1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/crc32.h>
52 #include <linux/platform_device.h>
53 #include <linux/mdio.h>
54 #include <linux/phy.h>
55 #include <linux/fec.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/of_gpio.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/prefetch.h>
65 #include <linux/mfd/syscon.h>
66 #include <linux/regmap.h>
67 #include <soc/imx/cpuidle.h>
68 
69 #include <asm/cacheflush.h>
70 
71 #include "fec.h"
72 
73 static void set_multicast_list(struct net_device *ndev);
74 static void fec_enet_itr_coal_init(struct net_device *ndev);
75 
76 #define DRIVER_NAME	"fec"
77 
78 /* Pause frame feild and FIFO threshold */
79 #define FEC_ENET_FCE	(1 << 5)
80 #define FEC_ENET_RSEM_V	0x84
81 #define FEC_ENET_RSFL_V	16
82 #define FEC_ENET_RAEM_V	0x8
83 #define FEC_ENET_RAFL_V	0x8
84 #define FEC_ENET_OPD_V	0xFFF0
85 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
86 
87 struct fec_devinfo {
88 	u32 quirks;
89 };
90 
91 static const struct fec_devinfo fec_imx25_info = {
92 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
93 		  FEC_QUIRK_HAS_FRREG,
94 };
95 
96 static const struct fec_devinfo fec_imx27_info = {
97 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
98 };
99 
100 static const struct fec_devinfo fec_imx28_info = {
101 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
102 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
103 		  FEC_QUIRK_HAS_FRREG,
104 };
105 
106 static const struct fec_devinfo fec_imx6q_info = {
107 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
108 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
109 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
110 		  FEC_QUIRK_HAS_RACC,
111 };
112 
113 static const struct fec_devinfo fec_mvf600_info = {
114 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
115 };
116 
117 static const struct fec_devinfo fec_imx6x_info = {
118 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
119 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
120 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
121 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
122 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
123 };
124 
125 static const struct fec_devinfo fec_imx6ul_info = {
126 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
127 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
128 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
129 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
130 		  FEC_QUIRK_HAS_COALESCE,
131 };
132 
133 static struct platform_device_id fec_devtype[] = {
134 	{
135 		/* keep it for coldfire */
136 		.name = DRIVER_NAME,
137 		.driver_data = 0,
138 	}, {
139 		.name = "imx25-fec",
140 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
141 	}, {
142 		.name = "imx27-fec",
143 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
144 	}, {
145 		.name = "imx28-fec",
146 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
147 	}, {
148 		.name = "imx6q-fec",
149 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
150 	}, {
151 		.name = "mvf600-fec",
152 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
153 	}, {
154 		.name = "imx6sx-fec",
155 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
156 	}, {
157 		.name = "imx6ul-fec",
158 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
159 	}, {
160 		/* sentinel */
161 	}
162 };
163 MODULE_DEVICE_TABLE(platform, fec_devtype);
164 
165 enum imx_fec_type {
166 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
167 	IMX27_FEC,	/* runs on i.mx27/35/51 */
168 	IMX28_FEC,
169 	IMX6Q_FEC,
170 	MVF600_FEC,
171 	IMX6SX_FEC,
172 	IMX6UL_FEC,
173 };
174 
175 static const struct of_device_id fec_dt_ids[] = {
176 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
177 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
178 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
179 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
180 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
181 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
182 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
183 	{ /* sentinel */ }
184 };
185 MODULE_DEVICE_TABLE(of, fec_dt_ids);
186 
187 static unsigned char macaddr[ETH_ALEN];
188 module_param_array(macaddr, byte, NULL, 0);
189 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
190 
191 #if defined(CONFIG_M5272)
192 /*
193  * Some hardware gets it MAC address out of local flash memory.
194  * if this is non-zero then assume it is the address to get MAC from.
195  */
196 #if defined(CONFIG_NETtel)
197 #define	FEC_FLASHMAC	0xf0006006
198 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
199 #define	FEC_FLASHMAC	0xf0006000
200 #elif defined(CONFIG_CANCam)
201 #define	FEC_FLASHMAC	0xf0020000
202 #elif defined (CONFIG_M5272C3)
203 #define	FEC_FLASHMAC	(0xffe04000 + 4)
204 #elif defined(CONFIG_MOD5272)
205 #define FEC_FLASHMAC	0xffc0406b
206 #else
207 #define	FEC_FLASHMAC	0
208 #endif
209 #endif /* CONFIG_M5272 */
210 
211 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
212  *
213  * 2048 byte skbufs are allocated. However, alignment requirements
214  * varies between FEC variants. Worst case is 64, so round down by 64.
215  */
216 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
217 #define PKT_MINBUF_SIZE		64
218 
219 /* FEC receive acceleration */
220 #define FEC_RACC_IPDIS		(1 << 1)
221 #define FEC_RACC_PRODIS		(1 << 2)
222 #define FEC_RACC_SHIFT16	BIT(7)
223 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
224 
225 /* MIB Control Register */
226 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
227 
228 /*
229  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
230  * size bits. Other FEC hardware does not, so we need to take that into
231  * account when setting it.
232  */
233 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
234     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
235     defined(CONFIG_ARM64)
236 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
237 #else
238 #define	OPT_FRAME_SIZE	0
239 #endif
240 
241 /* FEC MII MMFR bits definition */
242 #define FEC_MMFR_ST		(1 << 30)
243 #define FEC_MMFR_ST_C45		(0)
244 #define FEC_MMFR_OP_READ	(2 << 28)
245 #define FEC_MMFR_OP_READ_C45	(3 << 28)
246 #define FEC_MMFR_OP_WRITE	(1 << 28)
247 #define FEC_MMFR_OP_ADDR_WRITE	(0)
248 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
249 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
250 #define FEC_MMFR_TA		(2 << 16)
251 #define FEC_MMFR_DATA(v)	(v & 0xffff)
252 /* FEC ECR bits definition */
253 #define FEC_ECR_MAGICEN		(1 << 2)
254 #define FEC_ECR_SLEEP		(1 << 3)
255 
256 #define FEC_MII_TIMEOUT		30000 /* us */
257 
258 /* Transmitter timeout */
259 #define TX_TIMEOUT (2 * HZ)
260 
261 #define FEC_PAUSE_FLAG_AUTONEG	0x1
262 #define FEC_PAUSE_FLAG_ENABLE	0x2
263 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
264 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
265 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
266 
267 #define COPYBREAK_DEFAULT	256
268 
269 /* Max number of allowed TCP segments for software TSO */
270 #define FEC_MAX_TSO_SEGS	100
271 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
272 
273 #define IS_TSO_HEADER(txq, addr) \
274 	((addr >= txq->tso_hdrs_dma) && \
275 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
276 
277 static int mii_cnt;
278 
279 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
280 					     struct bufdesc_prop *bd)
281 {
282 	return (bdp >= bd->last) ? bd->base
283 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
284 }
285 
286 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
287 					     struct bufdesc_prop *bd)
288 {
289 	return (bdp <= bd->base) ? bd->last
290 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
291 }
292 
293 static int fec_enet_get_bd_index(struct bufdesc *bdp,
294 				 struct bufdesc_prop *bd)
295 {
296 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
297 }
298 
299 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
300 {
301 	int entries;
302 
303 	entries = (((const char *)txq->dirty_tx -
304 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
305 
306 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
307 }
308 
309 static void swap_buffer(void *bufaddr, int len)
310 {
311 	int i;
312 	unsigned int *buf = bufaddr;
313 
314 	for (i = 0; i < len; i += 4, buf++)
315 		swab32s(buf);
316 }
317 
318 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
319 {
320 	int i;
321 	unsigned int *src = src_buf;
322 	unsigned int *dst = dst_buf;
323 
324 	for (i = 0; i < len; i += 4, src++, dst++)
325 		*dst = swab32p(src);
326 }
327 
328 static void fec_dump(struct net_device *ndev)
329 {
330 	struct fec_enet_private *fep = netdev_priv(ndev);
331 	struct bufdesc *bdp;
332 	struct fec_enet_priv_tx_q *txq;
333 	int index = 0;
334 
335 	netdev_info(ndev, "TX ring dump\n");
336 	pr_info("Nr     SC     addr       len  SKB\n");
337 
338 	txq = fep->tx_queue[0];
339 	bdp = txq->bd.base;
340 
341 	do {
342 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
343 			index,
344 			bdp == txq->bd.cur ? 'S' : ' ',
345 			bdp == txq->dirty_tx ? 'H' : ' ',
346 			fec16_to_cpu(bdp->cbd_sc),
347 			fec32_to_cpu(bdp->cbd_bufaddr),
348 			fec16_to_cpu(bdp->cbd_datlen),
349 			txq->tx_skbuff[index]);
350 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
351 		index++;
352 	} while (bdp != txq->bd.base);
353 }
354 
355 static inline bool is_ipv4_pkt(struct sk_buff *skb)
356 {
357 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
358 }
359 
360 static int
361 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
362 {
363 	/* Only run for packets requiring a checksum. */
364 	if (skb->ip_summed != CHECKSUM_PARTIAL)
365 		return 0;
366 
367 	if (unlikely(skb_cow_head(skb, 0)))
368 		return -1;
369 
370 	if (is_ipv4_pkt(skb))
371 		ip_hdr(skb)->check = 0;
372 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
373 
374 	return 0;
375 }
376 
377 static struct bufdesc *
378 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
379 			     struct sk_buff *skb,
380 			     struct net_device *ndev)
381 {
382 	struct fec_enet_private *fep = netdev_priv(ndev);
383 	struct bufdesc *bdp = txq->bd.cur;
384 	struct bufdesc_ex *ebdp;
385 	int nr_frags = skb_shinfo(skb)->nr_frags;
386 	int frag, frag_len;
387 	unsigned short status;
388 	unsigned int estatus = 0;
389 	skb_frag_t *this_frag;
390 	unsigned int index;
391 	void *bufaddr;
392 	dma_addr_t addr;
393 	int i;
394 
395 	for (frag = 0; frag < nr_frags; frag++) {
396 		this_frag = &skb_shinfo(skb)->frags[frag];
397 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
398 		ebdp = (struct bufdesc_ex *)bdp;
399 
400 		status = fec16_to_cpu(bdp->cbd_sc);
401 		status &= ~BD_ENET_TX_STATS;
402 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
403 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
404 
405 		/* Handle the last BD specially */
406 		if (frag == nr_frags - 1) {
407 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
408 			if (fep->bufdesc_ex) {
409 				estatus |= BD_ENET_TX_INT;
410 				if (unlikely(skb_shinfo(skb)->tx_flags &
411 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
412 					estatus |= BD_ENET_TX_TS;
413 			}
414 		}
415 
416 		if (fep->bufdesc_ex) {
417 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
418 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
419 			if (skb->ip_summed == CHECKSUM_PARTIAL)
420 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
421 			ebdp->cbd_bdu = 0;
422 			ebdp->cbd_esc = cpu_to_fec32(estatus);
423 		}
424 
425 		bufaddr = skb_frag_address(this_frag);
426 
427 		index = fec_enet_get_bd_index(bdp, &txq->bd);
428 		if (((unsigned long) bufaddr) & fep->tx_align ||
429 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
430 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
431 			bufaddr = txq->tx_bounce[index];
432 
433 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
434 				swap_buffer(bufaddr, frag_len);
435 		}
436 
437 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
438 				      DMA_TO_DEVICE);
439 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
440 			if (net_ratelimit())
441 				netdev_err(ndev, "Tx DMA memory map failed\n");
442 			goto dma_mapping_error;
443 		}
444 
445 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
446 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
447 		/* Make sure the updates to rest of the descriptor are
448 		 * performed before transferring ownership.
449 		 */
450 		wmb();
451 		bdp->cbd_sc = cpu_to_fec16(status);
452 	}
453 
454 	return bdp;
455 dma_mapping_error:
456 	bdp = txq->bd.cur;
457 	for (i = 0; i < frag; i++) {
458 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
459 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
460 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
461 	}
462 	return ERR_PTR(-ENOMEM);
463 }
464 
465 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
466 				   struct sk_buff *skb, struct net_device *ndev)
467 {
468 	struct fec_enet_private *fep = netdev_priv(ndev);
469 	int nr_frags = skb_shinfo(skb)->nr_frags;
470 	struct bufdesc *bdp, *last_bdp;
471 	void *bufaddr;
472 	dma_addr_t addr;
473 	unsigned short status;
474 	unsigned short buflen;
475 	unsigned int estatus = 0;
476 	unsigned int index;
477 	int entries_free;
478 
479 	entries_free = fec_enet_get_free_txdesc_num(txq);
480 	if (entries_free < MAX_SKB_FRAGS + 1) {
481 		dev_kfree_skb_any(skb);
482 		if (net_ratelimit())
483 			netdev_err(ndev, "NOT enough BD for SG!\n");
484 		return NETDEV_TX_OK;
485 	}
486 
487 	/* Protocol checksum off-load for TCP and UDP. */
488 	if (fec_enet_clear_csum(skb, ndev)) {
489 		dev_kfree_skb_any(skb);
490 		return NETDEV_TX_OK;
491 	}
492 
493 	/* Fill in a Tx ring entry */
494 	bdp = txq->bd.cur;
495 	last_bdp = bdp;
496 	status = fec16_to_cpu(bdp->cbd_sc);
497 	status &= ~BD_ENET_TX_STATS;
498 
499 	/* Set buffer length and buffer pointer */
500 	bufaddr = skb->data;
501 	buflen = skb_headlen(skb);
502 
503 	index = fec_enet_get_bd_index(bdp, &txq->bd);
504 	if (((unsigned long) bufaddr) & fep->tx_align ||
505 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
506 		memcpy(txq->tx_bounce[index], skb->data, buflen);
507 		bufaddr = txq->tx_bounce[index];
508 
509 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
510 			swap_buffer(bufaddr, buflen);
511 	}
512 
513 	/* Push the data cache so the CPM does not get stale memory data. */
514 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
515 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
516 		dev_kfree_skb_any(skb);
517 		if (net_ratelimit())
518 			netdev_err(ndev, "Tx DMA memory map failed\n");
519 		return NETDEV_TX_OK;
520 	}
521 
522 	if (nr_frags) {
523 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
524 		if (IS_ERR(last_bdp)) {
525 			dma_unmap_single(&fep->pdev->dev, addr,
526 					 buflen, DMA_TO_DEVICE);
527 			dev_kfree_skb_any(skb);
528 			return NETDEV_TX_OK;
529 		}
530 	} else {
531 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
532 		if (fep->bufdesc_ex) {
533 			estatus = BD_ENET_TX_INT;
534 			if (unlikely(skb_shinfo(skb)->tx_flags &
535 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
536 				estatus |= BD_ENET_TX_TS;
537 		}
538 	}
539 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
540 	bdp->cbd_datlen = cpu_to_fec16(buflen);
541 
542 	if (fep->bufdesc_ex) {
543 
544 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
545 
546 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
547 			fep->hwts_tx_en))
548 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
549 
550 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
551 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
552 
553 		if (skb->ip_summed == CHECKSUM_PARTIAL)
554 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
555 
556 		ebdp->cbd_bdu = 0;
557 		ebdp->cbd_esc = cpu_to_fec32(estatus);
558 	}
559 
560 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
561 	/* Save skb pointer */
562 	txq->tx_skbuff[index] = skb;
563 
564 	/* Make sure the updates to rest of the descriptor are performed before
565 	 * transferring ownership.
566 	 */
567 	wmb();
568 
569 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
570 	 * it's the last BD of the frame, and to put the CRC on the end.
571 	 */
572 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
573 	bdp->cbd_sc = cpu_to_fec16(status);
574 
575 	/* If this was the last BD in the ring, start at the beginning again. */
576 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
577 
578 	skb_tx_timestamp(skb);
579 
580 	/* Make sure the update to bdp and tx_skbuff are performed before
581 	 * txq->bd.cur.
582 	 */
583 	wmb();
584 	txq->bd.cur = bdp;
585 
586 	/* Trigger transmission start */
587 	writel(0, txq->bd.reg_desc_active);
588 
589 	return 0;
590 }
591 
592 static int
593 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
594 			  struct net_device *ndev,
595 			  struct bufdesc *bdp, int index, char *data,
596 			  int size, bool last_tcp, bool is_last)
597 {
598 	struct fec_enet_private *fep = netdev_priv(ndev);
599 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
600 	unsigned short status;
601 	unsigned int estatus = 0;
602 	dma_addr_t addr;
603 
604 	status = fec16_to_cpu(bdp->cbd_sc);
605 	status &= ~BD_ENET_TX_STATS;
606 
607 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
608 
609 	if (((unsigned long) data) & fep->tx_align ||
610 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
611 		memcpy(txq->tx_bounce[index], data, size);
612 		data = txq->tx_bounce[index];
613 
614 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
615 			swap_buffer(data, size);
616 	}
617 
618 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
619 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
620 		dev_kfree_skb_any(skb);
621 		if (net_ratelimit())
622 			netdev_err(ndev, "Tx DMA memory map failed\n");
623 		return NETDEV_TX_BUSY;
624 	}
625 
626 	bdp->cbd_datlen = cpu_to_fec16(size);
627 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
628 
629 	if (fep->bufdesc_ex) {
630 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
631 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
632 		if (skb->ip_summed == CHECKSUM_PARTIAL)
633 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
634 		ebdp->cbd_bdu = 0;
635 		ebdp->cbd_esc = cpu_to_fec32(estatus);
636 	}
637 
638 	/* Handle the last BD specially */
639 	if (last_tcp)
640 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
641 	if (is_last) {
642 		status |= BD_ENET_TX_INTR;
643 		if (fep->bufdesc_ex)
644 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
645 	}
646 
647 	bdp->cbd_sc = cpu_to_fec16(status);
648 
649 	return 0;
650 }
651 
652 static int
653 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
654 			 struct sk_buff *skb, struct net_device *ndev,
655 			 struct bufdesc *bdp, int index)
656 {
657 	struct fec_enet_private *fep = netdev_priv(ndev);
658 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
659 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
660 	void *bufaddr;
661 	unsigned long dmabuf;
662 	unsigned short status;
663 	unsigned int estatus = 0;
664 
665 	status = fec16_to_cpu(bdp->cbd_sc);
666 	status &= ~BD_ENET_TX_STATS;
667 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
668 
669 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
670 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
671 	if (((unsigned long)bufaddr) & fep->tx_align ||
672 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
673 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
674 		bufaddr = txq->tx_bounce[index];
675 
676 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
677 			swap_buffer(bufaddr, hdr_len);
678 
679 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
680 					hdr_len, DMA_TO_DEVICE);
681 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
682 			dev_kfree_skb_any(skb);
683 			if (net_ratelimit())
684 				netdev_err(ndev, "Tx DMA memory map failed\n");
685 			return NETDEV_TX_BUSY;
686 		}
687 	}
688 
689 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
690 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
691 
692 	if (fep->bufdesc_ex) {
693 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
694 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
695 		if (skb->ip_summed == CHECKSUM_PARTIAL)
696 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
697 		ebdp->cbd_bdu = 0;
698 		ebdp->cbd_esc = cpu_to_fec32(estatus);
699 	}
700 
701 	bdp->cbd_sc = cpu_to_fec16(status);
702 
703 	return 0;
704 }
705 
706 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
707 				   struct sk_buff *skb,
708 				   struct net_device *ndev)
709 {
710 	struct fec_enet_private *fep = netdev_priv(ndev);
711 	int hdr_len, total_len, data_left;
712 	struct bufdesc *bdp = txq->bd.cur;
713 	struct tso_t tso;
714 	unsigned int index = 0;
715 	int ret;
716 
717 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
718 		dev_kfree_skb_any(skb);
719 		if (net_ratelimit())
720 			netdev_err(ndev, "NOT enough BD for TSO!\n");
721 		return NETDEV_TX_OK;
722 	}
723 
724 	/* Protocol checksum off-load for TCP and UDP. */
725 	if (fec_enet_clear_csum(skb, ndev)) {
726 		dev_kfree_skb_any(skb);
727 		return NETDEV_TX_OK;
728 	}
729 
730 	/* Initialize the TSO handler, and prepare the first payload */
731 	hdr_len = tso_start(skb, &tso);
732 
733 	total_len = skb->len - hdr_len;
734 	while (total_len > 0) {
735 		char *hdr;
736 
737 		index = fec_enet_get_bd_index(bdp, &txq->bd);
738 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
739 		total_len -= data_left;
740 
741 		/* prepare packet headers: MAC + IP + TCP */
742 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
743 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
744 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
745 		if (ret)
746 			goto err_release;
747 
748 		while (data_left > 0) {
749 			int size;
750 
751 			size = min_t(int, tso.size, data_left);
752 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
753 			index = fec_enet_get_bd_index(bdp, &txq->bd);
754 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
755 							bdp, index,
756 							tso.data, size,
757 							size == data_left,
758 							total_len == 0);
759 			if (ret)
760 				goto err_release;
761 
762 			data_left -= size;
763 			tso_build_data(skb, &tso, size);
764 		}
765 
766 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
767 	}
768 
769 	/* Save skb pointer */
770 	txq->tx_skbuff[index] = skb;
771 
772 	skb_tx_timestamp(skb);
773 	txq->bd.cur = bdp;
774 
775 	/* Trigger transmission start */
776 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
777 	    !readl(txq->bd.reg_desc_active) ||
778 	    !readl(txq->bd.reg_desc_active) ||
779 	    !readl(txq->bd.reg_desc_active) ||
780 	    !readl(txq->bd.reg_desc_active))
781 		writel(0, txq->bd.reg_desc_active);
782 
783 	return 0;
784 
785 err_release:
786 	/* TODO: Release all used data descriptors for TSO */
787 	return ret;
788 }
789 
790 static netdev_tx_t
791 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
792 {
793 	struct fec_enet_private *fep = netdev_priv(ndev);
794 	int entries_free;
795 	unsigned short queue;
796 	struct fec_enet_priv_tx_q *txq;
797 	struct netdev_queue *nq;
798 	int ret;
799 
800 	queue = skb_get_queue_mapping(skb);
801 	txq = fep->tx_queue[queue];
802 	nq = netdev_get_tx_queue(ndev, queue);
803 
804 	if (skb_is_gso(skb))
805 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
806 	else
807 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
808 	if (ret)
809 		return ret;
810 
811 	entries_free = fec_enet_get_free_txdesc_num(txq);
812 	if (entries_free <= txq->tx_stop_threshold)
813 		netif_tx_stop_queue(nq);
814 
815 	return NETDEV_TX_OK;
816 }
817 
818 /* Init RX & TX buffer descriptors
819  */
820 static void fec_enet_bd_init(struct net_device *dev)
821 {
822 	struct fec_enet_private *fep = netdev_priv(dev);
823 	struct fec_enet_priv_tx_q *txq;
824 	struct fec_enet_priv_rx_q *rxq;
825 	struct bufdesc *bdp;
826 	unsigned int i;
827 	unsigned int q;
828 
829 	for (q = 0; q < fep->num_rx_queues; q++) {
830 		/* Initialize the receive buffer descriptors. */
831 		rxq = fep->rx_queue[q];
832 		bdp = rxq->bd.base;
833 
834 		for (i = 0; i < rxq->bd.ring_size; i++) {
835 
836 			/* Initialize the BD for every fragment in the page. */
837 			if (bdp->cbd_bufaddr)
838 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
839 			else
840 				bdp->cbd_sc = cpu_to_fec16(0);
841 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
842 		}
843 
844 		/* Set the last buffer to wrap */
845 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
846 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
847 
848 		rxq->bd.cur = rxq->bd.base;
849 	}
850 
851 	for (q = 0; q < fep->num_tx_queues; q++) {
852 		/* ...and the same for transmit */
853 		txq = fep->tx_queue[q];
854 		bdp = txq->bd.base;
855 		txq->bd.cur = bdp;
856 
857 		for (i = 0; i < txq->bd.ring_size; i++) {
858 			/* Initialize the BD for every fragment in the page. */
859 			bdp->cbd_sc = cpu_to_fec16(0);
860 			if (bdp->cbd_bufaddr &&
861 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
862 				dma_unmap_single(&fep->pdev->dev,
863 						 fec32_to_cpu(bdp->cbd_bufaddr),
864 						 fec16_to_cpu(bdp->cbd_datlen),
865 						 DMA_TO_DEVICE);
866 			if (txq->tx_skbuff[i]) {
867 				dev_kfree_skb_any(txq->tx_skbuff[i]);
868 				txq->tx_skbuff[i] = NULL;
869 			}
870 			bdp->cbd_bufaddr = cpu_to_fec32(0);
871 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
872 		}
873 
874 		/* Set the last buffer to wrap */
875 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
876 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
877 		txq->dirty_tx = bdp;
878 	}
879 }
880 
881 static void fec_enet_active_rxring(struct net_device *ndev)
882 {
883 	struct fec_enet_private *fep = netdev_priv(ndev);
884 	int i;
885 
886 	for (i = 0; i < fep->num_rx_queues; i++)
887 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
888 }
889 
890 static void fec_enet_enable_ring(struct net_device *ndev)
891 {
892 	struct fec_enet_private *fep = netdev_priv(ndev);
893 	struct fec_enet_priv_tx_q *txq;
894 	struct fec_enet_priv_rx_q *rxq;
895 	int i;
896 
897 	for (i = 0; i < fep->num_rx_queues; i++) {
898 		rxq = fep->rx_queue[i];
899 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
900 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
901 
902 		/* enable DMA1/2 */
903 		if (i)
904 			writel(RCMR_MATCHEN | RCMR_CMP(i),
905 			       fep->hwp + FEC_RCMR(i));
906 	}
907 
908 	for (i = 0; i < fep->num_tx_queues; i++) {
909 		txq = fep->tx_queue[i];
910 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
911 
912 		/* enable DMA1/2 */
913 		if (i)
914 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
915 			       fep->hwp + FEC_DMA_CFG(i));
916 	}
917 }
918 
919 static void fec_enet_reset_skb(struct net_device *ndev)
920 {
921 	struct fec_enet_private *fep = netdev_priv(ndev);
922 	struct fec_enet_priv_tx_q *txq;
923 	int i, j;
924 
925 	for (i = 0; i < fep->num_tx_queues; i++) {
926 		txq = fep->tx_queue[i];
927 
928 		for (j = 0; j < txq->bd.ring_size; j++) {
929 			if (txq->tx_skbuff[j]) {
930 				dev_kfree_skb_any(txq->tx_skbuff[j]);
931 				txq->tx_skbuff[j] = NULL;
932 			}
933 		}
934 	}
935 }
936 
937 /*
938  * This function is called to start or restart the FEC during a link
939  * change, transmit timeout, or to reconfigure the FEC.  The network
940  * packet processing for this device must be stopped before this call.
941  */
942 static void
943 fec_restart(struct net_device *ndev)
944 {
945 	struct fec_enet_private *fep = netdev_priv(ndev);
946 	u32 val;
947 	u32 temp_mac[2];
948 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
949 	u32 ecntl = 0x2; /* ETHEREN */
950 
951 	/* Whack a reset.  We should wait for this.
952 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
953 	 * instead of reset MAC itself.
954 	 */
955 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
956 		writel(0, fep->hwp + FEC_ECNTRL);
957 	} else {
958 		writel(1, fep->hwp + FEC_ECNTRL);
959 		udelay(10);
960 	}
961 
962 	/*
963 	 * enet-mac reset will reset mac address registers too,
964 	 * so need to reconfigure it.
965 	 */
966 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
967 	writel((__force u32)cpu_to_be32(temp_mac[0]),
968 	       fep->hwp + FEC_ADDR_LOW);
969 	writel((__force u32)cpu_to_be32(temp_mac[1]),
970 	       fep->hwp + FEC_ADDR_HIGH);
971 
972 	/* Clear any outstanding interrupt, except MDIO. */
973 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
974 
975 	fec_enet_bd_init(ndev);
976 
977 	fec_enet_enable_ring(ndev);
978 
979 	/* Reset tx SKB buffers. */
980 	fec_enet_reset_skb(ndev);
981 
982 	/* Enable MII mode */
983 	if (fep->full_duplex == DUPLEX_FULL) {
984 		/* FD enable */
985 		writel(0x04, fep->hwp + FEC_X_CNTRL);
986 	} else {
987 		/* No Rcv on Xmit */
988 		rcntl |= 0x02;
989 		writel(0x0, fep->hwp + FEC_X_CNTRL);
990 	}
991 
992 	/* Set MII speed */
993 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
994 
995 #if !defined(CONFIG_M5272)
996 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
997 		val = readl(fep->hwp + FEC_RACC);
998 		/* align IP header */
999 		val |= FEC_RACC_SHIFT16;
1000 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1001 			/* set RX checksum */
1002 			val |= FEC_RACC_OPTIONS;
1003 		else
1004 			val &= ~FEC_RACC_OPTIONS;
1005 		writel(val, fep->hwp + FEC_RACC);
1006 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1007 	}
1008 #endif
1009 
1010 	/*
1011 	 * The phy interface and speed need to get configured
1012 	 * differently on enet-mac.
1013 	 */
1014 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1015 		/* Enable flow control and length check */
1016 		rcntl |= 0x40000000 | 0x00000020;
1017 
1018 		/* RGMII, RMII or MII */
1019 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1020 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1021 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1022 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1023 			rcntl |= (1 << 6);
1024 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1025 			rcntl |= (1 << 8);
1026 		else
1027 			rcntl &= ~(1 << 8);
1028 
1029 		/* 1G, 100M or 10M */
1030 		if (ndev->phydev) {
1031 			if (ndev->phydev->speed == SPEED_1000)
1032 				ecntl |= (1 << 5);
1033 			else if (ndev->phydev->speed == SPEED_100)
1034 				rcntl &= ~(1 << 9);
1035 			else
1036 				rcntl |= (1 << 9);
1037 		}
1038 	} else {
1039 #ifdef FEC_MIIGSK_ENR
1040 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1041 			u32 cfgr;
1042 			/* disable the gasket and wait */
1043 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1044 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1045 				udelay(1);
1046 
1047 			/*
1048 			 * configure the gasket:
1049 			 *   RMII, 50 MHz, no loopback, no echo
1050 			 *   MII, 25 MHz, no loopback, no echo
1051 			 */
1052 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1053 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1054 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1055 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1056 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1057 
1058 			/* re-enable the gasket */
1059 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1060 		}
1061 #endif
1062 	}
1063 
1064 #if !defined(CONFIG_M5272)
1065 	/* enable pause frame*/
1066 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1067 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1068 	     ndev->phydev && ndev->phydev->pause)) {
1069 		rcntl |= FEC_ENET_FCE;
1070 
1071 		/* set FIFO threshold parameter to reduce overrun */
1072 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1073 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1074 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1075 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1076 
1077 		/* OPD */
1078 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1079 	} else {
1080 		rcntl &= ~FEC_ENET_FCE;
1081 	}
1082 #endif /* !defined(CONFIG_M5272) */
1083 
1084 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1085 
1086 	/* Setup multicast filter. */
1087 	set_multicast_list(ndev);
1088 #ifndef CONFIG_M5272
1089 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1090 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1091 #endif
1092 
1093 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1094 		/* enable ENET endian swap */
1095 		ecntl |= (1 << 8);
1096 		/* enable ENET store and forward mode */
1097 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1098 	}
1099 
1100 	if (fep->bufdesc_ex)
1101 		ecntl |= (1 << 4);
1102 
1103 #ifndef CONFIG_M5272
1104 	/* Enable the MIB statistic event counters */
1105 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1106 #endif
1107 
1108 	/* And last, enable the transmit and receive processing */
1109 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1110 	fec_enet_active_rxring(ndev);
1111 
1112 	if (fep->bufdesc_ex)
1113 		fec_ptp_start_cyclecounter(ndev);
1114 
1115 	/* Enable interrupts we wish to service */
1116 	if (fep->link)
1117 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1118 	else
1119 		writel(0, fep->hwp + FEC_IMASK);
1120 
1121 	/* Init the interrupt coalescing */
1122 	fec_enet_itr_coal_init(ndev);
1123 
1124 }
1125 
1126 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1127 {
1128 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1129 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1130 
1131 	if (stop_gpr->gpr) {
1132 		if (enabled)
1133 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1134 					   BIT(stop_gpr->bit),
1135 					   BIT(stop_gpr->bit));
1136 		else
1137 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1138 					   BIT(stop_gpr->bit), 0);
1139 	} else if (pdata && pdata->sleep_mode_enable) {
1140 		pdata->sleep_mode_enable(enabled);
1141 	}
1142 }
1143 
1144 static void
1145 fec_stop(struct net_device *ndev)
1146 {
1147 	struct fec_enet_private *fep = netdev_priv(ndev);
1148 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1149 	u32 val;
1150 
1151 	/* We cannot expect a graceful transmit stop without link !!! */
1152 	if (fep->link) {
1153 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1154 		udelay(10);
1155 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1156 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1157 	}
1158 
1159 	/* Whack a reset.  We should wait for this.
1160 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1161 	 * instead of reset MAC itself.
1162 	 */
1163 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1164 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1165 			writel(0, fep->hwp + FEC_ECNTRL);
1166 		} else {
1167 			writel(1, fep->hwp + FEC_ECNTRL);
1168 			udelay(10);
1169 		}
1170 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1171 	} else {
1172 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1173 		val = readl(fep->hwp + FEC_ECNTRL);
1174 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1175 		writel(val, fep->hwp + FEC_ECNTRL);
1176 		fec_enet_stop_mode(fep, true);
1177 	}
1178 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1179 
1180 	/* We have to keep ENET enabled to have MII interrupt stay working */
1181 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1182 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1183 		writel(2, fep->hwp + FEC_ECNTRL);
1184 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1185 	}
1186 }
1187 
1188 
1189 static void
1190 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1191 {
1192 	struct fec_enet_private *fep = netdev_priv(ndev);
1193 
1194 	fec_dump(ndev);
1195 
1196 	ndev->stats.tx_errors++;
1197 
1198 	schedule_work(&fep->tx_timeout_work);
1199 }
1200 
1201 static void fec_enet_timeout_work(struct work_struct *work)
1202 {
1203 	struct fec_enet_private *fep =
1204 		container_of(work, struct fec_enet_private, tx_timeout_work);
1205 	struct net_device *ndev = fep->netdev;
1206 
1207 	rtnl_lock();
1208 	if (netif_device_present(ndev) || netif_running(ndev)) {
1209 		napi_disable(&fep->napi);
1210 		netif_tx_lock_bh(ndev);
1211 		fec_restart(ndev);
1212 		netif_tx_wake_all_queues(ndev);
1213 		netif_tx_unlock_bh(ndev);
1214 		napi_enable(&fep->napi);
1215 	}
1216 	rtnl_unlock();
1217 }
1218 
1219 static void
1220 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1221 	struct skb_shared_hwtstamps *hwtstamps)
1222 {
1223 	unsigned long flags;
1224 	u64 ns;
1225 
1226 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1227 	ns = timecounter_cyc2time(&fep->tc, ts);
1228 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1229 
1230 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1231 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1232 }
1233 
1234 static void
1235 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1236 {
1237 	struct	fec_enet_private *fep;
1238 	struct bufdesc *bdp;
1239 	unsigned short status;
1240 	struct	sk_buff	*skb;
1241 	struct fec_enet_priv_tx_q *txq;
1242 	struct netdev_queue *nq;
1243 	int	index = 0;
1244 	int	entries_free;
1245 
1246 	fep = netdev_priv(ndev);
1247 
1248 	txq = fep->tx_queue[queue_id];
1249 	/* get next bdp of dirty_tx */
1250 	nq = netdev_get_tx_queue(ndev, queue_id);
1251 	bdp = txq->dirty_tx;
1252 
1253 	/* get next bdp of dirty_tx */
1254 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1255 
1256 	while (bdp != READ_ONCE(txq->bd.cur)) {
1257 		/* Order the load of bd.cur and cbd_sc */
1258 		rmb();
1259 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1260 		if (status & BD_ENET_TX_READY)
1261 			break;
1262 
1263 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1264 
1265 		skb = txq->tx_skbuff[index];
1266 		txq->tx_skbuff[index] = NULL;
1267 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1268 			dma_unmap_single(&fep->pdev->dev,
1269 					 fec32_to_cpu(bdp->cbd_bufaddr),
1270 					 fec16_to_cpu(bdp->cbd_datlen),
1271 					 DMA_TO_DEVICE);
1272 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1273 		if (!skb)
1274 			goto skb_done;
1275 
1276 		/* Check for errors. */
1277 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1278 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1279 				   BD_ENET_TX_CSL)) {
1280 			ndev->stats.tx_errors++;
1281 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1282 				ndev->stats.tx_heartbeat_errors++;
1283 			if (status & BD_ENET_TX_LC)  /* Late collision */
1284 				ndev->stats.tx_window_errors++;
1285 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1286 				ndev->stats.tx_aborted_errors++;
1287 			if (status & BD_ENET_TX_UN)  /* Underrun */
1288 				ndev->stats.tx_fifo_errors++;
1289 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1290 				ndev->stats.tx_carrier_errors++;
1291 		} else {
1292 			ndev->stats.tx_packets++;
1293 			ndev->stats.tx_bytes += skb->len;
1294 		}
1295 
1296 		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1297 		 * are to time stamp the packet, so we still need to check time
1298 		 * stamping enabled flag.
1299 		 */
1300 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1301 			     fep->hwts_tx_en) &&
1302 		    fep->bufdesc_ex) {
1303 			struct skb_shared_hwtstamps shhwtstamps;
1304 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1305 
1306 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1307 			skb_tstamp_tx(skb, &shhwtstamps);
1308 		}
1309 
1310 		/* Deferred means some collisions occurred during transmit,
1311 		 * but we eventually sent the packet OK.
1312 		 */
1313 		if (status & BD_ENET_TX_DEF)
1314 			ndev->stats.collisions++;
1315 
1316 		/* Free the sk buffer associated with this last transmit */
1317 		dev_kfree_skb_any(skb);
1318 skb_done:
1319 		/* Make sure the update to bdp and tx_skbuff are performed
1320 		 * before dirty_tx
1321 		 */
1322 		wmb();
1323 		txq->dirty_tx = bdp;
1324 
1325 		/* Update pointer to next buffer descriptor to be transmitted */
1326 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1327 
1328 		/* Since we have freed up a buffer, the ring is no longer full
1329 		 */
1330 		if (netif_tx_queue_stopped(nq)) {
1331 			entries_free = fec_enet_get_free_txdesc_num(txq);
1332 			if (entries_free >= txq->tx_wake_threshold)
1333 				netif_tx_wake_queue(nq);
1334 		}
1335 	}
1336 
1337 	/* ERR006358: Keep the transmitter going */
1338 	if (bdp != txq->bd.cur &&
1339 	    readl(txq->bd.reg_desc_active) == 0)
1340 		writel(0, txq->bd.reg_desc_active);
1341 }
1342 
1343 static void fec_enet_tx(struct net_device *ndev)
1344 {
1345 	struct fec_enet_private *fep = netdev_priv(ndev);
1346 	int i;
1347 
1348 	/* Make sure that AVB queues are processed first. */
1349 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1350 		fec_enet_tx_queue(ndev, i);
1351 }
1352 
1353 static int
1354 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1355 {
1356 	struct  fec_enet_private *fep = netdev_priv(ndev);
1357 	int off;
1358 
1359 	off = ((unsigned long)skb->data) & fep->rx_align;
1360 	if (off)
1361 		skb_reserve(skb, fep->rx_align + 1 - off);
1362 
1363 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1364 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1365 		if (net_ratelimit())
1366 			netdev_err(ndev, "Rx DMA memory map failed\n");
1367 		return -ENOMEM;
1368 	}
1369 
1370 	return 0;
1371 }
1372 
1373 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1374 			       struct bufdesc *bdp, u32 length, bool swap)
1375 {
1376 	struct  fec_enet_private *fep = netdev_priv(ndev);
1377 	struct sk_buff *new_skb;
1378 
1379 	if (length > fep->rx_copybreak)
1380 		return false;
1381 
1382 	new_skb = netdev_alloc_skb(ndev, length);
1383 	if (!new_skb)
1384 		return false;
1385 
1386 	dma_sync_single_for_cpu(&fep->pdev->dev,
1387 				fec32_to_cpu(bdp->cbd_bufaddr),
1388 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1389 				DMA_FROM_DEVICE);
1390 	if (!swap)
1391 		memcpy(new_skb->data, (*skb)->data, length);
1392 	else
1393 		swap_buffer2(new_skb->data, (*skb)->data, length);
1394 	*skb = new_skb;
1395 
1396 	return true;
1397 }
1398 
1399 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1400  * When we update through the ring, if the next incoming buffer has
1401  * not been given to the system, we just set the empty indicator,
1402  * effectively tossing the packet.
1403  */
1404 static int
1405 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1406 {
1407 	struct fec_enet_private *fep = netdev_priv(ndev);
1408 	struct fec_enet_priv_rx_q *rxq;
1409 	struct bufdesc *bdp;
1410 	unsigned short status;
1411 	struct  sk_buff *skb_new = NULL;
1412 	struct  sk_buff *skb;
1413 	ushort	pkt_len;
1414 	__u8 *data;
1415 	int	pkt_received = 0;
1416 	struct	bufdesc_ex *ebdp = NULL;
1417 	bool	vlan_packet_rcvd = false;
1418 	u16	vlan_tag;
1419 	int	index = 0;
1420 	bool	is_copybreak;
1421 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1422 
1423 #ifdef CONFIG_M532x
1424 	flush_cache_all();
1425 #endif
1426 	rxq = fep->rx_queue[queue_id];
1427 
1428 	/* First, grab all of the stats for the incoming packet.
1429 	 * These get messed up if we get called due to a busy condition.
1430 	 */
1431 	bdp = rxq->bd.cur;
1432 
1433 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1434 
1435 		if (pkt_received >= budget)
1436 			break;
1437 		pkt_received++;
1438 
1439 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1440 
1441 		/* Check for errors. */
1442 		status ^= BD_ENET_RX_LAST;
1443 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1444 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1445 			   BD_ENET_RX_CL)) {
1446 			ndev->stats.rx_errors++;
1447 			if (status & BD_ENET_RX_OV) {
1448 				/* FIFO overrun */
1449 				ndev->stats.rx_fifo_errors++;
1450 				goto rx_processing_done;
1451 			}
1452 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1453 						| BD_ENET_RX_LAST)) {
1454 				/* Frame too long or too short. */
1455 				ndev->stats.rx_length_errors++;
1456 				if (status & BD_ENET_RX_LAST)
1457 					netdev_err(ndev, "rcv is not +last\n");
1458 			}
1459 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1460 				ndev->stats.rx_crc_errors++;
1461 			/* Report late collisions as a frame error. */
1462 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1463 				ndev->stats.rx_frame_errors++;
1464 			goto rx_processing_done;
1465 		}
1466 
1467 		/* Process the incoming frame. */
1468 		ndev->stats.rx_packets++;
1469 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1470 		ndev->stats.rx_bytes += pkt_len;
1471 
1472 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1473 		skb = rxq->rx_skbuff[index];
1474 
1475 		/* The packet length includes FCS, but we don't want to
1476 		 * include that when passing upstream as it messes up
1477 		 * bridging applications.
1478 		 */
1479 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1480 						  need_swap);
1481 		if (!is_copybreak) {
1482 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1483 			if (unlikely(!skb_new)) {
1484 				ndev->stats.rx_dropped++;
1485 				goto rx_processing_done;
1486 			}
1487 			dma_unmap_single(&fep->pdev->dev,
1488 					 fec32_to_cpu(bdp->cbd_bufaddr),
1489 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1490 					 DMA_FROM_DEVICE);
1491 		}
1492 
1493 		prefetch(skb->data - NET_IP_ALIGN);
1494 		skb_put(skb, pkt_len - 4);
1495 		data = skb->data;
1496 
1497 		if (!is_copybreak && need_swap)
1498 			swap_buffer(data, pkt_len);
1499 
1500 #if !defined(CONFIG_M5272)
1501 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1502 			data = skb_pull_inline(skb, 2);
1503 #endif
1504 
1505 		/* Extract the enhanced buffer descriptor */
1506 		ebdp = NULL;
1507 		if (fep->bufdesc_ex)
1508 			ebdp = (struct bufdesc_ex *)bdp;
1509 
1510 		/* If this is a VLAN packet remove the VLAN Tag */
1511 		vlan_packet_rcvd = false;
1512 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1513 		    fep->bufdesc_ex &&
1514 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1515 			/* Push and remove the vlan tag */
1516 			struct vlan_hdr *vlan_header =
1517 					(struct vlan_hdr *) (data + ETH_HLEN);
1518 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1519 
1520 			vlan_packet_rcvd = true;
1521 
1522 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1523 			skb_pull(skb, VLAN_HLEN);
1524 		}
1525 
1526 		skb->protocol = eth_type_trans(skb, ndev);
1527 
1528 		/* Get receive timestamp from the skb */
1529 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1530 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1531 					  skb_hwtstamps(skb));
1532 
1533 		if (fep->bufdesc_ex &&
1534 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1535 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1536 				/* don't check it */
1537 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1538 			} else {
1539 				skb_checksum_none_assert(skb);
1540 			}
1541 		}
1542 
1543 		/* Handle received VLAN packets */
1544 		if (vlan_packet_rcvd)
1545 			__vlan_hwaccel_put_tag(skb,
1546 					       htons(ETH_P_8021Q),
1547 					       vlan_tag);
1548 
1549 		skb_record_rx_queue(skb, queue_id);
1550 		napi_gro_receive(&fep->napi, skb);
1551 
1552 		if (is_copybreak) {
1553 			dma_sync_single_for_device(&fep->pdev->dev,
1554 						   fec32_to_cpu(bdp->cbd_bufaddr),
1555 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1556 						   DMA_FROM_DEVICE);
1557 		} else {
1558 			rxq->rx_skbuff[index] = skb_new;
1559 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1560 		}
1561 
1562 rx_processing_done:
1563 		/* Clear the status flags for this buffer */
1564 		status &= ~BD_ENET_RX_STATS;
1565 
1566 		/* Mark the buffer empty */
1567 		status |= BD_ENET_RX_EMPTY;
1568 
1569 		if (fep->bufdesc_ex) {
1570 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1571 
1572 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1573 			ebdp->cbd_prot = 0;
1574 			ebdp->cbd_bdu = 0;
1575 		}
1576 		/* Make sure the updates to rest of the descriptor are
1577 		 * performed before transferring ownership.
1578 		 */
1579 		wmb();
1580 		bdp->cbd_sc = cpu_to_fec16(status);
1581 
1582 		/* Update BD pointer to next entry */
1583 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1584 
1585 		/* Doing this here will keep the FEC running while we process
1586 		 * incoming frames.  On a heavily loaded network, we should be
1587 		 * able to keep up at the expense of system resources.
1588 		 */
1589 		writel(0, rxq->bd.reg_desc_active);
1590 	}
1591 	rxq->bd.cur = bdp;
1592 	return pkt_received;
1593 }
1594 
1595 static int fec_enet_rx(struct net_device *ndev, int budget)
1596 {
1597 	struct fec_enet_private *fep = netdev_priv(ndev);
1598 	int i, done = 0;
1599 
1600 	/* Make sure that AVB queues are processed first. */
1601 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1602 		done += fec_enet_rx_queue(ndev, budget - done, i);
1603 
1604 	return done;
1605 }
1606 
1607 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1608 {
1609 	uint int_events;
1610 
1611 	int_events = readl(fep->hwp + FEC_IEVENT);
1612 
1613 	/* Don't clear MDIO events, we poll for those */
1614 	int_events &= ~FEC_ENET_MII;
1615 
1616 	writel(int_events, fep->hwp + FEC_IEVENT);
1617 
1618 	return int_events != 0;
1619 }
1620 
1621 static irqreturn_t
1622 fec_enet_interrupt(int irq, void *dev_id)
1623 {
1624 	struct net_device *ndev = dev_id;
1625 	struct fec_enet_private *fep = netdev_priv(ndev);
1626 	irqreturn_t ret = IRQ_NONE;
1627 
1628 	if (fec_enet_collect_events(fep) && fep->link) {
1629 		ret = IRQ_HANDLED;
1630 
1631 		if (napi_schedule_prep(&fep->napi)) {
1632 			/* Disable interrupts */
1633 			writel(0, fep->hwp + FEC_IMASK);
1634 			__napi_schedule(&fep->napi);
1635 		}
1636 	}
1637 
1638 	return ret;
1639 }
1640 
1641 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1642 {
1643 	struct net_device *ndev = napi->dev;
1644 	struct fec_enet_private *fep = netdev_priv(ndev);
1645 	int done = 0;
1646 
1647 	do {
1648 		done += fec_enet_rx(ndev, budget - done);
1649 		fec_enet_tx(ndev);
1650 	} while ((done < budget) && fec_enet_collect_events(fep));
1651 
1652 	if (done < budget) {
1653 		napi_complete_done(napi, done);
1654 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1655 	}
1656 
1657 	return done;
1658 }
1659 
1660 /* ------------------------------------------------------------------------- */
1661 static void fec_get_mac(struct net_device *ndev)
1662 {
1663 	struct fec_enet_private *fep = netdev_priv(ndev);
1664 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1665 	unsigned char *iap, tmpaddr[ETH_ALEN];
1666 
1667 	/*
1668 	 * try to get mac address in following order:
1669 	 *
1670 	 * 1) module parameter via kernel command line in form
1671 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1672 	 */
1673 	iap = macaddr;
1674 
1675 	/*
1676 	 * 2) from device tree data
1677 	 */
1678 	if (!is_valid_ether_addr(iap)) {
1679 		struct device_node *np = fep->pdev->dev.of_node;
1680 		if (np) {
1681 			const char *mac = of_get_mac_address(np);
1682 			if (!IS_ERR(mac))
1683 				iap = (unsigned char *) mac;
1684 		}
1685 	}
1686 
1687 	/*
1688 	 * 3) from flash or fuse (via platform data)
1689 	 */
1690 	if (!is_valid_ether_addr(iap)) {
1691 #ifdef CONFIG_M5272
1692 		if (FEC_FLASHMAC)
1693 			iap = (unsigned char *)FEC_FLASHMAC;
1694 #else
1695 		if (pdata)
1696 			iap = (unsigned char *)&pdata->mac;
1697 #endif
1698 	}
1699 
1700 	/*
1701 	 * 4) FEC mac registers set by bootloader
1702 	 */
1703 	if (!is_valid_ether_addr(iap)) {
1704 		*((__be32 *) &tmpaddr[0]) =
1705 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1706 		*((__be16 *) &tmpaddr[4]) =
1707 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1708 		iap = &tmpaddr[0];
1709 	}
1710 
1711 	/*
1712 	 * 5) random mac address
1713 	 */
1714 	if (!is_valid_ether_addr(iap)) {
1715 		/* Report it and use a random ethernet address instead */
1716 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1717 		eth_hw_addr_random(ndev);
1718 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1719 			 ndev->dev_addr);
1720 		return;
1721 	}
1722 
1723 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1724 
1725 	/* Adjust MAC if using macaddr */
1726 	if (iap == macaddr)
1727 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1728 }
1729 
1730 /* ------------------------------------------------------------------------- */
1731 
1732 /*
1733  * Phy section
1734  */
1735 static void fec_enet_adjust_link(struct net_device *ndev)
1736 {
1737 	struct fec_enet_private *fep = netdev_priv(ndev);
1738 	struct phy_device *phy_dev = ndev->phydev;
1739 	int status_change = 0;
1740 
1741 	/*
1742 	 * If the netdev is down, or is going down, we're not interested
1743 	 * in link state events, so just mark our idea of the link as down
1744 	 * and ignore the event.
1745 	 */
1746 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1747 		fep->link = 0;
1748 	} else if (phy_dev->link) {
1749 		if (!fep->link) {
1750 			fep->link = phy_dev->link;
1751 			status_change = 1;
1752 		}
1753 
1754 		if (fep->full_duplex != phy_dev->duplex) {
1755 			fep->full_duplex = phy_dev->duplex;
1756 			status_change = 1;
1757 		}
1758 
1759 		if (phy_dev->speed != fep->speed) {
1760 			fep->speed = phy_dev->speed;
1761 			status_change = 1;
1762 		}
1763 
1764 		/* if any of the above changed restart the FEC */
1765 		if (status_change) {
1766 			napi_disable(&fep->napi);
1767 			netif_tx_lock_bh(ndev);
1768 			fec_restart(ndev);
1769 			netif_tx_wake_all_queues(ndev);
1770 			netif_tx_unlock_bh(ndev);
1771 			napi_enable(&fep->napi);
1772 		}
1773 	} else {
1774 		if (fep->link) {
1775 			napi_disable(&fep->napi);
1776 			netif_tx_lock_bh(ndev);
1777 			fec_stop(ndev);
1778 			netif_tx_unlock_bh(ndev);
1779 			napi_enable(&fep->napi);
1780 			fep->link = phy_dev->link;
1781 			status_change = 1;
1782 		}
1783 	}
1784 
1785 	if (status_change)
1786 		phy_print_status(phy_dev);
1787 }
1788 
1789 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1790 {
1791 	uint ievent;
1792 	int ret;
1793 
1794 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1795 					ievent & FEC_ENET_MII, 2, 30000);
1796 
1797 	if (!ret)
1798 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1799 
1800 	return ret;
1801 }
1802 
1803 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1804 {
1805 	struct fec_enet_private *fep = bus->priv;
1806 	struct device *dev = &fep->pdev->dev;
1807 	int ret = 0, frame_start, frame_addr, frame_op;
1808 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1809 
1810 	ret = pm_runtime_get_sync(dev);
1811 	if (ret < 0)
1812 		return ret;
1813 
1814 	if (is_c45) {
1815 		frame_start = FEC_MMFR_ST_C45;
1816 
1817 		/* write address */
1818 		frame_addr = (regnum >> 16);
1819 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1820 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1821 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1822 		       fep->hwp + FEC_MII_DATA);
1823 
1824 		/* wait for end of transfer */
1825 		ret = fec_enet_mdio_wait(fep);
1826 		if (ret) {
1827 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1828 			goto out;
1829 		}
1830 
1831 		frame_op = FEC_MMFR_OP_READ_C45;
1832 
1833 	} else {
1834 		/* C22 read */
1835 		frame_op = FEC_MMFR_OP_READ;
1836 		frame_start = FEC_MMFR_ST;
1837 		frame_addr = regnum;
1838 	}
1839 
1840 	/* start a read op */
1841 	writel(frame_start | frame_op |
1842 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1843 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1844 
1845 	/* wait for end of transfer */
1846 	ret = fec_enet_mdio_wait(fep);
1847 	if (ret) {
1848 		netdev_err(fep->netdev, "MDIO read timeout\n");
1849 		goto out;
1850 	}
1851 
1852 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1853 
1854 out:
1855 	pm_runtime_mark_last_busy(dev);
1856 	pm_runtime_put_autosuspend(dev);
1857 
1858 	return ret;
1859 }
1860 
1861 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1862 			   u16 value)
1863 {
1864 	struct fec_enet_private *fep = bus->priv;
1865 	struct device *dev = &fep->pdev->dev;
1866 	int ret, frame_start, frame_addr;
1867 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1868 
1869 	ret = pm_runtime_get_sync(dev);
1870 	if (ret < 0)
1871 		return ret;
1872 	else
1873 		ret = 0;
1874 
1875 	if (is_c45) {
1876 		frame_start = FEC_MMFR_ST_C45;
1877 
1878 		/* write address */
1879 		frame_addr = (regnum >> 16);
1880 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1881 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1882 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1883 		       fep->hwp + FEC_MII_DATA);
1884 
1885 		/* wait for end of transfer */
1886 		ret = fec_enet_mdio_wait(fep);
1887 		if (ret) {
1888 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1889 			goto out;
1890 		}
1891 	} else {
1892 		/* C22 write */
1893 		frame_start = FEC_MMFR_ST;
1894 		frame_addr = regnum;
1895 	}
1896 
1897 	/* start a write op */
1898 	writel(frame_start | FEC_MMFR_OP_WRITE |
1899 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1900 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1901 		fep->hwp + FEC_MII_DATA);
1902 
1903 	/* wait for end of transfer */
1904 	ret = fec_enet_mdio_wait(fep);
1905 	if (ret)
1906 		netdev_err(fep->netdev, "MDIO write timeout\n");
1907 
1908 out:
1909 	pm_runtime_mark_last_busy(dev);
1910 	pm_runtime_put_autosuspend(dev);
1911 
1912 	return ret;
1913 }
1914 
1915 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
1916 {
1917 	struct fec_enet_private *fep = netdev_priv(ndev);
1918 	struct phy_device *phy_dev = ndev->phydev;
1919 
1920 	if (phy_dev) {
1921 		phy_reset_after_clk_enable(phy_dev);
1922 	} else if (fep->phy_node) {
1923 		/*
1924 		 * If the PHY still is not bound to the MAC, but there is
1925 		 * OF PHY node and a matching PHY device instance already,
1926 		 * use the OF PHY node to obtain the PHY device instance,
1927 		 * and then use that PHY device instance when triggering
1928 		 * the PHY reset.
1929 		 */
1930 		phy_dev = of_phy_find_device(fep->phy_node);
1931 		phy_reset_after_clk_enable(phy_dev);
1932 		put_device(&phy_dev->mdio.dev);
1933 	}
1934 }
1935 
1936 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1937 {
1938 	struct fec_enet_private *fep = netdev_priv(ndev);
1939 	int ret;
1940 
1941 	if (enable) {
1942 		ret = clk_prepare_enable(fep->clk_enet_out);
1943 		if (ret)
1944 			return ret;
1945 
1946 		if (fep->clk_ptp) {
1947 			mutex_lock(&fep->ptp_clk_mutex);
1948 			ret = clk_prepare_enable(fep->clk_ptp);
1949 			if (ret) {
1950 				mutex_unlock(&fep->ptp_clk_mutex);
1951 				goto failed_clk_ptp;
1952 			} else {
1953 				fep->ptp_clk_on = true;
1954 			}
1955 			mutex_unlock(&fep->ptp_clk_mutex);
1956 		}
1957 
1958 		ret = clk_prepare_enable(fep->clk_ref);
1959 		if (ret)
1960 			goto failed_clk_ref;
1961 
1962 		fec_enet_phy_reset_after_clk_enable(ndev);
1963 	} else {
1964 		clk_disable_unprepare(fep->clk_enet_out);
1965 		if (fep->clk_ptp) {
1966 			mutex_lock(&fep->ptp_clk_mutex);
1967 			clk_disable_unprepare(fep->clk_ptp);
1968 			fep->ptp_clk_on = false;
1969 			mutex_unlock(&fep->ptp_clk_mutex);
1970 		}
1971 		clk_disable_unprepare(fep->clk_ref);
1972 	}
1973 
1974 	return 0;
1975 
1976 failed_clk_ref:
1977 	if (fep->clk_ptp) {
1978 		mutex_lock(&fep->ptp_clk_mutex);
1979 		clk_disable_unprepare(fep->clk_ptp);
1980 		fep->ptp_clk_on = false;
1981 		mutex_unlock(&fep->ptp_clk_mutex);
1982 	}
1983 failed_clk_ptp:
1984 	clk_disable_unprepare(fep->clk_enet_out);
1985 
1986 	return ret;
1987 }
1988 
1989 static int fec_enet_mii_probe(struct net_device *ndev)
1990 {
1991 	struct fec_enet_private *fep = netdev_priv(ndev);
1992 	struct phy_device *phy_dev = NULL;
1993 	char mdio_bus_id[MII_BUS_ID_SIZE];
1994 	char phy_name[MII_BUS_ID_SIZE + 3];
1995 	int phy_id;
1996 	int dev_id = fep->dev_id;
1997 
1998 	if (fep->phy_node) {
1999 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2000 					 &fec_enet_adjust_link, 0,
2001 					 fep->phy_interface);
2002 		if (!phy_dev) {
2003 			netdev_err(ndev, "Unable to connect to phy\n");
2004 			return -ENODEV;
2005 		}
2006 	} else {
2007 		/* check for attached phy */
2008 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2009 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2010 				continue;
2011 			if (dev_id--)
2012 				continue;
2013 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2014 			break;
2015 		}
2016 
2017 		if (phy_id >= PHY_MAX_ADDR) {
2018 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2019 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2020 			phy_id = 0;
2021 		}
2022 
2023 		snprintf(phy_name, sizeof(phy_name),
2024 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2025 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2026 				      fep->phy_interface);
2027 	}
2028 
2029 	if (IS_ERR(phy_dev)) {
2030 		netdev_err(ndev, "could not attach to PHY\n");
2031 		return PTR_ERR(phy_dev);
2032 	}
2033 
2034 	/* mask with MAC supported features */
2035 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2036 		phy_set_max_speed(phy_dev, 1000);
2037 		phy_remove_link_mode(phy_dev,
2038 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2039 #if !defined(CONFIG_M5272)
2040 		phy_support_sym_pause(phy_dev);
2041 #endif
2042 	}
2043 	else
2044 		phy_set_max_speed(phy_dev, 100);
2045 
2046 	fep->link = 0;
2047 	fep->full_duplex = 0;
2048 
2049 	phy_attached_info(phy_dev);
2050 
2051 	return 0;
2052 }
2053 
2054 static int fec_enet_mii_init(struct platform_device *pdev)
2055 {
2056 	static struct mii_bus *fec0_mii_bus;
2057 	struct net_device *ndev = platform_get_drvdata(pdev);
2058 	struct fec_enet_private *fep = netdev_priv(ndev);
2059 	bool suppress_preamble = false;
2060 	struct device_node *node;
2061 	int err = -ENXIO;
2062 	u32 mii_speed, holdtime;
2063 	u32 bus_freq;
2064 
2065 	/*
2066 	 * The i.MX28 dual fec interfaces are not equal.
2067 	 * Here are the differences:
2068 	 *
2069 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2070 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2071 	 *  - external phys can only be configured by fec0
2072 	 *
2073 	 * That is to say fec1 can not work independently. It only works
2074 	 * when fec0 is working. The reason behind this design is that the
2075 	 * second interface is added primarily for Switch mode.
2076 	 *
2077 	 * Because of the last point above, both phys are attached on fec0
2078 	 * mdio interface in board design, and need to be configured by
2079 	 * fec0 mii_bus.
2080 	 */
2081 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2082 		/* fec1 uses fec0 mii_bus */
2083 		if (mii_cnt && fec0_mii_bus) {
2084 			fep->mii_bus = fec0_mii_bus;
2085 			mii_cnt++;
2086 			return 0;
2087 		}
2088 		return -ENOENT;
2089 	}
2090 
2091 	bus_freq = 2500000; /* 2.5MHz by default */
2092 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2093 	if (node) {
2094 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2095 		suppress_preamble = of_property_read_bool(node,
2096 							  "suppress-preamble");
2097 	}
2098 
2099 	/*
2100 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2101 	 *
2102 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2103 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2104 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2105 	 * document.
2106 	 */
2107 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2108 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2109 		mii_speed--;
2110 	if (mii_speed > 63) {
2111 		dev_err(&pdev->dev,
2112 			"fec clock (%lu) too fast to get right mii speed\n",
2113 			clk_get_rate(fep->clk_ipg));
2114 		err = -EINVAL;
2115 		goto err_out;
2116 	}
2117 
2118 	/*
2119 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2120 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2121 	 * versions are RAZ there, so just ignore the difference and write the
2122 	 * register always.
2123 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2124 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2125 	 * output.
2126 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2127 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2128 	 * holdtime cannot result in a value greater than 3.
2129 	 */
2130 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2131 
2132 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2133 
2134 	if (suppress_preamble)
2135 		fep->phy_speed |= BIT(7);
2136 
2137 	/* Clear MMFR to avoid to generate MII event by writing MSCR.
2138 	 * MII event generation condition:
2139 	 * - writing MSCR:
2140 	 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2141 	 *	  mscr_reg_data_in[7:0] != 0
2142 	 * - writing MMFR:
2143 	 *	- mscr[7:0]_not_zero
2144 	 */
2145 	writel(0, fep->hwp + FEC_MII_DATA);
2146 
2147 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2148 
2149 	/* Clear any pending transaction complete indication */
2150 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2151 
2152 	fep->mii_bus = mdiobus_alloc();
2153 	if (fep->mii_bus == NULL) {
2154 		err = -ENOMEM;
2155 		goto err_out;
2156 	}
2157 
2158 	fep->mii_bus->name = "fec_enet_mii_bus";
2159 	fep->mii_bus->read = fec_enet_mdio_read;
2160 	fep->mii_bus->write = fec_enet_mdio_write;
2161 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2162 		pdev->name, fep->dev_id + 1);
2163 	fep->mii_bus->priv = fep;
2164 	fep->mii_bus->parent = &pdev->dev;
2165 
2166 	err = of_mdiobus_register(fep->mii_bus, node);
2167 	of_node_put(node);
2168 	if (err)
2169 		goto err_out_free_mdiobus;
2170 
2171 	mii_cnt++;
2172 
2173 	/* save fec0 mii_bus */
2174 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2175 		fec0_mii_bus = fep->mii_bus;
2176 
2177 	return 0;
2178 
2179 err_out_free_mdiobus:
2180 	mdiobus_free(fep->mii_bus);
2181 err_out:
2182 	return err;
2183 }
2184 
2185 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2186 {
2187 	if (--mii_cnt == 0) {
2188 		mdiobus_unregister(fep->mii_bus);
2189 		mdiobus_free(fep->mii_bus);
2190 	}
2191 }
2192 
2193 static void fec_enet_get_drvinfo(struct net_device *ndev,
2194 				 struct ethtool_drvinfo *info)
2195 {
2196 	struct fec_enet_private *fep = netdev_priv(ndev);
2197 
2198 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2199 		sizeof(info->driver));
2200 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2201 }
2202 
2203 static int fec_enet_get_regs_len(struct net_device *ndev)
2204 {
2205 	struct fec_enet_private *fep = netdev_priv(ndev);
2206 	struct resource *r;
2207 	int s = 0;
2208 
2209 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2210 	if (r)
2211 		s = resource_size(r);
2212 
2213 	return s;
2214 }
2215 
2216 /* List of registers that can be safety be read to dump them with ethtool */
2217 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2218 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2219 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2220 static __u32 fec_enet_register_version = 2;
2221 static u32 fec_enet_register_offset[] = {
2222 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2223 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2224 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2225 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2226 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2227 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2228 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2229 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2230 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2231 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2232 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2233 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2234 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2235 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2236 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2237 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2238 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2239 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2240 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2241 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2242 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2243 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2244 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2245 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2246 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2247 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2248 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2249 };
2250 #else
2251 static __u32 fec_enet_register_version = 1;
2252 static u32 fec_enet_register_offset[] = {
2253 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2254 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2255 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2256 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2257 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2258 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2259 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2260 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2261 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2262 };
2263 #endif
2264 
2265 static void fec_enet_get_regs(struct net_device *ndev,
2266 			      struct ethtool_regs *regs, void *regbuf)
2267 {
2268 	struct fec_enet_private *fep = netdev_priv(ndev);
2269 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2270 	struct device *dev = &fep->pdev->dev;
2271 	u32 *buf = (u32 *)regbuf;
2272 	u32 i, off;
2273 	int ret;
2274 
2275 	ret = pm_runtime_get_sync(dev);
2276 	if (ret < 0)
2277 		return;
2278 
2279 	regs->version = fec_enet_register_version;
2280 
2281 	memset(buf, 0, regs->len);
2282 
2283 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2284 		off = fec_enet_register_offset[i];
2285 
2286 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2287 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2288 			continue;
2289 
2290 		off >>= 2;
2291 		buf[off] = readl(&theregs[off]);
2292 	}
2293 
2294 	pm_runtime_mark_last_busy(dev);
2295 	pm_runtime_put_autosuspend(dev);
2296 }
2297 
2298 static int fec_enet_get_ts_info(struct net_device *ndev,
2299 				struct ethtool_ts_info *info)
2300 {
2301 	struct fec_enet_private *fep = netdev_priv(ndev);
2302 
2303 	if (fep->bufdesc_ex) {
2304 
2305 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2306 					SOF_TIMESTAMPING_RX_SOFTWARE |
2307 					SOF_TIMESTAMPING_SOFTWARE |
2308 					SOF_TIMESTAMPING_TX_HARDWARE |
2309 					SOF_TIMESTAMPING_RX_HARDWARE |
2310 					SOF_TIMESTAMPING_RAW_HARDWARE;
2311 		if (fep->ptp_clock)
2312 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2313 		else
2314 			info->phc_index = -1;
2315 
2316 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2317 				 (1 << HWTSTAMP_TX_ON);
2318 
2319 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2320 				   (1 << HWTSTAMP_FILTER_ALL);
2321 		return 0;
2322 	} else {
2323 		return ethtool_op_get_ts_info(ndev, info);
2324 	}
2325 }
2326 
2327 #if !defined(CONFIG_M5272)
2328 
2329 static void fec_enet_get_pauseparam(struct net_device *ndev,
2330 				    struct ethtool_pauseparam *pause)
2331 {
2332 	struct fec_enet_private *fep = netdev_priv(ndev);
2333 
2334 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2335 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2336 	pause->rx_pause = pause->tx_pause;
2337 }
2338 
2339 static int fec_enet_set_pauseparam(struct net_device *ndev,
2340 				   struct ethtool_pauseparam *pause)
2341 {
2342 	struct fec_enet_private *fep = netdev_priv(ndev);
2343 
2344 	if (!ndev->phydev)
2345 		return -ENODEV;
2346 
2347 	if (pause->tx_pause != pause->rx_pause) {
2348 		netdev_info(ndev,
2349 			"hardware only support enable/disable both tx and rx");
2350 		return -EINVAL;
2351 	}
2352 
2353 	fep->pause_flag = 0;
2354 
2355 	/* tx pause must be same as rx pause */
2356 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2357 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2358 
2359 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2360 			  pause->autoneg);
2361 
2362 	if (pause->autoneg) {
2363 		if (netif_running(ndev))
2364 			fec_stop(ndev);
2365 		phy_start_aneg(ndev->phydev);
2366 	}
2367 	if (netif_running(ndev)) {
2368 		napi_disable(&fep->napi);
2369 		netif_tx_lock_bh(ndev);
2370 		fec_restart(ndev);
2371 		netif_tx_wake_all_queues(ndev);
2372 		netif_tx_unlock_bh(ndev);
2373 		napi_enable(&fep->napi);
2374 	}
2375 
2376 	return 0;
2377 }
2378 
2379 static const struct fec_stat {
2380 	char name[ETH_GSTRING_LEN];
2381 	u16 offset;
2382 } fec_stats[] = {
2383 	/* RMON TX */
2384 	{ "tx_dropped", RMON_T_DROP },
2385 	{ "tx_packets", RMON_T_PACKETS },
2386 	{ "tx_broadcast", RMON_T_BC_PKT },
2387 	{ "tx_multicast", RMON_T_MC_PKT },
2388 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2389 	{ "tx_undersize", RMON_T_UNDERSIZE },
2390 	{ "tx_oversize", RMON_T_OVERSIZE },
2391 	{ "tx_fragment", RMON_T_FRAG },
2392 	{ "tx_jabber", RMON_T_JAB },
2393 	{ "tx_collision", RMON_T_COL },
2394 	{ "tx_64byte", RMON_T_P64 },
2395 	{ "tx_65to127byte", RMON_T_P65TO127 },
2396 	{ "tx_128to255byte", RMON_T_P128TO255 },
2397 	{ "tx_256to511byte", RMON_T_P256TO511 },
2398 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2399 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2400 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2401 	{ "tx_octets", RMON_T_OCTETS },
2402 
2403 	/* IEEE TX */
2404 	{ "IEEE_tx_drop", IEEE_T_DROP },
2405 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2406 	{ "IEEE_tx_1col", IEEE_T_1COL },
2407 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2408 	{ "IEEE_tx_def", IEEE_T_DEF },
2409 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2410 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2411 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2412 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2413 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2414 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2415 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2416 
2417 	/* RMON RX */
2418 	{ "rx_packets", RMON_R_PACKETS },
2419 	{ "rx_broadcast", RMON_R_BC_PKT },
2420 	{ "rx_multicast", RMON_R_MC_PKT },
2421 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2422 	{ "rx_undersize", RMON_R_UNDERSIZE },
2423 	{ "rx_oversize", RMON_R_OVERSIZE },
2424 	{ "rx_fragment", RMON_R_FRAG },
2425 	{ "rx_jabber", RMON_R_JAB },
2426 	{ "rx_64byte", RMON_R_P64 },
2427 	{ "rx_65to127byte", RMON_R_P65TO127 },
2428 	{ "rx_128to255byte", RMON_R_P128TO255 },
2429 	{ "rx_256to511byte", RMON_R_P256TO511 },
2430 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2431 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2432 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2433 	{ "rx_octets", RMON_R_OCTETS },
2434 
2435 	/* IEEE RX */
2436 	{ "IEEE_rx_drop", IEEE_R_DROP },
2437 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2438 	{ "IEEE_rx_crc", IEEE_R_CRC },
2439 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2440 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2441 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2442 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2443 };
2444 
2445 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2446 
2447 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2448 {
2449 	struct fec_enet_private *fep = netdev_priv(dev);
2450 	int i;
2451 
2452 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2453 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2454 }
2455 
2456 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2457 				       struct ethtool_stats *stats, u64 *data)
2458 {
2459 	struct fec_enet_private *fep = netdev_priv(dev);
2460 
2461 	if (netif_running(dev))
2462 		fec_enet_update_ethtool_stats(dev);
2463 
2464 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2465 }
2466 
2467 static void fec_enet_get_strings(struct net_device *netdev,
2468 	u32 stringset, u8 *data)
2469 {
2470 	int i;
2471 	switch (stringset) {
2472 	case ETH_SS_STATS:
2473 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2474 			memcpy(data + i * ETH_GSTRING_LEN,
2475 				fec_stats[i].name, ETH_GSTRING_LEN);
2476 		break;
2477 	}
2478 }
2479 
2480 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2481 {
2482 	switch (sset) {
2483 	case ETH_SS_STATS:
2484 		return ARRAY_SIZE(fec_stats);
2485 	default:
2486 		return -EOPNOTSUPP;
2487 	}
2488 }
2489 
2490 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2491 {
2492 	struct fec_enet_private *fep = netdev_priv(dev);
2493 	int i;
2494 
2495 	/* Disable MIB statistics counters */
2496 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2497 
2498 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2499 		writel(0, fep->hwp + fec_stats[i].offset);
2500 
2501 	/* Don't disable MIB statistics counters */
2502 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2503 }
2504 
2505 #else	/* !defined(CONFIG_M5272) */
2506 #define FEC_STATS_SIZE	0
2507 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2508 {
2509 }
2510 
2511 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2512 {
2513 }
2514 #endif /* !defined(CONFIG_M5272) */
2515 
2516 /* ITR clock source is enet system clock (clk_ahb).
2517  * TCTT unit is cycle_ns * 64 cycle
2518  * So, the ICTT value = X us / (cycle_ns * 64)
2519  */
2520 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2521 {
2522 	struct fec_enet_private *fep = netdev_priv(ndev);
2523 
2524 	return us * (fep->itr_clk_rate / 64000) / 1000;
2525 }
2526 
2527 /* Set threshold for interrupt coalescing */
2528 static void fec_enet_itr_coal_set(struct net_device *ndev)
2529 {
2530 	struct fec_enet_private *fep = netdev_priv(ndev);
2531 	int rx_itr, tx_itr;
2532 
2533 	/* Must be greater than zero to avoid unpredictable behavior */
2534 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2535 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2536 		return;
2537 
2538 	/* Select enet system clock as Interrupt Coalescing
2539 	 * timer Clock Source
2540 	 */
2541 	rx_itr = FEC_ITR_CLK_SEL;
2542 	tx_itr = FEC_ITR_CLK_SEL;
2543 
2544 	/* set ICFT and ICTT */
2545 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2546 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2547 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2548 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2549 
2550 	rx_itr |= FEC_ITR_EN;
2551 	tx_itr |= FEC_ITR_EN;
2552 
2553 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2554 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2555 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2556 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2557 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2558 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2559 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2560 	}
2561 }
2562 
2563 static int
2564 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2565 {
2566 	struct fec_enet_private *fep = netdev_priv(ndev);
2567 
2568 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2569 		return -EOPNOTSUPP;
2570 
2571 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2572 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2573 
2574 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2575 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2576 
2577 	return 0;
2578 }
2579 
2580 static int
2581 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2582 {
2583 	struct fec_enet_private *fep = netdev_priv(ndev);
2584 	struct device *dev = &fep->pdev->dev;
2585 	unsigned int cycle;
2586 
2587 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2588 		return -EOPNOTSUPP;
2589 
2590 	if (ec->rx_max_coalesced_frames > 255) {
2591 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2592 		return -EINVAL;
2593 	}
2594 
2595 	if (ec->tx_max_coalesced_frames > 255) {
2596 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2597 		return -EINVAL;
2598 	}
2599 
2600 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2601 	if (cycle > 0xFFFF) {
2602 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2603 		return -EINVAL;
2604 	}
2605 
2606 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2607 	if (cycle > 0xFFFF) {
2608 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2609 		return -EINVAL;
2610 	}
2611 
2612 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2613 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2614 
2615 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2616 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2617 
2618 	fec_enet_itr_coal_set(ndev);
2619 
2620 	return 0;
2621 }
2622 
2623 static void fec_enet_itr_coal_init(struct net_device *ndev)
2624 {
2625 	struct ethtool_coalesce ec;
2626 
2627 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2628 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2629 
2630 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2631 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2632 
2633 	fec_enet_set_coalesce(ndev, &ec);
2634 }
2635 
2636 static int fec_enet_get_tunable(struct net_device *netdev,
2637 				const struct ethtool_tunable *tuna,
2638 				void *data)
2639 {
2640 	struct fec_enet_private *fep = netdev_priv(netdev);
2641 	int ret = 0;
2642 
2643 	switch (tuna->id) {
2644 	case ETHTOOL_RX_COPYBREAK:
2645 		*(u32 *)data = fep->rx_copybreak;
2646 		break;
2647 	default:
2648 		ret = -EINVAL;
2649 		break;
2650 	}
2651 
2652 	return ret;
2653 }
2654 
2655 static int fec_enet_set_tunable(struct net_device *netdev,
2656 				const struct ethtool_tunable *tuna,
2657 				const void *data)
2658 {
2659 	struct fec_enet_private *fep = netdev_priv(netdev);
2660 	int ret = 0;
2661 
2662 	switch (tuna->id) {
2663 	case ETHTOOL_RX_COPYBREAK:
2664 		fep->rx_copybreak = *(u32 *)data;
2665 		break;
2666 	default:
2667 		ret = -EINVAL;
2668 		break;
2669 	}
2670 
2671 	return ret;
2672 }
2673 
2674 static void
2675 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2676 {
2677 	struct fec_enet_private *fep = netdev_priv(ndev);
2678 
2679 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2680 		wol->supported = WAKE_MAGIC;
2681 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2682 	} else {
2683 		wol->supported = wol->wolopts = 0;
2684 	}
2685 }
2686 
2687 static int
2688 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2689 {
2690 	struct fec_enet_private *fep = netdev_priv(ndev);
2691 
2692 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2693 		return -EINVAL;
2694 
2695 	if (wol->wolopts & ~WAKE_MAGIC)
2696 		return -EINVAL;
2697 
2698 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2699 	if (device_may_wakeup(&ndev->dev)) {
2700 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2701 		if (fep->irq[0] > 0)
2702 			enable_irq_wake(fep->irq[0]);
2703 	} else {
2704 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2705 		if (fep->irq[0] > 0)
2706 			disable_irq_wake(fep->irq[0]);
2707 	}
2708 
2709 	return 0;
2710 }
2711 
2712 static const struct ethtool_ops fec_enet_ethtool_ops = {
2713 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2714 				     ETHTOOL_COALESCE_MAX_FRAMES,
2715 	.get_drvinfo		= fec_enet_get_drvinfo,
2716 	.get_regs_len		= fec_enet_get_regs_len,
2717 	.get_regs		= fec_enet_get_regs,
2718 	.nway_reset		= phy_ethtool_nway_reset,
2719 	.get_link		= ethtool_op_get_link,
2720 	.get_coalesce		= fec_enet_get_coalesce,
2721 	.set_coalesce		= fec_enet_set_coalesce,
2722 #ifndef CONFIG_M5272
2723 	.get_pauseparam		= fec_enet_get_pauseparam,
2724 	.set_pauseparam		= fec_enet_set_pauseparam,
2725 	.get_strings		= fec_enet_get_strings,
2726 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2727 	.get_sset_count		= fec_enet_get_sset_count,
2728 #endif
2729 	.get_ts_info		= fec_enet_get_ts_info,
2730 	.get_tunable		= fec_enet_get_tunable,
2731 	.set_tunable		= fec_enet_set_tunable,
2732 	.get_wol		= fec_enet_get_wol,
2733 	.set_wol		= fec_enet_set_wol,
2734 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2735 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2736 };
2737 
2738 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2739 {
2740 	struct fec_enet_private *fep = netdev_priv(ndev);
2741 	struct phy_device *phydev = ndev->phydev;
2742 
2743 	if (!netif_running(ndev))
2744 		return -EINVAL;
2745 
2746 	if (!phydev)
2747 		return -ENODEV;
2748 
2749 	if (fep->bufdesc_ex) {
2750 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2751 
2752 		if (cmd == SIOCSHWTSTAMP) {
2753 			if (use_fec_hwts)
2754 				return fec_ptp_set(ndev, rq);
2755 			fec_ptp_disable_hwts(ndev);
2756 		} else if (cmd == SIOCGHWTSTAMP) {
2757 			if (use_fec_hwts)
2758 				return fec_ptp_get(ndev, rq);
2759 		}
2760 	}
2761 
2762 	return phy_mii_ioctl(phydev, rq, cmd);
2763 }
2764 
2765 static void fec_enet_free_buffers(struct net_device *ndev)
2766 {
2767 	struct fec_enet_private *fep = netdev_priv(ndev);
2768 	unsigned int i;
2769 	struct sk_buff *skb;
2770 	struct bufdesc	*bdp;
2771 	struct fec_enet_priv_tx_q *txq;
2772 	struct fec_enet_priv_rx_q *rxq;
2773 	unsigned int q;
2774 
2775 	for (q = 0; q < fep->num_rx_queues; q++) {
2776 		rxq = fep->rx_queue[q];
2777 		bdp = rxq->bd.base;
2778 		for (i = 0; i < rxq->bd.ring_size; i++) {
2779 			skb = rxq->rx_skbuff[i];
2780 			rxq->rx_skbuff[i] = NULL;
2781 			if (skb) {
2782 				dma_unmap_single(&fep->pdev->dev,
2783 						 fec32_to_cpu(bdp->cbd_bufaddr),
2784 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2785 						 DMA_FROM_DEVICE);
2786 				dev_kfree_skb(skb);
2787 			}
2788 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2789 		}
2790 	}
2791 
2792 	for (q = 0; q < fep->num_tx_queues; q++) {
2793 		txq = fep->tx_queue[q];
2794 		for (i = 0; i < txq->bd.ring_size; i++) {
2795 			kfree(txq->tx_bounce[i]);
2796 			txq->tx_bounce[i] = NULL;
2797 			skb = txq->tx_skbuff[i];
2798 			txq->tx_skbuff[i] = NULL;
2799 			dev_kfree_skb(skb);
2800 		}
2801 	}
2802 }
2803 
2804 static void fec_enet_free_queue(struct net_device *ndev)
2805 {
2806 	struct fec_enet_private *fep = netdev_priv(ndev);
2807 	int i;
2808 	struct fec_enet_priv_tx_q *txq;
2809 
2810 	for (i = 0; i < fep->num_tx_queues; i++)
2811 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2812 			txq = fep->tx_queue[i];
2813 			dma_free_coherent(&fep->pdev->dev,
2814 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2815 					  txq->tso_hdrs,
2816 					  txq->tso_hdrs_dma);
2817 		}
2818 
2819 	for (i = 0; i < fep->num_rx_queues; i++)
2820 		kfree(fep->rx_queue[i]);
2821 	for (i = 0; i < fep->num_tx_queues; i++)
2822 		kfree(fep->tx_queue[i]);
2823 }
2824 
2825 static int fec_enet_alloc_queue(struct net_device *ndev)
2826 {
2827 	struct fec_enet_private *fep = netdev_priv(ndev);
2828 	int i;
2829 	int ret = 0;
2830 	struct fec_enet_priv_tx_q *txq;
2831 
2832 	for (i = 0; i < fep->num_tx_queues; i++) {
2833 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2834 		if (!txq) {
2835 			ret = -ENOMEM;
2836 			goto alloc_failed;
2837 		}
2838 
2839 		fep->tx_queue[i] = txq;
2840 		txq->bd.ring_size = TX_RING_SIZE;
2841 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2842 
2843 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2844 		txq->tx_wake_threshold =
2845 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2846 
2847 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2848 					txq->bd.ring_size * TSO_HEADER_SIZE,
2849 					&txq->tso_hdrs_dma,
2850 					GFP_KERNEL);
2851 		if (!txq->tso_hdrs) {
2852 			ret = -ENOMEM;
2853 			goto alloc_failed;
2854 		}
2855 	}
2856 
2857 	for (i = 0; i < fep->num_rx_queues; i++) {
2858 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2859 					   GFP_KERNEL);
2860 		if (!fep->rx_queue[i]) {
2861 			ret = -ENOMEM;
2862 			goto alloc_failed;
2863 		}
2864 
2865 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2866 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2867 	}
2868 	return ret;
2869 
2870 alloc_failed:
2871 	fec_enet_free_queue(ndev);
2872 	return ret;
2873 }
2874 
2875 static int
2876 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2877 {
2878 	struct fec_enet_private *fep = netdev_priv(ndev);
2879 	unsigned int i;
2880 	struct sk_buff *skb;
2881 	struct bufdesc	*bdp;
2882 	struct fec_enet_priv_rx_q *rxq;
2883 
2884 	rxq = fep->rx_queue[queue];
2885 	bdp = rxq->bd.base;
2886 	for (i = 0; i < rxq->bd.ring_size; i++) {
2887 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2888 		if (!skb)
2889 			goto err_alloc;
2890 
2891 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2892 			dev_kfree_skb(skb);
2893 			goto err_alloc;
2894 		}
2895 
2896 		rxq->rx_skbuff[i] = skb;
2897 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2898 
2899 		if (fep->bufdesc_ex) {
2900 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2901 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2902 		}
2903 
2904 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2905 	}
2906 
2907 	/* Set the last buffer to wrap. */
2908 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2909 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2910 	return 0;
2911 
2912  err_alloc:
2913 	fec_enet_free_buffers(ndev);
2914 	return -ENOMEM;
2915 }
2916 
2917 static int
2918 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2919 {
2920 	struct fec_enet_private *fep = netdev_priv(ndev);
2921 	unsigned int i;
2922 	struct bufdesc  *bdp;
2923 	struct fec_enet_priv_tx_q *txq;
2924 
2925 	txq = fep->tx_queue[queue];
2926 	bdp = txq->bd.base;
2927 	for (i = 0; i < txq->bd.ring_size; i++) {
2928 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2929 		if (!txq->tx_bounce[i])
2930 			goto err_alloc;
2931 
2932 		bdp->cbd_sc = cpu_to_fec16(0);
2933 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2934 
2935 		if (fep->bufdesc_ex) {
2936 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2937 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2938 		}
2939 
2940 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2941 	}
2942 
2943 	/* Set the last buffer to wrap. */
2944 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2945 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2946 
2947 	return 0;
2948 
2949  err_alloc:
2950 	fec_enet_free_buffers(ndev);
2951 	return -ENOMEM;
2952 }
2953 
2954 static int fec_enet_alloc_buffers(struct net_device *ndev)
2955 {
2956 	struct fec_enet_private *fep = netdev_priv(ndev);
2957 	unsigned int i;
2958 
2959 	for (i = 0; i < fep->num_rx_queues; i++)
2960 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2961 			return -ENOMEM;
2962 
2963 	for (i = 0; i < fep->num_tx_queues; i++)
2964 		if (fec_enet_alloc_txq_buffers(ndev, i))
2965 			return -ENOMEM;
2966 	return 0;
2967 }
2968 
2969 static int
2970 fec_enet_open(struct net_device *ndev)
2971 {
2972 	struct fec_enet_private *fep = netdev_priv(ndev);
2973 	int ret;
2974 	bool reset_again;
2975 
2976 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2977 	if (ret < 0)
2978 		return ret;
2979 
2980 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2981 	ret = fec_enet_clk_enable(ndev, true);
2982 	if (ret)
2983 		goto clk_enable;
2984 
2985 	/* During the first fec_enet_open call the PHY isn't probed at this
2986 	 * point. Therefore the phy_reset_after_clk_enable() call within
2987 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2988 	 * sure the PHY is working correctly we check if we need to reset again
2989 	 * later when the PHY is probed
2990 	 */
2991 	if (ndev->phydev && ndev->phydev->drv)
2992 		reset_again = false;
2993 	else
2994 		reset_again = true;
2995 
2996 	/* I should reset the ring buffers here, but I don't yet know
2997 	 * a simple way to do that.
2998 	 */
2999 
3000 	ret = fec_enet_alloc_buffers(ndev);
3001 	if (ret)
3002 		goto err_enet_alloc;
3003 
3004 	/* Init MAC prior to mii bus probe */
3005 	fec_restart(ndev);
3006 
3007 	/* Call phy_reset_after_clk_enable() again if it failed during
3008 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3009 	 */
3010 	if (reset_again)
3011 		fec_enet_phy_reset_after_clk_enable(ndev);
3012 
3013 	/* Probe and connect to PHY when open the interface */
3014 	ret = fec_enet_mii_probe(ndev);
3015 	if (ret)
3016 		goto err_enet_mii_probe;
3017 
3018 	if (fep->quirks & FEC_QUIRK_ERR006687)
3019 		imx6q_cpuidle_fec_irqs_used();
3020 
3021 	napi_enable(&fep->napi);
3022 	phy_start(ndev->phydev);
3023 	netif_tx_start_all_queues(ndev);
3024 
3025 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3026 				 FEC_WOL_FLAG_ENABLE);
3027 
3028 	return 0;
3029 
3030 err_enet_mii_probe:
3031 	fec_enet_free_buffers(ndev);
3032 err_enet_alloc:
3033 	fec_enet_clk_enable(ndev, false);
3034 clk_enable:
3035 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3036 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3037 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3038 	return ret;
3039 }
3040 
3041 static int
3042 fec_enet_close(struct net_device *ndev)
3043 {
3044 	struct fec_enet_private *fep = netdev_priv(ndev);
3045 
3046 	phy_stop(ndev->phydev);
3047 
3048 	if (netif_device_present(ndev)) {
3049 		napi_disable(&fep->napi);
3050 		netif_tx_disable(ndev);
3051 		fec_stop(ndev);
3052 	}
3053 
3054 	phy_disconnect(ndev->phydev);
3055 
3056 	if (fep->quirks & FEC_QUIRK_ERR006687)
3057 		imx6q_cpuidle_fec_irqs_unused();
3058 
3059 	fec_enet_update_ethtool_stats(ndev);
3060 
3061 	fec_enet_clk_enable(ndev, false);
3062 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3063 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3064 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3065 
3066 	fec_enet_free_buffers(ndev);
3067 
3068 	return 0;
3069 }
3070 
3071 /* Set or clear the multicast filter for this adaptor.
3072  * Skeleton taken from sunlance driver.
3073  * The CPM Ethernet implementation allows Multicast as well as individual
3074  * MAC address filtering.  Some of the drivers check to make sure it is
3075  * a group multicast address, and discard those that are not.  I guess I
3076  * will do the same for now, but just remove the test if you want
3077  * individual filtering as well (do the upper net layers want or support
3078  * this kind of feature?).
3079  */
3080 
3081 #define FEC_HASH_BITS	6		/* #bits in hash */
3082 
3083 static void set_multicast_list(struct net_device *ndev)
3084 {
3085 	struct fec_enet_private *fep = netdev_priv(ndev);
3086 	struct netdev_hw_addr *ha;
3087 	unsigned int crc, tmp;
3088 	unsigned char hash;
3089 	unsigned int hash_high = 0, hash_low = 0;
3090 
3091 	if (ndev->flags & IFF_PROMISC) {
3092 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3093 		tmp |= 0x8;
3094 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3095 		return;
3096 	}
3097 
3098 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3099 	tmp &= ~0x8;
3100 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3101 
3102 	if (ndev->flags & IFF_ALLMULTI) {
3103 		/* Catch all multicast addresses, so set the
3104 		 * filter to all 1's
3105 		 */
3106 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3107 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3108 
3109 		return;
3110 	}
3111 
3112 	/* Add the addresses in hash register */
3113 	netdev_for_each_mc_addr(ha, ndev) {
3114 		/* calculate crc32 value of mac address */
3115 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3116 
3117 		/* only upper 6 bits (FEC_HASH_BITS) are used
3118 		 * which point to specific bit in the hash registers
3119 		 */
3120 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3121 
3122 		if (hash > 31)
3123 			hash_high |= 1 << (hash - 32);
3124 		else
3125 			hash_low |= 1 << hash;
3126 	}
3127 
3128 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3129 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3130 }
3131 
3132 /* Set a MAC change in hardware. */
3133 static int
3134 fec_set_mac_address(struct net_device *ndev, void *p)
3135 {
3136 	struct fec_enet_private *fep = netdev_priv(ndev);
3137 	struct sockaddr *addr = p;
3138 
3139 	if (addr) {
3140 		if (!is_valid_ether_addr(addr->sa_data))
3141 			return -EADDRNOTAVAIL;
3142 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3143 	}
3144 
3145 	/* Add netif status check here to avoid system hang in below case:
3146 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3147 	 * After ethx down, fec all clocks are gated off and then register
3148 	 * access causes system hang.
3149 	 */
3150 	if (!netif_running(ndev))
3151 		return 0;
3152 
3153 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3154 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3155 		fep->hwp + FEC_ADDR_LOW);
3156 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3157 		fep->hwp + FEC_ADDR_HIGH);
3158 	return 0;
3159 }
3160 
3161 #ifdef CONFIG_NET_POLL_CONTROLLER
3162 /**
3163  * fec_poll_controller - FEC Poll controller function
3164  * @dev: The FEC network adapter
3165  *
3166  * Polled functionality used by netconsole and others in non interrupt mode
3167  *
3168  */
3169 static void fec_poll_controller(struct net_device *dev)
3170 {
3171 	int i;
3172 	struct fec_enet_private *fep = netdev_priv(dev);
3173 
3174 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3175 		if (fep->irq[i] > 0) {
3176 			disable_irq(fep->irq[i]);
3177 			fec_enet_interrupt(fep->irq[i], dev);
3178 			enable_irq(fep->irq[i]);
3179 		}
3180 	}
3181 }
3182 #endif
3183 
3184 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3185 	netdev_features_t features)
3186 {
3187 	struct fec_enet_private *fep = netdev_priv(netdev);
3188 	netdev_features_t changed = features ^ netdev->features;
3189 
3190 	netdev->features = features;
3191 
3192 	/* Receive checksum has been changed */
3193 	if (changed & NETIF_F_RXCSUM) {
3194 		if (features & NETIF_F_RXCSUM)
3195 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3196 		else
3197 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3198 	}
3199 }
3200 
3201 static int fec_set_features(struct net_device *netdev,
3202 	netdev_features_t features)
3203 {
3204 	struct fec_enet_private *fep = netdev_priv(netdev);
3205 	netdev_features_t changed = features ^ netdev->features;
3206 
3207 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3208 		napi_disable(&fep->napi);
3209 		netif_tx_lock_bh(netdev);
3210 		fec_stop(netdev);
3211 		fec_enet_set_netdev_features(netdev, features);
3212 		fec_restart(netdev);
3213 		netif_tx_wake_all_queues(netdev);
3214 		netif_tx_unlock_bh(netdev);
3215 		napi_enable(&fep->napi);
3216 	} else {
3217 		fec_enet_set_netdev_features(netdev, features);
3218 	}
3219 
3220 	return 0;
3221 }
3222 
3223 static const struct net_device_ops fec_netdev_ops = {
3224 	.ndo_open		= fec_enet_open,
3225 	.ndo_stop		= fec_enet_close,
3226 	.ndo_start_xmit		= fec_enet_start_xmit,
3227 	.ndo_set_rx_mode	= set_multicast_list,
3228 	.ndo_validate_addr	= eth_validate_addr,
3229 	.ndo_tx_timeout		= fec_timeout,
3230 	.ndo_set_mac_address	= fec_set_mac_address,
3231 	.ndo_do_ioctl		= fec_enet_ioctl,
3232 #ifdef CONFIG_NET_POLL_CONTROLLER
3233 	.ndo_poll_controller	= fec_poll_controller,
3234 #endif
3235 	.ndo_set_features	= fec_set_features,
3236 };
3237 
3238 static const unsigned short offset_des_active_rxq[] = {
3239 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3240 };
3241 
3242 static const unsigned short offset_des_active_txq[] = {
3243 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3244 };
3245 
3246  /*
3247   * XXX:  We need to clean up on failure exits here.
3248   *
3249   */
3250 static int fec_enet_init(struct net_device *ndev)
3251 {
3252 	struct fec_enet_private *fep = netdev_priv(ndev);
3253 	struct bufdesc *cbd_base;
3254 	dma_addr_t bd_dma;
3255 	int bd_size;
3256 	unsigned int i;
3257 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3258 			sizeof(struct bufdesc);
3259 	unsigned dsize_log2 = __fls(dsize);
3260 	int ret;
3261 
3262 	WARN_ON(dsize != (1 << dsize_log2));
3263 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3264 	fep->rx_align = 0xf;
3265 	fep->tx_align = 0xf;
3266 #else
3267 	fep->rx_align = 0x3;
3268 	fep->tx_align = 0x3;
3269 #endif
3270 
3271 	/* Check mask of the streaming and coherent API */
3272 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3273 	if (ret < 0) {
3274 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3275 		return ret;
3276 	}
3277 
3278 	fec_enet_alloc_queue(ndev);
3279 
3280 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3281 
3282 	/* Allocate memory for buffer descriptors. */
3283 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3284 				       GFP_KERNEL);
3285 	if (!cbd_base) {
3286 		return -ENOMEM;
3287 	}
3288 
3289 	/* Get the Ethernet address */
3290 	fec_get_mac(ndev);
3291 	/* make sure MAC we just acquired is programmed into the hw */
3292 	fec_set_mac_address(ndev, NULL);
3293 
3294 	/* Set receive and transmit descriptor base. */
3295 	for (i = 0; i < fep->num_rx_queues; i++) {
3296 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3297 		unsigned size = dsize * rxq->bd.ring_size;
3298 
3299 		rxq->bd.qid = i;
3300 		rxq->bd.base = cbd_base;
3301 		rxq->bd.cur = cbd_base;
3302 		rxq->bd.dma = bd_dma;
3303 		rxq->bd.dsize = dsize;
3304 		rxq->bd.dsize_log2 = dsize_log2;
3305 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3306 		bd_dma += size;
3307 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3308 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3309 	}
3310 
3311 	for (i = 0; i < fep->num_tx_queues; i++) {
3312 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3313 		unsigned size = dsize * txq->bd.ring_size;
3314 
3315 		txq->bd.qid = i;
3316 		txq->bd.base = cbd_base;
3317 		txq->bd.cur = cbd_base;
3318 		txq->bd.dma = bd_dma;
3319 		txq->bd.dsize = dsize;
3320 		txq->bd.dsize_log2 = dsize_log2;
3321 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3322 		bd_dma += size;
3323 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3324 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3325 	}
3326 
3327 
3328 	/* The FEC Ethernet specific entries in the device structure */
3329 	ndev->watchdog_timeo = TX_TIMEOUT;
3330 	ndev->netdev_ops = &fec_netdev_ops;
3331 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3332 
3333 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3334 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3335 
3336 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3337 		/* enable hw VLAN support */
3338 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3339 
3340 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3341 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3342 
3343 		/* enable hw accelerator */
3344 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3345 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3346 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3347 	}
3348 
3349 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3350 		fep->tx_align = 0;
3351 		fep->rx_align = 0x3f;
3352 	}
3353 
3354 	ndev->hw_features = ndev->features;
3355 
3356 	fec_restart(ndev);
3357 
3358 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3359 		fec_enet_clear_ethtool_stats(ndev);
3360 	else
3361 		fec_enet_update_ethtool_stats(ndev);
3362 
3363 	return 0;
3364 }
3365 
3366 #ifdef CONFIG_OF
3367 static int fec_reset_phy(struct platform_device *pdev)
3368 {
3369 	int err, phy_reset;
3370 	bool active_high = false;
3371 	int msec = 1, phy_post_delay = 0;
3372 	struct device_node *np = pdev->dev.of_node;
3373 
3374 	if (!np)
3375 		return 0;
3376 
3377 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3378 	/* A sane reset duration should not be longer than 1s */
3379 	if (!err && msec > 1000)
3380 		msec = 1;
3381 
3382 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3383 	if (phy_reset == -EPROBE_DEFER)
3384 		return phy_reset;
3385 	else if (!gpio_is_valid(phy_reset))
3386 		return 0;
3387 
3388 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3389 	/* valid reset duration should be less than 1s */
3390 	if (!err && phy_post_delay > 1000)
3391 		return -EINVAL;
3392 
3393 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3394 
3395 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3396 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3397 			"phy-reset");
3398 	if (err) {
3399 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3400 		return err;
3401 	}
3402 
3403 	if (msec > 20)
3404 		msleep(msec);
3405 	else
3406 		usleep_range(msec * 1000, msec * 1000 + 1000);
3407 
3408 	gpio_set_value_cansleep(phy_reset, !active_high);
3409 
3410 	if (!phy_post_delay)
3411 		return 0;
3412 
3413 	if (phy_post_delay > 20)
3414 		msleep(phy_post_delay);
3415 	else
3416 		usleep_range(phy_post_delay * 1000,
3417 			     phy_post_delay * 1000 + 1000);
3418 
3419 	return 0;
3420 }
3421 #else /* CONFIG_OF */
3422 static int fec_reset_phy(struct platform_device *pdev)
3423 {
3424 	/*
3425 	 * In case of platform probe, the reset has been done
3426 	 * by machine code.
3427 	 */
3428 	return 0;
3429 }
3430 #endif /* CONFIG_OF */
3431 
3432 static void
3433 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3434 {
3435 	struct device_node *np = pdev->dev.of_node;
3436 
3437 	*num_tx = *num_rx = 1;
3438 
3439 	if (!np || !of_device_is_available(np))
3440 		return;
3441 
3442 	/* parse the num of tx and rx queues */
3443 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3444 
3445 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3446 
3447 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3448 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3449 			 *num_tx);
3450 		*num_tx = 1;
3451 		return;
3452 	}
3453 
3454 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3455 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3456 			 *num_rx);
3457 		*num_rx = 1;
3458 		return;
3459 	}
3460 
3461 }
3462 
3463 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3464 {
3465 	int irq_cnt = platform_irq_count(pdev);
3466 
3467 	if (irq_cnt > FEC_IRQ_NUM)
3468 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3469 	else if (irq_cnt == 2)
3470 		irq_cnt = 1;	/* last for pps */
3471 	else if (irq_cnt <= 0)
3472 		irq_cnt = 1;	/* At least 1 irq is needed */
3473 	return irq_cnt;
3474 }
3475 
3476 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3477 				   struct device_node *np)
3478 {
3479 	struct device_node *gpr_np;
3480 	u32 out_val[3];
3481 	int ret = 0;
3482 
3483 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3484 	if (!gpr_np)
3485 		return 0;
3486 
3487 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3488 					 ARRAY_SIZE(out_val));
3489 	if (ret) {
3490 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3491 		return ret;
3492 	}
3493 
3494 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3495 	if (IS_ERR(fep->stop_gpr.gpr)) {
3496 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3497 		ret = PTR_ERR(fep->stop_gpr.gpr);
3498 		fep->stop_gpr.gpr = NULL;
3499 		goto out;
3500 	}
3501 
3502 	fep->stop_gpr.reg = out_val[1];
3503 	fep->stop_gpr.bit = out_val[2];
3504 
3505 out:
3506 	of_node_put(gpr_np);
3507 
3508 	return ret;
3509 }
3510 
3511 static int
3512 fec_probe(struct platform_device *pdev)
3513 {
3514 	struct fec_enet_private *fep;
3515 	struct fec_platform_data *pdata;
3516 	phy_interface_t interface;
3517 	struct net_device *ndev;
3518 	int i, irq, ret = 0;
3519 	const struct of_device_id *of_id;
3520 	static int dev_id;
3521 	struct device_node *np = pdev->dev.of_node, *phy_node;
3522 	int num_tx_qs;
3523 	int num_rx_qs;
3524 	char irq_name[8];
3525 	int irq_cnt;
3526 	struct fec_devinfo *dev_info;
3527 
3528 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3529 
3530 	/* Init network device */
3531 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3532 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3533 	if (!ndev)
3534 		return -ENOMEM;
3535 
3536 	SET_NETDEV_DEV(ndev, &pdev->dev);
3537 
3538 	/* setup board info structure */
3539 	fep = netdev_priv(ndev);
3540 
3541 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3542 	if (of_id)
3543 		pdev->id_entry = of_id->data;
3544 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3545 	if (dev_info)
3546 		fep->quirks = dev_info->quirks;
3547 
3548 	fep->netdev = ndev;
3549 	fep->num_rx_queues = num_rx_qs;
3550 	fep->num_tx_queues = num_tx_qs;
3551 
3552 #if !defined(CONFIG_M5272)
3553 	/* default enable pause frame auto negotiation */
3554 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3555 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3556 #endif
3557 
3558 	/* Select default pin state */
3559 	pinctrl_pm_select_default_state(&pdev->dev);
3560 
3561 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3562 	if (IS_ERR(fep->hwp)) {
3563 		ret = PTR_ERR(fep->hwp);
3564 		goto failed_ioremap;
3565 	}
3566 
3567 	fep->pdev = pdev;
3568 	fep->dev_id = dev_id++;
3569 
3570 	platform_set_drvdata(pdev, ndev);
3571 
3572 	if ((of_machine_is_compatible("fsl,imx6q") ||
3573 	     of_machine_is_compatible("fsl,imx6dl")) &&
3574 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3575 		fep->quirks |= FEC_QUIRK_ERR006687;
3576 
3577 	if (of_get_property(np, "fsl,magic-packet", NULL))
3578 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3579 
3580 	ret = fec_enet_init_stop_mode(fep, np);
3581 	if (ret)
3582 		goto failed_stop_mode;
3583 
3584 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3585 	if (!phy_node && of_phy_is_fixed_link(np)) {
3586 		ret = of_phy_register_fixed_link(np);
3587 		if (ret < 0) {
3588 			dev_err(&pdev->dev,
3589 				"broken fixed-link specification\n");
3590 			goto failed_phy;
3591 		}
3592 		phy_node = of_node_get(np);
3593 	}
3594 	fep->phy_node = phy_node;
3595 
3596 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3597 	if (ret) {
3598 		pdata = dev_get_platdata(&pdev->dev);
3599 		if (pdata)
3600 			fep->phy_interface = pdata->phy;
3601 		else
3602 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3603 	} else {
3604 		fep->phy_interface = interface;
3605 	}
3606 
3607 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3608 	if (IS_ERR(fep->clk_ipg)) {
3609 		ret = PTR_ERR(fep->clk_ipg);
3610 		goto failed_clk;
3611 	}
3612 
3613 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3614 	if (IS_ERR(fep->clk_ahb)) {
3615 		ret = PTR_ERR(fep->clk_ahb);
3616 		goto failed_clk;
3617 	}
3618 
3619 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3620 
3621 	/* enet_out is optional, depends on board */
3622 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3623 	if (IS_ERR(fep->clk_enet_out))
3624 		fep->clk_enet_out = NULL;
3625 
3626 	fep->ptp_clk_on = false;
3627 	mutex_init(&fep->ptp_clk_mutex);
3628 
3629 	/* clk_ref is optional, depends on board */
3630 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3631 	if (IS_ERR(fep->clk_ref))
3632 		fep->clk_ref = NULL;
3633 
3634 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3635 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3636 	if (IS_ERR(fep->clk_ptp)) {
3637 		fep->clk_ptp = NULL;
3638 		fep->bufdesc_ex = false;
3639 	}
3640 
3641 	ret = fec_enet_clk_enable(ndev, true);
3642 	if (ret)
3643 		goto failed_clk;
3644 
3645 	ret = clk_prepare_enable(fep->clk_ipg);
3646 	if (ret)
3647 		goto failed_clk_ipg;
3648 	ret = clk_prepare_enable(fep->clk_ahb);
3649 	if (ret)
3650 		goto failed_clk_ahb;
3651 
3652 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3653 	if (!IS_ERR(fep->reg_phy)) {
3654 		ret = regulator_enable(fep->reg_phy);
3655 		if (ret) {
3656 			dev_err(&pdev->dev,
3657 				"Failed to enable phy regulator: %d\n", ret);
3658 			goto failed_regulator;
3659 		}
3660 	} else {
3661 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3662 			ret = -EPROBE_DEFER;
3663 			goto failed_regulator;
3664 		}
3665 		fep->reg_phy = NULL;
3666 	}
3667 
3668 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3669 	pm_runtime_use_autosuspend(&pdev->dev);
3670 	pm_runtime_get_noresume(&pdev->dev);
3671 	pm_runtime_set_active(&pdev->dev);
3672 	pm_runtime_enable(&pdev->dev);
3673 
3674 	ret = fec_reset_phy(pdev);
3675 	if (ret)
3676 		goto failed_reset;
3677 
3678 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3679 	if (fep->bufdesc_ex)
3680 		fec_ptp_init(pdev, irq_cnt);
3681 
3682 	ret = fec_enet_init(ndev);
3683 	if (ret)
3684 		goto failed_init;
3685 
3686 	for (i = 0; i < irq_cnt; i++) {
3687 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3688 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3689 		if (irq < 0)
3690 			irq = platform_get_irq(pdev, i);
3691 		if (irq < 0) {
3692 			ret = irq;
3693 			goto failed_irq;
3694 		}
3695 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3696 				       0, pdev->name, ndev);
3697 		if (ret)
3698 			goto failed_irq;
3699 
3700 		fep->irq[i] = irq;
3701 	}
3702 
3703 	ret = fec_enet_mii_init(pdev);
3704 	if (ret)
3705 		goto failed_mii_init;
3706 
3707 	/* Carrier starts down, phylib will bring it up */
3708 	netif_carrier_off(ndev);
3709 	fec_enet_clk_enable(ndev, false);
3710 	pinctrl_pm_select_sleep_state(&pdev->dev);
3711 
3712 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3713 
3714 	ret = register_netdev(ndev);
3715 	if (ret)
3716 		goto failed_register;
3717 
3718 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3719 			   FEC_WOL_HAS_MAGIC_PACKET);
3720 
3721 	if (fep->bufdesc_ex && fep->ptp_clock)
3722 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3723 
3724 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3725 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3726 
3727 	pm_runtime_mark_last_busy(&pdev->dev);
3728 	pm_runtime_put_autosuspend(&pdev->dev);
3729 
3730 	return 0;
3731 
3732 failed_register:
3733 	fec_enet_mii_remove(fep);
3734 failed_mii_init:
3735 failed_irq:
3736 failed_init:
3737 	fec_ptp_stop(pdev);
3738 failed_reset:
3739 	pm_runtime_put_noidle(&pdev->dev);
3740 	pm_runtime_disable(&pdev->dev);
3741 	if (fep->reg_phy)
3742 		regulator_disable(fep->reg_phy);
3743 failed_regulator:
3744 	clk_disable_unprepare(fep->clk_ahb);
3745 failed_clk_ahb:
3746 	clk_disable_unprepare(fep->clk_ipg);
3747 failed_clk_ipg:
3748 	fec_enet_clk_enable(ndev, false);
3749 failed_clk:
3750 	if (of_phy_is_fixed_link(np))
3751 		of_phy_deregister_fixed_link(np);
3752 	of_node_put(phy_node);
3753 failed_stop_mode:
3754 failed_phy:
3755 	dev_id--;
3756 failed_ioremap:
3757 	free_netdev(ndev);
3758 
3759 	return ret;
3760 }
3761 
3762 static int
3763 fec_drv_remove(struct platform_device *pdev)
3764 {
3765 	struct net_device *ndev = platform_get_drvdata(pdev);
3766 	struct fec_enet_private *fep = netdev_priv(ndev);
3767 	struct device_node *np = pdev->dev.of_node;
3768 	int ret;
3769 
3770 	ret = pm_runtime_get_sync(&pdev->dev);
3771 	if (ret < 0)
3772 		return ret;
3773 
3774 	cancel_work_sync(&fep->tx_timeout_work);
3775 	fec_ptp_stop(pdev);
3776 	unregister_netdev(ndev);
3777 	fec_enet_mii_remove(fep);
3778 	if (fep->reg_phy)
3779 		regulator_disable(fep->reg_phy);
3780 
3781 	if (of_phy_is_fixed_link(np))
3782 		of_phy_deregister_fixed_link(np);
3783 	of_node_put(fep->phy_node);
3784 	free_netdev(ndev);
3785 
3786 	clk_disable_unprepare(fep->clk_ahb);
3787 	clk_disable_unprepare(fep->clk_ipg);
3788 	pm_runtime_put_noidle(&pdev->dev);
3789 	pm_runtime_disable(&pdev->dev);
3790 
3791 	return 0;
3792 }
3793 
3794 static int __maybe_unused fec_suspend(struct device *dev)
3795 {
3796 	struct net_device *ndev = dev_get_drvdata(dev);
3797 	struct fec_enet_private *fep = netdev_priv(ndev);
3798 
3799 	rtnl_lock();
3800 	if (netif_running(ndev)) {
3801 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3802 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3803 		phy_stop(ndev->phydev);
3804 		napi_disable(&fep->napi);
3805 		netif_tx_lock_bh(ndev);
3806 		netif_device_detach(ndev);
3807 		netif_tx_unlock_bh(ndev);
3808 		fec_stop(ndev);
3809 		fec_enet_clk_enable(ndev, false);
3810 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3811 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3812 	}
3813 	rtnl_unlock();
3814 
3815 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3816 		regulator_disable(fep->reg_phy);
3817 
3818 	/* SOC supply clock to phy, when clock is disabled, phy link down
3819 	 * SOC control phy regulator, when regulator is disabled, phy link down
3820 	 */
3821 	if (fep->clk_enet_out || fep->reg_phy)
3822 		fep->link = 0;
3823 
3824 	return 0;
3825 }
3826 
3827 static int __maybe_unused fec_resume(struct device *dev)
3828 {
3829 	struct net_device *ndev = dev_get_drvdata(dev);
3830 	struct fec_enet_private *fep = netdev_priv(ndev);
3831 	int ret;
3832 	int val;
3833 
3834 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3835 		ret = regulator_enable(fep->reg_phy);
3836 		if (ret)
3837 			return ret;
3838 	}
3839 
3840 	rtnl_lock();
3841 	if (netif_running(ndev)) {
3842 		ret = fec_enet_clk_enable(ndev, true);
3843 		if (ret) {
3844 			rtnl_unlock();
3845 			goto failed_clk;
3846 		}
3847 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3848 			fec_enet_stop_mode(fep, false);
3849 
3850 			val = readl(fep->hwp + FEC_ECNTRL);
3851 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3852 			writel(val, fep->hwp + FEC_ECNTRL);
3853 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3854 		} else {
3855 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3856 		}
3857 		fec_restart(ndev);
3858 		netif_tx_lock_bh(ndev);
3859 		netif_device_attach(ndev);
3860 		netif_tx_unlock_bh(ndev);
3861 		napi_enable(&fep->napi);
3862 		phy_start(ndev->phydev);
3863 	}
3864 	rtnl_unlock();
3865 
3866 	return 0;
3867 
3868 failed_clk:
3869 	if (fep->reg_phy)
3870 		regulator_disable(fep->reg_phy);
3871 	return ret;
3872 }
3873 
3874 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3875 {
3876 	struct net_device *ndev = dev_get_drvdata(dev);
3877 	struct fec_enet_private *fep = netdev_priv(ndev);
3878 
3879 	clk_disable_unprepare(fep->clk_ahb);
3880 	clk_disable_unprepare(fep->clk_ipg);
3881 
3882 	return 0;
3883 }
3884 
3885 static int __maybe_unused fec_runtime_resume(struct device *dev)
3886 {
3887 	struct net_device *ndev = dev_get_drvdata(dev);
3888 	struct fec_enet_private *fep = netdev_priv(ndev);
3889 	int ret;
3890 
3891 	ret = clk_prepare_enable(fep->clk_ahb);
3892 	if (ret)
3893 		return ret;
3894 	ret = clk_prepare_enable(fep->clk_ipg);
3895 	if (ret)
3896 		goto failed_clk_ipg;
3897 
3898 	return 0;
3899 
3900 failed_clk_ipg:
3901 	clk_disable_unprepare(fep->clk_ahb);
3902 	return ret;
3903 }
3904 
3905 static const struct dev_pm_ops fec_pm_ops = {
3906 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3907 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3908 };
3909 
3910 static struct platform_driver fec_driver = {
3911 	.driver	= {
3912 		.name	= DRIVER_NAME,
3913 		.pm	= &fec_pm_ops,
3914 		.of_match_table = fec_dt_ids,
3915 		.suppress_bind_attrs = true,
3916 	},
3917 	.id_table = fec_devtype,
3918 	.probe	= fec_probe,
3919 	.remove	= fec_drv_remove,
3920 };
3921 
3922 module_platform_driver(fec_driver);
3923 
3924 MODULE_ALIAS("platform:"DRIVER_NAME);
3925 MODULE_LICENSE("GPL");
3926