->last
351 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
352 }
353 
354 static int fec_enet_get_bd_index(struct bufdesc *bdp,
355 				 struct bufdesc_prop *bd)
356 {
357 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
358 }
359 
360 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
361 {
362 	int entries;
363 
364 	entries = (((const char *)txq->dirty_tx -
365 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
366 
367 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
368 }
369 
370 static void swap_buffer(void *bufaddr, int len)
371 {
372 	int i;
373 	unsigned int *buf = bufaddr;
374 
375 	for (i = 0; i < len; i += 4, buf++)
376 		swab32s(buf);
377 }
378 
379 static void fec_dump(struct net_device *ndev)
380 {
381 	struct fec_enet_private *fep = netdev_priv(ndev);
382 	struct bufdesc *bdp;
383 	struct fec_enet_priv_tx_q *txq;
384 	int index = 0;
385 
386 	netdev_info(ndev, "TX ring dump\n");
387 	pr_info("Nr     SC     addr       len  SKB\n");
388 
389 	txq = fep->tx_queue[0];
390 	bdp = txq->bd.base;
391 
392 	do {
393 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
394 			index,
395 			bdp == txq->bd.cur ? 'S' : ' ',
396 			bdp == txq->dirty_tx ? 'H' : ' ',
397 			fec16_to_cpu(bdp->cbd_sc),
398 			fec32_to_cpu(bdp->cbd_bufaddr),
399 			fec16_to_cpu(bdp->cbd_datlen),
400 			txq->tx_buf[index].skb);
401 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
402 		index++;
403 	} while (bdp != txq->bd.base);
404 }
405 
406 static inline bool is_ipv4_pkt(struct sk_buff *skb)
407 {
408 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
409 }
410 
411 static int
412 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
413 {
414 	/* Only run for packets requiring a checksum. */
415 	if (skb->ip_summed != CHECKSUM_PARTIAL)
416 		return 0;
417 
418 	if (unlikely(skb_cow_head(skb, 0)))
419 		return -1;
420 
421 	if (is_ipv4_pkt(skb))
422 		ip_hdr(skb)->check = 0;
423 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
424 
425 	return 0;
426 }
427 
428 static int
429 fec_enet_create_page_pool(struct fec_enet_private *fep,
430 			  struct fec_enet_priv_rx_q *rxq, int size)
431 {
432 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
433 	struct page_pool_params pp_params = {
434 		.order = 0,
435 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
436 		.pool_size = size,
437 		.nid = dev_to_node(&fep->pdev->dev),
438 		.dev = &fep->pdev->dev,
439 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
440 		.offset = FEC_ENET_XDP_HEADROOM,
441 		.max_len = FEC_ENET_RX_FRSIZE,
442 	};
443 	int err;
444 
445 	rxq->page_pool = page_pool_create(&pp_params);
446 	if (IS_ERR(rxq->page_pool)) {
447 		err = PTR_ERR(rxq->page_pool);
448 		rxq->page_pool = NULL;
449 		return err;
450 	}
451 
452 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0);
453 	if (err < 0)
454 		goto err_free_pp;
455 
456 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
457 					 rxq->page_pool);
458 	if (err)
459 		goto err_unregister_rxq;
460 
461 	return 0;
462 
463 err_unregister_rxq:
464 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
465 err_free_pp:
466 	page_pool_destroy(rxq->page_pool);
467 	rxq->page_pool = NULL;
468 	return err;
469 }
470 
471 static struct bufdesc *
472 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
473 			     struct sk_buff *skb,
474 			     struct net_device *ndev)
475 {
476 	struct fec_enet_private *fep = netdev_priv(ndev);
477 	struct bufdesc *bdp = txq->bd.cur;
478 	struct bufdesc_ex *ebdp;
479 	int nr_frags = skb_shinfo(skb)->nr_frags;
480 	int frag, frag_len;
481 	unsigned short status;
482 	unsigned int estatus = 0;
483 	skb_frag_t *this_frag;
484 	unsigned int index;
485 	void *bufaddr;
486 	dma_addr_t addr;
487 	int i;
488 
489 	for (frag = 0; frag < nr_frags; frag++) {
490 		this_frag = &skb_shinfo(skb)->frags[frag];
491 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
492 		ebdp = (struct bufdesc_ex *)bdp;
493 
494 		status = fec16_to_cpu(bdp->cbd_sc);
495 		status &= ~BD_ENET_TX_STATS;
496 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
497 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
498 
499 		/* Handle the last BD specially */
500 		if (frag == nr_frags - 1) {
501 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
502 			if (fep->bufdesc_ex) {
503 				estatus |= BD_ENET_TX_INT;
504 				if (unlikely(skb_shinfo(skb)->tx_flags &
505 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
506 					estatus |= BD_ENET_TX_TS;
507 			}
508 		}
509 
510 		if (fep->bufdesc_ex) {
511 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
512 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
513 			if (skb->ip_summed == CHECKSUM_PARTIAL)
514 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
515 
516 			ebdp->cbd_bdu = 0;
517 			ebdp->cbd_esc = cpu_to_fec32(estatus);
518 		}
519 
520 		bufaddr = skb_frag_address(this_frag);
521 
522 		index = fec_enet_get_bd_index(bdp, &txq->bd);
523 		if (((unsigned long) bufaddr) & fep->tx_align ||
524 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
525 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
526 			bufaddr = txq->tx_bounce[index];
527 
528 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
529 				swap_buffer(bufaddr, frag_len);
530 		}
531 
532 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
533 				      DMA_TO_DEVICE);
534 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
535 			if (net_ratelimit())
536 				netdev_err(ndev, "Tx DMA memory map failed\n");
537 			goto dma_mapping_error;
538 		}
539 
540 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
541 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
542 		/* Make sure the updates to rest of the descriptor are
543 		 * performed before transferring ownership.
544 		 */
545 		wmb();
546 		bdp->cbd_sc = cpu_to_fec16(status);
547 	}
548 
549 	return bdp;
550 dma_mapping_error:
551 	bdp = txq->bd.cur;
552 	for (i = 0; i < frag; i++) {
553 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
554 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
555 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
556 	}
557 	return ERR_PTR(-ENOMEM);
558 }
559 
560 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
561 				   struct sk_buff *skb, struct net_device *ndev)
562 {
563 	struct fec_enet_private *fep = netdev_priv(ndev);
564 	int nr_frags = skb_shinfo(skb)->nr_frags;
565 	struct bufdesc *bdp, *last_bdp;
566 	void *bufaddr;
567 	dma_addr_t addr;
568 	unsigned short status;
569 	unsigned short buflen;
570 	unsigned int estatus = 0;
571 	unsigned int index;
572 	int entries_free;
573 
574 	entries_free = fec_enet_get_free_txdesc_num(txq);
575 	if (entries_free < MAX_SKB_FRAGS + 1) {
576 		dev_kfree_skb_any(skb);
577 		if (net_ratelimit())
578 			netdev_err(ndev, "NOT enough BD for SG!\n");
579 		return NETDEV_TX_OK;
580 	}
581 
582 	/* Protocol checksum off-load for TCP and UDP. */
583 	if (fec_enet_clear_csum(skb, ndev)) {
584 		dev_kfree_skb_any(skb);
585 		return NETDEV_TX_OK;
586 	}
587 
588 	/* Fill in a Tx ring entry */
589 	bdp = txq->bd.cur;
590 	last_bdp = bdp;
591 	status = fec16_to_cpu(bdp->cbd_sc);
592 	status &= ~BD_ENET_TX_STATS;
593 
594 	/* Set buffer length and buffer pointer */
595 	bufaddr = skb->data;
596 	buflen = skb_headlen(skb);
597 
598 	index = fec_enet_get_bd_index(bdp, &txq->bd);
599 	if (((unsigned long) bufaddr) & fep->tx_align ||
600 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
601 		memcpy(txq->tx_bounce[index], skb->data, buflen);
602 		bufaddr = txq->tx_bounce[index];
603 
604 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
605 			swap_buffer(bufaddr, buflen);
606 	}
607 
608 	/* Push the data cache so the CPM does not get stale memory data. */
609 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
610 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
611 		dev_kfree_skb_any(skb);
612 		if (net_ratelimit())
613 			netdev_err(ndev, "Tx DMA memory map failed\n");
614 		return NETDEV_TX_OK;
615 	}
616 
617 	if (nr_frags) {
618 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
619 		if (IS_ERR(last_bdp)) {
620 			dma_unmap_single(&fep->pdev->dev, addr,
621 					 buflen, DMA_TO_DEVICE);
622 			dev_kfree_skb_any(skb);
623 			return NETDEV_TX_OK;
624 		}
625 	} else {
626 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
627 		if (fep->bufdesc_ex) {
628 			estatus = BD_ENET_TX_INT;
629 			if (unlikely(skb_shinfo(skb)->tx_flags &
630 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
631 				estatus |= BD_ENET_TX_TS;
632 		}
633 	}
634 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
635 	bdp->cbd_datlen = cpu_to_fec16(buflen);
636 
637 	if (fep->bufdesc_ex) {
638 
639 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
640 
641 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
642 			fep->hwts_tx_en))
643 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
644 
645 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
646 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
647 
648 		if (skb->ip_summed == CHECKSUM_PARTIAL)
649 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
650 
651 		ebdp->cbd_bdu = 0;
652 		ebdp->cbd_esc = cpu_to_fec32(estatus);
653 	}
654 
655 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
656 	/* Save skb pointer */
657 	txq->tx_buf[index].skb = skb;
658 
659 	/* Make sure the updates to rest of the descriptor are performed before
660 	 * transferring ownership.
661 	 */
662 	wmb();
663 
664 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
665 	 * it's the last BD of the frame, and to put the CRC on the end.
666 	 */
667 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
668 	bdp->cbd_sc = cpu_to_fec16(status);
669 
670 	/* If this was the last BD in the ring, start at the beginning again. */
671 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
672 
673 	skb_tx_timestamp(skb);
674 
675 	/* Make sure the update to bdp is performed before txq->bd.cur. */
676 	wmb();
677 	txq->bd.cur = bdp;
678 
679 	/* Trigger transmission start */
680 	writel(0, txq->bd.reg_desc_active);
681 
682 	return 0;
683 }
684 
685 static int
686 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
687 			  struct net_device *ndev,
688 			  struct bufdesc *bdp, int index, char *data,
689 			  int size, bool last_tcp, bool is_last)
690 {
691 	struct fec_enet_private *fep = netdev_priv(ndev);
692 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
693 	unsigned short status;
694 	unsigned int estatus = 0;
695 	dma_addr_t addr;
696 
697 	status = fec16_to_cpu(bdp->cbd_sc);
698 	status &= ~BD_ENET_TX_STATS;
699 
700 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
701 
702 	if (((unsigned long) data) & fep->tx_align ||
703 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
704 		memcpy(txq->tx_bounce[index], data, size);
705 		data = txq->tx_bounce[index];
706 
707 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
708 			swap_buffer(data, size);
709 	}
710 
711 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
712 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
713 		dev_kfree_skb_any(skb);
714 		if (net_ratelimit())
715 			netdev_err(ndev, "Tx DMA memory map failed\n");
716 		return NETDEV_TX_OK;
717 	}
718 
719 	bdp->cbd_datlen = cpu_to_fec16(size);
720 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
721 
722 	if (fep->bufdesc_ex) {
723 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
724 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
725 		if (skb->ip_summed == CHECKSUM_PARTIAL)
726 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
727 		ebdp->cbd_bdu = 0;
728 		ebdp->cbd_esc = cpu_to_fec32(estatus);
729 	}
730 
731 	/* Handle the last BD specially */
732 	if (last_tcp)
733 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
734 	if (is_last) {
735 		status |= BD_ENET_TX_INTR;
736 		if (fep->bufdesc_ex)
737 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
738 	}
739 
740 	bdp->cbd_sc = cpu_to_fec16(status);
741 
742 	return 0;
743 }
744 
745 static int
746 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
747 			 struct sk_buff *skb, struct net_device *ndev,
748 			 struct bufdesc *bdp, int index)
749 {
750 	struct fec_enet_private *fep = netdev_priv(ndev);
751 	int hdr_len = skb_tcp_all_headers(skb);
752 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
753 	void *bufaddr;
754 	unsigned long dmabuf;
755 	unsigned short status;
756 	unsigned int estatus = 0;
757 
758 	status = fec16_to_cpu(bdp->cbd_sc);
759 	status &= ~BD_ENET_TX_STATS;
760 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
761 
762 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
763 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
764 	if (((unsigned long)bufaddr) & fep->tx_align ||
765 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
766 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
767 		bufaddr = txq->tx_bounce[index];
768 
769 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
770 			swap_buffer(bufaddr, hdr_len);
771 
772 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
773 					hdr_len, DMA_TO_DEVICE);
774 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
775 			dev_kfree_skb_any(skb);
776 			if (net_ratelimit())
777 				netdev_err(ndev, "Tx DMA memory map failed\n");
778 			return NETDEV_TX_OK;
779 		}
780 	}
781 
782 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
783 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
784 
785 	if (fep->bufdesc_ex) {
786 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
787 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
788 		if (skb->ip_summed == CHECKSUM_PARTIAL)
789 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
790 		ebdp->cbd_bdu = 0;
791 		ebdp->cbd_esc = cpu_to_fec32(estatus);
792 	}
793 
794 	bdp->cbd_sc = cpu_to_fec16(status);
795 
796 	return 0;
797 }
798 
799 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
800 				   struct sk_buff *skb,
801 				   struct net_device *ndev)
802 {
803 	struct fec_enet_private *fep = netdev_priv(ndev);
804 	int hdr_len, total_len, data_left;
805 	struct bufdesc *bdp = txq->bd.cur;
806 	struct tso_t tso;
807 	unsigned int index = 0;
808 	int ret;
809 
810 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
811 		dev_kfree_skb_any(skb);
812 		if (net_ratelimit())
813 			netdev_err(ndev, "NOT enough BD for TSO!\n");
814 		return NETDEV_TX_OK;
815 	}
816 
817 	/* Protocol checksum off-load for TCP and UDP. */
818 	if (fec_enet_clear_csum(skb, ndev)) {
819 		dev_kfree_skb_any(skb);
820 		return NETDEV_TX_OK;
821 	}
822 
823 	/* Initialize the TSO handler, and prepare the first payload */
824 	hdr_len = tso_start(skb, &tso);
825 
826 	total_len = skb->len - hdr_len;
827 	while (total_len > 0) {
828 		char *hdr;
829 
830 		index = fec_enet_get_bd_index(bdp, &txq->bd);
831 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
832 		total_len -= data_left;
833 
834 		/* prepare packet headers: MAC + IP + TCP */
835 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
836 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
837 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
838 		if (ret)
839 			goto err_release;
840 
841 		while (data_left > 0) {
842 			int size;
843 
844 			size = min_t(int, tso.size, data_left);
845 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
846 			index = fec_enet_get_bd_index(bdp, &txq->bd);
847 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
848 							bdp, index,
849 							tso.data, size,
850 							size == data_left,
851 							total_len == 0);
852 			if (ret)
853 				goto err_release;
854 
855 			data_left -= size;
856 			tso_build_data(skb, &tso, size);
857 		}
858 
859 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
860 	}
861 
862 	/* Save skb pointer */
863 	txq->tx_buf[index].skb = skb;
864 
865 	skb_tx_timestamp(skb);
866 	txq->bd.cur = bdp;
867 
868 	/* Trigger transmission start */
869 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
870 	    !readl(txq->bd.reg_desc_active) ||
871 	    !readl(txq->bd.reg_desc_active) ||
872 	    !readl(txq->bd.reg_desc_active) ||
873 	    !readl(txq->bd.reg_desc_active))
874 		writel(0, txq->bd.reg_desc_active);
875 
876 	return 0;
877 
878 err_release:
879 	/* TODO: Release all used data descriptors for TSO */
880 	return ret;
881 }
882 
883 static netdev_tx_t
884 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
885 {
886 	struct fec_enet_private *fep = netdev_priv(ndev);
887 	int entries_free;
888 	unsigned short queue;
889 	struct fec_enet_priv_tx_q *txq;
890 	struct netdev_queue *nq;
891 	int ret;
892 
893 	queue = skb_get_queue_mapping(skb);
894 	txq = fep->tx_queue[queue];
895 	nq = netdev_get_tx_queue(ndev, queue);
896 
897 	if (skb_is_gso(skb))
898 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
899 	else
900 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
901 	if (ret)
902 		return ret;
903 
904 	entries_free = fec_enet_get_free_txdesc_num(txq);
905 	if (entries_free <= txq->tx_stop_threshold)
906 		netif_tx_stop_queue(nq);
907 
908 	return NETDEV_TX_OK;
909 }
910 
911 /* Init RX & TX buffer descriptors
912  */
913 static void fec_enet_bd_init(struct net_device *dev)
914 {
915 	struct fec_enet_private *fep = netdev_priv(dev);
916 	struct fec_enet_priv_tx_q *txq;
917 	struct fec_enet_priv_rx_q *rxq;
918 	struct bufdesc *bdp;
919 	unsigned int i;
920 	unsigned int q;
921 
922 	for (q = 0; q < fep->num_rx_queues; q++) {
923 		/* Initialize the receive buffer descriptors. */
924 		rxq = fep->rx_queue[q];
925 		bdp = rxq->bd.base;
926 
927 		for (i = 0; i < rxq->bd.ring_size; i++) {
928 
929 			/* Initialize the BD for every fragment in the page. */
930 			if (bdp->cbd_bufaddr)
931 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
932 			else
933 				bdp->cbd_sc = cpu_to_fec16(0);
934 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
935 		}
936 
937 		/* Set the last buffer to wrap */
938 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
939 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
940 
941 		rxq->bd.cur = rxq->bd.base;
942 	}
943 
944 	for (q = 0; q < fep->num_tx_queues; q++) {
945 		/* ...and the same for transmit */
946 		txq = fep->tx_queue[q];
947 		bdp = txq->bd.base;
948 		txq->bd.cur = bdp;
949 
950 		for (i = 0; i < txq->bd.ring_size; i++) {
951 			/* Initialize the BD for every fragment in the page. */
952 			bdp->cbd_sc = cpu_to_fec16(0);
953 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
954 				if (bdp->cbd_bufaddr &&
955 				    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
956 					dma_unmap_single(&fep->pdev->dev,
957 							 fec32_to_cpu(bdp->cbd_bufaddr),
958 							 fec16_to_cpu(bdp->cbd_datlen),
959 							 DMA_TO_DEVICE);
960 				if (txq->tx_buf[i].skb) {
961 					dev_kfree_skb_any(txq->tx_buf[i].skb);
962 					txq->tx_buf[i].skb = NULL;
963 				}
964 			} else {
965 				if (bdp->cbd_bufaddr)
966 					dma_unmap_single(&fep->pdev->dev,
967 							 fec32_to_cpu(bdp->cbd_bufaddr),
968 							 fec16_to_cpu(bdp->cbd_datlen),
969 							 DMA_TO_DEVICE);
970 
971 				if (txq->tx_buf[i].xdp) {
972 					xdp_return_frame(txq->tx_buf[i].xdp);
973 					txq->tx_buf[i].xdp = NULL;
974 				}
975 
976 				/* restore default tx buffer type: FEC_TXBUF_T_SKB */
977 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
978 			}
979 
980 			bdp->cbd_bufaddr = cpu_to_fec32(0);
981 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
982 		}
983 
984 		/* Set the last buffer to wrap */
985 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
986 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
987 		txq->dirty_tx = bdp;
988 	}
989 }
990 
991 static void fec_enet_active_rxring(struct net_device *ndev)
992 {
993 	struct fec_enet_private *fep = netdev_priv(ndev);
994 	int i;
995 
996 	for (i = 0; i < fep->num_rx_queues; i++)
997 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
998 }
999 
1000 static void fec_enet_enable_ring(struct net_device *ndev)
1001 {
1002 	struct fec_enet_private *fep = netdev_priv(ndev);
1003 	struct fec_enet_priv_tx_q *txq;
1004 	struct fec_enet_priv_rx_q *rxq;
1005 	int i;
1006 
1007 	for (i = 0; i < fep->num_rx_queues; i++) {
1008 		rxq = fep->rx_queue[i];
1009 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
1010 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
1011 
1012 		/* enable DMA1/2 */
1013 		if (i)
1014 			writel(RCMR_MATCHEN | RCMR_CMP(i),
1015 			       fep->hwp + FEC_RCMR(i));
1016 	}
1017 
1018 	for (i = 0; i < fep->num_tx_queues; i++) {
1019 		txq = fep->tx_queue[i];
1020 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
1021 
1022 		/* enable DMA1/2 */
1023 		if (i)
1024 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
1025 			       fep->hwp + FEC_DMA_CFG(i));
1026 	}
1027 }
1028 
1029 /*
1030  * This function is called to start or restart the FEC during a link
1031  * change, transmit timeout, or to reconfigure the FEC.  The network
1032  * packet processing for this device must be stopped before this call.
1033  */
1034 static void
1035 fec_restart(struct net_device *ndev)
1036 {
1037 	struct fec_enet_private *fep = netdev_priv(ndev);
1038 	u32 temp_mac[2];
1039 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
1040 	u32 ecntl = 0x2; /* ETHEREN */
1041 
1042 	/* Whack a reset.  We should wait for this.
1043 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1044 	 * instead of reset MAC itself.
1045 	 */
1046 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
1047 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
1048 		writel(0, fep->hwp + FEC_ECNTRL);
1049 	} else {
1050 		writel(1, fep->hwp + FEC_ECNTRL);
1051 		udelay(10);
1052 	}
1053 
1054 	/*
1055 	 * enet-mac reset will reset mac address registers too,
1056 	 * so need to reconfigure it.
1057 	 */
1058 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1059 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1060 	       fep->hwp + FEC_ADDR_LOW);
1061 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1062 	       fep->hwp + FEC_ADDR_HIGH);
1063 
1064 	/* Clear any outstanding interrupt, except MDIO. */
1065 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1066 
1067 	fec_enet_bd_init(ndev);
1068 
1069 	fec_enet_enable_ring(ndev);
1070 
1071 	/* Enable MII mode */
1072 	if (fep->full_duplex == DUPLEX_FULL) {
1073 		/* FD enable */
1074 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1075 	} else {
1076 		/* No Rcv on Xmit */
1077 		rcntl |= 0x02;
1078 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1079 	}
1080 
1081 	/* Set MII speed */
1082 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1083 
1084 #if !defined(CONFIG_M5272)
1085 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1086 		u32 val = readl(fep->hwp + FEC_RACC);
1087 
1088 		/* align IP header */
1089 		val |= FEC_RACC_SHIFT16;
1090 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1091 			/* set RX checksum */
1092 			val |= FEC_RACC_OPTIONS;
1093 		else
1094 			val &= ~FEC_RACC_OPTIONS;
1095 		writel(val, fep->hwp + FEC_RACC);
1096 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1097 	}
1098 #endif
1099 
1100 	/*
1101 	 * The phy interface and speed need to get configured
1102 	 * differently on enet-mac.
1103 	 */
1104 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1105 		/* Enable flow control and length check */
1106 		rcntl |= 0x40000000 | 0x00000020;
1107 
1108 		/* RGMII, RMII or MII */
1109 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1110 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1111 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1112 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1113 			rcntl |= (1 << 6);
1114 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1115 			rcntl |= (1 << 8);
1116 		else
1117 			rcntl &= ~(1 << 8);
1118 
1119 		/* 1G, 100M or 10M */
1120 		if (ndev->phydev) {
1121 			if (ndev->phydev->speed == SPEED_1000)
1122 				ecntl |= (1 << 5);
1123 			else if (ndev->phydev->speed == SPEED_100)
1124 				rcntl &= ~(1 << 9);
1125 			else
1126 				rcntl |= (1 << 9);
1127 		}
1128 	} else {
1129 #ifdef FEC_MIIGSK_ENR
1130 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1131 			u32 cfgr;
1132 			/* disable the gasket and wait */
1133 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1134 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1135 				udelay(1);
1136 
1137 			/*
1138 			 * configure the gasket:
1139 			 *   RMII, 50 MHz, no loopback, no echo
1140 			 *   MII, 25 MHz, no loopback, no echo
1141 			 */
1142 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1143 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1144 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1145 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1146 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1147 
1148 			/* re-enable the gasket */
1149 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1150 		}
1151 #endif
1152 	}
1153 
1154 #if !defined(CONFIG_M5272)
1155 	/* enable pause frame*/
1156 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1157 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1158 	     ndev->phydev && ndev->phydev->pause)) {
1159 		rcntl |= FEC_ENET_FCE;
1160 
1161 		/* set FIFO threshold parameter to reduce overrun */
1162 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1163 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1164 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1165 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1166 
1167 		/* OPD */
1168 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1169 	} else {
1170 		rcntl &= ~FEC_ENET_FCE;
1171 	}
1172 #endif /* !defined(CONFIG_M5272) */
1173 
1174 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1175 
1176 	/* Setup multicast filter. */
1177 	set_multicast_list(ndev);
1178 #ifndef CONFIG_M5272
1179 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1180 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1181 #endif
1182 
1183 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1184 		/* enable ENET endian swap */
1185 		ecntl |= (1 << 8);
1186 		/* enable ENET store and forward mode */
1187 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1188 	}
1189 
1190 	if (fep->bufdesc_ex)
1191 		ecntl |= (1 << 4);
1192 
1193 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1194 	    fep->rgmii_txc_dly)
1195 		ecntl |= FEC_ENET_TXC_DLY;
1196 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1197 	    fep->rgmii_rxc_dly)
1198 		ecntl |= FEC_ENET_RXC_DLY;
1199 
1200 #ifndef CONFIG_M5272
1201 	/* Enable the MIB statistic event counters */
1202 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1203 #endif
1204 
1205 	/* And last, enable the transmit and receive processing */
1206 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1207 	fec_enet_active_rxring(ndev);
1208 
1209 	if (fep->bufdesc_ex)
1210 		fec_ptp_start_cyclecounter(ndev);
1211 
1212 	/* Enable interrupts we wish to service */
1213 	if (fep->link)
1214 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1215 	else
1216 		writel(0, fep->hwp + FEC_IMASK);
1217 
1218 	/* Init the interrupt coalescing */
1219 	if (fep->quirks & FEC_QUIRK_HAS_COALESCE)
1220 		fec_enet_itr_coal_set(ndev);
1221 }
1222 
1223 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep)
1224 {
1225 	if (!(of_machine_is_compatible("fsl,imx8qm") ||
1226 	      of_machine_is_compatible("fsl,imx8qxp") ||
1227 	      of_machine_is_compatible("fsl,imx8dxl")))
1228 		return 0;
1229 
1230 	return imx_scu_get_handle(&fep->ipc_handle);
1231 }
1232 
1233 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled)
1234 {
1235 	struct device_node *np = fep->pdev->dev.of_node;
1236 	u32 rsrc_id, val;
1237 	int idx;
1238 
1239 	if (!np || !fep->ipc_handle)
1240 		return;
1241 
1242 	idx = of_alias_get_id(np, "ethernet");
1243 	if (idx < 0)
1244 		idx = 0;
1245 	rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0;
1246 
1247 	val = enabled ? 1 : 0;
1248 	imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val);
1249 }
1250 
1251 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1252 {
1253 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1254 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1255 
1256 	if (stop_gpr->gpr) {
1257 		if (enabled)
1258 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1259 					   BIT(stop_gpr->bit),
1260 					   BIT(stop_gpr->bit));
1261 		else
1262 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1263 					   BIT(stop_gpr->bit), 0);
1264 	} else if (pdata && pdata->sleep_mode_enable) {
1265 		pdata->sleep_mode_enable(enabled);
1266 	} else {
1267 		fec_enet_ipg_stop_set(fep, enabled);
1268 	}
1269 }
1270 
1271 static void fec_irqs_disable(struct net_device *ndev)
1272 {
1273 	struct fec_enet_private *fep = netdev_priv(ndev);
1274 
1275 	writel(0, fep->hwp + FEC_IMASK);
1276 }
1277 
1278 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1279 {
1280 	struct fec_enet_private *fep = netdev_priv(ndev);
1281 
1282 	writel(0, fep->hwp + FEC_IMASK);
1283 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1284 }
1285 
1286 static void
1287 fec_stop(struct net_device *ndev)
1288 {
1289 	struct fec_enet_private *fep = netdev_priv(ndev);
1290 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1291 	u32 val;
1292 
1293 	/* We cannot expect a graceful transmit stop without link !!! */
1294 	if (fep->link) {
1295 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1296 		udelay(10);
1297 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1298 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1299 	}
1300 
1301 	/* Whack a reset.  We should wait for this.
1302 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1303 	 * instead of reset MAC itself.
1304 	 */
1305 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1306 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1307 			writel(0, fep->hwp + FEC_ECNTRL);
1308 		} else {
1309 			writel(1, fep->hwp + FEC_ECNTRL);
1310 			udelay(10);
1311 		}
1312 	} else {
1313 		val = readl(fep->hwp + FEC_ECNTRL);
1314 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1315 		writel(val, fep->hwp + FEC_ECNTRL);
1316 	}
1317 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1318 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1319 
1320 	/* We have to keep ENET enabled to have MII interrupt stay working */
1321 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1322 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1323 		writel(2, fep->hwp + FEC_ECNTRL);
1324 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1325 	}
1326 }
1327 
1328 
1329 static void
1330 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1331 {
1332 	struct fec_enet_private *fep = netdev_priv(ndev);
1333 
1334 	fec_dump(ndev);
1335 
1336 	ndev->stats.tx_errors++;
1337 
1338 	schedule_work(&fep->tx_timeout_work);
1339 }
1340 
1341 static void fec_enet_timeout_work(struct work_struct *work)
1342 {
1343 	struct fec_enet_private *fep =
1344 		container_of(work, struct fec_enet_private, tx_timeout_work);
1345 	struct net_device *ndev = fep->netdev;
1346 
1347 	rtnl_lock();
1348 	if (netif_device_present(ndev) || netif_running(ndev)) {
1349 		napi_disable(&fep->napi);
1350 		netif_tx_lock_bh(ndev);
1351 		fec_restart(ndev);
1352 		netif_tx_wake_all_queues(ndev);
1353 		netif_tx_unlock_bh(ndev);
1354 		napi_enable(&fep->napi);
1355 	}
1356 	rtnl_unlock();
1357 }
1358 
1359 static void
1360 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1361 	struct skb_shared_hwtstamps *hwtstamps)
1362 {
1363 	unsigned long flags;
1364 	u64 ns;
1365 
1366 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1367 	ns = timecounter_cyc2time(&fep->tc, ts);
1368 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1369 
1370 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1371 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1372 }
1373 
1374 static void
1375 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1376 {
1377 	struct	fec_enet_private *fep;
1378 	struct xdp_frame *xdpf;
1379 	struct bufdesc *bdp;
1380 	unsigned short status;
1381 	struct	sk_buff	*skb;
1382 	struct fec_enet_priv_tx_q *txq;
1383 	struct netdev_queue *nq;
1384 	int	index = 0;
1385 	int	entries_free;
1386 
1387 	fep = netdev_priv(ndev);
1388 
1389 	txq = fep->tx_queue[queue_id];
1390 	/* get next bdp of dirty_tx */
1391 	nq = netdev_get_tx_queue(ndev, queue_id);
1392 	bdp = txq->dirty_tx;
1393 
1394 	/* get next bdp of dirty_tx */
1395 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1396 
1397 	while (bdp != READ_ONCE(txq->bd.cur)) {
1398 		/* Order the load of bd.cur and cbd_sc */
1399 		rmb();
1400 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1401 		if (status & BD_ENET_TX_READY)
1402 			break;
1403 
1404 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1405 
1406 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1407 			skb = txq->tx_buf[index].skb;
1408 			txq->tx_buf[index].skb = NULL;
1409 			if (bdp->cbd_bufaddr &&
1410 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1411 				dma_unmap_single(&fep->pdev->dev,
1412 						 fec32_to_cpu(bdp->cbd_bufaddr),
1413 						 fec16_to_cpu(bdp->cbd_datlen),
1414 						 DMA_TO_DEVICE);
1415 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1416 			if (!skb)
1417 				goto tx_buf_done;
1418 		} else {
1419 			xdpf = txq->tx_buf[index].xdp;
1420 			if (bdp->cbd_bufaddr)
1421 				dma_unmap_single(&fep->pdev->dev,
1422 						 fec32_to_cpu(bdp->cbd_bufaddr),
1423 						 fec16_to_cpu(bdp->cbd_datlen),
1424 						 DMA_TO_DEVICE);
1425 			bdp->cbd_bufaddr = cpu_to_fec32(0);
1426 			if (!xdpf) {
1427 				txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1428 				goto tx_buf_done;
1429 			}
1430 		}
1431 
1432 		/* Check for errors. */
1433 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1434 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1435 				   BD_ENET_TX_CSL)) {
1436 			ndev->stats.tx_errors++;
1437 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1438 				ndev->stats.tx_heartbeat_errors++;
1439 			if (status & BD_ENET_TX_LC)  /* Late collision */
1440 				ndev->stats.tx_window_errors++;
1441 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1442 				ndev->stats.tx_aborted_errors++;
1443 			if (status & BD_ENET_TX_UN)  /* Underrun */
1444 				ndev->stats.tx_fifo_errors++;
1445 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1446 				ndev->stats.tx_carrier_errors++;
1447 		} else {
1448 			ndev->stats.tx_packets++;
1449 
1450 			if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB)
1451 				ndev->stats.tx_bytes += skb->len;
1452 			else
1453 				ndev->stats.tx_bytes += xdpf->len;
1454 		}
1455 
1456 		/* Deferred means some collisions occurred during transmit,
1457 		 * but we eventually sent the packet OK.
1458 		 */
1459 		if (status & BD_ENET_TX_DEF)
1460 			ndev->stats.collisions++;
1461 
1462 		if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) {
1463 			/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1464 			 * are to time stamp the packet, so we still need to check time
1465 			 * stamping enabled flag.
1466 			 */
1467 			if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1468 				     fep->hwts_tx_en) && fep->bufdesc_ex) {
1469 				struct skb_shared_hwtstamps shhwtstamps;
1470 				struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1471 
1472 				fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1473 				skb_tstamp_tx(skb, &shhwtstamps);
1474 			}
1475 
1476 			/* Free the sk buffer associated with this last transmit */
1477 			dev_kfree_skb_any(skb);
1478 		} else {
1479 			xdp_return_frame(xdpf);
1480 
1481 			txq->tx_buf[index].xdp = NULL;
1482 			/* restore default tx buffer type: FEC_TXBUF_T_SKB */
1483 			txq->tx_buf[index].type = FEC_TXBUF_T_SKB;
1484 		}
1485 
1486 tx_buf_done:
1487 		/* Make sure the update to bdp and tx_buf are performed
1488 		 * before dirty_tx
1489 		 */
1490 		wmb();
1491 		txq->dirty_tx = bdp;
1492 
1493 		/* Update pointer to next buffer descriptor to be transmitted */
1494 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1495 
1496 		/* Since we have freed up a buffer, the ring is no longer full
1497 		 */
1498 		if (netif_tx_queue_stopped(nq)) {
1499 			entries_free = fec_enet_get_free_txdesc_num(txq);
1500 			if (entries_free >= txq->tx_wake_threshold)
1501 				netif_tx_wake_queue(nq);
1502 		}
1503 	}
1504 
1505 	/* ERR006358: Keep the transmitter going */
1506 	if (bdp != txq->bd.cur &&
1507 	    readl(txq->bd.reg_desc_active) == 0)
1508 		writel(0, txq->bd.reg_desc_active);
1509 }
1510 
1511 static void fec_enet_tx(struct net_device *ndev)
1512 {
1513 	struct fec_enet_private *fep = netdev_priv(ndev);
1514 	int i;
1515 
1516 	/* Make sure that AVB queues are processed first. */
1517 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1518 		fec_enet_tx_queue(ndev, i);
1519 }
1520 
1521 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq,
1522 				struct bufdesc *bdp, int index)
1523 {
1524 	struct page *new_page;
1525 	dma_addr_t phys_addr;
1526 
1527 	new_page = page_pool_dev_alloc_pages(rxq->page_pool);
1528 	WARN_ON(!new_page);
1529 	rxq->rx_skb_info[index].page = new_page;
1530 
1531 	rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM;
1532 	phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM;
1533 	bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
1534 }
1535 
1536 static u32
1537 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog,
1538 		 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int index)
1539 {
1540 	unsigned int sync, len = xdp->data_end - xdp->data;
1541 	u32 ret = FEC_ENET_XDP_PASS;
1542 	struct page *page;
1543 	int err;
1544 	u32 act;
1545 
1546 	act = bpf_prog_run_xdp(prog, xdp);
1547 
1548 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
1549 	sync = xdp->data_end - xdp->data_hard_start - FEC_ENET_XDP_HEADROOM;
1550 	sync = max(sync, len);
1551 
1552 	switch (act) {
1553 	case XDP_PASS:
1554 		rxq->stats[RX_XDP_PASS]++;
1555 		ret = FEC_ENET_XDP_PASS;
1556 		break;
1557 
1558 	case XDP_REDIRECT:
1559 		rxq->stats[RX_XDP_REDIRECT]++;
1560 		err = xdp_do_redirect(fep->netdev, xdp, prog);
1561 		if (!err) {
1562 			ret = FEC_ENET_XDP_REDIR;
1563 		} else {
1564 			ret = FEC_ENET_XDP_CONSUMED;
1565 			page = virt_to_head_page(xdp->data);
1566 			page_pool_put_page(rxq->page_pool, page, sync, true);
1567 		}
1568 		break;
1569 
1570 	default:
1571 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1572 		fallthrough;
1573 
1574 	case XDP_TX:
1575 		bpf_warn_invalid_xdp_action(fep->netdev, prog, act);
1576 		fallthrough;
1577 
1578 	case XDP_ABORTED:
1579 		fallthrough;    /* handle aborts by dropping packet */
1580 
1581 	case XDP_DROP:
1582 		rxq->stats[RX_XDP_DROP]++;
1583 		ret = FEC_ENET_XDP_CONSUMED;
1584 		page = virt_to_head_page(xdp->data);
1585 		page_pool_put_page(rxq->page_pool, page, sync, true);
1586 		break;
1587 	}
1588 
1589 	return ret;
1590 }
1591 
1592 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1593  * When we update through the ring, if the next incoming buffer has
1594  * not been given to the system, we just set the empty indicator,
1595  * effectively tossing the packet.
1596  */
1597 static int
1598 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1599 {
1600 	struct fec_enet_private *fep = netdev_priv(ndev);
1601 	struct fec_enet_priv_rx_q *rxq;
1602 	struct bufdesc *bdp;
1603 	unsigned short status;
1604 	struct  sk_buff *skb;
1605 	ushort	pkt_len;
1606 	__u8 *data;
1607 	int	pkt_received = 0;
1608 	struct	bufdesc_ex *ebdp = NULL;
1609 	bool	vlan_packet_rcvd = false;
1610 	u16	vlan_tag;
1611 	int	index = 0;
1612 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1613 	struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog);
1614 	u32 ret, xdp_result = FEC_ENET_XDP_PASS;
1615 	u32 data_start = FEC_ENET_XDP_HEADROOM;
1616 	struct xdp_buff xdp;
1617 	struct page *page;
1618 	u32 sub_len = 4;
1619 
1620 #if !defined(CONFIG_M5272)
1621 	/*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of
1622 	 * FEC_RACC_SHIFT16 is set by default in the probe function.
1623 	 */
1624 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1625 		data_start += 2;
1626 		sub_len += 2;
1627 	}
1628 #endif
1629 
1630 #ifdef CONFIG_M532x
1631 	flush_cache_all();
1632 #endif
1633 	rxq = fep->rx_queue[queue_id];
1634 
1635 	/* First, grab all of the stats for the incoming packet.
1636 	 * These get messed up if we get called due to a busy condition.
1637 	 */
1638 	bdp = rxq->bd.cur;
1639 	xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq);
1640 
1641 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1642 
1643 		if (pkt_received >= budget)
1644 			break;
1645 		pkt_received++;
1646 
1647 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1648 
1649 		/* Check for errors. */
1650 		status ^= BD_ENET_RX_LAST;
1651 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1652 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1653 			   BD_ENET_RX_CL)) {
1654 			ndev->stats.rx_errors++;
1655 			if (status & BD_ENET_RX_OV) {
1656 				/* FIFO overrun */
1657 				ndev->stats.rx_fifo_errors++;
1658 				goto rx_processing_done;
1659 			}
1660 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1661 						| BD_ENET_RX_LAST)) {
1662 				/* Frame too long or too short. */
1663 				ndev->stats.rx_length_errors++;
1664 				if (status & BD_ENET_RX_LAST)
1665 					netdev_err(ndev, "rcv is not +last\n");
1666 			}
1667 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1668 				ndev->stats.rx_crc_errors++;
1669 			/* Report late collisions as a frame error. */
1670 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1671 				ndev->stats.rx_frame_errors++;
1672 			goto rx_processing_done;
1673 		}
1674 
1675 		/* Process the incoming frame. */
1676 		ndev->stats.rx_packets++;
1677 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1678 		ndev->stats.rx_bytes += pkt_len;
1679 
1680 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1681 		page = rxq->rx_skb_info[index].page;
1682 		dma_sync_single_for_cpu(&fep->pdev->dev,
1683 					fec32_to_cpu(bdp->cbd_bufaddr),
1684 					pkt_len,
1685 					DMA_FROM_DEVICE);
1686 		prefetch(page_address(page));
1687 		fec_enet_update_cbd(rxq, bdp, index);
1688 
1689 		if (xdp_prog) {
1690 			xdp_buff_clear_frags_flag(&xdp);
1691 			/* subtract 16bit shift and FCS */
1692 			xdp_prepare_buff(&xdp, page_address(page),
1693 					 data_start, pkt_len - sub_len, false);
1694 			ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, index);
1695 			xdp_result |= ret;
1696 			if (ret != FEC_ENET_XDP_PASS)
1697 				goto rx_processing_done;
1698 		}
1699 
1700 		/* The packet length includes FCS, but we don't want to
1701 		 * include that when passing upstream as it messes up
1702 		 * bridging applications.
1703 		 */
1704 		skb = build_skb(page_address(page), PAGE_SIZE);
1705 		if (unlikely(!skb)) {
1706 			page_pool_recycle_direct(rxq->page_pool, page);
1707 			ndev->stats.rx_dropped++;
1708 
1709 			netdev_err_once(ndev, "build_skb failed!\n");
1710 			goto rx_processing_done;
1711 		}
1712 
1713 		skb_reserve(skb, data_start);
1714 		skb_put(skb, pkt_len - sub_len);
1715 		skb_mark_for_recycle(skb);
1716 
1717 		if (unlikely(need_swap)) {
1718 			data = page_address(page) + FEC_ENET_XDP_HEADROOM;
1719 			swap_buffer(data, pkt_len);
1720 		}
1721 		data = skb->data;
1722 
1723 		/* Extract the enhanced buffer descriptor */
1724 		ebdp = NULL;
1725 		if (fep->bufdesc_ex)
1726 			ebdp = (struct bufdesc_ex *)bdp;
1727 
1728 		/* If this is a VLAN packet remove the VLAN Tag */
1729 		vlan_packet_rcvd = false;
1730 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1731 		    fep->bufdesc_ex &&
1732 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1733 			/* Push and remove the vlan tag */
1734 			struct vlan_hdr *vlan_header =
1735 					(struct vlan_hdr *) (data + ETH_HLEN);
1736 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1737 
1738 			vlan_packet_rcvd = true;
1739 
1740 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1741 			skb_pull(skb, VLAN_HLEN);
1742 		}
1743 
1744 		skb->protocol = eth_type_trans(skb, ndev);
1745 
1746 		/* Get receive timestamp from the skb */
1747 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1748 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1749 					  skb_hwtstamps(skb));
1750 
1751 		if (fep->bufdesc_ex &&
1752 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1753 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1754 				/* don't check it */
1755 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1756 			} else {
1757 				skb_checksum_none_assert(skb);
1758 			}
1759 		}
1760 
1761 		/* Handle received VLAN packets */
1762 		if (vlan_packet_rcvd)
1763 			__vlan_hwaccel_put_tag(skb,
1764 					       htons(ETH_P_8021Q),
1765 					       vlan_tag);
1766 
1767 		skb_record_rx_queue(skb, queue_id);
1768 		napi_gro_receive(&fep->napi, skb);
1769 
1770 rx_processing_done:
1771 		/* Clear the status flags for this buffer */
1772 		status &= ~BD_ENET_RX_STATS;
1773 
1774 		/* Mark the buffer empty */
1775 		status |= BD_ENET_RX_EMPTY;
1776 
1777 		if (fep->bufdesc_ex) {
1778 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1779 
1780 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1781 			ebdp->cbd_prot = 0;
1782 			ebdp->cbd_bdu = 0;
1783 		}
1784 		/* Make sure the updates to rest of the descriptor are
1785 		 * performed before transferring ownership.
1786 		 */
1787 		wmb();
1788 		bdp->cbd_sc = cpu_to_fec16(status);
1789 
1790 		/* Update BD pointer to next entry */
1791 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1792 
1793 		/* Doing this here will keep the FEC running while we process
1794 		 * incoming frames.  On a heavily loaded network, we should be
1795 		 * able to keep up at the expense of system resources.
1796 		 */
1797 		writel(0, rxq->bd.reg_desc_active);
1798 	}
1799 	rxq->bd.cur = bdp;
1800 
1801 	if (xdp_result & FEC_ENET_XDP_REDIR)
1802 		xdp_do_flush_map();
1803 
1804 	return pkt_received;
1805 }
1806 
1807 static int fec_enet_rx(struct net_device *ndev, int budget)
1808 {
1809 	struct fec_enet_private *fep = netdev_priv(ndev);
1810 	int i, done = 0;
1811 
1812 	/* Make sure that AVB queues are processed first. */
1813 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1814 		done += fec_enet_rx_queue(ndev, budget - done, i);
1815 
1816 	return done;
1817 }
1818 
1819 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1820 {
1821 	uint int_events;
1822 
1823 	int_events = readl(fep->hwp + FEC_IEVENT);
1824 
1825 	/* Don't clear MDIO events, we poll for those */
1826 	int_events &= ~FEC_ENET_MII;
1827 
1828 	writel(int_events, fep->hwp + FEC_IEVENT);
1829 
1830 	return int_events != 0;
1831 }
1832 
1833 static irqreturn_t
1834 fec_enet_interrupt(int irq, void *dev_id)
1835 {
1836 	struct net_device *ndev = dev_id;
1837 	struct fec_enet_private *fep = netdev_priv(ndev);
1838 	irqreturn_t ret = IRQ_NONE;
1839 
1840 	if (fec_enet_collect_events(fep) && fep->link) {
1841 		ret = IRQ_HANDLED;
1842 
1843 		if (napi_schedule_prep(&fep->napi)) {
1844 			/* Disable interrupts */
1845 			writel(0, fep->hwp + FEC_IMASK);
1846 			__napi_schedule(&fep->napi);
1847 		}
1848 	}
1849 
1850 	return ret;
1851 }
1852 
1853 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1854 {
1855 	struct net_device *ndev = napi->dev;
1856 	struct fec_enet_private *fep = netdev_priv(ndev);
1857 	int done = 0;
1858 
1859 	do {
1860 		done += fec_enet_rx(ndev, budget - done);
1861 		fec_enet_tx(ndev);
1862 	} while ((done < budget) && fec_enet_collect_events(fep));
1863 
1864 	if (done < budget) {
1865 		napi_complete_done(napi, done);
1866 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1867 	}
1868 
1869 	return done;
1870 }
1871 
1872 /* ------------------------------------------------------------------------- */
1873 static int fec_get_mac(struct net_device *ndev)
1874 {
1875 	struct fec_enet_private *fep = netdev_priv(ndev);
1876 	unsigned char *iap, tmpaddr[ETH_ALEN];
1877 	int ret;
1878 
1879 	/*
1880 	 * try to get mac address in following order:
1881 	 *
1882 	 * 1) module parameter via kernel command line in form
1883 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1884 	 */
1885 	iap = macaddr;
1886 
1887 	/*
1888 	 * 2) from device tree data
1889 	 */
1890 	if (!is_valid_ether_addr(iap)) {
1891 		struct device_node *np = fep->pdev->dev.of_node;
1892 		if (np) {
1893 			ret = of_get_mac_address(np, tmpaddr);
1894 			if (!ret)
1895 				iap = tmpaddr;
1896 			else if (ret == -EPROBE_DEFER)
1897 				return ret;
1898 		}
1899 	}
1900 
1901 	/*
1902 	 * 3) from flash or fuse (via platform data)
1903 	 */
1904 	if (!is_valid_ether_addr(iap)) {
1905 #ifdef CONFIG_M5272
1906 		if (FEC_FLASHMAC)
1907 			iap = (unsigned char *)FEC_FLASHMAC;
1908 #else
1909 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1910 
1911 		if (pdata)
1912 			iap = (unsigned char *)&pdata->mac;
1913 #endif
1914 	}
1915 
1916 	/*
1917 	 * 4) FEC mac registers set by bootloader
1918 	 */
1919 	if (!is_valid_ether_addr(iap)) {
1920 		*((__be32 *) &tmpaddr[0]) =
1921 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1922 		*((__be16 *) &tmpaddr[4]) =
1923 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1924 		iap = &tmpaddr[0];
1925 	}
1926 
1927 	/*
1928 	 * 5) random mac address
1929 	 */
1930 	if (!is_valid_ether_addr(iap)) {
1931 		/* Report it and use a random ethernet address instead */
1932 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1933 		eth_hw_addr_random(ndev);
1934 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1935 			 ndev->dev_addr);
1936 		return 0;
1937 	}
1938 
1939 	/* Adjust MAC if using macaddr */
1940 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
1941 
1942 	return 0;
1943 }
1944 
1945 /* ------------------------------------------------------------------------- */
1946 
1947 /*
1948  * Phy section
1949  */
1950 static void fec_enet_adjust_link(struct net_device *ndev)
1951 {
1952 	struct fec_enet_private *fep = netdev_priv(ndev);
1953 	struct phy_device *phy_dev = ndev->phydev;
1954 	int status_change = 0;
1955 
1956 	/*
1957 	 * If the netdev is down, or is going down, we're not interested
1958 	 * in link state events, so just mark our idea of the link as down
1959 	 * and ignore the event.
1960 	 */
1961 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1962 		fep->link = 0;
1963 	} else if (phy_dev->link) {
1964 		if (!fep->link) {
1965 			fep->link = phy_dev->link;
1966 			status_change = 1;
1967 		}
1968 
1969 		if (fep->full_duplex != phy_dev->duplex) {
1970 			fep->full_duplex = phy_dev->duplex;
1971 			status_change = 1;
1972 		}
1973 
1974 		if (phy_dev->speed != fep->speed) {
1975 			fep->speed = phy_dev->speed;
1976 			status_change = 1;
1977 		}
1978 
1979 		/* if any of the above changed restart the FEC */
1980 		if (status_change) {
1981 			napi_disable(&fep->napi);
1982 			netif_tx_lock_bh(ndev);
1983 			fec_restart(ndev);
1984 			netif_tx_wake_all_queues(ndev);
1985 			netif_tx_unlock_bh(ndev);
1986 			napi_enable(&fep->napi);
1987 		}
1988 	} else {
1989 		if (fep->link) {
1990 			napi_disable(&fep->napi);
1991 			netif_tx_lock_bh(ndev);
1992 			fec_stop(ndev);
1993 			netif_tx_unlock_bh(ndev);
1994 			napi_enable(&fep->napi);
1995 			fep->link = phy_dev->link;
1996 			status_change = 1;
1997 		}
1998 	}
1999 
2000 	if (status_change)
2001 		phy_print_status(phy_dev);
2002 }
2003 
2004 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
2005 {
2006 	uint ievent;
2007 	int ret;
2008 
2009 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
2010 					ievent & FEC_ENET_MII, 2, 30000);
2011 
2012 	if (!ret)
2013 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2014 
2015 	return ret;
2016 }
2017 
2018 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum)
2019 {
2020 	struct fec_enet_private *fep = bus->priv;
2021 	struct device *dev = &fep->pdev->dev;
2022 	int ret = 0, frame_start, frame_addr, frame_op;
2023 
2024 	ret = pm_runtime_resume_and_get(dev);
2025 	if (ret < 0)
2026 		return ret;
2027 
2028 	/* C22 read */
2029 	frame_op = FEC_MMFR_OP_READ;
2030 	frame_start = FEC_MMFR_ST;
2031 	frame_addr = regnum;
2032 
2033 	/* start a read op */
2034 	writel(frame_start | frame_op |
2035 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2036 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2037 
2038 	/* wait for end of transfer */
2039 	ret = fec_enet_mdio_wait(fep);
2040 	if (ret) {
2041 		netdev_err(fep->netdev, "MDIO read timeout\n");
2042 		goto out;
2043 	}
2044 
2045 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2046 
2047 out:
2048 	pm_runtime_mark_last_busy(dev);
2049 	pm_runtime_put_autosuspend(dev);
2050 
2051 	return ret;
2052 }
2053 
2054 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id,
2055 				  int devad, int regnum)
2056 {
2057 	struct fec_enet_private *fep = bus->priv;
2058 	struct device *dev = &fep->pdev->dev;
2059 	int ret = 0, frame_start, frame_op;
2060 
2061 	ret = pm_runtime_resume_and_get(dev);
2062 	if (ret < 0)
2063 		return ret;
2064 
2065 	frame_start = FEC_MMFR_ST_C45;
2066 
2067 	/* write address */
2068 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2069 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2070 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2071 	       fep->hwp + FEC_MII_DATA);
2072 
2073 	/* wait for end of transfer */
2074 	ret = fec_enet_mdio_wait(fep);
2075 	if (ret) {
2076 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2077 		goto out;
2078 	}
2079 
2080 	frame_op = FEC_MMFR_OP_READ_C45;
2081 
2082 	/* start a read op */
2083 	writel(frame_start | frame_op |
2084 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2085 	       FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
2086 
2087 	/* wait for end of transfer */
2088 	ret = fec_enet_mdio_wait(fep);
2089 	if (ret) {
2090 		netdev_err(fep->netdev, "MDIO read timeout\n");
2091 		goto out;
2092 	}
2093 
2094 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
2095 
2096 out:
2097 	pm_runtime_mark_last_busy(dev);
2098 	pm_runtime_put_autosuspend(dev);
2099 
2100 	return ret;
2101 }
2102 
2103 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum,
2104 				   u16 value)
2105 {
2106 	struct fec_enet_private *fep = bus->priv;
2107 	struct device *dev = &fep->pdev->dev;
2108 	int ret, frame_start, frame_addr;
2109 
2110 	ret = pm_runtime_resume_and_get(dev);
2111 	if (ret < 0)
2112 		return ret;
2113 
2114 	/* C22 write */
2115 	frame_start = FEC_MMFR_ST;
2116 	frame_addr = regnum;
2117 
2118 	/* start a write op */
2119 	writel(frame_start | FEC_MMFR_OP_WRITE |
2120 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
2121 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2122 	       fep->hwp + FEC_MII_DATA);
2123 
2124 	/* wait for end of transfer */
2125 	ret = fec_enet_mdio_wait(fep);
2126 	if (ret)
2127 		netdev_err(fep->netdev, "MDIO write timeout\n");
2128 
2129 	pm_runtime_mark_last_busy(dev);
2130 	pm_runtime_put_autosuspend(dev);
2131 
2132 	return ret;
2133 }
2134 
2135 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id,
2136 				   int devad, int regnum, u16 value)
2137 {
2138 	struct fec_enet_private *fep = bus->priv;
2139 	struct device *dev = &fep->pdev->dev;
2140 	int ret, frame_start;
2141 
2142 	ret = pm_runtime_resume_and_get(dev);
2143 	if (ret < 0)
2144 		return ret;
2145 
2146 	frame_start = FEC_MMFR_ST_C45;
2147 
2148 	/* write address */
2149 	writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
2150 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2151 	       FEC_MMFR_TA | (regnum & 0xFFFF),
2152 	       fep->hwp + FEC_MII_DATA);
2153 
2154 	/* wait for end of transfer */
2155 	ret = fec_enet_mdio_wait(fep);
2156 	if (ret) {
2157 		netdev_err(fep->netdev, "MDIO address write timeout\n");
2158 		goto out;
2159 	}
2160 
2161 	/* start a write op */
2162 	writel(frame_start | FEC_MMFR_OP_WRITE |
2163 	       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) |
2164 	       FEC_MMFR_TA | FEC_MMFR_DATA(value),
2165 	       fep->hwp + FEC_MII_DATA);
2166 
2167 	/* wait for end of transfer */
2168 	ret = fec_enet_mdio_wait(fep);
2169 	if (ret)
2170 		netdev_err(fep->netdev, "MDIO write timeout\n");
2171 
2172 out:
2173 	pm_runtime_mark_last_busy(dev);
2174 	pm_runtime_put_autosuspend(dev);
2175 
2176 	return ret;
2177 }
2178 
2179 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
2180 {
2181 	struct fec_enet_private *fep = netdev_priv(ndev);
2182 	struct phy_device *phy_dev = ndev->phydev;
2183 
2184 	if (phy_dev) {
2185 		phy_reset_after_clk_enable(phy_dev);
2186 	} else if (fep->phy_node) {
2187 		/*
2188 		 * If the PHY still is not bound to the MAC, but there is
2189 		 * OF PHY node and a matching PHY device instance already,
2190 		 * use the OF PHY node to obtain the PHY device instance,
2191 		 * and then use that PHY device instance when triggering
2192 		 * the PHY reset.
2193 		 */
2194 		phy_dev = of_phy_find_device(fep->phy_node);
2195 		phy_reset_after_clk_enable(phy_dev);
2196 		put_device(&phy_dev->mdio.dev);
2197 	}
2198 }
2199 
2200 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
2201 {
2202 	struct fec_enet_private *fep = netdev_priv(ndev);
2203 	int ret;
2204 
2205 	if (enable) {
2206 		ret = clk_prepare_enable(fep->clk_enet_out);
2207 		if (ret)
2208 			return ret;
2209 
2210 		if (fep->clk_ptp) {
2211 			mutex_lock(&fep->ptp_clk_mutex);
2212 			ret = clk_prepare_enable(fep->clk_ptp);
2213 			if (ret) {
2214 				mutex_unlock(&fep->ptp_clk_mutex);
2215 				goto failed_clk_ptp;
2216 			} else {
2217 				fep->ptp_clk_on = true;
2218 			}
2219 			mutex_unlock(&fep->ptp_clk_mutex);
2220 		}
2221 
2222 		ret = clk_prepare_enable(fep->clk_ref);
2223 		if (ret)
2224 			goto failed_clk_ref;
2225 
2226 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2227 		if (ret)
2228 			goto failed_clk_2x_txclk;
2229 
2230 		fec_enet_phy_reset_after_clk_enable(ndev);
2231 	} else {
2232 		clk_disable_unprepare(fep->clk_enet_out);
2233 		if (fep->clk_ptp) {
2234 			mutex_lock(&fep->ptp_clk_mutex);
2235 			clk_disable_unprepare(fep->clk_ptp);
2236 			fep->ptp_clk_on = false;
2237 			mutex_unlock(&fep->ptp_clk_mutex);
2238 		}
2239 		clk_disable_unprepare(fep->clk_ref);
2240 		clk_disable_unprepare(fep->clk_2x_txclk);
2241 	}
2242 
2243 	return 0;
2244 
2245 failed_clk_2x_txclk:
2246 	if (fep->clk_ref)
2247 		clk_disable_unprepare(fep->clk_ref);
2248 failed_clk_ref:
2249 	if (fep->clk_ptp) {
2250 		mutex_lock(&fep->ptp_clk_mutex);
2251 		clk_disable_unprepare(fep->clk_ptp);
2252 		fep->ptp_clk_on = false;
2253 		mutex_unlock(&fep->ptp_clk_mutex);
2254 	}
2255 failed_clk_ptp:
2256 	clk_disable_unprepare(fep->clk_enet_out);
2257 
2258 	return ret;
2259 }
2260 
2261 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2262 				      struct device_node *np)
2263 {
2264 	u32 rgmii_tx_delay, rgmii_rx_delay;
2265 
2266 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2267 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2268 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2269 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2270 			return -EINVAL;
2271 		} else if (rgmii_tx_delay == 2000) {
2272 			fep->rgmii_txc_dly = true;
2273 		}
2274 	}
2275 
2276 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2277 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2278 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2279 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2280 			return -EINVAL;
2281 		} else if (rgmii_rx_delay == 2000) {
2282 			fep->rgmii_rxc_dly = true;
2283 		}
2284 	}
2285 
2286 	return 0;
2287 }
2288 
2289 static int fec_enet_mii_probe(struct net_device *ndev)
2290 {
2291 	struct fec_enet_private *fep = netdev_priv(ndev);
2292 	struct phy_device *phy_dev = NULL;
2293 	char mdio_bus_id[MII_BUS_ID_SIZE];
2294 	char phy_name[MII_BUS_ID_SIZE + 3];
2295 	int phy_id;
2296 	int dev_id = fep->dev_id;
2297 
2298 	if (fep->phy_node) {
2299 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2300 					 &fec_enet_adjust_link, 0,
2301 					 fep->phy_interface);
2302 		if (!phy_dev) {
2303 			netdev_err(ndev, "Unable to connect to phy\n");
2304 			return -ENODEV;
2305 		}
2306 	} else {
2307 		/* check for attached phy */
2308 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2309 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2310 				continue;
2311 			if (dev_id--)
2312 				continue;
2313 			strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2314 			break;
2315 		}
2316 
2317 		if (phy_id >= PHY_MAX_ADDR) {
2318 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2319 			strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2320 			phy_id = 0;
2321 		}
2322 
2323 		snprintf(phy_name, sizeof(phy_name),
2324 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2325 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2326 				      fep->phy_interface);
2327 	}
2328 
2329 	if (IS_ERR(phy_dev)) {
2330 		netdev_err(ndev, "could not attach to PHY\n");
2331 		return PTR_ERR(phy_dev);
2332 	}
2333 
2334 	/* mask with MAC supported features */
2335 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2336 		phy_set_max_speed(phy_dev, 1000);
2337 		phy_remove_link_mode(phy_dev,
2338 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2339 #if !defined(CONFIG_M5272)
2340 		phy_support_sym_pause(phy_dev);
2341 #endif
2342 	}
2343 	else
2344 		phy_set_max_speed(phy_dev, 100);
2345 
2346 	fep->link = 0;
2347 	fep->full_duplex = 0;
2348 
2349 	phy_dev->mac_managed_pm = true;
2350 
2351 	phy_attached_info(phy_dev);
2352 
2353 	return 0;
2354 }
2355 
2356 static int fec_enet_mii_init(struct platform_device *pdev)
2357 {
2358 	static struct mii_bus *fec0_mii_bus;
2359 	struct net_device *ndev = platform_get_drvdata(pdev);
2360 	struct fec_enet_private *fep = netdev_priv(ndev);
2361 	bool suppress_preamble = false;
2362 	struct device_node *node;
2363 	int err = -ENXIO;
2364 	u32 mii_speed, holdtime;
2365 	u32 bus_freq;
2366 
2367 	/*
2368 	 * The i.MX28 dual fec interfaces are not equal.
2369 	 * Here are the differences:
2370 	 *
2371 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2372 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2373 	 *  - external phys can only be configured by fec0
2374 	 *
2375 	 * That is to say fec1 can not work independently. It only works
2376 	 * when fec0 is working. The reason behind this design is that the
2377 	 * second interface is added primarily for Switch mode.
2378 	 *
2379 	 * Because of the last point above, both phys are attached on fec0
2380 	 * mdio interface in board design, and need to be configured by
2381 	 * fec0 mii_bus.
2382 	 */
2383 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2384 		/* fec1 uses fec0 mii_bus */
2385 		if (mii_cnt && fec0_mii_bus) {
2386 			fep->mii_bus = fec0_mii_bus;
2387 			mii_cnt++;
2388 			return 0;
2389 		}
2390 		return -ENOENT;
2391 	}
2392 
2393 	bus_freq = 2500000; /* 2.5MHz by default */
2394 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2395 	if (node) {
2396 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2397 		suppress_preamble = of_property_read_bool(node,
2398 							  "suppress-preamble");
2399 	}
2400 
2401 	/*
2402 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2403 	 *
2404 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2405 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2406 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2407 	 * document.
2408 	 */
2409 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2410 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2411 		mii_speed--;
2412 	if (mii_speed > 63) {
2413 		dev_err(&pdev->dev,
2414 			"fec clock (%lu) too fast to get right mii speed\n",
2415 			clk_get_rate(fep->clk_ipg));
2416 		err = -EINVAL;
2417 		goto err_out;
2418 	}
2419 
2420 	/*
2421 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2422 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2423 	 * versions are RAZ there, so just ignore the difference and write the
2424 	 * register always.
2425 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2426 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2427 	 * output.
2428 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2429 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2430 	 * holdtime cannot result in a value greater than 3.
2431 	 */
2432 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2433 
2434 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2435 
2436 	if (suppress_preamble)
2437 		fep->phy_speed |= BIT(7);
2438 
2439 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2440 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2441 		 * MII event generation condition:
2442 		 * - writing MSCR:
2443 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2444 		 *	  mscr_reg_data_in[7:0] != 0
2445 		 * - writing MMFR:
2446 		 *	- mscr[7:0]_not_zero
2447 		 */
2448 		writel(0, fep->hwp + FEC_MII_DATA);
2449 	}
2450 
2451 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2452 
2453 	/* Clear any pending transaction complete indication */
2454 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2455 
2456 	fep->mii_bus = mdiobus_alloc();
2457 	if (fep->mii_bus == NULL) {
2458 		err = -ENOMEM;
2459 		goto err_out;
2460 	}
2461 
2462 	fep->mii_bus->name = "fec_enet_mii_bus";
2463 	fep->mii_bus->read = fec_enet_mdio_read_c22;
2464 	fep->mii_bus->write = fec_enet_mdio_write_c22;
2465 	if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) {
2466 		fep->mii_bus->read_c45 = fec_enet_mdio_read_c45;
2467 		fep->mii_bus->write_c45 = fec_enet_mdio_write_c45;
2468 	}
2469 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2470 		pdev->name, fep->dev_id + 1);
2471 	fep->mii_bus->priv = fep;
2472 	fep->mii_bus->parent = &pdev->dev;
2473 
2474 	err = of_mdiobus_register(fep->mii_bus, node);
2475 	if (err)
2476 		goto err_out_free_mdiobus;
2477 	of_node_put(node);
2478 
2479 	mii_cnt++;
2480 
2481 	/* save fec0 mii_bus */
2482 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2483 		fec0_mii_bus = fep->mii_bus;
2484 
2485 	return 0;
2486 
2487 err_out_free_mdiobus:
2488 	mdiobus_free(fep->mii_bus);
2489 err_out:
2490 	of_node_put(node);
2491 	return err;
2492 }
2493 
2494 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2495 {
2496 	if (--mii_cnt == 0) {
2497 		mdiobus_unregister(fep->mii_bus);
2498 		mdiobus_free(fep->mii_bus);
2499 	}
2500 }
2501 
2502 static void fec_enet_get_drvinfo(struct net_device *ndev,
2503 				 struct ethtool_drvinfo *info)
2504 {
2505 	struct fec_enet_private *fep = netdev_priv(ndev);
2506 
2507 	strscpy(info->driver, fep->pdev->dev.driver->name,
2508 		sizeof(info->driver));
2509 	strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2510 }
2511 
2512 static int fec_enet_get_regs_len(struct net_device *ndev)
2513 {
2514 	struct fec_enet_private *fep = netdev_priv(ndev);
2515 	struct resource *r;
2516 	int s = 0;
2517 
2518 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2519 	if (r)
2520 		s = resource_size(r);
2521 
2522 	return s;
2523 }
2524 
2525 /* List of registers that can be safety be read to dump them with ethtool */
2526 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2527 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2528 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2529 static __u32 fec_enet_register_version = 2;
2530 static u32 fec_enet_register_offset[] = {
2531 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2532 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2533 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2534 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2535 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2536 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2537 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2538 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2539 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2540 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2541 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2542 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2543 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2544 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2545 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2546 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2547 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2548 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2549 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2550 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2551 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2552 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2553 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2554 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2555 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2556 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2557 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2558 };
2559 /* for i.MX6ul */
2560 static u32 fec_enet_register_offset_6ul[] = {
2561 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2562 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2563 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0,
2564 	FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH,
2565 	FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0,
2566 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2567 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC,
2568 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2569 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2570 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2571 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2572 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2573 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2574 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2575 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2576 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2577 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2578 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2579 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2580 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2581 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2582 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2583 };
2584 #else
2585 static __u32 fec_enet_register_version = 1;
2586 static u32 fec_enet_register_offset[] = {
2587 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2588 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2589 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2590 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2591 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2592 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2593 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2594 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2595 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2596 };
2597 #endif
2598 
2599 static void fec_enet_get_regs(struct net_device *ndev,
2600 			      struct ethtool_regs *regs, void *regbuf)
2601 {
2602 	struct fec_enet_private *fep = netdev_priv(ndev);
2603 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2604 	struct device *dev = &fep->pdev->dev;
2605 	u32 *buf = (u32 *)regbuf;
2606 	u32 i, off;
2607 	int ret;
2608 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2609 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2610 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2611 	u32 *reg_list;
2612 	u32 reg_cnt;
2613 
2614 	if (!of_machine_is_compatible("fsl,imx6ul")) {
2615 		reg_list = fec_enet_register_offset;
2616 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2617 	} else {
2618 		reg_list = fec_enet_register_offset_6ul;
2619 		reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul);
2620 	}
2621 #else
2622 	/* coldfire */
2623 	static u32 *reg_list = fec_enet_register_offset;
2624 	static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset);
2625 #endif
2626 	ret = pm_runtime_resume_and_get(dev);
2627 	if (ret < 0)
2628 		return;
2629 
2630 	regs->version = fec_enet_register_version;
2631 
2632 	memset(buf, 0, regs->len);
2633 
2634 	for (i = 0; i < reg_cnt; i++) {
2635 		off = reg_list[i];
2636 
2637 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2638 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2639 			continue;
2640 
2641 		off >>= 2;
2642 		buf[off] = readl(&theregs[off]);
2643 	}
2644 
2645 	pm_runtime_mark_last_busy(dev);
2646 	pm_runtime_put_autosuspend(dev);
2647 }
2648 
2649 static int fec_enet_get_ts_info(struct net_device *ndev,
2650 				struct ethtool_ts_info *info)
2651 {
2652 	struct fec_enet_private *fep = netdev_priv(ndev);
2653 
2654 	if (fep->bufdesc_ex) {
2655 
2656 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2657 					SOF_TIMESTAMPING_RX_SOFTWARE |
2658 					SOF_TIMESTAMPING_SOFTWARE |
2659 					SOF_TIMESTAMPING_TX_HARDWARE |
2660 					SOF_TIMESTAMPING_RX_HARDWARE |
2661 					SOF_TIMESTAMPING_RAW_HARDWARE;
2662 		if (fep->ptp_clock)
2663 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2664 		else
2665 			info->phc_index = -1;
2666 
2667 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2668 				 (1 << HWTSTAMP_TX_ON);
2669 
2670 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2671 				   (1 << HWTSTAMP_FILTER_ALL);
2672 		return 0;
2673 	} else {
2674 		return ethtool_op_get_ts_info(ndev, info);
2675 	}
2676 }
2677 
2678 #if !defined(CONFIG_M5272)
2679 
2680 static void fec_enet_get_pauseparam(struct net_device *ndev,
2681 				    struct ethtool_pauseparam *pause)
2682 {
2683 	struct fec_enet_private *fep = netdev_priv(ndev);
2684 
2685 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2686 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2687 	pause->rx_pause = pause->tx_pause;
2688 }
2689 
2690 static int fec_enet_set_pauseparam(struct net_device *ndev,
2691 				   struct ethtool_pauseparam *pause)
2692 {
2693 	struct fec_enet_private *fep = netdev_priv(ndev);
2694 
2695 	if (!ndev->phydev)
2696 		return -ENODEV;
2697 
2698 	if (pause->tx_pause != pause->rx_pause) {
2699 		netdev_info(ndev,
2700 			"hardware only support enable/disable both tx and rx");
2701 		return -EINVAL;
2702 	}
2703 
2704 	fep->pause_flag = 0;
2705 
2706 	/* tx pause must be same as rx pause */
2707 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2708 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2709 
2710 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2711 			  pause->autoneg);
2712 
2713 	if (pause->autoneg) {
2714 		if (netif_running(ndev))
2715 			fec_stop(ndev);
2716 		phy_start_aneg(ndev->phydev);
2717 	}
2718 	if (netif_running(ndev)) {
2719 		napi_disable(&fep->napi);
2720 		netif_tx_lock_bh(ndev);
2721 		fec_restart(ndev);
2722 		netif_tx_wake_all_queues(ndev);
2723 		netif_tx_unlock_bh(ndev);
2724 		napi_enable(&fep->napi);
2725 	}
2726 
2727 	return 0;
2728 }
2729 
2730 static const struct fec_stat {
2731 	char name[ETH_GSTRING_LEN];
2732 	u16 offset;
2733 } fec_stats[] = {
2734 	/* RMON TX */
2735 	{ "tx_dropped", RMON_T_DROP },
2736 	{ "tx_packets", RMON_T_PACKETS },
2737 	{ "tx_broadcast", RMON_T_BC_PKT },
2738 	{ "tx_multicast", RMON_T_MC_PKT },
2739 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2740 	{ "tx_undersize", RMON_T_UNDERSIZE },
2741 	{ "tx_oversize", RMON_T_OVERSIZE },
2742 	{ "tx_fragment", RMON_T_FRAG },
2743 	{ "tx_jabber", RMON_T_JAB },
2744 	{ "tx_collision", RMON_T_COL },
2745 	{ "tx_64byte", RMON_T_P64 },
2746 	{ "tx_65to127byte", RMON_T_P65TO127 },
2747 	{ "tx_128to255byte", RMON_T_P128TO255 },
2748 	{ "tx_256to511byte", RMON_T_P256TO511 },
2749 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2750 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2751 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2752 	{ "tx_octets", RMON_T_OCTETS },
2753 
2754 	/* IEEE TX */
2755 	{ "IEEE_tx_drop", IEEE_T_DROP },
2756 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2757 	{ "IEEE_tx_1col", IEEE_T_1COL },
2758 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2759 	{ "IEEE_tx_def", IEEE_T_DEF },
2760 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2761 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2762 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2763 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2764 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2765 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2766 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2767 
2768 	/* RMON RX */
2769 	{ "rx_packets", RMON_R_PACKETS },
2770 	{ "rx_broadcast", RMON_R_BC_PKT },
2771 	{ "rx_multicast", RMON_R_MC_PKT },
2772 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2773 	{ "rx_undersize", RMON_R_UNDERSIZE },
2774 	{ "rx_oversize", RMON_R_OVERSIZE },
2775 	{ "rx_fragment", RMON_R_FRAG },
2776 	{ "rx_jabber", RMON_R_JAB },
2777 	{ "rx_64byte", RMON_R_P64 },
2778 	{ "rx_65to127byte", RMON_R_P65TO127 },
2779 	{ "rx_128to255byte", RMON_R_P128TO255 },
2780 	{ "rx_256to511byte", RMON_R_P256TO511 },
2781 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2782 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2783 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2784 	{ "rx_octets", RMON_R_OCTETS },
2785 
2786 	/* IEEE RX */
2787 	{ "IEEE_rx_drop", IEEE_R_DROP },
2788 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2789 	{ "IEEE_rx_crc", IEEE_R_CRC },
2790 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2791 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2792 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2793 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2794 };
2795 
2796 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2797 
2798 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = {
2799 	"rx_xdp_redirect",           /* RX_XDP_REDIRECT = 0, */
2800 	"rx_xdp_pass",               /* RX_XDP_PASS, */
2801 	"rx_xdp_drop",               /* RX_XDP_DROP, */
2802 	"rx_xdp_tx",                 /* RX_XDP_TX, */
2803 	"rx_xdp_tx_errors",          /* RX_XDP_TX_ERRORS, */
2804 	"tx_xdp_xmit",               /* TX_XDP_XMIT, */
2805 	"tx_xdp_xmit_errors",        /* TX_XDP_XMIT_ERRORS, */
2806 };
2807 
2808 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2809 {
2810 	struct fec_enet_private *fep = netdev_priv(dev);
2811 	int i;
2812 
2813 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2814 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2815 }
2816 
2817 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data)
2818 {
2819 	u64 xdp_stats[XDP_STATS_TOTAL] = { 0 };
2820 	struct fec_enet_priv_rx_q *rxq;
2821 	int i, j;
2822 
2823 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2824 		rxq = fep->rx_queue[i];
2825 
2826 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2827 			xdp_stats[j] += rxq->stats[j];
2828 	}
2829 
2830 	memcpy(data, xdp_stats, sizeof(xdp_stats));
2831 }
2832 
2833 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data)
2834 {
2835 #ifdef CONFIG_PAGE_POOL_STATS
2836 	struct page_pool_stats stats = {};
2837 	struct fec_enet_priv_rx_q *rxq;
2838 	int i;
2839 
2840 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2841 		rxq = fep->rx_queue[i];
2842 
2843 		if (!rxq->page_pool)
2844 			continue;
2845 
2846 		page_pool_get_stats(rxq->page_pool, &stats);
2847 	}
2848 
2849 	page_pool_ethtool_stats_get(data, &stats);
2850 #endif
2851 }
2852 
2853 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2854 				       struct ethtool_stats *stats, u64 *data)
2855 {
2856 	struct fec_enet_private *fep = netdev_priv(dev);
2857 
2858 	if (netif_running(dev))
2859 		fec_enet_update_ethtool_stats(dev);
2860 
2861 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2862 	data += FEC_STATS_SIZE / sizeof(u64);
2863 
2864 	fec_enet_get_xdp_stats(fep, data);
2865 	data += XDP_STATS_TOTAL;
2866 
2867 	fec_enet_page_pool_stats(fep, data);
2868 }
2869 
2870 static void fec_enet_get_strings(struct net_device *netdev,
2871 	u32 stringset, u8 *data)
2872 {
2873 	int i;
2874 	switch (stringset) {
2875 	case ETH_SS_STATS:
2876 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++) {
2877 			memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN);
2878 			data += ETH_GSTRING_LEN;
2879 		}
2880 		for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) {
2881 			strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN);
2882 			data += ETH_GSTRING_LEN;
2883 		}
2884 		page_pool_ethtool_stats_get_strings(data);
2885 
2886 		break;
2887 	case ETH_SS_TEST:
2888 		net_selftest_get_strings(data);
2889 		break;
2890 	}
2891 }
2892 
2893 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2894 {
2895 	int count;
2896 
2897 	switch (sset) {
2898 	case ETH_SS_STATS:
2899 		count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL;
2900 		count += page_pool_ethtool_stats_get_count();
2901 		return count;
2902 
2903 	case ETH_SS_TEST:
2904 		return net_selftest_get_count();
2905 	default:
2906 		return -EOPNOTSUPP;
2907 	}
2908 }
2909 
2910 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2911 {
2912 	struct fec_enet_private *fep = netdev_priv(dev);
2913 	struct fec_enet_priv_rx_q *rxq;
2914 	int i, j;
2915 
2916 	/* Disable MIB statistics counters */
2917 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2918 
2919 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2920 		writel(0, fep->hwp + fec_stats[i].offset);
2921 
2922 	for (i = fep->num_rx_queues - 1; i >= 0; i--) {
2923 		rxq = fep->rx_queue[i];
2924 		for (j = 0; j < XDP_STATS_TOTAL; j++)
2925 			rxq->stats[j] = 0;
2926 	}
2927 
2928 	/* Don't disable MIB statistics counters */
2929 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2930 }
2931 
2932 #else	/* !defined(CONFIG_M5272) */
2933 #define FEC_STATS_SIZE	0
2934 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2935 {
2936 }
2937 
2938 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2939 {
2940 }
2941 #endif /* !defined(CONFIG_M5272) */
2942 
2943 /* ITR clock source is enet system clock (clk_ahb).
2944  * TCTT unit is cycle_ns * 64 cycle
2945  * So, the ICTT value = X us / (cycle_ns * 64)
2946  */
2947 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2948 {
2949 	struct fec_enet_private *fep = netdev_priv(ndev);
2950 
2951 	return us * (fep->itr_clk_rate / 64000) / 1000;
2952 }
2953 
2954 /* Set threshold for interrupt coalescing */
2955 static void fec_enet_itr_coal_set(struct net_device *ndev)
2956 {
2957 	struct fec_enet_private *fep = netdev_priv(ndev);
2958 	int rx_itr, tx_itr;
2959 
2960 	/* Must be greater than zero to avoid unpredictable behavior */
2961 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2962 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2963 		return;
2964 
2965 	/* Select enet system clock as Interrupt Coalescing
2966 	 * timer Clock Source
2967 	 */
2968 	rx_itr = FEC_ITR_CLK_SEL;
2969 	tx_itr = FEC_ITR_CLK_SEL;
2970 
2971 	/* set ICFT and ICTT */
2972 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2973 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2974 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2975 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2976 
2977 	rx_itr |= FEC_ITR_EN;
2978 	tx_itr |= FEC_ITR_EN;
2979 
2980 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2981 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2982 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
2983 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2984 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2985 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2986 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2987 	}
2988 }
2989 
2990 static int fec_enet_get_coalesce(struct net_device *ndev,
2991 				 struct ethtool_coalesce *ec,
2992 				 struct kernel_ethtool_coalesce *kernel_coal,
2993 				 struct netlink_ext_ack *extack)
2994 {
2995 	struct fec_enet_private *fep = netdev_priv(ndev);
2996 
2997 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2998 		return -EOPNOTSUPP;
2999 
3000 	ec->rx_coalesce_usecs = fep->rx_time_itr;
3001 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
3002 
3003 	ec->tx_coalesce_usecs = fep->tx_time_itr;
3004 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
3005 
3006 	return 0;
3007 }
3008 
3009 static int fec_enet_set_coalesce(struct net_device *ndev,
3010 				 struct ethtool_coalesce *ec,
3011 				 struct kernel_ethtool_coalesce *kernel_coal,
3012 				 struct netlink_ext_ack *extack)
3013 {
3014 	struct fec_enet_private *fep = netdev_priv(ndev);
3015 	struct device *dev = &fep->pdev->dev;
3016 	unsigned int cycle;
3017 
3018 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
3019 		return -EOPNOTSUPP;
3020 
3021 	if (ec->rx_max_coalesced_frames > 255) {
3022 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
3023 		return -EINVAL;
3024 	}
3025 
3026 	if (ec->tx_max_coalesced_frames > 255) {
3027 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
3028 		return -EINVAL;
3029 	}
3030 
3031 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
3032 	if (cycle > 0xFFFF) {
3033 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
3034 		return -EINVAL;
3035 	}
3036 
3037 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
3038 	if (cycle > 0xFFFF) {
3039 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
3040 		return -EINVAL;
3041 	}
3042 
3043 	fep->rx_time_itr = ec->rx_coalesce_usecs;
3044 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
3045 
3046 	fep->tx_time_itr = ec->tx_coalesce_usecs;
3047 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
3048 
3049 	fec_enet_itr_coal_set(ndev);
3050 
3051 	return 0;
3052 }
3053 
3054 static int fec_enet_get_tunable(struct net_device *netdev,
3055 				const struct ethtool_tunable *tuna,
3056 				void *data)
3057 {
3058 	struct fec_enet_private *fep = netdev_priv(netdev);
3059 	int ret = 0;
3060 
3061 	switch (tuna->id) {
3062 	case ETHTOOL_RX_COPYBREAK:
3063 		*(u32 *)data = fep->rx_copybreak;
3064 		break;
3065 	default:
3066 		ret = -EINVAL;
3067 		break;
3068 	}
3069 
3070 	return ret;
3071 }
3072 
3073 static int fec_enet_set_tunable(struct net_device *netdev,
3074 				const struct ethtool_tunable *tuna,
3075 				const void *data)
3076 {
3077 	struct fec_enet_private *fep = netdev_priv(netdev);
3078 	int ret = 0;
3079 
3080 	switch (tuna->id) {
3081 	case ETHTOOL_RX_COPYBREAK:
3082 		fep->rx_copybreak = *(u32 *)data;
3083 		break;
3084 	default:
3085 		ret = -EINVAL;
3086 		break;
3087 	}
3088 
3089 	return ret;
3090 }
3091 
3092 /* LPI Sleep Ts count base on tx clk (clk_ref).
3093  * The lpi sleep cnt value = X us / (cycle_ns).
3094  */
3095 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
3096 {
3097 	struct fec_enet_private *fep = netdev_priv(ndev);
3098 
3099 	return us * (fep->clk_ref_rate / 1000) / 1000;
3100 }
3101 
3102 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
3103 {
3104 	struct fec_enet_private *fep = netdev_priv(ndev);
3105 	struct ethtool_eee *p = &fep->eee;
3106 	unsigned int sleep_cycle, wake_cycle;
3107 	int ret = 0;
3108 
3109 	if (enable) {
3110 		ret = phy_init_eee(ndev->phydev, false);
3111 		if (ret)
3112 			return ret;
3113 
3114 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
3115 		wake_cycle = sleep_cycle;
3116 	} else {
3117 		sleep_cycle = 0;
3118 		wake_cycle = 0;
3119 	}
3120 
3121 	p->tx_lpi_enabled = enable;
3122 	p->eee_enabled = enable;
3123 	p->eee_active = enable;
3124 
3125 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
3126 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
3127 
3128 	return 0;
3129 }
3130 
3131 static int
3132 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
3133 {
3134 	struct fec_enet_private *fep = netdev_priv(ndev);
3135 	struct ethtool_eee *p = &fep->eee;
3136 
3137 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3138 		return -EOPNOTSUPP;
3139 
3140 	if (!netif_running(ndev))
3141 		return -ENETDOWN;
3142 
3143 	edata->eee_enabled = p->eee_enabled;
3144 	edata->eee_active = p->eee_active;
3145 	edata->tx_lpi_timer = p->tx_lpi_timer;
3146 	edata->tx_lpi_enabled = p->tx_lpi_enabled;
3147 
3148 	return phy_ethtool_get_eee(ndev->phydev, edata);
3149 }
3150 
3151 static int
3152 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
3153 {
3154 	struct fec_enet_private *fep = netdev_priv(ndev);
3155 	struct ethtool_eee *p = &fep->eee;
3156 	int ret = 0;
3157 
3158 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
3159 		return -EOPNOTSUPP;
3160 
3161 	if (!netif_running(ndev))
3162 		return -ENETDOWN;
3163 
3164 	p->tx_lpi_timer = edata->tx_lpi_timer;
3165 
3166 	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
3167 	    !edata->tx_lpi_timer)
3168 		ret = fec_enet_eee_mode_set(ndev, false);
3169 	else
3170 		ret = fec_enet_eee_mode_set(ndev, true);
3171 
3172 	if (ret)
3173 		return ret;
3174 
3175 	return phy_ethtool_set_eee(ndev->phydev, edata);
3176 }
3177 
3178 static void
3179 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3180 {
3181 	struct fec_enet_private *fep = netdev_priv(ndev);
3182 
3183 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
3184 		wol->supported = WAKE_MAGIC;
3185 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
3186 	} else {
3187 		wol->supported = wol->wolopts = 0;
3188 	}
3189 }
3190 
3191 static int
3192 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
3193 {
3194 	struct fec_enet_private *fep = netdev_priv(ndev);
3195 
3196 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
3197 		return -EINVAL;
3198 
3199 	if (wol->wolopts & ~WAKE_MAGIC)
3200 		return -EINVAL;
3201 
3202 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
3203 	if (device_may_wakeup(&ndev->dev))
3204 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
3205 	else
3206 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
3207 
3208 	return 0;
3209 }
3210 
3211 static const struct ethtool_ops fec_enet_ethtool_ops = {
3212 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
3213 				     ETHTOOL_COALESCE_MAX_FRAMES,
3214 	.get_drvinfo		= fec_enet_get_drvinfo,
3215 	.get_regs_len		= fec_enet_get_regs_len,
3216 	.get_regs		= fec_enet_get_regs,
3217 	.nway_reset		= phy_ethtool_nway_reset,
3218 	.get_link		= ethtool_op_get_link,
3219 	.get_coalesce		= fec_enet_get_coalesce,
3220 	.set_coalesce		= fec_enet_set_coalesce,
3221 #ifndef CONFIG_M5272
3222 	.get_pauseparam		= fec_enet_get_pauseparam,
3223 	.set_pauseparam		= fec_enet_set_pauseparam,
3224 	.get_strings		= fec_enet_get_strings,
3225 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
3226 	.get_sset_count		= fec_enet_get_sset_count,
3227 #endif
3228 	.get_ts_info		= fec_enet_get_ts_info,
3229 	.get_tunable		= fec_enet_get_tunable,
3230 	.set_tunable		= fec_enet_set_tunable,
3231 	.get_wol		= fec_enet_get_wol,
3232 	.set_wol		= fec_enet_set_wol,
3233 	.get_eee		= fec_enet_get_eee,
3234 	.set_eee		= fec_enet_set_eee,
3235 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
3236 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
3237 	.self_test		= net_selftest,
3238 };
3239 
3240 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
3241 {
3242 	struct fec_enet_private *fep = netdev_priv(ndev);
3243 	struct phy_device *phydev = ndev->phydev;
3244 
3245 	if (!netif_running(ndev))
3246 		return -EINVAL;
3247 
3248 	if (!phydev)
3249 		return -ENODEV;
3250 
3251 	if (fep->bufdesc_ex) {
3252 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
3253 
3254 		if (cmd == SIOCSHWTSTAMP) {
3255 			if (use_fec_hwts)
3256 				return fec_ptp_set(ndev, rq);
3257 			fec_ptp_disable_hwts(ndev);
3258 		} else if (cmd == SIOCGHWTSTAMP) {
3259 			if (use_fec_hwts)
3260 				return fec_ptp_get(ndev, rq);
3261 		}
3262 	}
3263 
3264 	return phy_mii_ioctl(phydev, rq, cmd);
3265 }
3266 
3267 static void fec_enet_free_buffers(struct net_device *ndev)
3268 {
3269 	struct fec_enet_private *fep = netdev_priv(ndev);
3270 	unsigned int i;
3271 	struct sk_buff *skb;
3272 	struct fec_enet_priv_tx_q *txq;
3273 	struct fec_enet_priv_rx_q *rxq;
3274 	unsigned int q;
3275 
3276 	for (q = 0; q < fep->num_rx_queues; q++) {
3277 		rxq = fep->rx_queue[q];
3278 		for (i = 0; i < rxq->bd.ring_size; i++)
3279 			page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false);
3280 
3281 		for (i = 0; i < XDP_STATS_TOTAL; i++)
3282 			rxq->stats[i] = 0;
3283 
3284 		if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
3285 			xdp_rxq_info_unreg(&rxq->xdp_rxq);
3286 		page_pool_destroy(rxq->page_pool);
3287 		rxq->page_pool = NULL;
3288 	}
3289 
3290 	for (q = 0; q < fep->num_tx_queues; q++) {
3291 		txq = fep->tx_queue[q];
3292 		for (i = 0; i < txq->bd.ring_size; i++) {
3293 			kfree(txq->tx_bounce[i]);
3294 			txq->tx_bounce[i] = NULL;
3295 
3296 			if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) {
3297 				skb = txq->tx_buf[i].skb;
3298 				txq->tx_buf[i].skb = NULL;
3299 				dev_kfree_skb(skb);
3300 			} else {
3301 				if (txq->tx_buf[i].xdp) {
3302 					xdp_return_frame(txq->tx_buf[i].xdp);
3303 					txq->tx_buf[i].xdp = NULL;
3304 				}
3305 
3306 				txq->tx_buf[i].type = FEC_TXBUF_T_SKB;
3307 			}
3308 		}
3309 	}
3310 }
3311 
3312 static void fec_enet_free_queue(struct net_device *ndev)
3313 {
3314 	struct fec_enet_private *fep = netdev_priv(ndev);
3315 	int i;
3316 	struct fec_enet_priv_tx_q *txq;
3317 
3318 	for (i = 0; i < fep->num_tx_queues; i++)
3319 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3320 			txq = fep->tx_queue[i];
3321 			dma_free_coherent(&fep->pdev->dev,
3322 					  txq->bd.ring_size * TSO_HEADER_SIZE,
3323 					  txq->tso_hdrs,
3324 					  txq->tso_hdrs_dma);
3325 		}
3326 
3327 	for (i = 0; i < fep->num_rx_queues; i++)
3328 		kfree(fep->rx_queue[i]);
3329 	for (i = 0; i < fep->num_tx_queues; i++)
3330 		kfree(fep->tx_queue[i]);
3331 }
3332 
3333 static int fec_enet_alloc_queue(struct net_device *ndev)
3334 {
3335 	struct fec_enet_private *fep = netdev_priv(ndev);
3336 	int i;
3337 	int ret = 0;
3338 	struct fec_enet_priv_tx_q *txq;
3339 
3340 	for (i = 0; i < fep->num_tx_queues; i++) {
3341 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3342 		if (!txq) {
3343 			ret = -ENOMEM;
3344 			goto alloc_failed;
3345 		}
3346 
3347 		fep->tx_queue[i] = txq;
3348 		txq->bd.ring_size = TX_RING_SIZE;
3349 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3350 
3351 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3352 		txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS;
3353 
3354 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3355 					txq->bd.ring_size * TSO_HEADER_SIZE,
3356 					&txq->tso_hdrs_dma,
3357 					GFP_KERNEL);
3358 		if (!txq->tso_hdrs) {
3359 			ret = -ENOMEM;
3360 			goto alloc_failed;
3361 		}
3362 	}
3363 
3364 	for (i = 0; i < fep->num_rx_queues; i++) {
3365 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3366 					   GFP_KERNEL);
3367 		if (!fep->rx_queue[i]) {
3368 			ret = -ENOMEM;
3369 			goto alloc_failed;
3370 		}
3371 
3372 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3373 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3374 	}
3375 	return ret;
3376 
3377 alloc_failed:
3378 	fec_enet_free_queue(ndev);
3379 	return ret;
3380 }
3381 
3382 static int
3383 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3384 {
3385 	struct fec_enet_private *fep = netdev_priv(ndev);
3386 	struct fec_enet_priv_rx_q *rxq;
3387 	dma_addr_t phys_addr;
3388 	struct bufdesc	*bdp;
3389 	struct page *page;
3390 	int i, err;
3391 
3392 	rxq = fep->rx_queue[queue];
3393 	bdp = rxq->bd.base;
3394 
3395 	err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size);
3396 	if (err < 0) {
3397 		netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err);
3398 		return err;
3399 	}
3400 
3401 	for (i = 0; i < rxq->bd.ring_size; i++) {
3402 		page = page_pool_dev_alloc_pages(rxq->page_pool);
3403 		if (!page)
3404 			goto err_alloc;
3405 
3406 		phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM;
3407 		bdp->cbd_bufaddr = cpu_to_fec32(phys_addr);
3408 
3409 		rxq->rx_skb_info[i].page = page;
3410 		rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM;
3411 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3412 
3413 		if (fep->bufdesc_ex) {
3414 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3415 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3416 		}
3417 
3418 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3419 	}
3420 
3421 	/* Set the last buffer to wrap. */
3422 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3423 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3424 	return 0;
3425 
3426  err_alloc:
3427 	fec_enet_free_buffers(ndev);
3428 	return -ENOMEM;
3429 }
3430 
3431 static int
3432 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3433 {
3434 	struct fec_enet_private *fep = netdev_priv(ndev);
3435 	unsigned int i;
3436 	struct bufdesc  *bdp;
3437 	struct fec_enet_priv_tx_q *txq;
3438 
3439 	txq = fep->tx_queue[queue];
3440 	bdp = txq->bd.base;
3441 	for (i = 0; i < txq->bd.ring_size; i++) {
3442 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3443 		if (!txq->tx_bounce[i])
3444 			goto err_alloc;
3445 
3446 		bdp->cbd_sc = cpu_to_fec16(0);
3447 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3448 
3449 		if (fep->bufdesc_ex) {
3450 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3451 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3452 		}
3453 
3454 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3455 	}
3456 
3457 	/* Set the last buffer to wrap. */
3458 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3459 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3460 
3461 	return 0;
3462 
3463  err_alloc:
3464 	fec_enet_free_buffers(ndev);
3465 	return -ENOMEM;
3466 }
3467 
3468 static int fec_enet_alloc_buffers(struct net_device *ndev)
3469 {
3470 	struct fec_enet_private *fep = netdev_priv(ndev);
3471 	unsigned int i;
3472 
3473 	for (i = 0; i < fep->num_rx_queues; i++)
3474 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3475 			return -ENOMEM;
3476 
3477 	for (i = 0; i < fep->num_tx_queues; i++)
3478 		if (fec_enet_alloc_txq_buffers(ndev, i))
3479 			return -ENOMEM;
3480 	return 0;
3481 }
3482 
3483 static int
3484 fec_enet_open(struct net_device *ndev)
3485 {
3486 	struct fec_enet_private *fep = netdev_priv(ndev);
3487 	int ret;
3488 	bool reset_again;
3489 
3490 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3491 	if (ret < 0)
3492 		return ret;
3493 
3494 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3495 	ret = fec_enet_clk_enable(ndev, true);
3496 	if (ret)
3497 		goto clk_enable;
3498 
3499 	/* During the first fec_enet_open call the PHY isn't probed at this
3500 	 * point. Therefore the phy_reset_after_clk_enable() call within
3501 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3502 	 * sure the PHY is working correctly we check if we need to reset again
3503 	 * later when the PHY is probed
3504 	 */
3505 	if (ndev->phydev && ndev->phydev->drv)
3506 		reset_again = false;
3507 	else
3508 		reset_again = true;
3509 
3510 	/* I should reset the ring buffers here, but I don't yet know
3511 	 * a simple way to do that.
3512 	 */
3513 
3514 	ret = fec_enet_alloc_buffers(ndev);
3515 	if (ret)
3516 		goto err_enet_alloc;
3517 
3518 	/* Init MAC prior to mii bus probe */
3519 	fec_restart(ndev);
3520 
3521 	/* Call phy_reset_after_clk_enable() again if it failed during
3522 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3523 	 */
3524 	if (reset_again)
3525 		fec_enet_phy_reset_after_clk_enable(ndev);
3526 
3527 	/* Probe and connect to PHY when open the interface */
3528 	ret = fec_enet_mii_probe(ndev);
3529 	if (ret)
3530 		goto err_enet_mii_probe;
3531 
3532 	if (fep->quirks & FEC_QUIRK_ERR006687)
3533 		imx6q_cpuidle_fec_irqs_used();
3534 
3535 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3536 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3537 
3538 	napi_enable(&fep->napi);
3539 	phy_start(ndev->phydev);
3540 	netif_tx_start_all_queues(ndev);
3541 
3542 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3543 				 FEC_WOL_FLAG_ENABLE);
3544 
3545 	return 0;
3546 
3547 err_enet_mii_probe:
3548 	fec_enet_free_buffers(ndev);
3549 err_enet_alloc:
3550 	fec_enet_clk_enable(ndev, false);
3551 clk_enable:
3552 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3553 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3554 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3555 	return ret;
3556 }
3557 
3558 static int
3559 fec_enet_close(struct net_device *ndev)
3560 {
3561 	struct fec_enet_private *fep = netdev_priv(ndev);
3562 
3563 	phy_stop(ndev->phydev);
3564 
3565 	if (netif_device_present(ndev)) {
3566 		napi_disable(&fep->napi);
3567 		netif_tx_disable(ndev);
3568 		fec_stop(ndev);
3569 	}
3570 
3571 	phy_disconnect(ndev->phydev);
3572 
3573 	if (fep->quirks & FEC_QUIRK_ERR006687)
3574 		imx6q_cpuidle_fec_irqs_unused();
3575 
3576 	fec_enet_update_ethtool_stats(ndev);
3577 
3578 	fec_enet_clk_enable(ndev, false);
3579 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3580 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3581 
3582 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3583 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3584 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3585 
3586 	fec_enet_free_buffers(ndev);
3587 
3588 	return 0;
3589 }
3590 
3591 /* Set or clear the multicast filter for this adaptor.
3592  * Skeleton taken from sunlance driver.
3593  * The CPM Ethernet implementation allows Multicast as well as individual
3594  * MAC address filtering.  Some of the drivers check to make sure it is
3595  * a group multicast address, and discard those that are not.  I guess I
3596  * will do the same for now, but just remove the test if you want
3597  * individual filtering as well (do the upper net layers want or support
3598  * this kind of feature?).
3599  */
3600 
3601 #define FEC_HASH_BITS	6		/* #bits in hash */
3602 
3603 static void set_multicast_list(struct net_device *ndev)
3604 {
3605 	struct fec_enet_private *fep = netdev_priv(ndev);
3606 	struct netdev_hw_addr *ha;
3607 	unsigned int crc, tmp;
3608 	unsigned char hash;
3609 	unsigned int hash_high = 0, hash_low = 0;
3610 
3611 	if (ndev->flags & IFF_PROMISC) {
3612 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3613 		tmp |= 0x8;
3614 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3615 		return;
3616 	}
3617 
3618 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3619 	tmp &= ~0x8;
3620 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3621 
3622 	if (ndev->flags & IFF_ALLMULTI) {
3623 		/* Catch all multicast addresses, so set the
3624 		 * filter to all 1's
3625 		 */
3626 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3627 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3628 
3629 		return;
3630 	}
3631 
3632 	/* Add the addresses in hash register */
3633 	netdev_for_each_mc_addr(ha, ndev) {
3634 		/* calculate crc32 value of mac address */
3635 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3636 
3637 		/* only upper 6 bits (FEC_HASH_BITS) are used
3638 		 * which point to specific bit in the hash registers
3639 		 */
3640 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3641 
3642 		if (hash > 31)
3643 			hash_high |= 1 << (hash - 32);
3644 		else
3645 			hash_low |= 1 << hash;
3646 	}
3647 
3648 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3649 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3650 }
3651 
3652 /* Set a MAC change in hardware. */
3653 static int
3654 fec_set_mac_address(struct net_device *ndev, void *p)
3655 {
3656 	struct fec_enet_private *fep = netdev_priv(ndev);
3657 	struct sockaddr *addr = p;
3658 
3659 	if (addr) {
3660 		if (!is_valid_ether_addr(addr->sa_data))
3661 			return -EADDRNOTAVAIL;
3662 		eth_hw_addr_set(ndev, addr->sa_data);
3663 	}
3664 
3665 	/* Add netif status check here to avoid system hang in below case:
3666 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3667 	 * After ethx down, fec all clocks are gated off and then register
3668 	 * access causes system hang.
3669 	 */
3670 	if (!netif_running(ndev))
3671 		return 0;
3672 
3673 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3674 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3675 		fep->hwp + FEC_ADDR_LOW);
3676 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3677 		fep->hwp + FEC_ADDR_HIGH);
3678 	return 0;
3679 }
3680 
3681 #ifdef CONFIG_NET_POLL_CONTROLLER
3682 /**
3683  * fec_poll_controller - FEC Poll controller function
3684  * @dev: The FEC network adapter
3685  *
3686  * Polled functionality used by netconsole and others in non interrupt mode
3687  *
3688  */
3689 static void fec_poll_controller(struct net_device *dev)
3690 {
3691 	int i;
3692 	struct fec_enet_private *fep = netdev_priv(dev);
3693 
3694 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3695 		if (fep->irq[i] > 0) {
3696 			disable_irq(fep->irq[i]);
3697 			fec_enet_interrupt(fep->irq[i], dev);
3698 			enable_irq(fep->irq[i]);
3699 		}
3700 	}
3701 }
3702 #endif
3703 
3704 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3705 	netdev_features_t features)
3706 {
3707 	struct fec_enet_private *fep = netdev_priv(netdev);
3708 	netdev_features_t changed = features ^ netdev->features;
3709 
3710 	netdev->features = features;
3711 
3712 	/* Receive checksum has been changed */
3713 	if (changed & NETIF_F_RXCSUM) {
3714 		if (features & NETIF_F_RXCSUM)
3715 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3716 		else
3717 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3718 	}
3719 }
3720 
3721 static int fec_set_features(struct net_device *netdev,
3722 	netdev_features_t features)
3723 {
3724 	struct fec_enet_private *fep = netdev_priv(netdev);
3725 	netdev_features_t changed = features ^ netdev->features;
3726 
3727 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3728 		napi_disable(&fep->napi);
3729 		netif_tx_lock_bh(netdev);
3730 		fec_stop(netdev);
3731 		fec_enet_set_netdev_features(netdev, features);
3732 		fec_restart(netdev);
3733 		netif_tx_wake_all_queues(netdev);
3734 		netif_tx_unlock_bh(netdev);
3735 		napi_enable(&fep->napi);
3736 	} else {
3737 		fec_enet_set_netdev_features(netdev, features);
3738 	}
3739 
3740 	return 0;
3741 }
3742 
3743 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb)
3744 {
3745 	struct vlan_ethhdr *vhdr;
3746 	unsigned short vlan_TCI = 0;
3747 
3748 	if (skb->protocol == htons(ETH_P_ALL)) {
3749 		vhdr = (struct vlan_ethhdr *)(skb->data);
3750 		vlan_TCI = ntohs(vhdr->h_vlan_TCI);
3751 	}
3752 
3753 	return vlan_TCI;
3754 }
3755 
3756 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3757 				 struct net_device *sb_dev)
3758 {
3759 	struct fec_enet_private *fep = netdev_priv(ndev);
3760 	u16 vlan_tag;
3761 
3762 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3763 		return netdev_pick_tx(ndev, skb, NULL);
3764 
3765 	vlan_tag = fec_enet_get_raw_vlan_tci(skb);
3766 	if (!vlan_tag)
3767 		return vlan_tag;
3768 
3769 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3770 }
3771 
3772 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf)
3773 {
3774 	struct fec_enet_private *fep = netdev_priv(dev);
3775 	bool is_run = netif_running(dev);
3776 	struct bpf_prog *old_prog;
3777 
3778 	switch (bpf->command) {
3779 	case XDP_SETUP_PROG:
3780 		/* No need to support the SoCs that require to
3781 		 * do the frame swap because the performance wouldn't be
3782 		 * better than the skb mode.
3783 		 */
3784 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
3785 			return -EOPNOTSUPP;
3786 
3787 		if (!bpf->prog)
3788 			xdp_features_clear_redirect_target(dev);
3789 
3790 		if (is_run) {
3791 			napi_disable(&fep->napi);
3792 			netif_tx_disable(dev);
3793 		}
3794 
3795 		old_prog = xchg(&fep->xdp_prog, bpf->prog);
3796 		if (old_prog)
3797 			bpf_prog_put(old_prog);
3798 
3799 		fec_restart(dev);
3800 
3801 		if (is_run) {
3802 			napi_enable(&fep->napi);
3803 			netif_tx_start_all_queues(dev);
3804 		}
3805 
3806 		if (bpf->prog)
3807 			xdp_features_set_redirect_target(dev, false);
3808 
3809 		return 0;
3810 
3811 	case XDP_SETUP_XSK_POOL:
3812 		return -EOPNOTSUPP;
3813 
3814 	default:
3815 		return -EOPNOTSUPP;
3816 	}
3817 }
3818 
3819 static int
3820 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index)
3821 {
3822 	if (unlikely(index < 0))
3823 		return 0;
3824 
3825 	return (index % fep->num_tx_queues);
3826 }
3827 
3828 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep,
3829 				   struct fec_enet_priv_tx_q *txq,
3830 				   struct xdp_frame *frame)
3831 {
3832 	unsigned int index, status, estatus;
3833 	struct bufdesc *bdp;
3834 	dma_addr_t dma_addr;
3835 	int entries_free;
3836 
3837 	entries_free = fec_enet_get_free_txdesc_num(txq);
3838 	if (entries_free < MAX_SKB_FRAGS + 1) {
3839 		netdev_err_once(fep->netdev, "NOT enough BD for SG!\n");
3840 		return -EBUSY;
3841 	}
3842 
3843 	/* Fill in a Tx ring entry */
3844 	bdp = txq->bd.cur;
3845 	status = fec16_to_cpu(bdp->cbd_sc);
3846 	status &= ~BD_ENET_TX_STATS;
3847 
3848 	index = fec_enet_get_bd_index(bdp, &txq->bd);
3849 
3850 	dma_addr = dma_map_single(&fep->pdev->dev, frame->data,
3851 				  frame->len, DMA_TO_DEVICE);
3852 	if (dma_mapping_error(&fep->pdev->dev, dma_addr))
3853 		return -ENOMEM;
3854 
3855 	status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
3856 	if (fep->bufdesc_ex)
3857 		estatus = BD_ENET_TX_INT;
3858 
3859 	bdp->cbd_bufaddr = cpu_to_fec32(dma_addr);
3860 	bdp->cbd_datlen = cpu_to_fec16(frame->len);
3861 
3862 	if (fep->bufdesc_ex) {
3863 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3864 
3865 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
3866 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
3867 
3868 		ebdp->cbd_bdu = 0;
3869 		ebdp->cbd_esc = cpu_to_fec32(estatus);
3870 	}
3871 
3872 	txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO;
3873 	txq->tx_buf[index].xdp = frame;
3874 
3875 	/* Make sure the updates to rest of the descriptor are performed before
3876 	 * transferring ownership.
3877 	 */
3878 	dma_wmb();
3879 
3880 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
3881 	 * it's the last BD of the frame, and to put the CRC on the end.
3882 	 */
3883 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
3884 	bdp->cbd_sc = cpu_to_fec16(status);
3885 
3886 	/* If this was the last BD in the ring, start at the beginning again. */
3887 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3888 
3889 	/* Make sure the update to bdp are performed before txq->bd.cur. */
3890 	dma_wmb();
3891 
3892 	txq->bd.cur = bdp;
3893 
3894 	/* Trigger transmission start */
3895 	writel(0, txq->bd.reg_desc_active);
3896 
3897 	return 0;
3898 }
3899 
3900 static int fec_enet_xdp_xmit(struct net_device *dev,
3901 			     int num_frames,
3902 			     struct xdp_frame **frames,
3903 			     u32 flags)
3904 {
3905 	struct fec_enet_private *fep = netdev_priv(dev);
3906 	struct fec_enet_priv_tx_q *txq;
3907 	int cpu = smp_processor_id();
3908 	unsigned int sent_frames = 0;
3909 	struct netdev_queue *nq;
3910 	unsigned int queue;
3911 	int i;
3912 
3913 	queue = fec_enet_xdp_get_tx_queue(fep, cpu);
3914 	txq = fep->tx_queue[queue];
3915 	nq = netdev_get_tx_queue(fep->netdev, queue);
3916 
3917 	__netif_tx_lock(nq, cpu);
3918 
3919 	for (i = 0; i < num_frames; i++) {
3920 		if (fec_enet_txq_xmit_frame(fep, txq, frames[i]) < 0)
3921 			break;
3922 		sent_frames++;
3923 	}
3924 
3925 	__netif_tx_unlock(nq);
3926 
3927 	return sent_frames;
3928 }
3929 
3930 static const struct net_device_ops fec_netdev_ops = {
3931 	.ndo_open		= fec_enet_open,
3932 	.ndo_stop		= fec_enet_close,
3933 	.ndo_start_xmit		= fec_enet_start_xmit,
3934 	.ndo_select_queue       = fec_enet_select_queue,
3935 	.ndo_set_rx_mode	= set_multicast_list,
3936 	.ndo_validate_addr	= eth_validate_addr,
3937 	.ndo_tx_timeout		= fec_timeout,
3938 	.ndo_set_mac_address	= fec_set_mac_address,
3939 	.ndo_eth_ioctl		= fec_enet_ioctl,
3940 #ifdef CONFIG_NET_POLL_CONTROLLER
3941 	.ndo_poll_controller	= fec_poll_controller,
3942 #endif
3943 	.ndo_set_features	= fec_set_features,
3944 	.ndo_bpf		= fec_enet_bpf,
3945 	.ndo_xdp_xmit		= fec_enet_xdp_xmit,
3946 };
3947 
3948 static const unsigned short offset_des_active_rxq[] = {
3949 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3950 };
3951 
3952 static const unsigned short offset_des_active_txq[] = {
3953 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3954 };
3955 
3956  /*
3957   * XXX:  We need to clean up on failure exits here.
3958   *
3959   */
3960 static int fec_enet_init(struct net_device *ndev)
3961 {
3962 	struct fec_enet_private *fep = netdev_priv(ndev);
3963 	struct bufdesc *cbd_base;
3964 	dma_addr_t bd_dma;
3965 	int bd_size;
3966 	unsigned int i;
3967 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3968 			sizeof(struct bufdesc);
3969 	unsigned dsize_log2 = __fls(dsize);
3970 	int ret;
3971 
3972 	WARN_ON(dsize != (1 << dsize_log2));
3973 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3974 	fep->rx_align = 0xf;
3975 	fep->tx_align = 0xf;
3976 #else
3977 	fep->rx_align = 0x3;
3978 	fep->tx_align = 0x3;
3979 #endif
3980 	fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
3981 	fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT;
3982 	fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT;
3983 	fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT;
3984 
3985 	/* Check mask of the streaming and coherent API */
3986 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3987 	if (ret < 0) {
3988 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3989 		return ret;
3990 	}
3991 
3992 	ret = fec_enet_alloc_queue(ndev);
3993 	if (ret)
3994 		return ret;
3995 
3996 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3997 
3998 	/* Allocate memory for buffer descriptors. */
3999 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
4000 				       GFP_KERNEL);
4001 	if (!cbd_base) {
4002 		ret = -ENOMEM;
4003 		goto free_queue_mem;
4004 	}
4005 
4006 	/* Get the Ethernet address */
4007 	ret = fec_get_mac(ndev);
4008 	if (ret)
4009 		goto free_queue_mem;
4010 
4011 	/* make sure MAC we just acquired is programmed into the hw */
4012 	fec_set_mac_address(ndev, NULL);
4013 
4014 	/* Set receive and transmit descriptor base. */
4015 	for (i = 0; i < fep->num_rx_queues; i++) {
4016 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
4017 		unsigned size = dsize * rxq->bd.ring_size;
4018 
4019 		rxq->bd.qid = i;
4020 		rxq->bd.base = cbd_base;
4021 		rxq->bd.cur = cbd_base;
4022 		rxq->bd.dma = bd_dma;
4023 		rxq->bd.dsize = dsize;
4024 		rxq->bd.dsize_log2 = dsize_log2;
4025 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
4026 		bd_dma += size;
4027 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4028 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4029 	}
4030 
4031 	for (i = 0; i < fep->num_tx_queues; i++) {
4032 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
4033 		unsigned size = dsize * txq->bd.ring_size;
4034 
4035 		txq->bd.qid = i;
4036 		txq->bd.base = cbd_base;
4037 		txq->bd.cur = cbd_base;
4038 		txq->bd.dma = bd_dma;
4039 		txq->bd.dsize = dsize;
4040 		txq->bd.dsize_log2 = dsize_log2;
4041 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
4042 		bd_dma += size;
4043 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
4044 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
4045 	}
4046 
4047 
4048 	/* The FEC Ethernet specific entries in the device structure */
4049 	ndev->watchdog_timeo = TX_TIMEOUT;
4050 	ndev->netdev_ops = &fec_netdev_ops;
4051 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
4052 
4053 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
4054 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi);
4055 
4056 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
4057 		/* enable hw VLAN support */
4058 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
4059 
4060 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
4061 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
4062 
4063 		/* enable hw accelerator */
4064 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
4065 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
4066 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
4067 	}
4068 
4069 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
4070 		fep->tx_align = 0;
4071 		fep->rx_align = 0x3f;
4072 	}
4073 
4074 	ndev->hw_features = ndev->features;
4075 
4076 	if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME))
4077 		ndev->xdp_features = NETDEV_XDP_ACT_BASIC |
4078 				     NETDEV_XDP_ACT_REDIRECT;
4079 
4080 	fec_restart(ndev);
4081 
4082 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
4083 		fec_enet_clear_ethtool_stats(ndev);
4084 	else
4085 		fec_enet_update_ethtool_stats(ndev);
4086 
4087 	return 0;
4088 
4089 free_queue_mem:
4090 	fec_enet_free_queue(ndev);
4091 	return ret;
4092 }
4093 
4094 #ifdef CONFIG_OF
4095 static int fec_reset_phy(struct platform_device *pdev)
4096 {
4097 	struct gpio_desc *phy_reset;
4098 	int msec = 1, phy_post_delay = 0;
4099 	struct device_node *np = pdev->dev.of_node;
4100 	int err;
4101 
4102 	if (!np)
4103 		return 0;
4104 
4105 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
4106 	/* A sane reset duration should not be longer than 1s */
4107 	if (!err && msec > 1000)
4108 		msec = 1;
4109 
4110 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
4111 	/* valid reset duration should be less than 1s */
4112 	if (!err && phy_post_delay > 1000)
4113 		return -EINVAL;
4114 
4115 	phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset",
4116 					    GPIOD_OUT_HIGH);
4117 	if (IS_ERR(phy_reset))
4118 		return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset),
4119 				     "failed to get phy-reset-gpios\n");
4120 
4121 	if (!phy_reset)
4122 		return 0;
4123 
4124 	if (msec > 20)
4125 		msleep(msec);
4126 	else
4127 		usleep_range(msec * 1000, msec * 1000 + 1000);
4128 
4129 	gpiod_set_value_cansleep(phy_reset, 0);
4130 
4131 	if (!phy_post_delay)
4132 		return 0;
4133 
4134 	if (phy_post_delay > 20)
4135 		msleep(phy_post_delay);
4136 	else
4137 		usleep_range(phy_post_delay * 1000,
4138 			     phy_post_delay * 1000 + 1000);
4139 
4140 	return 0;
4141 }
4142 #else /* CONFIG_OF */
4143 static int fec_reset_phy(struct platform_device *pdev)
4144 {
4145 	/*
4146 	 * In case of platform probe, the reset has been done
4147 	 * by machine code.
4148 	 */
4149 	return 0;
4150 }
4151 #endif /* CONFIG_OF */
4152 
4153 static void
4154 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
4155 {
4156 	struct device_node *np = pdev->dev.of_node;
4157 
4158 	*num_tx = *num_rx = 1;
4159 
4160 	if (!np || !of_device_is_available(np))
4161 		return;
4162 
4163 	/* parse the num of tx and rx queues */
4164 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
4165 
4166 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
4167 
4168 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
4169 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
4170 			 *num_tx);
4171 		*num_tx = 1;
4172 		return;
4173 	}
4174 
4175 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
4176 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
4177 			 *num_rx);
4178 		*num_rx = 1;
4179 		return;
4180 	}
4181 
4182 }
4183 
4184 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
4185 {
4186 	int irq_cnt = platform_irq_count(pdev);
4187 
4188 	if (irq_cnt > FEC_IRQ_NUM)
4189 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
4190 	else if (irq_cnt == 2)
4191 		irq_cnt = 1;	/* last for pps */
4192 	else if (irq_cnt <= 0)
4193 		irq_cnt = 1;	/* At least 1 irq is needed */
4194 	return irq_cnt;
4195 }
4196 
4197 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
4198 {
4199 	struct net_device *ndev = platform_get_drvdata(pdev);
4200 	struct fec_enet_private *fep = netdev_priv(ndev);
4201 
4202 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
4203 		fep->wake_irq = fep->irq[2];
4204 	else
4205 		fep->wake_irq = fep->irq[0];
4206 }
4207 
4208 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
4209 				   struct device_node *np)
4210 {
4211 	struct device_node *gpr_np;
4212 	u32 out_val[3];
4213 	int ret = 0;
4214 
4215 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
4216 	if (!gpr_np)
4217 		return 0;
4218 
4219 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
4220 					 ARRAY_SIZE(out_val));
4221 	if (ret) {
4222 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
4223 		goto out;
4224 	}
4225 
4226 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
4227 	if (IS_ERR(fep->stop_gpr.gpr)) {
4228 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
4229 		ret = PTR_ERR(fep->stop_gpr.gpr);
4230 		fep->stop_gpr.gpr = NULL;
4231 		goto out;
4232 	}
4233 
4234 	fep->stop_gpr.reg = out_val[1];
4235 	fep->stop_gpr.bit = out_val[2];
4236 
4237 out:
4238 	of_node_put(gpr_np);
4239 
4240 	return ret;
4241 }
4242 
4243 static int
4244 fec_probe(struct platform_device *pdev)
4245 {
4246 	struct fec_enet_private *fep;
4247 	struct fec_platform_data *pdata;
4248 	phy_interface_t interface;
4249 	struct net_device *ndev;
4250 	int i, irq, ret = 0;
4251 	const struct of_device_id *of_id;
4252 	static int dev_id;
4253 	struct device_node *np = pdev->dev.of_node, *phy_node;
4254 	int num_tx_qs;
4255 	int num_rx_qs;
4256 	char irq_name[8];
4257 	int irq_cnt;
4258 	struct fec_devinfo *dev_info;
4259 
4260 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
4261 
4262 	/* Init network device */
4263 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
4264 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
4265 	if (!ndev)
4266 		return -ENOMEM;
4267 
4268 	SET_NETDEV_DEV(ndev, &pdev->dev);
4269 
4270 	/* setup board info structure */
4271 	fep = netdev_priv(ndev);
4272 
4273 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
4274 	if (of_id)
4275 		pdev->id_entry = of_id->data;
4276 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
4277 	if (dev_info)
4278 		fep->quirks = dev_info->quirks;
4279 
4280 	fep->netdev = ndev;
4281 	fep->num_rx_queues = num_rx_qs;
4282 	fep->num_tx_queues = num_tx_qs;
4283 
4284 #if !defined(CONFIG_M5272)
4285 	/* default enable pause frame auto negotiation */
4286 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
4287 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
4288 #endif
4289 
4290 	/* Select default pin state */
4291 	pinctrl_pm_select_default_state(&pdev->dev);
4292 
4293 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
4294 	if (IS_ERR(fep->hwp)) {
4295 		ret = PTR_ERR(fep->hwp);
4296 		goto failed_ioremap;
4297 	}
4298 
4299 	fep->pdev = pdev;
4300 	fep->dev_id = dev_id++;
4301 
4302 	platform_set_drvdata(pdev, ndev);
4303 
4304 	if ((of_machine_is_compatible("fsl,imx6q") ||
4305 	     of_machine_is_compatible("fsl,imx6dl")) &&
4306 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
4307 		fep->quirks |= FEC_QUIRK_ERR006687;
4308 
4309 	ret = fec_enet_ipc_handle_init(fep);
4310 	if (ret)
4311 		goto failed_ipc_init;
4312 
4313 	if (of_property_read_bool(np, "fsl,magic-packet"))
4314 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
4315 
4316 	ret = fec_enet_init_stop_mode(fep, np);
4317 	if (ret)
4318 		goto failed_stop_mode;
4319 
4320 	phy_node = of_parse_phandle(np, "phy-handle", 0);
4321 	if (!phy_node && of_phy_is_fixed_link(np)) {
4322 		ret = of_phy_register_fixed_link(np);
4323 		if (ret < 0) {
4324 			dev_err(&pdev->dev,
4325 				"broken fixed-link specification\n");
4326 			goto failed_phy;
4327 		}
4328 		phy_node = of_node_get(np);
4329 	}
4330 	fep->phy_node = phy_node;
4331 
4332 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
4333 	if (ret) {
4334 		pdata = dev_get_platdata(&pdev->dev);
4335 		if (pdata)
4336 			fep->phy_interface = pdata->phy;
4337 		else
4338 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
4339 	} else {
4340 		fep->phy_interface = interface;
4341 	}
4342 
4343 	ret = fec_enet_parse_rgmii_delay(fep, np);
4344 	if (ret)
4345 		goto failed_rgmii_delay;
4346 
4347 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
4348 	if (IS_ERR(fep->clk_ipg)) {
4349 		ret = PTR_ERR(fep->clk_ipg);
4350 		goto failed_clk;
4351 	}
4352 
4353 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
4354 	if (IS_ERR(fep->clk_ahb)) {
4355 		ret = PTR_ERR(fep->clk_ahb);
4356 		goto failed_clk;
4357 	}
4358 
4359 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
4360 
4361 	/* enet_out is optional, depends on board */
4362 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
4363 	if (IS_ERR(fep->clk_enet_out)) {
4364 		ret = PTR_ERR(fep->clk_enet_out);
4365 		goto failed_clk;
4366 	}
4367 
4368 	fep->ptp_clk_on = false;
4369 	mutex_init(&fep->ptp_clk_mutex);
4370 
4371 	/* clk_ref is optional, depends on board */
4372 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
4373 	if (IS_ERR(fep->clk_ref)) {
4374 		ret = PTR_ERR(fep->clk_ref);
4375 		goto failed_clk;
4376 	}
4377 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
4378 
4379 	/* clk_2x_txclk is optional, depends on board */
4380 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
4381 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
4382 		if (IS_ERR(fep->clk_2x_txclk))
4383 			fep->clk_2x_txclk = NULL;
4384 	}
4385 
4386 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
4387 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
4388 	if (IS_ERR(fep->clk_ptp)) {
4389 		fep->clk_ptp = NULL;
4390 		fep->bufdesc_ex = false;
4391 	}
4392 
4393 	ret = fec_enet_clk_enable(ndev, true);
4394 	if (ret)
4395 		goto failed_clk;
4396 
4397 	ret = clk_prepare_enable(fep->clk_ipg);
4398 	if (ret)
4399 		goto failed_clk_ipg;
4400 	ret = clk_prepare_enable(fep->clk_ahb);
4401 	if (ret)
4402 		goto failed_clk_ahb;
4403 
4404 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
4405 	if (!IS_ERR(fep->reg_phy)) {
4406 		ret = regulator_enable(fep->reg_phy);
4407 		if (ret) {
4408 			dev_err(&pdev->dev,
4409 				"Failed to enable phy regulator: %d\n", ret);
4410 			goto failed_regulator;
4411 		}
4412 	} else {
4413 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
4414 			ret = -EPROBE_DEFER;
4415 			goto failed_regulator;
4416 		}
4417 		fep->reg_phy = NULL;
4418 	}
4419 
4420 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
4421 	pm_runtime_use_autosuspend(&pdev->dev);
4422 	pm_runtime_get_noresume(&pdev->dev);
4423 	pm_runtime_set_active(&pdev->dev);
4424 	pm_runtime_enable(&pdev->dev);
4425 
4426 	ret = fec_reset_phy(pdev);
4427 	if (ret)
4428 		goto failed_reset;
4429 
4430 	irq_cnt = fec_enet_get_irq_cnt(pdev);
4431 	if (fep->bufdesc_ex)
4432 		fec_ptp_init(pdev, irq_cnt);
4433 
4434 	ret = fec_enet_init(ndev);
4435 	if (ret)
4436 		goto failed_init;
4437 
4438 	for (i = 0; i < irq_cnt; i++) {
4439 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
4440 		irq = platform_get_irq_byname_optional(pdev, irq_name);
4441 		if (irq < 0)
4442 			irq = platform_get_irq(pdev, i);
4443 		if (irq < 0) {
4444 			ret = irq;
4445 			goto failed_irq;
4446 		}
4447 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
4448 				       0, pdev->name, ndev);
4449 		if (ret)
4450 			goto failed_irq;
4451 
4452 		fep->irq[i] = irq;
4453 	}
4454 
4455 	/* Decide which interrupt line is wakeup capable */
4456 	fec_enet_get_wakeup_irq(pdev);
4457 
4458 	ret = fec_enet_mii_init(pdev);
4459 	if (ret)
4460 		goto failed_mii_init;
4461 
4462 	/* Carrier starts down, phylib will bring it up */
4463 	netif_carrier_off(ndev);
4464 	fec_enet_clk_enable(ndev, false);
4465 	pinctrl_pm_select_sleep_state(&pdev->dev);
4466 
4467 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
4468 
4469 	ret = register_netdev(ndev);
4470 	if (ret)
4471 		goto failed_register;
4472 
4473 	device_init_wakeup(&ndev->dev, fep->wol_flag &
4474 			   FEC_WOL_HAS_MAGIC_PACKET);
4475 
4476 	if (fep->bufdesc_ex && fep->ptp_clock)
4477 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
4478 
4479 	fep->rx_copybreak = COPYBREAK_DEFAULT;
4480 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
4481 
4482 	pm_runtime_mark_last_busy(&pdev->dev);
4483 	pm_runtime_put_autosuspend(&pdev->dev);
4484 
4485 	return 0;
4486 
4487 failed_register:
4488 	fec_enet_mii_remove(fep);
4489 failed_mii_init:
4490 failed_irq:
4491 failed_init:
4492 	fec_ptp_stop(pdev);
4493 failed_reset:
4494 	pm_runtime_put_noidle(&pdev->dev);
4495 	pm_runtime_disable(&pdev->dev);
4496 	if (fep->reg_phy)
4497 		regulator_disable(fep->reg_phy);
4498 failed_regulator:
4499 	clk_disable_unprepare(fep->clk_ahb);
4500 failed_clk_ahb:
4501 	clk_disable_unprepare(fep->clk_ipg);
4502 failed_clk_ipg:
4503 	fec_enet_clk_enable(ndev, false);
4504 failed_clk:
4505 failed_rgmii_delay:
4506 	if (of_phy_is_fixed_link(np))
4507 		of_phy_deregister_fixed_link(np);
4508 	of_node_put(phy_node);
4509 failed_stop_mode:
4510 failed_ipc_init:
4511 failed_phy:
4512 	dev_id--;
4513 failed_ioremap:
4514 	free_netdev(ndev);
4515 
4516 	return ret;
4517 }
4518 
4519 static int
4520 fec_drv_remove(struct platform_device *pdev)
4521 {
4522 	struct net_device *ndev = platform_get_drvdata(pdev);
4523 	struct fec_enet_private *fep = netdev_priv(ndev);
4524 	struct device_node *np = pdev->dev.of_node;
4525 	int ret;
4526 
4527 	ret = pm_runtime_get_sync(&pdev->dev);
4528 	if (ret < 0)
4529 		dev_err(&pdev->dev,
4530 			"Failed to resume device in remove callback (%pe)\n",
4531 			ERR_PTR(ret));
4532 
4533 	cancel_work_sync(&fep->tx_timeout_work);
4534 	fec_ptp_stop(pdev);
4535 	unregister_netdev(ndev);
4536 	fec_enet_mii_remove(fep);
4537 	if (fep->reg_phy)
4538 		regulator_disable(fep->reg_phy);
4539 
4540 	if (of_phy_is_fixed_link(np))
4541 		of_phy_deregister_fixed_link(np);
4542 	of_node_put(fep->phy_node);
4543 
4544 	/* After pm_runtime_get_sync() failed, the clks are still off, so skip
4545 	 * disabling them again.
4546 	 */
4547 	if (ret >= 0) {
4548 		clk_disable_unprepare(fep->clk_ahb);
4549 		clk_disable_unprepare(fep->clk_ipg);
4550 	}
4551 	pm_runtime_put_noidle(&pdev->dev);
4552 	pm_runtime_disable(&pdev->dev);
4553 
4554 	free_netdev(ndev);
4555 	return 0;
4556 }
4557 
4558 static int __maybe_unused fec_suspend(struct device *dev)
4559 {
4560 	struct net_device *ndev = dev_get_drvdata(dev);
4561 	struct fec_enet_private *fep = netdev_priv(ndev);
4562 	int ret;
4563 
4564 	rtnl_lock();
4565 	if (netif_running(ndev)) {
4566 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4567 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4568 		phy_stop(ndev->phydev);
4569 		napi_disable(&fep->napi);
4570 		netif_tx_lock_bh(ndev);
4571 		netif_device_detach(ndev);
4572 		netif_tx_unlock_bh(ndev);
4573 		fec_stop(ndev);
4574 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4575 			fec_irqs_disable(ndev);
4576 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4577 		} else {
4578 			fec_irqs_disable_except_wakeup(ndev);
4579 			if (fep->wake_irq > 0) {
4580 				disable_irq(fep->wake_irq);
4581 				enable_irq_wake(fep->wake_irq);
4582 			}
4583 			fec_enet_stop_mode(fep, true);
4584 		}
4585 		/* It's safe to disable clocks since interrupts are masked */
4586 		fec_enet_clk_enable(ndev, false);
4587 
4588 		fep->rpm_active = !pm_runtime_status_suspended(dev);
4589 		if (fep->rpm_active) {
4590 			ret = pm_runtime_force_suspend(dev);
4591 			if (ret < 0) {
4592 				rtnl_unlock();
4593 				return ret;
4594 			}
4595 		}
4596 	}
4597 	rtnl_unlock();
4598 
4599 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4600 		regulator_disable(fep->reg_phy);
4601 
4602 	/* SOC supply clock to phy, when clock is disabled, phy link down
4603 	 * SOC control phy regulator, when regulator is disabled, phy link down
4604 	 */
4605 	if (fep->clk_enet_out || fep->reg_phy)
4606 		fep->link = 0;
4607 
4608 	return 0;
4609 }
4610 
4611 static int __maybe_unused fec_resume(struct device *dev)
4612 {
4613 	struct net_device *ndev = dev_get_drvdata(dev);
4614 	struct fec_enet_private *fep = netdev_priv(ndev);
4615 	int ret;
4616 	int val;
4617 
4618 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4619 		ret = regulator_enable(fep->reg_phy);
4620 		if (ret)
4621 			return ret;
4622 	}
4623 
4624 	rtnl_lock();
4625 	if (netif_running(ndev)) {
4626 		if (fep->rpm_active)
4627 			pm_runtime_force_resume(dev);
4628 
4629 		ret = fec_enet_clk_enable(ndev, true);
4630 		if (ret) {
4631 			rtnl_unlock();
4632 			goto failed_clk;
4633 		}
4634 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4635 			fec_enet_stop_mode(fep, false);
4636 			if (fep->wake_irq) {
4637 				disable_irq_wake(fep->wake_irq);
4638 				enable_irq(fep->wake_irq);
4639 			}
4640 
4641 			val = readl(fep->hwp + FEC_ECNTRL);
4642 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4643 			writel(val, fep->hwp + FEC_ECNTRL);
4644 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4645 		} else {
4646 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4647 		}
4648 		fec_restart(ndev);
4649 		netif_tx_lock_bh(ndev);
4650 		netif_device_attach(ndev);
4651 		netif_tx_unlock_bh(ndev);
4652 		napi_enable(&fep->napi);
4653 		phy_init_hw(ndev->phydev);
4654 		phy_start(ndev->phydev);
4655 	}
4656 	rtnl_unlock();
4657 
4658 	return 0;
4659 
4660 failed_clk:
4661 	if (fep->reg_phy)
4662 		regulator_disable(fep->reg_phy);
4663 	return ret;
4664 }
4665 
4666 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4667 {
4668 	struct net_device *ndev = dev_get_drvdata(dev);
4669 	struct fec_enet_private *fep = netdev_priv(ndev);
4670 
4671 	clk_disable_unprepare(fep->clk_ahb);
4672 	clk_disable_unprepare(fep->clk_ipg);
4673 
4674 	return 0;
4675 }
4676 
4677 static int __maybe_unused fec_runtime_resume(struct device *dev)
4678 {
4679 	struct net_device *ndev = dev_get_drvdata(dev);
4680 	struct fec_enet_private *fep = netdev_priv(ndev);
4681 	int ret;
4682 
4683 	ret = clk_prepare_enable(fep->clk_ahb);
4684 	if (ret)
4685 		return ret;
4686 	ret = clk_prepare_enable(fep->clk_ipg);
4687 	if (ret)
4688 		goto failed_clk_ipg;
4689 
4690 	return 0;
4691 
4692 failed_clk_ipg:
4693 	clk_disable_unprepare(fep->clk_ahb);
4694 	return ret;
4695 }
4696 
4697 static const struct dev_pm_ops fec_pm_ops = {
4698 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4699 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4700 };
4701 
4702 static struct platform_driver fec_driver = {
4703 	.driver	= {
4704 		.name	= DRIVER_NAME,
4705 		.pm	= &fec_pm_ops,
4706 		.of_match_table = fec_dt_ids,
4707 		.suppress_bind_attrs = true,
4708 	},
4709 	.id_table = fec_devtype,
4710 	.probe	= fec_probe,
4711 	.remove	= fec_drv_remove,
4712 };
4713 
4714 module_platform_driver(fec_driver);
4715 
4716 MODULE_LICENSE("GPL");
4717