1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/crc32.h>
52 #include <linux/platform_device.h>
53 #include <linux/mdio.h>
54 #include <linux/phy.h>
55 #include <linux/fec.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/of_gpio.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/prefetch.h>
65 #include <linux/mfd/syscon.h>
66 #include <linux/regmap.h>
67 #include <soc/imx/cpuidle.h>
68 
69 #include <asm/cacheflush.h>
70 
71 #include "fec.h"
72 
73 static void set_multicast_list(struct net_device *ndev);
74 static void fec_enet_itr_coal_init(struct net_device *ndev);
75 
76 #define DRIVER_NAME	"fec"
77 
78 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
79 
80 /* Pause frame feild and FIFO threshold */
81 #define FEC_ENET_FCE	(1 << 5)
82 #define FEC_ENET_RSEM_V	0x84
83 #define FEC_ENET_RSFL_V	16
84 #define FEC_ENET_RAEM_V	0x8
85 #define FEC_ENET_RAFL_V	0x8
86 #define FEC_ENET_OPD_V	0xFFF0
87 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
88 
89 struct fec_devinfo {
90 	u32 quirks;
91 };
92 
93 static const struct fec_devinfo fec_imx25_info = {
94 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
95 		  FEC_QUIRK_HAS_FRREG,
96 };
97 
98 static const struct fec_devinfo fec_imx27_info = {
99 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
100 };
101 
102 static const struct fec_devinfo fec_imx28_info = {
103 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
104 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
105 		  FEC_QUIRK_HAS_FRREG,
106 };
107 
108 static const struct fec_devinfo fec_imx6q_info = {
109 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
110 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
111 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
112 		  FEC_QUIRK_HAS_RACC,
113 };
114 
115 static const struct fec_devinfo fec_mvf600_info = {
116 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
117 };
118 
119 static const struct fec_devinfo fec_imx6x_info = {
120 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
121 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
122 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
123 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
124 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
125 };
126 
127 static const struct fec_devinfo fec_imx6ul_info = {
128 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
129 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
130 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
131 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
132 		  FEC_QUIRK_HAS_COALESCE,
133 };
134 
135 static struct platform_device_id fec_devtype[] = {
136 	{
137 		/* keep it for coldfire */
138 		.name = DRIVER_NAME,
139 		.driver_data = 0,
140 	}, {
141 		.name = "imx25-fec",
142 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
143 	}, {
144 		.name = "imx27-fec",
145 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
146 	}, {
147 		.name = "imx28-fec",
148 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
149 	}, {
150 		.name = "imx6q-fec",
151 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
152 	}, {
153 		.name = "mvf600-fec",
154 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
155 	}, {
156 		.name = "imx6sx-fec",
157 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
158 	}, {
159 		.name = "imx6ul-fec",
160 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
161 	}, {
162 		/* sentinel */
163 	}
164 };
165 MODULE_DEVICE_TABLE(platform, fec_devtype);
166 
167 enum imx_fec_type {
168 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
169 	IMX27_FEC,	/* runs on i.mx27/35/51 */
170 	IMX28_FEC,
171 	IMX6Q_FEC,
172 	MVF600_FEC,
173 	IMX6SX_FEC,
174 	IMX6UL_FEC,
175 };
176 
177 static const struct of_device_id fec_dt_ids[] = {
178 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
179 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
180 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
181 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
182 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
183 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
184 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
185 	{ /* sentinel */ }
186 };
187 MODULE_DEVICE_TABLE(of, fec_dt_ids);
188 
189 static unsigned char macaddr[ETH_ALEN];
190 module_param_array(macaddr, byte, NULL, 0);
191 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
192 
193 #if defined(CONFIG_M5272)
194 /*
195  * Some hardware gets it MAC address out of local flash memory.
196  * if this is non-zero then assume it is the address to get MAC from.
197  */
198 #if defined(CONFIG_NETtel)
199 #define	FEC_FLASHMAC	0xf0006006
200 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
201 #define	FEC_FLASHMAC	0xf0006000
202 #elif defined(CONFIG_CANCam)
203 #define	FEC_FLASHMAC	0xf0020000
204 #elif defined (CONFIG_M5272C3)
205 #define	FEC_FLASHMAC	(0xffe04000 + 4)
206 #elif defined(CONFIG_MOD5272)
207 #define FEC_FLASHMAC	0xffc0406b
208 #else
209 #define	FEC_FLASHMAC	0
210 #endif
211 #endif /* CONFIG_M5272 */
212 
213 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
214  *
215  * 2048 byte skbufs are allocated. However, alignment requirements
216  * varies between FEC variants. Worst case is 64, so round down by 64.
217  */
218 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
219 #define PKT_MINBUF_SIZE		64
220 
221 /* FEC receive acceleration */
222 #define FEC_RACC_IPDIS		(1 << 1)
223 #define FEC_RACC_PRODIS		(1 << 2)
224 #define FEC_RACC_SHIFT16	BIT(7)
225 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
226 
227 /* MIB Control Register */
228 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
229 
230 /*
231  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
232  * size bits. Other FEC hardware does not, so we need to take that into
233  * account when setting it.
234  */
235 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
236     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
237     defined(CONFIG_ARM64)
238 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
239 #else
240 #define	OPT_FRAME_SIZE	0
241 #endif
242 
243 /* FEC MII MMFR bits definition */
244 #define FEC_MMFR_ST		(1 << 30)
245 #define FEC_MMFR_ST_C45		(0)
246 #define FEC_MMFR_OP_READ	(2 << 28)
247 #define FEC_MMFR_OP_READ_C45	(3 << 28)
248 #define FEC_MMFR_OP_WRITE	(1 << 28)
249 #define FEC_MMFR_OP_ADDR_WRITE	(0)
250 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
251 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
252 #define FEC_MMFR_TA		(2 << 16)
253 #define FEC_MMFR_DATA(v)	(v & 0xffff)
254 /* FEC ECR bits definition */
255 #define FEC_ECR_MAGICEN		(1 << 2)
256 #define FEC_ECR_SLEEP		(1 << 3)
257 
258 #define FEC_MII_TIMEOUT		30000 /* us */
259 
260 /* Transmitter timeout */
261 #define TX_TIMEOUT (2 * HZ)
262 
263 #define FEC_PAUSE_FLAG_AUTONEG	0x1
264 #define FEC_PAUSE_FLAG_ENABLE	0x2
265 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
266 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
267 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
268 
269 #define COPYBREAK_DEFAULT	256
270 
271 /* Max number of allowed TCP segments for software TSO */
272 #define FEC_MAX_TSO_SEGS	100
273 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
274 
275 #define IS_TSO_HEADER(txq, addr) \
276 	((addr >= txq->tso_hdrs_dma) && \
277 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
278 
279 static int mii_cnt;
280 
281 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
282 					     struct bufdesc_prop *bd)
283 {
284 	return (bdp >= bd->last) ? bd->base
285 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
286 }
287 
288 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
289 					     struct bufdesc_prop *bd)
290 {
291 	return (bdp <= bd->base) ? bd->last
292 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
293 }
294 
295 static int fec_enet_get_bd_index(struct bufdesc *bdp,
296 				 struct bufdesc_prop *bd)
297 {
298 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
299 }
300 
301 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
302 {
303 	int entries;
304 
305 	entries = (((const char *)txq->dirty_tx -
306 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
307 
308 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
309 }
310 
311 static void swap_buffer(void *bufaddr, int len)
312 {
313 	int i;
314 	unsigned int *buf = bufaddr;
315 
316 	for (i = 0; i < len; i += 4, buf++)
317 		swab32s(buf);
318 }
319 
320 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
321 {
322 	int i;
323 	unsigned int *src = src_buf;
324 	unsigned int *dst = dst_buf;
325 
326 	for (i = 0; i < len; i += 4, src++, dst++)
327 		*dst = swab32p(src);
328 }
329 
330 static void fec_dump(struct net_device *ndev)
331 {
332 	struct fec_enet_private *fep = netdev_priv(ndev);
333 	struct bufdesc *bdp;
334 	struct fec_enet_priv_tx_q *txq;
335 	int index = 0;
336 
337 	netdev_info(ndev, "TX ring dump\n");
338 	pr_info("Nr     SC     addr       len  SKB\n");
339 
340 	txq = fep->tx_queue[0];
341 	bdp = txq->bd.base;
342 
343 	do {
344 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
345 			index,
346 			bdp == txq->bd.cur ? 'S' : ' ',
347 			bdp == txq->dirty_tx ? 'H' : ' ',
348 			fec16_to_cpu(bdp->cbd_sc),
349 			fec32_to_cpu(bdp->cbd_bufaddr),
350 			fec16_to_cpu(bdp->cbd_datlen),
351 			txq->tx_skbuff[index]);
352 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
353 		index++;
354 	} while (bdp != txq->bd.base);
355 }
356 
357 static inline bool is_ipv4_pkt(struct sk_buff *skb)
358 {
359 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
360 }
361 
362 static int
363 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
364 {
365 	/* Only run for packets requiring a checksum. */
366 	if (skb->ip_summed != CHECKSUM_PARTIAL)
367 		return 0;
368 
369 	if (unlikely(skb_cow_head(skb, 0)))
370 		return -1;
371 
372 	if (is_ipv4_pkt(skb))
373 		ip_hdr(skb)->check = 0;
374 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
375 
376 	return 0;
377 }
378 
379 static struct bufdesc *
380 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
381 			     struct sk_buff *skb,
382 			     struct net_device *ndev)
383 {
384 	struct fec_enet_private *fep = netdev_priv(ndev);
385 	struct bufdesc *bdp = txq->bd.cur;
386 	struct bufdesc_ex *ebdp;
387 	int nr_frags = skb_shinfo(skb)->nr_frags;
388 	int frag, frag_len;
389 	unsigned short status;
390 	unsigned int estatus = 0;
391 	skb_frag_t *this_frag;
392 	unsigned int index;
393 	void *bufaddr;
394 	dma_addr_t addr;
395 	int i;
396 
397 	for (frag = 0; frag < nr_frags; frag++) {
398 		this_frag = &skb_shinfo(skb)->frags[frag];
399 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
400 		ebdp = (struct bufdesc_ex *)bdp;
401 
402 		status = fec16_to_cpu(bdp->cbd_sc);
403 		status &= ~BD_ENET_TX_STATS;
404 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
405 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
406 
407 		/* Handle the last BD specially */
408 		if (frag == nr_frags - 1) {
409 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
410 			if (fep->bufdesc_ex) {
411 				estatus |= BD_ENET_TX_INT;
412 				if (unlikely(skb_shinfo(skb)->tx_flags &
413 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
414 					estatus |= BD_ENET_TX_TS;
415 			}
416 		}
417 
418 		if (fep->bufdesc_ex) {
419 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
420 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
421 			if (skb->ip_summed == CHECKSUM_PARTIAL)
422 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
423 			ebdp->cbd_bdu = 0;
424 			ebdp->cbd_esc = cpu_to_fec32(estatus);
425 		}
426 
427 		bufaddr = skb_frag_address(this_frag);
428 
429 		index = fec_enet_get_bd_index(bdp, &txq->bd);
430 		if (((unsigned long) bufaddr) & fep->tx_align ||
431 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
432 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
433 			bufaddr = txq->tx_bounce[index];
434 
435 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
436 				swap_buffer(bufaddr, frag_len);
437 		}
438 
439 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
440 				      DMA_TO_DEVICE);
441 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
442 			if (net_ratelimit())
443 				netdev_err(ndev, "Tx DMA memory map failed\n");
444 			goto dma_mapping_error;
445 		}
446 
447 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
448 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
449 		/* Make sure the updates to rest of the descriptor are
450 		 * performed before transferring ownership.
451 		 */
452 		wmb();
453 		bdp->cbd_sc = cpu_to_fec16(status);
454 	}
455 
456 	return bdp;
457 dma_mapping_error:
458 	bdp = txq->bd.cur;
459 	for (i = 0; i < frag; i++) {
460 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
461 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
462 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
463 	}
464 	return ERR_PTR(-ENOMEM);
465 }
466 
467 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
468 				   struct sk_buff *skb, struct net_device *ndev)
469 {
470 	struct fec_enet_private *fep = netdev_priv(ndev);
471 	int nr_frags = skb_shinfo(skb)->nr_frags;
472 	struct bufdesc *bdp, *last_bdp;
473 	void *bufaddr;
474 	dma_addr_t addr;
475 	unsigned short status;
476 	unsigned short buflen;
477 	unsigned int estatus = 0;
478 	unsigned int index;
479 	int entries_free;
480 
481 	entries_free = fec_enet_get_free_txdesc_num(txq);
482 	if (entries_free < MAX_SKB_FRAGS + 1) {
483 		dev_kfree_skb_any(skb);
484 		if (net_ratelimit())
485 			netdev_err(ndev, "NOT enough BD for SG!\n");
486 		return NETDEV_TX_OK;
487 	}
488 
489 	/* Protocol checksum off-load for TCP and UDP. */
490 	if (fec_enet_clear_csum(skb, ndev)) {
491 		dev_kfree_skb_any(skb);
492 		return NETDEV_TX_OK;
493 	}
494 
495 	/* Fill in a Tx ring entry */
496 	bdp = txq->bd.cur;
497 	last_bdp = bdp;
498 	status = fec16_to_cpu(bdp->cbd_sc);
499 	status &= ~BD_ENET_TX_STATS;
500 
501 	/* Set buffer length and buffer pointer */
502 	bufaddr = skb->data;
503 	buflen = skb_headlen(skb);
504 
505 	index = fec_enet_get_bd_index(bdp, &txq->bd);
506 	if (((unsigned long) bufaddr) & fep->tx_align ||
507 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
508 		memcpy(txq->tx_bounce[index], skb->data, buflen);
509 		bufaddr = txq->tx_bounce[index];
510 
511 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
512 			swap_buffer(bufaddr, buflen);
513 	}
514 
515 	/* Push the data cache so the CPM does not get stale memory data. */
516 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
517 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
518 		dev_kfree_skb_any(skb);
519 		if (net_ratelimit())
520 			netdev_err(ndev, "Tx DMA memory map failed\n");
521 		return NETDEV_TX_OK;
522 	}
523 
524 	if (nr_frags) {
525 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
526 		if (IS_ERR(last_bdp)) {
527 			dma_unmap_single(&fep->pdev->dev, addr,
528 					 buflen, DMA_TO_DEVICE);
529 			dev_kfree_skb_any(skb);
530 			return NETDEV_TX_OK;
531 		}
532 	} else {
533 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
534 		if (fep->bufdesc_ex) {
535 			estatus = BD_ENET_TX_INT;
536 			if (unlikely(skb_shinfo(skb)->tx_flags &
537 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
538 				estatus |= BD_ENET_TX_TS;
539 		}
540 	}
541 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
542 	bdp->cbd_datlen = cpu_to_fec16(buflen);
543 
544 	if (fep->bufdesc_ex) {
545 
546 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
547 
548 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
549 			fep->hwts_tx_en))
550 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
551 
552 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
553 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
554 
555 		if (skb->ip_summed == CHECKSUM_PARTIAL)
556 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
557 
558 		ebdp->cbd_bdu = 0;
559 		ebdp->cbd_esc = cpu_to_fec32(estatus);
560 	}
561 
562 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
563 	/* Save skb pointer */
564 	txq->tx_skbuff[index] = skb;
565 
566 	/* Make sure the updates to rest of the descriptor are performed before
567 	 * transferring ownership.
568 	 */
569 	wmb();
570 
571 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
572 	 * it's the last BD of the frame, and to put the CRC on the end.
573 	 */
574 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
575 	bdp->cbd_sc = cpu_to_fec16(status);
576 
577 	/* If this was the last BD in the ring, start at the beginning again. */
578 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
579 
580 	skb_tx_timestamp(skb);
581 
582 	/* Make sure the update to bdp and tx_skbuff are performed before
583 	 * txq->bd.cur.
584 	 */
585 	wmb();
586 	txq->bd.cur = bdp;
587 
588 	/* Trigger transmission start */
589 	writel(0, txq->bd.reg_desc_active);
590 
591 	return 0;
592 }
593 
594 static int
595 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
596 			  struct net_device *ndev,
597 			  struct bufdesc *bdp, int index, char *data,
598 			  int size, bool last_tcp, bool is_last)
599 {
600 	struct fec_enet_private *fep = netdev_priv(ndev);
601 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
602 	unsigned short status;
603 	unsigned int estatus = 0;
604 	dma_addr_t addr;
605 
606 	status = fec16_to_cpu(bdp->cbd_sc);
607 	status &= ~BD_ENET_TX_STATS;
608 
609 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
610 
611 	if (((unsigned long) data) & fep->tx_align ||
612 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
613 		memcpy(txq->tx_bounce[index], data, size);
614 		data = txq->tx_bounce[index];
615 
616 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
617 			swap_buffer(data, size);
618 	}
619 
620 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
621 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
622 		dev_kfree_skb_any(skb);
623 		if (net_ratelimit())
624 			netdev_err(ndev, "Tx DMA memory map failed\n");
625 		return NETDEV_TX_BUSY;
626 	}
627 
628 	bdp->cbd_datlen = cpu_to_fec16(size);
629 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
630 
631 	if (fep->bufdesc_ex) {
632 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
633 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
634 		if (skb->ip_summed == CHECKSUM_PARTIAL)
635 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
636 		ebdp->cbd_bdu = 0;
637 		ebdp->cbd_esc = cpu_to_fec32(estatus);
638 	}
639 
640 	/* Handle the last BD specially */
641 	if (last_tcp)
642 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
643 	if (is_last) {
644 		status |= BD_ENET_TX_INTR;
645 		if (fep->bufdesc_ex)
646 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
647 	}
648 
649 	bdp->cbd_sc = cpu_to_fec16(status);
650 
651 	return 0;
652 }
653 
654 static int
655 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
656 			 struct sk_buff *skb, struct net_device *ndev,
657 			 struct bufdesc *bdp, int index)
658 {
659 	struct fec_enet_private *fep = netdev_priv(ndev);
660 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
661 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
662 	void *bufaddr;
663 	unsigned long dmabuf;
664 	unsigned short status;
665 	unsigned int estatus = 0;
666 
667 	status = fec16_to_cpu(bdp->cbd_sc);
668 	status &= ~BD_ENET_TX_STATS;
669 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
670 
671 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
672 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
673 	if (((unsigned long)bufaddr) & fep->tx_align ||
674 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
675 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
676 		bufaddr = txq->tx_bounce[index];
677 
678 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
679 			swap_buffer(bufaddr, hdr_len);
680 
681 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
682 					hdr_len, DMA_TO_DEVICE);
683 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
684 			dev_kfree_skb_any(skb);
685 			if (net_ratelimit())
686 				netdev_err(ndev, "Tx DMA memory map failed\n");
687 			return NETDEV_TX_BUSY;
688 		}
689 	}
690 
691 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
692 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
693 
694 	if (fep->bufdesc_ex) {
695 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
696 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
697 		if (skb->ip_summed == CHECKSUM_PARTIAL)
698 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
699 		ebdp->cbd_bdu = 0;
700 		ebdp->cbd_esc = cpu_to_fec32(estatus);
701 	}
702 
703 	bdp->cbd_sc = cpu_to_fec16(status);
704 
705 	return 0;
706 }
707 
708 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
709 				   struct sk_buff *skb,
710 				   struct net_device *ndev)
711 {
712 	struct fec_enet_private *fep = netdev_priv(ndev);
713 	int hdr_len, total_len, data_left;
714 	struct bufdesc *bdp = txq->bd.cur;
715 	struct tso_t tso;
716 	unsigned int index = 0;
717 	int ret;
718 
719 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
720 		dev_kfree_skb_any(skb);
721 		if (net_ratelimit())
722 			netdev_err(ndev, "NOT enough BD for TSO!\n");
723 		return NETDEV_TX_OK;
724 	}
725 
726 	/* Protocol checksum off-load for TCP and UDP. */
727 	if (fec_enet_clear_csum(skb, ndev)) {
728 		dev_kfree_skb_any(skb);
729 		return NETDEV_TX_OK;
730 	}
731 
732 	/* Initialize the TSO handler, and prepare the first payload */
733 	hdr_len = tso_start(skb, &tso);
734 
735 	total_len = skb->len - hdr_len;
736 	while (total_len > 0) {
737 		char *hdr;
738 
739 		index = fec_enet_get_bd_index(bdp, &txq->bd);
740 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
741 		total_len -= data_left;
742 
743 		/* prepare packet headers: MAC + IP + TCP */
744 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
745 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
746 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
747 		if (ret)
748 			goto err_release;
749 
750 		while (data_left > 0) {
751 			int size;
752 
753 			size = min_t(int, tso.size, data_left);
754 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
755 			index = fec_enet_get_bd_index(bdp, &txq->bd);
756 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
757 							bdp, index,
758 							tso.data, size,
759 							size == data_left,
760 							total_len == 0);
761 			if (ret)
762 				goto err_release;
763 
764 			data_left -= size;
765 			tso_build_data(skb, &tso, size);
766 		}
767 
768 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
769 	}
770 
771 	/* Save skb pointer */
772 	txq->tx_skbuff[index] = skb;
773 
774 	skb_tx_timestamp(skb);
775 	txq->bd.cur = bdp;
776 
777 	/* Trigger transmission start */
778 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
779 	    !readl(txq->bd.reg_desc_active) ||
780 	    !readl(txq->bd.reg_desc_active) ||
781 	    !readl(txq->bd.reg_desc_active) ||
782 	    !readl(txq->bd.reg_desc_active))
783 		writel(0, txq->bd.reg_desc_active);
784 
785 	return 0;
786 
787 err_release:
788 	/* TODO: Release all used data descriptors for TSO */
789 	return ret;
790 }
791 
792 static netdev_tx_t
793 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
794 {
795 	struct fec_enet_private *fep = netdev_priv(ndev);
796 	int entries_free;
797 	unsigned short queue;
798 	struct fec_enet_priv_tx_q *txq;
799 	struct netdev_queue *nq;
800 	int ret;
801 
802 	queue = skb_get_queue_mapping(skb);
803 	txq = fep->tx_queue[queue];
804 	nq = netdev_get_tx_queue(ndev, queue);
805 
806 	if (skb_is_gso(skb))
807 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
808 	else
809 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
810 	if (ret)
811 		return ret;
812 
813 	entries_free = fec_enet_get_free_txdesc_num(txq);
814 	if (entries_free <= txq->tx_stop_threshold)
815 		netif_tx_stop_queue(nq);
816 
817 	return NETDEV_TX_OK;
818 }
819 
820 /* Init RX & TX buffer descriptors
821  */
822 static void fec_enet_bd_init(struct net_device *dev)
823 {
824 	struct fec_enet_private *fep = netdev_priv(dev);
825 	struct fec_enet_priv_tx_q *txq;
826 	struct fec_enet_priv_rx_q *rxq;
827 	struct bufdesc *bdp;
828 	unsigned int i;
829 	unsigned int q;
830 
831 	for (q = 0; q < fep->num_rx_queues; q++) {
832 		/* Initialize the receive buffer descriptors. */
833 		rxq = fep->rx_queue[q];
834 		bdp = rxq->bd.base;
835 
836 		for (i = 0; i < rxq->bd.ring_size; i++) {
837 
838 			/* Initialize the BD for every fragment in the page. */
839 			if (bdp->cbd_bufaddr)
840 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
841 			else
842 				bdp->cbd_sc = cpu_to_fec16(0);
843 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
844 		}
845 
846 		/* Set the last buffer to wrap */
847 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
848 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
849 
850 		rxq->bd.cur = rxq->bd.base;
851 	}
852 
853 	for (q = 0; q < fep->num_tx_queues; q++) {
854 		/* ...and the same for transmit */
855 		txq = fep->tx_queue[q];
856 		bdp = txq->bd.base;
857 		txq->bd.cur = bdp;
858 
859 		for (i = 0; i < txq->bd.ring_size; i++) {
860 			/* Initialize the BD for every fragment in the page. */
861 			bdp->cbd_sc = cpu_to_fec16(0);
862 			if (bdp->cbd_bufaddr &&
863 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
864 				dma_unmap_single(&fep->pdev->dev,
865 						 fec32_to_cpu(bdp->cbd_bufaddr),
866 						 fec16_to_cpu(bdp->cbd_datlen),
867 						 DMA_TO_DEVICE);
868 			if (txq->tx_skbuff[i]) {
869 				dev_kfree_skb_any(txq->tx_skbuff[i]);
870 				txq->tx_skbuff[i] = NULL;
871 			}
872 			bdp->cbd_bufaddr = cpu_to_fec32(0);
873 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
874 		}
875 
876 		/* Set the last buffer to wrap */
877 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
878 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
879 		txq->dirty_tx = bdp;
880 	}
881 }
882 
883 static void fec_enet_active_rxring(struct net_device *ndev)
884 {
885 	struct fec_enet_private *fep = netdev_priv(ndev);
886 	int i;
887 
888 	for (i = 0; i < fep->num_rx_queues; i++)
889 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
890 }
891 
892 static void fec_enet_enable_ring(struct net_device *ndev)
893 {
894 	struct fec_enet_private *fep = netdev_priv(ndev);
895 	struct fec_enet_priv_tx_q *txq;
896 	struct fec_enet_priv_rx_q *rxq;
897 	int i;
898 
899 	for (i = 0; i < fep->num_rx_queues; i++) {
900 		rxq = fep->rx_queue[i];
901 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
902 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
903 
904 		/* enable DMA1/2 */
905 		if (i)
906 			writel(RCMR_MATCHEN | RCMR_CMP(i),
907 			       fep->hwp + FEC_RCMR(i));
908 	}
909 
910 	for (i = 0; i < fep->num_tx_queues; i++) {
911 		txq = fep->tx_queue[i];
912 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
913 
914 		/* enable DMA1/2 */
915 		if (i)
916 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
917 			       fep->hwp + FEC_DMA_CFG(i));
918 	}
919 }
920 
921 static void fec_enet_reset_skb(struct net_device *ndev)
922 {
923 	struct fec_enet_private *fep = netdev_priv(ndev);
924 	struct fec_enet_priv_tx_q *txq;
925 	int i, j;
926 
927 	for (i = 0; i < fep->num_tx_queues; i++) {
928 		txq = fep->tx_queue[i];
929 
930 		for (j = 0; j < txq->bd.ring_size; j++) {
931 			if (txq->tx_skbuff[j]) {
932 				dev_kfree_skb_any(txq->tx_skbuff[j]);
933 				txq->tx_skbuff[j] = NULL;
934 			}
935 		}
936 	}
937 }
938 
939 /*
940  * This function is called to start or restart the FEC during a link
941  * change, transmit timeout, or to reconfigure the FEC.  The network
942  * packet processing for this device must be stopped before this call.
943  */
944 static void
945 fec_restart(struct net_device *ndev)
946 {
947 	struct fec_enet_private *fep = netdev_priv(ndev);
948 	u32 val;
949 	u32 temp_mac[2];
950 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
951 	u32 ecntl = 0x2; /* ETHEREN */
952 
953 	/* Whack a reset.  We should wait for this.
954 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
955 	 * instead of reset MAC itself.
956 	 */
957 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
958 		writel(0, fep->hwp + FEC_ECNTRL);
959 	} else {
960 		writel(1, fep->hwp + FEC_ECNTRL);
961 		udelay(10);
962 	}
963 
964 	/*
965 	 * enet-mac reset will reset mac address registers too,
966 	 * so need to reconfigure it.
967 	 */
968 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
969 	writel((__force u32)cpu_to_be32(temp_mac[0]),
970 	       fep->hwp + FEC_ADDR_LOW);
971 	writel((__force u32)cpu_to_be32(temp_mac[1]),
972 	       fep->hwp + FEC_ADDR_HIGH);
973 
974 	/* Clear any outstanding interrupt, except MDIO. */
975 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
976 
977 	fec_enet_bd_init(ndev);
978 
979 	fec_enet_enable_ring(ndev);
980 
981 	/* Reset tx SKB buffers. */
982 	fec_enet_reset_skb(ndev);
983 
984 	/* Enable MII mode */
985 	if (fep->full_duplex == DUPLEX_FULL) {
986 		/* FD enable */
987 		writel(0x04, fep->hwp + FEC_X_CNTRL);
988 	} else {
989 		/* No Rcv on Xmit */
990 		rcntl |= 0x02;
991 		writel(0x0, fep->hwp + FEC_X_CNTRL);
992 	}
993 
994 	/* Set MII speed */
995 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
996 
997 #if !defined(CONFIG_M5272)
998 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
999 		val = readl(fep->hwp + FEC_RACC);
1000 		/* align IP header */
1001 		val |= FEC_RACC_SHIFT16;
1002 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1003 			/* set RX checksum */
1004 			val |= FEC_RACC_OPTIONS;
1005 		else
1006 			val &= ~FEC_RACC_OPTIONS;
1007 		writel(val, fep->hwp + FEC_RACC);
1008 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1009 	}
1010 #endif
1011 
1012 	/*
1013 	 * The phy interface and speed need to get configured
1014 	 * differently on enet-mac.
1015 	 */
1016 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1017 		/* Enable flow control and length check */
1018 		rcntl |= 0x40000000 | 0x00000020;
1019 
1020 		/* RGMII, RMII or MII */
1021 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1022 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1023 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1024 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1025 			rcntl |= (1 << 6);
1026 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1027 			rcntl |= (1 << 8);
1028 		else
1029 			rcntl &= ~(1 << 8);
1030 
1031 		/* 1G, 100M or 10M */
1032 		if (ndev->phydev) {
1033 			if (ndev->phydev->speed == SPEED_1000)
1034 				ecntl |= (1 << 5);
1035 			else if (ndev->phydev->speed == SPEED_100)
1036 				rcntl &= ~(1 << 9);
1037 			else
1038 				rcntl |= (1 << 9);
1039 		}
1040 	} else {
1041 #ifdef FEC_MIIGSK_ENR
1042 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1043 			u32 cfgr;
1044 			/* disable the gasket and wait */
1045 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1046 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1047 				udelay(1);
1048 
1049 			/*
1050 			 * configure the gasket:
1051 			 *   RMII, 50 MHz, no loopback, no echo
1052 			 *   MII, 25 MHz, no loopback, no echo
1053 			 */
1054 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1055 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1056 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1057 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1058 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1059 
1060 			/* re-enable the gasket */
1061 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1062 		}
1063 #endif
1064 	}
1065 
1066 #if !defined(CONFIG_M5272)
1067 	/* enable pause frame*/
1068 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1069 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1070 	     ndev->phydev && ndev->phydev->pause)) {
1071 		rcntl |= FEC_ENET_FCE;
1072 
1073 		/* set FIFO threshold parameter to reduce overrun */
1074 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1075 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1076 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1077 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1078 
1079 		/* OPD */
1080 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1081 	} else {
1082 		rcntl &= ~FEC_ENET_FCE;
1083 	}
1084 #endif /* !defined(CONFIG_M5272) */
1085 
1086 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1087 
1088 	/* Setup multicast filter. */
1089 	set_multicast_list(ndev);
1090 #ifndef CONFIG_M5272
1091 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1092 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1093 #endif
1094 
1095 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1096 		/* enable ENET endian swap */
1097 		ecntl |= (1 << 8);
1098 		/* enable ENET store and forward mode */
1099 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1100 	}
1101 
1102 	if (fep->bufdesc_ex)
1103 		ecntl |= (1 << 4);
1104 
1105 #ifndef CONFIG_M5272
1106 	/* Enable the MIB statistic event counters */
1107 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1108 #endif
1109 
1110 	/* And last, enable the transmit and receive processing */
1111 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1112 	fec_enet_active_rxring(ndev);
1113 
1114 	if (fep->bufdesc_ex)
1115 		fec_ptp_start_cyclecounter(ndev);
1116 
1117 	/* Enable interrupts we wish to service */
1118 	if (fep->link)
1119 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1120 	else
1121 		writel(0, fep->hwp + FEC_IMASK);
1122 
1123 	/* Init the interrupt coalescing */
1124 	fec_enet_itr_coal_init(ndev);
1125 
1126 }
1127 
1128 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1129 {
1130 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1131 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1132 
1133 	if (stop_gpr->gpr) {
1134 		if (enabled)
1135 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1136 					   BIT(stop_gpr->bit),
1137 					   BIT(stop_gpr->bit));
1138 		else
1139 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1140 					   BIT(stop_gpr->bit), 0);
1141 	} else if (pdata && pdata->sleep_mode_enable) {
1142 		pdata->sleep_mode_enable(enabled);
1143 	}
1144 }
1145 
1146 static void
1147 fec_stop(struct net_device *ndev)
1148 {
1149 	struct fec_enet_private *fep = netdev_priv(ndev);
1150 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1151 	u32 val;
1152 
1153 	/* We cannot expect a graceful transmit stop without link !!! */
1154 	if (fep->link) {
1155 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1156 		udelay(10);
1157 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1158 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1159 	}
1160 
1161 	/* Whack a reset.  We should wait for this.
1162 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1163 	 * instead of reset MAC itself.
1164 	 */
1165 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1166 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1167 			writel(0, fep->hwp + FEC_ECNTRL);
1168 		} else {
1169 			writel(1, fep->hwp + FEC_ECNTRL);
1170 			udelay(10);
1171 		}
1172 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1173 	} else {
1174 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1175 		val = readl(fep->hwp + FEC_ECNTRL);
1176 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1177 		writel(val, fep->hwp + FEC_ECNTRL);
1178 		fec_enet_stop_mode(fep, true);
1179 	}
1180 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1181 
1182 	/* We have to keep ENET enabled to have MII interrupt stay working */
1183 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1184 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1185 		writel(2, fep->hwp + FEC_ECNTRL);
1186 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1187 	}
1188 }
1189 
1190 
1191 static void
1192 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1193 {
1194 	struct fec_enet_private *fep = netdev_priv(ndev);
1195 
1196 	fec_dump(ndev);
1197 
1198 	ndev->stats.tx_errors++;
1199 
1200 	schedule_work(&fep->tx_timeout_work);
1201 }
1202 
1203 static void fec_enet_timeout_work(struct work_struct *work)
1204 {
1205 	struct fec_enet_private *fep =
1206 		container_of(work, struct fec_enet_private, tx_timeout_work);
1207 	struct net_device *ndev = fep->netdev;
1208 
1209 	rtnl_lock();
1210 	if (netif_device_present(ndev) || netif_running(ndev)) {
1211 		napi_disable(&fep->napi);
1212 		netif_tx_lock_bh(ndev);
1213 		fec_restart(ndev);
1214 		netif_tx_wake_all_queues(ndev);
1215 		netif_tx_unlock_bh(ndev);
1216 		napi_enable(&fep->napi);
1217 	}
1218 	rtnl_unlock();
1219 }
1220 
1221 static void
1222 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1223 	struct skb_shared_hwtstamps *hwtstamps)
1224 {
1225 	unsigned long flags;
1226 	u64 ns;
1227 
1228 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1229 	ns = timecounter_cyc2time(&fep->tc, ts);
1230 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1231 
1232 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1233 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1234 }
1235 
1236 static void
1237 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1238 {
1239 	struct	fec_enet_private *fep;
1240 	struct bufdesc *bdp;
1241 	unsigned short status;
1242 	struct	sk_buff	*skb;
1243 	struct fec_enet_priv_tx_q *txq;
1244 	struct netdev_queue *nq;
1245 	int	index = 0;
1246 	int	entries_free;
1247 
1248 	fep = netdev_priv(ndev);
1249 
1250 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1251 
1252 	txq = fep->tx_queue[queue_id];
1253 	/* get next bdp of dirty_tx */
1254 	nq = netdev_get_tx_queue(ndev, queue_id);
1255 	bdp = txq->dirty_tx;
1256 
1257 	/* get next bdp of dirty_tx */
1258 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1259 
1260 	while (bdp != READ_ONCE(txq->bd.cur)) {
1261 		/* Order the load of bd.cur and cbd_sc */
1262 		rmb();
1263 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1264 		if (status & BD_ENET_TX_READY)
1265 			break;
1266 
1267 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1268 
1269 		skb = txq->tx_skbuff[index];
1270 		txq->tx_skbuff[index] = NULL;
1271 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1272 			dma_unmap_single(&fep->pdev->dev,
1273 					 fec32_to_cpu(bdp->cbd_bufaddr),
1274 					 fec16_to_cpu(bdp->cbd_datlen),
1275 					 DMA_TO_DEVICE);
1276 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1277 		if (!skb)
1278 			goto skb_done;
1279 
1280 		/* Check for errors. */
1281 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1282 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1283 				   BD_ENET_TX_CSL)) {
1284 			ndev->stats.tx_errors++;
1285 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1286 				ndev->stats.tx_heartbeat_errors++;
1287 			if (status & BD_ENET_TX_LC)  /* Late collision */
1288 				ndev->stats.tx_window_errors++;
1289 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1290 				ndev->stats.tx_aborted_errors++;
1291 			if (status & BD_ENET_TX_UN)  /* Underrun */
1292 				ndev->stats.tx_fifo_errors++;
1293 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1294 				ndev->stats.tx_carrier_errors++;
1295 		} else {
1296 			ndev->stats.tx_packets++;
1297 			ndev->stats.tx_bytes += skb->len;
1298 		}
1299 
1300 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1301 			fep->bufdesc_ex) {
1302 			struct skb_shared_hwtstamps shhwtstamps;
1303 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1304 
1305 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1306 			skb_tstamp_tx(skb, &shhwtstamps);
1307 		}
1308 
1309 		/* Deferred means some collisions occurred during transmit,
1310 		 * but we eventually sent the packet OK.
1311 		 */
1312 		if (status & BD_ENET_TX_DEF)
1313 			ndev->stats.collisions++;
1314 
1315 		/* Free the sk buffer associated with this last transmit */
1316 		dev_kfree_skb_any(skb);
1317 skb_done:
1318 		/* Make sure the update to bdp and tx_skbuff are performed
1319 		 * before dirty_tx
1320 		 */
1321 		wmb();
1322 		txq->dirty_tx = bdp;
1323 
1324 		/* Update pointer to next buffer descriptor to be transmitted */
1325 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1326 
1327 		/* Since we have freed up a buffer, the ring is no longer full
1328 		 */
1329 		if (netif_tx_queue_stopped(nq)) {
1330 			entries_free = fec_enet_get_free_txdesc_num(txq);
1331 			if (entries_free >= txq->tx_wake_threshold)
1332 				netif_tx_wake_queue(nq);
1333 		}
1334 	}
1335 
1336 	/* ERR006358: Keep the transmitter going */
1337 	if (bdp != txq->bd.cur &&
1338 	    readl(txq->bd.reg_desc_active) == 0)
1339 		writel(0, txq->bd.reg_desc_active);
1340 }
1341 
1342 static void
1343 fec_enet_tx(struct net_device *ndev)
1344 {
1345 	struct fec_enet_private *fep = netdev_priv(ndev);
1346 	u16 queue_id;
1347 	/* First process class A queue, then Class B and Best Effort queue */
1348 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1349 		clear_bit(queue_id, &fep->work_tx);
1350 		fec_enet_tx_queue(ndev, queue_id);
1351 	}
1352 	return;
1353 }
1354 
1355 static int
1356 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1357 {
1358 	struct  fec_enet_private *fep = netdev_priv(ndev);
1359 	int off;
1360 
1361 	off = ((unsigned long)skb->data) & fep->rx_align;
1362 	if (off)
1363 		skb_reserve(skb, fep->rx_align + 1 - off);
1364 
1365 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1366 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1367 		if (net_ratelimit())
1368 			netdev_err(ndev, "Rx DMA memory map failed\n");
1369 		return -ENOMEM;
1370 	}
1371 
1372 	return 0;
1373 }
1374 
1375 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1376 			       struct bufdesc *bdp, u32 length, bool swap)
1377 {
1378 	struct  fec_enet_private *fep = netdev_priv(ndev);
1379 	struct sk_buff *new_skb;
1380 
1381 	if (length > fep->rx_copybreak)
1382 		return false;
1383 
1384 	new_skb = netdev_alloc_skb(ndev, length);
1385 	if (!new_skb)
1386 		return false;
1387 
1388 	dma_sync_single_for_cpu(&fep->pdev->dev,
1389 				fec32_to_cpu(bdp->cbd_bufaddr),
1390 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1391 				DMA_FROM_DEVICE);
1392 	if (!swap)
1393 		memcpy(new_skb->data, (*skb)->data, length);
1394 	else
1395 		swap_buffer2(new_skb->data, (*skb)->data, length);
1396 	*skb = new_skb;
1397 
1398 	return true;
1399 }
1400 
1401 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1402  * When we update through the ring, if the next incoming buffer has
1403  * not been given to the system, we just set the empty indicator,
1404  * effectively tossing the packet.
1405  */
1406 static int
1407 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1408 {
1409 	struct fec_enet_private *fep = netdev_priv(ndev);
1410 	struct fec_enet_priv_rx_q *rxq;
1411 	struct bufdesc *bdp;
1412 	unsigned short status;
1413 	struct  sk_buff *skb_new = NULL;
1414 	struct  sk_buff *skb;
1415 	ushort	pkt_len;
1416 	__u8 *data;
1417 	int	pkt_received = 0;
1418 	struct	bufdesc_ex *ebdp = NULL;
1419 	bool	vlan_packet_rcvd = false;
1420 	u16	vlan_tag;
1421 	int	index = 0;
1422 	bool	is_copybreak;
1423 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1424 
1425 #ifdef CONFIG_M532x
1426 	flush_cache_all();
1427 #endif
1428 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1429 	rxq = fep->rx_queue[queue_id];
1430 
1431 	/* First, grab all of the stats for the incoming packet.
1432 	 * These get messed up if we get called due to a busy condition.
1433 	 */
1434 	bdp = rxq->bd.cur;
1435 
1436 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1437 
1438 		if (pkt_received >= budget)
1439 			break;
1440 		pkt_received++;
1441 
1442 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1443 
1444 		/* Check for errors. */
1445 		status ^= BD_ENET_RX_LAST;
1446 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1447 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1448 			   BD_ENET_RX_CL)) {
1449 			ndev->stats.rx_errors++;
1450 			if (status & BD_ENET_RX_OV) {
1451 				/* FIFO overrun */
1452 				ndev->stats.rx_fifo_errors++;
1453 				goto rx_processing_done;
1454 			}
1455 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1456 						| BD_ENET_RX_LAST)) {
1457 				/* Frame too long or too short. */
1458 				ndev->stats.rx_length_errors++;
1459 				if (status & BD_ENET_RX_LAST)
1460 					netdev_err(ndev, "rcv is not +last\n");
1461 			}
1462 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1463 				ndev->stats.rx_crc_errors++;
1464 			/* Report late collisions as a frame error. */
1465 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1466 				ndev->stats.rx_frame_errors++;
1467 			goto rx_processing_done;
1468 		}
1469 
1470 		/* Process the incoming frame. */
1471 		ndev->stats.rx_packets++;
1472 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1473 		ndev->stats.rx_bytes += pkt_len;
1474 
1475 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1476 		skb = rxq->rx_skbuff[index];
1477 
1478 		/* The packet length includes FCS, but we don't want to
1479 		 * include that when passing upstream as it messes up
1480 		 * bridging applications.
1481 		 */
1482 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1483 						  need_swap);
1484 		if (!is_copybreak) {
1485 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1486 			if (unlikely(!skb_new)) {
1487 				ndev->stats.rx_dropped++;
1488 				goto rx_processing_done;
1489 			}
1490 			dma_unmap_single(&fep->pdev->dev,
1491 					 fec32_to_cpu(bdp->cbd_bufaddr),
1492 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1493 					 DMA_FROM_DEVICE);
1494 		}
1495 
1496 		prefetch(skb->data - NET_IP_ALIGN);
1497 		skb_put(skb, pkt_len - 4);
1498 		data = skb->data;
1499 
1500 		if (!is_copybreak && need_swap)
1501 			swap_buffer(data, pkt_len);
1502 
1503 #if !defined(CONFIG_M5272)
1504 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1505 			data = skb_pull_inline(skb, 2);
1506 #endif
1507 
1508 		/* Extract the enhanced buffer descriptor */
1509 		ebdp = NULL;
1510 		if (fep->bufdesc_ex)
1511 			ebdp = (struct bufdesc_ex *)bdp;
1512 
1513 		/* If this is a VLAN packet remove the VLAN Tag */
1514 		vlan_packet_rcvd = false;
1515 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1516 		    fep->bufdesc_ex &&
1517 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1518 			/* Push and remove the vlan tag */
1519 			struct vlan_hdr *vlan_header =
1520 					(struct vlan_hdr *) (data + ETH_HLEN);
1521 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1522 
1523 			vlan_packet_rcvd = true;
1524 
1525 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1526 			skb_pull(skb, VLAN_HLEN);
1527 		}
1528 
1529 		skb->protocol = eth_type_trans(skb, ndev);
1530 
1531 		/* Get receive timestamp from the skb */
1532 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1533 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1534 					  skb_hwtstamps(skb));
1535 
1536 		if (fep->bufdesc_ex &&
1537 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1538 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1539 				/* don't check it */
1540 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1541 			} else {
1542 				skb_checksum_none_assert(skb);
1543 			}
1544 		}
1545 
1546 		/* Handle received VLAN packets */
1547 		if (vlan_packet_rcvd)
1548 			__vlan_hwaccel_put_tag(skb,
1549 					       htons(ETH_P_8021Q),
1550 					       vlan_tag);
1551 
1552 		napi_gro_receive(&fep->napi, skb);
1553 
1554 		if (is_copybreak) {
1555 			dma_sync_single_for_device(&fep->pdev->dev,
1556 						   fec32_to_cpu(bdp->cbd_bufaddr),
1557 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1558 						   DMA_FROM_DEVICE);
1559 		} else {
1560 			rxq->rx_skbuff[index] = skb_new;
1561 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1562 		}
1563 
1564 rx_processing_done:
1565 		/* Clear the status flags for this buffer */
1566 		status &= ~BD_ENET_RX_STATS;
1567 
1568 		/* Mark the buffer empty */
1569 		status |= BD_ENET_RX_EMPTY;
1570 
1571 		if (fep->bufdesc_ex) {
1572 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1573 
1574 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1575 			ebdp->cbd_prot = 0;
1576 			ebdp->cbd_bdu = 0;
1577 		}
1578 		/* Make sure the updates to rest of the descriptor are
1579 		 * performed before transferring ownership.
1580 		 */
1581 		wmb();
1582 		bdp->cbd_sc = cpu_to_fec16(status);
1583 
1584 		/* Update BD pointer to next entry */
1585 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1586 
1587 		/* Doing this here will keep the FEC running while we process
1588 		 * incoming frames.  On a heavily loaded network, we should be
1589 		 * able to keep up at the expense of system resources.
1590 		 */
1591 		writel(0, rxq->bd.reg_desc_active);
1592 	}
1593 	rxq->bd.cur = bdp;
1594 	return pkt_received;
1595 }
1596 
1597 static int
1598 fec_enet_rx(struct net_device *ndev, int budget)
1599 {
1600 	int     pkt_received = 0;
1601 	u16	queue_id;
1602 	struct fec_enet_private *fep = netdev_priv(ndev);
1603 
1604 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1605 		int ret;
1606 
1607 		ret = fec_enet_rx_queue(ndev,
1608 					budget - pkt_received, queue_id);
1609 
1610 		if (ret < budget - pkt_received)
1611 			clear_bit(queue_id, &fep->work_rx);
1612 
1613 		pkt_received += ret;
1614 	}
1615 	return pkt_received;
1616 }
1617 
1618 static bool
1619 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1620 {
1621 	if (int_events == 0)
1622 		return false;
1623 
1624 	if (int_events & FEC_ENET_RXF_0)
1625 		fep->work_rx |= (1 << 2);
1626 	if (int_events & FEC_ENET_RXF_1)
1627 		fep->work_rx |= (1 << 0);
1628 	if (int_events & FEC_ENET_RXF_2)
1629 		fep->work_rx |= (1 << 1);
1630 
1631 	if (int_events & FEC_ENET_TXF_0)
1632 		fep->work_tx |= (1 << 2);
1633 	if (int_events & FEC_ENET_TXF_1)
1634 		fep->work_tx |= (1 << 0);
1635 	if (int_events & FEC_ENET_TXF_2)
1636 		fep->work_tx |= (1 << 1);
1637 
1638 	return true;
1639 }
1640 
1641 static irqreturn_t
1642 fec_enet_interrupt(int irq, void *dev_id)
1643 {
1644 	struct net_device *ndev = dev_id;
1645 	struct fec_enet_private *fep = netdev_priv(ndev);
1646 	uint int_events;
1647 	irqreturn_t ret = IRQ_NONE;
1648 
1649 	int_events = readl(fep->hwp + FEC_IEVENT);
1650 
1651 	/* Don't clear MDIO events, we poll for those */
1652 	int_events &= ~FEC_ENET_MII;
1653 
1654 	writel(int_events, fep->hwp + FEC_IEVENT);
1655 	fec_enet_collect_events(fep, int_events);
1656 
1657 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1658 		ret = IRQ_HANDLED;
1659 
1660 		if (napi_schedule_prep(&fep->napi)) {
1661 			/* Disable interrupts */
1662 			writel(0, fep->hwp + FEC_IMASK);
1663 			__napi_schedule(&fep->napi);
1664 		}
1665 	}
1666 
1667 	return ret;
1668 }
1669 
1670 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1671 {
1672 	struct net_device *ndev = napi->dev;
1673 	struct fec_enet_private *fep = netdev_priv(ndev);
1674 	int pkts;
1675 
1676 	pkts = fec_enet_rx(ndev, budget);
1677 
1678 	fec_enet_tx(ndev);
1679 
1680 	if (pkts < budget) {
1681 		napi_complete_done(napi, pkts);
1682 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1683 	}
1684 	return pkts;
1685 }
1686 
1687 /* ------------------------------------------------------------------------- */
1688 static void fec_get_mac(struct net_device *ndev)
1689 {
1690 	struct fec_enet_private *fep = netdev_priv(ndev);
1691 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1692 	unsigned char *iap, tmpaddr[ETH_ALEN];
1693 
1694 	/*
1695 	 * try to get mac address in following order:
1696 	 *
1697 	 * 1) module parameter via kernel command line in form
1698 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1699 	 */
1700 	iap = macaddr;
1701 
1702 	/*
1703 	 * 2) from device tree data
1704 	 */
1705 	if (!is_valid_ether_addr(iap)) {
1706 		struct device_node *np = fep->pdev->dev.of_node;
1707 		if (np) {
1708 			const char *mac = of_get_mac_address(np);
1709 			if (!IS_ERR(mac))
1710 				iap = (unsigned char *) mac;
1711 		}
1712 	}
1713 
1714 	/*
1715 	 * 3) from flash or fuse (via platform data)
1716 	 */
1717 	if (!is_valid_ether_addr(iap)) {
1718 #ifdef CONFIG_M5272
1719 		if (FEC_FLASHMAC)
1720 			iap = (unsigned char *)FEC_FLASHMAC;
1721 #else
1722 		if (pdata)
1723 			iap = (unsigned char *)&pdata->mac;
1724 #endif
1725 	}
1726 
1727 	/*
1728 	 * 4) FEC mac registers set by bootloader
1729 	 */
1730 	if (!is_valid_ether_addr(iap)) {
1731 		*((__be32 *) &tmpaddr[0]) =
1732 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1733 		*((__be16 *) &tmpaddr[4]) =
1734 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1735 		iap = &tmpaddr[0];
1736 	}
1737 
1738 	/*
1739 	 * 5) random mac address
1740 	 */
1741 	if (!is_valid_ether_addr(iap)) {
1742 		/* Report it and use a random ethernet address instead */
1743 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1744 		eth_hw_addr_random(ndev);
1745 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1746 			 ndev->dev_addr);
1747 		return;
1748 	}
1749 
1750 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1751 
1752 	/* Adjust MAC if using macaddr */
1753 	if (iap == macaddr)
1754 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1755 }
1756 
1757 /* ------------------------------------------------------------------------- */
1758 
1759 /*
1760  * Phy section
1761  */
1762 static void fec_enet_adjust_link(struct net_device *ndev)
1763 {
1764 	struct fec_enet_private *fep = netdev_priv(ndev);
1765 	struct phy_device *phy_dev = ndev->phydev;
1766 	int status_change = 0;
1767 
1768 	/*
1769 	 * If the netdev is down, or is going down, we're not interested
1770 	 * in link state events, so just mark our idea of the link as down
1771 	 * and ignore the event.
1772 	 */
1773 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1774 		fep->link = 0;
1775 	} else if (phy_dev->link) {
1776 		if (!fep->link) {
1777 			fep->link = phy_dev->link;
1778 			status_change = 1;
1779 		}
1780 
1781 		if (fep->full_duplex != phy_dev->duplex) {
1782 			fep->full_duplex = phy_dev->duplex;
1783 			status_change = 1;
1784 		}
1785 
1786 		if (phy_dev->speed != fep->speed) {
1787 			fep->speed = phy_dev->speed;
1788 			status_change = 1;
1789 		}
1790 
1791 		/* if any of the above changed restart the FEC */
1792 		if (status_change) {
1793 			napi_disable(&fep->napi);
1794 			netif_tx_lock_bh(ndev);
1795 			fec_restart(ndev);
1796 			netif_tx_wake_all_queues(ndev);
1797 			netif_tx_unlock_bh(ndev);
1798 			napi_enable(&fep->napi);
1799 		}
1800 	} else {
1801 		if (fep->link) {
1802 			napi_disable(&fep->napi);
1803 			netif_tx_lock_bh(ndev);
1804 			fec_stop(ndev);
1805 			netif_tx_unlock_bh(ndev);
1806 			napi_enable(&fep->napi);
1807 			fep->link = phy_dev->link;
1808 			status_change = 1;
1809 		}
1810 	}
1811 
1812 	if (status_change)
1813 		phy_print_status(phy_dev);
1814 }
1815 
1816 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1817 {
1818 	uint ievent;
1819 	int ret;
1820 
1821 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1822 					ievent & FEC_ENET_MII, 2, 30000);
1823 
1824 	if (!ret)
1825 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1826 
1827 	return ret;
1828 }
1829 
1830 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1831 {
1832 	struct fec_enet_private *fep = bus->priv;
1833 	struct device *dev = &fep->pdev->dev;
1834 	int ret = 0, frame_start, frame_addr, frame_op;
1835 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1836 
1837 	ret = pm_runtime_get_sync(dev);
1838 	if (ret < 0)
1839 		return ret;
1840 
1841 	if (is_c45) {
1842 		frame_start = FEC_MMFR_ST_C45;
1843 
1844 		/* write address */
1845 		frame_addr = (regnum >> 16);
1846 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1847 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1848 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1849 		       fep->hwp + FEC_MII_DATA);
1850 
1851 		/* wait for end of transfer */
1852 		ret = fec_enet_mdio_wait(fep);
1853 		if (ret) {
1854 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1855 			goto out;
1856 		}
1857 
1858 		frame_op = FEC_MMFR_OP_READ_C45;
1859 
1860 	} else {
1861 		/* C22 read */
1862 		frame_op = FEC_MMFR_OP_READ;
1863 		frame_start = FEC_MMFR_ST;
1864 		frame_addr = regnum;
1865 	}
1866 
1867 	/* start a read op */
1868 	writel(frame_start | frame_op |
1869 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1870 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1871 
1872 	/* wait for end of transfer */
1873 	ret = fec_enet_mdio_wait(fep);
1874 	if (ret) {
1875 		netdev_err(fep->netdev, "MDIO read timeout\n");
1876 		goto out;
1877 	}
1878 
1879 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1880 
1881 out:
1882 	pm_runtime_mark_last_busy(dev);
1883 	pm_runtime_put_autosuspend(dev);
1884 
1885 	return ret;
1886 }
1887 
1888 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1889 			   u16 value)
1890 {
1891 	struct fec_enet_private *fep = bus->priv;
1892 	struct device *dev = &fep->pdev->dev;
1893 	int ret, frame_start, frame_addr;
1894 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1895 
1896 	ret = pm_runtime_get_sync(dev);
1897 	if (ret < 0)
1898 		return ret;
1899 	else
1900 		ret = 0;
1901 
1902 	if (is_c45) {
1903 		frame_start = FEC_MMFR_ST_C45;
1904 
1905 		/* write address */
1906 		frame_addr = (regnum >> 16);
1907 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1908 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1909 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1910 		       fep->hwp + FEC_MII_DATA);
1911 
1912 		/* wait for end of transfer */
1913 		ret = fec_enet_mdio_wait(fep);
1914 		if (ret) {
1915 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1916 			goto out;
1917 		}
1918 	} else {
1919 		/* C22 write */
1920 		frame_start = FEC_MMFR_ST;
1921 		frame_addr = regnum;
1922 	}
1923 
1924 	/* start a write op */
1925 	writel(frame_start | FEC_MMFR_OP_WRITE |
1926 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1927 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1928 		fep->hwp + FEC_MII_DATA);
1929 
1930 	/* wait for end of transfer */
1931 	ret = fec_enet_mdio_wait(fep);
1932 	if (ret)
1933 		netdev_err(fep->netdev, "MDIO write timeout\n");
1934 
1935 out:
1936 	pm_runtime_mark_last_busy(dev);
1937 	pm_runtime_put_autosuspend(dev);
1938 
1939 	return ret;
1940 }
1941 
1942 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1943 {
1944 	struct fec_enet_private *fep = netdev_priv(ndev);
1945 	int ret;
1946 
1947 	if (enable) {
1948 		ret = clk_prepare_enable(fep->clk_enet_out);
1949 		if (ret)
1950 			return ret;
1951 
1952 		if (fep->clk_ptp) {
1953 			mutex_lock(&fep->ptp_clk_mutex);
1954 			ret = clk_prepare_enable(fep->clk_ptp);
1955 			if (ret) {
1956 				mutex_unlock(&fep->ptp_clk_mutex);
1957 				goto failed_clk_ptp;
1958 			} else {
1959 				fep->ptp_clk_on = true;
1960 			}
1961 			mutex_unlock(&fep->ptp_clk_mutex);
1962 		}
1963 
1964 		ret = clk_prepare_enable(fep->clk_ref);
1965 		if (ret)
1966 			goto failed_clk_ref;
1967 
1968 		phy_reset_after_clk_enable(ndev->phydev);
1969 	} else {
1970 		clk_disable_unprepare(fep->clk_enet_out);
1971 		if (fep->clk_ptp) {
1972 			mutex_lock(&fep->ptp_clk_mutex);
1973 			clk_disable_unprepare(fep->clk_ptp);
1974 			fep->ptp_clk_on = false;
1975 			mutex_unlock(&fep->ptp_clk_mutex);
1976 		}
1977 		clk_disable_unprepare(fep->clk_ref);
1978 	}
1979 
1980 	return 0;
1981 
1982 failed_clk_ref:
1983 	if (fep->clk_ptp) {
1984 		mutex_lock(&fep->ptp_clk_mutex);
1985 		clk_disable_unprepare(fep->clk_ptp);
1986 		fep->ptp_clk_on = false;
1987 		mutex_unlock(&fep->ptp_clk_mutex);
1988 	}
1989 failed_clk_ptp:
1990 	if (fep->clk_enet_out)
1991 		clk_disable_unprepare(fep->clk_enet_out);
1992 
1993 	return ret;
1994 }
1995 
1996 static int fec_enet_mii_probe(struct net_device *ndev)
1997 {
1998 	struct fec_enet_private *fep = netdev_priv(ndev);
1999 	struct phy_device *phy_dev = NULL;
2000 	char mdio_bus_id[MII_BUS_ID_SIZE];
2001 	char phy_name[MII_BUS_ID_SIZE + 3];
2002 	int phy_id;
2003 	int dev_id = fep->dev_id;
2004 
2005 	if (fep->phy_node) {
2006 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2007 					 &fec_enet_adjust_link, 0,
2008 					 fep->phy_interface);
2009 		if (!phy_dev) {
2010 			netdev_err(ndev, "Unable to connect to phy\n");
2011 			return -ENODEV;
2012 		}
2013 	} else {
2014 		/* check for attached phy */
2015 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2016 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2017 				continue;
2018 			if (dev_id--)
2019 				continue;
2020 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2021 			break;
2022 		}
2023 
2024 		if (phy_id >= PHY_MAX_ADDR) {
2025 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2026 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2027 			phy_id = 0;
2028 		}
2029 
2030 		snprintf(phy_name, sizeof(phy_name),
2031 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2032 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2033 				      fep->phy_interface);
2034 	}
2035 
2036 	if (IS_ERR(phy_dev)) {
2037 		netdev_err(ndev, "could not attach to PHY\n");
2038 		return PTR_ERR(phy_dev);
2039 	}
2040 
2041 	/* mask with MAC supported features */
2042 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2043 		phy_set_max_speed(phy_dev, 1000);
2044 		phy_remove_link_mode(phy_dev,
2045 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2046 #if !defined(CONFIG_M5272)
2047 		phy_support_sym_pause(phy_dev);
2048 #endif
2049 	}
2050 	else
2051 		phy_set_max_speed(phy_dev, 100);
2052 
2053 	fep->link = 0;
2054 	fep->full_duplex = 0;
2055 
2056 	phy_attached_info(phy_dev);
2057 
2058 	return 0;
2059 }
2060 
2061 static int fec_enet_mii_init(struct platform_device *pdev)
2062 {
2063 	static struct mii_bus *fec0_mii_bus;
2064 	struct net_device *ndev = platform_get_drvdata(pdev);
2065 	struct fec_enet_private *fep = netdev_priv(ndev);
2066 	bool suppress_preamble = false;
2067 	struct device_node *node;
2068 	int err = -ENXIO;
2069 	u32 mii_speed, holdtime;
2070 	u32 bus_freq;
2071 
2072 	/*
2073 	 * The i.MX28 dual fec interfaces are not equal.
2074 	 * Here are the differences:
2075 	 *
2076 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2077 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2078 	 *  - external phys can only be configured by fec0
2079 	 *
2080 	 * That is to say fec1 can not work independently. It only works
2081 	 * when fec0 is working. The reason behind this design is that the
2082 	 * second interface is added primarily for Switch mode.
2083 	 *
2084 	 * Because of the last point above, both phys are attached on fec0
2085 	 * mdio interface in board design, and need to be configured by
2086 	 * fec0 mii_bus.
2087 	 */
2088 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2089 		/* fec1 uses fec0 mii_bus */
2090 		if (mii_cnt && fec0_mii_bus) {
2091 			fep->mii_bus = fec0_mii_bus;
2092 			mii_cnt++;
2093 			return 0;
2094 		}
2095 		return -ENOENT;
2096 	}
2097 
2098 	bus_freq = 2500000; /* 2.5MHz by default */
2099 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2100 	if (node) {
2101 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2102 		suppress_preamble = of_property_read_bool(node,
2103 							  "suppress-preamble");
2104 	}
2105 
2106 	/*
2107 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2108 	 *
2109 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2110 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2111 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2112 	 * document.
2113 	 */
2114 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2115 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2116 		mii_speed--;
2117 	if (mii_speed > 63) {
2118 		dev_err(&pdev->dev,
2119 			"fec clock (%lu) too fast to get right mii speed\n",
2120 			clk_get_rate(fep->clk_ipg));
2121 		err = -EINVAL;
2122 		goto err_out;
2123 	}
2124 
2125 	/*
2126 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2127 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2128 	 * versions are RAZ there, so just ignore the difference and write the
2129 	 * register always.
2130 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2131 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2132 	 * output.
2133 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2134 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2135 	 * holdtime cannot result in a value greater than 3.
2136 	 */
2137 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2138 
2139 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2140 
2141 	if (suppress_preamble)
2142 		fep->phy_speed |= BIT(7);
2143 
2144 	/* Clear MMFR to avoid to generate MII event by writing MSCR.
2145 	 * MII event generation condition:
2146 	 * - writing MSCR:
2147 	 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2148 	 *	  mscr_reg_data_in[7:0] != 0
2149 	 * - writing MMFR:
2150 	 *	- mscr[7:0]_not_zero
2151 	 */
2152 	writel(0, fep->hwp + FEC_MII_DATA);
2153 
2154 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2155 
2156 	/* Clear any pending transaction complete indication */
2157 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2158 
2159 	fep->mii_bus = mdiobus_alloc();
2160 	if (fep->mii_bus == NULL) {
2161 		err = -ENOMEM;
2162 		goto err_out;
2163 	}
2164 
2165 	fep->mii_bus->name = "fec_enet_mii_bus";
2166 	fep->mii_bus->read = fec_enet_mdio_read;
2167 	fep->mii_bus->write = fec_enet_mdio_write;
2168 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2169 		pdev->name, fep->dev_id + 1);
2170 	fep->mii_bus->priv = fep;
2171 	fep->mii_bus->parent = &pdev->dev;
2172 
2173 	err = of_mdiobus_register(fep->mii_bus, node);
2174 	of_node_put(node);
2175 	if (err)
2176 		goto err_out_free_mdiobus;
2177 
2178 	mii_cnt++;
2179 
2180 	/* save fec0 mii_bus */
2181 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2182 		fec0_mii_bus = fep->mii_bus;
2183 
2184 	return 0;
2185 
2186 err_out_free_mdiobus:
2187 	mdiobus_free(fep->mii_bus);
2188 err_out:
2189 	return err;
2190 }
2191 
2192 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2193 {
2194 	if (--mii_cnt == 0) {
2195 		mdiobus_unregister(fep->mii_bus);
2196 		mdiobus_free(fep->mii_bus);
2197 	}
2198 }
2199 
2200 static void fec_enet_get_drvinfo(struct net_device *ndev,
2201 				 struct ethtool_drvinfo *info)
2202 {
2203 	struct fec_enet_private *fep = netdev_priv(ndev);
2204 
2205 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2206 		sizeof(info->driver));
2207 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2208 }
2209 
2210 static int fec_enet_get_regs_len(struct net_device *ndev)
2211 {
2212 	struct fec_enet_private *fep = netdev_priv(ndev);
2213 	struct resource *r;
2214 	int s = 0;
2215 
2216 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2217 	if (r)
2218 		s = resource_size(r);
2219 
2220 	return s;
2221 }
2222 
2223 /* List of registers that can be safety be read to dump them with ethtool */
2224 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2225 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2226 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2227 static __u32 fec_enet_register_version = 2;
2228 static u32 fec_enet_register_offset[] = {
2229 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2230 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2231 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2232 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2233 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2234 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2235 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2236 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2237 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2238 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2239 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2240 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2241 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2242 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2243 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2244 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2245 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2246 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2247 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2248 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2249 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2250 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2251 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2252 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2253 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2254 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2255 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2256 };
2257 #else
2258 static __u32 fec_enet_register_version = 1;
2259 static u32 fec_enet_register_offset[] = {
2260 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2261 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2262 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2263 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2264 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2265 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2266 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2267 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2268 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2269 };
2270 #endif
2271 
2272 static void fec_enet_get_regs(struct net_device *ndev,
2273 			      struct ethtool_regs *regs, void *regbuf)
2274 {
2275 	struct fec_enet_private *fep = netdev_priv(ndev);
2276 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2277 	struct device *dev = &fep->pdev->dev;
2278 	u32 *buf = (u32 *)regbuf;
2279 	u32 i, off;
2280 	int ret;
2281 
2282 	ret = pm_runtime_get_sync(dev);
2283 	if (ret < 0)
2284 		return;
2285 
2286 	regs->version = fec_enet_register_version;
2287 
2288 	memset(buf, 0, regs->len);
2289 
2290 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2291 		off = fec_enet_register_offset[i];
2292 
2293 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2294 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2295 			continue;
2296 
2297 		off >>= 2;
2298 		buf[off] = readl(&theregs[off]);
2299 	}
2300 
2301 	pm_runtime_mark_last_busy(dev);
2302 	pm_runtime_put_autosuspend(dev);
2303 }
2304 
2305 static int fec_enet_get_ts_info(struct net_device *ndev,
2306 				struct ethtool_ts_info *info)
2307 {
2308 	struct fec_enet_private *fep = netdev_priv(ndev);
2309 
2310 	if (fep->bufdesc_ex) {
2311 
2312 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2313 					SOF_TIMESTAMPING_RX_SOFTWARE |
2314 					SOF_TIMESTAMPING_SOFTWARE |
2315 					SOF_TIMESTAMPING_TX_HARDWARE |
2316 					SOF_TIMESTAMPING_RX_HARDWARE |
2317 					SOF_TIMESTAMPING_RAW_HARDWARE;
2318 		if (fep->ptp_clock)
2319 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2320 		else
2321 			info->phc_index = -1;
2322 
2323 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2324 				 (1 << HWTSTAMP_TX_ON);
2325 
2326 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2327 				   (1 << HWTSTAMP_FILTER_ALL);
2328 		return 0;
2329 	} else {
2330 		return ethtool_op_get_ts_info(ndev, info);
2331 	}
2332 }
2333 
2334 #if !defined(CONFIG_M5272)
2335 
2336 static void fec_enet_get_pauseparam(struct net_device *ndev,
2337 				    struct ethtool_pauseparam *pause)
2338 {
2339 	struct fec_enet_private *fep = netdev_priv(ndev);
2340 
2341 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2342 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2343 	pause->rx_pause = pause->tx_pause;
2344 }
2345 
2346 static int fec_enet_set_pauseparam(struct net_device *ndev,
2347 				   struct ethtool_pauseparam *pause)
2348 {
2349 	struct fec_enet_private *fep = netdev_priv(ndev);
2350 
2351 	if (!ndev->phydev)
2352 		return -ENODEV;
2353 
2354 	if (pause->tx_pause != pause->rx_pause) {
2355 		netdev_info(ndev,
2356 			"hardware only support enable/disable both tx and rx");
2357 		return -EINVAL;
2358 	}
2359 
2360 	fep->pause_flag = 0;
2361 
2362 	/* tx pause must be same as rx pause */
2363 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2364 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2365 
2366 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2367 			  pause->autoneg);
2368 
2369 	if (pause->autoneg) {
2370 		if (netif_running(ndev))
2371 			fec_stop(ndev);
2372 		phy_start_aneg(ndev->phydev);
2373 	}
2374 	if (netif_running(ndev)) {
2375 		napi_disable(&fep->napi);
2376 		netif_tx_lock_bh(ndev);
2377 		fec_restart(ndev);
2378 		netif_tx_wake_all_queues(ndev);
2379 		netif_tx_unlock_bh(ndev);
2380 		napi_enable(&fep->napi);
2381 	}
2382 
2383 	return 0;
2384 }
2385 
2386 static const struct fec_stat {
2387 	char name[ETH_GSTRING_LEN];
2388 	u16 offset;
2389 } fec_stats[] = {
2390 	/* RMON TX */
2391 	{ "tx_dropped", RMON_T_DROP },
2392 	{ "tx_packets", RMON_T_PACKETS },
2393 	{ "tx_broadcast", RMON_T_BC_PKT },
2394 	{ "tx_multicast", RMON_T_MC_PKT },
2395 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2396 	{ "tx_undersize", RMON_T_UNDERSIZE },
2397 	{ "tx_oversize", RMON_T_OVERSIZE },
2398 	{ "tx_fragment", RMON_T_FRAG },
2399 	{ "tx_jabber", RMON_T_JAB },
2400 	{ "tx_collision", RMON_T_COL },
2401 	{ "tx_64byte", RMON_T_P64 },
2402 	{ "tx_65to127byte", RMON_T_P65TO127 },
2403 	{ "tx_128to255byte", RMON_T_P128TO255 },
2404 	{ "tx_256to511byte", RMON_T_P256TO511 },
2405 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2406 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2407 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2408 	{ "tx_octets", RMON_T_OCTETS },
2409 
2410 	/* IEEE TX */
2411 	{ "IEEE_tx_drop", IEEE_T_DROP },
2412 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2413 	{ "IEEE_tx_1col", IEEE_T_1COL },
2414 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2415 	{ "IEEE_tx_def", IEEE_T_DEF },
2416 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2417 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2418 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2419 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2420 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2421 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2422 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2423 
2424 	/* RMON RX */
2425 	{ "rx_packets", RMON_R_PACKETS },
2426 	{ "rx_broadcast", RMON_R_BC_PKT },
2427 	{ "rx_multicast", RMON_R_MC_PKT },
2428 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2429 	{ "rx_undersize", RMON_R_UNDERSIZE },
2430 	{ "rx_oversize", RMON_R_OVERSIZE },
2431 	{ "rx_fragment", RMON_R_FRAG },
2432 	{ "rx_jabber", RMON_R_JAB },
2433 	{ "rx_64byte", RMON_R_P64 },
2434 	{ "rx_65to127byte", RMON_R_P65TO127 },
2435 	{ "rx_128to255byte", RMON_R_P128TO255 },
2436 	{ "rx_256to511byte", RMON_R_P256TO511 },
2437 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2438 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2439 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2440 	{ "rx_octets", RMON_R_OCTETS },
2441 
2442 	/* IEEE RX */
2443 	{ "IEEE_rx_drop", IEEE_R_DROP },
2444 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2445 	{ "IEEE_rx_crc", IEEE_R_CRC },
2446 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2447 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2448 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2449 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2450 };
2451 
2452 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2453 
2454 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2455 {
2456 	struct fec_enet_private *fep = netdev_priv(dev);
2457 	int i;
2458 
2459 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2460 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2461 }
2462 
2463 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2464 				       struct ethtool_stats *stats, u64 *data)
2465 {
2466 	struct fec_enet_private *fep = netdev_priv(dev);
2467 
2468 	if (netif_running(dev))
2469 		fec_enet_update_ethtool_stats(dev);
2470 
2471 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2472 }
2473 
2474 static void fec_enet_get_strings(struct net_device *netdev,
2475 	u32 stringset, u8 *data)
2476 {
2477 	int i;
2478 	switch (stringset) {
2479 	case ETH_SS_STATS:
2480 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2481 			memcpy(data + i * ETH_GSTRING_LEN,
2482 				fec_stats[i].name, ETH_GSTRING_LEN);
2483 		break;
2484 	}
2485 }
2486 
2487 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2488 {
2489 	switch (sset) {
2490 	case ETH_SS_STATS:
2491 		return ARRAY_SIZE(fec_stats);
2492 	default:
2493 		return -EOPNOTSUPP;
2494 	}
2495 }
2496 
2497 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2498 {
2499 	struct fec_enet_private *fep = netdev_priv(dev);
2500 	int i;
2501 
2502 	/* Disable MIB statistics counters */
2503 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2504 
2505 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2506 		writel(0, fep->hwp + fec_stats[i].offset);
2507 
2508 	/* Don't disable MIB statistics counters */
2509 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2510 }
2511 
2512 #else	/* !defined(CONFIG_M5272) */
2513 #define FEC_STATS_SIZE	0
2514 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2515 {
2516 }
2517 
2518 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2519 {
2520 }
2521 #endif /* !defined(CONFIG_M5272) */
2522 
2523 /* ITR clock source is enet system clock (clk_ahb).
2524  * TCTT unit is cycle_ns * 64 cycle
2525  * So, the ICTT value = X us / (cycle_ns * 64)
2526  */
2527 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2528 {
2529 	struct fec_enet_private *fep = netdev_priv(ndev);
2530 
2531 	return us * (fep->itr_clk_rate / 64000) / 1000;
2532 }
2533 
2534 /* Set threshold for interrupt coalescing */
2535 static void fec_enet_itr_coal_set(struct net_device *ndev)
2536 {
2537 	struct fec_enet_private *fep = netdev_priv(ndev);
2538 	int rx_itr, tx_itr;
2539 
2540 	/* Must be greater than zero to avoid unpredictable behavior */
2541 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2542 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2543 		return;
2544 
2545 	/* Select enet system clock as Interrupt Coalescing
2546 	 * timer Clock Source
2547 	 */
2548 	rx_itr = FEC_ITR_CLK_SEL;
2549 	tx_itr = FEC_ITR_CLK_SEL;
2550 
2551 	/* set ICFT and ICTT */
2552 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2553 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2554 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2555 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2556 
2557 	rx_itr |= FEC_ITR_EN;
2558 	tx_itr |= FEC_ITR_EN;
2559 
2560 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2561 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2562 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2563 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2564 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2565 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2566 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2567 	}
2568 }
2569 
2570 static int
2571 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2572 {
2573 	struct fec_enet_private *fep = netdev_priv(ndev);
2574 
2575 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2576 		return -EOPNOTSUPP;
2577 
2578 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2579 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2580 
2581 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2582 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2583 
2584 	return 0;
2585 }
2586 
2587 static int
2588 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2589 {
2590 	struct fec_enet_private *fep = netdev_priv(ndev);
2591 	struct device *dev = &fep->pdev->dev;
2592 	unsigned int cycle;
2593 
2594 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2595 		return -EOPNOTSUPP;
2596 
2597 	if (ec->rx_max_coalesced_frames > 255) {
2598 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2599 		return -EINVAL;
2600 	}
2601 
2602 	if (ec->tx_max_coalesced_frames > 255) {
2603 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2604 		return -EINVAL;
2605 	}
2606 
2607 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2608 	if (cycle > 0xFFFF) {
2609 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2610 		return -EINVAL;
2611 	}
2612 
2613 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2614 	if (cycle > 0xFFFF) {
2615 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2616 		return -EINVAL;
2617 	}
2618 
2619 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2620 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2621 
2622 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2623 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2624 
2625 	fec_enet_itr_coal_set(ndev);
2626 
2627 	return 0;
2628 }
2629 
2630 static void fec_enet_itr_coal_init(struct net_device *ndev)
2631 {
2632 	struct ethtool_coalesce ec;
2633 
2634 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2635 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2636 
2637 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2638 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2639 
2640 	fec_enet_set_coalesce(ndev, &ec);
2641 }
2642 
2643 static int fec_enet_get_tunable(struct net_device *netdev,
2644 				const struct ethtool_tunable *tuna,
2645 				void *data)
2646 {
2647 	struct fec_enet_private *fep = netdev_priv(netdev);
2648 	int ret = 0;
2649 
2650 	switch (tuna->id) {
2651 	case ETHTOOL_RX_COPYBREAK:
2652 		*(u32 *)data = fep->rx_copybreak;
2653 		break;
2654 	default:
2655 		ret = -EINVAL;
2656 		break;
2657 	}
2658 
2659 	return ret;
2660 }
2661 
2662 static int fec_enet_set_tunable(struct net_device *netdev,
2663 				const struct ethtool_tunable *tuna,
2664 				const void *data)
2665 {
2666 	struct fec_enet_private *fep = netdev_priv(netdev);
2667 	int ret = 0;
2668 
2669 	switch (tuna->id) {
2670 	case ETHTOOL_RX_COPYBREAK:
2671 		fep->rx_copybreak = *(u32 *)data;
2672 		break;
2673 	default:
2674 		ret = -EINVAL;
2675 		break;
2676 	}
2677 
2678 	return ret;
2679 }
2680 
2681 static void
2682 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2683 {
2684 	struct fec_enet_private *fep = netdev_priv(ndev);
2685 
2686 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2687 		wol->supported = WAKE_MAGIC;
2688 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2689 	} else {
2690 		wol->supported = wol->wolopts = 0;
2691 	}
2692 }
2693 
2694 static int
2695 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2696 {
2697 	struct fec_enet_private *fep = netdev_priv(ndev);
2698 
2699 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2700 		return -EINVAL;
2701 
2702 	if (wol->wolopts & ~WAKE_MAGIC)
2703 		return -EINVAL;
2704 
2705 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2706 	if (device_may_wakeup(&ndev->dev)) {
2707 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2708 		if (fep->irq[0] > 0)
2709 			enable_irq_wake(fep->irq[0]);
2710 	} else {
2711 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2712 		if (fep->irq[0] > 0)
2713 			disable_irq_wake(fep->irq[0]);
2714 	}
2715 
2716 	return 0;
2717 }
2718 
2719 static const struct ethtool_ops fec_enet_ethtool_ops = {
2720 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2721 				     ETHTOOL_COALESCE_MAX_FRAMES,
2722 	.get_drvinfo		= fec_enet_get_drvinfo,
2723 	.get_regs_len		= fec_enet_get_regs_len,
2724 	.get_regs		= fec_enet_get_regs,
2725 	.nway_reset		= phy_ethtool_nway_reset,
2726 	.get_link		= ethtool_op_get_link,
2727 	.get_coalesce		= fec_enet_get_coalesce,
2728 	.set_coalesce		= fec_enet_set_coalesce,
2729 #ifndef CONFIG_M5272
2730 	.get_pauseparam		= fec_enet_get_pauseparam,
2731 	.set_pauseparam		= fec_enet_set_pauseparam,
2732 	.get_strings		= fec_enet_get_strings,
2733 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2734 	.get_sset_count		= fec_enet_get_sset_count,
2735 #endif
2736 	.get_ts_info		= fec_enet_get_ts_info,
2737 	.get_tunable		= fec_enet_get_tunable,
2738 	.set_tunable		= fec_enet_set_tunable,
2739 	.get_wol		= fec_enet_get_wol,
2740 	.set_wol		= fec_enet_set_wol,
2741 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2742 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2743 };
2744 
2745 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2746 {
2747 	struct fec_enet_private *fep = netdev_priv(ndev);
2748 	struct phy_device *phydev = ndev->phydev;
2749 
2750 	if (!netif_running(ndev))
2751 		return -EINVAL;
2752 
2753 	if (!phydev)
2754 		return -ENODEV;
2755 
2756 	if (fep->bufdesc_ex) {
2757 		if (cmd == SIOCSHWTSTAMP)
2758 			return fec_ptp_set(ndev, rq);
2759 		if (cmd == SIOCGHWTSTAMP)
2760 			return fec_ptp_get(ndev, rq);
2761 	}
2762 
2763 	return phy_mii_ioctl(phydev, rq, cmd);
2764 }
2765 
2766 static void fec_enet_free_buffers(struct net_device *ndev)
2767 {
2768 	struct fec_enet_private *fep = netdev_priv(ndev);
2769 	unsigned int i;
2770 	struct sk_buff *skb;
2771 	struct bufdesc	*bdp;
2772 	struct fec_enet_priv_tx_q *txq;
2773 	struct fec_enet_priv_rx_q *rxq;
2774 	unsigned int q;
2775 
2776 	for (q = 0; q < fep->num_rx_queues; q++) {
2777 		rxq = fep->rx_queue[q];
2778 		bdp = rxq->bd.base;
2779 		for (i = 0; i < rxq->bd.ring_size; i++) {
2780 			skb = rxq->rx_skbuff[i];
2781 			rxq->rx_skbuff[i] = NULL;
2782 			if (skb) {
2783 				dma_unmap_single(&fep->pdev->dev,
2784 						 fec32_to_cpu(bdp->cbd_bufaddr),
2785 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2786 						 DMA_FROM_DEVICE);
2787 				dev_kfree_skb(skb);
2788 			}
2789 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2790 		}
2791 	}
2792 
2793 	for (q = 0; q < fep->num_tx_queues; q++) {
2794 		txq = fep->tx_queue[q];
2795 		for (i = 0; i < txq->bd.ring_size; i++) {
2796 			kfree(txq->tx_bounce[i]);
2797 			txq->tx_bounce[i] = NULL;
2798 			skb = txq->tx_skbuff[i];
2799 			txq->tx_skbuff[i] = NULL;
2800 			dev_kfree_skb(skb);
2801 		}
2802 	}
2803 }
2804 
2805 static void fec_enet_free_queue(struct net_device *ndev)
2806 {
2807 	struct fec_enet_private *fep = netdev_priv(ndev);
2808 	int i;
2809 	struct fec_enet_priv_tx_q *txq;
2810 
2811 	for (i = 0; i < fep->num_tx_queues; i++)
2812 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2813 			txq = fep->tx_queue[i];
2814 			dma_free_coherent(&fep->pdev->dev,
2815 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2816 					  txq->tso_hdrs,
2817 					  txq->tso_hdrs_dma);
2818 		}
2819 
2820 	for (i = 0; i < fep->num_rx_queues; i++)
2821 		kfree(fep->rx_queue[i]);
2822 	for (i = 0; i < fep->num_tx_queues; i++)
2823 		kfree(fep->tx_queue[i]);
2824 }
2825 
2826 static int fec_enet_alloc_queue(struct net_device *ndev)
2827 {
2828 	struct fec_enet_private *fep = netdev_priv(ndev);
2829 	int i;
2830 	int ret = 0;
2831 	struct fec_enet_priv_tx_q *txq;
2832 
2833 	for (i = 0; i < fep->num_tx_queues; i++) {
2834 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2835 		if (!txq) {
2836 			ret = -ENOMEM;
2837 			goto alloc_failed;
2838 		}
2839 
2840 		fep->tx_queue[i] = txq;
2841 		txq->bd.ring_size = TX_RING_SIZE;
2842 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2843 
2844 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2845 		txq->tx_wake_threshold =
2846 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2847 
2848 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2849 					txq->bd.ring_size * TSO_HEADER_SIZE,
2850 					&txq->tso_hdrs_dma,
2851 					GFP_KERNEL);
2852 		if (!txq->tso_hdrs) {
2853 			ret = -ENOMEM;
2854 			goto alloc_failed;
2855 		}
2856 	}
2857 
2858 	for (i = 0; i < fep->num_rx_queues; i++) {
2859 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2860 					   GFP_KERNEL);
2861 		if (!fep->rx_queue[i]) {
2862 			ret = -ENOMEM;
2863 			goto alloc_failed;
2864 		}
2865 
2866 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2867 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2868 	}
2869 	return ret;
2870 
2871 alloc_failed:
2872 	fec_enet_free_queue(ndev);
2873 	return ret;
2874 }
2875 
2876 static int
2877 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2878 {
2879 	struct fec_enet_private *fep = netdev_priv(ndev);
2880 	unsigned int i;
2881 	struct sk_buff *skb;
2882 	struct bufdesc	*bdp;
2883 	struct fec_enet_priv_rx_q *rxq;
2884 
2885 	rxq = fep->rx_queue[queue];
2886 	bdp = rxq->bd.base;
2887 	for (i = 0; i < rxq->bd.ring_size; i++) {
2888 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2889 		if (!skb)
2890 			goto err_alloc;
2891 
2892 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2893 			dev_kfree_skb(skb);
2894 			goto err_alloc;
2895 		}
2896 
2897 		rxq->rx_skbuff[i] = skb;
2898 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2899 
2900 		if (fep->bufdesc_ex) {
2901 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2902 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2903 		}
2904 
2905 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2906 	}
2907 
2908 	/* Set the last buffer to wrap. */
2909 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2910 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2911 	return 0;
2912 
2913  err_alloc:
2914 	fec_enet_free_buffers(ndev);
2915 	return -ENOMEM;
2916 }
2917 
2918 static int
2919 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2920 {
2921 	struct fec_enet_private *fep = netdev_priv(ndev);
2922 	unsigned int i;
2923 	struct bufdesc  *bdp;
2924 	struct fec_enet_priv_tx_q *txq;
2925 
2926 	txq = fep->tx_queue[queue];
2927 	bdp = txq->bd.base;
2928 	for (i = 0; i < txq->bd.ring_size; i++) {
2929 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2930 		if (!txq->tx_bounce[i])
2931 			goto err_alloc;
2932 
2933 		bdp->cbd_sc = cpu_to_fec16(0);
2934 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2935 
2936 		if (fep->bufdesc_ex) {
2937 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2938 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2939 		}
2940 
2941 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2942 	}
2943 
2944 	/* Set the last buffer to wrap. */
2945 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2946 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2947 
2948 	return 0;
2949 
2950  err_alloc:
2951 	fec_enet_free_buffers(ndev);
2952 	return -ENOMEM;
2953 }
2954 
2955 static int fec_enet_alloc_buffers(struct net_device *ndev)
2956 {
2957 	struct fec_enet_private *fep = netdev_priv(ndev);
2958 	unsigned int i;
2959 
2960 	for (i = 0; i < fep->num_rx_queues; i++)
2961 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2962 			return -ENOMEM;
2963 
2964 	for (i = 0; i < fep->num_tx_queues; i++)
2965 		if (fec_enet_alloc_txq_buffers(ndev, i))
2966 			return -ENOMEM;
2967 	return 0;
2968 }
2969 
2970 static int
2971 fec_enet_open(struct net_device *ndev)
2972 {
2973 	struct fec_enet_private *fep = netdev_priv(ndev);
2974 	int ret;
2975 	bool reset_again;
2976 
2977 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2978 	if (ret < 0)
2979 		return ret;
2980 
2981 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2982 	ret = fec_enet_clk_enable(ndev, true);
2983 	if (ret)
2984 		goto clk_enable;
2985 
2986 	/* During the first fec_enet_open call the PHY isn't probed at this
2987 	 * point. Therefore the phy_reset_after_clk_enable() call within
2988 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2989 	 * sure the PHY is working correctly we check if we need to reset again
2990 	 * later when the PHY is probed
2991 	 */
2992 	if (ndev->phydev && ndev->phydev->drv)
2993 		reset_again = false;
2994 	else
2995 		reset_again = true;
2996 
2997 	/* I should reset the ring buffers here, but I don't yet know
2998 	 * a simple way to do that.
2999 	 */
3000 
3001 	ret = fec_enet_alloc_buffers(ndev);
3002 	if (ret)
3003 		goto err_enet_alloc;
3004 
3005 	/* Init MAC prior to mii bus probe */
3006 	fec_restart(ndev);
3007 
3008 	/* Probe and connect to PHY when open the interface */
3009 	ret = fec_enet_mii_probe(ndev);
3010 	if (ret)
3011 		goto err_enet_mii_probe;
3012 
3013 	/* Call phy_reset_after_clk_enable() again if it failed during
3014 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3015 	 */
3016 	if (reset_again)
3017 		phy_reset_after_clk_enable(ndev->phydev);
3018 
3019 	if (fep->quirks & FEC_QUIRK_ERR006687)
3020 		imx6q_cpuidle_fec_irqs_used();
3021 
3022 	napi_enable(&fep->napi);
3023 	phy_start(ndev->phydev);
3024 	netif_tx_start_all_queues(ndev);
3025 
3026 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3027 				 FEC_WOL_FLAG_ENABLE);
3028 
3029 	return 0;
3030 
3031 err_enet_mii_probe:
3032 	fec_enet_free_buffers(ndev);
3033 err_enet_alloc:
3034 	fec_enet_clk_enable(ndev, false);
3035 clk_enable:
3036 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3037 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3038 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3039 	return ret;
3040 }
3041 
3042 static int
3043 fec_enet_close(struct net_device *ndev)
3044 {
3045 	struct fec_enet_private *fep = netdev_priv(ndev);
3046 
3047 	phy_stop(ndev->phydev);
3048 
3049 	if (netif_device_present(ndev)) {
3050 		napi_disable(&fep->napi);
3051 		netif_tx_disable(ndev);
3052 		fec_stop(ndev);
3053 	}
3054 
3055 	phy_disconnect(ndev->phydev);
3056 
3057 	if (fep->quirks & FEC_QUIRK_ERR006687)
3058 		imx6q_cpuidle_fec_irqs_unused();
3059 
3060 	fec_enet_update_ethtool_stats(ndev);
3061 
3062 	fec_enet_clk_enable(ndev, false);
3063 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3064 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3065 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3066 
3067 	fec_enet_free_buffers(ndev);
3068 
3069 	return 0;
3070 }
3071 
3072 /* Set or clear the multicast filter for this adaptor.
3073  * Skeleton taken from sunlance driver.
3074  * The CPM Ethernet implementation allows Multicast as well as individual
3075  * MAC address filtering.  Some of the drivers check to make sure it is
3076  * a group multicast address, and discard those that are not.  I guess I
3077  * will do the same for now, but just remove the test if you want
3078  * individual filtering as well (do the upper net layers want or support
3079  * this kind of feature?).
3080  */
3081 
3082 #define FEC_HASH_BITS	6		/* #bits in hash */
3083 
3084 static void set_multicast_list(struct net_device *ndev)
3085 {
3086 	struct fec_enet_private *fep = netdev_priv(ndev);
3087 	struct netdev_hw_addr *ha;
3088 	unsigned int crc, tmp;
3089 	unsigned char hash;
3090 	unsigned int hash_high = 0, hash_low = 0;
3091 
3092 	if (ndev->flags & IFF_PROMISC) {
3093 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3094 		tmp |= 0x8;
3095 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3096 		return;
3097 	}
3098 
3099 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3100 	tmp &= ~0x8;
3101 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3102 
3103 	if (ndev->flags & IFF_ALLMULTI) {
3104 		/* Catch all multicast addresses, so set the
3105 		 * filter to all 1's
3106 		 */
3107 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3108 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3109 
3110 		return;
3111 	}
3112 
3113 	/* Add the addresses in hash register */
3114 	netdev_for_each_mc_addr(ha, ndev) {
3115 		/* calculate crc32 value of mac address */
3116 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3117 
3118 		/* only upper 6 bits (FEC_HASH_BITS) are used
3119 		 * which point to specific bit in the hash registers
3120 		 */
3121 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3122 
3123 		if (hash > 31)
3124 			hash_high |= 1 << (hash - 32);
3125 		else
3126 			hash_low |= 1 << hash;
3127 	}
3128 
3129 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3130 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3131 }
3132 
3133 /* Set a MAC change in hardware. */
3134 static int
3135 fec_set_mac_address(struct net_device *ndev, void *p)
3136 {
3137 	struct fec_enet_private *fep = netdev_priv(ndev);
3138 	struct sockaddr *addr = p;
3139 
3140 	if (addr) {
3141 		if (!is_valid_ether_addr(addr->sa_data))
3142 			return -EADDRNOTAVAIL;
3143 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3144 	}
3145 
3146 	/* Add netif status check here to avoid system hang in below case:
3147 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3148 	 * After ethx down, fec all clocks are gated off and then register
3149 	 * access causes system hang.
3150 	 */
3151 	if (!netif_running(ndev))
3152 		return 0;
3153 
3154 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3155 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3156 		fep->hwp + FEC_ADDR_LOW);
3157 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3158 		fep->hwp + FEC_ADDR_HIGH);
3159 	return 0;
3160 }
3161 
3162 #ifdef CONFIG_NET_POLL_CONTROLLER
3163 /**
3164  * fec_poll_controller - FEC Poll controller function
3165  * @dev: The FEC network adapter
3166  *
3167  * Polled functionality used by netconsole and others in non interrupt mode
3168  *
3169  */
3170 static void fec_poll_controller(struct net_device *dev)
3171 {
3172 	int i;
3173 	struct fec_enet_private *fep = netdev_priv(dev);
3174 
3175 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3176 		if (fep->irq[i] > 0) {
3177 			disable_irq(fep->irq[i]);
3178 			fec_enet_interrupt(fep->irq[i], dev);
3179 			enable_irq(fep->irq[i]);
3180 		}
3181 	}
3182 }
3183 #endif
3184 
3185 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3186 	netdev_features_t features)
3187 {
3188 	struct fec_enet_private *fep = netdev_priv(netdev);
3189 	netdev_features_t changed = features ^ netdev->features;
3190 
3191 	netdev->features = features;
3192 
3193 	/* Receive checksum has been changed */
3194 	if (changed & NETIF_F_RXCSUM) {
3195 		if (features & NETIF_F_RXCSUM)
3196 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3197 		else
3198 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3199 	}
3200 }
3201 
3202 static int fec_set_features(struct net_device *netdev,
3203 	netdev_features_t features)
3204 {
3205 	struct fec_enet_private *fep = netdev_priv(netdev);
3206 	netdev_features_t changed = features ^ netdev->features;
3207 
3208 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3209 		napi_disable(&fep->napi);
3210 		netif_tx_lock_bh(netdev);
3211 		fec_stop(netdev);
3212 		fec_enet_set_netdev_features(netdev, features);
3213 		fec_restart(netdev);
3214 		netif_tx_wake_all_queues(netdev);
3215 		netif_tx_unlock_bh(netdev);
3216 		napi_enable(&fep->napi);
3217 	} else {
3218 		fec_enet_set_netdev_features(netdev, features);
3219 	}
3220 
3221 	return 0;
3222 }
3223 
3224 static const struct net_device_ops fec_netdev_ops = {
3225 	.ndo_open		= fec_enet_open,
3226 	.ndo_stop		= fec_enet_close,
3227 	.ndo_start_xmit		= fec_enet_start_xmit,
3228 	.ndo_set_rx_mode	= set_multicast_list,
3229 	.ndo_validate_addr	= eth_validate_addr,
3230 	.ndo_tx_timeout		= fec_timeout,
3231 	.ndo_set_mac_address	= fec_set_mac_address,
3232 	.ndo_do_ioctl		= fec_enet_ioctl,
3233 #ifdef CONFIG_NET_POLL_CONTROLLER
3234 	.ndo_poll_controller	= fec_poll_controller,
3235 #endif
3236 	.ndo_set_features	= fec_set_features,
3237 };
3238 
3239 static const unsigned short offset_des_active_rxq[] = {
3240 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3241 };
3242 
3243 static const unsigned short offset_des_active_txq[] = {
3244 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3245 };
3246 
3247  /*
3248   * XXX:  We need to clean up on failure exits here.
3249   *
3250   */
3251 static int fec_enet_init(struct net_device *ndev)
3252 {
3253 	struct fec_enet_private *fep = netdev_priv(ndev);
3254 	struct bufdesc *cbd_base;
3255 	dma_addr_t bd_dma;
3256 	int bd_size;
3257 	unsigned int i;
3258 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3259 			sizeof(struct bufdesc);
3260 	unsigned dsize_log2 = __fls(dsize);
3261 	int ret;
3262 
3263 	WARN_ON(dsize != (1 << dsize_log2));
3264 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3265 	fep->rx_align = 0xf;
3266 	fep->tx_align = 0xf;
3267 #else
3268 	fep->rx_align = 0x3;
3269 	fep->tx_align = 0x3;
3270 #endif
3271 
3272 	/* Check mask of the streaming and coherent API */
3273 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3274 	if (ret < 0) {
3275 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3276 		return ret;
3277 	}
3278 
3279 	fec_enet_alloc_queue(ndev);
3280 
3281 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3282 
3283 	/* Allocate memory for buffer descriptors. */
3284 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3285 				       GFP_KERNEL);
3286 	if (!cbd_base) {
3287 		return -ENOMEM;
3288 	}
3289 
3290 	/* Get the Ethernet address */
3291 	fec_get_mac(ndev);
3292 	/* make sure MAC we just acquired is programmed into the hw */
3293 	fec_set_mac_address(ndev, NULL);
3294 
3295 	/* Set receive and transmit descriptor base. */
3296 	for (i = 0; i < fep->num_rx_queues; i++) {
3297 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3298 		unsigned size = dsize * rxq->bd.ring_size;
3299 
3300 		rxq->bd.qid = i;
3301 		rxq->bd.base = cbd_base;
3302 		rxq->bd.cur = cbd_base;
3303 		rxq->bd.dma = bd_dma;
3304 		rxq->bd.dsize = dsize;
3305 		rxq->bd.dsize_log2 = dsize_log2;
3306 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3307 		bd_dma += size;
3308 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3309 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3310 	}
3311 
3312 	for (i = 0; i < fep->num_tx_queues; i++) {
3313 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3314 		unsigned size = dsize * txq->bd.ring_size;
3315 
3316 		txq->bd.qid = i;
3317 		txq->bd.base = cbd_base;
3318 		txq->bd.cur = cbd_base;
3319 		txq->bd.dma = bd_dma;
3320 		txq->bd.dsize = dsize;
3321 		txq->bd.dsize_log2 = dsize_log2;
3322 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3323 		bd_dma += size;
3324 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3325 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3326 	}
3327 
3328 
3329 	/* The FEC Ethernet specific entries in the device structure */
3330 	ndev->watchdog_timeo = TX_TIMEOUT;
3331 	ndev->netdev_ops = &fec_netdev_ops;
3332 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3333 
3334 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3335 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3336 
3337 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3338 		/* enable hw VLAN support */
3339 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3340 
3341 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3342 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3343 
3344 		/* enable hw accelerator */
3345 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3346 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3347 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3348 	}
3349 
3350 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3351 		fep->tx_align = 0;
3352 		fep->rx_align = 0x3f;
3353 	}
3354 
3355 	ndev->hw_features = ndev->features;
3356 
3357 	fec_restart(ndev);
3358 
3359 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3360 		fec_enet_clear_ethtool_stats(ndev);
3361 	else
3362 		fec_enet_update_ethtool_stats(ndev);
3363 
3364 	return 0;
3365 }
3366 
3367 #ifdef CONFIG_OF
3368 static int fec_reset_phy(struct platform_device *pdev)
3369 {
3370 	int err, phy_reset;
3371 	bool active_high = false;
3372 	int msec = 1, phy_post_delay = 0;
3373 	struct device_node *np = pdev->dev.of_node;
3374 
3375 	if (!np)
3376 		return 0;
3377 
3378 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3379 	/* A sane reset duration should not be longer than 1s */
3380 	if (!err && msec > 1000)
3381 		msec = 1;
3382 
3383 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3384 	if (phy_reset == -EPROBE_DEFER)
3385 		return phy_reset;
3386 	else if (!gpio_is_valid(phy_reset))
3387 		return 0;
3388 
3389 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3390 	/* valid reset duration should be less than 1s */
3391 	if (!err && phy_post_delay > 1000)
3392 		return -EINVAL;
3393 
3394 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3395 
3396 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3397 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3398 			"phy-reset");
3399 	if (err) {
3400 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3401 		return err;
3402 	}
3403 
3404 	if (msec > 20)
3405 		msleep(msec);
3406 	else
3407 		usleep_range(msec * 1000, msec * 1000 + 1000);
3408 
3409 	gpio_set_value_cansleep(phy_reset, !active_high);
3410 
3411 	if (!phy_post_delay)
3412 		return 0;
3413 
3414 	if (phy_post_delay > 20)
3415 		msleep(phy_post_delay);
3416 	else
3417 		usleep_range(phy_post_delay * 1000,
3418 			     phy_post_delay * 1000 + 1000);
3419 
3420 	return 0;
3421 }
3422 #else /* CONFIG_OF */
3423 static int fec_reset_phy(struct platform_device *pdev)
3424 {
3425 	/*
3426 	 * In case of platform probe, the reset has been done
3427 	 * by machine code.
3428 	 */
3429 	return 0;
3430 }
3431 #endif /* CONFIG_OF */
3432 
3433 static void
3434 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3435 {
3436 	struct device_node *np = pdev->dev.of_node;
3437 
3438 	*num_tx = *num_rx = 1;
3439 
3440 	if (!np || !of_device_is_available(np))
3441 		return;
3442 
3443 	/* parse the num of tx and rx queues */
3444 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3445 
3446 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3447 
3448 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3449 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3450 			 *num_tx);
3451 		*num_tx = 1;
3452 		return;
3453 	}
3454 
3455 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3456 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3457 			 *num_rx);
3458 		*num_rx = 1;
3459 		return;
3460 	}
3461 
3462 }
3463 
3464 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3465 {
3466 	int irq_cnt = platform_irq_count(pdev);
3467 
3468 	if (irq_cnt > FEC_IRQ_NUM)
3469 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3470 	else if (irq_cnt == 2)
3471 		irq_cnt = 1;	/* last for pps */
3472 	else if (irq_cnt <= 0)
3473 		irq_cnt = 1;	/* At least 1 irq is needed */
3474 	return irq_cnt;
3475 }
3476 
3477 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3478 				   struct device_node *np)
3479 {
3480 	struct device_node *gpr_np;
3481 	u32 out_val[3];
3482 	int ret = 0;
3483 
3484 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3485 	if (!gpr_np)
3486 		return 0;
3487 
3488 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3489 					 ARRAY_SIZE(out_val));
3490 	if (ret) {
3491 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3492 		return ret;
3493 	}
3494 
3495 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3496 	if (IS_ERR(fep->stop_gpr.gpr)) {
3497 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3498 		ret = PTR_ERR(fep->stop_gpr.gpr);
3499 		fep->stop_gpr.gpr = NULL;
3500 		goto out;
3501 	}
3502 
3503 	fep->stop_gpr.reg = out_val[1];
3504 	fep->stop_gpr.bit = out_val[2];
3505 
3506 out:
3507 	of_node_put(gpr_np);
3508 
3509 	return ret;
3510 }
3511 
3512 static int
3513 fec_probe(struct platform_device *pdev)
3514 {
3515 	struct fec_enet_private *fep;
3516 	struct fec_platform_data *pdata;
3517 	phy_interface_t interface;
3518 	struct net_device *ndev;
3519 	int i, irq, ret = 0;
3520 	const struct of_device_id *of_id;
3521 	static int dev_id;
3522 	struct device_node *np = pdev->dev.of_node, *phy_node;
3523 	int num_tx_qs;
3524 	int num_rx_qs;
3525 	char irq_name[8];
3526 	int irq_cnt;
3527 	struct fec_devinfo *dev_info;
3528 
3529 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3530 
3531 	/* Init network device */
3532 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3533 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3534 	if (!ndev)
3535 		return -ENOMEM;
3536 
3537 	SET_NETDEV_DEV(ndev, &pdev->dev);
3538 
3539 	/* setup board info structure */
3540 	fep = netdev_priv(ndev);
3541 
3542 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3543 	if (of_id)
3544 		pdev->id_entry = of_id->data;
3545 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3546 	if (dev_info)
3547 		fep->quirks = dev_info->quirks;
3548 
3549 	fep->netdev = ndev;
3550 	fep->num_rx_queues = num_rx_qs;
3551 	fep->num_tx_queues = num_tx_qs;
3552 
3553 #if !defined(CONFIG_M5272)
3554 	/* default enable pause frame auto negotiation */
3555 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3556 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3557 #endif
3558 
3559 	/* Select default pin state */
3560 	pinctrl_pm_select_default_state(&pdev->dev);
3561 
3562 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3563 	if (IS_ERR(fep->hwp)) {
3564 		ret = PTR_ERR(fep->hwp);
3565 		goto failed_ioremap;
3566 	}
3567 
3568 	fep->pdev = pdev;
3569 	fep->dev_id = dev_id++;
3570 
3571 	platform_set_drvdata(pdev, ndev);
3572 
3573 	if ((of_machine_is_compatible("fsl,imx6q") ||
3574 	     of_machine_is_compatible("fsl,imx6dl")) &&
3575 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3576 		fep->quirks |= FEC_QUIRK_ERR006687;
3577 
3578 	if (of_get_property(np, "fsl,magic-packet", NULL))
3579 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3580 
3581 	ret = fec_enet_init_stop_mode(fep, np);
3582 	if (ret)
3583 		goto failed_stop_mode;
3584 
3585 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3586 	if (!phy_node && of_phy_is_fixed_link(np)) {
3587 		ret = of_phy_register_fixed_link(np);
3588 		if (ret < 0) {
3589 			dev_err(&pdev->dev,
3590 				"broken fixed-link specification\n");
3591 			goto failed_phy;
3592 		}
3593 		phy_node = of_node_get(np);
3594 	}
3595 	fep->phy_node = phy_node;
3596 
3597 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3598 	if (ret) {
3599 		pdata = dev_get_platdata(&pdev->dev);
3600 		if (pdata)
3601 			fep->phy_interface = pdata->phy;
3602 		else
3603 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3604 	} else {
3605 		fep->phy_interface = interface;
3606 	}
3607 
3608 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3609 	if (IS_ERR(fep->clk_ipg)) {
3610 		ret = PTR_ERR(fep->clk_ipg);
3611 		goto failed_clk;
3612 	}
3613 
3614 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3615 	if (IS_ERR(fep->clk_ahb)) {
3616 		ret = PTR_ERR(fep->clk_ahb);
3617 		goto failed_clk;
3618 	}
3619 
3620 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3621 
3622 	/* enet_out is optional, depends on board */
3623 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3624 	if (IS_ERR(fep->clk_enet_out))
3625 		fep->clk_enet_out = NULL;
3626 
3627 	fep->ptp_clk_on = false;
3628 	mutex_init(&fep->ptp_clk_mutex);
3629 
3630 	/* clk_ref is optional, depends on board */
3631 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3632 	if (IS_ERR(fep->clk_ref))
3633 		fep->clk_ref = NULL;
3634 
3635 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3636 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3637 	if (IS_ERR(fep->clk_ptp)) {
3638 		fep->clk_ptp = NULL;
3639 		fep->bufdesc_ex = false;
3640 	}
3641 
3642 	ret = fec_enet_clk_enable(ndev, true);
3643 	if (ret)
3644 		goto failed_clk;
3645 
3646 	ret = clk_prepare_enable(fep->clk_ipg);
3647 	if (ret)
3648 		goto failed_clk_ipg;
3649 	ret = clk_prepare_enable(fep->clk_ahb);
3650 	if (ret)
3651 		goto failed_clk_ahb;
3652 
3653 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3654 	if (!IS_ERR(fep->reg_phy)) {
3655 		ret = regulator_enable(fep->reg_phy);
3656 		if (ret) {
3657 			dev_err(&pdev->dev,
3658 				"Failed to enable phy regulator: %d\n", ret);
3659 			goto failed_regulator;
3660 		}
3661 	} else {
3662 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3663 			ret = -EPROBE_DEFER;
3664 			goto failed_regulator;
3665 		}
3666 		fep->reg_phy = NULL;
3667 	}
3668 
3669 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3670 	pm_runtime_use_autosuspend(&pdev->dev);
3671 	pm_runtime_get_noresume(&pdev->dev);
3672 	pm_runtime_set_active(&pdev->dev);
3673 	pm_runtime_enable(&pdev->dev);
3674 
3675 	ret = fec_reset_phy(pdev);
3676 	if (ret)
3677 		goto failed_reset;
3678 
3679 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3680 	if (fep->bufdesc_ex)
3681 		fec_ptp_init(pdev, irq_cnt);
3682 
3683 	ret = fec_enet_init(ndev);
3684 	if (ret)
3685 		goto failed_init;
3686 
3687 	for (i = 0; i < irq_cnt; i++) {
3688 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3689 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3690 		if (irq < 0)
3691 			irq = platform_get_irq(pdev, i);
3692 		if (irq < 0) {
3693 			ret = irq;
3694 			goto failed_irq;
3695 		}
3696 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3697 				       0, pdev->name, ndev);
3698 		if (ret)
3699 			goto failed_irq;
3700 
3701 		fep->irq[i] = irq;
3702 	}
3703 
3704 	ret = fec_enet_mii_init(pdev);
3705 	if (ret)
3706 		goto failed_mii_init;
3707 
3708 	/* Carrier starts down, phylib will bring it up */
3709 	netif_carrier_off(ndev);
3710 	fec_enet_clk_enable(ndev, false);
3711 	pinctrl_pm_select_sleep_state(&pdev->dev);
3712 
3713 	ret = register_netdev(ndev);
3714 	if (ret)
3715 		goto failed_register;
3716 
3717 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3718 			   FEC_WOL_HAS_MAGIC_PACKET);
3719 
3720 	if (fep->bufdesc_ex && fep->ptp_clock)
3721 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3722 
3723 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3724 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3725 
3726 	pm_runtime_mark_last_busy(&pdev->dev);
3727 	pm_runtime_put_autosuspend(&pdev->dev);
3728 
3729 	return 0;
3730 
3731 failed_register:
3732 	fec_enet_mii_remove(fep);
3733 failed_mii_init:
3734 failed_irq:
3735 failed_init:
3736 	fec_ptp_stop(pdev);
3737 	if (fep->reg_phy)
3738 		regulator_disable(fep->reg_phy);
3739 failed_reset:
3740 	pm_runtime_put_noidle(&pdev->dev);
3741 	pm_runtime_disable(&pdev->dev);
3742 failed_regulator:
3743 	clk_disable_unprepare(fep->clk_ahb);
3744 failed_clk_ahb:
3745 	clk_disable_unprepare(fep->clk_ipg);
3746 failed_clk_ipg:
3747 	fec_enet_clk_enable(ndev, false);
3748 failed_clk:
3749 	if (of_phy_is_fixed_link(np))
3750 		of_phy_deregister_fixed_link(np);
3751 	of_node_put(phy_node);
3752 failed_stop_mode:
3753 failed_phy:
3754 	dev_id--;
3755 failed_ioremap:
3756 	free_netdev(ndev);
3757 
3758 	return ret;
3759 }
3760 
3761 static int
3762 fec_drv_remove(struct platform_device *pdev)
3763 {
3764 	struct net_device *ndev = platform_get_drvdata(pdev);
3765 	struct fec_enet_private *fep = netdev_priv(ndev);
3766 	struct device_node *np = pdev->dev.of_node;
3767 	int ret;
3768 
3769 	ret = pm_runtime_get_sync(&pdev->dev);
3770 	if (ret < 0)
3771 		return ret;
3772 
3773 	cancel_work_sync(&fep->tx_timeout_work);
3774 	fec_ptp_stop(pdev);
3775 	unregister_netdev(ndev);
3776 	fec_enet_mii_remove(fep);
3777 	if (fep->reg_phy)
3778 		regulator_disable(fep->reg_phy);
3779 
3780 	if (of_phy_is_fixed_link(np))
3781 		of_phy_deregister_fixed_link(np);
3782 	of_node_put(fep->phy_node);
3783 	free_netdev(ndev);
3784 
3785 	clk_disable_unprepare(fep->clk_ahb);
3786 	clk_disable_unprepare(fep->clk_ipg);
3787 	pm_runtime_put_noidle(&pdev->dev);
3788 	pm_runtime_disable(&pdev->dev);
3789 
3790 	return 0;
3791 }
3792 
3793 static int __maybe_unused fec_suspend(struct device *dev)
3794 {
3795 	struct net_device *ndev = dev_get_drvdata(dev);
3796 	struct fec_enet_private *fep = netdev_priv(ndev);
3797 
3798 	rtnl_lock();
3799 	if (netif_running(ndev)) {
3800 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3801 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3802 		phy_stop(ndev->phydev);
3803 		napi_disable(&fep->napi);
3804 		netif_tx_lock_bh(ndev);
3805 		netif_device_detach(ndev);
3806 		netif_tx_unlock_bh(ndev);
3807 		fec_stop(ndev);
3808 		fec_enet_clk_enable(ndev, false);
3809 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3810 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3811 	}
3812 	rtnl_unlock();
3813 
3814 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3815 		regulator_disable(fep->reg_phy);
3816 
3817 	/* SOC supply clock to phy, when clock is disabled, phy link down
3818 	 * SOC control phy regulator, when regulator is disabled, phy link down
3819 	 */
3820 	if (fep->clk_enet_out || fep->reg_phy)
3821 		fep->link = 0;
3822 
3823 	return 0;
3824 }
3825 
3826 static int __maybe_unused fec_resume(struct device *dev)
3827 {
3828 	struct net_device *ndev = dev_get_drvdata(dev);
3829 	struct fec_enet_private *fep = netdev_priv(ndev);
3830 	int ret;
3831 	int val;
3832 
3833 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3834 		ret = regulator_enable(fep->reg_phy);
3835 		if (ret)
3836 			return ret;
3837 	}
3838 
3839 	rtnl_lock();
3840 	if (netif_running(ndev)) {
3841 		ret = fec_enet_clk_enable(ndev, true);
3842 		if (ret) {
3843 			rtnl_unlock();
3844 			goto failed_clk;
3845 		}
3846 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3847 			fec_enet_stop_mode(fep, false);
3848 
3849 			val = readl(fep->hwp + FEC_ECNTRL);
3850 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3851 			writel(val, fep->hwp + FEC_ECNTRL);
3852 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3853 		} else {
3854 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3855 		}
3856 		fec_restart(ndev);
3857 		netif_tx_lock_bh(ndev);
3858 		netif_device_attach(ndev);
3859 		netif_tx_unlock_bh(ndev);
3860 		napi_enable(&fep->napi);
3861 		phy_start(ndev->phydev);
3862 	}
3863 	rtnl_unlock();
3864 
3865 	return 0;
3866 
3867 failed_clk:
3868 	if (fep->reg_phy)
3869 		regulator_disable(fep->reg_phy);
3870 	return ret;
3871 }
3872 
3873 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3874 {
3875 	struct net_device *ndev = dev_get_drvdata(dev);
3876 	struct fec_enet_private *fep = netdev_priv(ndev);
3877 
3878 	clk_disable_unprepare(fep->clk_ahb);
3879 	clk_disable_unprepare(fep->clk_ipg);
3880 
3881 	return 0;
3882 }
3883 
3884 static int __maybe_unused fec_runtime_resume(struct device *dev)
3885 {
3886 	struct net_device *ndev = dev_get_drvdata(dev);
3887 	struct fec_enet_private *fep = netdev_priv(ndev);
3888 	int ret;
3889 
3890 	ret = clk_prepare_enable(fep->clk_ahb);
3891 	if (ret)
3892 		return ret;
3893 	ret = clk_prepare_enable(fep->clk_ipg);
3894 	if (ret)
3895 		goto failed_clk_ipg;
3896 
3897 	return 0;
3898 
3899 failed_clk_ipg:
3900 	clk_disable_unprepare(fep->clk_ahb);
3901 	return ret;
3902 }
3903 
3904 static const struct dev_pm_ops fec_pm_ops = {
3905 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3906 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3907 };
3908 
3909 static struct platform_driver fec_driver = {
3910 	.driver	= {
3911 		.name	= DRIVER_NAME,
3912 		.pm	= &fec_pm_ops,
3913 		.of_match_table = fec_dt_ids,
3914 		.suppress_bind_attrs = true,
3915 	},
3916 	.id_table = fec_devtype,
3917 	.probe	= fec_probe,
3918 	.remove	= fec_drv_remove,
3919 };
3920 
3921 module_platform_driver(fec_driver);
3922 
3923 MODULE_ALIAS("platform:"DRIVER_NAME);
3924 MODULE_LICENSE("GPL");
3925