1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_net.h>
56 #include <linux/regulator/consumer.h>
57 #include <linux/if_vlan.h>
58 
59 #include <asm/cacheflush.h>
60 
61 #include "fec.h"
62 
63 static void set_multicast_list(struct net_device *ndev);
64 
65 #if defined(CONFIG_ARM)
66 #define FEC_ALIGNMENT	0xf
67 #else
68 #define FEC_ALIGNMENT	0x3
69 #endif
70 
71 #define DRIVER_NAME	"fec"
72 
73 /* Pause frame feild and FIFO threshold */
74 #define FEC_ENET_FCE	(1 << 5)
75 #define FEC_ENET_RSEM_V	0x84
76 #define FEC_ENET_RSFL_V	16
77 #define FEC_ENET_RAEM_V	0x8
78 #define FEC_ENET_RAFL_V	0x8
79 #define FEC_ENET_OPD_V	0xFFF0
80 
81 /* Controller is ENET-MAC */
82 #define FEC_QUIRK_ENET_MAC		(1 << 0)
83 /* Controller needs driver to swap frame */
84 #define FEC_QUIRK_SWAP_FRAME		(1 << 1)
85 /* Controller uses gasket */
86 #define FEC_QUIRK_USE_GASKET		(1 << 2)
87 /* Controller has GBIT support */
88 #define FEC_QUIRK_HAS_GBIT		(1 << 3)
89 /* Controller has extend desc buffer */
90 #define FEC_QUIRK_HAS_BUFDESC_EX	(1 << 4)
91 /* Controller has hardware checksum support */
92 #define FEC_QUIRK_HAS_CSUM		(1 << 5)
93 /* Controller has hardware vlan support */
94 #define FEC_QUIRK_HAS_VLAN		(1 << 6)
95 /* ENET IP errata ERR006358
96  *
97  * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
98  * detected as not set during a prior frame transmission, then the
99  * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
100  * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
101  * frames not being transmitted until there is a 0-to-1 transition on
102  * ENET_TDAR[TDAR].
103  */
104 #define FEC_QUIRK_ERR006358            (1 << 7)
105 
106 static struct platform_device_id fec_devtype[] = {
107 	{
108 		/* keep it for coldfire */
109 		.name = DRIVER_NAME,
110 		.driver_data = 0,
111 	}, {
112 		.name = "imx25-fec",
113 		.driver_data = FEC_QUIRK_USE_GASKET,
114 	}, {
115 		.name = "imx27-fec",
116 		.driver_data = 0,
117 	}, {
118 		.name = "imx28-fec",
119 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
120 	}, {
121 		.name = "imx6q-fec",
122 		.driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 				FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 				FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
125 	}, {
126 		.name = "mvf600-fec",
127 		.driver_data = FEC_QUIRK_ENET_MAC,
128 	}, {
129 		/* sentinel */
130 	}
131 };
132 MODULE_DEVICE_TABLE(platform, fec_devtype);
133 
134 enum imx_fec_type {
135 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
136 	IMX27_FEC,	/* runs on i.mx27/35/51 */
137 	IMX28_FEC,
138 	IMX6Q_FEC,
139 	MVF600_FEC,
140 };
141 
142 static const struct of_device_id fec_dt_ids[] = {
143 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
144 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
145 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
146 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
147 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
148 	{ /* sentinel */ }
149 };
150 MODULE_DEVICE_TABLE(of, fec_dt_ids);
151 
152 static unsigned char macaddr[ETH_ALEN];
153 module_param_array(macaddr, byte, NULL, 0);
154 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
155 
156 #if defined(CONFIG_M5272)
157 /*
158  * Some hardware gets it MAC address out of local flash memory.
159  * if this is non-zero then assume it is the address to get MAC from.
160  */
161 #if defined(CONFIG_NETtel)
162 #define	FEC_FLASHMAC	0xf0006006
163 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
164 #define	FEC_FLASHMAC	0xf0006000
165 #elif defined(CONFIG_CANCam)
166 #define	FEC_FLASHMAC	0xf0020000
167 #elif defined (CONFIG_M5272C3)
168 #define	FEC_FLASHMAC	(0xffe04000 + 4)
169 #elif defined(CONFIG_MOD5272)
170 #define FEC_FLASHMAC	0xffc0406b
171 #else
172 #define	FEC_FLASHMAC	0
173 #endif
174 #endif /* CONFIG_M5272 */
175 
176 #if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
177 #error "FEC: descriptor ring size constants too large"
178 #endif
179 
180 /* Interrupt events/masks. */
181 #define FEC_ENET_HBERR	((uint)0x80000000)	/* Heartbeat error */
182 #define FEC_ENET_BABR	((uint)0x40000000)	/* Babbling receiver */
183 #define FEC_ENET_BABT	((uint)0x20000000)	/* Babbling transmitter */
184 #define FEC_ENET_GRA	((uint)0x10000000)	/* Graceful stop complete */
185 #define FEC_ENET_TXF	((uint)0x08000000)	/* Full frame transmitted */
186 #define FEC_ENET_TXB	((uint)0x04000000)	/* A buffer was transmitted */
187 #define FEC_ENET_RXF	((uint)0x02000000)	/* Full frame received */
188 #define FEC_ENET_RXB	((uint)0x01000000)	/* A buffer was received */
189 #define FEC_ENET_MII	((uint)0x00800000)	/* MII interrupt */
190 #define FEC_ENET_EBERR	((uint)0x00400000)	/* SDMA bus error */
191 
192 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
193 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
194 
195 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
196  */
197 #define PKT_MAXBUF_SIZE		1522
198 #define PKT_MINBUF_SIZE		64
199 #define PKT_MAXBLR_SIZE		1536
200 
201 /* FEC receive acceleration */
202 #define FEC_RACC_IPDIS		(1 << 1)
203 #define FEC_RACC_PRODIS		(1 << 2)
204 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
205 
206 /*
207  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
208  * size bits. Other FEC hardware does not, so we need to take that into
209  * account when setting it.
210  */
211 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
212     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
213 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
214 #else
215 #define	OPT_FRAME_SIZE	0
216 #endif
217 
218 /* FEC MII MMFR bits definition */
219 #define FEC_MMFR_ST		(1 << 30)
220 #define FEC_MMFR_OP_READ	(2 << 28)
221 #define FEC_MMFR_OP_WRITE	(1 << 28)
222 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
223 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
224 #define FEC_MMFR_TA		(2 << 16)
225 #define FEC_MMFR_DATA(v)	(v & 0xffff)
226 
227 #define FEC_MII_TIMEOUT		30000 /* us */
228 
229 /* Transmitter timeout */
230 #define TX_TIMEOUT (2 * HZ)
231 
232 #define FEC_PAUSE_FLAG_AUTONEG	0x1
233 #define FEC_PAUSE_FLAG_ENABLE	0x2
234 
235 static int mii_cnt;
236 
237 static inline
238 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
239 {
240 	struct bufdesc *new_bd = bdp + 1;
241 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
242 	struct bufdesc_ex *ex_base;
243 	struct bufdesc *base;
244 	int ring_size;
245 
246 	if (bdp >= fep->tx_bd_base) {
247 		base = fep->tx_bd_base;
248 		ring_size = fep->tx_ring_size;
249 		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
250 	} else {
251 		base = fep->rx_bd_base;
252 		ring_size = fep->rx_ring_size;
253 		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
254 	}
255 
256 	if (fep->bufdesc_ex)
257 		return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
258 			ex_base : ex_new_bd);
259 	else
260 		return (new_bd >= (base + ring_size)) ?
261 			base : new_bd;
262 }
263 
264 static inline
265 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
266 {
267 	struct bufdesc *new_bd = bdp - 1;
268 	struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
269 	struct bufdesc_ex *ex_base;
270 	struct bufdesc *base;
271 	int ring_size;
272 
273 	if (bdp >= fep->tx_bd_base) {
274 		base = fep->tx_bd_base;
275 		ring_size = fep->tx_ring_size;
276 		ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
277 	} else {
278 		base = fep->rx_bd_base;
279 		ring_size = fep->rx_ring_size;
280 		ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
281 	}
282 
283 	if (fep->bufdesc_ex)
284 		return (struct bufdesc *)((ex_new_bd < ex_base) ?
285 			(ex_new_bd + ring_size) : ex_new_bd);
286 	else
287 		return (new_bd < base) ? (new_bd + ring_size) : new_bd;
288 }
289 
290 static void *swap_buffer(void *bufaddr, int len)
291 {
292 	int i;
293 	unsigned int *buf = bufaddr;
294 
295 	for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
296 		*buf = cpu_to_be32(*buf);
297 
298 	return bufaddr;
299 }
300 
301 static int
302 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
303 {
304 	/* Only run for packets requiring a checksum. */
305 	if (skb->ip_summed != CHECKSUM_PARTIAL)
306 		return 0;
307 
308 	if (unlikely(skb_cow_head(skb, 0)))
309 		return -1;
310 
311 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
312 
313 	return 0;
314 }
315 
316 static netdev_tx_t
317 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
318 {
319 	struct fec_enet_private *fep = netdev_priv(ndev);
320 	const struct platform_device_id *id_entry =
321 				platform_get_device_id(fep->pdev);
322 	struct bufdesc *bdp, *bdp_pre;
323 	void *bufaddr;
324 	unsigned short	status;
325 	unsigned int index;
326 
327 	/* Fill in a Tx ring entry */
328 	bdp = fep->cur_tx;
329 
330 	status = bdp->cbd_sc;
331 
332 	if (status & BD_ENET_TX_READY) {
333 		/* Ooops.  All transmit buffers are full.  Bail out.
334 		 * This should not happen, since ndev->tbusy should be set.
335 		 */
336 		netdev_err(ndev, "tx queue full!\n");
337 		return NETDEV_TX_BUSY;
338 	}
339 
340 	/* Protocol checksum off-load for TCP and UDP. */
341 	if (fec_enet_clear_csum(skb, ndev)) {
342 		kfree_skb(skb);
343 		return NETDEV_TX_OK;
344 	}
345 
346 	/* Clear all of the status flags */
347 	status &= ~BD_ENET_TX_STATS;
348 
349 	/* Set buffer length and buffer pointer */
350 	bufaddr = skb->data;
351 	bdp->cbd_datlen = skb->len;
352 
353 	/*
354 	 * On some FEC implementations data must be aligned on
355 	 * 4-byte boundaries. Use bounce buffers to copy data
356 	 * and get it aligned. Ugh.
357 	 */
358 	if (fep->bufdesc_ex)
359 		index = (struct bufdesc_ex *)bdp -
360 			(struct bufdesc_ex *)fep->tx_bd_base;
361 	else
362 		index = bdp - fep->tx_bd_base;
363 
364 	if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
365 		memcpy(fep->tx_bounce[index], skb->data, skb->len);
366 		bufaddr = fep->tx_bounce[index];
367 	}
368 
369 	/*
370 	 * Some design made an incorrect assumption on endian mode of
371 	 * the system that it's running on. As the result, driver has to
372 	 * swap every frame going to and coming from the controller.
373 	 */
374 	if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
375 		swap_buffer(bufaddr, skb->len);
376 
377 	/* Save skb pointer */
378 	fep->tx_skbuff[index] = skb;
379 
380 	/* Push the data cache so the CPM does not get stale memory
381 	 * data.
382 	 */
383 	bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
384 			skb->len, DMA_TO_DEVICE);
385 	if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
386 		bdp->cbd_bufaddr = 0;
387 		fep->tx_skbuff[index] = NULL;
388 		dev_kfree_skb_any(skb);
389 		if (net_ratelimit())
390 			netdev_err(ndev, "Tx DMA memory map failed\n");
391 		return NETDEV_TX_OK;
392 	}
393 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
394 	 * it's the last BD of the frame, and to put the CRC on the end.
395 	 */
396 	status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
397 			| BD_ENET_TX_LAST | BD_ENET_TX_TC);
398 	bdp->cbd_sc = status;
399 
400 	if (fep->bufdesc_ex) {
401 
402 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
403 		ebdp->cbd_bdu = 0;
404 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
405 			fep->hwts_tx_en)) {
406 			ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
407 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
408 		} else {
409 			ebdp->cbd_esc = BD_ENET_TX_INT;
410 
411 			/* Enable protocol checksum flags
412 			 * We do not bother with the IP Checksum bits as they
413 			 * are done by the kernel
414 			 */
415 			if (skb->ip_summed == CHECKSUM_PARTIAL)
416 				ebdp->cbd_esc |= BD_ENET_TX_PINS;
417 		}
418 	}
419 
420 	bdp_pre = fec_enet_get_prevdesc(bdp, fep);
421 	if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
422 	    !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
423 		fep->delay_work.trig_tx = true;
424 		schedule_delayed_work(&(fep->delay_work.delay_work),
425 					msecs_to_jiffies(1));
426 	}
427 
428 	/* If this was the last BD in the ring, start at the beginning again. */
429 	bdp = fec_enet_get_nextdesc(bdp, fep);
430 
431 	fep->cur_tx = bdp;
432 
433 	if (fep->cur_tx == fep->dirty_tx)
434 		netif_stop_queue(ndev);
435 
436 	/* Trigger transmission start */
437 	writel(0, fep->hwp + FEC_X_DES_ACTIVE);
438 
439 	skb_tx_timestamp(skb);
440 
441 	return NETDEV_TX_OK;
442 }
443 
444 /* Init RX & TX buffer descriptors
445  */
446 static void fec_enet_bd_init(struct net_device *dev)
447 {
448 	struct fec_enet_private *fep = netdev_priv(dev);
449 	struct bufdesc *bdp;
450 	unsigned int i;
451 
452 	/* Initialize the receive buffer descriptors. */
453 	bdp = fep->rx_bd_base;
454 	for (i = 0; i < fep->rx_ring_size; i++) {
455 
456 		/* Initialize the BD for every fragment in the page. */
457 		if (bdp->cbd_bufaddr)
458 			bdp->cbd_sc = BD_ENET_RX_EMPTY;
459 		else
460 			bdp->cbd_sc = 0;
461 		bdp = fec_enet_get_nextdesc(bdp, fep);
462 	}
463 
464 	/* Set the last buffer to wrap */
465 	bdp = fec_enet_get_prevdesc(bdp, fep);
466 	bdp->cbd_sc |= BD_SC_WRAP;
467 
468 	fep->cur_rx = fep->rx_bd_base;
469 
470 	/* ...and the same for transmit */
471 	bdp = fep->tx_bd_base;
472 	fep->cur_tx = bdp;
473 	for (i = 0; i < fep->tx_ring_size; i++) {
474 
475 		/* Initialize the BD for every fragment in the page. */
476 		bdp->cbd_sc = 0;
477 		if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
478 			dev_kfree_skb_any(fep->tx_skbuff[i]);
479 			fep->tx_skbuff[i] = NULL;
480 		}
481 		bdp->cbd_bufaddr = 0;
482 		bdp = fec_enet_get_nextdesc(bdp, fep);
483 	}
484 
485 	/* Set the last buffer to wrap */
486 	bdp = fec_enet_get_prevdesc(bdp, fep);
487 	bdp->cbd_sc |= BD_SC_WRAP;
488 	fep->dirty_tx = bdp;
489 }
490 
491 /* This function is called to start or restart the FEC during a link
492  * change.  This only happens when switching between half and full
493  * duplex.
494  */
495 static void
496 fec_restart(struct net_device *ndev, int duplex)
497 {
498 	struct fec_enet_private *fep = netdev_priv(ndev);
499 	const struct platform_device_id *id_entry =
500 				platform_get_device_id(fep->pdev);
501 	int i;
502 	u32 val;
503 	u32 temp_mac[2];
504 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
505 	u32 ecntl = 0x2; /* ETHEREN */
506 
507 	if (netif_running(ndev)) {
508 		netif_device_detach(ndev);
509 		napi_disable(&fep->napi);
510 		netif_stop_queue(ndev);
511 		netif_tx_lock_bh(ndev);
512 	}
513 
514 	/* Whack a reset.  We should wait for this. */
515 	writel(1, fep->hwp + FEC_ECNTRL);
516 	udelay(10);
517 
518 	/*
519 	 * enet-mac reset will reset mac address registers too,
520 	 * so need to reconfigure it.
521 	 */
522 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
523 		memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
524 		writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
525 		writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
526 	}
527 
528 	/* Clear any outstanding interrupt. */
529 	writel(0xffc00000, fep->hwp + FEC_IEVENT);
530 
531 	/* Setup multicast filter. */
532 	set_multicast_list(ndev);
533 #ifndef CONFIG_M5272
534 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
535 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
536 #endif
537 
538 	/* Set maximum receive buffer size. */
539 	writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
540 
541 	fec_enet_bd_init(ndev);
542 
543 	/* Set receive and transmit descriptor base. */
544 	writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
545 	if (fep->bufdesc_ex)
546 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
547 			* fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
548 	else
549 		writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
550 			* fep->rx_ring_size,	fep->hwp + FEC_X_DES_START);
551 
552 
553 	for (i = 0; i <= TX_RING_MOD_MASK; i++) {
554 		if (fep->tx_skbuff[i]) {
555 			dev_kfree_skb_any(fep->tx_skbuff[i]);
556 			fep->tx_skbuff[i] = NULL;
557 		}
558 	}
559 
560 	/* Enable MII mode */
561 	if (duplex) {
562 		/* FD enable */
563 		writel(0x04, fep->hwp + FEC_X_CNTRL);
564 	} else {
565 		/* No Rcv on Xmit */
566 		rcntl |= 0x02;
567 		writel(0x0, fep->hwp + FEC_X_CNTRL);
568 	}
569 
570 	fep->full_duplex = duplex;
571 
572 	/* Set MII speed */
573 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
574 
575 #if !defined(CONFIG_M5272)
576 	/* set RX checksum */
577 	val = readl(fep->hwp + FEC_RACC);
578 	if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
579 		val |= FEC_RACC_OPTIONS;
580 	else
581 		val &= ~FEC_RACC_OPTIONS;
582 	writel(val, fep->hwp + FEC_RACC);
583 #endif
584 
585 	/*
586 	 * The phy interface and speed need to get configured
587 	 * differently on enet-mac.
588 	 */
589 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
590 		/* Enable flow control and length check */
591 		rcntl |= 0x40000000 | 0x00000020;
592 
593 		/* RGMII, RMII or MII */
594 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
595 			rcntl |= (1 << 6);
596 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
597 			rcntl |= (1 << 8);
598 		else
599 			rcntl &= ~(1 << 8);
600 
601 		/* 1G, 100M or 10M */
602 		if (fep->phy_dev) {
603 			if (fep->phy_dev->speed == SPEED_1000)
604 				ecntl |= (1 << 5);
605 			else if (fep->phy_dev->speed == SPEED_100)
606 				rcntl &= ~(1 << 9);
607 			else
608 				rcntl |= (1 << 9);
609 		}
610 	} else {
611 #ifdef FEC_MIIGSK_ENR
612 		if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
613 			u32 cfgr;
614 			/* disable the gasket and wait */
615 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
616 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
617 				udelay(1);
618 
619 			/*
620 			 * configure the gasket:
621 			 *   RMII, 50 MHz, no loopback, no echo
622 			 *   MII, 25 MHz, no loopback, no echo
623 			 */
624 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
625 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
626 			if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
627 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
628 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
629 
630 			/* re-enable the gasket */
631 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
632 		}
633 #endif
634 	}
635 
636 #if !defined(CONFIG_M5272)
637 	/* enable pause frame*/
638 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
639 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
640 	     fep->phy_dev && fep->phy_dev->pause)) {
641 		rcntl |= FEC_ENET_FCE;
642 
643 		/* set FIFO threshold parameter to reduce overrun */
644 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
645 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
646 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
647 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
648 
649 		/* OPD */
650 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
651 	} else {
652 		rcntl &= ~FEC_ENET_FCE;
653 	}
654 #endif /* !defined(CONFIG_M5272) */
655 
656 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
657 
658 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
659 		/* enable ENET endian swap */
660 		ecntl |= (1 << 8);
661 		/* enable ENET store and forward mode */
662 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
663 	}
664 
665 	if (fep->bufdesc_ex)
666 		ecntl |= (1 << 4);
667 
668 #ifndef CONFIG_M5272
669 	/* Enable the MIB statistic event counters */
670 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
671 #endif
672 
673 	/* And last, enable the transmit and receive processing */
674 	writel(ecntl, fep->hwp + FEC_ECNTRL);
675 	writel(0, fep->hwp + FEC_R_DES_ACTIVE);
676 
677 	if (fep->bufdesc_ex)
678 		fec_ptp_start_cyclecounter(ndev);
679 
680 	/* Enable interrupts we wish to service */
681 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
682 
683 	if (netif_running(ndev)) {
684 		netif_tx_unlock_bh(ndev);
685 		netif_wake_queue(ndev);
686 		napi_enable(&fep->napi);
687 		netif_device_attach(ndev);
688 	}
689 }
690 
691 static void
692 fec_stop(struct net_device *ndev)
693 {
694 	struct fec_enet_private *fep = netdev_priv(ndev);
695 	const struct platform_device_id *id_entry =
696 				platform_get_device_id(fep->pdev);
697 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
698 
699 	/* We cannot expect a graceful transmit stop without link !!! */
700 	if (fep->link) {
701 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
702 		udelay(10);
703 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
704 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
705 	}
706 
707 	/* Whack a reset.  We should wait for this. */
708 	writel(1, fep->hwp + FEC_ECNTRL);
709 	udelay(10);
710 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
711 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
712 
713 	/* We have to keep ENET enabled to have MII interrupt stay working */
714 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
715 		writel(2, fep->hwp + FEC_ECNTRL);
716 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
717 	}
718 }
719 
720 
721 static void
722 fec_timeout(struct net_device *ndev)
723 {
724 	struct fec_enet_private *fep = netdev_priv(ndev);
725 
726 	ndev->stats.tx_errors++;
727 
728 	fep->delay_work.timeout = true;
729 	schedule_delayed_work(&(fep->delay_work.delay_work), 0);
730 }
731 
732 static void fec_enet_work(struct work_struct *work)
733 {
734 	struct fec_enet_private *fep =
735 		container_of(work,
736 			     struct fec_enet_private,
737 			     delay_work.delay_work.work);
738 
739 	if (fep->delay_work.timeout) {
740 		fep->delay_work.timeout = false;
741 		fec_restart(fep->netdev, fep->full_duplex);
742 		netif_wake_queue(fep->netdev);
743 	}
744 
745 	if (fep->delay_work.trig_tx) {
746 		fep->delay_work.trig_tx = false;
747 		writel(0, fep->hwp + FEC_X_DES_ACTIVE);
748 	}
749 }
750 
751 static void
752 fec_enet_tx(struct net_device *ndev)
753 {
754 	struct	fec_enet_private *fep;
755 	struct bufdesc *bdp;
756 	unsigned short status;
757 	struct	sk_buff	*skb;
758 	int	index = 0;
759 
760 	fep = netdev_priv(ndev);
761 	bdp = fep->dirty_tx;
762 
763 	/* get next bdp of dirty_tx */
764 	bdp = fec_enet_get_nextdesc(bdp, fep);
765 
766 	while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
767 
768 		/* current queue is empty */
769 		if (bdp == fep->cur_tx)
770 			break;
771 
772 		if (fep->bufdesc_ex)
773 			index = (struct bufdesc_ex *)bdp -
774 				(struct bufdesc_ex *)fep->tx_bd_base;
775 		else
776 			index = bdp - fep->tx_bd_base;
777 
778 		skb = fep->tx_skbuff[index];
779 		dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, skb->len,
780 				DMA_TO_DEVICE);
781 		bdp->cbd_bufaddr = 0;
782 
783 		/* Check for errors. */
784 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
785 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
786 				   BD_ENET_TX_CSL)) {
787 			ndev->stats.tx_errors++;
788 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
789 				ndev->stats.tx_heartbeat_errors++;
790 			if (status & BD_ENET_TX_LC)  /* Late collision */
791 				ndev->stats.tx_window_errors++;
792 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
793 				ndev->stats.tx_aborted_errors++;
794 			if (status & BD_ENET_TX_UN)  /* Underrun */
795 				ndev->stats.tx_fifo_errors++;
796 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
797 				ndev->stats.tx_carrier_errors++;
798 		} else {
799 			ndev->stats.tx_packets++;
800 			ndev->stats.tx_bytes += bdp->cbd_datlen;
801 		}
802 
803 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
804 			fep->bufdesc_ex) {
805 			struct skb_shared_hwtstamps shhwtstamps;
806 			unsigned long flags;
807 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
808 
809 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
810 			spin_lock_irqsave(&fep->tmreg_lock, flags);
811 			shhwtstamps.hwtstamp = ns_to_ktime(
812 				timecounter_cyc2time(&fep->tc, ebdp->ts));
813 			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
814 			skb_tstamp_tx(skb, &shhwtstamps);
815 		}
816 
817 		if (status & BD_ENET_TX_READY)
818 			netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
819 
820 		/* Deferred means some collisions occurred during transmit,
821 		 * but we eventually sent the packet OK.
822 		 */
823 		if (status & BD_ENET_TX_DEF)
824 			ndev->stats.collisions++;
825 
826 		/* Free the sk buffer associated with this last transmit */
827 		dev_kfree_skb_any(skb);
828 		fep->tx_skbuff[index] = NULL;
829 
830 		fep->dirty_tx = bdp;
831 
832 		/* Update pointer to next buffer descriptor to be transmitted */
833 		bdp = fec_enet_get_nextdesc(bdp, fep);
834 
835 		/* Since we have freed up a buffer, the ring is no longer full
836 		 */
837 		if (fep->dirty_tx != fep->cur_tx) {
838 			if (netif_queue_stopped(ndev))
839 				netif_wake_queue(ndev);
840 		}
841 	}
842 	return;
843 }
844 
845 
846 /* During a receive, the cur_rx points to the current incoming buffer.
847  * When we update through the ring, if the next incoming buffer has
848  * not been given to the system, we just set the empty indicator,
849  * effectively tossing the packet.
850  */
851 static int
852 fec_enet_rx(struct net_device *ndev, int budget)
853 {
854 	struct fec_enet_private *fep = netdev_priv(ndev);
855 	const struct platform_device_id *id_entry =
856 				platform_get_device_id(fep->pdev);
857 	struct bufdesc *bdp;
858 	unsigned short status;
859 	struct	sk_buff	*skb;
860 	ushort	pkt_len;
861 	__u8 *data;
862 	int	pkt_received = 0;
863 	struct	bufdesc_ex *ebdp = NULL;
864 	bool	vlan_packet_rcvd = false;
865 	u16	vlan_tag;
866 	int	index = 0;
867 
868 #ifdef CONFIG_M532x
869 	flush_cache_all();
870 #endif
871 
872 	/* First, grab all of the stats for the incoming packet.
873 	 * These get messed up if we get called due to a busy condition.
874 	 */
875 	bdp = fep->cur_rx;
876 
877 	while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
878 
879 		if (pkt_received >= budget)
880 			break;
881 		pkt_received++;
882 
883 		/* Since we have allocated space to hold a complete frame,
884 		 * the last indicator should be set.
885 		 */
886 		if ((status & BD_ENET_RX_LAST) == 0)
887 			netdev_err(ndev, "rcv is not +last\n");
888 
889 		if (!fep->opened)
890 			goto rx_processing_done;
891 
892 		/* Check for errors. */
893 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
894 			   BD_ENET_RX_CR | BD_ENET_RX_OV)) {
895 			ndev->stats.rx_errors++;
896 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
897 				/* Frame too long or too short. */
898 				ndev->stats.rx_length_errors++;
899 			}
900 			if (status & BD_ENET_RX_NO)	/* Frame alignment */
901 				ndev->stats.rx_frame_errors++;
902 			if (status & BD_ENET_RX_CR)	/* CRC Error */
903 				ndev->stats.rx_crc_errors++;
904 			if (status & BD_ENET_RX_OV)	/* FIFO overrun */
905 				ndev->stats.rx_fifo_errors++;
906 		}
907 
908 		/* Report late collisions as a frame error.
909 		 * On this error, the BD is closed, but we don't know what we
910 		 * have in the buffer.  So, just drop this frame on the floor.
911 		 */
912 		if (status & BD_ENET_RX_CL) {
913 			ndev->stats.rx_errors++;
914 			ndev->stats.rx_frame_errors++;
915 			goto rx_processing_done;
916 		}
917 
918 		/* Process the incoming frame. */
919 		ndev->stats.rx_packets++;
920 		pkt_len = bdp->cbd_datlen;
921 		ndev->stats.rx_bytes += pkt_len;
922 
923 		if (fep->bufdesc_ex)
924 			index = (struct bufdesc_ex *)bdp -
925 				(struct bufdesc_ex *)fep->rx_bd_base;
926 		else
927 			index = bdp - fep->rx_bd_base;
928 		data = fep->rx_skbuff[index]->data;
929 		dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
930 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
931 
932 		if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
933 			swap_buffer(data, pkt_len);
934 
935 		/* Extract the enhanced buffer descriptor */
936 		ebdp = NULL;
937 		if (fep->bufdesc_ex)
938 			ebdp = (struct bufdesc_ex *)bdp;
939 
940 		/* If this is a VLAN packet remove the VLAN Tag */
941 		vlan_packet_rcvd = false;
942 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
943 		    fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
944 			/* Push and remove the vlan tag */
945 			struct vlan_hdr *vlan_header =
946 					(struct vlan_hdr *) (data + ETH_HLEN);
947 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
948 			pkt_len -= VLAN_HLEN;
949 
950 			vlan_packet_rcvd = true;
951 		}
952 
953 		/* This does 16 byte alignment, exactly what we need.
954 		 * The packet length includes FCS, but we don't want to
955 		 * include that when passing upstream as it messes up
956 		 * bridging applications.
957 		 */
958 		skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
959 
960 		if (unlikely(!skb)) {
961 			ndev->stats.rx_dropped++;
962 		} else {
963 			int payload_offset = (2 * ETH_ALEN);
964 			skb_reserve(skb, NET_IP_ALIGN);
965 			skb_put(skb, pkt_len - 4);	/* Make room */
966 
967 			/* Extract the frame data without the VLAN header. */
968 			skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
969 			if (vlan_packet_rcvd)
970 				payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
971 			skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
972 						       data + payload_offset,
973 						       pkt_len - 4 - (2 * ETH_ALEN));
974 
975 			skb->protocol = eth_type_trans(skb, ndev);
976 
977 			/* Get receive timestamp from the skb */
978 			if (fep->hwts_rx_en && fep->bufdesc_ex) {
979 				struct skb_shared_hwtstamps *shhwtstamps =
980 							    skb_hwtstamps(skb);
981 				unsigned long flags;
982 
983 				memset(shhwtstamps, 0, sizeof(*shhwtstamps));
984 
985 				spin_lock_irqsave(&fep->tmreg_lock, flags);
986 				shhwtstamps->hwtstamp = ns_to_ktime(
987 				    timecounter_cyc2time(&fep->tc, ebdp->ts));
988 				spin_unlock_irqrestore(&fep->tmreg_lock, flags);
989 			}
990 
991 			if (fep->bufdesc_ex &&
992 			    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
993 				if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
994 					/* don't check it */
995 					skb->ip_summed = CHECKSUM_UNNECESSARY;
996 				} else {
997 					skb_checksum_none_assert(skb);
998 				}
999 			}
1000 
1001 			/* Handle received VLAN packets */
1002 			if (vlan_packet_rcvd)
1003 				__vlan_hwaccel_put_tag(skb,
1004 						       htons(ETH_P_8021Q),
1005 						       vlan_tag);
1006 
1007 			napi_gro_receive(&fep->napi, skb);
1008 		}
1009 
1010 		dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1011 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1012 rx_processing_done:
1013 		/* Clear the status flags for this buffer */
1014 		status &= ~BD_ENET_RX_STATS;
1015 
1016 		/* Mark the buffer empty */
1017 		status |= BD_ENET_RX_EMPTY;
1018 		bdp->cbd_sc = status;
1019 
1020 		if (fep->bufdesc_ex) {
1021 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1022 
1023 			ebdp->cbd_esc = BD_ENET_RX_INT;
1024 			ebdp->cbd_prot = 0;
1025 			ebdp->cbd_bdu = 0;
1026 		}
1027 
1028 		/* Update BD pointer to next entry */
1029 		bdp = fec_enet_get_nextdesc(bdp, fep);
1030 
1031 		/* Doing this here will keep the FEC running while we process
1032 		 * incoming frames.  On a heavily loaded network, we should be
1033 		 * able to keep up at the expense of system resources.
1034 		 */
1035 		writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1036 	}
1037 	fep->cur_rx = bdp;
1038 
1039 	return pkt_received;
1040 }
1041 
1042 static irqreturn_t
1043 fec_enet_interrupt(int irq, void *dev_id)
1044 {
1045 	struct net_device *ndev = dev_id;
1046 	struct fec_enet_private *fep = netdev_priv(ndev);
1047 	uint int_events;
1048 	irqreturn_t ret = IRQ_NONE;
1049 
1050 	do {
1051 		int_events = readl(fep->hwp + FEC_IEVENT);
1052 		writel(int_events, fep->hwp + FEC_IEVENT);
1053 
1054 		if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
1055 			ret = IRQ_HANDLED;
1056 
1057 			/* Disable the RX interrupt */
1058 			if (napi_schedule_prep(&fep->napi)) {
1059 				writel(FEC_RX_DISABLED_IMASK,
1060 					fep->hwp + FEC_IMASK);
1061 				__napi_schedule(&fep->napi);
1062 			}
1063 		}
1064 
1065 		if (int_events & FEC_ENET_MII) {
1066 			ret = IRQ_HANDLED;
1067 			complete(&fep->mdio_done);
1068 		}
1069 	} while (int_events);
1070 
1071 	return ret;
1072 }
1073 
1074 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1075 {
1076 	struct net_device *ndev = napi->dev;
1077 	int pkts = fec_enet_rx(ndev, budget);
1078 	struct fec_enet_private *fep = netdev_priv(ndev);
1079 
1080 	fec_enet_tx(ndev);
1081 
1082 	if (pkts < budget) {
1083 		napi_complete(napi);
1084 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1085 	}
1086 	return pkts;
1087 }
1088 
1089 /* ------------------------------------------------------------------------- */
1090 static void fec_get_mac(struct net_device *ndev)
1091 {
1092 	struct fec_enet_private *fep = netdev_priv(ndev);
1093 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1094 	unsigned char *iap, tmpaddr[ETH_ALEN];
1095 
1096 	/*
1097 	 * try to get mac address in following order:
1098 	 *
1099 	 * 1) module parameter via kernel command line in form
1100 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1101 	 */
1102 	iap = macaddr;
1103 
1104 	/*
1105 	 * 2) from device tree data
1106 	 */
1107 	if (!is_valid_ether_addr(iap)) {
1108 		struct device_node *np = fep->pdev->dev.of_node;
1109 		if (np) {
1110 			const char *mac = of_get_mac_address(np);
1111 			if (mac)
1112 				iap = (unsigned char *) mac;
1113 		}
1114 	}
1115 
1116 	/*
1117 	 * 3) from flash or fuse (via platform data)
1118 	 */
1119 	if (!is_valid_ether_addr(iap)) {
1120 #ifdef CONFIG_M5272
1121 		if (FEC_FLASHMAC)
1122 			iap = (unsigned char *)FEC_FLASHMAC;
1123 #else
1124 		if (pdata)
1125 			iap = (unsigned char *)&pdata->mac;
1126 #endif
1127 	}
1128 
1129 	/*
1130 	 * 4) FEC mac registers set by bootloader
1131 	 */
1132 	if (!is_valid_ether_addr(iap)) {
1133 		*((__be32 *) &tmpaddr[0]) =
1134 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1135 		*((__be16 *) &tmpaddr[4]) =
1136 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1137 		iap = &tmpaddr[0];
1138 	}
1139 
1140 	/*
1141 	 * 5) random mac address
1142 	 */
1143 	if (!is_valid_ether_addr(iap)) {
1144 		/* Report it and use a random ethernet address instead */
1145 		netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1146 		eth_hw_addr_random(ndev);
1147 		netdev_info(ndev, "Using random MAC address: %pM\n",
1148 			    ndev->dev_addr);
1149 		return;
1150 	}
1151 
1152 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1153 
1154 	/* Adjust MAC if using macaddr */
1155 	if (iap == macaddr)
1156 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1157 }
1158 
1159 /* ------------------------------------------------------------------------- */
1160 
1161 /*
1162  * Phy section
1163  */
1164 static void fec_enet_adjust_link(struct net_device *ndev)
1165 {
1166 	struct fec_enet_private *fep = netdev_priv(ndev);
1167 	struct phy_device *phy_dev = fep->phy_dev;
1168 	int status_change = 0;
1169 
1170 	/* Prevent a state halted on mii error */
1171 	if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1172 		phy_dev->state = PHY_RESUMING;
1173 		return;
1174 	}
1175 
1176 	if (phy_dev->link) {
1177 		if (!fep->link) {
1178 			fep->link = phy_dev->link;
1179 			status_change = 1;
1180 		}
1181 
1182 		if (fep->full_duplex != phy_dev->duplex)
1183 			status_change = 1;
1184 
1185 		if (phy_dev->speed != fep->speed) {
1186 			fep->speed = phy_dev->speed;
1187 			status_change = 1;
1188 		}
1189 
1190 		/* if any of the above changed restart the FEC */
1191 		if (status_change)
1192 			fec_restart(ndev, phy_dev->duplex);
1193 	} else {
1194 		if (fep->link) {
1195 			fec_stop(ndev);
1196 			fep->link = phy_dev->link;
1197 			status_change = 1;
1198 		}
1199 	}
1200 
1201 	if (status_change)
1202 		phy_print_status(phy_dev);
1203 }
1204 
1205 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1206 {
1207 	struct fec_enet_private *fep = bus->priv;
1208 	unsigned long time_left;
1209 
1210 	fep->mii_timeout = 0;
1211 	init_completion(&fep->mdio_done);
1212 
1213 	/* start a read op */
1214 	writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1215 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1216 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1217 
1218 	/* wait for end of transfer */
1219 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1220 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1221 	if (time_left == 0) {
1222 		fep->mii_timeout = 1;
1223 		netdev_err(fep->netdev, "MDIO read timeout\n");
1224 		return -ETIMEDOUT;
1225 	}
1226 
1227 	/* return value */
1228 	return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1229 }
1230 
1231 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1232 			   u16 value)
1233 {
1234 	struct fec_enet_private *fep = bus->priv;
1235 	unsigned long time_left;
1236 
1237 	fep->mii_timeout = 0;
1238 	init_completion(&fep->mdio_done);
1239 
1240 	/* start a write op */
1241 	writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1242 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1243 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1244 		fep->hwp + FEC_MII_DATA);
1245 
1246 	/* wait for end of transfer */
1247 	time_left = wait_for_completion_timeout(&fep->mdio_done,
1248 			usecs_to_jiffies(FEC_MII_TIMEOUT));
1249 	if (time_left == 0) {
1250 		fep->mii_timeout = 1;
1251 		netdev_err(fep->netdev, "MDIO write timeout\n");
1252 		return -ETIMEDOUT;
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 static int fec_enet_mdio_reset(struct mii_bus *bus)
1259 {
1260 	return 0;
1261 }
1262 
1263 static int fec_enet_mii_probe(struct net_device *ndev)
1264 {
1265 	struct fec_enet_private *fep = netdev_priv(ndev);
1266 	const struct platform_device_id *id_entry =
1267 				platform_get_device_id(fep->pdev);
1268 	struct phy_device *phy_dev = NULL;
1269 	char mdio_bus_id[MII_BUS_ID_SIZE];
1270 	char phy_name[MII_BUS_ID_SIZE + 3];
1271 	int phy_id;
1272 	int dev_id = fep->dev_id;
1273 
1274 	fep->phy_dev = NULL;
1275 
1276 	/* check for attached phy */
1277 	for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1278 		if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1279 			continue;
1280 		if (fep->mii_bus->phy_map[phy_id] == NULL)
1281 			continue;
1282 		if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1283 			continue;
1284 		if (dev_id--)
1285 			continue;
1286 		strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1287 		break;
1288 	}
1289 
1290 	if (phy_id >= PHY_MAX_ADDR) {
1291 		netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1292 		strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1293 		phy_id = 0;
1294 	}
1295 
1296 	snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1297 	phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1298 			      fep->phy_interface);
1299 	if (IS_ERR(phy_dev)) {
1300 		netdev_err(ndev, "could not attach to PHY\n");
1301 		return PTR_ERR(phy_dev);
1302 	}
1303 
1304 	/* mask with MAC supported features */
1305 	if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1306 		phy_dev->supported &= PHY_GBIT_FEATURES;
1307 #if !defined(CONFIG_M5272)
1308 		phy_dev->supported |= SUPPORTED_Pause;
1309 #endif
1310 	}
1311 	else
1312 		phy_dev->supported &= PHY_BASIC_FEATURES;
1313 
1314 	phy_dev->advertising = phy_dev->supported;
1315 
1316 	fep->phy_dev = phy_dev;
1317 	fep->link = 0;
1318 	fep->full_duplex = 0;
1319 
1320 	netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1321 		    fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1322 		    fep->phy_dev->irq);
1323 
1324 	return 0;
1325 }
1326 
1327 static int fec_enet_mii_init(struct platform_device *pdev)
1328 {
1329 	static struct mii_bus *fec0_mii_bus;
1330 	struct net_device *ndev = platform_get_drvdata(pdev);
1331 	struct fec_enet_private *fep = netdev_priv(ndev);
1332 	const struct platform_device_id *id_entry =
1333 				platform_get_device_id(fep->pdev);
1334 	int err = -ENXIO, i;
1335 
1336 	/*
1337 	 * The dual fec interfaces are not equivalent with enet-mac.
1338 	 * Here are the differences:
1339 	 *
1340 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1341 	 *  - fec0 acts as the 1588 time master while fec1 is slave
1342 	 *  - external phys can only be configured by fec0
1343 	 *
1344 	 * That is to say fec1 can not work independently. It only works
1345 	 * when fec0 is working. The reason behind this design is that the
1346 	 * second interface is added primarily for Switch mode.
1347 	 *
1348 	 * Because of the last point above, both phys are attached on fec0
1349 	 * mdio interface in board design, and need to be configured by
1350 	 * fec0 mii_bus.
1351 	 */
1352 	if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1353 		/* fec1 uses fec0 mii_bus */
1354 		if (mii_cnt && fec0_mii_bus) {
1355 			fep->mii_bus = fec0_mii_bus;
1356 			mii_cnt++;
1357 			return 0;
1358 		}
1359 		return -ENOENT;
1360 	}
1361 
1362 	fep->mii_timeout = 0;
1363 
1364 	/*
1365 	 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1366 	 *
1367 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1368 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
1369 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1370 	 * document.
1371 	 */
1372 	fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1373 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1374 		fep->phy_speed--;
1375 	fep->phy_speed <<= 1;
1376 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1377 
1378 	fep->mii_bus = mdiobus_alloc();
1379 	if (fep->mii_bus == NULL) {
1380 		err = -ENOMEM;
1381 		goto err_out;
1382 	}
1383 
1384 	fep->mii_bus->name = "fec_enet_mii_bus";
1385 	fep->mii_bus->read = fec_enet_mdio_read;
1386 	fep->mii_bus->write = fec_enet_mdio_write;
1387 	fep->mii_bus->reset = fec_enet_mdio_reset;
1388 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1389 		pdev->name, fep->dev_id + 1);
1390 	fep->mii_bus->priv = fep;
1391 	fep->mii_bus->parent = &pdev->dev;
1392 
1393 	fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1394 	if (!fep->mii_bus->irq) {
1395 		err = -ENOMEM;
1396 		goto err_out_free_mdiobus;
1397 	}
1398 
1399 	for (i = 0; i < PHY_MAX_ADDR; i++)
1400 		fep->mii_bus->irq[i] = PHY_POLL;
1401 
1402 	if (mdiobus_register(fep->mii_bus))
1403 		goto err_out_free_mdio_irq;
1404 
1405 	mii_cnt++;
1406 
1407 	/* save fec0 mii_bus */
1408 	if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1409 		fec0_mii_bus = fep->mii_bus;
1410 
1411 	return 0;
1412 
1413 err_out_free_mdio_irq:
1414 	kfree(fep->mii_bus->irq);
1415 err_out_free_mdiobus:
1416 	mdiobus_free(fep->mii_bus);
1417 err_out:
1418 	return err;
1419 }
1420 
1421 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1422 {
1423 	if (--mii_cnt == 0) {
1424 		mdiobus_unregister(fep->mii_bus);
1425 		kfree(fep->mii_bus->irq);
1426 		mdiobus_free(fep->mii_bus);
1427 	}
1428 }
1429 
1430 static int fec_enet_get_settings(struct net_device *ndev,
1431 				  struct ethtool_cmd *cmd)
1432 {
1433 	struct fec_enet_private *fep = netdev_priv(ndev);
1434 	struct phy_device *phydev = fep->phy_dev;
1435 
1436 	if (!phydev)
1437 		return -ENODEV;
1438 
1439 	return phy_ethtool_gset(phydev, cmd);
1440 }
1441 
1442 static int fec_enet_set_settings(struct net_device *ndev,
1443 				 struct ethtool_cmd *cmd)
1444 {
1445 	struct fec_enet_private *fep = netdev_priv(ndev);
1446 	struct phy_device *phydev = fep->phy_dev;
1447 
1448 	if (!phydev)
1449 		return -ENODEV;
1450 
1451 	return phy_ethtool_sset(phydev, cmd);
1452 }
1453 
1454 static void fec_enet_get_drvinfo(struct net_device *ndev,
1455 				 struct ethtool_drvinfo *info)
1456 {
1457 	struct fec_enet_private *fep = netdev_priv(ndev);
1458 
1459 	strlcpy(info->driver, fep->pdev->dev.driver->name,
1460 		sizeof(info->driver));
1461 	strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1462 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1463 }
1464 
1465 static int fec_enet_get_ts_info(struct net_device *ndev,
1466 				struct ethtool_ts_info *info)
1467 {
1468 	struct fec_enet_private *fep = netdev_priv(ndev);
1469 
1470 	if (fep->bufdesc_ex) {
1471 
1472 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1473 					SOF_TIMESTAMPING_RX_SOFTWARE |
1474 					SOF_TIMESTAMPING_SOFTWARE |
1475 					SOF_TIMESTAMPING_TX_HARDWARE |
1476 					SOF_TIMESTAMPING_RX_HARDWARE |
1477 					SOF_TIMESTAMPING_RAW_HARDWARE;
1478 		if (fep->ptp_clock)
1479 			info->phc_index = ptp_clock_index(fep->ptp_clock);
1480 		else
1481 			info->phc_index = -1;
1482 
1483 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1484 				 (1 << HWTSTAMP_TX_ON);
1485 
1486 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1487 				   (1 << HWTSTAMP_FILTER_ALL);
1488 		return 0;
1489 	} else {
1490 		return ethtool_op_get_ts_info(ndev, info);
1491 	}
1492 }
1493 
1494 #if !defined(CONFIG_M5272)
1495 
1496 static void fec_enet_get_pauseparam(struct net_device *ndev,
1497 				    struct ethtool_pauseparam *pause)
1498 {
1499 	struct fec_enet_private *fep = netdev_priv(ndev);
1500 
1501 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1502 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1503 	pause->rx_pause = pause->tx_pause;
1504 }
1505 
1506 static int fec_enet_set_pauseparam(struct net_device *ndev,
1507 				   struct ethtool_pauseparam *pause)
1508 {
1509 	struct fec_enet_private *fep = netdev_priv(ndev);
1510 
1511 	if (pause->tx_pause != pause->rx_pause) {
1512 		netdev_info(ndev,
1513 			"hardware only support enable/disable both tx and rx");
1514 		return -EINVAL;
1515 	}
1516 
1517 	fep->pause_flag = 0;
1518 
1519 	/* tx pause must be same as rx pause */
1520 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1521 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1522 
1523 	if (pause->rx_pause || pause->autoneg) {
1524 		fep->phy_dev->supported |= ADVERTISED_Pause;
1525 		fep->phy_dev->advertising |= ADVERTISED_Pause;
1526 	} else {
1527 		fep->phy_dev->supported &= ~ADVERTISED_Pause;
1528 		fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1529 	}
1530 
1531 	if (pause->autoneg) {
1532 		if (netif_running(ndev))
1533 			fec_stop(ndev);
1534 		phy_start_aneg(fep->phy_dev);
1535 	}
1536 	if (netif_running(ndev))
1537 		fec_restart(ndev, 0);
1538 
1539 	return 0;
1540 }
1541 
1542 static const struct fec_stat {
1543 	char name[ETH_GSTRING_LEN];
1544 	u16 offset;
1545 } fec_stats[] = {
1546 	/* RMON TX */
1547 	{ "tx_dropped", RMON_T_DROP },
1548 	{ "tx_packets", RMON_T_PACKETS },
1549 	{ "tx_broadcast", RMON_T_BC_PKT },
1550 	{ "tx_multicast", RMON_T_MC_PKT },
1551 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
1552 	{ "tx_undersize", RMON_T_UNDERSIZE },
1553 	{ "tx_oversize", RMON_T_OVERSIZE },
1554 	{ "tx_fragment", RMON_T_FRAG },
1555 	{ "tx_jabber", RMON_T_JAB },
1556 	{ "tx_collision", RMON_T_COL },
1557 	{ "tx_64byte", RMON_T_P64 },
1558 	{ "tx_65to127byte", RMON_T_P65TO127 },
1559 	{ "tx_128to255byte", RMON_T_P128TO255 },
1560 	{ "tx_256to511byte", RMON_T_P256TO511 },
1561 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
1562 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
1563 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
1564 	{ "tx_octets", RMON_T_OCTETS },
1565 
1566 	/* IEEE TX */
1567 	{ "IEEE_tx_drop", IEEE_T_DROP },
1568 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1569 	{ "IEEE_tx_1col", IEEE_T_1COL },
1570 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
1571 	{ "IEEE_tx_def", IEEE_T_DEF },
1572 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
1573 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
1574 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
1575 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
1576 	{ "IEEE_tx_sqe", IEEE_T_SQE },
1577 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1578 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1579 
1580 	/* RMON RX */
1581 	{ "rx_packets", RMON_R_PACKETS },
1582 	{ "rx_broadcast", RMON_R_BC_PKT },
1583 	{ "rx_multicast", RMON_R_MC_PKT },
1584 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
1585 	{ "rx_undersize", RMON_R_UNDERSIZE },
1586 	{ "rx_oversize", RMON_R_OVERSIZE },
1587 	{ "rx_fragment", RMON_R_FRAG },
1588 	{ "rx_jabber", RMON_R_JAB },
1589 	{ "rx_64byte", RMON_R_P64 },
1590 	{ "rx_65to127byte", RMON_R_P65TO127 },
1591 	{ "rx_128to255byte", RMON_R_P128TO255 },
1592 	{ "rx_256to511byte", RMON_R_P256TO511 },
1593 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
1594 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
1595 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
1596 	{ "rx_octets", RMON_R_OCTETS },
1597 
1598 	/* IEEE RX */
1599 	{ "IEEE_rx_drop", IEEE_R_DROP },
1600 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1601 	{ "IEEE_rx_crc", IEEE_R_CRC },
1602 	{ "IEEE_rx_align", IEEE_R_ALIGN },
1603 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
1604 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1605 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1606 };
1607 
1608 static void fec_enet_get_ethtool_stats(struct net_device *dev,
1609 	struct ethtool_stats *stats, u64 *data)
1610 {
1611 	struct fec_enet_private *fep = netdev_priv(dev);
1612 	int i;
1613 
1614 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1615 		data[i] = readl(fep->hwp + fec_stats[i].offset);
1616 }
1617 
1618 static void fec_enet_get_strings(struct net_device *netdev,
1619 	u32 stringset, u8 *data)
1620 {
1621 	int i;
1622 	switch (stringset) {
1623 	case ETH_SS_STATS:
1624 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1625 			memcpy(data + i * ETH_GSTRING_LEN,
1626 				fec_stats[i].name, ETH_GSTRING_LEN);
1627 		break;
1628 	}
1629 }
1630 
1631 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
1632 {
1633 	switch (sset) {
1634 	case ETH_SS_STATS:
1635 		return ARRAY_SIZE(fec_stats);
1636 	default:
1637 		return -EOPNOTSUPP;
1638 	}
1639 }
1640 #endif /* !defined(CONFIG_M5272) */
1641 
1642 static int fec_enet_nway_reset(struct net_device *dev)
1643 {
1644 	struct fec_enet_private *fep = netdev_priv(dev);
1645 	struct phy_device *phydev = fep->phy_dev;
1646 
1647 	if (!phydev)
1648 		return -ENODEV;
1649 
1650 	return genphy_restart_aneg(phydev);
1651 }
1652 
1653 static const struct ethtool_ops fec_enet_ethtool_ops = {
1654 #if !defined(CONFIG_M5272)
1655 	.get_pauseparam		= fec_enet_get_pauseparam,
1656 	.set_pauseparam		= fec_enet_set_pauseparam,
1657 #endif
1658 	.get_settings		= fec_enet_get_settings,
1659 	.set_settings		= fec_enet_set_settings,
1660 	.get_drvinfo		= fec_enet_get_drvinfo,
1661 	.get_link		= ethtool_op_get_link,
1662 	.get_ts_info		= fec_enet_get_ts_info,
1663 	.nway_reset		= fec_enet_nway_reset,
1664 #ifndef CONFIG_M5272
1665 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
1666 	.get_strings		= fec_enet_get_strings,
1667 	.get_sset_count		= fec_enet_get_sset_count,
1668 #endif
1669 };
1670 
1671 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1672 {
1673 	struct fec_enet_private *fep = netdev_priv(ndev);
1674 	struct phy_device *phydev = fep->phy_dev;
1675 
1676 	if (!netif_running(ndev))
1677 		return -EINVAL;
1678 
1679 	if (!phydev)
1680 		return -ENODEV;
1681 
1682 	if (cmd == SIOCSHWTSTAMP && fep->bufdesc_ex)
1683 		return fec_ptp_ioctl(ndev, rq, cmd);
1684 
1685 	return phy_mii_ioctl(phydev, rq, cmd);
1686 }
1687 
1688 static void fec_enet_free_buffers(struct net_device *ndev)
1689 {
1690 	struct fec_enet_private *fep = netdev_priv(ndev);
1691 	unsigned int i;
1692 	struct sk_buff *skb;
1693 	struct bufdesc	*bdp;
1694 
1695 	bdp = fep->rx_bd_base;
1696 	for (i = 0; i < fep->rx_ring_size; i++) {
1697 		skb = fep->rx_skbuff[i];
1698 
1699 		if (bdp->cbd_bufaddr)
1700 			dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1701 					FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1702 		if (skb)
1703 			dev_kfree_skb(skb);
1704 		bdp = fec_enet_get_nextdesc(bdp, fep);
1705 	}
1706 
1707 	bdp = fep->tx_bd_base;
1708 	for (i = 0; i < fep->tx_ring_size; i++)
1709 		kfree(fep->tx_bounce[i]);
1710 }
1711 
1712 static int fec_enet_alloc_buffers(struct net_device *ndev)
1713 {
1714 	struct fec_enet_private *fep = netdev_priv(ndev);
1715 	unsigned int i;
1716 	struct sk_buff *skb;
1717 	struct bufdesc	*bdp;
1718 
1719 	bdp = fep->rx_bd_base;
1720 	for (i = 0; i < fep->rx_ring_size; i++) {
1721 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1722 		if (!skb) {
1723 			fec_enet_free_buffers(ndev);
1724 			return -ENOMEM;
1725 		}
1726 		fep->rx_skbuff[i] = skb;
1727 
1728 		bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1729 				FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1730 		if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1731 			fec_enet_free_buffers(ndev);
1732 			if (net_ratelimit())
1733 				netdev_err(ndev, "Rx DMA memory map failed\n");
1734 			return -ENOMEM;
1735 		}
1736 		bdp->cbd_sc = BD_ENET_RX_EMPTY;
1737 
1738 		if (fep->bufdesc_ex) {
1739 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1740 			ebdp->cbd_esc = BD_ENET_RX_INT;
1741 		}
1742 
1743 		bdp = fec_enet_get_nextdesc(bdp, fep);
1744 	}
1745 
1746 	/* Set the last buffer to wrap. */
1747 	bdp = fec_enet_get_prevdesc(bdp, fep);
1748 	bdp->cbd_sc |= BD_SC_WRAP;
1749 
1750 	bdp = fep->tx_bd_base;
1751 	for (i = 0; i < fep->tx_ring_size; i++) {
1752 		fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1753 
1754 		bdp->cbd_sc = 0;
1755 		bdp->cbd_bufaddr = 0;
1756 
1757 		if (fep->bufdesc_ex) {
1758 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1759 			ebdp->cbd_esc = BD_ENET_TX_INT;
1760 		}
1761 
1762 		bdp = fec_enet_get_nextdesc(bdp, fep);
1763 	}
1764 
1765 	/* Set the last buffer to wrap. */
1766 	bdp = fec_enet_get_prevdesc(bdp, fep);
1767 	bdp->cbd_sc |= BD_SC_WRAP;
1768 
1769 	return 0;
1770 }
1771 
1772 static int
1773 fec_enet_open(struct net_device *ndev)
1774 {
1775 	struct fec_enet_private *fep = netdev_priv(ndev);
1776 	int ret;
1777 
1778 	napi_enable(&fep->napi);
1779 
1780 	/* I should reset the ring buffers here, but I don't yet know
1781 	 * a simple way to do that.
1782 	 */
1783 
1784 	ret = fec_enet_alloc_buffers(ndev);
1785 	if (ret)
1786 		return ret;
1787 
1788 	/* Probe and connect to PHY when open the interface */
1789 	ret = fec_enet_mii_probe(ndev);
1790 	if (ret) {
1791 		fec_enet_free_buffers(ndev);
1792 		return ret;
1793 	}
1794 	phy_start(fep->phy_dev);
1795 	netif_start_queue(ndev);
1796 	fep->opened = 1;
1797 	return 0;
1798 }
1799 
1800 static int
1801 fec_enet_close(struct net_device *ndev)
1802 {
1803 	struct fec_enet_private *fep = netdev_priv(ndev);
1804 
1805 	/* Don't know what to do yet. */
1806 	napi_disable(&fep->napi);
1807 	fep->opened = 0;
1808 	netif_stop_queue(ndev);
1809 	fec_stop(ndev);
1810 
1811 	if (fep->phy_dev) {
1812 		phy_stop(fep->phy_dev);
1813 		phy_disconnect(fep->phy_dev);
1814 	}
1815 
1816 	fec_enet_free_buffers(ndev);
1817 
1818 	return 0;
1819 }
1820 
1821 /* Set or clear the multicast filter for this adaptor.
1822  * Skeleton taken from sunlance driver.
1823  * The CPM Ethernet implementation allows Multicast as well as individual
1824  * MAC address filtering.  Some of the drivers check to make sure it is
1825  * a group multicast address, and discard those that are not.  I guess I
1826  * will do the same for now, but just remove the test if you want
1827  * individual filtering as well (do the upper net layers want or support
1828  * this kind of feature?).
1829  */
1830 
1831 #define HASH_BITS	6		/* #bits in hash */
1832 #define CRC32_POLY	0xEDB88320
1833 
1834 static void set_multicast_list(struct net_device *ndev)
1835 {
1836 	struct fec_enet_private *fep = netdev_priv(ndev);
1837 	struct netdev_hw_addr *ha;
1838 	unsigned int i, bit, data, crc, tmp;
1839 	unsigned char hash;
1840 
1841 	if (ndev->flags & IFF_PROMISC) {
1842 		tmp = readl(fep->hwp + FEC_R_CNTRL);
1843 		tmp |= 0x8;
1844 		writel(tmp, fep->hwp + FEC_R_CNTRL);
1845 		return;
1846 	}
1847 
1848 	tmp = readl(fep->hwp + FEC_R_CNTRL);
1849 	tmp &= ~0x8;
1850 	writel(tmp, fep->hwp + FEC_R_CNTRL);
1851 
1852 	if (ndev->flags & IFF_ALLMULTI) {
1853 		/* Catch all multicast addresses, so set the
1854 		 * filter to all 1's
1855 		 */
1856 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1857 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1858 
1859 		return;
1860 	}
1861 
1862 	/* Clear filter and add the addresses in hash register
1863 	 */
1864 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1865 	writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1866 
1867 	netdev_for_each_mc_addr(ha, ndev) {
1868 		/* calculate crc32 value of mac address */
1869 		crc = 0xffffffff;
1870 
1871 		for (i = 0; i < ndev->addr_len; i++) {
1872 			data = ha->addr[i];
1873 			for (bit = 0; bit < 8; bit++, data >>= 1) {
1874 				crc = (crc >> 1) ^
1875 				(((crc ^ data) & 1) ? CRC32_POLY : 0);
1876 			}
1877 		}
1878 
1879 		/* only upper 6 bits (HASH_BITS) are used
1880 		 * which point to specific bit in he hash registers
1881 		 */
1882 		hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1883 
1884 		if (hash > 31) {
1885 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1886 			tmp |= 1 << (hash - 32);
1887 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1888 		} else {
1889 			tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1890 			tmp |= 1 << hash;
1891 			writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1892 		}
1893 	}
1894 }
1895 
1896 /* Set a MAC change in hardware. */
1897 static int
1898 fec_set_mac_address(struct net_device *ndev, void *p)
1899 {
1900 	struct fec_enet_private *fep = netdev_priv(ndev);
1901 	struct sockaddr *addr = p;
1902 
1903 	if (!is_valid_ether_addr(addr->sa_data))
1904 		return -EADDRNOTAVAIL;
1905 
1906 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1907 
1908 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1909 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1910 		fep->hwp + FEC_ADDR_LOW);
1911 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1912 		fep->hwp + FEC_ADDR_HIGH);
1913 	return 0;
1914 }
1915 
1916 #ifdef CONFIG_NET_POLL_CONTROLLER
1917 /**
1918  * fec_poll_controller - FEC Poll controller function
1919  * @dev: The FEC network adapter
1920  *
1921  * Polled functionality used by netconsole and others in non interrupt mode
1922  *
1923  */
1924 static void fec_poll_controller(struct net_device *dev)
1925 {
1926 	int i;
1927 	struct fec_enet_private *fep = netdev_priv(dev);
1928 
1929 	for (i = 0; i < FEC_IRQ_NUM; i++) {
1930 		if (fep->irq[i] > 0) {
1931 			disable_irq(fep->irq[i]);
1932 			fec_enet_interrupt(fep->irq[i], dev);
1933 			enable_irq(fep->irq[i]);
1934 		}
1935 	}
1936 }
1937 #endif
1938 
1939 static int fec_set_features(struct net_device *netdev,
1940 	netdev_features_t features)
1941 {
1942 	struct fec_enet_private *fep = netdev_priv(netdev);
1943 	netdev_features_t changed = features ^ netdev->features;
1944 
1945 	netdev->features = features;
1946 
1947 	/* Receive checksum has been changed */
1948 	if (changed & NETIF_F_RXCSUM) {
1949 		if (features & NETIF_F_RXCSUM)
1950 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1951 		else
1952 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
1953 
1954 		if (netif_running(netdev)) {
1955 			fec_stop(netdev);
1956 			fec_restart(netdev, fep->phy_dev->duplex);
1957 			netif_wake_queue(netdev);
1958 		} else {
1959 			fec_restart(netdev, fep->phy_dev->duplex);
1960 		}
1961 	}
1962 
1963 	return 0;
1964 }
1965 
1966 static const struct net_device_ops fec_netdev_ops = {
1967 	.ndo_open		= fec_enet_open,
1968 	.ndo_stop		= fec_enet_close,
1969 	.ndo_start_xmit		= fec_enet_start_xmit,
1970 	.ndo_set_rx_mode	= set_multicast_list,
1971 	.ndo_change_mtu		= eth_change_mtu,
1972 	.ndo_validate_addr	= eth_validate_addr,
1973 	.ndo_tx_timeout		= fec_timeout,
1974 	.ndo_set_mac_address	= fec_set_mac_address,
1975 	.ndo_do_ioctl		= fec_enet_ioctl,
1976 #ifdef CONFIG_NET_POLL_CONTROLLER
1977 	.ndo_poll_controller	= fec_poll_controller,
1978 #endif
1979 	.ndo_set_features	= fec_set_features,
1980 };
1981 
1982  /*
1983   * XXX:  We need to clean up on failure exits here.
1984   *
1985   */
1986 static int fec_enet_init(struct net_device *ndev)
1987 {
1988 	struct fec_enet_private *fep = netdev_priv(ndev);
1989 	const struct platform_device_id *id_entry =
1990 				platform_get_device_id(fep->pdev);
1991 	struct bufdesc *cbd_base;
1992 
1993 	/* Allocate memory for buffer descriptors. */
1994 	cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1995 				      GFP_KERNEL);
1996 	if (!cbd_base)
1997 		return -ENOMEM;
1998 
1999 	memset(cbd_base, 0, PAGE_SIZE);
2000 
2001 	fep->netdev = ndev;
2002 
2003 	/* Get the Ethernet address */
2004 	fec_get_mac(ndev);
2005 
2006 	/* init the tx & rx ring size */
2007 	fep->tx_ring_size = TX_RING_SIZE;
2008 	fep->rx_ring_size = RX_RING_SIZE;
2009 
2010 	/* Set receive and transmit descriptor base. */
2011 	fep->rx_bd_base = cbd_base;
2012 	if (fep->bufdesc_ex)
2013 		fep->tx_bd_base = (struct bufdesc *)
2014 			(((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2015 	else
2016 		fep->tx_bd_base = cbd_base + fep->rx_ring_size;
2017 
2018 	/* The FEC Ethernet specific entries in the device structure */
2019 	ndev->watchdog_timeo = TX_TIMEOUT;
2020 	ndev->netdev_ops = &fec_netdev_ops;
2021 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
2022 
2023 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2024 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2025 
2026 	if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN) {
2027 		/* enable hw VLAN support */
2028 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2029 		ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
2030 	}
2031 
2032 	if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
2033 		/* enable hw accelerator */
2034 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2035 				| NETIF_F_RXCSUM);
2036 		ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2037 				| NETIF_F_RXCSUM);
2038 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2039 	}
2040 
2041 	fec_restart(ndev, 0);
2042 
2043 	return 0;
2044 }
2045 
2046 #ifdef CONFIG_OF
2047 static void fec_reset_phy(struct platform_device *pdev)
2048 {
2049 	int err, phy_reset;
2050 	int msec = 1;
2051 	struct device_node *np = pdev->dev.of_node;
2052 
2053 	if (!np)
2054 		return;
2055 
2056 	of_property_read_u32(np, "phy-reset-duration", &msec);
2057 	/* A sane reset duration should not be longer than 1s */
2058 	if (msec > 1000)
2059 		msec = 1;
2060 
2061 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2062 	if (!gpio_is_valid(phy_reset))
2063 		return;
2064 
2065 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
2066 				    GPIOF_OUT_INIT_LOW, "phy-reset");
2067 	if (err) {
2068 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2069 		return;
2070 	}
2071 	msleep(msec);
2072 	gpio_set_value(phy_reset, 1);
2073 }
2074 #else /* CONFIG_OF */
2075 static void fec_reset_phy(struct platform_device *pdev)
2076 {
2077 	/*
2078 	 * In case of platform probe, the reset has been done
2079 	 * by machine code.
2080 	 */
2081 }
2082 #endif /* CONFIG_OF */
2083 
2084 static int
2085 fec_probe(struct platform_device *pdev)
2086 {
2087 	struct fec_enet_private *fep;
2088 	struct fec_platform_data *pdata;
2089 	struct net_device *ndev;
2090 	int i, irq, ret = 0;
2091 	struct resource *r;
2092 	const struct of_device_id *of_id;
2093 	static int dev_id;
2094 
2095 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
2096 	if (of_id)
2097 		pdev->id_entry = of_id->data;
2098 
2099 	/* Init network device */
2100 	ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2101 	if (!ndev)
2102 		return -ENOMEM;
2103 
2104 	SET_NETDEV_DEV(ndev, &pdev->dev);
2105 
2106 	/* setup board info structure */
2107 	fep = netdev_priv(ndev);
2108 
2109 #if !defined(CONFIG_M5272)
2110 	/* default enable pause frame auto negotiation */
2111 	if (pdev->id_entry &&
2112 	    (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2113 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2114 #endif
2115 
2116 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2117 	fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2118 	if (IS_ERR(fep->hwp)) {
2119 		ret = PTR_ERR(fep->hwp);
2120 		goto failed_ioremap;
2121 	}
2122 
2123 	fep->pdev = pdev;
2124 	fep->dev_id = dev_id++;
2125 
2126 	fep->bufdesc_ex = 0;
2127 
2128 	platform_set_drvdata(pdev, ndev);
2129 
2130 	ret = of_get_phy_mode(pdev->dev.of_node);
2131 	if (ret < 0) {
2132 		pdata = dev_get_platdata(&pdev->dev);
2133 		if (pdata)
2134 			fep->phy_interface = pdata->phy;
2135 		else
2136 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
2137 	} else {
2138 		fep->phy_interface = ret;
2139 	}
2140 
2141 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2142 	if (IS_ERR(fep->clk_ipg)) {
2143 		ret = PTR_ERR(fep->clk_ipg);
2144 		goto failed_clk;
2145 	}
2146 
2147 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2148 	if (IS_ERR(fep->clk_ahb)) {
2149 		ret = PTR_ERR(fep->clk_ahb);
2150 		goto failed_clk;
2151 	}
2152 
2153 	/* enet_out is optional, depends on board */
2154 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2155 	if (IS_ERR(fep->clk_enet_out))
2156 		fep->clk_enet_out = NULL;
2157 
2158 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2159 	fep->bufdesc_ex =
2160 		pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2161 	if (IS_ERR(fep->clk_ptp)) {
2162 		fep->clk_ptp = NULL;
2163 		fep->bufdesc_ex = 0;
2164 	}
2165 
2166 	ret = clk_prepare_enable(fep->clk_ahb);
2167 	if (ret)
2168 		goto failed_clk;
2169 
2170 	ret = clk_prepare_enable(fep->clk_ipg);
2171 	if (ret)
2172 		goto failed_clk_ipg;
2173 
2174 	if (fep->clk_enet_out) {
2175 		ret = clk_prepare_enable(fep->clk_enet_out);
2176 		if (ret)
2177 			goto failed_clk_enet_out;
2178 	}
2179 
2180 	if (fep->clk_ptp) {
2181 		ret = clk_prepare_enable(fep->clk_ptp);
2182 		if (ret)
2183 			goto failed_clk_ptp;
2184 	}
2185 
2186 	fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2187 	if (!IS_ERR(fep->reg_phy)) {
2188 		ret = regulator_enable(fep->reg_phy);
2189 		if (ret) {
2190 			dev_err(&pdev->dev,
2191 				"Failed to enable phy regulator: %d\n", ret);
2192 			goto failed_regulator;
2193 		}
2194 	} else {
2195 		fep->reg_phy = NULL;
2196 	}
2197 
2198 	fec_reset_phy(pdev);
2199 
2200 	if (fep->bufdesc_ex)
2201 		fec_ptp_init(pdev);
2202 
2203 	ret = fec_enet_init(ndev);
2204 	if (ret)
2205 		goto failed_init;
2206 
2207 	for (i = 0; i < FEC_IRQ_NUM; i++) {
2208 		irq = platform_get_irq(pdev, i);
2209 		if (irq < 0) {
2210 			if (i)
2211 				break;
2212 			ret = irq;
2213 			goto failed_irq;
2214 		}
2215 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2216 				       0, pdev->name, ndev);
2217 		if (ret)
2218 			goto failed_irq;
2219 	}
2220 
2221 	ret = fec_enet_mii_init(pdev);
2222 	if (ret)
2223 		goto failed_mii_init;
2224 
2225 	/* Carrier starts down, phylib will bring it up */
2226 	netif_carrier_off(ndev);
2227 
2228 	ret = register_netdev(ndev);
2229 	if (ret)
2230 		goto failed_register;
2231 
2232 	if (fep->bufdesc_ex && fep->ptp_clock)
2233 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2234 
2235 	INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
2236 	return 0;
2237 
2238 failed_register:
2239 	fec_enet_mii_remove(fep);
2240 failed_mii_init:
2241 failed_irq:
2242 failed_init:
2243 	if (fep->reg_phy)
2244 		regulator_disable(fep->reg_phy);
2245 failed_regulator:
2246 	if (fep->clk_ptp)
2247 		clk_disable_unprepare(fep->clk_ptp);
2248 failed_clk_ptp:
2249 	if (fep->clk_enet_out)
2250 		clk_disable_unprepare(fep->clk_enet_out);
2251 failed_clk_enet_out:
2252 	clk_disable_unprepare(fep->clk_ipg);
2253 failed_clk_ipg:
2254 	clk_disable_unprepare(fep->clk_ahb);
2255 failed_clk:
2256 failed_ioremap:
2257 	free_netdev(ndev);
2258 
2259 	return ret;
2260 }
2261 
2262 static int
2263 fec_drv_remove(struct platform_device *pdev)
2264 {
2265 	struct net_device *ndev = platform_get_drvdata(pdev);
2266 	struct fec_enet_private *fep = netdev_priv(ndev);
2267 
2268 	cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2269 	unregister_netdev(ndev);
2270 	fec_enet_mii_remove(fep);
2271 	del_timer_sync(&fep->time_keep);
2272 	if (fep->reg_phy)
2273 		regulator_disable(fep->reg_phy);
2274 	if (fep->clk_ptp)
2275 		clk_disable_unprepare(fep->clk_ptp);
2276 	if (fep->ptp_clock)
2277 		ptp_clock_unregister(fep->ptp_clock);
2278 	if (fep->clk_enet_out)
2279 		clk_disable_unprepare(fep->clk_enet_out);
2280 	clk_disable_unprepare(fep->clk_ipg);
2281 	clk_disable_unprepare(fep->clk_ahb);
2282 	free_netdev(ndev);
2283 
2284 	return 0;
2285 }
2286 
2287 #ifdef CONFIG_PM_SLEEP
2288 static int
2289 fec_suspend(struct device *dev)
2290 {
2291 	struct net_device *ndev = dev_get_drvdata(dev);
2292 	struct fec_enet_private *fep = netdev_priv(ndev);
2293 
2294 	if (netif_running(ndev)) {
2295 		fec_stop(ndev);
2296 		netif_device_detach(ndev);
2297 	}
2298 	if (fep->clk_ptp)
2299 		clk_disable_unprepare(fep->clk_ptp);
2300 	if (fep->clk_enet_out)
2301 		clk_disable_unprepare(fep->clk_enet_out);
2302 	clk_disable_unprepare(fep->clk_ipg);
2303 	clk_disable_unprepare(fep->clk_ahb);
2304 
2305 	if (fep->reg_phy)
2306 		regulator_disable(fep->reg_phy);
2307 
2308 	return 0;
2309 }
2310 
2311 static int
2312 fec_resume(struct device *dev)
2313 {
2314 	struct net_device *ndev = dev_get_drvdata(dev);
2315 	struct fec_enet_private *fep = netdev_priv(ndev);
2316 	int ret;
2317 
2318 	if (fep->reg_phy) {
2319 		ret = regulator_enable(fep->reg_phy);
2320 		if (ret)
2321 			return ret;
2322 	}
2323 
2324 	ret = clk_prepare_enable(fep->clk_ahb);
2325 	if (ret)
2326 		goto failed_clk_ahb;
2327 
2328 	ret = clk_prepare_enable(fep->clk_ipg);
2329 	if (ret)
2330 		goto failed_clk_ipg;
2331 
2332 	if (fep->clk_enet_out) {
2333 		ret = clk_prepare_enable(fep->clk_enet_out);
2334 		if (ret)
2335 			goto failed_clk_enet_out;
2336 	}
2337 
2338 	if (fep->clk_ptp) {
2339 		ret = clk_prepare_enable(fep->clk_ptp);
2340 		if (ret)
2341 			goto failed_clk_ptp;
2342 	}
2343 
2344 	if (netif_running(ndev)) {
2345 		fec_restart(ndev, fep->full_duplex);
2346 		netif_device_attach(ndev);
2347 	}
2348 
2349 	return 0;
2350 
2351 failed_clk_ptp:
2352 	if (fep->clk_enet_out)
2353 		clk_disable_unprepare(fep->clk_enet_out);
2354 failed_clk_enet_out:
2355 	clk_disable_unprepare(fep->clk_ipg);
2356 failed_clk_ipg:
2357 	clk_disable_unprepare(fep->clk_ahb);
2358 failed_clk_ahb:
2359 	if (fep->reg_phy)
2360 		regulator_disable(fep->reg_phy);
2361 	return ret;
2362 }
2363 #endif /* CONFIG_PM_SLEEP */
2364 
2365 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2366 
2367 static struct platform_driver fec_driver = {
2368 	.driver	= {
2369 		.name	= DRIVER_NAME,
2370 		.owner	= THIS_MODULE,
2371 		.pm	= &fec_pm_ops,
2372 		.of_match_table = fec_dt_ids,
2373 	},
2374 	.id_table = fec_devtype,
2375 	.probe	= fec_probe,
2376 	.remove	= fec_drv_remove,
2377 };
2378 
2379 module_platform_driver(fec_driver);
2380 
2381 MODULE_ALIAS("platform:"DRIVER_NAME);
2382 MODULE_LICENSE("GPL");
2383