1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/tso.h> 42 #include <linux/tcp.h> 43 #include <linux/udp.h> 44 #include <linux/icmp.h> 45 #include <linux/spinlock.h> 46 #include <linux/workqueue.h> 47 #include <linux/bitops.h> 48 #include <linux/io.h> 49 #include <linux/irq.h> 50 #include <linux/clk.h> 51 #include <linux/crc32.h> 52 #include <linux/platform_device.h> 53 #include <linux/mdio.h> 54 #include <linux/phy.h> 55 #include <linux/fec.h> 56 #include <linux/of.h> 57 #include <linux/of_device.h> 58 #include <linux/of_gpio.h> 59 #include <linux/of_mdio.h> 60 #include <linux/of_net.h> 61 #include <linux/regulator/consumer.h> 62 #include <linux/if_vlan.h> 63 #include <linux/pinctrl/consumer.h> 64 #include <linux/prefetch.h> 65 #include <soc/imx/cpuidle.h> 66 67 #include <asm/cacheflush.h> 68 69 #include "fec.h" 70 71 static void set_multicast_list(struct net_device *ndev); 72 static void fec_enet_itr_coal_init(struct net_device *ndev); 73 74 #define DRIVER_NAME "fec" 75 76 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0)) 77 78 /* Pause frame feild and FIFO threshold */ 79 #define FEC_ENET_FCE (1 << 5) 80 #define FEC_ENET_RSEM_V 0x84 81 #define FEC_ENET_RSFL_V 16 82 #define FEC_ENET_RAEM_V 0x8 83 #define FEC_ENET_RAFL_V 0x8 84 #define FEC_ENET_OPD_V 0xFFF0 85 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 86 87 static struct platform_device_id fec_devtype[] = { 88 { 89 /* keep it for coldfire */ 90 .name = DRIVER_NAME, 91 .driver_data = 0, 92 }, { 93 .name = "imx25-fec", 94 .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 95 FEC_QUIRK_HAS_FRREG, 96 }, { 97 .name = "imx27-fec", 98 .driver_data = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 99 }, { 100 .name = "imx28-fec", 101 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 102 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 103 FEC_QUIRK_HAS_FRREG, 104 }, { 105 .name = "imx6q-fec", 106 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 107 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 108 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 109 FEC_QUIRK_HAS_RACC, 110 }, { 111 .name = "mvf600-fec", 112 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 113 }, { 114 .name = "imx6sx-fec", 115 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 116 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 117 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 118 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 119 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE, 120 }, { 121 .name = "imx6ul-fec", 122 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 123 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 124 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 125 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 126 FEC_QUIRK_HAS_COALESCE, 127 }, { 128 /* sentinel */ 129 } 130 }; 131 MODULE_DEVICE_TABLE(platform, fec_devtype); 132 133 enum imx_fec_type { 134 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 135 IMX27_FEC, /* runs on i.mx27/35/51 */ 136 IMX28_FEC, 137 IMX6Q_FEC, 138 MVF600_FEC, 139 IMX6SX_FEC, 140 IMX6UL_FEC, 141 }; 142 143 static const struct of_device_id fec_dt_ids[] = { 144 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 145 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 146 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 147 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 148 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 149 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 150 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 151 { /* sentinel */ } 152 }; 153 MODULE_DEVICE_TABLE(of, fec_dt_ids); 154 155 static unsigned char macaddr[ETH_ALEN]; 156 module_param_array(macaddr, byte, NULL, 0); 157 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 158 159 #if defined(CONFIG_M5272) 160 /* 161 * Some hardware gets it MAC address out of local flash memory. 162 * if this is non-zero then assume it is the address to get MAC from. 163 */ 164 #if defined(CONFIG_NETtel) 165 #define FEC_FLASHMAC 0xf0006006 166 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 167 #define FEC_FLASHMAC 0xf0006000 168 #elif defined(CONFIG_CANCam) 169 #define FEC_FLASHMAC 0xf0020000 170 #elif defined (CONFIG_M5272C3) 171 #define FEC_FLASHMAC (0xffe04000 + 4) 172 #elif defined(CONFIG_MOD5272) 173 #define FEC_FLASHMAC 0xffc0406b 174 #else 175 #define FEC_FLASHMAC 0 176 #endif 177 #endif /* CONFIG_M5272 */ 178 179 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 180 * 181 * 2048 byte skbufs are allocated. However, alignment requirements 182 * varies between FEC variants. Worst case is 64, so round down by 64. 183 */ 184 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 185 #define PKT_MINBUF_SIZE 64 186 187 /* FEC receive acceleration */ 188 #define FEC_RACC_IPDIS (1 << 1) 189 #define FEC_RACC_PRODIS (1 << 2) 190 #define FEC_RACC_SHIFT16 BIT(7) 191 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 192 193 /* MIB Control Register */ 194 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 195 196 /* 197 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 198 * size bits. Other FEC hardware does not, so we need to take that into 199 * account when setting it. 200 */ 201 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 202 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 203 defined(CONFIG_ARM64) 204 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 205 #else 206 #define OPT_FRAME_SIZE 0 207 #endif 208 209 /* FEC MII MMFR bits definition */ 210 #define FEC_MMFR_ST (1 << 30) 211 #define FEC_MMFR_ST_C45 (0) 212 #define FEC_MMFR_OP_READ (2 << 28) 213 #define FEC_MMFR_OP_READ_C45 (3 << 28) 214 #define FEC_MMFR_OP_WRITE (1 << 28) 215 #define FEC_MMFR_OP_ADDR_WRITE (0) 216 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 217 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 218 #define FEC_MMFR_TA (2 << 16) 219 #define FEC_MMFR_DATA(v) (v & 0xffff) 220 /* FEC ECR bits definition */ 221 #define FEC_ECR_MAGICEN (1 << 2) 222 #define FEC_ECR_SLEEP (1 << 3) 223 224 #define FEC_MII_TIMEOUT 30000 /* us */ 225 226 /* Transmitter timeout */ 227 #define TX_TIMEOUT (2 * HZ) 228 229 #define FEC_PAUSE_FLAG_AUTONEG 0x1 230 #define FEC_PAUSE_FLAG_ENABLE 0x2 231 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 232 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 233 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 234 235 #define COPYBREAK_DEFAULT 256 236 237 /* Max number of allowed TCP segments for software TSO */ 238 #define FEC_MAX_TSO_SEGS 100 239 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 240 241 #define IS_TSO_HEADER(txq, addr) \ 242 ((addr >= txq->tso_hdrs_dma) && \ 243 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 244 245 static int mii_cnt; 246 247 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 248 struct bufdesc_prop *bd) 249 { 250 return (bdp >= bd->last) ? bd->base 251 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 252 } 253 254 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 255 struct bufdesc_prop *bd) 256 { 257 return (bdp <= bd->base) ? bd->last 258 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 259 } 260 261 static int fec_enet_get_bd_index(struct bufdesc *bdp, 262 struct bufdesc_prop *bd) 263 { 264 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 265 } 266 267 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 268 { 269 int entries; 270 271 entries = (((const char *)txq->dirty_tx - 272 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 273 274 return entries >= 0 ? entries : entries + txq->bd.ring_size; 275 } 276 277 static void swap_buffer(void *bufaddr, int len) 278 { 279 int i; 280 unsigned int *buf = bufaddr; 281 282 for (i = 0; i < len; i += 4, buf++) 283 swab32s(buf); 284 } 285 286 static void swap_buffer2(void *dst_buf, void *src_buf, int len) 287 { 288 int i; 289 unsigned int *src = src_buf; 290 unsigned int *dst = dst_buf; 291 292 for (i = 0; i < len; i += 4, src++, dst++) 293 *dst = swab32p(src); 294 } 295 296 static void fec_dump(struct net_device *ndev) 297 { 298 struct fec_enet_private *fep = netdev_priv(ndev); 299 struct bufdesc *bdp; 300 struct fec_enet_priv_tx_q *txq; 301 int index = 0; 302 303 netdev_info(ndev, "TX ring dump\n"); 304 pr_info("Nr SC addr len SKB\n"); 305 306 txq = fep->tx_queue[0]; 307 bdp = txq->bd.base; 308 309 do { 310 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 311 index, 312 bdp == txq->bd.cur ? 'S' : ' ', 313 bdp == txq->dirty_tx ? 'H' : ' ', 314 fec16_to_cpu(bdp->cbd_sc), 315 fec32_to_cpu(bdp->cbd_bufaddr), 316 fec16_to_cpu(bdp->cbd_datlen), 317 txq->tx_skbuff[index]); 318 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 319 index++; 320 } while (bdp != txq->bd.base); 321 } 322 323 static inline bool is_ipv4_pkt(struct sk_buff *skb) 324 { 325 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 326 } 327 328 static int 329 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 330 { 331 /* Only run for packets requiring a checksum. */ 332 if (skb->ip_summed != CHECKSUM_PARTIAL) 333 return 0; 334 335 if (unlikely(skb_cow_head(skb, 0))) 336 return -1; 337 338 if (is_ipv4_pkt(skb)) 339 ip_hdr(skb)->check = 0; 340 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 341 342 return 0; 343 } 344 345 static struct bufdesc * 346 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 347 struct sk_buff *skb, 348 struct net_device *ndev) 349 { 350 struct fec_enet_private *fep = netdev_priv(ndev); 351 struct bufdesc *bdp = txq->bd.cur; 352 struct bufdesc_ex *ebdp; 353 int nr_frags = skb_shinfo(skb)->nr_frags; 354 int frag, frag_len; 355 unsigned short status; 356 unsigned int estatus = 0; 357 skb_frag_t *this_frag; 358 unsigned int index; 359 void *bufaddr; 360 dma_addr_t addr; 361 int i; 362 363 for (frag = 0; frag < nr_frags; frag++) { 364 this_frag = &skb_shinfo(skb)->frags[frag]; 365 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 366 ebdp = (struct bufdesc_ex *)bdp; 367 368 status = fec16_to_cpu(bdp->cbd_sc); 369 status &= ~BD_ENET_TX_STATS; 370 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 371 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 372 373 /* Handle the last BD specially */ 374 if (frag == nr_frags - 1) { 375 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 376 if (fep->bufdesc_ex) { 377 estatus |= BD_ENET_TX_INT; 378 if (unlikely(skb_shinfo(skb)->tx_flags & 379 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 380 estatus |= BD_ENET_TX_TS; 381 } 382 } 383 384 if (fep->bufdesc_ex) { 385 if (fep->quirks & FEC_QUIRK_HAS_AVB) 386 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 387 if (skb->ip_summed == CHECKSUM_PARTIAL) 388 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 389 ebdp->cbd_bdu = 0; 390 ebdp->cbd_esc = cpu_to_fec32(estatus); 391 } 392 393 bufaddr = skb_frag_address(this_frag); 394 395 index = fec_enet_get_bd_index(bdp, &txq->bd); 396 if (((unsigned long) bufaddr) & fep->tx_align || 397 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 398 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 399 bufaddr = txq->tx_bounce[index]; 400 401 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 402 swap_buffer(bufaddr, frag_len); 403 } 404 405 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 406 DMA_TO_DEVICE); 407 if (dma_mapping_error(&fep->pdev->dev, addr)) { 408 if (net_ratelimit()) 409 netdev_err(ndev, "Tx DMA memory map failed\n"); 410 goto dma_mapping_error; 411 } 412 413 bdp->cbd_bufaddr = cpu_to_fec32(addr); 414 bdp->cbd_datlen = cpu_to_fec16(frag_len); 415 /* Make sure the updates to rest of the descriptor are 416 * performed before transferring ownership. 417 */ 418 wmb(); 419 bdp->cbd_sc = cpu_to_fec16(status); 420 } 421 422 return bdp; 423 dma_mapping_error: 424 bdp = txq->bd.cur; 425 for (i = 0; i < frag; i++) { 426 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 427 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 428 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 429 } 430 return ERR_PTR(-ENOMEM); 431 } 432 433 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 434 struct sk_buff *skb, struct net_device *ndev) 435 { 436 struct fec_enet_private *fep = netdev_priv(ndev); 437 int nr_frags = skb_shinfo(skb)->nr_frags; 438 struct bufdesc *bdp, *last_bdp; 439 void *bufaddr; 440 dma_addr_t addr; 441 unsigned short status; 442 unsigned short buflen; 443 unsigned int estatus = 0; 444 unsigned int index; 445 int entries_free; 446 447 entries_free = fec_enet_get_free_txdesc_num(txq); 448 if (entries_free < MAX_SKB_FRAGS + 1) { 449 dev_kfree_skb_any(skb); 450 if (net_ratelimit()) 451 netdev_err(ndev, "NOT enough BD for SG!\n"); 452 return NETDEV_TX_OK; 453 } 454 455 /* Protocol checksum off-load for TCP and UDP. */ 456 if (fec_enet_clear_csum(skb, ndev)) { 457 dev_kfree_skb_any(skb); 458 return NETDEV_TX_OK; 459 } 460 461 /* Fill in a Tx ring entry */ 462 bdp = txq->bd.cur; 463 last_bdp = bdp; 464 status = fec16_to_cpu(bdp->cbd_sc); 465 status &= ~BD_ENET_TX_STATS; 466 467 /* Set buffer length and buffer pointer */ 468 bufaddr = skb->data; 469 buflen = skb_headlen(skb); 470 471 index = fec_enet_get_bd_index(bdp, &txq->bd); 472 if (((unsigned long) bufaddr) & fep->tx_align || 473 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 474 memcpy(txq->tx_bounce[index], skb->data, buflen); 475 bufaddr = txq->tx_bounce[index]; 476 477 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 478 swap_buffer(bufaddr, buflen); 479 } 480 481 /* Push the data cache so the CPM does not get stale memory data. */ 482 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 483 if (dma_mapping_error(&fep->pdev->dev, addr)) { 484 dev_kfree_skb_any(skb); 485 if (net_ratelimit()) 486 netdev_err(ndev, "Tx DMA memory map failed\n"); 487 return NETDEV_TX_OK; 488 } 489 490 if (nr_frags) { 491 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 492 if (IS_ERR(last_bdp)) { 493 dma_unmap_single(&fep->pdev->dev, addr, 494 buflen, DMA_TO_DEVICE); 495 dev_kfree_skb_any(skb); 496 return NETDEV_TX_OK; 497 } 498 } else { 499 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 500 if (fep->bufdesc_ex) { 501 estatus = BD_ENET_TX_INT; 502 if (unlikely(skb_shinfo(skb)->tx_flags & 503 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 504 estatus |= BD_ENET_TX_TS; 505 } 506 } 507 bdp->cbd_bufaddr = cpu_to_fec32(addr); 508 bdp->cbd_datlen = cpu_to_fec16(buflen); 509 510 if (fep->bufdesc_ex) { 511 512 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 513 514 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 515 fep->hwts_tx_en)) 516 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 517 518 if (fep->quirks & FEC_QUIRK_HAS_AVB) 519 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 520 521 if (skb->ip_summed == CHECKSUM_PARTIAL) 522 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 523 524 ebdp->cbd_bdu = 0; 525 ebdp->cbd_esc = cpu_to_fec32(estatus); 526 } 527 528 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 529 /* Save skb pointer */ 530 txq->tx_skbuff[index] = skb; 531 532 /* Make sure the updates to rest of the descriptor are performed before 533 * transferring ownership. 534 */ 535 wmb(); 536 537 /* Send it on its way. Tell FEC it's ready, interrupt when done, 538 * it's the last BD of the frame, and to put the CRC on the end. 539 */ 540 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 541 bdp->cbd_sc = cpu_to_fec16(status); 542 543 /* If this was the last BD in the ring, start at the beginning again. */ 544 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 545 546 skb_tx_timestamp(skb); 547 548 /* Make sure the update to bdp and tx_skbuff are performed before 549 * txq->bd.cur. 550 */ 551 wmb(); 552 txq->bd.cur = bdp; 553 554 /* Trigger transmission start */ 555 writel(0, txq->bd.reg_desc_active); 556 557 return 0; 558 } 559 560 static int 561 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 562 struct net_device *ndev, 563 struct bufdesc *bdp, int index, char *data, 564 int size, bool last_tcp, bool is_last) 565 { 566 struct fec_enet_private *fep = netdev_priv(ndev); 567 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 568 unsigned short status; 569 unsigned int estatus = 0; 570 dma_addr_t addr; 571 572 status = fec16_to_cpu(bdp->cbd_sc); 573 status &= ~BD_ENET_TX_STATS; 574 575 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 576 577 if (((unsigned long) data) & fep->tx_align || 578 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 579 memcpy(txq->tx_bounce[index], data, size); 580 data = txq->tx_bounce[index]; 581 582 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 583 swap_buffer(data, size); 584 } 585 586 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 587 if (dma_mapping_error(&fep->pdev->dev, addr)) { 588 dev_kfree_skb_any(skb); 589 if (net_ratelimit()) 590 netdev_err(ndev, "Tx DMA memory map failed\n"); 591 return NETDEV_TX_BUSY; 592 } 593 594 bdp->cbd_datlen = cpu_to_fec16(size); 595 bdp->cbd_bufaddr = cpu_to_fec32(addr); 596 597 if (fep->bufdesc_ex) { 598 if (fep->quirks & FEC_QUIRK_HAS_AVB) 599 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 600 if (skb->ip_summed == CHECKSUM_PARTIAL) 601 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 602 ebdp->cbd_bdu = 0; 603 ebdp->cbd_esc = cpu_to_fec32(estatus); 604 } 605 606 /* Handle the last BD specially */ 607 if (last_tcp) 608 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 609 if (is_last) { 610 status |= BD_ENET_TX_INTR; 611 if (fep->bufdesc_ex) 612 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 613 } 614 615 bdp->cbd_sc = cpu_to_fec16(status); 616 617 return 0; 618 } 619 620 static int 621 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 622 struct sk_buff *skb, struct net_device *ndev, 623 struct bufdesc *bdp, int index) 624 { 625 struct fec_enet_private *fep = netdev_priv(ndev); 626 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 627 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 628 void *bufaddr; 629 unsigned long dmabuf; 630 unsigned short status; 631 unsigned int estatus = 0; 632 633 status = fec16_to_cpu(bdp->cbd_sc); 634 status &= ~BD_ENET_TX_STATS; 635 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 636 637 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 638 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 639 if (((unsigned long)bufaddr) & fep->tx_align || 640 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 641 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 642 bufaddr = txq->tx_bounce[index]; 643 644 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 645 swap_buffer(bufaddr, hdr_len); 646 647 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 648 hdr_len, DMA_TO_DEVICE); 649 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 650 dev_kfree_skb_any(skb); 651 if (net_ratelimit()) 652 netdev_err(ndev, "Tx DMA memory map failed\n"); 653 return NETDEV_TX_BUSY; 654 } 655 } 656 657 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 658 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 659 660 if (fep->bufdesc_ex) { 661 if (fep->quirks & FEC_QUIRK_HAS_AVB) 662 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 663 if (skb->ip_summed == CHECKSUM_PARTIAL) 664 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 665 ebdp->cbd_bdu = 0; 666 ebdp->cbd_esc = cpu_to_fec32(estatus); 667 } 668 669 bdp->cbd_sc = cpu_to_fec16(status); 670 671 return 0; 672 } 673 674 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 675 struct sk_buff *skb, 676 struct net_device *ndev) 677 { 678 struct fec_enet_private *fep = netdev_priv(ndev); 679 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 680 int total_len, data_left; 681 struct bufdesc *bdp = txq->bd.cur; 682 struct tso_t tso; 683 unsigned int index = 0; 684 int ret; 685 686 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 687 dev_kfree_skb_any(skb); 688 if (net_ratelimit()) 689 netdev_err(ndev, "NOT enough BD for TSO!\n"); 690 return NETDEV_TX_OK; 691 } 692 693 /* Protocol checksum off-load for TCP and UDP. */ 694 if (fec_enet_clear_csum(skb, ndev)) { 695 dev_kfree_skb_any(skb); 696 return NETDEV_TX_OK; 697 } 698 699 /* Initialize the TSO handler, and prepare the first payload */ 700 tso_start(skb, &tso); 701 702 total_len = skb->len - hdr_len; 703 while (total_len > 0) { 704 char *hdr; 705 706 index = fec_enet_get_bd_index(bdp, &txq->bd); 707 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 708 total_len -= data_left; 709 710 /* prepare packet headers: MAC + IP + TCP */ 711 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 712 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 713 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 714 if (ret) 715 goto err_release; 716 717 while (data_left > 0) { 718 int size; 719 720 size = min_t(int, tso.size, data_left); 721 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 722 index = fec_enet_get_bd_index(bdp, &txq->bd); 723 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 724 bdp, index, 725 tso.data, size, 726 size == data_left, 727 total_len == 0); 728 if (ret) 729 goto err_release; 730 731 data_left -= size; 732 tso_build_data(skb, &tso, size); 733 } 734 735 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 736 } 737 738 /* Save skb pointer */ 739 txq->tx_skbuff[index] = skb; 740 741 skb_tx_timestamp(skb); 742 txq->bd.cur = bdp; 743 744 /* Trigger transmission start */ 745 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 746 !readl(txq->bd.reg_desc_active) || 747 !readl(txq->bd.reg_desc_active) || 748 !readl(txq->bd.reg_desc_active) || 749 !readl(txq->bd.reg_desc_active)) 750 writel(0, txq->bd.reg_desc_active); 751 752 return 0; 753 754 err_release: 755 /* TODO: Release all used data descriptors for TSO */ 756 return ret; 757 } 758 759 static netdev_tx_t 760 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 761 { 762 struct fec_enet_private *fep = netdev_priv(ndev); 763 int entries_free; 764 unsigned short queue; 765 struct fec_enet_priv_tx_q *txq; 766 struct netdev_queue *nq; 767 int ret; 768 769 queue = skb_get_queue_mapping(skb); 770 txq = fep->tx_queue[queue]; 771 nq = netdev_get_tx_queue(ndev, queue); 772 773 if (skb_is_gso(skb)) 774 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 775 else 776 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 777 if (ret) 778 return ret; 779 780 entries_free = fec_enet_get_free_txdesc_num(txq); 781 if (entries_free <= txq->tx_stop_threshold) 782 netif_tx_stop_queue(nq); 783 784 return NETDEV_TX_OK; 785 } 786 787 /* Init RX & TX buffer descriptors 788 */ 789 static void fec_enet_bd_init(struct net_device *dev) 790 { 791 struct fec_enet_private *fep = netdev_priv(dev); 792 struct fec_enet_priv_tx_q *txq; 793 struct fec_enet_priv_rx_q *rxq; 794 struct bufdesc *bdp; 795 unsigned int i; 796 unsigned int q; 797 798 for (q = 0; q < fep->num_rx_queues; q++) { 799 /* Initialize the receive buffer descriptors. */ 800 rxq = fep->rx_queue[q]; 801 bdp = rxq->bd.base; 802 803 for (i = 0; i < rxq->bd.ring_size; i++) { 804 805 /* Initialize the BD for every fragment in the page. */ 806 if (bdp->cbd_bufaddr) 807 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 808 else 809 bdp->cbd_sc = cpu_to_fec16(0); 810 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 811 } 812 813 /* Set the last buffer to wrap */ 814 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 815 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 816 817 rxq->bd.cur = rxq->bd.base; 818 } 819 820 for (q = 0; q < fep->num_tx_queues; q++) { 821 /* ...and the same for transmit */ 822 txq = fep->tx_queue[q]; 823 bdp = txq->bd.base; 824 txq->bd.cur = bdp; 825 826 for (i = 0; i < txq->bd.ring_size; i++) { 827 /* Initialize the BD for every fragment in the page. */ 828 bdp->cbd_sc = cpu_to_fec16(0); 829 if (bdp->cbd_bufaddr && 830 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 831 dma_unmap_single(&fep->pdev->dev, 832 fec32_to_cpu(bdp->cbd_bufaddr), 833 fec16_to_cpu(bdp->cbd_datlen), 834 DMA_TO_DEVICE); 835 if (txq->tx_skbuff[i]) { 836 dev_kfree_skb_any(txq->tx_skbuff[i]); 837 txq->tx_skbuff[i] = NULL; 838 } 839 bdp->cbd_bufaddr = cpu_to_fec32(0); 840 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 841 } 842 843 /* Set the last buffer to wrap */ 844 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 845 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 846 txq->dirty_tx = bdp; 847 } 848 } 849 850 static void fec_enet_active_rxring(struct net_device *ndev) 851 { 852 struct fec_enet_private *fep = netdev_priv(ndev); 853 int i; 854 855 for (i = 0; i < fep->num_rx_queues; i++) 856 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 857 } 858 859 static void fec_enet_enable_ring(struct net_device *ndev) 860 { 861 struct fec_enet_private *fep = netdev_priv(ndev); 862 struct fec_enet_priv_tx_q *txq; 863 struct fec_enet_priv_rx_q *rxq; 864 int i; 865 866 for (i = 0; i < fep->num_rx_queues; i++) { 867 rxq = fep->rx_queue[i]; 868 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 869 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 870 871 /* enable DMA1/2 */ 872 if (i) 873 writel(RCMR_MATCHEN | RCMR_CMP(i), 874 fep->hwp + FEC_RCMR(i)); 875 } 876 877 for (i = 0; i < fep->num_tx_queues; i++) { 878 txq = fep->tx_queue[i]; 879 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 880 881 /* enable DMA1/2 */ 882 if (i) 883 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 884 fep->hwp + FEC_DMA_CFG(i)); 885 } 886 } 887 888 static void fec_enet_reset_skb(struct net_device *ndev) 889 { 890 struct fec_enet_private *fep = netdev_priv(ndev); 891 struct fec_enet_priv_tx_q *txq; 892 int i, j; 893 894 for (i = 0; i < fep->num_tx_queues; i++) { 895 txq = fep->tx_queue[i]; 896 897 for (j = 0; j < txq->bd.ring_size; j++) { 898 if (txq->tx_skbuff[j]) { 899 dev_kfree_skb_any(txq->tx_skbuff[j]); 900 txq->tx_skbuff[j] = NULL; 901 } 902 } 903 } 904 } 905 906 /* 907 * This function is called to start or restart the FEC during a link 908 * change, transmit timeout, or to reconfigure the FEC. The network 909 * packet processing for this device must be stopped before this call. 910 */ 911 static void 912 fec_restart(struct net_device *ndev) 913 { 914 struct fec_enet_private *fep = netdev_priv(ndev); 915 u32 val; 916 u32 temp_mac[2]; 917 u32 rcntl = OPT_FRAME_SIZE | 0x04; 918 u32 ecntl = 0x2; /* ETHEREN */ 919 920 /* Whack a reset. We should wait for this. 921 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 922 * instead of reset MAC itself. 923 */ 924 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 925 writel(0, fep->hwp + FEC_ECNTRL); 926 } else { 927 writel(1, fep->hwp + FEC_ECNTRL); 928 udelay(10); 929 } 930 931 /* 932 * enet-mac reset will reset mac address registers too, 933 * so need to reconfigure it. 934 */ 935 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 936 writel((__force u32)cpu_to_be32(temp_mac[0]), 937 fep->hwp + FEC_ADDR_LOW); 938 writel((__force u32)cpu_to_be32(temp_mac[1]), 939 fep->hwp + FEC_ADDR_HIGH); 940 941 /* Clear any outstanding interrupt. */ 942 writel(0xffffffff, fep->hwp + FEC_IEVENT); 943 944 fec_enet_bd_init(ndev); 945 946 fec_enet_enable_ring(ndev); 947 948 /* Reset tx SKB buffers. */ 949 fec_enet_reset_skb(ndev); 950 951 /* Enable MII mode */ 952 if (fep->full_duplex == DUPLEX_FULL) { 953 /* FD enable */ 954 writel(0x04, fep->hwp + FEC_X_CNTRL); 955 } else { 956 /* No Rcv on Xmit */ 957 rcntl |= 0x02; 958 writel(0x0, fep->hwp + FEC_X_CNTRL); 959 } 960 961 /* Set MII speed */ 962 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 963 964 #if !defined(CONFIG_M5272) 965 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 966 val = readl(fep->hwp + FEC_RACC); 967 /* align IP header */ 968 val |= FEC_RACC_SHIFT16; 969 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 970 /* set RX checksum */ 971 val |= FEC_RACC_OPTIONS; 972 else 973 val &= ~FEC_RACC_OPTIONS; 974 writel(val, fep->hwp + FEC_RACC); 975 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 976 } 977 #endif 978 979 /* 980 * The phy interface and speed need to get configured 981 * differently on enet-mac. 982 */ 983 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 984 /* Enable flow control and length check */ 985 rcntl |= 0x40000000 | 0x00000020; 986 987 /* RGMII, RMII or MII */ 988 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 989 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 990 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 991 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 992 rcntl |= (1 << 6); 993 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 994 rcntl |= (1 << 8); 995 else 996 rcntl &= ~(1 << 8); 997 998 /* 1G, 100M or 10M */ 999 if (ndev->phydev) { 1000 if (ndev->phydev->speed == SPEED_1000) 1001 ecntl |= (1 << 5); 1002 else if (ndev->phydev->speed == SPEED_100) 1003 rcntl &= ~(1 << 9); 1004 else 1005 rcntl |= (1 << 9); 1006 } 1007 } else { 1008 #ifdef FEC_MIIGSK_ENR 1009 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1010 u32 cfgr; 1011 /* disable the gasket and wait */ 1012 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1013 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1014 udelay(1); 1015 1016 /* 1017 * configure the gasket: 1018 * RMII, 50 MHz, no loopback, no echo 1019 * MII, 25 MHz, no loopback, no echo 1020 */ 1021 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1022 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1023 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1024 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1025 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1026 1027 /* re-enable the gasket */ 1028 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1029 } 1030 #endif 1031 } 1032 1033 #if !defined(CONFIG_M5272) 1034 /* enable pause frame*/ 1035 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1036 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1037 ndev->phydev && ndev->phydev->pause)) { 1038 rcntl |= FEC_ENET_FCE; 1039 1040 /* set FIFO threshold parameter to reduce overrun */ 1041 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1042 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1043 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1044 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1045 1046 /* OPD */ 1047 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1048 } else { 1049 rcntl &= ~FEC_ENET_FCE; 1050 } 1051 #endif /* !defined(CONFIG_M5272) */ 1052 1053 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1054 1055 /* Setup multicast filter. */ 1056 set_multicast_list(ndev); 1057 #ifndef CONFIG_M5272 1058 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1059 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1060 #endif 1061 1062 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1063 /* enable ENET endian swap */ 1064 ecntl |= (1 << 8); 1065 /* enable ENET store and forward mode */ 1066 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1067 } 1068 1069 if (fep->bufdesc_ex) 1070 ecntl |= (1 << 4); 1071 1072 #ifndef CONFIG_M5272 1073 /* Enable the MIB statistic event counters */ 1074 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1075 #endif 1076 1077 /* And last, enable the transmit and receive processing */ 1078 writel(ecntl, fep->hwp + FEC_ECNTRL); 1079 fec_enet_active_rxring(ndev); 1080 1081 if (fep->bufdesc_ex) 1082 fec_ptp_start_cyclecounter(ndev); 1083 1084 /* Enable interrupts we wish to service */ 1085 if (fep->link) 1086 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1087 else 1088 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK); 1089 1090 /* Init the interrupt coalescing */ 1091 fec_enet_itr_coal_init(ndev); 1092 1093 } 1094 1095 static void 1096 fec_stop(struct net_device *ndev) 1097 { 1098 struct fec_enet_private *fep = netdev_priv(ndev); 1099 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1100 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1101 u32 val; 1102 1103 /* We cannot expect a graceful transmit stop without link !!! */ 1104 if (fep->link) { 1105 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1106 udelay(10); 1107 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1108 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1109 } 1110 1111 /* Whack a reset. We should wait for this. 1112 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1113 * instead of reset MAC itself. 1114 */ 1115 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1116 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 1117 writel(0, fep->hwp + FEC_ECNTRL); 1118 } else { 1119 writel(1, fep->hwp + FEC_ECNTRL); 1120 udelay(10); 1121 } 1122 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1123 } else { 1124 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1125 val = readl(fep->hwp + FEC_ECNTRL); 1126 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1127 writel(val, fep->hwp + FEC_ECNTRL); 1128 1129 if (pdata && pdata->sleep_mode_enable) 1130 pdata->sleep_mode_enable(true); 1131 } 1132 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1133 1134 /* We have to keep ENET enabled to have MII interrupt stay working */ 1135 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1136 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1137 writel(2, fep->hwp + FEC_ECNTRL); 1138 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1139 } 1140 } 1141 1142 1143 static void 1144 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1145 { 1146 struct fec_enet_private *fep = netdev_priv(ndev); 1147 1148 fec_dump(ndev); 1149 1150 ndev->stats.tx_errors++; 1151 1152 schedule_work(&fep->tx_timeout_work); 1153 } 1154 1155 static void fec_enet_timeout_work(struct work_struct *work) 1156 { 1157 struct fec_enet_private *fep = 1158 container_of(work, struct fec_enet_private, tx_timeout_work); 1159 struct net_device *ndev = fep->netdev; 1160 1161 rtnl_lock(); 1162 if (netif_device_present(ndev) || netif_running(ndev)) { 1163 napi_disable(&fep->napi); 1164 netif_tx_lock_bh(ndev); 1165 fec_restart(ndev); 1166 netif_tx_wake_all_queues(ndev); 1167 netif_tx_unlock_bh(ndev); 1168 napi_enable(&fep->napi); 1169 } 1170 rtnl_unlock(); 1171 } 1172 1173 static void 1174 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1175 struct skb_shared_hwtstamps *hwtstamps) 1176 { 1177 unsigned long flags; 1178 u64 ns; 1179 1180 spin_lock_irqsave(&fep->tmreg_lock, flags); 1181 ns = timecounter_cyc2time(&fep->tc, ts); 1182 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1183 1184 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1185 hwtstamps->hwtstamp = ns_to_ktime(ns); 1186 } 1187 1188 static void 1189 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1190 { 1191 struct fec_enet_private *fep; 1192 struct bufdesc *bdp; 1193 unsigned short status; 1194 struct sk_buff *skb; 1195 struct fec_enet_priv_tx_q *txq; 1196 struct netdev_queue *nq; 1197 int index = 0; 1198 int entries_free; 1199 1200 fep = netdev_priv(ndev); 1201 1202 queue_id = FEC_ENET_GET_QUQUE(queue_id); 1203 1204 txq = fep->tx_queue[queue_id]; 1205 /* get next bdp of dirty_tx */ 1206 nq = netdev_get_tx_queue(ndev, queue_id); 1207 bdp = txq->dirty_tx; 1208 1209 /* get next bdp of dirty_tx */ 1210 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1211 1212 while (bdp != READ_ONCE(txq->bd.cur)) { 1213 /* Order the load of bd.cur and cbd_sc */ 1214 rmb(); 1215 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1216 if (status & BD_ENET_TX_READY) 1217 break; 1218 1219 index = fec_enet_get_bd_index(bdp, &txq->bd); 1220 1221 skb = txq->tx_skbuff[index]; 1222 txq->tx_skbuff[index] = NULL; 1223 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1224 dma_unmap_single(&fep->pdev->dev, 1225 fec32_to_cpu(bdp->cbd_bufaddr), 1226 fec16_to_cpu(bdp->cbd_datlen), 1227 DMA_TO_DEVICE); 1228 bdp->cbd_bufaddr = cpu_to_fec32(0); 1229 if (!skb) 1230 goto skb_done; 1231 1232 /* Check for errors. */ 1233 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1234 BD_ENET_TX_RL | BD_ENET_TX_UN | 1235 BD_ENET_TX_CSL)) { 1236 ndev->stats.tx_errors++; 1237 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1238 ndev->stats.tx_heartbeat_errors++; 1239 if (status & BD_ENET_TX_LC) /* Late collision */ 1240 ndev->stats.tx_window_errors++; 1241 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1242 ndev->stats.tx_aborted_errors++; 1243 if (status & BD_ENET_TX_UN) /* Underrun */ 1244 ndev->stats.tx_fifo_errors++; 1245 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1246 ndev->stats.tx_carrier_errors++; 1247 } else { 1248 ndev->stats.tx_packets++; 1249 ndev->stats.tx_bytes += skb->len; 1250 } 1251 1252 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) && 1253 fep->bufdesc_ex) { 1254 struct skb_shared_hwtstamps shhwtstamps; 1255 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1256 1257 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1258 skb_tstamp_tx(skb, &shhwtstamps); 1259 } 1260 1261 /* Deferred means some collisions occurred during transmit, 1262 * but we eventually sent the packet OK. 1263 */ 1264 if (status & BD_ENET_TX_DEF) 1265 ndev->stats.collisions++; 1266 1267 /* Free the sk buffer associated with this last transmit */ 1268 dev_kfree_skb_any(skb); 1269 skb_done: 1270 /* Make sure the update to bdp and tx_skbuff are performed 1271 * before dirty_tx 1272 */ 1273 wmb(); 1274 txq->dirty_tx = bdp; 1275 1276 /* Update pointer to next buffer descriptor to be transmitted */ 1277 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1278 1279 /* Since we have freed up a buffer, the ring is no longer full 1280 */ 1281 if (netif_tx_queue_stopped(nq)) { 1282 entries_free = fec_enet_get_free_txdesc_num(txq); 1283 if (entries_free >= txq->tx_wake_threshold) 1284 netif_tx_wake_queue(nq); 1285 } 1286 } 1287 1288 /* ERR006358: Keep the transmitter going */ 1289 if (bdp != txq->bd.cur && 1290 readl(txq->bd.reg_desc_active) == 0) 1291 writel(0, txq->bd.reg_desc_active); 1292 } 1293 1294 static void 1295 fec_enet_tx(struct net_device *ndev) 1296 { 1297 struct fec_enet_private *fep = netdev_priv(ndev); 1298 u16 queue_id; 1299 /* First process class A queue, then Class B and Best Effort queue */ 1300 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) { 1301 clear_bit(queue_id, &fep->work_tx); 1302 fec_enet_tx_queue(ndev, queue_id); 1303 } 1304 return; 1305 } 1306 1307 static int 1308 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) 1309 { 1310 struct fec_enet_private *fep = netdev_priv(ndev); 1311 int off; 1312 1313 off = ((unsigned long)skb->data) & fep->rx_align; 1314 if (off) 1315 skb_reserve(skb, fep->rx_align + 1 - off); 1316 1317 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE)); 1318 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) { 1319 if (net_ratelimit()) 1320 netdev_err(ndev, "Rx DMA memory map failed\n"); 1321 return -ENOMEM; 1322 } 1323 1324 return 0; 1325 } 1326 1327 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, 1328 struct bufdesc *bdp, u32 length, bool swap) 1329 { 1330 struct fec_enet_private *fep = netdev_priv(ndev); 1331 struct sk_buff *new_skb; 1332 1333 if (length > fep->rx_copybreak) 1334 return false; 1335 1336 new_skb = netdev_alloc_skb(ndev, length); 1337 if (!new_skb) 1338 return false; 1339 1340 dma_sync_single_for_cpu(&fep->pdev->dev, 1341 fec32_to_cpu(bdp->cbd_bufaddr), 1342 FEC_ENET_RX_FRSIZE - fep->rx_align, 1343 DMA_FROM_DEVICE); 1344 if (!swap) 1345 memcpy(new_skb->data, (*skb)->data, length); 1346 else 1347 swap_buffer2(new_skb->data, (*skb)->data, length); 1348 *skb = new_skb; 1349 1350 return true; 1351 } 1352 1353 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1354 * When we update through the ring, if the next incoming buffer has 1355 * not been given to the system, we just set the empty indicator, 1356 * effectively tossing the packet. 1357 */ 1358 static int 1359 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1360 { 1361 struct fec_enet_private *fep = netdev_priv(ndev); 1362 struct fec_enet_priv_rx_q *rxq; 1363 struct bufdesc *bdp; 1364 unsigned short status; 1365 struct sk_buff *skb_new = NULL; 1366 struct sk_buff *skb; 1367 ushort pkt_len; 1368 __u8 *data; 1369 int pkt_received = 0; 1370 struct bufdesc_ex *ebdp = NULL; 1371 bool vlan_packet_rcvd = false; 1372 u16 vlan_tag; 1373 int index = 0; 1374 bool is_copybreak; 1375 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1376 1377 #ifdef CONFIG_M532x 1378 flush_cache_all(); 1379 #endif 1380 queue_id = FEC_ENET_GET_QUQUE(queue_id); 1381 rxq = fep->rx_queue[queue_id]; 1382 1383 /* First, grab all of the stats for the incoming packet. 1384 * These get messed up if we get called due to a busy condition. 1385 */ 1386 bdp = rxq->bd.cur; 1387 1388 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1389 1390 if (pkt_received >= budget) 1391 break; 1392 pkt_received++; 1393 1394 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT); 1395 1396 /* Check for errors. */ 1397 status ^= BD_ENET_RX_LAST; 1398 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1399 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1400 BD_ENET_RX_CL)) { 1401 ndev->stats.rx_errors++; 1402 if (status & BD_ENET_RX_OV) { 1403 /* FIFO overrun */ 1404 ndev->stats.rx_fifo_errors++; 1405 goto rx_processing_done; 1406 } 1407 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1408 | BD_ENET_RX_LAST)) { 1409 /* Frame too long or too short. */ 1410 ndev->stats.rx_length_errors++; 1411 if (status & BD_ENET_RX_LAST) 1412 netdev_err(ndev, "rcv is not +last\n"); 1413 } 1414 if (status & BD_ENET_RX_CR) /* CRC Error */ 1415 ndev->stats.rx_crc_errors++; 1416 /* Report late collisions as a frame error. */ 1417 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1418 ndev->stats.rx_frame_errors++; 1419 goto rx_processing_done; 1420 } 1421 1422 /* Process the incoming frame. */ 1423 ndev->stats.rx_packets++; 1424 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1425 ndev->stats.rx_bytes += pkt_len; 1426 1427 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1428 skb = rxq->rx_skbuff[index]; 1429 1430 /* The packet length includes FCS, but we don't want to 1431 * include that when passing upstream as it messes up 1432 * bridging applications. 1433 */ 1434 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, 1435 need_swap); 1436 if (!is_copybreak) { 1437 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 1438 if (unlikely(!skb_new)) { 1439 ndev->stats.rx_dropped++; 1440 goto rx_processing_done; 1441 } 1442 dma_unmap_single(&fep->pdev->dev, 1443 fec32_to_cpu(bdp->cbd_bufaddr), 1444 FEC_ENET_RX_FRSIZE - fep->rx_align, 1445 DMA_FROM_DEVICE); 1446 } 1447 1448 prefetch(skb->data - NET_IP_ALIGN); 1449 skb_put(skb, pkt_len - 4); 1450 data = skb->data; 1451 1452 if (!is_copybreak && need_swap) 1453 swap_buffer(data, pkt_len); 1454 1455 #if !defined(CONFIG_M5272) 1456 if (fep->quirks & FEC_QUIRK_HAS_RACC) 1457 data = skb_pull_inline(skb, 2); 1458 #endif 1459 1460 /* Extract the enhanced buffer descriptor */ 1461 ebdp = NULL; 1462 if (fep->bufdesc_ex) 1463 ebdp = (struct bufdesc_ex *)bdp; 1464 1465 /* If this is a VLAN packet remove the VLAN Tag */ 1466 vlan_packet_rcvd = false; 1467 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1468 fep->bufdesc_ex && 1469 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1470 /* Push and remove the vlan tag */ 1471 struct vlan_hdr *vlan_header = 1472 (struct vlan_hdr *) (data + ETH_HLEN); 1473 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1474 1475 vlan_packet_rcvd = true; 1476 1477 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1478 skb_pull(skb, VLAN_HLEN); 1479 } 1480 1481 skb->protocol = eth_type_trans(skb, ndev); 1482 1483 /* Get receive timestamp from the skb */ 1484 if (fep->hwts_rx_en && fep->bufdesc_ex) 1485 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1486 skb_hwtstamps(skb)); 1487 1488 if (fep->bufdesc_ex && 1489 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1490 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1491 /* don't check it */ 1492 skb->ip_summed = CHECKSUM_UNNECESSARY; 1493 } else { 1494 skb_checksum_none_assert(skb); 1495 } 1496 } 1497 1498 /* Handle received VLAN packets */ 1499 if (vlan_packet_rcvd) 1500 __vlan_hwaccel_put_tag(skb, 1501 htons(ETH_P_8021Q), 1502 vlan_tag); 1503 1504 napi_gro_receive(&fep->napi, skb); 1505 1506 if (is_copybreak) { 1507 dma_sync_single_for_device(&fep->pdev->dev, 1508 fec32_to_cpu(bdp->cbd_bufaddr), 1509 FEC_ENET_RX_FRSIZE - fep->rx_align, 1510 DMA_FROM_DEVICE); 1511 } else { 1512 rxq->rx_skbuff[index] = skb_new; 1513 fec_enet_new_rxbdp(ndev, bdp, skb_new); 1514 } 1515 1516 rx_processing_done: 1517 /* Clear the status flags for this buffer */ 1518 status &= ~BD_ENET_RX_STATS; 1519 1520 /* Mark the buffer empty */ 1521 status |= BD_ENET_RX_EMPTY; 1522 1523 if (fep->bufdesc_ex) { 1524 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1525 1526 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1527 ebdp->cbd_prot = 0; 1528 ebdp->cbd_bdu = 0; 1529 } 1530 /* Make sure the updates to rest of the descriptor are 1531 * performed before transferring ownership. 1532 */ 1533 wmb(); 1534 bdp->cbd_sc = cpu_to_fec16(status); 1535 1536 /* Update BD pointer to next entry */ 1537 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1538 1539 /* Doing this here will keep the FEC running while we process 1540 * incoming frames. On a heavily loaded network, we should be 1541 * able to keep up at the expense of system resources. 1542 */ 1543 writel(0, rxq->bd.reg_desc_active); 1544 } 1545 rxq->bd.cur = bdp; 1546 return pkt_received; 1547 } 1548 1549 static int 1550 fec_enet_rx(struct net_device *ndev, int budget) 1551 { 1552 int pkt_received = 0; 1553 u16 queue_id; 1554 struct fec_enet_private *fep = netdev_priv(ndev); 1555 1556 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) { 1557 int ret; 1558 1559 ret = fec_enet_rx_queue(ndev, 1560 budget - pkt_received, queue_id); 1561 1562 if (ret < budget - pkt_received) 1563 clear_bit(queue_id, &fep->work_rx); 1564 1565 pkt_received += ret; 1566 } 1567 return pkt_received; 1568 } 1569 1570 static bool 1571 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events) 1572 { 1573 if (int_events == 0) 1574 return false; 1575 1576 if (int_events & FEC_ENET_RXF_0) 1577 fep->work_rx |= (1 << 2); 1578 if (int_events & FEC_ENET_RXF_1) 1579 fep->work_rx |= (1 << 0); 1580 if (int_events & FEC_ENET_RXF_2) 1581 fep->work_rx |= (1 << 1); 1582 1583 if (int_events & FEC_ENET_TXF_0) 1584 fep->work_tx |= (1 << 2); 1585 if (int_events & FEC_ENET_TXF_1) 1586 fep->work_tx |= (1 << 0); 1587 if (int_events & FEC_ENET_TXF_2) 1588 fep->work_tx |= (1 << 1); 1589 1590 return true; 1591 } 1592 1593 static irqreturn_t 1594 fec_enet_interrupt(int irq, void *dev_id) 1595 { 1596 struct net_device *ndev = dev_id; 1597 struct fec_enet_private *fep = netdev_priv(ndev); 1598 uint int_events; 1599 irqreturn_t ret = IRQ_NONE; 1600 1601 int_events = readl(fep->hwp + FEC_IEVENT); 1602 writel(int_events, fep->hwp + FEC_IEVENT); 1603 fec_enet_collect_events(fep, int_events); 1604 1605 if ((fep->work_tx || fep->work_rx) && fep->link) { 1606 ret = IRQ_HANDLED; 1607 1608 if (napi_schedule_prep(&fep->napi)) { 1609 /* Disable the NAPI interrupts */ 1610 writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK); 1611 __napi_schedule(&fep->napi); 1612 } 1613 } 1614 1615 if (int_events & FEC_ENET_MII) { 1616 ret = IRQ_HANDLED; 1617 complete(&fep->mdio_done); 1618 } 1619 return ret; 1620 } 1621 1622 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1623 { 1624 struct net_device *ndev = napi->dev; 1625 struct fec_enet_private *fep = netdev_priv(ndev); 1626 int pkts; 1627 1628 pkts = fec_enet_rx(ndev, budget); 1629 1630 fec_enet_tx(ndev); 1631 1632 if (pkts < budget) { 1633 napi_complete_done(napi, pkts); 1634 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1635 } 1636 return pkts; 1637 } 1638 1639 /* ------------------------------------------------------------------------- */ 1640 static void fec_get_mac(struct net_device *ndev) 1641 { 1642 struct fec_enet_private *fep = netdev_priv(ndev); 1643 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1644 unsigned char *iap, tmpaddr[ETH_ALEN]; 1645 1646 /* 1647 * try to get mac address in following order: 1648 * 1649 * 1) module parameter via kernel command line in form 1650 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1651 */ 1652 iap = macaddr; 1653 1654 /* 1655 * 2) from device tree data 1656 */ 1657 if (!is_valid_ether_addr(iap)) { 1658 struct device_node *np = fep->pdev->dev.of_node; 1659 if (np) { 1660 const char *mac = of_get_mac_address(np); 1661 if (!IS_ERR(mac)) 1662 iap = (unsigned char *) mac; 1663 } 1664 } 1665 1666 /* 1667 * 3) from flash or fuse (via platform data) 1668 */ 1669 if (!is_valid_ether_addr(iap)) { 1670 #ifdef CONFIG_M5272 1671 if (FEC_FLASHMAC) 1672 iap = (unsigned char *)FEC_FLASHMAC; 1673 #else 1674 if (pdata) 1675 iap = (unsigned char *)&pdata->mac; 1676 #endif 1677 } 1678 1679 /* 1680 * 4) FEC mac registers set by bootloader 1681 */ 1682 if (!is_valid_ether_addr(iap)) { 1683 *((__be32 *) &tmpaddr[0]) = 1684 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1685 *((__be16 *) &tmpaddr[4]) = 1686 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1687 iap = &tmpaddr[0]; 1688 } 1689 1690 /* 1691 * 5) random mac address 1692 */ 1693 if (!is_valid_ether_addr(iap)) { 1694 /* Report it and use a random ethernet address instead */ 1695 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1696 eth_hw_addr_random(ndev); 1697 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1698 ndev->dev_addr); 1699 return; 1700 } 1701 1702 memcpy(ndev->dev_addr, iap, ETH_ALEN); 1703 1704 /* Adjust MAC if using macaddr */ 1705 if (iap == macaddr) 1706 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; 1707 } 1708 1709 /* ------------------------------------------------------------------------- */ 1710 1711 /* 1712 * Phy section 1713 */ 1714 static void fec_enet_adjust_link(struct net_device *ndev) 1715 { 1716 struct fec_enet_private *fep = netdev_priv(ndev); 1717 struct phy_device *phy_dev = ndev->phydev; 1718 int status_change = 0; 1719 1720 /* 1721 * If the netdev is down, or is going down, we're not interested 1722 * in link state events, so just mark our idea of the link as down 1723 * and ignore the event. 1724 */ 1725 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1726 fep->link = 0; 1727 } else if (phy_dev->link) { 1728 if (!fep->link) { 1729 fep->link = phy_dev->link; 1730 status_change = 1; 1731 } 1732 1733 if (fep->full_duplex != phy_dev->duplex) { 1734 fep->full_duplex = phy_dev->duplex; 1735 status_change = 1; 1736 } 1737 1738 if (phy_dev->speed != fep->speed) { 1739 fep->speed = phy_dev->speed; 1740 status_change = 1; 1741 } 1742 1743 /* if any of the above changed restart the FEC */ 1744 if (status_change) { 1745 napi_disable(&fep->napi); 1746 netif_tx_lock_bh(ndev); 1747 fec_restart(ndev); 1748 netif_tx_wake_all_queues(ndev); 1749 netif_tx_unlock_bh(ndev); 1750 napi_enable(&fep->napi); 1751 } 1752 } else { 1753 if (fep->link) { 1754 napi_disable(&fep->napi); 1755 netif_tx_lock_bh(ndev); 1756 fec_stop(ndev); 1757 netif_tx_unlock_bh(ndev); 1758 napi_enable(&fep->napi); 1759 fep->link = phy_dev->link; 1760 status_change = 1; 1761 } 1762 } 1763 1764 if (status_change) 1765 phy_print_status(phy_dev); 1766 } 1767 1768 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1769 { 1770 struct fec_enet_private *fep = bus->priv; 1771 struct device *dev = &fep->pdev->dev; 1772 unsigned long time_left; 1773 int ret = 0, frame_start, frame_addr, frame_op; 1774 bool is_c45 = !!(regnum & MII_ADDR_C45); 1775 1776 ret = pm_runtime_get_sync(dev); 1777 if (ret < 0) 1778 return ret; 1779 1780 reinit_completion(&fep->mdio_done); 1781 1782 if (is_c45) { 1783 frame_start = FEC_MMFR_ST_C45; 1784 1785 /* write address */ 1786 frame_addr = (regnum >> 16); 1787 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1788 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1789 FEC_MMFR_TA | (regnum & 0xFFFF), 1790 fep->hwp + FEC_MII_DATA); 1791 1792 /* wait for end of transfer */ 1793 time_left = wait_for_completion_timeout(&fep->mdio_done, 1794 usecs_to_jiffies(FEC_MII_TIMEOUT)); 1795 if (time_left == 0) { 1796 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1797 ret = -ETIMEDOUT; 1798 goto out; 1799 } 1800 1801 frame_op = FEC_MMFR_OP_READ_C45; 1802 1803 } else { 1804 /* C22 read */ 1805 frame_op = FEC_MMFR_OP_READ; 1806 frame_start = FEC_MMFR_ST; 1807 frame_addr = regnum; 1808 } 1809 1810 /* start a read op */ 1811 writel(frame_start | frame_op | 1812 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1813 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 1814 1815 /* wait for end of transfer */ 1816 time_left = wait_for_completion_timeout(&fep->mdio_done, 1817 usecs_to_jiffies(FEC_MII_TIMEOUT)); 1818 if (time_left == 0) { 1819 netdev_err(fep->netdev, "MDIO read timeout\n"); 1820 ret = -ETIMEDOUT; 1821 goto out; 1822 } 1823 1824 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 1825 1826 out: 1827 pm_runtime_mark_last_busy(dev); 1828 pm_runtime_put_autosuspend(dev); 1829 1830 return ret; 1831 } 1832 1833 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 1834 u16 value) 1835 { 1836 struct fec_enet_private *fep = bus->priv; 1837 struct device *dev = &fep->pdev->dev; 1838 unsigned long time_left; 1839 int ret, frame_start, frame_addr; 1840 bool is_c45 = !!(regnum & MII_ADDR_C45); 1841 1842 ret = pm_runtime_get_sync(dev); 1843 if (ret < 0) 1844 return ret; 1845 else 1846 ret = 0; 1847 1848 reinit_completion(&fep->mdio_done); 1849 1850 if (is_c45) { 1851 frame_start = FEC_MMFR_ST_C45; 1852 1853 /* write address */ 1854 frame_addr = (regnum >> 16); 1855 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1856 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1857 FEC_MMFR_TA | (regnum & 0xFFFF), 1858 fep->hwp + FEC_MII_DATA); 1859 1860 /* wait for end of transfer */ 1861 time_left = wait_for_completion_timeout(&fep->mdio_done, 1862 usecs_to_jiffies(FEC_MII_TIMEOUT)); 1863 if (time_left == 0) { 1864 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1865 ret = -ETIMEDOUT; 1866 goto out; 1867 } 1868 } else { 1869 /* C22 write */ 1870 frame_start = FEC_MMFR_ST; 1871 frame_addr = regnum; 1872 } 1873 1874 /* start a write op */ 1875 writel(frame_start | FEC_MMFR_OP_WRITE | 1876 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1877 FEC_MMFR_TA | FEC_MMFR_DATA(value), 1878 fep->hwp + FEC_MII_DATA); 1879 1880 /* wait for end of transfer */ 1881 time_left = wait_for_completion_timeout(&fep->mdio_done, 1882 usecs_to_jiffies(FEC_MII_TIMEOUT)); 1883 if (time_left == 0) { 1884 netdev_err(fep->netdev, "MDIO write timeout\n"); 1885 ret = -ETIMEDOUT; 1886 } 1887 1888 out: 1889 pm_runtime_mark_last_busy(dev); 1890 pm_runtime_put_autosuspend(dev); 1891 1892 return ret; 1893 } 1894 1895 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 1896 { 1897 struct fec_enet_private *fep = netdev_priv(ndev); 1898 int ret; 1899 1900 if (enable) { 1901 ret = clk_prepare_enable(fep->clk_enet_out); 1902 if (ret) 1903 return ret; 1904 1905 if (fep->clk_ptp) { 1906 mutex_lock(&fep->ptp_clk_mutex); 1907 ret = clk_prepare_enable(fep->clk_ptp); 1908 if (ret) { 1909 mutex_unlock(&fep->ptp_clk_mutex); 1910 goto failed_clk_ptp; 1911 } else { 1912 fep->ptp_clk_on = true; 1913 } 1914 mutex_unlock(&fep->ptp_clk_mutex); 1915 } 1916 1917 ret = clk_prepare_enable(fep->clk_ref); 1918 if (ret) 1919 goto failed_clk_ref; 1920 1921 phy_reset_after_clk_enable(ndev->phydev); 1922 } else { 1923 clk_disable_unprepare(fep->clk_enet_out); 1924 if (fep->clk_ptp) { 1925 mutex_lock(&fep->ptp_clk_mutex); 1926 clk_disable_unprepare(fep->clk_ptp); 1927 fep->ptp_clk_on = false; 1928 mutex_unlock(&fep->ptp_clk_mutex); 1929 } 1930 clk_disable_unprepare(fep->clk_ref); 1931 } 1932 1933 return 0; 1934 1935 failed_clk_ref: 1936 if (fep->clk_ref) 1937 clk_disable_unprepare(fep->clk_ref); 1938 failed_clk_ptp: 1939 if (fep->clk_enet_out) 1940 clk_disable_unprepare(fep->clk_enet_out); 1941 1942 return ret; 1943 } 1944 1945 static int fec_enet_mii_probe(struct net_device *ndev) 1946 { 1947 struct fec_enet_private *fep = netdev_priv(ndev); 1948 struct phy_device *phy_dev = NULL; 1949 char mdio_bus_id[MII_BUS_ID_SIZE]; 1950 char phy_name[MII_BUS_ID_SIZE + 3]; 1951 int phy_id; 1952 int dev_id = fep->dev_id; 1953 1954 if (fep->phy_node) { 1955 phy_dev = of_phy_connect(ndev, fep->phy_node, 1956 &fec_enet_adjust_link, 0, 1957 fep->phy_interface); 1958 if (!phy_dev) { 1959 netdev_err(ndev, "Unable to connect to phy\n"); 1960 return -ENODEV; 1961 } 1962 } else { 1963 /* check for attached phy */ 1964 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 1965 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 1966 continue; 1967 if (dev_id--) 1968 continue; 1969 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 1970 break; 1971 } 1972 1973 if (phy_id >= PHY_MAX_ADDR) { 1974 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 1975 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 1976 phy_id = 0; 1977 } 1978 1979 snprintf(phy_name, sizeof(phy_name), 1980 PHY_ID_FMT, mdio_bus_id, phy_id); 1981 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 1982 fep->phy_interface); 1983 } 1984 1985 if (IS_ERR(phy_dev)) { 1986 netdev_err(ndev, "could not attach to PHY\n"); 1987 return PTR_ERR(phy_dev); 1988 } 1989 1990 /* mask with MAC supported features */ 1991 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 1992 phy_set_max_speed(phy_dev, 1000); 1993 phy_remove_link_mode(phy_dev, 1994 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 1995 #if !defined(CONFIG_M5272) 1996 phy_support_sym_pause(phy_dev); 1997 #endif 1998 } 1999 else 2000 phy_set_max_speed(phy_dev, 100); 2001 2002 fep->link = 0; 2003 fep->full_duplex = 0; 2004 2005 phy_attached_info(phy_dev); 2006 2007 return 0; 2008 } 2009 2010 static int fec_enet_mii_init(struct platform_device *pdev) 2011 { 2012 static struct mii_bus *fec0_mii_bus; 2013 struct net_device *ndev = platform_get_drvdata(pdev); 2014 struct fec_enet_private *fep = netdev_priv(ndev); 2015 struct device_node *node; 2016 int err = -ENXIO; 2017 u32 mii_speed, holdtime; 2018 2019 /* 2020 * The i.MX28 dual fec interfaces are not equal. 2021 * Here are the differences: 2022 * 2023 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2024 * - fec0 acts as the 1588 time master while fec1 is slave 2025 * - external phys can only be configured by fec0 2026 * 2027 * That is to say fec1 can not work independently. It only works 2028 * when fec0 is working. The reason behind this design is that the 2029 * second interface is added primarily for Switch mode. 2030 * 2031 * Because of the last point above, both phys are attached on fec0 2032 * mdio interface in board design, and need to be configured by 2033 * fec0 mii_bus. 2034 */ 2035 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2036 /* fec1 uses fec0 mii_bus */ 2037 if (mii_cnt && fec0_mii_bus) { 2038 fep->mii_bus = fec0_mii_bus; 2039 mii_cnt++; 2040 return 0; 2041 } 2042 return -ENOENT; 2043 } 2044 2045 /* 2046 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed) 2047 * 2048 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2049 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2050 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2051 * document. 2052 */ 2053 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000); 2054 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2055 mii_speed--; 2056 if (mii_speed > 63) { 2057 dev_err(&pdev->dev, 2058 "fec clock (%lu) too fast to get right mii speed\n", 2059 clk_get_rate(fep->clk_ipg)); 2060 err = -EINVAL; 2061 goto err_out; 2062 } 2063 2064 /* 2065 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2066 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2067 * versions are RAZ there, so just ignore the difference and write the 2068 * register always. 2069 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2070 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2071 * output. 2072 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2073 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2074 * holdtime cannot result in a value greater than 3. 2075 */ 2076 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2077 2078 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2079 2080 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2081 2082 fep->mii_bus = mdiobus_alloc(); 2083 if (fep->mii_bus == NULL) { 2084 err = -ENOMEM; 2085 goto err_out; 2086 } 2087 2088 fep->mii_bus->name = "fec_enet_mii_bus"; 2089 fep->mii_bus->read = fec_enet_mdio_read; 2090 fep->mii_bus->write = fec_enet_mdio_write; 2091 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2092 pdev->name, fep->dev_id + 1); 2093 fep->mii_bus->priv = fep; 2094 fep->mii_bus->parent = &pdev->dev; 2095 2096 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2097 err = of_mdiobus_register(fep->mii_bus, node); 2098 of_node_put(node); 2099 if (err) 2100 goto err_out_free_mdiobus; 2101 2102 mii_cnt++; 2103 2104 /* save fec0 mii_bus */ 2105 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2106 fec0_mii_bus = fep->mii_bus; 2107 2108 return 0; 2109 2110 err_out_free_mdiobus: 2111 mdiobus_free(fep->mii_bus); 2112 err_out: 2113 return err; 2114 } 2115 2116 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2117 { 2118 if (--mii_cnt == 0) { 2119 mdiobus_unregister(fep->mii_bus); 2120 mdiobus_free(fep->mii_bus); 2121 } 2122 } 2123 2124 static void fec_enet_get_drvinfo(struct net_device *ndev, 2125 struct ethtool_drvinfo *info) 2126 { 2127 struct fec_enet_private *fep = netdev_priv(ndev); 2128 2129 strlcpy(info->driver, fep->pdev->dev.driver->name, 2130 sizeof(info->driver)); 2131 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2132 } 2133 2134 static int fec_enet_get_regs_len(struct net_device *ndev) 2135 { 2136 struct fec_enet_private *fep = netdev_priv(ndev); 2137 struct resource *r; 2138 int s = 0; 2139 2140 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2141 if (r) 2142 s = resource_size(r); 2143 2144 return s; 2145 } 2146 2147 /* List of registers that can be safety be read to dump them with ethtool */ 2148 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2149 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2150 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2151 static __u32 fec_enet_register_version = 2; 2152 static u32 fec_enet_register_offset[] = { 2153 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2154 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2155 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2156 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2157 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2158 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2159 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2160 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2161 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2162 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2163 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2164 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2165 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2166 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2167 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2168 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2169 RMON_T_P_GTE2048, RMON_T_OCTETS, 2170 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2171 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2172 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2173 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2174 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2175 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2176 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2177 RMON_R_P_GTE2048, RMON_R_OCTETS, 2178 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2179 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2180 }; 2181 #else 2182 static __u32 fec_enet_register_version = 1; 2183 static u32 fec_enet_register_offset[] = { 2184 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2185 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2186 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2187 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2188 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2189 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2190 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2191 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2192 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2193 }; 2194 #endif 2195 2196 static void fec_enet_get_regs(struct net_device *ndev, 2197 struct ethtool_regs *regs, void *regbuf) 2198 { 2199 struct fec_enet_private *fep = netdev_priv(ndev); 2200 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2201 struct device *dev = &fep->pdev->dev; 2202 u32 *buf = (u32 *)regbuf; 2203 u32 i, off; 2204 int ret; 2205 2206 ret = pm_runtime_get_sync(dev); 2207 if (ret < 0) 2208 return; 2209 2210 regs->version = fec_enet_register_version; 2211 2212 memset(buf, 0, regs->len); 2213 2214 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { 2215 off = fec_enet_register_offset[i]; 2216 2217 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2218 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2219 continue; 2220 2221 off >>= 2; 2222 buf[off] = readl(&theregs[off]); 2223 } 2224 2225 pm_runtime_mark_last_busy(dev); 2226 pm_runtime_put_autosuspend(dev); 2227 } 2228 2229 static int fec_enet_get_ts_info(struct net_device *ndev, 2230 struct ethtool_ts_info *info) 2231 { 2232 struct fec_enet_private *fep = netdev_priv(ndev); 2233 2234 if (fep->bufdesc_ex) { 2235 2236 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2237 SOF_TIMESTAMPING_RX_SOFTWARE | 2238 SOF_TIMESTAMPING_SOFTWARE | 2239 SOF_TIMESTAMPING_TX_HARDWARE | 2240 SOF_TIMESTAMPING_RX_HARDWARE | 2241 SOF_TIMESTAMPING_RAW_HARDWARE; 2242 if (fep->ptp_clock) 2243 info->phc_index = ptp_clock_index(fep->ptp_clock); 2244 else 2245 info->phc_index = -1; 2246 2247 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2248 (1 << HWTSTAMP_TX_ON); 2249 2250 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2251 (1 << HWTSTAMP_FILTER_ALL); 2252 return 0; 2253 } else { 2254 return ethtool_op_get_ts_info(ndev, info); 2255 } 2256 } 2257 2258 #if !defined(CONFIG_M5272) 2259 2260 static void fec_enet_get_pauseparam(struct net_device *ndev, 2261 struct ethtool_pauseparam *pause) 2262 { 2263 struct fec_enet_private *fep = netdev_priv(ndev); 2264 2265 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2266 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2267 pause->rx_pause = pause->tx_pause; 2268 } 2269 2270 static int fec_enet_set_pauseparam(struct net_device *ndev, 2271 struct ethtool_pauseparam *pause) 2272 { 2273 struct fec_enet_private *fep = netdev_priv(ndev); 2274 2275 if (!ndev->phydev) 2276 return -ENODEV; 2277 2278 if (pause->tx_pause != pause->rx_pause) { 2279 netdev_info(ndev, 2280 "hardware only support enable/disable both tx and rx"); 2281 return -EINVAL; 2282 } 2283 2284 fep->pause_flag = 0; 2285 2286 /* tx pause must be same as rx pause */ 2287 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2288 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2289 2290 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2291 pause->autoneg); 2292 2293 if (pause->autoneg) { 2294 if (netif_running(ndev)) 2295 fec_stop(ndev); 2296 phy_start_aneg(ndev->phydev); 2297 } 2298 if (netif_running(ndev)) { 2299 napi_disable(&fep->napi); 2300 netif_tx_lock_bh(ndev); 2301 fec_restart(ndev); 2302 netif_tx_wake_all_queues(ndev); 2303 netif_tx_unlock_bh(ndev); 2304 napi_enable(&fep->napi); 2305 } 2306 2307 return 0; 2308 } 2309 2310 static const struct fec_stat { 2311 char name[ETH_GSTRING_LEN]; 2312 u16 offset; 2313 } fec_stats[] = { 2314 /* RMON TX */ 2315 { "tx_dropped", RMON_T_DROP }, 2316 { "tx_packets", RMON_T_PACKETS }, 2317 { "tx_broadcast", RMON_T_BC_PKT }, 2318 { "tx_multicast", RMON_T_MC_PKT }, 2319 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2320 { "tx_undersize", RMON_T_UNDERSIZE }, 2321 { "tx_oversize", RMON_T_OVERSIZE }, 2322 { "tx_fragment", RMON_T_FRAG }, 2323 { "tx_jabber", RMON_T_JAB }, 2324 { "tx_collision", RMON_T_COL }, 2325 { "tx_64byte", RMON_T_P64 }, 2326 { "tx_65to127byte", RMON_T_P65TO127 }, 2327 { "tx_128to255byte", RMON_T_P128TO255 }, 2328 { "tx_256to511byte", RMON_T_P256TO511 }, 2329 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2330 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2331 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2332 { "tx_octets", RMON_T_OCTETS }, 2333 2334 /* IEEE TX */ 2335 { "IEEE_tx_drop", IEEE_T_DROP }, 2336 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2337 { "IEEE_tx_1col", IEEE_T_1COL }, 2338 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2339 { "IEEE_tx_def", IEEE_T_DEF }, 2340 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2341 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2342 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2343 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2344 { "IEEE_tx_sqe", IEEE_T_SQE }, 2345 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2346 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2347 2348 /* RMON RX */ 2349 { "rx_packets", RMON_R_PACKETS }, 2350 { "rx_broadcast", RMON_R_BC_PKT }, 2351 { "rx_multicast", RMON_R_MC_PKT }, 2352 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2353 { "rx_undersize", RMON_R_UNDERSIZE }, 2354 { "rx_oversize", RMON_R_OVERSIZE }, 2355 { "rx_fragment", RMON_R_FRAG }, 2356 { "rx_jabber", RMON_R_JAB }, 2357 { "rx_64byte", RMON_R_P64 }, 2358 { "rx_65to127byte", RMON_R_P65TO127 }, 2359 { "rx_128to255byte", RMON_R_P128TO255 }, 2360 { "rx_256to511byte", RMON_R_P256TO511 }, 2361 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2362 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2363 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2364 { "rx_octets", RMON_R_OCTETS }, 2365 2366 /* IEEE RX */ 2367 { "IEEE_rx_drop", IEEE_R_DROP }, 2368 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2369 { "IEEE_rx_crc", IEEE_R_CRC }, 2370 { "IEEE_rx_align", IEEE_R_ALIGN }, 2371 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2372 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2373 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2374 }; 2375 2376 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2377 2378 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2379 { 2380 struct fec_enet_private *fep = netdev_priv(dev); 2381 int i; 2382 2383 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2384 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2385 } 2386 2387 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2388 struct ethtool_stats *stats, u64 *data) 2389 { 2390 struct fec_enet_private *fep = netdev_priv(dev); 2391 2392 if (netif_running(dev)) 2393 fec_enet_update_ethtool_stats(dev); 2394 2395 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2396 } 2397 2398 static void fec_enet_get_strings(struct net_device *netdev, 2399 u32 stringset, u8 *data) 2400 { 2401 int i; 2402 switch (stringset) { 2403 case ETH_SS_STATS: 2404 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2405 memcpy(data + i * ETH_GSTRING_LEN, 2406 fec_stats[i].name, ETH_GSTRING_LEN); 2407 break; 2408 } 2409 } 2410 2411 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2412 { 2413 switch (sset) { 2414 case ETH_SS_STATS: 2415 return ARRAY_SIZE(fec_stats); 2416 default: 2417 return -EOPNOTSUPP; 2418 } 2419 } 2420 2421 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2422 { 2423 struct fec_enet_private *fep = netdev_priv(dev); 2424 int i; 2425 2426 /* Disable MIB statistics counters */ 2427 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2428 2429 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2430 writel(0, fep->hwp + fec_stats[i].offset); 2431 2432 /* Don't disable MIB statistics counters */ 2433 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2434 } 2435 2436 #else /* !defined(CONFIG_M5272) */ 2437 #define FEC_STATS_SIZE 0 2438 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2439 { 2440 } 2441 2442 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2443 { 2444 } 2445 #endif /* !defined(CONFIG_M5272) */ 2446 2447 /* ITR clock source is enet system clock (clk_ahb). 2448 * TCTT unit is cycle_ns * 64 cycle 2449 * So, the ICTT value = X us / (cycle_ns * 64) 2450 */ 2451 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2452 { 2453 struct fec_enet_private *fep = netdev_priv(ndev); 2454 2455 return us * (fep->itr_clk_rate / 64000) / 1000; 2456 } 2457 2458 /* Set threshold for interrupt coalescing */ 2459 static void fec_enet_itr_coal_set(struct net_device *ndev) 2460 { 2461 struct fec_enet_private *fep = netdev_priv(ndev); 2462 int rx_itr, tx_itr; 2463 2464 /* Must be greater than zero to avoid unpredictable behavior */ 2465 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2466 !fep->tx_time_itr || !fep->tx_pkts_itr) 2467 return; 2468 2469 /* Select enet system clock as Interrupt Coalescing 2470 * timer Clock Source 2471 */ 2472 rx_itr = FEC_ITR_CLK_SEL; 2473 tx_itr = FEC_ITR_CLK_SEL; 2474 2475 /* set ICFT and ICTT */ 2476 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2477 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2478 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2479 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2480 2481 rx_itr |= FEC_ITR_EN; 2482 tx_itr |= FEC_ITR_EN; 2483 2484 writel(tx_itr, fep->hwp + FEC_TXIC0); 2485 writel(rx_itr, fep->hwp + FEC_RXIC0); 2486 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 2487 writel(tx_itr, fep->hwp + FEC_TXIC1); 2488 writel(rx_itr, fep->hwp + FEC_RXIC1); 2489 writel(tx_itr, fep->hwp + FEC_TXIC2); 2490 writel(rx_itr, fep->hwp + FEC_RXIC2); 2491 } 2492 } 2493 2494 static int 2495 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2496 { 2497 struct fec_enet_private *fep = netdev_priv(ndev); 2498 2499 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2500 return -EOPNOTSUPP; 2501 2502 ec->rx_coalesce_usecs = fep->rx_time_itr; 2503 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2504 2505 ec->tx_coalesce_usecs = fep->tx_time_itr; 2506 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2507 2508 return 0; 2509 } 2510 2511 static int 2512 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2513 { 2514 struct fec_enet_private *fep = netdev_priv(ndev); 2515 struct device *dev = &fep->pdev->dev; 2516 unsigned int cycle; 2517 2518 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2519 return -EOPNOTSUPP; 2520 2521 if (ec->rx_max_coalesced_frames > 255) { 2522 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2523 return -EINVAL; 2524 } 2525 2526 if (ec->tx_max_coalesced_frames > 255) { 2527 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2528 return -EINVAL; 2529 } 2530 2531 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 2532 if (cycle > 0xFFFF) { 2533 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 2534 return -EINVAL; 2535 } 2536 2537 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 2538 if (cycle > 0xFFFF) { 2539 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 2540 return -EINVAL; 2541 } 2542 2543 fep->rx_time_itr = ec->rx_coalesce_usecs; 2544 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2545 2546 fep->tx_time_itr = ec->tx_coalesce_usecs; 2547 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2548 2549 fec_enet_itr_coal_set(ndev); 2550 2551 return 0; 2552 } 2553 2554 static void fec_enet_itr_coal_init(struct net_device *ndev) 2555 { 2556 struct ethtool_coalesce ec; 2557 2558 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2559 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2560 2561 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2562 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2563 2564 fec_enet_set_coalesce(ndev, &ec); 2565 } 2566 2567 static int fec_enet_get_tunable(struct net_device *netdev, 2568 const struct ethtool_tunable *tuna, 2569 void *data) 2570 { 2571 struct fec_enet_private *fep = netdev_priv(netdev); 2572 int ret = 0; 2573 2574 switch (tuna->id) { 2575 case ETHTOOL_RX_COPYBREAK: 2576 *(u32 *)data = fep->rx_copybreak; 2577 break; 2578 default: 2579 ret = -EINVAL; 2580 break; 2581 } 2582 2583 return ret; 2584 } 2585 2586 static int fec_enet_set_tunable(struct net_device *netdev, 2587 const struct ethtool_tunable *tuna, 2588 const void *data) 2589 { 2590 struct fec_enet_private *fep = netdev_priv(netdev); 2591 int ret = 0; 2592 2593 switch (tuna->id) { 2594 case ETHTOOL_RX_COPYBREAK: 2595 fep->rx_copybreak = *(u32 *)data; 2596 break; 2597 default: 2598 ret = -EINVAL; 2599 break; 2600 } 2601 2602 return ret; 2603 } 2604 2605 static void 2606 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2607 { 2608 struct fec_enet_private *fep = netdev_priv(ndev); 2609 2610 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 2611 wol->supported = WAKE_MAGIC; 2612 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 2613 } else { 2614 wol->supported = wol->wolopts = 0; 2615 } 2616 } 2617 2618 static int 2619 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2620 { 2621 struct fec_enet_private *fep = netdev_priv(ndev); 2622 2623 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 2624 return -EINVAL; 2625 2626 if (wol->wolopts & ~WAKE_MAGIC) 2627 return -EINVAL; 2628 2629 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 2630 if (device_may_wakeup(&ndev->dev)) { 2631 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 2632 if (fep->irq[0] > 0) 2633 enable_irq_wake(fep->irq[0]); 2634 } else { 2635 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 2636 if (fep->irq[0] > 0) 2637 disable_irq_wake(fep->irq[0]); 2638 } 2639 2640 return 0; 2641 } 2642 2643 static const struct ethtool_ops fec_enet_ethtool_ops = { 2644 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 2645 ETHTOOL_COALESCE_MAX_FRAMES, 2646 .get_drvinfo = fec_enet_get_drvinfo, 2647 .get_regs_len = fec_enet_get_regs_len, 2648 .get_regs = fec_enet_get_regs, 2649 .nway_reset = phy_ethtool_nway_reset, 2650 .get_link = ethtool_op_get_link, 2651 .get_coalesce = fec_enet_get_coalesce, 2652 .set_coalesce = fec_enet_set_coalesce, 2653 #ifndef CONFIG_M5272 2654 .get_pauseparam = fec_enet_get_pauseparam, 2655 .set_pauseparam = fec_enet_set_pauseparam, 2656 .get_strings = fec_enet_get_strings, 2657 .get_ethtool_stats = fec_enet_get_ethtool_stats, 2658 .get_sset_count = fec_enet_get_sset_count, 2659 #endif 2660 .get_ts_info = fec_enet_get_ts_info, 2661 .get_tunable = fec_enet_get_tunable, 2662 .set_tunable = fec_enet_set_tunable, 2663 .get_wol = fec_enet_get_wol, 2664 .set_wol = fec_enet_set_wol, 2665 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2666 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2667 }; 2668 2669 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2670 { 2671 struct fec_enet_private *fep = netdev_priv(ndev); 2672 struct phy_device *phydev = ndev->phydev; 2673 2674 if (!netif_running(ndev)) 2675 return -EINVAL; 2676 2677 if (!phydev) 2678 return -ENODEV; 2679 2680 if (fep->bufdesc_ex) { 2681 if (cmd == SIOCSHWTSTAMP) 2682 return fec_ptp_set(ndev, rq); 2683 if (cmd == SIOCGHWTSTAMP) 2684 return fec_ptp_get(ndev, rq); 2685 } 2686 2687 return phy_mii_ioctl(phydev, rq, cmd); 2688 } 2689 2690 static void fec_enet_free_buffers(struct net_device *ndev) 2691 { 2692 struct fec_enet_private *fep = netdev_priv(ndev); 2693 unsigned int i; 2694 struct sk_buff *skb; 2695 struct bufdesc *bdp; 2696 struct fec_enet_priv_tx_q *txq; 2697 struct fec_enet_priv_rx_q *rxq; 2698 unsigned int q; 2699 2700 for (q = 0; q < fep->num_rx_queues; q++) { 2701 rxq = fep->rx_queue[q]; 2702 bdp = rxq->bd.base; 2703 for (i = 0; i < rxq->bd.ring_size; i++) { 2704 skb = rxq->rx_skbuff[i]; 2705 rxq->rx_skbuff[i] = NULL; 2706 if (skb) { 2707 dma_unmap_single(&fep->pdev->dev, 2708 fec32_to_cpu(bdp->cbd_bufaddr), 2709 FEC_ENET_RX_FRSIZE - fep->rx_align, 2710 DMA_FROM_DEVICE); 2711 dev_kfree_skb(skb); 2712 } 2713 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2714 } 2715 } 2716 2717 for (q = 0; q < fep->num_tx_queues; q++) { 2718 txq = fep->tx_queue[q]; 2719 for (i = 0; i < txq->bd.ring_size; i++) { 2720 kfree(txq->tx_bounce[i]); 2721 txq->tx_bounce[i] = NULL; 2722 skb = txq->tx_skbuff[i]; 2723 txq->tx_skbuff[i] = NULL; 2724 dev_kfree_skb(skb); 2725 } 2726 } 2727 } 2728 2729 static void fec_enet_free_queue(struct net_device *ndev) 2730 { 2731 struct fec_enet_private *fep = netdev_priv(ndev); 2732 int i; 2733 struct fec_enet_priv_tx_q *txq; 2734 2735 for (i = 0; i < fep->num_tx_queues; i++) 2736 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 2737 txq = fep->tx_queue[i]; 2738 dma_free_coherent(&fep->pdev->dev, 2739 txq->bd.ring_size * TSO_HEADER_SIZE, 2740 txq->tso_hdrs, 2741 txq->tso_hdrs_dma); 2742 } 2743 2744 for (i = 0; i < fep->num_rx_queues; i++) 2745 kfree(fep->rx_queue[i]); 2746 for (i = 0; i < fep->num_tx_queues; i++) 2747 kfree(fep->tx_queue[i]); 2748 } 2749 2750 static int fec_enet_alloc_queue(struct net_device *ndev) 2751 { 2752 struct fec_enet_private *fep = netdev_priv(ndev); 2753 int i; 2754 int ret = 0; 2755 struct fec_enet_priv_tx_q *txq; 2756 2757 for (i = 0; i < fep->num_tx_queues; i++) { 2758 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 2759 if (!txq) { 2760 ret = -ENOMEM; 2761 goto alloc_failed; 2762 } 2763 2764 fep->tx_queue[i] = txq; 2765 txq->bd.ring_size = TX_RING_SIZE; 2766 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 2767 2768 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 2769 txq->tx_wake_threshold = 2770 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 2771 2772 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 2773 txq->bd.ring_size * TSO_HEADER_SIZE, 2774 &txq->tso_hdrs_dma, 2775 GFP_KERNEL); 2776 if (!txq->tso_hdrs) { 2777 ret = -ENOMEM; 2778 goto alloc_failed; 2779 } 2780 } 2781 2782 for (i = 0; i < fep->num_rx_queues; i++) { 2783 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 2784 GFP_KERNEL); 2785 if (!fep->rx_queue[i]) { 2786 ret = -ENOMEM; 2787 goto alloc_failed; 2788 } 2789 2790 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 2791 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 2792 } 2793 return ret; 2794 2795 alloc_failed: 2796 fec_enet_free_queue(ndev); 2797 return ret; 2798 } 2799 2800 static int 2801 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 2802 { 2803 struct fec_enet_private *fep = netdev_priv(ndev); 2804 unsigned int i; 2805 struct sk_buff *skb; 2806 struct bufdesc *bdp; 2807 struct fec_enet_priv_rx_q *rxq; 2808 2809 rxq = fep->rx_queue[queue]; 2810 bdp = rxq->bd.base; 2811 for (i = 0; i < rxq->bd.ring_size; i++) { 2812 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 2813 if (!skb) 2814 goto err_alloc; 2815 2816 if (fec_enet_new_rxbdp(ndev, bdp, skb)) { 2817 dev_kfree_skb(skb); 2818 goto err_alloc; 2819 } 2820 2821 rxq->rx_skbuff[i] = skb; 2822 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 2823 2824 if (fep->bufdesc_ex) { 2825 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2826 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 2827 } 2828 2829 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2830 } 2831 2832 /* Set the last buffer to wrap. */ 2833 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 2834 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2835 return 0; 2836 2837 err_alloc: 2838 fec_enet_free_buffers(ndev); 2839 return -ENOMEM; 2840 } 2841 2842 static int 2843 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 2844 { 2845 struct fec_enet_private *fep = netdev_priv(ndev); 2846 unsigned int i; 2847 struct bufdesc *bdp; 2848 struct fec_enet_priv_tx_q *txq; 2849 2850 txq = fep->tx_queue[queue]; 2851 bdp = txq->bd.base; 2852 for (i = 0; i < txq->bd.ring_size; i++) { 2853 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 2854 if (!txq->tx_bounce[i]) 2855 goto err_alloc; 2856 2857 bdp->cbd_sc = cpu_to_fec16(0); 2858 bdp->cbd_bufaddr = cpu_to_fec32(0); 2859 2860 if (fep->bufdesc_ex) { 2861 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2862 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 2863 } 2864 2865 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 2866 } 2867 2868 /* Set the last buffer to wrap. */ 2869 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 2870 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2871 2872 return 0; 2873 2874 err_alloc: 2875 fec_enet_free_buffers(ndev); 2876 return -ENOMEM; 2877 } 2878 2879 static int fec_enet_alloc_buffers(struct net_device *ndev) 2880 { 2881 struct fec_enet_private *fep = netdev_priv(ndev); 2882 unsigned int i; 2883 2884 for (i = 0; i < fep->num_rx_queues; i++) 2885 if (fec_enet_alloc_rxq_buffers(ndev, i)) 2886 return -ENOMEM; 2887 2888 for (i = 0; i < fep->num_tx_queues; i++) 2889 if (fec_enet_alloc_txq_buffers(ndev, i)) 2890 return -ENOMEM; 2891 return 0; 2892 } 2893 2894 static int 2895 fec_enet_open(struct net_device *ndev) 2896 { 2897 struct fec_enet_private *fep = netdev_priv(ndev); 2898 int ret; 2899 bool reset_again; 2900 2901 ret = pm_runtime_get_sync(&fep->pdev->dev); 2902 if (ret < 0) 2903 return ret; 2904 2905 pinctrl_pm_select_default_state(&fep->pdev->dev); 2906 ret = fec_enet_clk_enable(ndev, true); 2907 if (ret) 2908 goto clk_enable; 2909 2910 /* During the first fec_enet_open call the PHY isn't probed at this 2911 * point. Therefore the phy_reset_after_clk_enable() call within 2912 * fec_enet_clk_enable() fails. As we need this reset in order to be 2913 * sure the PHY is working correctly we check if we need to reset again 2914 * later when the PHY is probed 2915 */ 2916 if (ndev->phydev && ndev->phydev->drv) 2917 reset_again = false; 2918 else 2919 reset_again = true; 2920 2921 /* I should reset the ring buffers here, but I don't yet know 2922 * a simple way to do that. 2923 */ 2924 2925 ret = fec_enet_alloc_buffers(ndev); 2926 if (ret) 2927 goto err_enet_alloc; 2928 2929 /* Init MAC prior to mii bus probe */ 2930 fec_restart(ndev); 2931 2932 /* Probe and connect to PHY when open the interface */ 2933 ret = fec_enet_mii_probe(ndev); 2934 if (ret) 2935 goto err_enet_mii_probe; 2936 2937 /* Call phy_reset_after_clk_enable() again if it failed during 2938 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 2939 */ 2940 if (reset_again) 2941 phy_reset_after_clk_enable(ndev->phydev); 2942 2943 if (fep->quirks & FEC_QUIRK_ERR006687) 2944 imx6q_cpuidle_fec_irqs_used(); 2945 2946 napi_enable(&fep->napi); 2947 phy_start(ndev->phydev); 2948 netif_tx_start_all_queues(ndev); 2949 2950 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 2951 FEC_WOL_FLAG_ENABLE); 2952 2953 return 0; 2954 2955 err_enet_mii_probe: 2956 fec_enet_free_buffers(ndev); 2957 err_enet_alloc: 2958 fec_enet_clk_enable(ndev, false); 2959 clk_enable: 2960 pm_runtime_mark_last_busy(&fep->pdev->dev); 2961 pm_runtime_put_autosuspend(&fep->pdev->dev); 2962 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 2963 return ret; 2964 } 2965 2966 static int 2967 fec_enet_close(struct net_device *ndev) 2968 { 2969 struct fec_enet_private *fep = netdev_priv(ndev); 2970 2971 phy_stop(ndev->phydev); 2972 2973 if (netif_device_present(ndev)) { 2974 napi_disable(&fep->napi); 2975 netif_tx_disable(ndev); 2976 fec_stop(ndev); 2977 } 2978 2979 phy_disconnect(ndev->phydev); 2980 2981 if (fep->quirks & FEC_QUIRK_ERR006687) 2982 imx6q_cpuidle_fec_irqs_unused(); 2983 2984 fec_enet_update_ethtool_stats(ndev); 2985 2986 fec_enet_clk_enable(ndev, false); 2987 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 2988 pm_runtime_mark_last_busy(&fep->pdev->dev); 2989 pm_runtime_put_autosuspend(&fep->pdev->dev); 2990 2991 fec_enet_free_buffers(ndev); 2992 2993 return 0; 2994 } 2995 2996 /* Set or clear the multicast filter for this adaptor. 2997 * Skeleton taken from sunlance driver. 2998 * The CPM Ethernet implementation allows Multicast as well as individual 2999 * MAC address filtering. Some of the drivers check to make sure it is 3000 * a group multicast address, and discard those that are not. I guess I 3001 * will do the same for now, but just remove the test if you want 3002 * individual filtering as well (do the upper net layers want or support 3003 * this kind of feature?). 3004 */ 3005 3006 #define FEC_HASH_BITS 6 /* #bits in hash */ 3007 3008 static void set_multicast_list(struct net_device *ndev) 3009 { 3010 struct fec_enet_private *fep = netdev_priv(ndev); 3011 struct netdev_hw_addr *ha; 3012 unsigned int crc, tmp; 3013 unsigned char hash; 3014 unsigned int hash_high = 0, hash_low = 0; 3015 3016 if (ndev->flags & IFF_PROMISC) { 3017 tmp = readl(fep->hwp + FEC_R_CNTRL); 3018 tmp |= 0x8; 3019 writel(tmp, fep->hwp + FEC_R_CNTRL); 3020 return; 3021 } 3022 3023 tmp = readl(fep->hwp + FEC_R_CNTRL); 3024 tmp &= ~0x8; 3025 writel(tmp, fep->hwp + FEC_R_CNTRL); 3026 3027 if (ndev->flags & IFF_ALLMULTI) { 3028 /* Catch all multicast addresses, so set the 3029 * filter to all 1's 3030 */ 3031 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3032 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3033 3034 return; 3035 } 3036 3037 /* Add the addresses in hash register */ 3038 netdev_for_each_mc_addr(ha, ndev) { 3039 /* calculate crc32 value of mac address */ 3040 crc = ether_crc_le(ndev->addr_len, ha->addr); 3041 3042 /* only upper 6 bits (FEC_HASH_BITS) are used 3043 * which point to specific bit in the hash registers 3044 */ 3045 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3046 3047 if (hash > 31) 3048 hash_high |= 1 << (hash - 32); 3049 else 3050 hash_low |= 1 << hash; 3051 } 3052 3053 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3054 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3055 } 3056 3057 /* Set a MAC change in hardware. */ 3058 static int 3059 fec_set_mac_address(struct net_device *ndev, void *p) 3060 { 3061 struct fec_enet_private *fep = netdev_priv(ndev); 3062 struct sockaddr *addr = p; 3063 3064 if (addr) { 3065 if (!is_valid_ether_addr(addr->sa_data)) 3066 return -EADDRNOTAVAIL; 3067 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 3068 } 3069 3070 /* Add netif status check here to avoid system hang in below case: 3071 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3072 * After ethx down, fec all clocks are gated off and then register 3073 * access causes system hang. 3074 */ 3075 if (!netif_running(ndev)) 3076 return 0; 3077 3078 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3079 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3080 fep->hwp + FEC_ADDR_LOW); 3081 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3082 fep->hwp + FEC_ADDR_HIGH); 3083 return 0; 3084 } 3085 3086 #ifdef CONFIG_NET_POLL_CONTROLLER 3087 /** 3088 * fec_poll_controller - FEC Poll controller function 3089 * @dev: The FEC network adapter 3090 * 3091 * Polled functionality used by netconsole and others in non interrupt mode 3092 * 3093 */ 3094 static void fec_poll_controller(struct net_device *dev) 3095 { 3096 int i; 3097 struct fec_enet_private *fep = netdev_priv(dev); 3098 3099 for (i = 0; i < FEC_IRQ_NUM; i++) { 3100 if (fep->irq[i] > 0) { 3101 disable_irq(fep->irq[i]); 3102 fec_enet_interrupt(fep->irq[i], dev); 3103 enable_irq(fep->irq[i]); 3104 } 3105 } 3106 } 3107 #endif 3108 3109 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3110 netdev_features_t features) 3111 { 3112 struct fec_enet_private *fep = netdev_priv(netdev); 3113 netdev_features_t changed = features ^ netdev->features; 3114 3115 netdev->features = features; 3116 3117 /* Receive checksum has been changed */ 3118 if (changed & NETIF_F_RXCSUM) { 3119 if (features & NETIF_F_RXCSUM) 3120 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3121 else 3122 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3123 } 3124 } 3125 3126 static int fec_set_features(struct net_device *netdev, 3127 netdev_features_t features) 3128 { 3129 struct fec_enet_private *fep = netdev_priv(netdev); 3130 netdev_features_t changed = features ^ netdev->features; 3131 3132 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3133 napi_disable(&fep->napi); 3134 netif_tx_lock_bh(netdev); 3135 fec_stop(netdev); 3136 fec_enet_set_netdev_features(netdev, features); 3137 fec_restart(netdev); 3138 netif_tx_wake_all_queues(netdev); 3139 netif_tx_unlock_bh(netdev); 3140 napi_enable(&fep->napi); 3141 } else { 3142 fec_enet_set_netdev_features(netdev, features); 3143 } 3144 3145 return 0; 3146 } 3147 3148 static const struct net_device_ops fec_netdev_ops = { 3149 .ndo_open = fec_enet_open, 3150 .ndo_stop = fec_enet_close, 3151 .ndo_start_xmit = fec_enet_start_xmit, 3152 .ndo_set_rx_mode = set_multicast_list, 3153 .ndo_validate_addr = eth_validate_addr, 3154 .ndo_tx_timeout = fec_timeout, 3155 .ndo_set_mac_address = fec_set_mac_address, 3156 .ndo_do_ioctl = fec_enet_ioctl, 3157 #ifdef CONFIG_NET_POLL_CONTROLLER 3158 .ndo_poll_controller = fec_poll_controller, 3159 #endif 3160 .ndo_set_features = fec_set_features, 3161 }; 3162 3163 static const unsigned short offset_des_active_rxq[] = { 3164 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3165 }; 3166 3167 static const unsigned short offset_des_active_txq[] = { 3168 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3169 }; 3170 3171 /* 3172 * XXX: We need to clean up on failure exits here. 3173 * 3174 */ 3175 static int fec_enet_init(struct net_device *ndev) 3176 { 3177 struct fec_enet_private *fep = netdev_priv(ndev); 3178 struct bufdesc *cbd_base; 3179 dma_addr_t bd_dma; 3180 int bd_size; 3181 unsigned int i; 3182 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3183 sizeof(struct bufdesc); 3184 unsigned dsize_log2 = __fls(dsize); 3185 int ret; 3186 3187 WARN_ON(dsize != (1 << dsize_log2)); 3188 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3189 fep->rx_align = 0xf; 3190 fep->tx_align = 0xf; 3191 #else 3192 fep->rx_align = 0x3; 3193 fep->tx_align = 0x3; 3194 #endif 3195 3196 /* Check mask of the streaming and coherent API */ 3197 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3198 if (ret < 0) { 3199 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3200 return ret; 3201 } 3202 3203 fec_enet_alloc_queue(ndev); 3204 3205 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3206 3207 /* Allocate memory for buffer descriptors. */ 3208 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3209 GFP_KERNEL); 3210 if (!cbd_base) { 3211 return -ENOMEM; 3212 } 3213 3214 /* Get the Ethernet address */ 3215 fec_get_mac(ndev); 3216 /* make sure MAC we just acquired is programmed into the hw */ 3217 fec_set_mac_address(ndev, NULL); 3218 3219 /* Set receive and transmit descriptor base. */ 3220 for (i = 0; i < fep->num_rx_queues; i++) { 3221 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3222 unsigned size = dsize * rxq->bd.ring_size; 3223 3224 rxq->bd.qid = i; 3225 rxq->bd.base = cbd_base; 3226 rxq->bd.cur = cbd_base; 3227 rxq->bd.dma = bd_dma; 3228 rxq->bd.dsize = dsize; 3229 rxq->bd.dsize_log2 = dsize_log2; 3230 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3231 bd_dma += size; 3232 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3233 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3234 } 3235 3236 for (i = 0; i < fep->num_tx_queues; i++) { 3237 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3238 unsigned size = dsize * txq->bd.ring_size; 3239 3240 txq->bd.qid = i; 3241 txq->bd.base = cbd_base; 3242 txq->bd.cur = cbd_base; 3243 txq->bd.dma = bd_dma; 3244 txq->bd.dsize = dsize; 3245 txq->bd.dsize_log2 = dsize_log2; 3246 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3247 bd_dma += size; 3248 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3249 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3250 } 3251 3252 3253 /* The FEC Ethernet specific entries in the device structure */ 3254 ndev->watchdog_timeo = TX_TIMEOUT; 3255 ndev->netdev_ops = &fec_netdev_ops; 3256 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3257 3258 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3259 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); 3260 3261 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3262 /* enable hw VLAN support */ 3263 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3264 3265 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3266 ndev->gso_max_segs = FEC_MAX_TSO_SEGS; 3267 3268 /* enable hw accelerator */ 3269 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3270 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3271 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3272 } 3273 3274 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 3275 fep->tx_align = 0; 3276 fep->rx_align = 0x3f; 3277 } 3278 3279 ndev->hw_features = ndev->features; 3280 3281 fec_restart(ndev); 3282 3283 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3284 fec_enet_clear_ethtool_stats(ndev); 3285 else 3286 fec_enet_update_ethtool_stats(ndev); 3287 3288 return 0; 3289 } 3290 3291 #ifdef CONFIG_OF 3292 static int fec_reset_phy(struct platform_device *pdev) 3293 { 3294 int err, phy_reset; 3295 bool active_high = false; 3296 int msec = 1, phy_post_delay = 0; 3297 struct device_node *np = pdev->dev.of_node; 3298 3299 if (!np) 3300 return 0; 3301 3302 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3303 /* A sane reset duration should not be longer than 1s */ 3304 if (!err && msec > 1000) 3305 msec = 1; 3306 3307 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3308 if (phy_reset == -EPROBE_DEFER) 3309 return phy_reset; 3310 else if (!gpio_is_valid(phy_reset)) 3311 return 0; 3312 3313 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 3314 /* valid reset duration should be less than 1s */ 3315 if (!err && phy_post_delay > 1000) 3316 return -EINVAL; 3317 3318 active_high = of_property_read_bool(np, "phy-reset-active-high"); 3319 3320 err = devm_gpio_request_one(&pdev->dev, phy_reset, 3321 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 3322 "phy-reset"); 3323 if (err) { 3324 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 3325 return err; 3326 } 3327 3328 if (msec > 20) 3329 msleep(msec); 3330 else 3331 usleep_range(msec * 1000, msec * 1000 + 1000); 3332 3333 gpio_set_value_cansleep(phy_reset, !active_high); 3334 3335 if (!phy_post_delay) 3336 return 0; 3337 3338 if (phy_post_delay > 20) 3339 msleep(phy_post_delay); 3340 else 3341 usleep_range(phy_post_delay * 1000, 3342 phy_post_delay * 1000 + 1000); 3343 3344 return 0; 3345 } 3346 #else /* CONFIG_OF */ 3347 static int fec_reset_phy(struct platform_device *pdev) 3348 { 3349 /* 3350 * In case of platform probe, the reset has been done 3351 * by machine code. 3352 */ 3353 return 0; 3354 } 3355 #endif /* CONFIG_OF */ 3356 3357 static void 3358 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 3359 { 3360 struct device_node *np = pdev->dev.of_node; 3361 3362 *num_tx = *num_rx = 1; 3363 3364 if (!np || !of_device_is_available(np)) 3365 return; 3366 3367 /* parse the num of tx and rx queues */ 3368 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 3369 3370 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 3371 3372 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 3373 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 3374 *num_tx); 3375 *num_tx = 1; 3376 return; 3377 } 3378 3379 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 3380 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 3381 *num_rx); 3382 *num_rx = 1; 3383 return; 3384 } 3385 3386 } 3387 3388 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 3389 { 3390 int irq_cnt = platform_irq_count(pdev); 3391 3392 if (irq_cnt > FEC_IRQ_NUM) 3393 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 3394 else if (irq_cnt == 2) 3395 irq_cnt = 1; /* last for pps */ 3396 else if (irq_cnt <= 0) 3397 irq_cnt = 1; /* At least 1 irq is needed */ 3398 return irq_cnt; 3399 } 3400 3401 static int 3402 fec_probe(struct platform_device *pdev) 3403 { 3404 struct fec_enet_private *fep; 3405 struct fec_platform_data *pdata; 3406 phy_interface_t interface; 3407 struct net_device *ndev; 3408 int i, irq, ret = 0; 3409 const struct of_device_id *of_id; 3410 static int dev_id; 3411 struct device_node *np = pdev->dev.of_node, *phy_node; 3412 int num_tx_qs; 3413 int num_rx_qs; 3414 char irq_name[8]; 3415 int irq_cnt; 3416 3417 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 3418 3419 /* Init network device */ 3420 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 3421 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 3422 if (!ndev) 3423 return -ENOMEM; 3424 3425 SET_NETDEV_DEV(ndev, &pdev->dev); 3426 3427 /* setup board info structure */ 3428 fep = netdev_priv(ndev); 3429 3430 of_id = of_match_device(fec_dt_ids, &pdev->dev); 3431 if (of_id) 3432 pdev->id_entry = of_id->data; 3433 fep->quirks = pdev->id_entry->driver_data; 3434 3435 fep->netdev = ndev; 3436 fep->num_rx_queues = num_rx_qs; 3437 fep->num_tx_queues = num_tx_qs; 3438 3439 #if !defined(CONFIG_M5272) 3440 /* default enable pause frame auto negotiation */ 3441 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 3442 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 3443 #endif 3444 3445 /* Select default pin state */ 3446 pinctrl_pm_select_default_state(&pdev->dev); 3447 3448 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 3449 if (IS_ERR(fep->hwp)) { 3450 ret = PTR_ERR(fep->hwp); 3451 goto failed_ioremap; 3452 } 3453 3454 fep->pdev = pdev; 3455 fep->dev_id = dev_id++; 3456 3457 platform_set_drvdata(pdev, ndev); 3458 3459 if ((of_machine_is_compatible("fsl,imx6q") || 3460 of_machine_is_compatible("fsl,imx6dl")) && 3461 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 3462 fep->quirks |= FEC_QUIRK_ERR006687; 3463 3464 if (of_get_property(np, "fsl,magic-packet", NULL)) 3465 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 3466 3467 phy_node = of_parse_phandle(np, "phy-handle", 0); 3468 if (!phy_node && of_phy_is_fixed_link(np)) { 3469 ret = of_phy_register_fixed_link(np); 3470 if (ret < 0) { 3471 dev_err(&pdev->dev, 3472 "broken fixed-link specification\n"); 3473 goto failed_phy; 3474 } 3475 phy_node = of_node_get(np); 3476 } 3477 fep->phy_node = phy_node; 3478 3479 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 3480 if (ret) { 3481 pdata = dev_get_platdata(&pdev->dev); 3482 if (pdata) 3483 fep->phy_interface = pdata->phy; 3484 else 3485 fep->phy_interface = PHY_INTERFACE_MODE_MII; 3486 } else { 3487 fep->phy_interface = interface; 3488 } 3489 3490 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 3491 if (IS_ERR(fep->clk_ipg)) { 3492 ret = PTR_ERR(fep->clk_ipg); 3493 goto failed_clk; 3494 } 3495 3496 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 3497 if (IS_ERR(fep->clk_ahb)) { 3498 ret = PTR_ERR(fep->clk_ahb); 3499 goto failed_clk; 3500 } 3501 3502 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 3503 3504 /* enet_out is optional, depends on board */ 3505 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); 3506 if (IS_ERR(fep->clk_enet_out)) 3507 fep->clk_enet_out = NULL; 3508 3509 fep->ptp_clk_on = false; 3510 mutex_init(&fep->ptp_clk_mutex); 3511 3512 /* clk_ref is optional, depends on board */ 3513 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); 3514 if (IS_ERR(fep->clk_ref)) 3515 fep->clk_ref = NULL; 3516 3517 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 3518 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 3519 if (IS_ERR(fep->clk_ptp)) { 3520 fep->clk_ptp = NULL; 3521 fep->bufdesc_ex = false; 3522 } 3523 3524 ret = fec_enet_clk_enable(ndev, true); 3525 if (ret) 3526 goto failed_clk; 3527 3528 ret = clk_prepare_enable(fep->clk_ipg); 3529 if (ret) 3530 goto failed_clk_ipg; 3531 ret = clk_prepare_enable(fep->clk_ahb); 3532 if (ret) 3533 goto failed_clk_ahb; 3534 3535 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 3536 if (!IS_ERR(fep->reg_phy)) { 3537 ret = regulator_enable(fep->reg_phy); 3538 if (ret) { 3539 dev_err(&pdev->dev, 3540 "Failed to enable phy regulator: %d\n", ret); 3541 goto failed_regulator; 3542 } 3543 } else { 3544 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 3545 ret = -EPROBE_DEFER; 3546 goto failed_regulator; 3547 } 3548 fep->reg_phy = NULL; 3549 } 3550 3551 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 3552 pm_runtime_use_autosuspend(&pdev->dev); 3553 pm_runtime_get_noresume(&pdev->dev); 3554 pm_runtime_set_active(&pdev->dev); 3555 pm_runtime_enable(&pdev->dev); 3556 3557 ret = fec_reset_phy(pdev); 3558 if (ret) 3559 goto failed_reset; 3560 3561 irq_cnt = fec_enet_get_irq_cnt(pdev); 3562 if (fep->bufdesc_ex) 3563 fec_ptp_init(pdev, irq_cnt); 3564 3565 ret = fec_enet_init(ndev); 3566 if (ret) 3567 goto failed_init; 3568 3569 for (i = 0; i < irq_cnt; i++) { 3570 snprintf(irq_name, sizeof(irq_name), "int%d", i); 3571 irq = platform_get_irq_byname_optional(pdev, irq_name); 3572 if (irq < 0) 3573 irq = platform_get_irq(pdev, i); 3574 if (irq < 0) { 3575 ret = irq; 3576 goto failed_irq; 3577 } 3578 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 3579 0, pdev->name, ndev); 3580 if (ret) 3581 goto failed_irq; 3582 3583 fep->irq[i] = irq; 3584 } 3585 3586 init_completion(&fep->mdio_done); 3587 ret = fec_enet_mii_init(pdev); 3588 if (ret) 3589 goto failed_mii_init; 3590 3591 /* Carrier starts down, phylib will bring it up */ 3592 netif_carrier_off(ndev); 3593 fec_enet_clk_enable(ndev, false); 3594 pinctrl_pm_select_sleep_state(&pdev->dev); 3595 3596 ret = register_netdev(ndev); 3597 if (ret) 3598 goto failed_register; 3599 3600 device_init_wakeup(&ndev->dev, fep->wol_flag & 3601 FEC_WOL_HAS_MAGIC_PACKET); 3602 3603 if (fep->bufdesc_ex && fep->ptp_clock) 3604 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 3605 3606 fep->rx_copybreak = COPYBREAK_DEFAULT; 3607 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 3608 3609 pm_runtime_mark_last_busy(&pdev->dev); 3610 pm_runtime_put_autosuspend(&pdev->dev); 3611 3612 return 0; 3613 3614 failed_register: 3615 fec_enet_mii_remove(fep); 3616 failed_mii_init: 3617 failed_irq: 3618 failed_init: 3619 fec_ptp_stop(pdev); 3620 if (fep->reg_phy) 3621 regulator_disable(fep->reg_phy); 3622 failed_reset: 3623 pm_runtime_put_noidle(&pdev->dev); 3624 pm_runtime_disable(&pdev->dev); 3625 failed_regulator: 3626 clk_disable_unprepare(fep->clk_ahb); 3627 failed_clk_ahb: 3628 clk_disable_unprepare(fep->clk_ipg); 3629 failed_clk_ipg: 3630 fec_enet_clk_enable(ndev, false); 3631 failed_clk: 3632 if (of_phy_is_fixed_link(np)) 3633 of_phy_deregister_fixed_link(np); 3634 of_node_put(phy_node); 3635 failed_phy: 3636 dev_id--; 3637 failed_ioremap: 3638 free_netdev(ndev); 3639 3640 return ret; 3641 } 3642 3643 static int 3644 fec_drv_remove(struct platform_device *pdev) 3645 { 3646 struct net_device *ndev = platform_get_drvdata(pdev); 3647 struct fec_enet_private *fep = netdev_priv(ndev); 3648 struct device_node *np = pdev->dev.of_node; 3649 int ret; 3650 3651 ret = pm_runtime_get_sync(&pdev->dev); 3652 if (ret < 0) 3653 return ret; 3654 3655 cancel_work_sync(&fep->tx_timeout_work); 3656 fec_ptp_stop(pdev); 3657 unregister_netdev(ndev); 3658 fec_enet_mii_remove(fep); 3659 if (fep->reg_phy) 3660 regulator_disable(fep->reg_phy); 3661 3662 if (of_phy_is_fixed_link(np)) 3663 of_phy_deregister_fixed_link(np); 3664 of_node_put(fep->phy_node); 3665 free_netdev(ndev); 3666 3667 clk_disable_unprepare(fep->clk_ahb); 3668 clk_disable_unprepare(fep->clk_ipg); 3669 pm_runtime_put_noidle(&pdev->dev); 3670 pm_runtime_disable(&pdev->dev); 3671 3672 return 0; 3673 } 3674 3675 static int __maybe_unused fec_suspend(struct device *dev) 3676 { 3677 struct net_device *ndev = dev_get_drvdata(dev); 3678 struct fec_enet_private *fep = netdev_priv(ndev); 3679 3680 rtnl_lock(); 3681 if (netif_running(ndev)) { 3682 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 3683 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 3684 phy_stop(ndev->phydev); 3685 napi_disable(&fep->napi); 3686 netif_tx_lock_bh(ndev); 3687 netif_device_detach(ndev); 3688 netif_tx_unlock_bh(ndev); 3689 fec_stop(ndev); 3690 fec_enet_clk_enable(ndev, false); 3691 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3692 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3693 } 3694 rtnl_unlock(); 3695 3696 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3697 regulator_disable(fep->reg_phy); 3698 3699 /* SOC supply clock to phy, when clock is disabled, phy link down 3700 * SOC control phy regulator, when regulator is disabled, phy link down 3701 */ 3702 if (fep->clk_enet_out || fep->reg_phy) 3703 fep->link = 0; 3704 3705 return 0; 3706 } 3707 3708 static int __maybe_unused fec_resume(struct device *dev) 3709 { 3710 struct net_device *ndev = dev_get_drvdata(dev); 3711 struct fec_enet_private *fep = netdev_priv(ndev); 3712 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 3713 int ret; 3714 int val; 3715 3716 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 3717 ret = regulator_enable(fep->reg_phy); 3718 if (ret) 3719 return ret; 3720 } 3721 3722 rtnl_lock(); 3723 if (netif_running(ndev)) { 3724 ret = fec_enet_clk_enable(ndev, true); 3725 if (ret) { 3726 rtnl_unlock(); 3727 goto failed_clk; 3728 } 3729 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 3730 if (pdata && pdata->sleep_mode_enable) 3731 pdata->sleep_mode_enable(false); 3732 val = readl(fep->hwp + FEC_ECNTRL); 3733 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 3734 writel(val, fep->hwp + FEC_ECNTRL); 3735 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 3736 } else { 3737 pinctrl_pm_select_default_state(&fep->pdev->dev); 3738 } 3739 fec_restart(ndev); 3740 netif_tx_lock_bh(ndev); 3741 netif_device_attach(ndev); 3742 netif_tx_unlock_bh(ndev); 3743 napi_enable(&fep->napi); 3744 phy_start(ndev->phydev); 3745 } 3746 rtnl_unlock(); 3747 3748 return 0; 3749 3750 failed_clk: 3751 if (fep->reg_phy) 3752 regulator_disable(fep->reg_phy); 3753 return ret; 3754 } 3755 3756 static int __maybe_unused fec_runtime_suspend(struct device *dev) 3757 { 3758 struct net_device *ndev = dev_get_drvdata(dev); 3759 struct fec_enet_private *fep = netdev_priv(ndev); 3760 3761 clk_disable_unprepare(fep->clk_ahb); 3762 clk_disable_unprepare(fep->clk_ipg); 3763 3764 return 0; 3765 } 3766 3767 static int __maybe_unused fec_runtime_resume(struct device *dev) 3768 { 3769 struct net_device *ndev = dev_get_drvdata(dev); 3770 struct fec_enet_private *fep = netdev_priv(ndev); 3771 int ret; 3772 3773 ret = clk_prepare_enable(fep->clk_ahb); 3774 if (ret) 3775 return ret; 3776 ret = clk_prepare_enable(fep->clk_ipg); 3777 if (ret) 3778 goto failed_clk_ipg; 3779 3780 return 0; 3781 3782 failed_clk_ipg: 3783 clk_disable_unprepare(fep->clk_ahb); 3784 return ret; 3785 } 3786 3787 static const struct dev_pm_ops fec_pm_ops = { 3788 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 3789 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 3790 }; 3791 3792 static struct platform_driver fec_driver = { 3793 .driver = { 3794 .name = DRIVER_NAME, 3795 .pm = &fec_pm_ops, 3796 .of_match_table = fec_dt_ids, 3797 .suppress_bind_attrs = true, 3798 }, 3799 .id_table = fec_devtype, 3800 .probe = fec_probe, 3801 .remove = fec_drv_remove, 3802 }; 3803 3804 module_platform_driver(fec_driver); 3805 3806 MODULE_ALIAS("platform:"DRIVER_NAME); 3807 MODULE_LICENSE("GPL"); 3808