1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/tso.h> 42 #include <linux/tcp.h> 43 #include <linux/udp.h> 44 #include <linux/icmp.h> 45 #include <linux/spinlock.h> 46 #include <linux/workqueue.h> 47 #include <linux/bitops.h> 48 #include <linux/io.h> 49 #include <linux/irq.h> 50 #include <linux/clk.h> 51 #include <linux/crc32.h> 52 #include <linux/platform_device.h> 53 #include <linux/mdio.h> 54 #include <linux/phy.h> 55 #include <linux/fec.h> 56 #include <linux/of.h> 57 #include <linux/of_device.h> 58 #include <linux/of_gpio.h> 59 #include <linux/of_mdio.h> 60 #include <linux/of_net.h> 61 #include <linux/regulator/consumer.h> 62 #include <linux/if_vlan.h> 63 #include <linux/pinctrl/consumer.h> 64 #include <linux/prefetch.h> 65 #include <linux/mfd/syscon.h> 66 #include <linux/regmap.h> 67 #include <soc/imx/cpuidle.h> 68 69 #include <asm/cacheflush.h> 70 71 #include "fec.h" 72 73 static void set_multicast_list(struct net_device *ndev); 74 static void fec_enet_itr_coal_init(struct net_device *ndev); 75 76 #define DRIVER_NAME "fec" 77 78 /* Pause frame feild and FIFO threshold */ 79 #define FEC_ENET_FCE (1 << 5) 80 #define FEC_ENET_RSEM_V 0x84 81 #define FEC_ENET_RSFL_V 16 82 #define FEC_ENET_RAEM_V 0x8 83 #define FEC_ENET_RAFL_V 0x8 84 #define FEC_ENET_OPD_V 0xFFF0 85 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 86 87 struct fec_devinfo { 88 u32 quirks; 89 }; 90 91 static const struct fec_devinfo fec_imx25_info = { 92 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 93 FEC_QUIRK_HAS_FRREG, 94 }; 95 96 static const struct fec_devinfo fec_imx27_info = { 97 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 98 }; 99 100 static const struct fec_devinfo fec_imx28_info = { 101 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 102 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 103 FEC_QUIRK_HAS_FRREG, 104 }; 105 106 static const struct fec_devinfo fec_imx6q_info = { 107 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 108 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 109 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 110 FEC_QUIRK_HAS_RACC, 111 }; 112 113 static const struct fec_devinfo fec_mvf600_info = { 114 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 115 }; 116 117 static const struct fec_devinfo fec_imx6x_info = { 118 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 119 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 120 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 121 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 122 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE, 123 }; 124 125 static const struct fec_devinfo fec_imx6ul_info = { 126 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 127 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 128 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 129 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 130 FEC_QUIRK_HAS_COALESCE, 131 }; 132 133 static struct platform_device_id fec_devtype[] = { 134 { 135 /* keep it for coldfire */ 136 .name = DRIVER_NAME, 137 .driver_data = 0, 138 }, { 139 .name = "imx25-fec", 140 .driver_data = (kernel_ulong_t)&fec_imx25_info, 141 }, { 142 .name = "imx27-fec", 143 .driver_data = (kernel_ulong_t)&fec_imx27_info, 144 }, { 145 .name = "imx28-fec", 146 .driver_data = (kernel_ulong_t)&fec_imx28_info, 147 }, { 148 .name = "imx6q-fec", 149 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 150 }, { 151 .name = "mvf600-fec", 152 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 153 }, { 154 .name = "imx6sx-fec", 155 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 156 }, { 157 .name = "imx6ul-fec", 158 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 159 }, { 160 /* sentinel */ 161 } 162 }; 163 MODULE_DEVICE_TABLE(platform, fec_devtype); 164 165 enum imx_fec_type { 166 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 167 IMX27_FEC, /* runs on i.mx27/35/51 */ 168 IMX28_FEC, 169 IMX6Q_FEC, 170 MVF600_FEC, 171 IMX6SX_FEC, 172 IMX6UL_FEC, 173 }; 174 175 static const struct of_device_id fec_dt_ids[] = { 176 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 177 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 178 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 179 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 180 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 181 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 182 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 183 { /* sentinel */ } 184 }; 185 MODULE_DEVICE_TABLE(of, fec_dt_ids); 186 187 static unsigned char macaddr[ETH_ALEN]; 188 module_param_array(macaddr, byte, NULL, 0); 189 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 190 191 #if defined(CONFIG_M5272) 192 /* 193 * Some hardware gets it MAC address out of local flash memory. 194 * if this is non-zero then assume it is the address to get MAC from. 195 */ 196 #if defined(CONFIG_NETtel) 197 #define FEC_FLASHMAC 0xf0006006 198 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 199 #define FEC_FLASHMAC 0xf0006000 200 #elif defined(CONFIG_CANCam) 201 #define FEC_FLASHMAC 0xf0020000 202 #elif defined (CONFIG_M5272C3) 203 #define FEC_FLASHMAC (0xffe04000 + 4) 204 #elif defined(CONFIG_MOD5272) 205 #define FEC_FLASHMAC 0xffc0406b 206 #else 207 #define FEC_FLASHMAC 0 208 #endif 209 #endif /* CONFIG_M5272 */ 210 211 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 212 * 213 * 2048 byte skbufs are allocated. However, alignment requirements 214 * varies between FEC variants. Worst case is 64, so round down by 64. 215 */ 216 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 217 #define PKT_MINBUF_SIZE 64 218 219 /* FEC receive acceleration */ 220 #define FEC_RACC_IPDIS (1 << 1) 221 #define FEC_RACC_PRODIS (1 << 2) 222 #define FEC_RACC_SHIFT16 BIT(7) 223 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 224 225 /* MIB Control Register */ 226 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 227 228 /* 229 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 230 * size bits. Other FEC hardware does not, so we need to take that into 231 * account when setting it. 232 */ 233 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 234 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 235 defined(CONFIG_ARM64) 236 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 237 #else 238 #define OPT_FRAME_SIZE 0 239 #endif 240 241 /* FEC MII MMFR bits definition */ 242 #define FEC_MMFR_ST (1 << 30) 243 #define FEC_MMFR_ST_C45 (0) 244 #define FEC_MMFR_OP_READ (2 << 28) 245 #define FEC_MMFR_OP_READ_C45 (3 << 28) 246 #define FEC_MMFR_OP_WRITE (1 << 28) 247 #define FEC_MMFR_OP_ADDR_WRITE (0) 248 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 249 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 250 #define FEC_MMFR_TA (2 << 16) 251 #define FEC_MMFR_DATA(v) (v & 0xffff) 252 /* FEC ECR bits definition */ 253 #define FEC_ECR_MAGICEN (1 << 2) 254 #define FEC_ECR_SLEEP (1 << 3) 255 256 #define FEC_MII_TIMEOUT 30000 /* us */ 257 258 /* Transmitter timeout */ 259 #define TX_TIMEOUT (2 * HZ) 260 261 #define FEC_PAUSE_FLAG_AUTONEG 0x1 262 #define FEC_PAUSE_FLAG_ENABLE 0x2 263 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 264 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 265 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 266 267 #define COPYBREAK_DEFAULT 256 268 269 /* Max number of allowed TCP segments for software TSO */ 270 #define FEC_MAX_TSO_SEGS 100 271 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 272 273 #define IS_TSO_HEADER(txq, addr) \ 274 ((addr >= txq->tso_hdrs_dma) && \ 275 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 276 277 static int mii_cnt; 278 279 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 280 struct bufdesc_prop *bd) 281 { 282 return (bdp >= bd->last) ? bd->base 283 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 284 } 285 286 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 287 struct bufdesc_prop *bd) 288 { 289 return (bdp <= bd->base) ? bd->last 290 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 291 } 292 293 static int fec_enet_get_bd_index(struct bufdesc *bdp, 294 struct bufdesc_prop *bd) 295 { 296 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 297 } 298 299 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 300 { 301 int entries; 302 303 entries = (((const char *)txq->dirty_tx - 304 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 305 306 return entries >= 0 ? entries : entries + txq->bd.ring_size; 307 } 308 309 static void swap_buffer(void *bufaddr, int len) 310 { 311 int i; 312 unsigned int *buf = bufaddr; 313 314 for (i = 0; i < len; i += 4, buf++) 315 swab32s(buf); 316 } 317 318 static void swap_buffer2(void *dst_buf, void *src_buf, int len) 319 { 320 int i; 321 unsigned int *src = src_buf; 322 unsigned int *dst = dst_buf; 323 324 for (i = 0; i < len; i += 4, src++, dst++) 325 *dst = swab32p(src); 326 } 327 328 static void fec_dump(struct net_device *ndev) 329 { 330 struct fec_enet_private *fep = netdev_priv(ndev); 331 struct bufdesc *bdp; 332 struct fec_enet_priv_tx_q *txq; 333 int index = 0; 334 335 netdev_info(ndev, "TX ring dump\n"); 336 pr_info("Nr SC addr len SKB\n"); 337 338 txq = fep->tx_queue[0]; 339 bdp = txq->bd.base; 340 341 do { 342 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 343 index, 344 bdp == txq->bd.cur ? 'S' : ' ', 345 bdp == txq->dirty_tx ? 'H' : ' ', 346 fec16_to_cpu(bdp->cbd_sc), 347 fec32_to_cpu(bdp->cbd_bufaddr), 348 fec16_to_cpu(bdp->cbd_datlen), 349 txq->tx_skbuff[index]); 350 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 351 index++; 352 } while (bdp != txq->bd.base); 353 } 354 355 static inline bool is_ipv4_pkt(struct sk_buff *skb) 356 { 357 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 358 } 359 360 static int 361 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 362 { 363 /* Only run for packets requiring a checksum. */ 364 if (skb->ip_summed != CHECKSUM_PARTIAL) 365 return 0; 366 367 if (unlikely(skb_cow_head(skb, 0))) 368 return -1; 369 370 if (is_ipv4_pkt(skb)) 371 ip_hdr(skb)->check = 0; 372 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 373 374 return 0; 375 } 376 377 static struct bufdesc * 378 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 379 struct sk_buff *skb, 380 struct net_device *ndev) 381 { 382 struct fec_enet_private *fep = netdev_priv(ndev); 383 struct bufdesc *bdp = txq->bd.cur; 384 struct bufdesc_ex *ebdp; 385 int nr_frags = skb_shinfo(skb)->nr_frags; 386 int frag, frag_len; 387 unsigned short status; 388 unsigned int estatus = 0; 389 skb_frag_t *this_frag; 390 unsigned int index; 391 void *bufaddr; 392 dma_addr_t addr; 393 int i; 394 395 for (frag = 0; frag < nr_frags; frag++) { 396 this_frag = &skb_shinfo(skb)->frags[frag]; 397 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 398 ebdp = (struct bufdesc_ex *)bdp; 399 400 status = fec16_to_cpu(bdp->cbd_sc); 401 status &= ~BD_ENET_TX_STATS; 402 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 403 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 404 405 /* Handle the last BD specially */ 406 if (frag == nr_frags - 1) { 407 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 408 if (fep->bufdesc_ex) { 409 estatus |= BD_ENET_TX_INT; 410 if (unlikely(skb_shinfo(skb)->tx_flags & 411 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 412 estatus |= BD_ENET_TX_TS; 413 } 414 } 415 416 if (fep->bufdesc_ex) { 417 if (fep->quirks & FEC_QUIRK_HAS_AVB) 418 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 419 if (skb->ip_summed == CHECKSUM_PARTIAL) 420 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 421 ebdp->cbd_bdu = 0; 422 ebdp->cbd_esc = cpu_to_fec32(estatus); 423 } 424 425 bufaddr = skb_frag_address(this_frag); 426 427 index = fec_enet_get_bd_index(bdp, &txq->bd); 428 if (((unsigned long) bufaddr) & fep->tx_align || 429 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 430 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 431 bufaddr = txq->tx_bounce[index]; 432 433 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 434 swap_buffer(bufaddr, frag_len); 435 } 436 437 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 438 DMA_TO_DEVICE); 439 if (dma_mapping_error(&fep->pdev->dev, addr)) { 440 if (net_ratelimit()) 441 netdev_err(ndev, "Tx DMA memory map failed\n"); 442 goto dma_mapping_error; 443 } 444 445 bdp->cbd_bufaddr = cpu_to_fec32(addr); 446 bdp->cbd_datlen = cpu_to_fec16(frag_len); 447 /* Make sure the updates to rest of the descriptor are 448 * performed before transferring ownership. 449 */ 450 wmb(); 451 bdp->cbd_sc = cpu_to_fec16(status); 452 } 453 454 return bdp; 455 dma_mapping_error: 456 bdp = txq->bd.cur; 457 for (i = 0; i < frag; i++) { 458 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 459 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 460 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 461 } 462 return ERR_PTR(-ENOMEM); 463 } 464 465 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 466 struct sk_buff *skb, struct net_device *ndev) 467 { 468 struct fec_enet_private *fep = netdev_priv(ndev); 469 int nr_frags = skb_shinfo(skb)->nr_frags; 470 struct bufdesc *bdp, *last_bdp; 471 void *bufaddr; 472 dma_addr_t addr; 473 unsigned short status; 474 unsigned short buflen; 475 unsigned int estatus = 0; 476 unsigned int index; 477 int entries_free; 478 479 entries_free = fec_enet_get_free_txdesc_num(txq); 480 if (entries_free < MAX_SKB_FRAGS + 1) { 481 dev_kfree_skb_any(skb); 482 if (net_ratelimit()) 483 netdev_err(ndev, "NOT enough BD for SG!\n"); 484 return NETDEV_TX_OK; 485 } 486 487 /* Protocol checksum off-load for TCP and UDP. */ 488 if (fec_enet_clear_csum(skb, ndev)) { 489 dev_kfree_skb_any(skb); 490 return NETDEV_TX_OK; 491 } 492 493 /* Fill in a Tx ring entry */ 494 bdp = txq->bd.cur; 495 last_bdp = bdp; 496 status = fec16_to_cpu(bdp->cbd_sc); 497 status &= ~BD_ENET_TX_STATS; 498 499 /* Set buffer length and buffer pointer */ 500 bufaddr = skb->data; 501 buflen = skb_headlen(skb); 502 503 index = fec_enet_get_bd_index(bdp, &txq->bd); 504 if (((unsigned long) bufaddr) & fep->tx_align || 505 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 506 memcpy(txq->tx_bounce[index], skb->data, buflen); 507 bufaddr = txq->tx_bounce[index]; 508 509 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 510 swap_buffer(bufaddr, buflen); 511 } 512 513 /* Push the data cache so the CPM does not get stale memory data. */ 514 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 515 if (dma_mapping_error(&fep->pdev->dev, addr)) { 516 dev_kfree_skb_any(skb); 517 if (net_ratelimit()) 518 netdev_err(ndev, "Tx DMA memory map failed\n"); 519 return NETDEV_TX_OK; 520 } 521 522 if (nr_frags) { 523 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 524 if (IS_ERR(last_bdp)) { 525 dma_unmap_single(&fep->pdev->dev, addr, 526 buflen, DMA_TO_DEVICE); 527 dev_kfree_skb_any(skb); 528 return NETDEV_TX_OK; 529 } 530 } else { 531 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 532 if (fep->bufdesc_ex) { 533 estatus = BD_ENET_TX_INT; 534 if (unlikely(skb_shinfo(skb)->tx_flags & 535 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 536 estatus |= BD_ENET_TX_TS; 537 } 538 } 539 bdp->cbd_bufaddr = cpu_to_fec32(addr); 540 bdp->cbd_datlen = cpu_to_fec16(buflen); 541 542 if (fep->bufdesc_ex) { 543 544 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 545 546 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 547 fep->hwts_tx_en)) 548 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 549 550 if (fep->quirks & FEC_QUIRK_HAS_AVB) 551 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 552 553 if (skb->ip_summed == CHECKSUM_PARTIAL) 554 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 555 556 ebdp->cbd_bdu = 0; 557 ebdp->cbd_esc = cpu_to_fec32(estatus); 558 } 559 560 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 561 /* Save skb pointer */ 562 txq->tx_skbuff[index] = skb; 563 564 /* Make sure the updates to rest of the descriptor are performed before 565 * transferring ownership. 566 */ 567 wmb(); 568 569 /* Send it on its way. Tell FEC it's ready, interrupt when done, 570 * it's the last BD of the frame, and to put the CRC on the end. 571 */ 572 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 573 bdp->cbd_sc = cpu_to_fec16(status); 574 575 /* If this was the last BD in the ring, start at the beginning again. */ 576 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 577 578 skb_tx_timestamp(skb); 579 580 /* Make sure the update to bdp and tx_skbuff are performed before 581 * txq->bd.cur. 582 */ 583 wmb(); 584 txq->bd.cur = bdp; 585 586 /* Trigger transmission start */ 587 writel(0, txq->bd.reg_desc_active); 588 589 return 0; 590 } 591 592 static int 593 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 594 struct net_device *ndev, 595 struct bufdesc *bdp, int index, char *data, 596 int size, bool last_tcp, bool is_last) 597 { 598 struct fec_enet_private *fep = netdev_priv(ndev); 599 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 600 unsigned short status; 601 unsigned int estatus = 0; 602 dma_addr_t addr; 603 604 status = fec16_to_cpu(bdp->cbd_sc); 605 status &= ~BD_ENET_TX_STATS; 606 607 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 608 609 if (((unsigned long) data) & fep->tx_align || 610 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 611 memcpy(txq->tx_bounce[index], data, size); 612 data = txq->tx_bounce[index]; 613 614 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 615 swap_buffer(data, size); 616 } 617 618 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 619 if (dma_mapping_error(&fep->pdev->dev, addr)) { 620 dev_kfree_skb_any(skb); 621 if (net_ratelimit()) 622 netdev_err(ndev, "Tx DMA memory map failed\n"); 623 return NETDEV_TX_BUSY; 624 } 625 626 bdp->cbd_datlen = cpu_to_fec16(size); 627 bdp->cbd_bufaddr = cpu_to_fec32(addr); 628 629 if (fep->bufdesc_ex) { 630 if (fep->quirks & FEC_QUIRK_HAS_AVB) 631 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 632 if (skb->ip_summed == CHECKSUM_PARTIAL) 633 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 634 ebdp->cbd_bdu = 0; 635 ebdp->cbd_esc = cpu_to_fec32(estatus); 636 } 637 638 /* Handle the last BD specially */ 639 if (last_tcp) 640 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 641 if (is_last) { 642 status |= BD_ENET_TX_INTR; 643 if (fep->bufdesc_ex) 644 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 645 } 646 647 bdp->cbd_sc = cpu_to_fec16(status); 648 649 return 0; 650 } 651 652 static int 653 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 654 struct sk_buff *skb, struct net_device *ndev, 655 struct bufdesc *bdp, int index) 656 { 657 struct fec_enet_private *fep = netdev_priv(ndev); 658 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 659 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 660 void *bufaddr; 661 unsigned long dmabuf; 662 unsigned short status; 663 unsigned int estatus = 0; 664 665 status = fec16_to_cpu(bdp->cbd_sc); 666 status &= ~BD_ENET_TX_STATS; 667 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 668 669 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 670 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 671 if (((unsigned long)bufaddr) & fep->tx_align || 672 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 673 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 674 bufaddr = txq->tx_bounce[index]; 675 676 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 677 swap_buffer(bufaddr, hdr_len); 678 679 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 680 hdr_len, DMA_TO_DEVICE); 681 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 682 dev_kfree_skb_any(skb); 683 if (net_ratelimit()) 684 netdev_err(ndev, "Tx DMA memory map failed\n"); 685 return NETDEV_TX_BUSY; 686 } 687 } 688 689 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 690 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 691 692 if (fep->bufdesc_ex) { 693 if (fep->quirks & FEC_QUIRK_HAS_AVB) 694 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 695 if (skb->ip_summed == CHECKSUM_PARTIAL) 696 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 697 ebdp->cbd_bdu = 0; 698 ebdp->cbd_esc = cpu_to_fec32(estatus); 699 } 700 701 bdp->cbd_sc = cpu_to_fec16(status); 702 703 return 0; 704 } 705 706 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 707 struct sk_buff *skb, 708 struct net_device *ndev) 709 { 710 struct fec_enet_private *fep = netdev_priv(ndev); 711 int hdr_len, total_len, data_left; 712 struct bufdesc *bdp = txq->bd.cur; 713 struct tso_t tso; 714 unsigned int index = 0; 715 int ret; 716 717 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 718 dev_kfree_skb_any(skb); 719 if (net_ratelimit()) 720 netdev_err(ndev, "NOT enough BD for TSO!\n"); 721 return NETDEV_TX_OK; 722 } 723 724 /* Protocol checksum off-load for TCP and UDP. */ 725 if (fec_enet_clear_csum(skb, ndev)) { 726 dev_kfree_skb_any(skb); 727 return NETDEV_TX_OK; 728 } 729 730 /* Initialize the TSO handler, and prepare the first payload */ 731 hdr_len = tso_start(skb, &tso); 732 733 total_len = skb->len - hdr_len; 734 while (total_len > 0) { 735 char *hdr; 736 737 index = fec_enet_get_bd_index(bdp, &txq->bd); 738 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 739 total_len -= data_left; 740 741 /* prepare packet headers: MAC + IP + TCP */ 742 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 743 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 744 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 745 if (ret) 746 goto err_release; 747 748 while (data_left > 0) { 749 int size; 750 751 size = min_t(int, tso.size, data_left); 752 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 753 index = fec_enet_get_bd_index(bdp, &txq->bd); 754 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 755 bdp, index, 756 tso.data, size, 757 size == data_left, 758 total_len == 0); 759 if (ret) 760 goto err_release; 761 762 data_left -= size; 763 tso_build_data(skb, &tso, size); 764 } 765 766 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 767 } 768 769 /* Save skb pointer */ 770 txq->tx_skbuff[index] = skb; 771 772 skb_tx_timestamp(skb); 773 txq->bd.cur = bdp; 774 775 /* Trigger transmission start */ 776 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 777 !readl(txq->bd.reg_desc_active) || 778 !readl(txq->bd.reg_desc_active) || 779 !readl(txq->bd.reg_desc_active) || 780 !readl(txq->bd.reg_desc_active)) 781 writel(0, txq->bd.reg_desc_active); 782 783 return 0; 784 785 err_release: 786 /* TODO: Release all used data descriptors for TSO */ 787 return ret; 788 } 789 790 static netdev_tx_t 791 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 792 { 793 struct fec_enet_private *fep = netdev_priv(ndev); 794 int entries_free; 795 unsigned short queue; 796 struct fec_enet_priv_tx_q *txq; 797 struct netdev_queue *nq; 798 int ret; 799 800 queue = skb_get_queue_mapping(skb); 801 txq = fep->tx_queue[queue]; 802 nq = netdev_get_tx_queue(ndev, queue); 803 804 if (skb_is_gso(skb)) 805 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 806 else 807 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 808 if (ret) 809 return ret; 810 811 entries_free = fec_enet_get_free_txdesc_num(txq); 812 if (entries_free <= txq->tx_stop_threshold) 813 netif_tx_stop_queue(nq); 814 815 return NETDEV_TX_OK; 816 } 817 818 /* Init RX & TX buffer descriptors 819 */ 820 static void fec_enet_bd_init(struct net_device *dev) 821 { 822 struct fec_enet_private *fep = netdev_priv(dev); 823 struct fec_enet_priv_tx_q *txq; 824 struct fec_enet_priv_rx_q *rxq; 825 struct bufdesc *bdp; 826 unsigned int i; 827 unsigned int q; 828 829 for (q = 0; q < fep->num_rx_queues; q++) { 830 /* Initialize the receive buffer descriptors. */ 831 rxq = fep->rx_queue[q]; 832 bdp = rxq->bd.base; 833 834 for (i = 0; i < rxq->bd.ring_size; i++) { 835 836 /* Initialize the BD for every fragment in the page. */ 837 if (bdp->cbd_bufaddr) 838 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 839 else 840 bdp->cbd_sc = cpu_to_fec16(0); 841 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 842 } 843 844 /* Set the last buffer to wrap */ 845 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 846 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 847 848 rxq->bd.cur = rxq->bd.base; 849 } 850 851 for (q = 0; q < fep->num_tx_queues; q++) { 852 /* ...and the same for transmit */ 853 txq = fep->tx_queue[q]; 854 bdp = txq->bd.base; 855 txq->bd.cur = bdp; 856 857 for (i = 0; i < txq->bd.ring_size; i++) { 858 /* Initialize the BD for every fragment in the page. */ 859 bdp->cbd_sc = cpu_to_fec16(0); 860 if (bdp->cbd_bufaddr && 861 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 862 dma_unmap_single(&fep->pdev->dev, 863 fec32_to_cpu(bdp->cbd_bufaddr), 864 fec16_to_cpu(bdp->cbd_datlen), 865 DMA_TO_DEVICE); 866 if (txq->tx_skbuff[i]) { 867 dev_kfree_skb_any(txq->tx_skbuff[i]); 868 txq->tx_skbuff[i] = NULL; 869 } 870 bdp->cbd_bufaddr = cpu_to_fec32(0); 871 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 872 } 873 874 /* Set the last buffer to wrap */ 875 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 876 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 877 txq->dirty_tx = bdp; 878 } 879 } 880 881 static void fec_enet_active_rxring(struct net_device *ndev) 882 { 883 struct fec_enet_private *fep = netdev_priv(ndev); 884 int i; 885 886 for (i = 0; i < fep->num_rx_queues; i++) 887 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 888 } 889 890 static void fec_enet_enable_ring(struct net_device *ndev) 891 { 892 struct fec_enet_private *fep = netdev_priv(ndev); 893 struct fec_enet_priv_tx_q *txq; 894 struct fec_enet_priv_rx_q *rxq; 895 int i; 896 897 for (i = 0; i < fep->num_rx_queues; i++) { 898 rxq = fep->rx_queue[i]; 899 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 900 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 901 902 /* enable DMA1/2 */ 903 if (i) 904 writel(RCMR_MATCHEN | RCMR_CMP(i), 905 fep->hwp + FEC_RCMR(i)); 906 } 907 908 for (i = 0; i < fep->num_tx_queues; i++) { 909 txq = fep->tx_queue[i]; 910 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 911 912 /* enable DMA1/2 */ 913 if (i) 914 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 915 fep->hwp + FEC_DMA_CFG(i)); 916 } 917 } 918 919 static void fec_enet_reset_skb(struct net_device *ndev) 920 { 921 struct fec_enet_private *fep = netdev_priv(ndev); 922 struct fec_enet_priv_tx_q *txq; 923 int i, j; 924 925 for (i = 0; i < fep->num_tx_queues; i++) { 926 txq = fep->tx_queue[i]; 927 928 for (j = 0; j < txq->bd.ring_size; j++) { 929 if (txq->tx_skbuff[j]) { 930 dev_kfree_skb_any(txq->tx_skbuff[j]); 931 txq->tx_skbuff[j] = NULL; 932 } 933 } 934 } 935 } 936 937 /* 938 * This function is called to start or restart the FEC during a link 939 * change, transmit timeout, or to reconfigure the FEC. The network 940 * packet processing for this device must be stopped before this call. 941 */ 942 static void 943 fec_restart(struct net_device *ndev) 944 { 945 struct fec_enet_private *fep = netdev_priv(ndev); 946 u32 val; 947 u32 temp_mac[2]; 948 u32 rcntl = OPT_FRAME_SIZE | 0x04; 949 u32 ecntl = 0x2; /* ETHEREN */ 950 951 /* Whack a reset. We should wait for this. 952 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 953 * instead of reset MAC itself. 954 */ 955 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 956 writel(0, fep->hwp + FEC_ECNTRL); 957 } else { 958 writel(1, fep->hwp + FEC_ECNTRL); 959 udelay(10); 960 } 961 962 /* 963 * enet-mac reset will reset mac address registers too, 964 * so need to reconfigure it. 965 */ 966 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 967 writel((__force u32)cpu_to_be32(temp_mac[0]), 968 fep->hwp + FEC_ADDR_LOW); 969 writel((__force u32)cpu_to_be32(temp_mac[1]), 970 fep->hwp + FEC_ADDR_HIGH); 971 972 /* Clear any outstanding interrupt, except MDIO. */ 973 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 974 975 fec_enet_bd_init(ndev); 976 977 fec_enet_enable_ring(ndev); 978 979 /* Reset tx SKB buffers. */ 980 fec_enet_reset_skb(ndev); 981 982 /* Enable MII mode */ 983 if (fep->full_duplex == DUPLEX_FULL) { 984 /* FD enable */ 985 writel(0x04, fep->hwp + FEC_X_CNTRL); 986 } else { 987 /* No Rcv on Xmit */ 988 rcntl |= 0x02; 989 writel(0x0, fep->hwp + FEC_X_CNTRL); 990 } 991 992 /* Set MII speed */ 993 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 994 995 #if !defined(CONFIG_M5272) 996 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 997 val = readl(fep->hwp + FEC_RACC); 998 /* align IP header */ 999 val |= FEC_RACC_SHIFT16; 1000 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1001 /* set RX checksum */ 1002 val |= FEC_RACC_OPTIONS; 1003 else 1004 val &= ~FEC_RACC_OPTIONS; 1005 writel(val, fep->hwp + FEC_RACC); 1006 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1007 } 1008 #endif 1009 1010 /* 1011 * The phy interface and speed need to get configured 1012 * differently on enet-mac. 1013 */ 1014 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1015 /* Enable flow control and length check */ 1016 rcntl |= 0x40000000 | 0x00000020; 1017 1018 /* RGMII, RMII or MII */ 1019 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1020 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1021 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1022 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1023 rcntl |= (1 << 6); 1024 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1025 rcntl |= (1 << 8); 1026 else 1027 rcntl &= ~(1 << 8); 1028 1029 /* 1G, 100M or 10M */ 1030 if (ndev->phydev) { 1031 if (ndev->phydev->speed == SPEED_1000) 1032 ecntl |= (1 << 5); 1033 else if (ndev->phydev->speed == SPEED_100) 1034 rcntl &= ~(1 << 9); 1035 else 1036 rcntl |= (1 << 9); 1037 } 1038 } else { 1039 #ifdef FEC_MIIGSK_ENR 1040 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1041 u32 cfgr; 1042 /* disable the gasket and wait */ 1043 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1044 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1045 udelay(1); 1046 1047 /* 1048 * configure the gasket: 1049 * RMII, 50 MHz, no loopback, no echo 1050 * MII, 25 MHz, no loopback, no echo 1051 */ 1052 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1053 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1054 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1055 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1056 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1057 1058 /* re-enable the gasket */ 1059 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1060 } 1061 #endif 1062 } 1063 1064 #if !defined(CONFIG_M5272) 1065 /* enable pause frame*/ 1066 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1067 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1068 ndev->phydev && ndev->phydev->pause)) { 1069 rcntl |= FEC_ENET_FCE; 1070 1071 /* set FIFO threshold parameter to reduce overrun */ 1072 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1073 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1074 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1075 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1076 1077 /* OPD */ 1078 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1079 } else { 1080 rcntl &= ~FEC_ENET_FCE; 1081 } 1082 #endif /* !defined(CONFIG_M5272) */ 1083 1084 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1085 1086 /* Setup multicast filter. */ 1087 set_multicast_list(ndev); 1088 #ifndef CONFIG_M5272 1089 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1090 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1091 #endif 1092 1093 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1094 /* enable ENET endian swap */ 1095 ecntl |= (1 << 8); 1096 /* enable ENET store and forward mode */ 1097 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1098 } 1099 1100 if (fep->bufdesc_ex) 1101 ecntl |= (1 << 4); 1102 1103 #ifndef CONFIG_M5272 1104 /* Enable the MIB statistic event counters */ 1105 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1106 #endif 1107 1108 /* And last, enable the transmit and receive processing */ 1109 writel(ecntl, fep->hwp + FEC_ECNTRL); 1110 fec_enet_active_rxring(ndev); 1111 1112 if (fep->bufdesc_ex) 1113 fec_ptp_start_cyclecounter(ndev); 1114 1115 /* Enable interrupts we wish to service */ 1116 if (fep->link) 1117 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1118 else 1119 writel(0, fep->hwp + FEC_IMASK); 1120 1121 /* Init the interrupt coalescing */ 1122 fec_enet_itr_coal_init(ndev); 1123 1124 } 1125 1126 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1127 { 1128 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1129 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1130 1131 if (stop_gpr->gpr) { 1132 if (enabled) 1133 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1134 BIT(stop_gpr->bit), 1135 BIT(stop_gpr->bit)); 1136 else 1137 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1138 BIT(stop_gpr->bit), 0); 1139 } else if (pdata && pdata->sleep_mode_enable) { 1140 pdata->sleep_mode_enable(enabled); 1141 } 1142 } 1143 1144 static void 1145 fec_stop(struct net_device *ndev) 1146 { 1147 struct fec_enet_private *fep = netdev_priv(ndev); 1148 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1149 u32 val; 1150 1151 /* We cannot expect a graceful transmit stop without link !!! */ 1152 if (fep->link) { 1153 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1154 udelay(10); 1155 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1156 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1157 } 1158 1159 /* Whack a reset. We should wait for this. 1160 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1161 * instead of reset MAC itself. 1162 */ 1163 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1164 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 1165 writel(0, fep->hwp + FEC_ECNTRL); 1166 } else { 1167 writel(1, fep->hwp + FEC_ECNTRL); 1168 udelay(10); 1169 } 1170 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1171 } else { 1172 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1173 val = readl(fep->hwp + FEC_ECNTRL); 1174 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1175 writel(val, fep->hwp + FEC_ECNTRL); 1176 fec_enet_stop_mode(fep, true); 1177 } 1178 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1179 1180 /* We have to keep ENET enabled to have MII interrupt stay working */ 1181 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1182 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1183 writel(2, fep->hwp + FEC_ECNTRL); 1184 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1185 } 1186 } 1187 1188 1189 static void 1190 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1191 { 1192 struct fec_enet_private *fep = netdev_priv(ndev); 1193 1194 fec_dump(ndev); 1195 1196 ndev->stats.tx_errors++; 1197 1198 schedule_work(&fep->tx_timeout_work); 1199 } 1200 1201 static void fec_enet_timeout_work(struct work_struct *work) 1202 { 1203 struct fec_enet_private *fep = 1204 container_of(work, struct fec_enet_private, tx_timeout_work); 1205 struct net_device *ndev = fep->netdev; 1206 1207 rtnl_lock(); 1208 if (netif_device_present(ndev) || netif_running(ndev)) { 1209 napi_disable(&fep->napi); 1210 netif_tx_lock_bh(ndev); 1211 fec_restart(ndev); 1212 netif_tx_wake_all_queues(ndev); 1213 netif_tx_unlock_bh(ndev); 1214 napi_enable(&fep->napi); 1215 } 1216 rtnl_unlock(); 1217 } 1218 1219 static void 1220 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1221 struct skb_shared_hwtstamps *hwtstamps) 1222 { 1223 unsigned long flags; 1224 u64 ns; 1225 1226 spin_lock_irqsave(&fep->tmreg_lock, flags); 1227 ns = timecounter_cyc2time(&fep->tc, ts); 1228 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1229 1230 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1231 hwtstamps->hwtstamp = ns_to_ktime(ns); 1232 } 1233 1234 static void 1235 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1236 { 1237 struct fec_enet_private *fep; 1238 struct bufdesc *bdp; 1239 unsigned short status; 1240 struct sk_buff *skb; 1241 struct fec_enet_priv_tx_q *txq; 1242 struct netdev_queue *nq; 1243 int index = 0; 1244 int entries_free; 1245 1246 fep = netdev_priv(ndev); 1247 1248 txq = fep->tx_queue[queue_id]; 1249 /* get next bdp of dirty_tx */ 1250 nq = netdev_get_tx_queue(ndev, queue_id); 1251 bdp = txq->dirty_tx; 1252 1253 /* get next bdp of dirty_tx */ 1254 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1255 1256 while (bdp != READ_ONCE(txq->bd.cur)) { 1257 /* Order the load of bd.cur and cbd_sc */ 1258 rmb(); 1259 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1260 if (status & BD_ENET_TX_READY) 1261 break; 1262 1263 index = fec_enet_get_bd_index(bdp, &txq->bd); 1264 1265 skb = txq->tx_skbuff[index]; 1266 txq->tx_skbuff[index] = NULL; 1267 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1268 dma_unmap_single(&fep->pdev->dev, 1269 fec32_to_cpu(bdp->cbd_bufaddr), 1270 fec16_to_cpu(bdp->cbd_datlen), 1271 DMA_TO_DEVICE); 1272 bdp->cbd_bufaddr = cpu_to_fec32(0); 1273 if (!skb) 1274 goto skb_done; 1275 1276 /* Check for errors. */ 1277 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1278 BD_ENET_TX_RL | BD_ENET_TX_UN | 1279 BD_ENET_TX_CSL)) { 1280 ndev->stats.tx_errors++; 1281 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1282 ndev->stats.tx_heartbeat_errors++; 1283 if (status & BD_ENET_TX_LC) /* Late collision */ 1284 ndev->stats.tx_window_errors++; 1285 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1286 ndev->stats.tx_aborted_errors++; 1287 if (status & BD_ENET_TX_UN) /* Underrun */ 1288 ndev->stats.tx_fifo_errors++; 1289 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1290 ndev->stats.tx_carrier_errors++; 1291 } else { 1292 ndev->stats.tx_packets++; 1293 ndev->stats.tx_bytes += skb->len; 1294 } 1295 1296 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1297 * are to time stamp the packet, so we still need to check time 1298 * stamping enabled flag. 1299 */ 1300 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1301 fep->hwts_tx_en) && 1302 fep->bufdesc_ex) { 1303 struct skb_shared_hwtstamps shhwtstamps; 1304 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1305 1306 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1307 skb_tstamp_tx(skb, &shhwtstamps); 1308 } 1309 1310 /* Deferred means some collisions occurred during transmit, 1311 * but we eventually sent the packet OK. 1312 */ 1313 if (status & BD_ENET_TX_DEF) 1314 ndev->stats.collisions++; 1315 1316 /* Free the sk buffer associated with this last transmit */ 1317 dev_kfree_skb_any(skb); 1318 skb_done: 1319 /* Make sure the update to bdp and tx_skbuff are performed 1320 * before dirty_tx 1321 */ 1322 wmb(); 1323 txq->dirty_tx = bdp; 1324 1325 /* Update pointer to next buffer descriptor to be transmitted */ 1326 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1327 1328 /* Since we have freed up a buffer, the ring is no longer full 1329 */ 1330 if (netif_tx_queue_stopped(nq)) { 1331 entries_free = fec_enet_get_free_txdesc_num(txq); 1332 if (entries_free >= txq->tx_wake_threshold) 1333 netif_tx_wake_queue(nq); 1334 } 1335 } 1336 1337 /* ERR006358: Keep the transmitter going */ 1338 if (bdp != txq->bd.cur && 1339 readl(txq->bd.reg_desc_active) == 0) 1340 writel(0, txq->bd.reg_desc_active); 1341 } 1342 1343 static void fec_enet_tx(struct net_device *ndev) 1344 { 1345 struct fec_enet_private *fep = netdev_priv(ndev); 1346 int i; 1347 1348 /* Make sure that AVB queues are processed first. */ 1349 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1350 fec_enet_tx_queue(ndev, i); 1351 } 1352 1353 static int 1354 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) 1355 { 1356 struct fec_enet_private *fep = netdev_priv(ndev); 1357 int off; 1358 1359 off = ((unsigned long)skb->data) & fep->rx_align; 1360 if (off) 1361 skb_reserve(skb, fep->rx_align + 1 - off); 1362 1363 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE)); 1364 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) { 1365 if (net_ratelimit()) 1366 netdev_err(ndev, "Rx DMA memory map failed\n"); 1367 return -ENOMEM; 1368 } 1369 1370 return 0; 1371 } 1372 1373 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, 1374 struct bufdesc *bdp, u32 length, bool swap) 1375 { 1376 struct fec_enet_private *fep = netdev_priv(ndev); 1377 struct sk_buff *new_skb; 1378 1379 if (length > fep->rx_copybreak) 1380 return false; 1381 1382 new_skb = netdev_alloc_skb(ndev, length); 1383 if (!new_skb) 1384 return false; 1385 1386 dma_sync_single_for_cpu(&fep->pdev->dev, 1387 fec32_to_cpu(bdp->cbd_bufaddr), 1388 FEC_ENET_RX_FRSIZE - fep->rx_align, 1389 DMA_FROM_DEVICE); 1390 if (!swap) 1391 memcpy(new_skb->data, (*skb)->data, length); 1392 else 1393 swap_buffer2(new_skb->data, (*skb)->data, length); 1394 *skb = new_skb; 1395 1396 return true; 1397 } 1398 1399 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1400 * When we update through the ring, if the next incoming buffer has 1401 * not been given to the system, we just set the empty indicator, 1402 * effectively tossing the packet. 1403 */ 1404 static int 1405 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1406 { 1407 struct fec_enet_private *fep = netdev_priv(ndev); 1408 struct fec_enet_priv_rx_q *rxq; 1409 struct bufdesc *bdp; 1410 unsigned short status; 1411 struct sk_buff *skb_new = NULL; 1412 struct sk_buff *skb; 1413 ushort pkt_len; 1414 __u8 *data; 1415 int pkt_received = 0; 1416 struct bufdesc_ex *ebdp = NULL; 1417 bool vlan_packet_rcvd = false; 1418 u16 vlan_tag; 1419 int index = 0; 1420 bool is_copybreak; 1421 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1422 1423 #ifdef CONFIG_M532x 1424 flush_cache_all(); 1425 #endif 1426 rxq = fep->rx_queue[queue_id]; 1427 1428 /* First, grab all of the stats for the incoming packet. 1429 * These get messed up if we get called due to a busy condition. 1430 */ 1431 bdp = rxq->bd.cur; 1432 1433 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1434 1435 if (pkt_received >= budget) 1436 break; 1437 pkt_received++; 1438 1439 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT); 1440 1441 /* Check for errors. */ 1442 status ^= BD_ENET_RX_LAST; 1443 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1444 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1445 BD_ENET_RX_CL)) { 1446 ndev->stats.rx_errors++; 1447 if (status & BD_ENET_RX_OV) { 1448 /* FIFO overrun */ 1449 ndev->stats.rx_fifo_errors++; 1450 goto rx_processing_done; 1451 } 1452 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1453 | BD_ENET_RX_LAST)) { 1454 /* Frame too long or too short. */ 1455 ndev->stats.rx_length_errors++; 1456 if (status & BD_ENET_RX_LAST) 1457 netdev_err(ndev, "rcv is not +last\n"); 1458 } 1459 if (status & BD_ENET_RX_CR) /* CRC Error */ 1460 ndev->stats.rx_crc_errors++; 1461 /* Report late collisions as a frame error. */ 1462 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1463 ndev->stats.rx_frame_errors++; 1464 goto rx_processing_done; 1465 } 1466 1467 /* Process the incoming frame. */ 1468 ndev->stats.rx_packets++; 1469 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1470 ndev->stats.rx_bytes += pkt_len; 1471 1472 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1473 skb = rxq->rx_skbuff[index]; 1474 1475 /* The packet length includes FCS, but we don't want to 1476 * include that when passing upstream as it messes up 1477 * bridging applications. 1478 */ 1479 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, 1480 need_swap); 1481 if (!is_copybreak) { 1482 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 1483 if (unlikely(!skb_new)) { 1484 ndev->stats.rx_dropped++; 1485 goto rx_processing_done; 1486 } 1487 dma_unmap_single(&fep->pdev->dev, 1488 fec32_to_cpu(bdp->cbd_bufaddr), 1489 FEC_ENET_RX_FRSIZE - fep->rx_align, 1490 DMA_FROM_DEVICE); 1491 } 1492 1493 prefetch(skb->data - NET_IP_ALIGN); 1494 skb_put(skb, pkt_len - 4); 1495 data = skb->data; 1496 1497 if (!is_copybreak && need_swap) 1498 swap_buffer(data, pkt_len); 1499 1500 #if !defined(CONFIG_M5272) 1501 if (fep->quirks & FEC_QUIRK_HAS_RACC) 1502 data = skb_pull_inline(skb, 2); 1503 #endif 1504 1505 /* Extract the enhanced buffer descriptor */ 1506 ebdp = NULL; 1507 if (fep->bufdesc_ex) 1508 ebdp = (struct bufdesc_ex *)bdp; 1509 1510 /* If this is a VLAN packet remove the VLAN Tag */ 1511 vlan_packet_rcvd = false; 1512 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1513 fep->bufdesc_ex && 1514 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1515 /* Push and remove the vlan tag */ 1516 struct vlan_hdr *vlan_header = 1517 (struct vlan_hdr *) (data + ETH_HLEN); 1518 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1519 1520 vlan_packet_rcvd = true; 1521 1522 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1523 skb_pull(skb, VLAN_HLEN); 1524 } 1525 1526 skb->protocol = eth_type_trans(skb, ndev); 1527 1528 /* Get receive timestamp from the skb */ 1529 if (fep->hwts_rx_en && fep->bufdesc_ex) 1530 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1531 skb_hwtstamps(skb)); 1532 1533 if (fep->bufdesc_ex && 1534 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1535 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1536 /* don't check it */ 1537 skb->ip_summed = CHECKSUM_UNNECESSARY; 1538 } else { 1539 skb_checksum_none_assert(skb); 1540 } 1541 } 1542 1543 /* Handle received VLAN packets */ 1544 if (vlan_packet_rcvd) 1545 __vlan_hwaccel_put_tag(skb, 1546 htons(ETH_P_8021Q), 1547 vlan_tag); 1548 1549 skb_record_rx_queue(skb, queue_id); 1550 napi_gro_receive(&fep->napi, skb); 1551 1552 if (is_copybreak) { 1553 dma_sync_single_for_device(&fep->pdev->dev, 1554 fec32_to_cpu(bdp->cbd_bufaddr), 1555 FEC_ENET_RX_FRSIZE - fep->rx_align, 1556 DMA_FROM_DEVICE); 1557 } else { 1558 rxq->rx_skbuff[index] = skb_new; 1559 fec_enet_new_rxbdp(ndev, bdp, skb_new); 1560 } 1561 1562 rx_processing_done: 1563 /* Clear the status flags for this buffer */ 1564 status &= ~BD_ENET_RX_STATS; 1565 1566 /* Mark the buffer empty */ 1567 status |= BD_ENET_RX_EMPTY; 1568 1569 if (fep->bufdesc_ex) { 1570 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1571 1572 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1573 ebdp->cbd_prot = 0; 1574 ebdp->cbd_bdu = 0; 1575 } 1576 /* Make sure the updates to rest of the descriptor are 1577 * performed before transferring ownership. 1578 */ 1579 wmb(); 1580 bdp->cbd_sc = cpu_to_fec16(status); 1581 1582 /* Update BD pointer to next entry */ 1583 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1584 1585 /* Doing this here will keep the FEC running while we process 1586 * incoming frames. On a heavily loaded network, we should be 1587 * able to keep up at the expense of system resources. 1588 */ 1589 writel(0, rxq->bd.reg_desc_active); 1590 } 1591 rxq->bd.cur = bdp; 1592 return pkt_received; 1593 } 1594 1595 static int fec_enet_rx(struct net_device *ndev, int budget) 1596 { 1597 struct fec_enet_private *fep = netdev_priv(ndev); 1598 int i, done = 0; 1599 1600 /* Make sure that AVB queues are processed first. */ 1601 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1602 done += fec_enet_rx_queue(ndev, budget - done, i); 1603 1604 return done; 1605 } 1606 1607 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1608 { 1609 uint int_events; 1610 1611 int_events = readl(fep->hwp + FEC_IEVENT); 1612 1613 /* Don't clear MDIO events, we poll for those */ 1614 int_events &= ~FEC_ENET_MII; 1615 1616 writel(int_events, fep->hwp + FEC_IEVENT); 1617 1618 return int_events != 0; 1619 } 1620 1621 static irqreturn_t 1622 fec_enet_interrupt(int irq, void *dev_id) 1623 { 1624 struct net_device *ndev = dev_id; 1625 struct fec_enet_private *fep = netdev_priv(ndev); 1626 irqreturn_t ret = IRQ_NONE; 1627 1628 if (fec_enet_collect_events(fep) && fep->link) { 1629 ret = IRQ_HANDLED; 1630 1631 if (napi_schedule_prep(&fep->napi)) { 1632 /* Disable interrupts */ 1633 writel(0, fep->hwp + FEC_IMASK); 1634 __napi_schedule(&fep->napi); 1635 } 1636 } 1637 1638 return ret; 1639 } 1640 1641 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1642 { 1643 struct net_device *ndev = napi->dev; 1644 struct fec_enet_private *fep = netdev_priv(ndev); 1645 int done = 0; 1646 1647 do { 1648 done += fec_enet_rx(ndev, budget - done); 1649 fec_enet_tx(ndev); 1650 } while ((done < budget) && fec_enet_collect_events(fep)); 1651 1652 if (done < budget) { 1653 napi_complete_done(napi, done); 1654 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1655 } 1656 1657 return done; 1658 } 1659 1660 /* ------------------------------------------------------------------------- */ 1661 static void fec_get_mac(struct net_device *ndev) 1662 { 1663 struct fec_enet_private *fep = netdev_priv(ndev); 1664 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1665 unsigned char *iap, tmpaddr[ETH_ALEN]; 1666 1667 /* 1668 * try to get mac address in following order: 1669 * 1670 * 1) module parameter via kernel command line in form 1671 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1672 */ 1673 iap = macaddr; 1674 1675 /* 1676 * 2) from device tree data 1677 */ 1678 if (!is_valid_ether_addr(iap)) { 1679 struct device_node *np = fep->pdev->dev.of_node; 1680 if (np) { 1681 const char *mac = of_get_mac_address(np); 1682 if (!IS_ERR(mac)) 1683 iap = (unsigned char *) mac; 1684 } 1685 } 1686 1687 /* 1688 * 3) from flash or fuse (via platform data) 1689 */ 1690 if (!is_valid_ether_addr(iap)) { 1691 #ifdef CONFIG_M5272 1692 if (FEC_FLASHMAC) 1693 iap = (unsigned char *)FEC_FLASHMAC; 1694 #else 1695 if (pdata) 1696 iap = (unsigned char *)&pdata->mac; 1697 #endif 1698 } 1699 1700 /* 1701 * 4) FEC mac registers set by bootloader 1702 */ 1703 if (!is_valid_ether_addr(iap)) { 1704 *((__be32 *) &tmpaddr[0]) = 1705 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1706 *((__be16 *) &tmpaddr[4]) = 1707 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1708 iap = &tmpaddr[0]; 1709 } 1710 1711 /* 1712 * 5) random mac address 1713 */ 1714 if (!is_valid_ether_addr(iap)) { 1715 /* Report it and use a random ethernet address instead */ 1716 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1717 eth_hw_addr_random(ndev); 1718 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1719 ndev->dev_addr); 1720 return; 1721 } 1722 1723 memcpy(ndev->dev_addr, iap, ETH_ALEN); 1724 1725 /* Adjust MAC if using macaddr */ 1726 if (iap == macaddr) 1727 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; 1728 } 1729 1730 /* ------------------------------------------------------------------------- */ 1731 1732 /* 1733 * Phy section 1734 */ 1735 static void fec_enet_adjust_link(struct net_device *ndev) 1736 { 1737 struct fec_enet_private *fep = netdev_priv(ndev); 1738 struct phy_device *phy_dev = ndev->phydev; 1739 int status_change = 0; 1740 1741 /* 1742 * If the netdev is down, or is going down, we're not interested 1743 * in link state events, so just mark our idea of the link as down 1744 * and ignore the event. 1745 */ 1746 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1747 fep->link = 0; 1748 } else if (phy_dev->link) { 1749 if (!fep->link) { 1750 fep->link = phy_dev->link; 1751 status_change = 1; 1752 } 1753 1754 if (fep->full_duplex != phy_dev->duplex) { 1755 fep->full_duplex = phy_dev->duplex; 1756 status_change = 1; 1757 } 1758 1759 if (phy_dev->speed != fep->speed) { 1760 fep->speed = phy_dev->speed; 1761 status_change = 1; 1762 } 1763 1764 /* if any of the above changed restart the FEC */ 1765 if (status_change) { 1766 napi_disable(&fep->napi); 1767 netif_tx_lock_bh(ndev); 1768 fec_restart(ndev); 1769 netif_tx_wake_all_queues(ndev); 1770 netif_tx_unlock_bh(ndev); 1771 napi_enable(&fep->napi); 1772 } 1773 } else { 1774 if (fep->link) { 1775 napi_disable(&fep->napi); 1776 netif_tx_lock_bh(ndev); 1777 fec_stop(ndev); 1778 netif_tx_unlock_bh(ndev); 1779 napi_enable(&fep->napi); 1780 fep->link = phy_dev->link; 1781 status_change = 1; 1782 } 1783 } 1784 1785 if (status_change) 1786 phy_print_status(phy_dev); 1787 } 1788 1789 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1790 { 1791 uint ievent; 1792 int ret; 1793 1794 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1795 ievent & FEC_ENET_MII, 2, 30000); 1796 1797 if (!ret) 1798 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1799 1800 return ret; 1801 } 1802 1803 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1804 { 1805 struct fec_enet_private *fep = bus->priv; 1806 struct device *dev = &fep->pdev->dev; 1807 int ret = 0, frame_start, frame_addr, frame_op; 1808 bool is_c45 = !!(regnum & MII_ADDR_C45); 1809 1810 ret = pm_runtime_get_sync(dev); 1811 if (ret < 0) 1812 return ret; 1813 1814 if (is_c45) { 1815 frame_start = FEC_MMFR_ST_C45; 1816 1817 /* write address */ 1818 frame_addr = (regnum >> 16); 1819 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1820 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1821 FEC_MMFR_TA | (regnum & 0xFFFF), 1822 fep->hwp + FEC_MII_DATA); 1823 1824 /* wait for end of transfer */ 1825 ret = fec_enet_mdio_wait(fep); 1826 if (ret) { 1827 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1828 goto out; 1829 } 1830 1831 frame_op = FEC_MMFR_OP_READ_C45; 1832 1833 } else { 1834 /* C22 read */ 1835 frame_op = FEC_MMFR_OP_READ; 1836 frame_start = FEC_MMFR_ST; 1837 frame_addr = regnum; 1838 } 1839 1840 /* start a read op */ 1841 writel(frame_start | frame_op | 1842 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1843 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 1844 1845 /* wait for end of transfer */ 1846 ret = fec_enet_mdio_wait(fep); 1847 if (ret) { 1848 netdev_err(fep->netdev, "MDIO read timeout\n"); 1849 goto out; 1850 } 1851 1852 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 1853 1854 out: 1855 pm_runtime_mark_last_busy(dev); 1856 pm_runtime_put_autosuspend(dev); 1857 1858 return ret; 1859 } 1860 1861 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 1862 u16 value) 1863 { 1864 struct fec_enet_private *fep = bus->priv; 1865 struct device *dev = &fep->pdev->dev; 1866 int ret, frame_start, frame_addr; 1867 bool is_c45 = !!(regnum & MII_ADDR_C45); 1868 1869 ret = pm_runtime_get_sync(dev); 1870 if (ret < 0) 1871 return ret; 1872 else 1873 ret = 0; 1874 1875 if (is_c45) { 1876 frame_start = FEC_MMFR_ST_C45; 1877 1878 /* write address */ 1879 frame_addr = (regnum >> 16); 1880 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1881 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1882 FEC_MMFR_TA | (regnum & 0xFFFF), 1883 fep->hwp + FEC_MII_DATA); 1884 1885 /* wait for end of transfer */ 1886 ret = fec_enet_mdio_wait(fep); 1887 if (ret) { 1888 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1889 goto out; 1890 } 1891 } else { 1892 /* C22 write */ 1893 frame_start = FEC_MMFR_ST; 1894 frame_addr = regnum; 1895 } 1896 1897 /* start a write op */ 1898 writel(frame_start | FEC_MMFR_OP_WRITE | 1899 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1900 FEC_MMFR_TA | FEC_MMFR_DATA(value), 1901 fep->hwp + FEC_MII_DATA); 1902 1903 /* wait for end of transfer */ 1904 ret = fec_enet_mdio_wait(fep); 1905 if (ret) 1906 netdev_err(fep->netdev, "MDIO write timeout\n"); 1907 1908 out: 1909 pm_runtime_mark_last_busy(dev); 1910 pm_runtime_put_autosuspend(dev); 1911 1912 return ret; 1913 } 1914 1915 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 1916 { 1917 struct fec_enet_private *fep = netdev_priv(ndev); 1918 struct phy_device *phy_dev = ndev->phydev; 1919 1920 if (phy_dev) { 1921 phy_reset_after_clk_enable(phy_dev); 1922 } else if (fep->phy_node) { 1923 /* 1924 * If the PHY still is not bound to the MAC, but there is 1925 * OF PHY node and a matching PHY device instance already, 1926 * use the OF PHY node to obtain the PHY device instance, 1927 * and then use that PHY device instance when triggering 1928 * the PHY reset. 1929 */ 1930 phy_dev = of_phy_find_device(fep->phy_node); 1931 phy_reset_after_clk_enable(phy_dev); 1932 put_device(&phy_dev->mdio.dev); 1933 } 1934 } 1935 1936 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 1937 { 1938 struct fec_enet_private *fep = netdev_priv(ndev); 1939 int ret; 1940 1941 if (enable) { 1942 ret = clk_prepare_enable(fep->clk_enet_out); 1943 if (ret) 1944 return ret; 1945 1946 if (fep->clk_ptp) { 1947 mutex_lock(&fep->ptp_clk_mutex); 1948 ret = clk_prepare_enable(fep->clk_ptp); 1949 if (ret) { 1950 mutex_unlock(&fep->ptp_clk_mutex); 1951 goto failed_clk_ptp; 1952 } else { 1953 fep->ptp_clk_on = true; 1954 } 1955 mutex_unlock(&fep->ptp_clk_mutex); 1956 } 1957 1958 ret = clk_prepare_enable(fep->clk_ref); 1959 if (ret) 1960 goto failed_clk_ref; 1961 1962 fec_enet_phy_reset_after_clk_enable(ndev); 1963 } else { 1964 clk_disable_unprepare(fep->clk_enet_out); 1965 if (fep->clk_ptp) { 1966 mutex_lock(&fep->ptp_clk_mutex); 1967 clk_disable_unprepare(fep->clk_ptp); 1968 fep->ptp_clk_on = false; 1969 mutex_unlock(&fep->ptp_clk_mutex); 1970 } 1971 clk_disable_unprepare(fep->clk_ref); 1972 } 1973 1974 return 0; 1975 1976 failed_clk_ref: 1977 if (fep->clk_ptp) { 1978 mutex_lock(&fep->ptp_clk_mutex); 1979 clk_disable_unprepare(fep->clk_ptp); 1980 fep->ptp_clk_on = false; 1981 mutex_unlock(&fep->ptp_clk_mutex); 1982 } 1983 failed_clk_ptp: 1984 clk_disable_unprepare(fep->clk_enet_out); 1985 1986 return ret; 1987 } 1988 1989 static int fec_enet_mii_probe(struct net_device *ndev) 1990 { 1991 struct fec_enet_private *fep = netdev_priv(ndev); 1992 struct phy_device *phy_dev = NULL; 1993 char mdio_bus_id[MII_BUS_ID_SIZE]; 1994 char phy_name[MII_BUS_ID_SIZE + 3]; 1995 int phy_id; 1996 int dev_id = fep->dev_id; 1997 1998 if (fep->phy_node) { 1999 phy_dev = of_phy_connect(ndev, fep->phy_node, 2000 &fec_enet_adjust_link, 0, 2001 fep->phy_interface); 2002 if (!phy_dev) { 2003 netdev_err(ndev, "Unable to connect to phy\n"); 2004 return -ENODEV; 2005 } 2006 } else { 2007 /* check for attached phy */ 2008 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2009 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2010 continue; 2011 if (dev_id--) 2012 continue; 2013 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2014 break; 2015 } 2016 2017 if (phy_id >= PHY_MAX_ADDR) { 2018 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2019 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2020 phy_id = 0; 2021 } 2022 2023 snprintf(phy_name, sizeof(phy_name), 2024 PHY_ID_FMT, mdio_bus_id, phy_id); 2025 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2026 fep->phy_interface); 2027 } 2028 2029 if (IS_ERR(phy_dev)) { 2030 netdev_err(ndev, "could not attach to PHY\n"); 2031 return PTR_ERR(phy_dev); 2032 } 2033 2034 /* mask with MAC supported features */ 2035 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2036 phy_set_max_speed(phy_dev, 1000); 2037 phy_remove_link_mode(phy_dev, 2038 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2039 #if !defined(CONFIG_M5272) 2040 phy_support_sym_pause(phy_dev); 2041 #endif 2042 } 2043 else 2044 phy_set_max_speed(phy_dev, 100); 2045 2046 fep->link = 0; 2047 fep->full_duplex = 0; 2048 2049 phy_attached_info(phy_dev); 2050 2051 return 0; 2052 } 2053 2054 static int fec_enet_mii_init(struct platform_device *pdev) 2055 { 2056 static struct mii_bus *fec0_mii_bus; 2057 struct net_device *ndev = platform_get_drvdata(pdev); 2058 struct fec_enet_private *fep = netdev_priv(ndev); 2059 bool suppress_preamble = false; 2060 struct device_node *node; 2061 int err = -ENXIO; 2062 u32 mii_speed, holdtime; 2063 u32 bus_freq; 2064 2065 /* 2066 * The i.MX28 dual fec interfaces are not equal. 2067 * Here are the differences: 2068 * 2069 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2070 * - fec0 acts as the 1588 time master while fec1 is slave 2071 * - external phys can only be configured by fec0 2072 * 2073 * That is to say fec1 can not work independently. It only works 2074 * when fec0 is working. The reason behind this design is that the 2075 * second interface is added primarily for Switch mode. 2076 * 2077 * Because of the last point above, both phys are attached on fec0 2078 * mdio interface in board design, and need to be configured by 2079 * fec0 mii_bus. 2080 */ 2081 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2082 /* fec1 uses fec0 mii_bus */ 2083 if (mii_cnt && fec0_mii_bus) { 2084 fep->mii_bus = fec0_mii_bus; 2085 mii_cnt++; 2086 return 0; 2087 } 2088 return -ENOENT; 2089 } 2090 2091 bus_freq = 2500000; /* 2.5MHz by default */ 2092 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2093 if (node) { 2094 of_property_read_u32(node, "clock-frequency", &bus_freq); 2095 suppress_preamble = of_property_read_bool(node, 2096 "suppress-preamble"); 2097 } 2098 2099 /* 2100 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2101 * 2102 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2103 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2104 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2105 * document. 2106 */ 2107 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2108 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2109 mii_speed--; 2110 if (mii_speed > 63) { 2111 dev_err(&pdev->dev, 2112 "fec clock (%lu) too fast to get right mii speed\n", 2113 clk_get_rate(fep->clk_ipg)); 2114 err = -EINVAL; 2115 goto err_out; 2116 } 2117 2118 /* 2119 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2120 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2121 * versions are RAZ there, so just ignore the difference and write the 2122 * register always. 2123 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2124 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2125 * output. 2126 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2127 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2128 * holdtime cannot result in a value greater than 3. 2129 */ 2130 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2131 2132 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2133 2134 if (suppress_preamble) 2135 fep->phy_speed |= BIT(7); 2136 2137 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2138 * MII event generation condition: 2139 * - writing MSCR: 2140 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2141 * mscr_reg_data_in[7:0] != 0 2142 * - writing MMFR: 2143 * - mscr[7:0]_not_zero 2144 */ 2145 writel(0, fep->hwp + FEC_MII_DATA); 2146 2147 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2148 2149 /* Clear any pending transaction complete indication */ 2150 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2151 2152 fep->mii_bus = mdiobus_alloc(); 2153 if (fep->mii_bus == NULL) { 2154 err = -ENOMEM; 2155 goto err_out; 2156 } 2157 2158 fep->mii_bus->name = "fec_enet_mii_bus"; 2159 fep->mii_bus->read = fec_enet_mdio_read; 2160 fep->mii_bus->write = fec_enet_mdio_write; 2161 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2162 pdev->name, fep->dev_id + 1); 2163 fep->mii_bus->priv = fep; 2164 fep->mii_bus->parent = &pdev->dev; 2165 2166 err = of_mdiobus_register(fep->mii_bus, node); 2167 of_node_put(node); 2168 if (err) 2169 goto err_out_free_mdiobus; 2170 2171 mii_cnt++; 2172 2173 /* save fec0 mii_bus */ 2174 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2175 fec0_mii_bus = fep->mii_bus; 2176 2177 return 0; 2178 2179 err_out_free_mdiobus: 2180 mdiobus_free(fep->mii_bus); 2181 err_out: 2182 return err; 2183 } 2184 2185 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2186 { 2187 if (--mii_cnt == 0) { 2188 mdiobus_unregister(fep->mii_bus); 2189 mdiobus_free(fep->mii_bus); 2190 } 2191 } 2192 2193 static void fec_enet_get_drvinfo(struct net_device *ndev, 2194 struct ethtool_drvinfo *info) 2195 { 2196 struct fec_enet_private *fep = netdev_priv(ndev); 2197 2198 strlcpy(info->driver, fep->pdev->dev.driver->name, 2199 sizeof(info->driver)); 2200 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2201 } 2202 2203 static int fec_enet_get_regs_len(struct net_device *ndev) 2204 { 2205 struct fec_enet_private *fep = netdev_priv(ndev); 2206 struct resource *r; 2207 int s = 0; 2208 2209 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2210 if (r) 2211 s = resource_size(r); 2212 2213 return s; 2214 } 2215 2216 /* List of registers that can be safety be read to dump them with ethtool */ 2217 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2218 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2219 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2220 static __u32 fec_enet_register_version = 2; 2221 static u32 fec_enet_register_offset[] = { 2222 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2223 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2224 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2225 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2226 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2227 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2228 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2229 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2230 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2231 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2232 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2233 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2234 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2235 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2236 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2237 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2238 RMON_T_P_GTE2048, RMON_T_OCTETS, 2239 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2240 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2241 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2242 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2243 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2244 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2245 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2246 RMON_R_P_GTE2048, RMON_R_OCTETS, 2247 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2248 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2249 }; 2250 #else 2251 static __u32 fec_enet_register_version = 1; 2252 static u32 fec_enet_register_offset[] = { 2253 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2254 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2255 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2256 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2257 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2258 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2259 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2260 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2261 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2262 }; 2263 #endif 2264 2265 static void fec_enet_get_regs(struct net_device *ndev, 2266 struct ethtool_regs *regs, void *regbuf) 2267 { 2268 struct fec_enet_private *fep = netdev_priv(ndev); 2269 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2270 struct device *dev = &fep->pdev->dev; 2271 u32 *buf = (u32 *)regbuf; 2272 u32 i, off; 2273 int ret; 2274 2275 ret = pm_runtime_get_sync(dev); 2276 if (ret < 0) 2277 return; 2278 2279 regs->version = fec_enet_register_version; 2280 2281 memset(buf, 0, regs->len); 2282 2283 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { 2284 off = fec_enet_register_offset[i]; 2285 2286 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2287 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2288 continue; 2289 2290 off >>= 2; 2291 buf[off] = readl(&theregs[off]); 2292 } 2293 2294 pm_runtime_mark_last_busy(dev); 2295 pm_runtime_put_autosuspend(dev); 2296 } 2297 2298 static int fec_enet_get_ts_info(struct net_device *ndev, 2299 struct ethtool_ts_info *info) 2300 { 2301 struct fec_enet_private *fep = netdev_priv(ndev); 2302 2303 if (fep->bufdesc_ex) { 2304 2305 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2306 SOF_TIMESTAMPING_RX_SOFTWARE | 2307 SOF_TIMESTAMPING_SOFTWARE | 2308 SOF_TIMESTAMPING_TX_HARDWARE | 2309 SOF_TIMESTAMPING_RX_HARDWARE | 2310 SOF_TIMESTAMPING_RAW_HARDWARE; 2311 if (fep->ptp_clock) 2312 info->phc_index = ptp_clock_index(fep->ptp_clock); 2313 else 2314 info->phc_index = -1; 2315 2316 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2317 (1 << HWTSTAMP_TX_ON); 2318 2319 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2320 (1 << HWTSTAMP_FILTER_ALL); 2321 return 0; 2322 } else { 2323 return ethtool_op_get_ts_info(ndev, info); 2324 } 2325 } 2326 2327 #if !defined(CONFIG_M5272) 2328 2329 static void fec_enet_get_pauseparam(struct net_device *ndev, 2330 struct ethtool_pauseparam *pause) 2331 { 2332 struct fec_enet_private *fep = netdev_priv(ndev); 2333 2334 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2335 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2336 pause->rx_pause = pause->tx_pause; 2337 } 2338 2339 static int fec_enet_set_pauseparam(struct net_device *ndev, 2340 struct ethtool_pauseparam *pause) 2341 { 2342 struct fec_enet_private *fep = netdev_priv(ndev); 2343 2344 if (!ndev->phydev) 2345 return -ENODEV; 2346 2347 if (pause->tx_pause != pause->rx_pause) { 2348 netdev_info(ndev, 2349 "hardware only support enable/disable both tx and rx"); 2350 return -EINVAL; 2351 } 2352 2353 fep->pause_flag = 0; 2354 2355 /* tx pause must be same as rx pause */ 2356 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2357 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2358 2359 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2360 pause->autoneg); 2361 2362 if (pause->autoneg) { 2363 if (netif_running(ndev)) 2364 fec_stop(ndev); 2365 phy_start_aneg(ndev->phydev); 2366 } 2367 if (netif_running(ndev)) { 2368 napi_disable(&fep->napi); 2369 netif_tx_lock_bh(ndev); 2370 fec_restart(ndev); 2371 netif_tx_wake_all_queues(ndev); 2372 netif_tx_unlock_bh(ndev); 2373 napi_enable(&fep->napi); 2374 } 2375 2376 return 0; 2377 } 2378 2379 static const struct fec_stat { 2380 char name[ETH_GSTRING_LEN]; 2381 u16 offset; 2382 } fec_stats[] = { 2383 /* RMON TX */ 2384 { "tx_dropped", RMON_T_DROP }, 2385 { "tx_packets", RMON_T_PACKETS }, 2386 { "tx_broadcast", RMON_T_BC_PKT }, 2387 { "tx_multicast", RMON_T_MC_PKT }, 2388 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2389 { "tx_undersize", RMON_T_UNDERSIZE }, 2390 { "tx_oversize", RMON_T_OVERSIZE }, 2391 { "tx_fragment", RMON_T_FRAG }, 2392 { "tx_jabber", RMON_T_JAB }, 2393 { "tx_collision", RMON_T_COL }, 2394 { "tx_64byte", RMON_T_P64 }, 2395 { "tx_65to127byte", RMON_T_P65TO127 }, 2396 { "tx_128to255byte", RMON_T_P128TO255 }, 2397 { "tx_256to511byte", RMON_T_P256TO511 }, 2398 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2399 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2400 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2401 { "tx_octets", RMON_T_OCTETS }, 2402 2403 /* IEEE TX */ 2404 { "IEEE_tx_drop", IEEE_T_DROP }, 2405 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2406 { "IEEE_tx_1col", IEEE_T_1COL }, 2407 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2408 { "IEEE_tx_def", IEEE_T_DEF }, 2409 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2410 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2411 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2412 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2413 { "IEEE_tx_sqe", IEEE_T_SQE }, 2414 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2415 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2416 2417 /* RMON RX */ 2418 { "rx_packets", RMON_R_PACKETS }, 2419 { "rx_broadcast", RMON_R_BC_PKT }, 2420 { "rx_multicast", RMON_R_MC_PKT }, 2421 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2422 { "rx_undersize", RMON_R_UNDERSIZE }, 2423 { "rx_oversize", RMON_R_OVERSIZE }, 2424 { "rx_fragment", RMON_R_FRAG }, 2425 { "rx_jabber", RMON_R_JAB }, 2426 { "rx_64byte", RMON_R_P64 }, 2427 { "rx_65to127byte", RMON_R_P65TO127 }, 2428 { "rx_128to255byte", RMON_R_P128TO255 }, 2429 { "rx_256to511byte", RMON_R_P256TO511 }, 2430 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2431 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2432 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2433 { "rx_octets", RMON_R_OCTETS }, 2434 2435 /* IEEE RX */ 2436 { "IEEE_rx_drop", IEEE_R_DROP }, 2437 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2438 { "IEEE_rx_crc", IEEE_R_CRC }, 2439 { "IEEE_rx_align", IEEE_R_ALIGN }, 2440 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2441 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2442 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2443 }; 2444 2445 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2446 2447 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2448 { 2449 struct fec_enet_private *fep = netdev_priv(dev); 2450 int i; 2451 2452 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2453 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2454 } 2455 2456 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2457 struct ethtool_stats *stats, u64 *data) 2458 { 2459 struct fec_enet_private *fep = netdev_priv(dev); 2460 2461 if (netif_running(dev)) 2462 fec_enet_update_ethtool_stats(dev); 2463 2464 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2465 } 2466 2467 static void fec_enet_get_strings(struct net_device *netdev, 2468 u32 stringset, u8 *data) 2469 { 2470 int i; 2471 switch (stringset) { 2472 case ETH_SS_STATS: 2473 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2474 memcpy(data + i * ETH_GSTRING_LEN, 2475 fec_stats[i].name, ETH_GSTRING_LEN); 2476 break; 2477 } 2478 } 2479 2480 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2481 { 2482 switch (sset) { 2483 case ETH_SS_STATS: 2484 return ARRAY_SIZE(fec_stats); 2485 default: 2486 return -EOPNOTSUPP; 2487 } 2488 } 2489 2490 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2491 { 2492 struct fec_enet_private *fep = netdev_priv(dev); 2493 int i; 2494 2495 /* Disable MIB statistics counters */ 2496 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2497 2498 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2499 writel(0, fep->hwp + fec_stats[i].offset); 2500 2501 /* Don't disable MIB statistics counters */ 2502 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2503 } 2504 2505 #else /* !defined(CONFIG_M5272) */ 2506 #define FEC_STATS_SIZE 0 2507 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2508 { 2509 } 2510 2511 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2512 { 2513 } 2514 #endif /* !defined(CONFIG_M5272) */ 2515 2516 /* ITR clock source is enet system clock (clk_ahb). 2517 * TCTT unit is cycle_ns * 64 cycle 2518 * So, the ICTT value = X us / (cycle_ns * 64) 2519 */ 2520 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2521 { 2522 struct fec_enet_private *fep = netdev_priv(ndev); 2523 2524 return us * (fep->itr_clk_rate / 64000) / 1000; 2525 } 2526 2527 /* Set threshold for interrupt coalescing */ 2528 static void fec_enet_itr_coal_set(struct net_device *ndev) 2529 { 2530 struct fec_enet_private *fep = netdev_priv(ndev); 2531 int rx_itr, tx_itr; 2532 2533 /* Must be greater than zero to avoid unpredictable behavior */ 2534 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2535 !fep->tx_time_itr || !fep->tx_pkts_itr) 2536 return; 2537 2538 /* Select enet system clock as Interrupt Coalescing 2539 * timer Clock Source 2540 */ 2541 rx_itr = FEC_ITR_CLK_SEL; 2542 tx_itr = FEC_ITR_CLK_SEL; 2543 2544 /* set ICFT and ICTT */ 2545 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2546 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2547 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2548 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2549 2550 rx_itr |= FEC_ITR_EN; 2551 tx_itr |= FEC_ITR_EN; 2552 2553 writel(tx_itr, fep->hwp + FEC_TXIC0); 2554 writel(rx_itr, fep->hwp + FEC_RXIC0); 2555 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 2556 writel(tx_itr, fep->hwp + FEC_TXIC1); 2557 writel(rx_itr, fep->hwp + FEC_RXIC1); 2558 writel(tx_itr, fep->hwp + FEC_TXIC2); 2559 writel(rx_itr, fep->hwp + FEC_RXIC2); 2560 } 2561 } 2562 2563 static int 2564 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2565 { 2566 struct fec_enet_private *fep = netdev_priv(ndev); 2567 2568 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2569 return -EOPNOTSUPP; 2570 2571 ec->rx_coalesce_usecs = fep->rx_time_itr; 2572 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2573 2574 ec->tx_coalesce_usecs = fep->tx_time_itr; 2575 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2576 2577 return 0; 2578 } 2579 2580 static int 2581 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2582 { 2583 struct fec_enet_private *fep = netdev_priv(ndev); 2584 struct device *dev = &fep->pdev->dev; 2585 unsigned int cycle; 2586 2587 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2588 return -EOPNOTSUPP; 2589 2590 if (ec->rx_max_coalesced_frames > 255) { 2591 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2592 return -EINVAL; 2593 } 2594 2595 if (ec->tx_max_coalesced_frames > 255) { 2596 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2597 return -EINVAL; 2598 } 2599 2600 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 2601 if (cycle > 0xFFFF) { 2602 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 2603 return -EINVAL; 2604 } 2605 2606 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 2607 if (cycle > 0xFFFF) { 2608 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 2609 return -EINVAL; 2610 } 2611 2612 fep->rx_time_itr = ec->rx_coalesce_usecs; 2613 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2614 2615 fep->tx_time_itr = ec->tx_coalesce_usecs; 2616 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2617 2618 fec_enet_itr_coal_set(ndev); 2619 2620 return 0; 2621 } 2622 2623 static void fec_enet_itr_coal_init(struct net_device *ndev) 2624 { 2625 struct ethtool_coalesce ec; 2626 2627 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2628 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2629 2630 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2631 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2632 2633 fec_enet_set_coalesce(ndev, &ec); 2634 } 2635 2636 static int fec_enet_get_tunable(struct net_device *netdev, 2637 const struct ethtool_tunable *tuna, 2638 void *data) 2639 { 2640 struct fec_enet_private *fep = netdev_priv(netdev); 2641 int ret = 0; 2642 2643 switch (tuna->id) { 2644 case ETHTOOL_RX_COPYBREAK: 2645 *(u32 *)data = fep->rx_copybreak; 2646 break; 2647 default: 2648 ret = -EINVAL; 2649 break; 2650 } 2651 2652 return ret; 2653 } 2654 2655 static int fec_enet_set_tunable(struct net_device *netdev, 2656 const struct ethtool_tunable *tuna, 2657 const void *data) 2658 { 2659 struct fec_enet_private *fep = netdev_priv(netdev); 2660 int ret = 0; 2661 2662 switch (tuna->id) { 2663 case ETHTOOL_RX_COPYBREAK: 2664 fep->rx_copybreak = *(u32 *)data; 2665 break; 2666 default: 2667 ret = -EINVAL; 2668 break; 2669 } 2670 2671 return ret; 2672 } 2673 2674 static void 2675 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2676 { 2677 struct fec_enet_private *fep = netdev_priv(ndev); 2678 2679 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 2680 wol->supported = WAKE_MAGIC; 2681 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 2682 } else { 2683 wol->supported = wol->wolopts = 0; 2684 } 2685 } 2686 2687 static int 2688 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2689 { 2690 struct fec_enet_private *fep = netdev_priv(ndev); 2691 2692 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 2693 return -EINVAL; 2694 2695 if (wol->wolopts & ~WAKE_MAGIC) 2696 return -EINVAL; 2697 2698 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 2699 if (device_may_wakeup(&ndev->dev)) { 2700 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 2701 if (fep->irq[0] > 0) 2702 enable_irq_wake(fep->irq[0]); 2703 } else { 2704 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 2705 if (fep->irq[0] > 0) 2706 disable_irq_wake(fep->irq[0]); 2707 } 2708 2709 return 0; 2710 } 2711 2712 static const struct ethtool_ops fec_enet_ethtool_ops = { 2713 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 2714 ETHTOOL_COALESCE_MAX_FRAMES, 2715 .get_drvinfo = fec_enet_get_drvinfo, 2716 .get_regs_len = fec_enet_get_regs_len, 2717 .get_regs = fec_enet_get_regs, 2718 .nway_reset = phy_ethtool_nway_reset, 2719 .get_link = ethtool_op_get_link, 2720 .get_coalesce = fec_enet_get_coalesce, 2721 .set_coalesce = fec_enet_set_coalesce, 2722 #ifndef CONFIG_M5272 2723 .get_pauseparam = fec_enet_get_pauseparam, 2724 .set_pauseparam = fec_enet_set_pauseparam, 2725 .get_strings = fec_enet_get_strings, 2726 .get_ethtool_stats = fec_enet_get_ethtool_stats, 2727 .get_sset_count = fec_enet_get_sset_count, 2728 #endif 2729 .get_ts_info = fec_enet_get_ts_info, 2730 .get_tunable = fec_enet_get_tunable, 2731 .set_tunable = fec_enet_set_tunable, 2732 .get_wol = fec_enet_get_wol, 2733 .set_wol = fec_enet_set_wol, 2734 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2735 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2736 }; 2737 2738 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2739 { 2740 struct fec_enet_private *fep = netdev_priv(ndev); 2741 struct phy_device *phydev = ndev->phydev; 2742 2743 if (!netif_running(ndev)) 2744 return -EINVAL; 2745 2746 if (!phydev) 2747 return -ENODEV; 2748 2749 if (fep->bufdesc_ex) { 2750 bool use_fec_hwts = !phy_has_hwtstamp(phydev); 2751 2752 if (cmd == SIOCSHWTSTAMP) { 2753 if (use_fec_hwts) 2754 return fec_ptp_set(ndev, rq); 2755 fec_ptp_disable_hwts(ndev); 2756 } else if (cmd == SIOCGHWTSTAMP) { 2757 if (use_fec_hwts) 2758 return fec_ptp_get(ndev, rq); 2759 } 2760 } 2761 2762 return phy_mii_ioctl(phydev, rq, cmd); 2763 } 2764 2765 static void fec_enet_free_buffers(struct net_device *ndev) 2766 { 2767 struct fec_enet_private *fep = netdev_priv(ndev); 2768 unsigned int i; 2769 struct sk_buff *skb; 2770 struct bufdesc *bdp; 2771 struct fec_enet_priv_tx_q *txq; 2772 struct fec_enet_priv_rx_q *rxq; 2773 unsigned int q; 2774 2775 for (q = 0; q < fep->num_rx_queues; q++) { 2776 rxq = fep->rx_queue[q]; 2777 bdp = rxq->bd.base; 2778 for (i = 0; i < rxq->bd.ring_size; i++) { 2779 skb = rxq->rx_skbuff[i]; 2780 rxq->rx_skbuff[i] = NULL; 2781 if (skb) { 2782 dma_unmap_single(&fep->pdev->dev, 2783 fec32_to_cpu(bdp->cbd_bufaddr), 2784 FEC_ENET_RX_FRSIZE - fep->rx_align, 2785 DMA_FROM_DEVICE); 2786 dev_kfree_skb(skb); 2787 } 2788 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2789 } 2790 } 2791 2792 for (q = 0; q < fep->num_tx_queues; q++) { 2793 txq = fep->tx_queue[q]; 2794 for (i = 0; i < txq->bd.ring_size; i++) { 2795 kfree(txq->tx_bounce[i]); 2796 txq->tx_bounce[i] = NULL; 2797 skb = txq->tx_skbuff[i]; 2798 txq->tx_skbuff[i] = NULL; 2799 dev_kfree_skb(skb); 2800 } 2801 } 2802 } 2803 2804 static void fec_enet_free_queue(struct net_device *ndev) 2805 { 2806 struct fec_enet_private *fep = netdev_priv(ndev); 2807 int i; 2808 struct fec_enet_priv_tx_q *txq; 2809 2810 for (i = 0; i < fep->num_tx_queues; i++) 2811 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 2812 txq = fep->tx_queue[i]; 2813 dma_free_coherent(&fep->pdev->dev, 2814 txq->bd.ring_size * TSO_HEADER_SIZE, 2815 txq->tso_hdrs, 2816 txq->tso_hdrs_dma); 2817 } 2818 2819 for (i = 0; i < fep->num_rx_queues; i++) 2820 kfree(fep->rx_queue[i]); 2821 for (i = 0; i < fep->num_tx_queues; i++) 2822 kfree(fep->tx_queue[i]); 2823 } 2824 2825 static int fec_enet_alloc_queue(struct net_device *ndev) 2826 { 2827 struct fec_enet_private *fep = netdev_priv(ndev); 2828 int i; 2829 int ret = 0; 2830 struct fec_enet_priv_tx_q *txq; 2831 2832 for (i = 0; i < fep->num_tx_queues; i++) { 2833 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 2834 if (!txq) { 2835 ret = -ENOMEM; 2836 goto alloc_failed; 2837 } 2838 2839 fep->tx_queue[i] = txq; 2840 txq->bd.ring_size = TX_RING_SIZE; 2841 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 2842 2843 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 2844 txq->tx_wake_threshold = 2845 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 2846 2847 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 2848 txq->bd.ring_size * TSO_HEADER_SIZE, 2849 &txq->tso_hdrs_dma, 2850 GFP_KERNEL); 2851 if (!txq->tso_hdrs) { 2852 ret = -ENOMEM; 2853 goto alloc_failed; 2854 } 2855 } 2856 2857 for (i = 0; i < fep->num_rx_queues; i++) { 2858 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 2859 GFP_KERNEL); 2860 if (!fep->rx_queue[i]) { 2861 ret = -ENOMEM; 2862 goto alloc_failed; 2863 } 2864 2865 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 2866 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 2867 } 2868 return ret; 2869 2870 alloc_failed: 2871 fec_enet_free_queue(ndev); 2872 return ret; 2873 } 2874 2875 static int 2876 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 2877 { 2878 struct fec_enet_private *fep = netdev_priv(ndev); 2879 unsigned int i; 2880 struct sk_buff *skb; 2881 struct bufdesc *bdp; 2882 struct fec_enet_priv_rx_q *rxq; 2883 2884 rxq = fep->rx_queue[queue]; 2885 bdp = rxq->bd.base; 2886 for (i = 0; i < rxq->bd.ring_size; i++) { 2887 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 2888 if (!skb) 2889 goto err_alloc; 2890 2891 if (fec_enet_new_rxbdp(ndev, bdp, skb)) { 2892 dev_kfree_skb(skb); 2893 goto err_alloc; 2894 } 2895 2896 rxq->rx_skbuff[i] = skb; 2897 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 2898 2899 if (fep->bufdesc_ex) { 2900 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2901 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 2902 } 2903 2904 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2905 } 2906 2907 /* Set the last buffer to wrap. */ 2908 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 2909 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2910 return 0; 2911 2912 err_alloc: 2913 fec_enet_free_buffers(ndev); 2914 return -ENOMEM; 2915 } 2916 2917 static int 2918 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 2919 { 2920 struct fec_enet_private *fep = netdev_priv(ndev); 2921 unsigned int i; 2922 struct bufdesc *bdp; 2923 struct fec_enet_priv_tx_q *txq; 2924 2925 txq = fep->tx_queue[queue]; 2926 bdp = txq->bd.base; 2927 for (i = 0; i < txq->bd.ring_size; i++) { 2928 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 2929 if (!txq->tx_bounce[i]) 2930 goto err_alloc; 2931 2932 bdp->cbd_sc = cpu_to_fec16(0); 2933 bdp->cbd_bufaddr = cpu_to_fec32(0); 2934 2935 if (fep->bufdesc_ex) { 2936 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2937 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 2938 } 2939 2940 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 2941 } 2942 2943 /* Set the last buffer to wrap. */ 2944 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 2945 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2946 2947 return 0; 2948 2949 err_alloc: 2950 fec_enet_free_buffers(ndev); 2951 return -ENOMEM; 2952 } 2953 2954 static int fec_enet_alloc_buffers(struct net_device *ndev) 2955 { 2956 struct fec_enet_private *fep = netdev_priv(ndev); 2957 unsigned int i; 2958 2959 for (i = 0; i < fep->num_rx_queues; i++) 2960 if (fec_enet_alloc_rxq_buffers(ndev, i)) 2961 return -ENOMEM; 2962 2963 for (i = 0; i < fep->num_tx_queues; i++) 2964 if (fec_enet_alloc_txq_buffers(ndev, i)) 2965 return -ENOMEM; 2966 return 0; 2967 } 2968 2969 static int 2970 fec_enet_open(struct net_device *ndev) 2971 { 2972 struct fec_enet_private *fep = netdev_priv(ndev); 2973 int ret; 2974 bool reset_again; 2975 2976 ret = pm_runtime_get_sync(&fep->pdev->dev); 2977 if (ret < 0) 2978 return ret; 2979 2980 pinctrl_pm_select_default_state(&fep->pdev->dev); 2981 ret = fec_enet_clk_enable(ndev, true); 2982 if (ret) 2983 goto clk_enable; 2984 2985 /* During the first fec_enet_open call the PHY isn't probed at this 2986 * point. Therefore the phy_reset_after_clk_enable() call within 2987 * fec_enet_clk_enable() fails. As we need this reset in order to be 2988 * sure the PHY is working correctly we check if we need to reset again 2989 * later when the PHY is probed 2990 */ 2991 if (ndev->phydev && ndev->phydev->drv) 2992 reset_again = false; 2993 else 2994 reset_again = true; 2995 2996 /* I should reset the ring buffers here, but I don't yet know 2997 * a simple way to do that. 2998 */ 2999 3000 ret = fec_enet_alloc_buffers(ndev); 3001 if (ret) 3002 goto err_enet_alloc; 3003 3004 /* Init MAC prior to mii bus probe */ 3005 fec_restart(ndev); 3006 3007 /* Call phy_reset_after_clk_enable() again if it failed during 3008 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3009 */ 3010 if (reset_again) 3011 fec_enet_phy_reset_after_clk_enable(ndev); 3012 3013 /* Probe and connect to PHY when open the interface */ 3014 ret = fec_enet_mii_probe(ndev); 3015 if (ret) 3016 goto err_enet_mii_probe; 3017 3018 if (fep->quirks & FEC_QUIRK_ERR006687) 3019 imx6q_cpuidle_fec_irqs_used(); 3020 3021 napi_enable(&fep->napi); 3022 phy_start(ndev->phydev); 3023 netif_tx_start_all_queues(ndev); 3024 3025 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3026 FEC_WOL_FLAG_ENABLE); 3027 3028 return 0; 3029 3030 err_enet_mii_probe: 3031 fec_enet_free_buffers(ndev); 3032 err_enet_alloc: 3033 fec_enet_clk_enable(ndev, false); 3034 clk_enable: 3035 pm_runtime_mark_last_busy(&fep->pdev->dev); 3036 pm_runtime_put_autosuspend(&fep->pdev->dev); 3037 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3038 return ret; 3039 } 3040 3041 static int 3042 fec_enet_close(struct net_device *ndev) 3043 { 3044 struct fec_enet_private *fep = netdev_priv(ndev); 3045 3046 phy_stop(ndev->phydev); 3047 3048 if (netif_device_present(ndev)) { 3049 napi_disable(&fep->napi); 3050 netif_tx_disable(ndev); 3051 fec_stop(ndev); 3052 } 3053 3054 phy_disconnect(ndev->phydev); 3055 3056 if (fep->quirks & FEC_QUIRK_ERR006687) 3057 imx6q_cpuidle_fec_irqs_unused(); 3058 3059 fec_enet_update_ethtool_stats(ndev); 3060 3061 fec_enet_clk_enable(ndev, false); 3062 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3063 pm_runtime_mark_last_busy(&fep->pdev->dev); 3064 pm_runtime_put_autosuspend(&fep->pdev->dev); 3065 3066 fec_enet_free_buffers(ndev); 3067 3068 return 0; 3069 } 3070 3071 /* Set or clear the multicast filter for this adaptor. 3072 * Skeleton taken from sunlance driver. 3073 * The CPM Ethernet implementation allows Multicast as well as individual 3074 * MAC address filtering. Some of the drivers check to make sure it is 3075 * a group multicast address, and discard those that are not. I guess I 3076 * will do the same for now, but just remove the test if you want 3077 * individual filtering as well (do the upper net layers want or support 3078 * this kind of feature?). 3079 */ 3080 3081 #define FEC_HASH_BITS 6 /* #bits in hash */ 3082 3083 static void set_multicast_list(struct net_device *ndev) 3084 { 3085 struct fec_enet_private *fep = netdev_priv(ndev); 3086 struct netdev_hw_addr *ha; 3087 unsigned int crc, tmp; 3088 unsigned char hash; 3089 unsigned int hash_high = 0, hash_low = 0; 3090 3091 if (ndev->flags & IFF_PROMISC) { 3092 tmp = readl(fep->hwp + FEC_R_CNTRL); 3093 tmp |= 0x8; 3094 writel(tmp, fep->hwp + FEC_R_CNTRL); 3095 return; 3096 } 3097 3098 tmp = readl(fep->hwp + FEC_R_CNTRL); 3099 tmp &= ~0x8; 3100 writel(tmp, fep->hwp + FEC_R_CNTRL); 3101 3102 if (ndev->flags & IFF_ALLMULTI) { 3103 /* Catch all multicast addresses, so set the 3104 * filter to all 1's 3105 */ 3106 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3107 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3108 3109 return; 3110 } 3111 3112 /* Add the addresses in hash register */ 3113 netdev_for_each_mc_addr(ha, ndev) { 3114 /* calculate crc32 value of mac address */ 3115 crc = ether_crc_le(ndev->addr_len, ha->addr); 3116 3117 /* only upper 6 bits (FEC_HASH_BITS) are used 3118 * which point to specific bit in the hash registers 3119 */ 3120 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3121 3122 if (hash > 31) 3123 hash_high |= 1 << (hash - 32); 3124 else 3125 hash_low |= 1 << hash; 3126 } 3127 3128 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3129 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3130 } 3131 3132 /* Set a MAC change in hardware. */ 3133 static int 3134 fec_set_mac_address(struct net_device *ndev, void *p) 3135 { 3136 struct fec_enet_private *fep = netdev_priv(ndev); 3137 struct sockaddr *addr = p; 3138 3139 if (addr) { 3140 if (!is_valid_ether_addr(addr->sa_data)) 3141 return -EADDRNOTAVAIL; 3142 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 3143 } 3144 3145 /* Add netif status check here to avoid system hang in below case: 3146 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3147 * After ethx down, fec all clocks are gated off and then register 3148 * access causes system hang. 3149 */ 3150 if (!netif_running(ndev)) 3151 return 0; 3152 3153 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3154 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3155 fep->hwp + FEC_ADDR_LOW); 3156 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3157 fep->hwp + FEC_ADDR_HIGH); 3158 return 0; 3159 } 3160 3161 #ifdef CONFIG_NET_POLL_CONTROLLER 3162 /** 3163 * fec_poll_controller - FEC Poll controller function 3164 * @dev: The FEC network adapter 3165 * 3166 * Polled functionality used by netconsole and others in non interrupt mode 3167 * 3168 */ 3169 static void fec_poll_controller(struct net_device *dev) 3170 { 3171 int i; 3172 struct fec_enet_private *fep = netdev_priv(dev); 3173 3174 for (i = 0; i < FEC_IRQ_NUM; i++) { 3175 if (fep->irq[i] > 0) { 3176 disable_irq(fep->irq[i]); 3177 fec_enet_interrupt(fep->irq[i], dev); 3178 enable_irq(fep->irq[i]); 3179 } 3180 } 3181 } 3182 #endif 3183 3184 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3185 netdev_features_t features) 3186 { 3187 struct fec_enet_private *fep = netdev_priv(netdev); 3188 netdev_features_t changed = features ^ netdev->features; 3189 3190 netdev->features = features; 3191 3192 /* Receive checksum has been changed */ 3193 if (changed & NETIF_F_RXCSUM) { 3194 if (features & NETIF_F_RXCSUM) 3195 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3196 else 3197 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3198 } 3199 } 3200 3201 static int fec_set_features(struct net_device *netdev, 3202 netdev_features_t features) 3203 { 3204 struct fec_enet_private *fep = netdev_priv(netdev); 3205 netdev_features_t changed = features ^ netdev->features; 3206 3207 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3208 napi_disable(&fep->napi); 3209 netif_tx_lock_bh(netdev); 3210 fec_stop(netdev); 3211 fec_enet_set_netdev_features(netdev, features); 3212 fec_restart(netdev); 3213 netif_tx_wake_all_queues(netdev); 3214 netif_tx_unlock_bh(netdev); 3215 napi_enable(&fep->napi); 3216 } else { 3217 fec_enet_set_netdev_features(netdev, features); 3218 } 3219 3220 return 0; 3221 } 3222 3223 static const struct net_device_ops fec_netdev_ops = { 3224 .ndo_open = fec_enet_open, 3225 .ndo_stop = fec_enet_close, 3226 .ndo_start_xmit = fec_enet_start_xmit, 3227 .ndo_set_rx_mode = set_multicast_list, 3228 .ndo_validate_addr = eth_validate_addr, 3229 .ndo_tx_timeout = fec_timeout, 3230 .ndo_set_mac_address = fec_set_mac_address, 3231 .ndo_do_ioctl = fec_enet_ioctl, 3232 #ifdef CONFIG_NET_POLL_CONTROLLER 3233 .ndo_poll_controller = fec_poll_controller, 3234 #endif 3235 .ndo_set_features = fec_set_features, 3236 }; 3237 3238 static const unsigned short offset_des_active_rxq[] = { 3239 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3240 }; 3241 3242 static const unsigned short offset_des_active_txq[] = { 3243 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3244 }; 3245 3246 /* 3247 * XXX: We need to clean up on failure exits here. 3248 * 3249 */ 3250 static int fec_enet_init(struct net_device *ndev) 3251 { 3252 struct fec_enet_private *fep = netdev_priv(ndev); 3253 struct bufdesc *cbd_base; 3254 dma_addr_t bd_dma; 3255 int bd_size; 3256 unsigned int i; 3257 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3258 sizeof(struct bufdesc); 3259 unsigned dsize_log2 = __fls(dsize); 3260 int ret; 3261 3262 WARN_ON(dsize != (1 << dsize_log2)); 3263 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3264 fep->rx_align = 0xf; 3265 fep->tx_align = 0xf; 3266 #else 3267 fep->rx_align = 0x3; 3268 fep->tx_align = 0x3; 3269 #endif 3270 3271 /* Check mask of the streaming and coherent API */ 3272 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3273 if (ret < 0) { 3274 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3275 return ret; 3276 } 3277 3278 fec_enet_alloc_queue(ndev); 3279 3280 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3281 3282 /* Allocate memory for buffer descriptors. */ 3283 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3284 GFP_KERNEL); 3285 if (!cbd_base) { 3286 return -ENOMEM; 3287 } 3288 3289 /* Get the Ethernet address */ 3290 fec_get_mac(ndev); 3291 /* make sure MAC we just acquired is programmed into the hw */ 3292 fec_set_mac_address(ndev, NULL); 3293 3294 /* Set receive and transmit descriptor base. */ 3295 for (i = 0; i < fep->num_rx_queues; i++) { 3296 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3297 unsigned size = dsize * rxq->bd.ring_size; 3298 3299 rxq->bd.qid = i; 3300 rxq->bd.base = cbd_base; 3301 rxq->bd.cur = cbd_base; 3302 rxq->bd.dma = bd_dma; 3303 rxq->bd.dsize = dsize; 3304 rxq->bd.dsize_log2 = dsize_log2; 3305 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3306 bd_dma += size; 3307 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3308 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3309 } 3310 3311 for (i = 0; i < fep->num_tx_queues; i++) { 3312 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3313 unsigned size = dsize * txq->bd.ring_size; 3314 3315 txq->bd.qid = i; 3316 txq->bd.base = cbd_base; 3317 txq->bd.cur = cbd_base; 3318 txq->bd.dma = bd_dma; 3319 txq->bd.dsize = dsize; 3320 txq->bd.dsize_log2 = dsize_log2; 3321 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3322 bd_dma += size; 3323 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3324 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3325 } 3326 3327 3328 /* The FEC Ethernet specific entries in the device structure */ 3329 ndev->watchdog_timeo = TX_TIMEOUT; 3330 ndev->netdev_ops = &fec_netdev_ops; 3331 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3332 3333 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3334 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); 3335 3336 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3337 /* enable hw VLAN support */ 3338 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3339 3340 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3341 ndev->gso_max_segs = FEC_MAX_TSO_SEGS; 3342 3343 /* enable hw accelerator */ 3344 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3345 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3346 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3347 } 3348 3349 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 3350 fep->tx_align = 0; 3351 fep->rx_align = 0x3f; 3352 } 3353 3354 ndev->hw_features = ndev->features; 3355 3356 fec_restart(ndev); 3357 3358 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3359 fec_enet_clear_ethtool_stats(ndev); 3360 else 3361 fec_enet_update_ethtool_stats(ndev); 3362 3363 return 0; 3364 } 3365 3366 #ifdef CONFIG_OF 3367 static int fec_reset_phy(struct platform_device *pdev) 3368 { 3369 int err, phy_reset; 3370 bool active_high = false; 3371 int msec = 1, phy_post_delay = 0; 3372 struct device_node *np = pdev->dev.of_node; 3373 3374 if (!np) 3375 return 0; 3376 3377 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3378 /* A sane reset duration should not be longer than 1s */ 3379 if (!err && msec > 1000) 3380 msec = 1; 3381 3382 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3383 if (phy_reset == -EPROBE_DEFER) 3384 return phy_reset; 3385 else if (!gpio_is_valid(phy_reset)) 3386 return 0; 3387 3388 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 3389 /* valid reset duration should be less than 1s */ 3390 if (!err && phy_post_delay > 1000) 3391 return -EINVAL; 3392 3393 active_high = of_property_read_bool(np, "phy-reset-active-high"); 3394 3395 err = devm_gpio_request_one(&pdev->dev, phy_reset, 3396 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 3397 "phy-reset"); 3398 if (err) { 3399 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 3400 return err; 3401 } 3402 3403 if (msec > 20) 3404 msleep(msec); 3405 else 3406 usleep_range(msec * 1000, msec * 1000 + 1000); 3407 3408 gpio_set_value_cansleep(phy_reset, !active_high); 3409 3410 if (!phy_post_delay) 3411 return 0; 3412 3413 if (phy_post_delay > 20) 3414 msleep(phy_post_delay); 3415 else 3416 usleep_range(phy_post_delay * 1000, 3417 phy_post_delay * 1000 + 1000); 3418 3419 return 0; 3420 } 3421 #else /* CONFIG_OF */ 3422 static int fec_reset_phy(struct platform_device *pdev) 3423 { 3424 /* 3425 * In case of platform probe, the reset has been done 3426 * by machine code. 3427 */ 3428 return 0; 3429 } 3430 #endif /* CONFIG_OF */ 3431 3432 static void 3433 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 3434 { 3435 struct device_node *np = pdev->dev.of_node; 3436 3437 *num_tx = *num_rx = 1; 3438 3439 if (!np || !of_device_is_available(np)) 3440 return; 3441 3442 /* parse the num of tx and rx queues */ 3443 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 3444 3445 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 3446 3447 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 3448 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 3449 *num_tx); 3450 *num_tx = 1; 3451 return; 3452 } 3453 3454 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 3455 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 3456 *num_rx); 3457 *num_rx = 1; 3458 return; 3459 } 3460 3461 } 3462 3463 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 3464 { 3465 int irq_cnt = platform_irq_count(pdev); 3466 3467 if (irq_cnt > FEC_IRQ_NUM) 3468 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 3469 else if (irq_cnt == 2) 3470 irq_cnt = 1; /* last for pps */ 3471 else if (irq_cnt <= 0) 3472 irq_cnt = 1; /* At least 1 irq is needed */ 3473 return irq_cnt; 3474 } 3475 3476 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 3477 struct device_node *np) 3478 { 3479 struct device_node *gpr_np; 3480 u32 out_val[3]; 3481 int ret = 0; 3482 3483 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 3484 if (!gpr_np) 3485 return 0; 3486 3487 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 3488 ARRAY_SIZE(out_val)); 3489 if (ret) { 3490 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 3491 return ret; 3492 } 3493 3494 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 3495 if (IS_ERR(fep->stop_gpr.gpr)) { 3496 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 3497 ret = PTR_ERR(fep->stop_gpr.gpr); 3498 fep->stop_gpr.gpr = NULL; 3499 goto out; 3500 } 3501 3502 fep->stop_gpr.reg = out_val[1]; 3503 fep->stop_gpr.bit = out_val[2]; 3504 3505 out: 3506 of_node_put(gpr_np); 3507 3508 return ret; 3509 } 3510 3511 static int 3512 fec_probe(struct platform_device *pdev) 3513 { 3514 struct fec_enet_private *fep; 3515 struct fec_platform_data *pdata; 3516 phy_interface_t interface; 3517 struct net_device *ndev; 3518 int i, irq, ret = 0; 3519 const struct of_device_id *of_id; 3520 static int dev_id; 3521 struct device_node *np = pdev->dev.of_node, *phy_node; 3522 int num_tx_qs; 3523 int num_rx_qs; 3524 char irq_name[8]; 3525 int irq_cnt; 3526 struct fec_devinfo *dev_info; 3527 3528 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 3529 3530 /* Init network device */ 3531 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 3532 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 3533 if (!ndev) 3534 return -ENOMEM; 3535 3536 SET_NETDEV_DEV(ndev, &pdev->dev); 3537 3538 /* setup board info structure */ 3539 fep = netdev_priv(ndev); 3540 3541 of_id = of_match_device(fec_dt_ids, &pdev->dev); 3542 if (of_id) 3543 pdev->id_entry = of_id->data; 3544 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 3545 if (dev_info) 3546 fep->quirks = dev_info->quirks; 3547 3548 fep->netdev = ndev; 3549 fep->num_rx_queues = num_rx_qs; 3550 fep->num_tx_queues = num_tx_qs; 3551 3552 #if !defined(CONFIG_M5272) 3553 /* default enable pause frame auto negotiation */ 3554 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 3555 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 3556 #endif 3557 3558 /* Select default pin state */ 3559 pinctrl_pm_select_default_state(&pdev->dev); 3560 3561 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 3562 if (IS_ERR(fep->hwp)) { 3563 ret = PTR_ERR(fep->hwp); 3564 goto failed_ioremap; 3565 } 3566 3567 fep->pdev = pdev; 3568 fep->dev_id = dev_id++; 3569 3570 platform_set_drvdata(pdev, ndev); 3571 3572 if ((of_machine_is_compatible("fsl,imx6q") || 3573 of_machine_is_compatible("fsl,imx6dl")) && 3574 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 3575 fep->quirks |= FEC_QUIRK_ERR006687; 3576 3577 if (of_get_property(np, "fsl,magic-packet", NULL)) 3578 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 3579 3580 ret = fec_enet_init_stop_mode(fep, np); 3581 if (ret) 3582 goto failed_stop_mode; 3583 3584 phy_node = of_parse_phandle(np, "phy-handle", 0); 3585 if (!phy_node && of_phy_is_fixed_link(np)) { 3586 ret = of_phy_register_fixed_link(np); 3587 if (ret < 0) { 3588 dev_err(&pdev->dev, 3589 "broken fixed-link specification\n"); 3590 goto failed_phy; 3591 } 3592 phy_node = of_node_get(np); 3593 } 3594 fep->phy_node = phy_node; 3595 3596 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 3597 if (ret) { 3598 pdata = dev_get_platdata(&pdev->dev); 3599 if (pdata) 3600 fep->phy_interface = pdata->phy; 3601 else 3602 fep->phy_interface = PHY_INTERFACE_MODE_MII; 3603 } else { 3604 fep->phy_interface = interface; 3605 } 3606 3607 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 3608 if (IS_ERR(fep->clk_ipg)) { 3609 ret = PTR_ERR(fep->clk_ipg); 3610 goto failed_clk; 3611 } 3612 3613 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 3614 if (IS_ERR(fep->clk_ahb)) { 3615 ret = PTR_ERR(fep->clk_ahb); 3616 goto failed_clk; 3617 } 3618 3619 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 3620 3621 /* enet_out is optional, depends on board */ 3622 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); 3623 if (IS_ERR(fep->clk_enet_out)) 3624 fep->clk_enet_out = NULL; 3625 3626 fep->ptp_clk_on = false; 3627 mutex_init(&fep->ptp_clk_mutex); 3628 3629 /* clk_ref is optional, depends on board */ 3630 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); 3631 if (IS_ERR(fep->clk_ref)) 3632 fep->clk_ref = NULL; 3633 3634 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 3635 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 3636 if (IS_ERR(fep->clk_ptp)) { 3637 fep->clk_ptp = NULL; 3638 fep->bufdesc_ex = false; 3639 } 3640 3641 ret = fec_enet_clk_enable(ndev, true); 3642 if (ret) 3643 goto failed_clk; 3644 3645 ret = clk_prepare_enable(fep->clk_ipg); 3646 if (ret) 3647 goto failed_clk_ipg; 3648 ret = clk_prepare_enable(fep->clk_ahb); 3649 if (ret) 3650 goto failed_clk_ahb; 3651 3652 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 3653 if (!IS_ERR(fep->reg_phy)) { 3654 ret = regulator_enable(fep->reg_phy); 3655 if (ret) { 3656 dev_err(&pdev->dev, 3657 "Failed to enable phy regulator: %d\n", ret); 3658 goto failed_regulator; 3659 } 3660 } else { 3661 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 3662 ret = -EPROBE_DEFER; 3663 goto failed_regulator; 3664 } 3665 fep->reg_phy = NULL; 3666 } 3667 3668 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 3669 pm_runtime_use_autosuspend(&pdev->dev); 3670 pm_runtime_get_noresume(&pdev->dev); 3671 pm_runtime_set_active(&pdev->dev); 3672 pm_runtime_enable(&pdev->dev); 3673 3674 ret = fec_reset_phy(pdev); 3675 if (ret) 3676 goto failed_reset; 3677 3678 irq_cnt = fec_enet_get_irq_cnt(pdev); 3679 if (fep->bufdesc_ex) 3680 fec_ptp_init(pdev, irq_cnt); 3681 3682 ret = fec_enet_init(ndev); 3683 if (ret) 3684 goto failed_init; 3685 3686 for (i = 0; i < irq_cnt; i++) { 3687 snprintf(irq_name, sizeof(irq_name), "int%d", i); 3688 irq = platform_get_irq_byname_optional(pdev, irq_name); 3689 if (irq < 0) 3690 irq = platform_get_irq(pdev, i); 3691 if (irq < 0) { 3692 ret = irq; 3693 goto failed_irq; 3694 } 3695 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 3696 0, pdev->name, ndev); 3697 if (ret) 3698 goto failed_irq; 3699 3700 fep->irq[i] = irq; 3701 } 3702 3703 ret = fec_enet_mii_init(pdev); 3704 if (ret) 3705 goto failed_mii_init; 3706 3707 /* Carrier starts down, phylib will bring it up */ 3708 netif_carrier_off(ndev); 3709 fec_enet_clk_enable(ndev, false); 3710 pinctrl_pm_select_sleep_state(&pdev->dev); 3711 3712 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 3713 3714 ret = register_netdev(ndev); 3715 if (ret) 3716 goto failed_register; 3717 3718 device_init_wakeup(&ndev->dev, fep->wol_flag & 3719 FEC_WOL_HAS_MAGIC_PACKET); 3720 3721 if (fep->bufdesc_ex && fep->ptp_clock) 3722 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 3723 3724 fep->rx_copybreak = COPYBREAK_DEFAULT; 3725 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 3726 3727 pm_runtime_mark_last_busy(&pdev->dev); 3728 pm_runtime_put_autosuspend(&pdev->dev); 3729 3730 return 0; 3731 3732 failed_register: 3733 fec_enet_mii_remove(fep); 3734 failed_mii_init: 3735 failed_irq: 3736 failed_init: 3737 fec_ptp_stop(pdev); 3738 failed_reset: 3739 pm_runtime_put_noidle(&pdev->dev); 3740 pm_runtime_disable(&pdev->dev); 3741 if (fep->reg_phy) 3742 regulator_disable(fep->reg_phy); 3743 failed_regulator: 3744 clk_disable_unprepare(fep->clk_ahb); 3745 failed_clk_ahb: 3746 clk_disable_unprepare(fep->clk_ipg); 3747 failed_clk_ipg: 3748 fec_enet_clk_enable(ndev, false); 3749 failed_clk: 3750 if (of_phy_is_fixed_link(np)) 3751 of_phy_deregister_fixed_link(np); 3752 of_node_put(phy_node); 3753 failed_stop_mode: 3754 failed_phy: 3755 dev_id--; 3756 failed_ioremap: 3757 free_netdev(ndev); 3758 3759 return ret; 3760 } 3761 3762 static int 3763 fec_drv_remove(struct platform_device *pdev) 3764 { 3765 struct net_device *ndev = platform_get_drvdata(pdev); 3766 struct fec_enet_private *fep = netdev_priv(ndev); 3767 struct device_node *np = pdev->dev.of_node; 3768 int ret; 3769 3770 ret = pm_runtime_get_sync(&pdev->dev); 3771 if (ret < 0) 3772 return ret; 3773 3774 cancel_work_sync(&fep->tx_timeout_work); 3775 fec_ptp_stop(pdev); 3776 unregister_netdev(ndev); 3777 fec_enet_mii_remove(fep); 3778 if (fep->reg_phy) 3779 regulator_disable(fep->reg_phy); 3780 3781 if (of_phy_is_fixed_link(np)) 3782 of_phy_deregister_fixed_link(np); 3783 of_node_put(fep->phy_node); 3784 free_netdev(ndev); 3785 3786 clk_disable_unprepare(fep->clk_ahb); 3787 clk_disable_unprepare(fep->clk_ipg); 3788 pm_runtime_put_noidle(&pdev->dev); 3789 pm_runtime_disable(&pdev->dev); 3790 3791 return 0; 3792 } 3793 3794 static int __maybe_unused fec_suspend(struct device *dev) 3795 { 3796 struct net_device *ndev = dev_get_drvdata(dev); 3797 struct fec_enet_private *fep = netdev_priv(ndev); 3798 3799 rtnl_lock(); 3800 if (netif_running(ndev)) { 3801 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 3802 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 3803 phy_stop(ndev->phydev); 3804 napi_disable(&fep->napi); 3805 netif_tx_lock_bh(ndev); 3806 netif_device_detach(ndev); 3807 netif_tx_unlock_bh(ndev); 3808 fec_stop(ndev); 3809 fec_enet_clk_enable(ndev, false); 3810 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3811 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3812 } 3813 rtnl_unlock(); 3814 3815 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3816 regulator_disable(fep->reg_phy); 3817 3818 /* SOC supply clock to phy, when clock is disabled, phy link down 3819 * SOC control phy regulator, when regulator is disabled, phy link down 3820 */ 3821 if (fep->clk_enet_out || fep->reg_phy) 3822 fep->link = 0; 3823 3824 return 0; 3825 } 3826 3827 static int __maybe_unused fec_resume(struct device *dev) 3828 { 3829 struct net_device *ndev = dev_get_drvdata(dev); 3830 struct fec_enet_private *fep = netdev_priv(ndev); 3831 int ret; 3832 int val; 3833 3834 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 3835 ret = regulator_enable(fep->reg_phy); 3836 if (ret) 3837 return ret; 3838 } 3839 3840 rtnl_lock(); 3841 if (netif_running(ndev)) { 3842 ret = fec_enet_clk_enable(ndev, true); 3843 if (ret) { 3844 rtnl_unlock(); 3845 goto failed_clk; 3846 } 3847 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 3848 fec_enet_stop_mode(fep, false); 3849 3850 val = readl(fep->hwp + FEC_ECNTRL); 3851 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 3852 writel(val, fep->hwp + FEC_ECNTRL); 3853 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 3854 } else { 3855 pinctrl_pm_select_default_state(&fep->pdev->dev); 3856 } 3857 fec_restart(ndev); 3858 netif_tx_lock_bh(ndev); 3859 netif_device_attach(ndev); 3860 netif_tx_unlock_bh(ndev); 3861 napi_enable(&fep->napi); 3862 phy_start(ndev->phydev); 3863 } 3864 rtnl_unlock(); 3865 3866 return 0; 3867 3868 failed_clk: 3869 if (fep->reg_phy) 3870 regulator_disable(fep->reg_phy); 3871 return ret; 3872 } 3873 3874 static int __maybe_unused fec_runtime_suspend(struct device *dev) 3875 { 3876 struct net_device *ndev = dev_get_drvdata(dev); 3877 struct fec_enet_private *fep = netdev_priv(ndev); 3878 3879 clk_disable_unprepare(fep->clk_ahb); 3880 clk_disable_unprepare(fep->clk_ipg); 3881 3882 return 0; 3883 } 3884 3885 static int __maybe_unused fec_runtime_resume(struct device *dev) 3886 { 3887 struct net_device *ndev = dev_get_drvdata(dev); 3888 struct fec_enet_private *fep = netdev_priv(ndev); 3889 int ret; 3890 3891 ret = clk_prepare_enable(fep->clk_ahb); 3892 if (ret) 3893 return ret; 3894 ret = clk_prepare_enable(fep->clk_ipg); 3895 if (ret) 3896 goto failed_clk_ipg; 3897 3898 return 0; 3899 3900 failed_clk_ipg: 3901 clk_disable_unprepare(fep->clk_ahb); 3902 return ret; 3903 } 3904 3905 static const struct dev_pm_ops fec_pm_ops = { 3906 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 3907 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 3908 }; 3909 3910 static struct platform_driver fec_driver = { 3911 .driver = { 3912 .name = DRIVER_NAME, 3913 .pm = &fec_pm_ops, 3914 .of_match_table = fec_dt_ids, 3915 .suppress_bind_attrs = true, 3916 }, 3917 .id_table = fec_devtype, 3918 .probe = fec_probe, 3919 .remove = fec_drv_remove, 3920 }; 3921 3922 module_platform_driver(fec_driver); 3923 3924 MODULE_ALIAS("platform:"DRIVER_NAME); 3925 MODULE_LICENSE("GPL"); 3926