1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/tso.h> 42 #include <linux/tcp.h> 43 #include <linux/udp.h> 44 #include <linux/icmp.h> 45 #include <linux/spinlock.h> 46 #include <linux/workqueue.h> 47 #include <linux/bitops.h> 48 #include <linux/io.h> 49 #include <linux/irq.h> 50 #include <linux/clk.h> 51 #include <linux/crc32.h> 52 #include <linux/platform_device.h> 53 #include <linux/mdio.h> 54 #include <linux/phy.h> 55 #include <linux/fec.h> 56 #include <linux/of.h> 57 #include <linux/of_device.h> 58 #include <linux/of_gpio.h> 59 #include <linux/of_mdio.h> 60 #include <linux/of_net.h> 61 #include <linux/regulator/consumer.h> 62 #include <linux/if_vlan.h> 63 #include <linux/pinctrl/consumer.h> 64 #include <linux/prefetch.h> 65 #include <linux/mfd/syscon.h> 66 #include <linux/regmap.h> 67 #include <soc/imx/cpuidle.h> 68 69 #include <asm/cacheflush.h> 70 71 #include "fec.h" 72 73 static void set_multicast_list(struct net_device *ndev); 74 static void fec_enet_itr_coal_init(struct net_device *ndev); 75 76 #define DRIVER_NAME "fec" 77 78 /* Pause frame feild and FIFO threshold */ 79 #define FEC_ENET_FCE (1 << 5) 80 #define FEC_ENET_RSEM_V 0x84 81 #define FEC_ENET_RSFL_V 16 82 #define FEC_ENET_RAEM_V 0x8 83 #define FEC_ENET_RAFL_V 0x8 84 #define FEC_ENET_OPD_V 0xFFF0 85 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 86 87 struct fec_devinfo { 88 u32 quirks; 89 }; 90 91 static const struct fec_devinfo fec_imx25_info = { 92 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 93 FEC_QUIRK_HAS_FRREG, 94 }; 95 96 static const struct fec_devinfo fec_imx27_info = { 97 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 98 }; 99 100 static const struct fec_devinfo fec_imx28_info = { 101 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 102 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 103 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII, 104 }; 105 106 static const struct fec_devinfo fec_imx6q_info = { 107 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 108 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 109 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 110 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII, 111 }; 112 113 static const struct fec_devinfo fec_mvf600_info = { 114 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 115 }; 116 117 static const struct fec_devinfo fec_imx6x_info = { 118 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 119 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 120 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 121 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 122 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 123 FEC_QUIRK_CLEAR_SETUP_MII, 124 }; 125 126 static const struct fec_devinfo fec_imx6ul_info = { 127 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 128 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 129 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 130 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 131 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII, 132 }; 133 134 static struct platform_device_id fec_devtype[] = { 135 { 136 /* keep it for coldfire */ 137 .name = DRIVER_NAME, 138 .driver_data = 0, 139 }, { 140 .name = "imx25-fec", 141 .driver_data = (kernel_ulong_t)&fec_imx25_info, 142 }, { 143 .name = "imx27-fec", 144 .driver_data = (kernel_ulong_t)&fec_imx27_info, 145 }, { 146 .name = "imx28-fec", 147 .driver_data = (kernel_ulong_t)&fec_imx28_info, 148 }, { 149 .name = "imx6q-fec", 150 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 151 }, { 152 .name = "mvf600-fec", 153 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 154 }, { 155 .name = "imx6sx-fec", 156 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 157 }, { 158 .name = "imx6ul-fec", 159 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 160 }, { 161 /* sentinel */ 162 } 163 }; 164 MODULE_DEVICE_TABLE(platform, fec_devtype); 165 166 enum imx_fec_type { 167 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 168 IMX27_FEC, /* runs on i.mx27/35/51 */ 169 IMX28_FEC, 170 IMX6Q_FEC, 171 MVF600_FEC, 172 IMX6SX_FEC, 173 IMX6UL_FEC, 174 }; 175 176 static const struct of_device_id fec_dt_ids[] = { 177 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 178 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 179 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 180 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 181 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 182 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 183 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 184 { /* sentinel */ } 185 }; 186 MODULE_DEVICE_TABLE(of, fec_dt_ids); 187 188 static unsigned char macaddr[ETH_ALEN]; 189 module_param_array(macaddr, byte, NULL, 0); 190 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 191 192 #if defined(CONFIG_M5272) 193 /* 194 * Some hardware gets it MAC address out of local flash memory. 195 * if this is non-zero then assume it is the address to get MAC from. 196 */ 197 #if defined(CONFIG_NETtel) 198 #define FEC_FLASHMAC 0xf0006006 199 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 200 #define FEC_FLASHMAC 0xf0006000 201 #elif defined(CONFIG_CANCam) 202 #define FEC_FLASHMAC 0xf0020000 203 #elif defined (CONFIG_M5272C3) 204 #define FEC_FLASHMAC (0xffe04000 + 4) 205 #elif defined(CONFIG_MOD5272) 206 #define FEC_FLASHMAC 0xffc0406b 207 #else 208 #define FEC_FLASHMAC 0 209 #endif 210 #endif /* CONFIG_M5272 */ 211 212 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 213 * 214 * 2048 byte skbufs are allocated. However, alignment requirements 215 * varies between FEC variants. Worst case is 64, so round down by 64. 216 */ 217 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 218 #define PKT_MINBUF_SIZE 64 219 220 /* FEC receive acceleration */ 221 #define FEC_RACC_IPDIS (1 << 1) 222 #define FEC_RACC_PRODIS (1 << 2) 223 #define FEC_RACC_SHIFT16 BIT(7) 224 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 225 226 /* MIB Control Register */ 227 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 228 229 /* 230 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 231 * size bits. Other FEC hardware does not, so we need to take that into 232 * account when setting it. 233 */ 234 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 235 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 236 defined(CONFIG_ARM64) 237 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 238 #else 239 #define OPT_FRAME_SIZE 0 240 #endif 241 242 /* FEC MII MMFR bits definition */ 243 #define FEC_MMFR_ST (1 << 30) 244 #define FEC_MMFR_ST_C45 (0) 245 #define FEC_MMFR_OP_READ (2 << 28) 246 #define FEC_MMFR_OP_READ_C45 (3 << 28) 247 #define FEC_MMFR_OP_WRITE (1 << 28) 248 #define FEC_MMFR_OP_ADDR_WRITE (0) 249 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 250 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 251 #define FEC_MMFR_TA (2 << 16) 252 #define FEC_MMFR_DATA(v) (v & 0xffff) 253 /* FEC ECR bits definition */ 254 #define FEC_ECR_MAGICEN (1 << 2) 255 #define FEC_ECR_SLEEP (1 << 3) 256 257 #define FEC_MII_TIMEOUT 30000 /* us */ 258 259 /* Transmitter timeout */ 260 #define TX_TIMEOUT (2 * HZ) 261 262 #define FEC_PAUSE_FLAG_AUTONEG 0x1 263 #define FEC_PAUSE_FLAG_ENABLE 0x2 264 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 265 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 266 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 267 268 #define COPYBREAK_DEFAULT 256 269 270 /* Max number of allowed TCP segments for software TSO */ 271 #define FEC_MAX_TSO_SEGS 100 272 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 273 274 #define IS_TSO_HEADER(txq, addr) \ 275 ((addr >= txq->tso_hdrs_dma) && \ 276 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 277 278 static int mii_cnt; 279 280 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 281 struct bufdesc_prop *bd) 282 { 283 return (bdp >= bd->last) ? bd->base 284 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 285 } 286 287 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 288 struct bufdesc_prop *bd) 289 { 290 return (bdp <= bd->base) ? bd->last 291 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 292 } 293 294 static int fec_enet_get_bd_index(struct bufdesc *bdp, 295 struct bufdesc_prop *bd) 296 { 297 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 298 } 299 300 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 301 { 302 int entries; 303 304 entries = (((const char *)txq->dirty_tx - 305 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 306 307 return entries >= 0 ? entries : entries + txq->bd.ring_size; 308 } 309 310 static void swap_buffer(void *bufaddr, int len) 311 { 312 int i; 313 unsigned int *buf = bufaddr; 314 315 for (i = 0; i < len; i += 4, buf++) 316 swab32s(buf); 317 } 318 319 static void swap_buffer2(void *dst_buf, void *src_buf, int len) 320 { 321 int i; 322 unsigned int *src = src_buf; 323 unsigned int *dst = dst_buf; 324 325 for (i = 0; i < len; i += 4, src++, dst++) 326 *dst = swab32p(src); 327 } 328 329 static void fec_dump(struct net_device *ndev) 330 { 331 struct fec_enet_private *fep = netdev_priv(ndev); 332 struct bufdesc *bdp; 333 struct fec_enet_priv_tx_q *txq; 334 int index = 0; 335 336 netdev_info(ndev, "TX ring dump\n"); 337 pr_info("Nr SC addr len SKB\n"); 338 339 txq = fep->tx_queue[0]; 340 bdp = txq->bd.base; 341 342 do { 343 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 344 index, 345 bdp == txq->bd.cur ? 'S' : ' ', 346 bdp == txq->dirty_tx ? 'H' : ' ', 347 fec16_to_cpu(bdp->cbd_sc), 348 fec32_to_cpu(bdp->cbd_bufaddr), 349 fec16_to_cpu(bdp->cbd_datlen), 350 txq->tx_skbuff[index]); 351 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 352 index++; 353 } while (bdp != txq->bd.base); 354 } 355 356 static inline bool is_ipv4_pkt(struct sk_buff *skb) 357 { 358 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 359 } 360 361 static int 362 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 363 { 364 /* Only run for packets requiring a checksum. */ 365 if (skb->ip_summed != CHECKSUM_PARTIAL) 366 return 0; 367 368 if (unlikely(skb_cow_head(skb, 0))) 369 return -1; 370 371 if (is_ipv4_pkt(skb)) 372 ip_hdr(skb)->check = 0; 373 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 374 375 return 0; 376 } 377 378 static struct bufdesc * 379 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 380 struct sk_buff *skb, 381 struct net_device *ndev) 382 { 383 struct fec_enet_private *fep = netdev_priv(ndev); 384 struct bufdesc *bdp = txq->bd.cur; 385 struct bufdesc_ex *ebdp; 386 int nr_frags = skb_shinfo(skb)->nr_frags; 387 int frag, frag_len; 388 unsigned short status; 389 unsigned int estatus = 0; 390 skb_frag_t *this_frag; 391 unsigned int index; 392 void *bufaddr; 393 dma_addr_t addr; 394 int i; 395 396 for (frag = 0; frag < nr_frags; frag++) { 397 this_frag = &skb_shinfo(skb)->frags[frag]; 398 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 399 ebdp = (struct bufdesc_ex *)bdp; 400 401 status = fec16_to_cpu(bdp->cbd_sc); 402 status &= ~BD_ENET_TX_STATS; 403 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 404 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 405 406 /* Handle the last BD specially */ 407 if (frag == nr_frags - 1) { 408 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 409 if (fep->bufdesc_ex) { 410 estatus |= BD_ENET_TX_INT; 411 if (unlikely(skb_shinfo(skb)->tx_flags & 412 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 413 estatus |= BD_ENET_TX_TS; 414 } 415 } 416 417 if (fep->bufdesc_ex) { 418 if (fep->quirks & FEC_QUIRK_HAS_AVB) 419 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 420 if (skb->ip_summed == CHECKSUM_PARTIAL) 421 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 422 ebdp->cbd_bdu = 0; 423 ebdp->cbd_esc = cpu_to_fec32(estatus); 424 } 425 426 bufaddr = skb_frag_address(this_frag); 427 428 index = fec_enet_get_bd_index(bdp, &txq->bd); 429 if (((unsigned long) bufaddr) & fep->tx_align || 430 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 431 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 432 bufaddr = txq->tx_bounce[index]; 433 434 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 435 swap_buffer(bufaddr, frag_len); 436 } 437 438 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 439 DMA_TO_DEVICE); 440 if (dma_mapping_error(&fep->pdev->dev, addr)) { 441 if (net_ratelimit()) 442 netdev_err(ndev, "Tx DMA memory map failed\n"); 443 goto dma_mapping_error; 444 } 445 446 bdp->cbd_bufaddr = cpu_to_fec32(addr); 447 bdp->cbd_datlen = cpu_to_fec16(frag_len); 448 /* Make sure the updates to rest of the descriptor are 449 * performed before transferring ownership. 450 */ 451 wmb(); 452 bdp->cbd_sc = cpu_to_fec16(status); 453 } 454 455 return bdp; 456 dma_mapping_error: 457 bdp = txq->bd.cur; 458 for (i = 0; i < frag; i++) { 459 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 460 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 461 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 462 } 463 return ERR_PTR(-ENOMEM); 464 } 465 466 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 467 struct sk_buff *skb, struct net_device *ndev) 468 { 469 struct fec_enet_private *fep = netdev_priv(ndev); 470 int nr_frags = skb_shinfo(skb)->nr_frags; 471 struct bufdesc *bdp, *last_bdp; 472 void *bufaddr; 473 dma_addr_t addr; 474 unsigned short status; 475 unsigned short buflen; 476 unsigned int estatus = 0; 477 unsigned int index; 478 int entries_free; 479 480 entries_free = fec_enet_get_free_txdesc_num(txq); 481 if (entries_free < MAX_SKB_FRAGS + 1) { 482 dev_kfree_skb_any(skb); 483 if (net_ratelimit()) 484 netdev_err(ndev, "NOT enough BD for SG!\n"); 485 return NETDEV_TX_OK; 486 } 487 488 /* Protocol checksum off-load for TCP and UDP. */ 489 if (fec_enet_clear_csum(skb, ndev)) { 490 dev_kfree_skb_any(skb); 491 return NETDEV_TX_OK; 492 } 493 494 /* Fill in a Tx ring entry */ 495 bdp = txq->bd.cur; 496 last_bdp = bdp; 497 status = fec16_to_cpu(bdp->cbd_sc); 498 status &= ~BD_ENET_TX_STATS; 499 500 /* Set buffer length and buffer pointer */ 501 bufaddr = skb->data; 502 buflen = skb_headlen(skb); 503 504 index = fec_enet_get_bd_index(bdp, &txq->bd); 505 if (((unsigned long) bufaddr) & fep->tx_align || 506 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 507 memcpy(txq->tx_bounce[index], skb->data, buflen); 508 bufaddr = txq->tx_bounce[index]; 509 510 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 511 swap_buffer(bufaddr, buflen); 512 } 513 514 /* Push the data cache so the CPM does not get stale memory data. */ 515 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 516 if (dma_mapping_error(&fep->pdev->dev, addr)) { 517 dev_kfree_skb_any(skb); 518 if (net_ratelimit()) 519 netdev_err(ndev, "Tx DMA memory map failed\n"); 520 return NETDEV_TX_OK; 521 } 522 523 if (nr_frags) { 524 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 525 if (IS_ERR(last_bdp)) { 526 dma_unmap_single(&fep->pdev->dev, addr, 527 buflen, DMA_TO_DEVICE); 528 dev_kfree_skb_any(skb); 529 return NETDEV_TX_OK; 530 } 531 } else { 532 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 533 if (fep->bufdesc_ex) { 534 estatus = BD_ENET_TX_INT; 535 if (unlikely(skb_shinfo(skb)->tx_flags & 536 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 537 estatus |= BD_ENET_TX_TS; 538 } 539 } 540 bdp->cbd_bufaddr = cpu_to_fec32(addr); 541 bdp->cbd_datlen = cpu_to_fec16(buflen); 542 543 if (fep->bufdesc_ex) { 544 545 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 546 547 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 548 fep->hwts_tx_en)) 549 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 550 551 if (fep->quirks & FEC_QUIRK_HAS_AVB) 552 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 553 554 if (skb->ip_summed == CHECKSUM_PARTIAL) 555 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 556 557 ebdp->cbd_bdu = 0; 558 ebdp->cbd_esc = cpu_to_fec32(estatus); 559 } 560 561 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 562 /* Save skb pointer */ 563 txq->tx_skbuff[index] = skb; 564 565 /* Make sure the updates to rest of the descriptor are performed before 566 * transferring ownership. 567 */ 568 wmb(); 569 570 /* Send it on its way. Tell FEC it's ready, interrupt when done, 571 * it's the last BD of the frame, and to put the CRC on the end. 572 */ 573 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 574 bdp->cbd_sc = cpu_to_fec16(status); 575 576 /* If this was the last BD in the ring, start at the beginning again. */ 577 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 578 579 skb_tx_timestamp(skb); 580 581 /* Make sure the update to bdp and tx_skbuff are performed before 582 * txq->bd.cur. 583 */ 584 wmb(); 585 txq->bd.cur = bdp; 586 587 /* Trigger transmission start */ 588 writel(0, txq->bd.reg_desc_active); 589 590 return 0; 591 } 592 593 static int 594 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 595 struct net_device *ndev, 596 struct bufdesc *bdp, int index, char *data, 597 int size, bool last_tcp, bool is_last) 598 { 599 struct fec_enet_private *fep = netdev_priv(ndev); 600 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 601 unsigned short status; 602 unsigned int estatus = 0; 603 dma_addr_t addr; 604 605 status = fec16_to_cpu(bdp->cbd_sc); 606 status &= ~BD_ENET_TX_STATS; 607 608 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 609 610 if (((unsigned long) data) & fep->tx_align || 611 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 612 memcpy(txq->tx_bounce[index], data, size); 613 data = txq->tx_bounce[index]; 614 615 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 616 swap_buffer(data, size); 617 } 618 619 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 620 if (dma_mapping_error(&fep->pdev->dev, addr)) { 621 dev_kfree_skb_any(skb); 622 if (net_ratelimit()) 623 netdev_err(ndev, "Tx DMA memory map failed\n"); 624 return NETDEV_TX_BUSY; 625 } 626 627 bdp->cbd_datlen = cpu_to_fec16(size); 628 bdp->cbd_bufaddr = cpu_to_fec32(addr); 629 630 if (fep->bufdesc_ex) { 631 if (fep->quirks & FEC_QUIRK_HAS_AVB) 632 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 633 if (skb->ip_summed == CHECKSUM_PARTIAL) 634 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 635 ebdp->cbd_bdu = 0; 636 ebdp->cbd_esc = cpu_to_fec32(estatus); 637 } 638 639 /* Handle the last BD specially */ 640 if (last_tcp) 641 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 642 if (is_last) { 643 status |= BD_ENET_TX_INTR; 644 if (fep->bufdesc_ex) 645 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 646 } 647 648 bdp->cbd_sc = cpu_to_fec16(status); 649 650 return 0; 651 } 652 653 static int 654 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 655 struct sk_buff *skb, struct net_device *ndev, 656 struct bufdesc *bdp, int index) 657 { 658 struct fec_enet_private *fep = netdev_priv(ndev); 659 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 660 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 661 void *bufaddr; 662 unsigned long dmabuf; 663 unsigned short status; 664 unsigned int estatus = 0; 665 666 status = fec16_to_cpu(bdp->cbd_sc); 667 status &= ~BD_ENET_TX_STATS; 668 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 669 670 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 671 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 672 if (((unsigned long)bufaddr) & fep->tx_align || 673 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 674 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 675 bufaddr = txq->tx_bounce[index]; 676 677 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 678 swap_buffer(bufaddr, hdr_len); 679 680 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 681 hdr_len, DMA_TO_DEVICE); 682 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 683 dev_kfree_skb_any(skb); 684 if (net_ratelimit()) 685 netdev_err(ndev, "Tx DMA memory map failed\n"); 686 return NETDEV_TX_BUSY; 687 } 688 } 689 690 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 691 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 692 693 if (fep->bufdesc_ex) { 694 if (fep->quirks & FEC_QUIRK_HAS_AVB) 695 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 696 if (skb->ip_summed == CHECKSUM_PARTIAL) 697 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 698 ebdp->cbd_bdu = 0; 699 ebdp->cbd_esc = cpu_to_fec32(estatus); 700 } 701 702 bdp->cbd_sc = cpu_to_fec16(status); 703 704 return 0; 705 } 706 707 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 708 struct sk_buff *skb, 709 struct net_device *ndev) 710 { 711 struct fec_enet_private *fep = netdev_priv(ndev); 712 int hdr_len, total_len, data_left; 713 struct bufdesc *bdp = txq->bd.cur; 714 struct tso_t tso; 715 unsigned int index = 0; 716 int ret; 717 718 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 719 dev_kfree_skb_any(skb); 720 if (net_ratelimit()) 721 netdev_err(ndev, "NOT enough BD for TSO!\n"); 722 return NETDEV_TX_OK; 723 } 724 725 /* Protocol checksum off-load for TCP and UDP. */ 726 if (fec_enet_clear_csum(skb, ndev)) { 727 dev_kfree_skb_any(skb); 728 return NETDEV_TX_OK; 729 } 730 731 /* Initialize the TSO handler, and prepare the first payload */ 732 hdr_len = tso_start(skb, &tso); 733 734 total_len = skb->len - hdr_len; 735 while (total_len > 0) { 736 char *hdr; 737 738 index = fec_enet_get_bd_index(bdp, &txq->bd); 739 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 740 total_len -= data_left; 741 742 /* prepare packet headers: MAC + IP + TCP */ 743 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 744 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 745 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 746 if (ret) 747 goto err_release; 748 749 while (data_left > 0) { 750 int size; 751 752 size = min_t(int, tso.size, data_left); 753 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 754 index = fec_enet_get_bd_index(bdp, &txq->bd); 755 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 756 bdp, index, 757 tso.data, size, 758 size == data_left, 759 total_len == 0); 760 if (ret) 761 goto err_release; 762 763 data_left -= size; 764 tso_build_data(skb, &tso, size); 765 } 766 767 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 768 } 769 770 /* Save skb pointer */ 771 txq->tx_skbuff[index] = skb; 772 773 skb_tx_timestamp(skb); 774 txq->bd.cur = bdp; 775 776 /* Trigger transmission start */ 777 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 778 !readl(txq->bd.reg_desc_active) || 779 !readl(txq->bd.reg_desc_active) || 780 !readl(txq->bd.reg_desc_active) || 781 !readl(txq->bd.reg_desc_active)) 782 writel(0, txq->bd.reg_desc_active); 783 784 return 0; 785 786 err_release: 787 /* TODO: Release all used data descriptors for TSO */ 788 return ret; 789 } 790 791 static netdev_tx_t 792 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 793 { 794 struct fec_enet_private *fep = netdev_priv(ndev); 795 int entries_free; 796 unsigned short queue; 797 struct fec_enet_priv_tx_q *txq; 798 struct netdev_queue *nq; 799 int ret; 800 801 queue = skb_get_queue_mapping(skb); 802 txq = fep->tx_queue[queue]; 803 nq = netdev_get_tx_queue(ndev, queue); 804 805 if (skb_is_gso(skb)) 806 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 807 else 808 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 809 if (ret) 810 return ret; 811 812 entries_free = fec_enet_get_free_txdesc_num(txq); 813 if (entries_free <= txq->tx_stop_threshold) 814 netif_tx_stop_queue(nq); 815 816 return NETDEV_TX_OK; 817 } 818 819 /* Init RX & TX buffer descriptors 820 */ 821 static void fec_enet_bd_init(struct net_device *dev) 822 { 823 struct fec_enet_private *fep = netdev_priv(dev); 824 struct fec_enet_priv_tx_q *txq; 825 struct fec_enet_priv_rx_q *rxq; 826 struct bufdesc *bdp; 827 unsigned int i; 828 unsigned int q; 829 830 for (q = 0; q < fep->num_rx_queues; q++) { 831 /* Initialize the receive buffer descriptors. */ 832 rxq = fep->rx_queue[q]; 833 bdp = rxq->bd.base; 834 835 for (i = 0; i < rxq->bd.ring_size; i++) { 836 837 /* Initialize the BD for every fragment in the page. */ 838 if (bdp->cbd_bufaddr) 839 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 840 else 841 bdp->cbd_sc = cpu_to_fec16(0); 842 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 843 } 844 845 /* Set the last buffer to wrap */ 846 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 847 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 848 849 rxq->bd.cur = rxq->bd.base; 850 } 851 852 for (q = 0; q < fep->num_tx_queues; q++) { 853 /* ...and the same for transmit */ 854 txq = fep->tx_queue[q]; 855 bdp = txq->bd.base; 856 txq->bd.cur = bdp; 857 858 for (i = 0; i < txq->bd.ring_size; i++) { 859 /* Initialize the BD for every fragment in the page. */ 860 bdp->cbd_sc = cpu_to_fec16(0); 861 if (bdp->cbd_bufaddr && 862 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 863 dma_unmap_single(&fep->pdev->dev, 864 fec32_to_cpu(bdp->cbd_bufaddr), 865 fec16_to_cpu(bdp->cbd_datlen), 866 DMA_TO_DEVICE); 867 if (txq->tx_skbuff[i]) { 868 dev_kfree_skb_any(txq->tx_skbuff[i]); 869 txq->tx_skbuff[i] = NULL; 870 } 871 bdp->cbd_bufaddr = cpu_to_fec32(0); 872 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 873 } 874 875 /* Set the last buffer to wrap */ 876 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 877 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 878 txq->dirty_tx = bdp; 879 } 880 } 881 882 static void fec_enet_active_rxring(struct net_device *ndev) 883 { 884 struct fec_enet_private *fep = netdev_priv(ndev); 885 int i; 886 887 for (i = 0; i < fep->num_rx_queues; i++) 888 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 889 } 890 891 static void fec_enet_enable_ring(struct net_device *ndev) 892 { 893 struct fec_enet_private *fep = netdev_priv(ndev); 894 struct fec_enet_priv_tx_q *txq; 895 struct fec_enet_priv_rx_q *rxq; 896 int i; 897 898 for (i = 0; i < fep->num_rx_queues; i++) { 899 rxq = fep->rx_queue[i]; 900 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 901 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 902 903 /* enable DMA1/2 */ 904 if (i) 905 writel(RCMR_MATCHEN | RCMR_CMP(i), 906 fep->hwp + FEC_RCMR(i)); 907 } 908 909 for (i = 0; i < fep->num_tx_queues; i++) { 910 txq = fep->tx_queue[i]; 911 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 912 913 /* enable DMA1/2 */ 914 if (i) 915 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 916 fep->hwp + FEC_DMA_CFG(i)); 917 } 918 } 919 920 static void fec_enet_reset_skb(struct net_device *ndev) 921 { 922 struct fec_enet_private *fep = netdev_priv(ndev); 923 struct fec_enet_priv_tx_q *txq; 924 int i, j; 925 926 for (i = 0; i < fep->num_tx_queues; i++) { 927 txq = fep->tx_queue[i]; 928 929 for (j = 0; j < txq->bd.ring_size; j++) { 930 if (txq->tx_skbuff[j]) { 931 dev_kfree_skb_any(txq->tx_skbuff[j]); 932 txq->tx_skbuff[j] = NULL; 933 } 934 } 935 } 936 } 937 938 /* 939 * This function is called to start or restart the FEC during a link 940 * change, transmit timeout, or to reconfigure the FEC. The network 941 * packet processing for this device must be stopped before this call. 942 */ 943 static void 944 fec_restart(struct net_device *ndev) 945 { 946 struct fec_enet_private *fep = netdev_priv(ndev); 947 u32 val; 948 u32 temp_mac[2]; 949 u32 rcntl = OPT_FRAME_SIZE | 0x04; 950 u32 ecntl = 0x2; /* ETHEREN */ 951 952 /* Whack a reset. We should wait for this. 953 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 954 * instead of reset MAC itself. 955 */ 956 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 957 writel(0, fep->hwp + FEC_ECNTRL); 958 } else { 959 writel(1, fep->hwp + FEC_ECNTRL); 960 udelay(10); 961 } 962 963 /* 964 * enet-mac reset will reset mac address registers too, 965 * so need to reconfigure it. 966 */ 967 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 968 writel((__force u32)cpu_to_be32(temp_mac[0]), 969 fep->hwp + FEC_ADDR_LOW); 970 writel((__force u32)cpu_to_be32(temp_mac[1]), 971 fep->hwp + FEC_ADDR_HIGH); 972 973 /* Clear any outstanding interrupt, except MDIO. */ 974 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 975 976 fec_enet_bd_init(ndev); 977 978 fec_enet_enable_ring(ndev); 979 980 /* Reset tx SKB buffers. */ 981 fec_enet_reset_skb(ndev); 982 983 /* Enable MII mode */ 984 if (fep->full_duplex == DUPLEX_FULL) { 985 /* FD enable */ 986 writel(0x04, fep->hwp + FEC_X_CNTRL); 987 } else { 988 /* No Rcv on Xmit */ 989 rcntl |= 0x02; 990 writel(0x0, fep->hwp + FEC_X_CNTRL); 991 } 992 993 /* Set MII speed */ 994 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 995 996 #if !defined(CONFIG_M5272) 997 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 998 val = readl(fep->hwp + FEC_RACC); 999 /* align IP header */ 1000 val |= FEC_RACC_SHIFT16; 1001 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1002 /* set RX checksum */ 1003 val |= FEC_RACC_OPTIONS; 1004 else 1005 val &= ~FEC_RACC_OPTIONS; 1006 writel(val, fep->hwp + FEC_RACC); 1007 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1008 } 1009 #endif 1010 1011 /* 1012 * The phy interface and speed need to get configured 1013 * differently on enet-mac. 1014 */ 1015 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1016 /* Enable flow control and length check */ 1017 rcntl |= 0x40000000 | 0x00000020; 1018 1019 /* RGMII, RMII or MII */ 1020 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1021 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1022 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1023 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1024 rcntl |= (1 << 6); 1025 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1026 rcntl |= (1 << 8); 1027 else 1028 rcntl &= ~(1 << 8); 1029 1030 /* 1G, 100M or 10M */ 1031 if (ndev->phydev) { 1032 if (ndev->phydev->speed == SPEED_1000) 1033 ecntl |= (1 << 5); 1034 else if (ndev->phydev->speed == SPEED_100) 1035 rcntl &= ~(1 << 9); 1036 else 1037 rcntl |= (1 << 9); 1038 } 1039 } else { 1040 #ifdef FEC_MIIGSK_ENR 1041 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1042 u32 cfgr; 1043 /* disable the gasket and wait */ 1044 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1045 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1046 udelay(1); 1047 1048 /* 1049 * configure the gasket: 1050 * RMII, 50 MHz, no loopback, no echo 1051 * MII, 25 MHz, no loopback, no echo 1052 */ 1053 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1054 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1055 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1056 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1057 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1058 1059 /* re-enable the gasket */ 1060 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1061 } 1062 #endif 1063 } 1064 1065 #if !defined(CONFIG_M5272) 1066 /* enable pause frame*/ 1067 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1068 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1069 ndev->phydev && ndev->phydev->pause)) { 1070 rcntl |= FEC_ENET_FCE; 1071 1072 /* set FIFO threshold parameter to reduce overrun */ 1073 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1074 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1075 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1076 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1077 1078 /* OPD */ 1079 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1080 } else { 1081 rcntl &= ~FEC_ENET_FCE; 1082 } 1083 #endif /* !defined(CONFIG_M5272) */ 1084 1085 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1086 1087 /* Setup multicast filter. */ 1088 set_multicast_list(ndev); 1089 #ifndef CONFIG_M5272 1090 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1091 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1092 #endif 1093 1094 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1095 /* enable ENET endian swap */ 1096 ecntl |= (1 << 8); 1097 /* enable ENET store and forward mode */ 1098 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1099 } 1100 1101 if (fep->bufdesc_ex) 1102 ecntl |= (1 << 4); 1103 1104 #ifndef CONFIG_M5272 1105 /* Enable the MIB statistic event counters */ 1106 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1107 #endif 1108 1109 /* And last, enable the transmit and receive processing */ 1110 writel(ecntl, fep->hwp + FEC_ECNTRL); 1111 fec_enet_active_rxring(ndev); 1112 1113 if (fep->bufdesc_ex) 1114 fec_ptp_start_cyclecounter(ndev); 1115 1116 /* Enable interrupts we wish to service */ 1117 if (fep->link) 1118 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1119 else 1120 writel(0, fep->hwp + FEC_IMASK); 1121 1122 /* Init the interrupt coalescing */ 1123 fec_enet_itr_coal_init(ndev); 1124 1125 } 1126 1127 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1128 { 1129 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1130 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1131 1132 if (stop_gpr->gpr) { 1133 if (enabled) 1134 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1135 BIT(stop_gpr->bit), 1136 BIT(stop_gpr->bit)); 1137 else 1138 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1139 BIT(stop_gpr->bit), 0); 1140 } else if (pdata && pdata->sleep_mode_enable) { 1141 pdata->sleep_mode_enable(enabled); 1142 } 1143 } 1144 1145 static void 1146 fec_stop(struct net_device *ndev) 1147 { 1148 struct fec_enet_private *fep = netdev_priv(ndev); 1149 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1150 u32 val; 1151 1152 /* We cannot expect a graceful transmit stop without link !!! */ 1153 if (fep->link) { 1154 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1155 udelay(10); 1156 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1157 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1158 } 1159 1160 /* Whack a reset. We should wait for this. 1161 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1162 * instead of reset MAC itself. 1163 */ 1164 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1165 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 1166 writel(0, fep->hwp + FEC_ECNTRL); 1167 } else { 1168 writel(1, fep->hwp + FEC_ECNTRL); 1169 udelay(10); 1170 } 1171 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1172 } else { 1173 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1174 val = readl(fep->hwp + FEC_ECNTRL); 1175 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1176 writel(val, fep->hwp + FEC_ECNTRL); 1177 fec_enet_stop_mode(fep, true); 1178 } 1179 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1180 1181 /* We have to keep ENET enabled to have MII interrupt stay working */ 1182 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1183 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1184 writel(2, fep->hwp + FEC_ECNTRL); 1185 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1186 } 1187 } 1188 1189 1190 static void 1191 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1192 { 1193 struct fec_enet_private *fep = netdev_priv(ndev); 1194 1195 fec_dump(ndev); 1196 1197 ndev->stats.tx_errors++; 1198 1199 schedule_work(&fep->tx_timeout_work); 1200 } 1201 1202 static void fec_enet_timeout_work(struct work_struct *work) 1203 { 1204 struct fec_enet_private *fep = 1205 container_of(work, struct fec_enet_private, tx_timeout_work); 1206 struct net_device *ndev = fep->netdev; 1207 1208 rtnl_lock(); 1209 if (netif_device_present(ndev) || netif_running(ndev)) { 1210 napi_disable(&fep->napi); 1211 netif_tx_lock_bh(ndev); 1212 fec_restart(ndev); 1213 netif_tx_wake_all_queues(ndev); 1214 netif_tx_unlock_bh(ndev); 1215 napi_enable(&fep->napi); 1216 } 1217 rtnl_unlock(); 1218 } 1219 1220 static void 1221 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1222 struct skb_shared_hwtstamps *hwtstamps) 1223 { 1224 unsigned long flags; 1225 u64 ns; 1226 1227 spin_lock_irqsave(&fep->tmreg_lock, flags); 1228 ns = timecounter_cyc2time(&fep->tc, ts); 1229 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1230 1231 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1232 hwtstamps->hwtstamp = ns_to_ktime(ns); 1233 } 1234 1235 static void 1236 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1237 { 1238 struct fec_enet_private *fep; 1239 struct bufdesc *bdp; 1240 unsigned short status; 1241 struct sk_buff *skb; 1242 struct fec_enet_priv_tx_q *txq; 1243 struct netdev_queue *nq; 1244 int index = 0; 1245 int entries_free; 1246 1247 fep = netdev_priv(ndev); 1248 1249 txq = fep->tx_queue[queue_id]; 1250 /* get next bdp of dirty_tx */ 1251 nq = netdev_get_tx_queue(ndev, queue_id); 1252 bdp = txq->dirty_tx; 1253 1254 /* get next bdp of dirty_tx */ 1255 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1256 1257 while (bdp != READ_ONCE(txq->bd.cur)) { 1258 /* Order the load of bd.cur and cbd_sc */ 1259 rmb(); 1260 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1261 if (status & BD_ENET_TX_READY) 1262 break; 1263 1264 index = fec_enet_get_bd_index(bdp, &txq->bd); 1265 1266 skb = txq->tx_skbuff[index]; 1267 txq->tx_skbuff[index] = NULL; 1268 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1269 dma_unmap_single(&fep->pdev->dev, 1270 fec32_to_cpu(bdp->cbd_bufaddr), 1271 fec16_to_cpu(bdp->cbd_datlen), 1272 DMA_TO_DEVICE); 1273 bdp->cbd_bufaddr = cpu_to_fec32(0); 1274 if (!skb) 1275 goto skb_done; 1276 1277 /* Check for errors. */ 1278 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1279 BD_ENET_TX_RL | BD_ENET_TX_UN | 1280 BD_ENET_TX_CSL)) { 1281 ndev->stats.tx_errors++; 1282 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1283 ndev->stats.tx_heartbeat_errors++; 1284 if (status & BD_ENET_TX_LC) /* Late collision */ 1285 ndev->stats.tx_window_errors++; 1286 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1287 ndev->stats.tx_aborted_errors++; 1288 if (status & BD_ENET_TX_UN) /* Underrun */ 1289 ndev->stats.tx_fifo_errors++; 1290 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1291 ndev->stats.tx_carrier_errors++; 1292 } else { 1293 ndev->stats.tx_packets++; 1294 ndev->stats.tx_bytes += skb->len; 1295 } 1296 1297 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1298 * are to time stamp the packet, so we still need to check time 1299 * stamping enabled flag. 1300 */ 1301 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1302 fep->hwts_tx_en) && 1303 fep->bufdesc_ex) { 1304 struct skb_shared_hwtstamps shhwtstamps; 1305 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1306 1307 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1308 skb_tstamp_tx(skb, &shhwtstamps); 1309 } 1310 1311 /* Deferred means some collisions occurred during transmit, 1312 * but we eventually sent the packet OK. 1313 */ 1314 if (status & BD_ENET_TX_DEF) 1315 ndev->stats.collisions++; 1316 1317 /* Free the sk buffer associated with this last transmit */ 1318 dev_kfree_skb_any(skb); 1319 skb_done: 1320 /* Make sure the update to bdp and tx_skbuff are performed 1321 * before dirty_tx 1322 */ 1323 wmb(); 1324 txq->dirty_tx = bdp; 1325 1326 /* Update pointer to next buffer descriptor to be transmitted */ 1327 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1328 1329 /* Since we have freed up a buffer, the ring is no longer full 1330 */ 1331 if (netif_tx_queue_stopped(nq)) { 1332 entries_free = fec_enet_get_free_txdesc_num(txq); 1333 if (entries_free >= txq->tx_wake_threshold) 1334 netif_tx_wake_queue(nq); 1335 } 1336 } 1337 1338 /* ERR006358: Keep the transmitter going */ 1339 if (bdp != txq->bd.cur && 1340 readl(txq->bd.reg_desc_active) == 0) 1341 writel(0, txq->bd.reg_desc_active); 1342 } 1343 1344 static void fec_enet_tx(struct net_device *ndev) 1345 { 1346 struct fec_enet_private *fep = netdev_priv(ndev); 1347 int i; 1348 1349 /* Make sure that AVB queues are processed first. */ 1350 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1351 fec_enet_tx_queue(ndev, i); 1352 } 1353 1354 static int 1355 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) 1356 { 1357 struct fec_enet_private *fep = netdev_priv(ndev); 1358 int off; 1359 1360 off = ((unsigned long)skb->data) & fep->rx_align; 1361 if (off) 1362 skb_reserve(skb, fep->rx_align + 1 - off); 1363 1364 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE)); 1365 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) { 1366 if (net_ratelimit()) 1367 netdev_err(ndev, "Rx DMA memory map failed\n"); 1368 return -ENOMEM; 1369 } 1370 1371 return 0; 1372 } 1373 1374 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, 1375 struct bufdesc *bdp, u32 length, bool swap) 1376 { 1377 struct fec_enet_private *fep = netdev_priv(ndev); 1378 struct sk_buff *new_skb; 1379 1380 if (length > fep->rx_copybreak) 1381 return false; 1382 1383 new_skb = netdev_alloc_skb(ndev, length); 1384 if (!new_skb) 1385 return false; 1386 1387 dma_sync_single_for_cpu(&fep->pdev->dev, 1388 fec32_to_cpu(bdp->cbd_bufaddr), 1389 FEC_ENET_RX_FRSIZE - fep->rx_align, 1390 DMA_FROM_DEVICE); 1391 if (!swap) 1392 memcpy(new_skb->data, (*skb)->data, length); 1393 else 1394 swap_buffer2(new_skb->data, (*skb)->data, length); 1395 *skb = new_skb; 1396 1397 return true; 1398 } 1399 1400 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1401 * When we update through the ring, if the next incoming buffer has 1402 * not been given to the system, we just set the empty indicator, 1403 * effectively tossing the packet. 1404 */ 1405 static int 1406 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1407 { 1408 struct fec_enet_private *fep = netdev_priv(ndev); 1409 struct fec_enet_priv_rx_q *rxq; 1410 struct bufdesc *bdp; 1411 unsigned short status; 1412 struct sk_buff *skb_new = NULL; 1413 struct sk_buff *skb; 1414 ushort pkt_len; 1415 __u8 *data; 1416 int pkt_received = 0; 1417 struct bufdesc_ex *ebdp = NULL; 1418 bool vlan_packet_rcvd = false; 1419 u16 vlan_tag; 1420 int index = 0; 1421 bool is_copybreak; 1422 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1423 1424 #ifdef CONFIG_M532x 1425 flush_cache_all(); 1426 #endif 1427 rxq = fep->rx_queue[queue_id]; 1428 1429 /* First, grab all of the stats for the incoming packet. 1430 * These get messed up if we get called due to a busy condition. 1431 */ 1432 bdp = rxq->bd.cur; 1433 1434 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1435 1436 if (pkt_received >= budget) 1437 break; 1438 pkt_received++; 1439 1440 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT); 1441 1442 /* Check for errors. */ 1443 status ^= BD_ENET_RX_LAST; 1444 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1445 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1446 BD_ENET_RX_CL)) { 1447 ndev->stats.rx_errors++; 1448 if (status & BD_ENET_RX_OV) { 1449 /* FIFO overrun */ 1450 ndev->stats.rx_fifo_errors++; 1451 goto rx_processing_done; 1452 } 1453 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1454 | BD_ENET_RX_LAST)) { 1455 /* Frame too long or too short. */ 1456 ndev->stats.rx_length_errors++; 1457 if (status & BD_ENET_RX_LAST) 1458 netdev_err(ndev, "rcv is not +last\n"); 1459 } 1460 if (status & BD_ENET_RX_CR) /* CRC Error */ 1461 ndev->stats.rx_crc_errors++; 1462 /* Report late collisions as a frame error. */ 1463 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1464 ndev->stats.rx_frame_errors++; 1465 goto rx_processing_done; 1466 } 1467 1468 /* Process the incoming frame. */ 1469 ndev->stats.rx_packets++; 1470 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1471 ndev->stats.rx_bytes += pkt_len; 1472 1473 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1474 skb = rxq->rx_skbuff[index]; 1475 1476 /* The packet length includes FCS, but we don't want to 1477 * include that when passing upstream as it messes up 1478 * bridging applications. 1479 */ 1480 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, 1481 need_swap); 1482 if (!is_copybreak) { 1483 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 1484 if (unlikely(!skb_new)) { 1485 ndev->stats.rx_dropped++; 1486 goto rx_processing_done; 1487 } 1488 dma_unmap_single(&fep->pdev->dev, 1489 fec32_to_cpu(bdp->cbd_bufaddr), 1490 FEC_ENET_RX_FRSIZE - fep->rx_align, 1491 DMA_FROM_DEVICE); 1492 } 1493 1494 prefetch(skb->data - NET_IP_ALIGN); 1495 skb_put(skb, pkt_len - 4); 1496 data = skb->data; 1497 1498 if (!is_copybreak && need_swap) 1499 swap_buffer(data, pkt_len); 1500 1501 #if !defined(CONFIG_M5272) 1502 if (fep->quirks & FEC_QUIRK_HAS_RACC) 1503 data = skb_pull_inline(skb, 2); 1504 #endif 1505 1506 /* Extract the enhanced buffer descriptor */ 1507 ebdp = NULL; 1508 if (fep->bufdesc_ex) 1509 ebdp = (struct bufdesc_ex *)bdp; 1510 1511 /* If this is a VLAN packet remove the VLAN Tag */ 1512 vlan_packet_rcvd = false; 1513 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1514 fep->bufdesc_ex && 1515 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1516 /* Push and remove the vlan tag */ 1517 struct vlan_hdr *vlan_header = 1518 (struct vlan_hdr *) (data + ETH_HLEN); 1519 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1520 1521 vlan_packet_rcvd = true; 1522 1523 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1524 skb_pull(skb, VLAN_HLEN); 1525 } 1526 1527 skb->protocol = eth_type_trans(skb, ndev); 1528 1529 /* Get receive timestamp from the skb */ 1530 if (fep->hwts_rx_en && fep->bufdesc_ex) 1531 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1532 skb_hwtstamps(skb)); 1533 1534 if (fep->bufdesc_ex && 1535 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1536 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1537 /* don't check it */ 1538 skb->ip_summed = CHECKSUM_UNNECESSARY; 1539 } else { 1540 skb_checksum_none_assert(skb); 1541 } 1542 } 1543 1544 /* Handle received VLAN packets */ 1545 if (vlan_packet_rcvd) 1546 __vlan_hwaccel_put_tag(skb, 1547 htons(ETH_P_8021Q), 1548 vlan_tag); 1549 1550 skb_record_rx_queue(skb, queue_id); 1551 napi_gro_receive(&fep->napi, skb); 1552 1553 if (is_copybreak) { 1554 dma_sync_single_for_device(&fep->pdev->dev, 1555 fec32_to_cpu(bdp->cbd_bufaddr), 1556 FEC_ENET_RX_FRSIZE - fep->rx_align, 1557 DMA_FROM_DEVICE); 1558 } else { 1559 rxq->rx_skbuff[index] = skb_new; 1560 fec_enet_new_rxbdp(ndev, bdp, skb_new); 1561 } 1562 1563 rx_processing_done: 1564 /* Clear the status flags for this buffer */ 1565 status &= ~BD_ENET_RX_STATS; 1566 1567 /* Mark the buffer empty */ 1568 status |= BD_ENET_RX_EMPTY; 1569 1570 if (fep->bufdesc_ex) { 1571 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1572 1573 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1574 ebdp->cbd_prot = 0; 1575 ebdp->cbd_bdu = 0; 1576 } 1577 /* Make sure the updates to rest of the descriptor are 1578 * performed before transferring ownership. 1579 */ 1580 wmb(); 1581 bdp->cbd_sc = cpu_to_fec16(status); 1582 1583 /* Update BD pointer to next entry */ 1584 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1585 1586 /* Doing this here will keep the FEC running while we process 1587 * incoming frames. On a heavily loaded network, we should be 1588 * able to keep up at the expense of system resources. 1589 */ 1590 writel(0, rxq->bd.reg_desc_active); 1591 } 1592 rxq->bd.cur = bdp; 1593 return pkt_received; 1594 } 1595 1596 static int fec_enet_rx(struct net_device *ndev, int budget) 1597 { 1598 struct fec_enet_private *fep = netdev_priv(ndev); 1599 int i, done = 0; 1600 1601 /* Make sure that AVB queues are processed first. */ 1602 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1603 done += fec_enet_rx_queue(ndev, budget - done, i); 1604 1605 return done; 1606 } 1607 1608 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1609 { 1610 uint int_events; 1611 1612 int_events = readl(fep->hwp + FEC_IEVENT); 1613 1614 /* Don't clear MDIO events, we poll for those */ 1615 int_events &= ~FEC_ENET_MII; 1616 1617 writel(int_events, fep->hwp + FEC_IEVENT); 1618 1619 return int_events != 0; 1620 } 1621 1622 static irqreturn_t 1623 fec_enet_interrupt(int irq, void *dev_id) 1624 { 1625 struct net_device *ndev = dev_id; 1626 struct fec_enet_private *fep = netdev_priv(ndev); 1627 irqreturn_t ret = IRQ_NONE; 1628 1629 if (fec_enet_collect_events(fep) && fep->link) { 1630 ret = IRQ_HANDLED; 1631 1632 if (napi_schedule_prep(&fep->napi)) { 1633 /* Disable interrupts */ 1634 writel(0, fep->hwp + FEC_IMASK); 1635 __napi_schedule(&fep->napi); 1636 } 1637 } 1638 1639 return ret; 1640 } 1641 1642 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1643 { 1644 struct net_device *ndev = napi->dev; 1645 struct fec_enet_private *fep = netdev_priv(ndev); 1646 int done = 0; 1647 1648 do { 1649 done += fec_enet_rx(ndev, budget - done); 1650 fec_enet_tx(ndev); 1651 } while ((done < budget) && fec_enet_collect_events(fep)); 1652 1653 if (done < budget) { 1654 napi_complete_done(napi, done); 1655 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1656 } 1657 1658 return done; 1659 } 1660 1661 /* ------------------------------------------------------------------------- */ 1662 static void fec_get_mac(struct net_device *ndev) 1663 { 1664 struct fec_enet_private *fep = netdev_priv(ndev); 1665 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1666 unsigned char *iap, tmpaddr[ETH_ALEN]; 1667 1668 /* 1669 * try to get mac address in following order: 1670 * 1671 * 1) module parameter via kernel command line in form 1672 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1673 */ 1674 iap = macaddr; 1675 1676 /* 1677 * 2) from device tree data 1678 */ 1679 if (!is_valid_ether_addr(iap)) { 1680 struct device_node *np = fep->pdev->dev.of_node; 1681 if (np) { 1682 const char *mac = of_get_mac_address(np); 1683 if (!IS_ERR(mac)) 1684 iap = (unsigned char *) mac; 1685 } 1686 } 1687 1688 /* 1689 * 3) from flash or fuse (via platform data) 1690 */ 1691 if (!is_valid_ether_addr(iap)) { 1692 #ifdef CONFIG_M5272 1693 if (FEC_FLASHMAC) 1694 iap = (unsigned char *)FEC_FLASHMAC; 1695 #else 1696 if (pdata) 1697 iap = (unsigned char *)&pdata->mac; 1698 #endif 1699 } 1700 1701 /* 1702 * 4) FEC mac registers set by bootloader 1703 */ 1704 if (!is_valid_ether_addr(iap)) { 1705 *((__be32 *) &tmpaddr[0]) = 1706 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1707 *((__be16 *) &tmpaddr[4]) = 1708 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1709 iap = &tmpaddr[0]; 1710 } 1711 1712 /* 1713 * 5) random mac address 1714 */ 1715 if (!is_valid_ether_addr(iap)) { 1716 /* Report it and use a random ethernet address instead */ 1717 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1718 eth_hw_addr_random(ndev); 1719 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1720 ndev->dev_addr); 1721 return; 1722 } 1723 1724 memcpy(ndev->dev_addr, iap, ETH_ALEN); 1725 1726 /* Adjust MAC if using macaddr */ 1727 if (iap == macaddr) 1728 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; 1729 } 1730 1731 /* ------------------------------------------------------------------------- */ 1732 1733 /* 1734 * Phy section 1735 */ 1736 static void fec_enet_adjust_link(struct net_device *ndev) 1737 { 1738 struct fec_enet_private *fep = netdev_priv(ndev); 1739 struct phy_device *phy_dev = ndev->phydev; 1740 int status_change = 0; 1741 1742 /* 1743 * If the netdev is down, or is going down, we're not interested 1744 * in link state events, so just mark our idea of the link as down 1745 * and ignore the event. 1746 */ 1747 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1748 fep->link = 0; 1749 } else if (phy_dev->link) { 1750 if (!fep->link) { 1751 fep->link = phy_dev->link; 1752 status_change = 1; 1753 } 1754 1755 if (fep->full_duplex != phy_dev->duplex) { 1756 fep->full_duplex = phy_dev->duplex; 1757 status_change = 1; 1758 } 1759 1760 if (phy_dev->speed != fep->speed) { 1761 fep->speed = phy_dev->speed; 1762 status_change = 1; 1763 } 1764 1765 /* if any of the above changed restart the FEC */ 1766 if (status_change) { 1767 napi_disable(&fep->napi); 1768 netif_tx_lock_bh(ndev); 1769 fec_restart(ndev); 1770 netif_tx_wake_all_queues(ndev); 1771 netif_tx_unlock_bh(ndev); 1772 napi_enable(&fep->napi); 1773 } 1774 } else { 1775 if (fep->link) { 1776 napi_disable(&fep->napi); 1777 netif_tx_lock_bh(ndev); 1778 fec_stop(ndev); 1779 netif_tx_unlock_bh(ndev); 1780 napi_enable(&fep->napi); 1781 fep->link = phy_dev->link; 1782 status_change = 1; 1783 } 1784 } 1785 1786 if (status_change) 1787 phy_print_status(phy_dev); 1788 } 1789 1790 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1791 { 1792 uint ievent; 1793 int ret; 1794 1795 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1796 ievent & FEC_ENET_MII, 2, 30000); 1797 1798 if (!ret) 1799 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1800 1801 return ret; 1802 } 1803 1804 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1805 { 1806 struct fec_enet_private *fep = bus->priv; 1807 struct device *dev = &fep->pdev->dev; 1808 int ret = 0, frame_start, frame_addr, frame_op; 1809 bool is_c45 = !!(regnum & MII_ADDR_C45); 1810 1811 ret = pm_runtime_resume_and_get(dev); 1812 if (ret < 0) 1813 return ret; 1814 1815 if (is_c45) { 1816 frame_start = FEC_MMFR_ST_C45; 1817 1818 /* write address */ 1819 frame_addr = (regnum >> 16); 1820 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1821 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1822 FEC_MMFR_TA | (regnum & 0xFFFF), 1823 fep->hwp + FEC_MII_DATA); 1824 1825 /* wait for end of transfer */ 1826 ret = fec_enet_mdio_wait(fep); 1827 if (ret) { 1828 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1829 goto out; 1830 } 1831 1832 frame_op = FEC_MMFR_OP_READ_C45; 1833 1834 } else { 1835 /* C22 read */ 1836 frame_op = FEC_MMFR_OP_READ; 1837 frame_start = FEC_MMFR_ST; 1838 frame_addr = regnum; 1839 } 1840 1841 /* start a read op */ 1842 writel(frame_start | frame_op | 1843 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1844 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 1845 1846 /* wait for end of transfer */ 1847 ret = fec_enet_mdio_wait(fep); 1848 if (ret) { 1849 netdev_err(fep->netdev, "MDIO read timeout\n"); 1850 goto out; 1851 } 1852 1853 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 1854 1855 out: 1856 pm_runtime_mark_last_busy(dev); 1857 pm_runtime_put_autosuspend(dev); 1858 1859 return ret; 1860 } 1861 1862 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 1863 u16 value) 1864 { 1865 struct fec_enet_private *fep = bus->priv; 1866 struct device *dev = &fep->pdev->dev; 1867 int ret, frame_start, frame_addr; 1868 bool is_c45 = !!(regnum & MII_ADDR_C45); 1869 1870 ret = pm_runtime_resume_and_get(dev); 1871 if (ret < 0) 1872 return ret; 1873 1874 if (is_c45) { 1875 frame_start = FEC_MMFR_ST_C45; 1876 1877 /* write address */ 1878 frame_addr = (regnum >> 16); 1879 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1880 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1881 FEC_MMFR_TA | (regnum & 0xFFFF), 1882 fep->hwp + FEC_MII_DATA); 1883 1884 /* wait for end of transfer */ 1885 ret = fec_enet_mdio_wait(fep); 1886 if (ret) { 1887 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1888 goto out; 1889 } 1890 } else { 1891 /* C22 write */ 1892 frame_start = FEC_MMFR_ST; 1893 frame_addr = regnum; 1894 } 1895 1896 /* start a write op */ 1897 writel(frame_start | FEC_MMFR_OP_WRITE | 1898 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1899 FEC_MMFR_TA | FEC_MMFR_DATA(value), 1900 fep->hwp + FEC_MII_DATA); 1901 1902 /* wait for end of transfer */ 1903 ret = fec_enet_mdio_wait(fep); 1904 if (ret) 1905 netdev_err(fep->netdev, "MDIO write timeout\n"); 1906 1907 out: 1908 pm_runtime_mark_last_busy(dev); 1909 pm_runtime_put_autosuspend(dev); 1910 1911 return ret; 1912 } 1913 1914 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 1915 { 1916 struct fec_enet_private *fep = netdev_priv(ndev); 1917 struct phy_device *phy_dev = ndev->phydev; 1918 1919 if (phy_dev) { 1920 phy_reset_after_clk_enable(phy_dev); 1921 } else if (fep->phy_node) { 1922 /* 1923 * If the PHY still is not bound to the MAC, but there is 1924 * OF PHY node and a matching PHY device instance already, 1925 * use the OF PHY node to obtain the PHY device instance, 1926 * and then use that PHY device instance when triggering 1927 * the PHY reset. 1928 */ 1929 phy_dev = of_phy_find_device(fep->phy_node); 1930 phy_reset_after_clk_enable(phy_dev); 1931 put_device(&phy_dev->mdio.dev); 1932 } 1933 } 1934 1935 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 1936 { 1937 struct fec_enet_private *fep = netdev_priv(ndev); 1938 int ret; 1939 1940 if (enable) { 1941 ret = clk_prepare_enable(fep->clk_enet_out); 1942 if (ret) 1943 return ret; 1944 1945 if (fep->clk_ptp) { 1946 mutex_lock(&fep->ptp_clk_mutex); 1947 ret = clk_prepare_enable(fep->clk_ptp); 1948 if (ret) { 1949 mutex_unlock(&fep->ptp_clk_mutex); 1950 goto failed_clk_ptp; 1951 } else { 1952 fep->ptp_clk_on = true; 1953 } 1954 mutex_unlock(&fep->ptp_clk_mutex); 1955 } 1956 1957 ret = clk_prepare_enable(fep->clk_ref); 1958 if (ret) 1959 goto failed_clk_ref; 1960 1961 fec_enet_phy_reset_after_clk_enable(ndev); 1962 } else { 1963 clk_disable_unprepare(fep->clk_enet_out); 1964 if (fep->clk_ptp) { 1965 mutex_lock(&fep->ptp_clk_mutex); 1966 clk_disable_unprepare(fep->clk_ptp); 1967 fep->ptp_clk_on = false; 1968 mutex_unlock(&fep->ptp_clk_mutex); 1969 } 1970 clk_disable_unprepare(fep->clk_ref); 1971 } 1972 1973 return 0; 1974 1975 failed_clk_ref: 1976 if (fep->clk_ptp) { 1977 mutex_lock(&fep->ptp_clk_mutex); 1978 clk_disable_unprepare(fep->clk_ptp); 1979 fep->ptp_clk_on = false; 1980 mutex_unlock(&fep->ptp_clk_mutex); 1981 } 1982 failed_clk_ptp: 1983 clk_disable_unprepare(fep->clk_enet_out); 1984 1985 return ret; 1986 } 1987 1988 static int fec_enet_mii_probe(struct net_device *ndev) 1989 { 1990 struct fec_enet_private *fep = netdev_priv(ndev); 1991 struct phy_device *phy_dev = NULL; 1992 char mdio_bus_id[MII_BUS_ID_SIZE]; 1993 char phy_name[MII_BUS_ID_SIZE + 3]; 1994 int phy_id; 1995 int dev_id = fep->dev_id; 1996 1997 if (fep->phy_node) { 1998 phy_dev = of_phy_connect(ndev, fep->phy_node, 1999 &fec_enet_adjust_link, 0, 2000 fep->phy_interface); 2001 if (!phy_dev) { 2002 netdev_err(ndev, "Unable to connect to phy\n"); 2003 return -ENODEV; 2004 } 2005 } else { 2006 /* check for attached phy */ 2007 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2008 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2009 continue; 2010 if (dev_id--) 2011 continue; 2012 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2013 break; 2014 } 2015 2016 if (phy_id >= PHY_MAX_ADDR) { 2017 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2018 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2019 phy_id = 0; 2020 } 2021 2022 snprintf(phy_name, sizeof(phy_name), 2023 PHY_ID_FMT, mdio_bus_id, phy_id); 2024 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2025 fep->phy_interface); 2026 } 2027 2028 if (IS_ERR(phy_dev)) { 2029 netdev_err(ndev, "could not attach to PHY\n"); 2030 return PTR_ERR(phy_dev); 2031 } 2032 2033 /* mask with MAC supported features */ 2034 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2035 phy_set_max_speed(phy_dev, 1000); 2036 phy_remove_link_mode(phy_dev, 2037 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2038 #if !defined(CONFIG_M5272) 2039 phy_support_sym_pause(phy_dev); 2040 #endif 2041 } 2042 else 2043 phy_set_max_speed(phy_dev, 100); 2044 2045 fep->link = 0; 2046 fep->full_duplex = 0; 2047 2048 phy_attached_info(phy_dev); 2049 2050 return 0; 2051 } 2052 2053 static int fec_enet_mii_init(struct platform_device *pdev) 2054 { 2055 static struct mii_bus *fec0_mii_bus; 2056 struct net_device *ndev = platform_get_drvdata(pdev); 2057 struct fec_enet_private *fep = netdev_priv(ndev); 2058 bool suppress_preamble = false; 2059 struct device_node *node; 2060 int err = -ENXIO; 2061 u32 mii_speed, holdtime; 2062 u32 bus_freq; 2063 2064 /* 2065 * The i.MX28 dual fec interfaces are not equal. 2066 * Here are the differences: 2067 * 2068 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2069 * - fec0 acts as the 1588 time master while fec1 is slave 2070 * - external phys can only be configured by fec0 2071 * 2072 * That is to say fec1 can not work independently. It only works 2073 * when fec0 is working. The reason behind this design is that the 2074 * second interface is added primarily for Switch mode. 2075 * 2076 * Because of the last point above, both phys are attached on fec0 2077 * mdio interface in board design, and need to be configured by 2078 * fec0 mii_bus. 2079 */ 2080 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2081 /* fec1 uses fec0 mii_bus */ 2082 if (mii_cnt && fec0_mii_bus) { 2083 fep->mii_bus = fec0_mii_bus; 2084 mii_cnt++; 2085 return 0; 2086 } 2087 return -ENOENT; 2088 } 2089 2090 bus_freq = 2500000; /* 2.5MHz by default */ 2091 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2092 if (node) { 2093 of_property_read_u32(node, "clock-frequency", &bus_freq); 2094 suppress_preamble = of_property_read_bool(node, 2095 "suppress-preamble"); 2096 } 2097 2098 /* 2099 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2100 * 2101 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2102 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2103 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2104 * document. 2105 */ 2106 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2107 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2108 mii_speed--; 2109 if (mii_speed > 63) { 2110 dev_err(&pdev->dev, 2111 "fec clock (%lu) too fast to get right mii speed\n", 2112 clk_get_rate(fep->clk_ipg)); 2113 err = -EINVAL; 2114 goto err_out; 2115 } 2116 2117 /* 2118 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2119 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2120 * versions are RAZ there, so just ignore the difference and write the 2121 * register always. 2122 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2123 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2124 * output. 2125 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2126 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2127 * holdtime cannot result in a value greater than 3. 2128 */ 2129 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2130 2131 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2132 2133 if (suppress_preamble) 2134 fep->phy_speed |= BIT(7); 2135 2136 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2137 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2138 * MII event generation condition: 2139 * - writing MSCR: 2140 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2141 * mscr_reg_data_in[7:0] != 0 2142 * - writing MMFR: 2143 * - mscr[7:0]_not_zero 2144 */ 2145 writel(0, fep->hwp + FEC_MII_DATA); 2146 } 2147 2148 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2149 2150 /* Clear any pending transaction complete indication */ 2151 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2152 2153 fep->mii_bus = mdiobus_alloc(); 2154 if (fep->mii_bus == NULL) { 2155 err = -ENOMEM; 2156 goto err_out; 2157 } 2158 2159 fep->mii_bus->name = "fec_enet_mii_bus"; 2160 fep->mii_bus->read = fec_enet_mdio_read; 2161 fep->mii_bus->write = fec_enet_mdio_write; 2162 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2163 pdev->name, fep->dev_id + 1); 2164 fep->mii_bus->priv = fep; 2165 fep->mii_bus->parent = &pdev->dev; 2166 2167 err = of_mdiobus_register(fep->mii_bus, node); 2168 of_node_put(node); 2169 if (err) 2170 goto err_out_free_mdiobus; 2171 2172 mii_cnt++; 2173 2174 /* save fec0 mii_bus */ 2175 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2176 fec0_mii_bus = fep->mii_bus; 2177 2178 return 0; 2179 2180 err_out_free_mdiobus: 2181 mdiobus_free(fep->mii_bus); 2182 err_out: 2183 return err; 2184 } 2185 2186 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2187 { 2188 if (--mii_cnt == 0) { 2189 mdiobus_unregister(fep->mii_bus); 2190 mdiobus_free(fep->mii_bus); 2191 } 2192 } 2193 2194 static void fec_enet_get_drvinfo(struct net_device *ndev, 2195 struct ethtool_drvinfo *info) 2196 { 2197 struct fec_enet_private *fep = netdev_priv(ndev); 2198 2199 strlcpy(info->driver, fep->pdev->dev.driver->name, 2200 sizeof(info->driver)); 2201 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2202 } 2203 2204 static int fec_enet_get_regs_len(struct net_device *ndev) 2205 { 2206 struct fec_enet_private *fep = netdev_priv(ndev); 2207 struct resource *r; 2208 int s = 0; 2209 2210 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2211 if (r) 2212 s = resource_size(r); 2213 2214 return s; 2215 } 2216 2217 /* List of registers that can be safety be read to dump them with ethtool */ 2218 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2219 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2220 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2221 static __u32 fec_enet_register_version = 2; 2222 static u32 fec_enet_register_offset[] = { 2223 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2224 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2225 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2226 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2227 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2228 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2229 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2230 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2231 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2232 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2233 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2234 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2235 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2236 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2237 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2238 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2239 RMON_T_P_GTE2048, RMON_T_OCTETS, 2240 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2241 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2242 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2243 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2244 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2245 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2246 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2247 RMON_R_P_GTE2048, RMON_R_OCTETS, 2248 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2249 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2250 }; 2251 #else 2252 static __u32 fec_enet_register_version = 1; 2253 static u32 fec_enet_register_offset[] = { 2254 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2255 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2256 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2257 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2258 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2259 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2260 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2261 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2262 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2263 }; 2264 #endif 2265 2266 static void fec_enet_get_regs(struct net_device *ndev, 2267 struct ethtool_regs *regs, void *regbuf) 2268 { 2269 struct fec_enet_private *fep = netdev_priv(ndev); 2270 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2271 struct device *dev = &fep->pdev->dev; 2272 u32 *buf = (u32 *)regbuf; 2273 u32 i, off; 2274 int ret; 2275 2276 ret = pm_runtime_resume_and_get(dev); 2277 if (ret < 0) 2278 return; 2279 2280 regs->version = fec_enet_register_version; 2281 2282 memset(buf, 0, regs->len); 2283 2284 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { 2285 off = fec_enet_register_offset[i]; 2286 2287 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2288 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2289 continue; 2290 2291 off >>= 2; 2292 buf[off] = readl(&theregs[off]); 2293 } 2294 2295 pm_runtime_mark_last_busy(dev); 2296 pm_runtime_put_autosuspend(dev); 2297 } 2298 2299 static int fec_enet_get_ts_info(struct net_device *ndev, 2300 struct ethtool_ts_info *info) 2301 { 2302 struct fec_enet_private *fep = netdev_priv(ndev); 2303 2304 if (fep->bufdesc_ex) { 2305 2306 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2307 SOF_TIMESTAMPING_RX_SOFTWARE | 2308 SOF_TIMESTAMPING_SOFTWARE | 2309 SOF_TIMESTAMPING_TX_HARDWARE | 2310 SOF_TIMESTAMPING_RX_HARDWARE | 2311 SOF_TIMESTAMPING_RAW_HARDWARE; 2312 if (fep->ptp_clock) 2313 info->phc_index = ptp_clock_index(fep->ptp_clock); 2314 else 2315 info->phc_index = -1; 2316 2317 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2318 (1 << HWTSTAMP_TX_ON); 2319 2320 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2321 (1 << HWTSTAMP_FILTER_ALL); 2322 return 0; 2323 } else { 2324 return ethtool_op_get_ts_info(ndev, info); 2325 } 2326 } 2327 2328 #if !defined(CONFIG_M5272) 2329 2330 static void fec_enet_get_pauseparam(struct net_device *ndev, 2331 struct ethtool_pauseparam *pause) 2332 { 2333 struct fec_enet_private *fep = netdev_priv(ndev); 2334 2335 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2336 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2337 pause->rx_pause = pause->tx_pause; 2338 } 2339 2340 static int fec_enet_set_pauseparam(struct net_device *ndev, 2341 struct ethtool_pauseparam *pause) 2342 { 2343 struct fec_enet_private *fep = netdev_priv(ndev); 2344 2345 if (!ndev->phydev) 2346 return -ENODEV; 2347 2348 if (pause->tx_pause != pause->rx_pause) { 2349 netdev_info(ndev, 2350 "hardware only support enable/disable both tx and rx"); 2351 return -EINVAL; 2352 } 2353 2354 fep->pause_flag = 0; 2355 2356 /* tx pause must be same as rx pause */ 2357 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2358 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2359 2360 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2361 pause->autoneg); 2362 2363 if (pause->autoneg) { 2364 if (netif_running(ndev)) 2365 fec_stop(ndev); 2366 phy_start_aneg(ndev->phydev); 2367 } 2368 if (netif_running(ndev)) { 2369 napi_disable(&fep->napi); 2370 netif_tx_lock_bh(ndev); 2371 fec_restart(ndev); 2372 netif_tx_wake_all_queues(ndev); 2373 netif_tx_unlock_bh(ndev); 2374 napi_enable(&fep->napi); 2375 } 2376 2377 return 0; 2378 } 2379 2380 static const struct fec_stat { 2381 char name[ETH_GSTRING_LEN]; 2382 u16 offset; 2383 } fec_stats[] = { 2384 /* RMON TX */ 2385 { "tx_dropped", RMON_T_DROP }, 2386 { "tx_packets", RMON_T_PACKETS }, 2387 { "tx_broadcast", RMON_T_BC_PKT }, 2388 { "tx_multicast", RMON_T_MC_PKT }, 2389 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2390 { "tx_undersize", RMON_T_UNDERSIZE }, 2391 { "tx_oversize", RMON_T_OVERSIZE }, 2392 { "tx_fragment", RMON_T_FRAG }, 2393 { "tx_jabber", RMON_T_JAB }, 2394 { "tx_collision", RMON_T_COL }, 2395 { "tx_64byte", RMON_T_P64 }, 2396 { "tx_65to127byte", RMON_T_P65TO127 }, 2397 { "tx_128to255byte", RMON_T_P128TO255 }, 2398 { "tx_256to511byte", RMON_T_P256TO511 }, 2399 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2400 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2401 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2402 { "tx_octets", RMON_T_OCTETS }, 2403 2404 /* IEEE TX */ 2405 { "IEEE_tx_drop", IEEE_T_DROP }, 2406 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2407 { "IEEE_tx_1col", IEEE_T_1COL }, 2408 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2409 { "IEEE_tx_def", IEEE_T_DEF }, 2410 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2411 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2412 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2413 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2414 { "IEEE_tx_sqe", IEEE_T_SQE }, 2415 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2416 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2417 2418 /* RMON RX */ 2419 { "rx_packets", RMON_R_PACKETS }, 2420 { "rx_broadcast", RMON_R_BC_PKT }, 2421 { "rx_multicast", RMON_R_MC_PKT }, 2422 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2423 { "rx_undersize", RMON_R_UNDERSIZE }, 2424 { "rx_oversize", RMON_R_OVERSIZE }, 2425 { "rx_fragment", RMON_R_FRAG }, 2426 { "rx_jabber", RMON_R_JAB }, 2427 { "rx_64byte", RMON_R_P64 }, 2428 { "rx_65to127byte", RMON_R_P65TO127 }, 2429 { "rx_128to255byte", RMON_R_P128TO255 }, 2430 { "rx_256to511byte", RMON_R_P256TO511 }, 2431 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2432 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2433 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2434 { "rx_octets", RMON_R_OCTETS }, 2435 2436 /* IEEE RX */ 2437 { "IEEE_rx_drop", IEEE_R_DROP }, 2438 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2439 { "IEEE_rx_crc", IEEE_R_CRC }, 2440 { "IEEE_rx_align", IEEE_R_ALIGN }, 2441 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2442 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2443 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2444 }; 2445 2446 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2447 2448 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2449 { 2450 struct fec_enet_private *fep = netdev_priv(dev); 2451 int i; 2452 2453 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2454 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2455 } 2456 2457 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2458 struct ethtool_stats *stats, u64 *data) 2459 { 2460 struct fec_enet_private *fep = netdev_priv(dev); 2461 2462 if (netif_running(dev)) 2463 fec_enet_update_ethtool_stats(dev); 2464 2465 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2466 } 2467 2468 static void fec_enet_get_strings(struct net_device *netdev, 2469 u32 stringset, u8 *data) 2470 { 2471 int i; 2472 switch (stringset) { 2473 case ETH_SS_STATS: 2474 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2475 memcpy(data + i * ETH_GSTRING_LEN, 2476 fec_stats[i].name, ETH_GSTRING_LEN); 2477 break; 2478 } 2479 } 2480 2481 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2482 { 2483 switch (sset) { 2484 case ETH_SS_STATS: 2485 return ARRAY_SIZE(fec_stats); 2486 default: 2487 return -EOPNOTSUPP; 2488 } 2489 } 2490 2491 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2492 { 2493 struct fec_enet_private *fep = netdev_priv(dev); 2494 int i; 2495 2496 /* Disable MIB statistics counters */ 2497 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2498 2499 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2500 writel(0, fep->hwp + fec_stats[i].offset); 2501 2502 /* Don't disable MIB statistics counters */ 2503 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2504 } 2505 2506 #else /* !defined(CONFIG_M5272) */ 2507 #define FEC_STATS_SIZE 0 2508 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2509 { 2510 } 2511 2512 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2513 { 2514 } 2515 #endif /* !defined(CONFIG_M5272) */ 2516 2517 /* ITR clock source is enet system clock (clk_ahb). 2518 * TCTT unit is cycle_ns * 64 cycle 2519 * So, the ICTT value = X us / (cycle_ns * 64) 2520 */ 2521 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2522 { 2523 struct fec_enet_private *fep = netdev_priv(ndev); 2524 2525 return us * (fep->itr_clk_rate / 64000) / 1000; 2526 } 2527 2528 /* Set threshold for interrupt coalescing */ 2529 static void fec_enet_itr_coal_set(struct net_device *ndev) 2530 { 2531 struct fec_enet_private *fep = netdev_priv(ndev); 2532 int rx_itr, tx_itr; 2533 2534 /* Must be greater than zero to avoid unpredictable behavior */ 2535 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2536 !fep->tx_time_itr || !fep->tx_pkts_itr) 2537 return; 2538 2539 /* Select enet system clock as Interrupt Coalescing 2540 * timer Clock Source 2541 */ 2542 rx_itr = FEC_ITR_CLK_SEL; 2543 tx_itr = FEC_ITR_CLK_SEL; 2544 2545 /* set ICFT and ICTT */ 2546 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2547 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2548 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2549 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2550 2551 rx_itr |= FEC_ITR_EN; 2552 tx_itr |= FEC_ITR_EN; 2553 2554 writel(tx_itr, fep->hwp + FEC_TXIC0); 2555 writel(rx_itr, fep->hwp + FEC_RXIC0); 2556 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 2557 writel(tx_itr, fep->hwp + FEC_TXIC1); 2558 writel(rx_itr, fep->hwp + FEC_RXIC1); 2559 writel(tx_itr, fep->hwp + FEC_TXIC2); 2560 writel(rx_itr, fep->hwp + FEC_RXIC2); 2561 } 2562 } 2563 2564 static int 2565 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2566 { 2567 struct fec_enet_private *fep = netdev_priv(ndev); 2568 2569 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2570 return -EOPNOTSUPP; 2571 2572 ec->rx_coalesce_usecs = fep->rx_time_itr; 2573 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2574 2575 ec->tx_coalesce_usecs = fep->tx_time_itr; 2576 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2577 2578 return 0; 2579 } 2580 2581 static int 2582 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) 2583 { 2584 struct fec_enet_private *fep = netdev_priv(ndev); 2585 struct device *dev = &fep->pdev->dev; 2586 unsigned int cycle; 2587 2588 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2589 return -EOPNOTSUPP; 2590 2591 if (ec->rx_max_coalesced_frames > 255) { 2592 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2593 return -EINVAL; 2594 } 2595 2596 if (ec->tx_max_coalesced_frames > 255) { 2597 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2598 return -EINVAL; 2599 } 2600 2601 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 2602 if (cycle > 0xFFFF) { 2603 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 2604 return -EINVAL; 2605 } 2606 2607 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 2608 if (cycle > 0xFFFF) { 2609 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 2610 return -EINVAL; 2611 } 2612 2613 fep->rx_time_itr = ec->rx_coalesce_usecs; 2614 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2615 2616 fep->tx_time_itr = ec->tx_coalesce_usecs; 2617 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2618 2619 fec_enet_itr_coal_set(ndev); 2620 2621 return 0; 2622 } 2623 2624 static void fec_enet_itr_coal_init(struct net_device *ndev) 2625 { 2626 struct ethtool_coalesce ec; 2627 2628 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2629 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2630 2631 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2632 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2633 2634 fec_enet_set_coalesce(ndev, &ec); 2635 } 2636 2637 static int fec_enet_get_tunable(struct net_device *netdev, 2638 const struct ethtool_tunable *tuna, 2639 void *data) 2640 { 2641 struct fec_enet_private *fep = netdev_priv(netdev); 2642 int ret = 0; 2643 2644 switch (tuna->id) { 2645 case ETHTOOL_RX_COPYBREAK: 2646 *(u32 *)data = fep->rx_copybreak; 2647 break; 2648 default: 2649 ret = -EINVAL; 2650 break; 2651 } 2652 2653 return ret; 2654 } 2655 2656 static int fec_enet_set_tunable(struct net_device *netdev, 2657 const struct ethtool_tunable *tuna, 2658 const void *data) 2659 { 2660 struct fec_enet_private *fep = netdev_priv(netdev); 2661 int ret = 0; 2662 2663 switch (tuna->id) { 2664 case ETHTOOL_RX_COPYBREAK: 2665 fep->rx_copybreak = *(u32 *)data; 2666 break; 2667 default: 2668 ret = -EINVAL; 2669 break; 2670 } 2671 2672 return ret; 2673 } 2674 2675 static void 2676 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2677 { 2678 struct fec_enet_private *fep = netdev_priv(ndev); 2679 2680 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 2681 wol->supported = WAKE_MAGIC; 2682 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 2683 } else { 2684 wol->supported = wol->wolopts = 0; 2685 } 2686 } 2687 2688 static int 2689 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2690 { 2691 struct fec_enet_private *fep = netdev_priv(ndev); 2692 2693 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 2694 return -EINVAL; 2695 2696 if (wol->wolopts & ~WAKE_MAGIC) 2697 return -EINVAL; 2698 2699 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 2700 if (device_may_wakeup(&ndev->dev)) { 2701 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 2702 if (fep->irq[0] > 0) 2703 enable_irq_wake(fep->irq[0]); 2704 } else { 2705 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 2706 if (fep->irq[0] > 0) 2707 disable_irq_wake(fep->irq[0]); 2708 } 2709 2710 return 0; 2711 } 2712 2713 static const struct ethtool_ops fec_enet_ethtool_ops = { 2714 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 2715 ETHTOOL_COALESCE_MAX_FRAMES, 2716 .get_drvinfo = fec_enet_get_drvinfo, 2717 .get_regs_len = fec_enet_get_regs_len, 2718 .get_regs = fec_enet_get_regs, 2719 .nway_reset = phy_ethtool_nway_reset, 2720 .get_link = ethtool_op_get_link, 2721 .get_coalesce = fec_enet_get_coalesce, 2722 .set_coalesce = fec_enet_set_coalesce, 2723 #ifndef CONFIG_M5272 2724 .get_pauseparam = fec_enet_get_pauseparam, 2725 .set_pauseparam = fec_enet_set_pauseparam, 2726 .get_strings = fec_enet_get_strings, 2727 .get_ethtool_stats = fec_enet_get_ethtool_stats, 2728 .get_sset_count = fec_enet_get_sset_count, 2729 #endif 2730 .get_ts_info = fec_enet_get_ts_info, 2731 .get_tunable = fec_enet_get_tunable, 2732 .set_tunable = fec_enet_set_tunable, 2733 .get_wol = fec_enet_get_wol, 2734 .set_wol = fec_enet_set_wol, 2735 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2736 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2737 }; 2738 2739 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2740 { 2741 struct fec_enet_private *fep = netdev_priv(ndev); 2742 struct phy_device *phydev = ndev->phydev; 2743 2744 if (!netif_running(ndev)) 2745 return -EINVAL; 2746 2747 if (!phydev) 2748 return -ENODEV; 2749 2750 if (fep->bufdesc_ex) { 2751 bool use_fec_hwts = !phy_has_hwtstamp(phydev); 2752 2753 if (cmd == SIOCSHWTSTAMP) { 2754 if (use_fec_hwts) 2755 return fec_ptp_set(ndev, rq); 2756 fec_ptp_disable_hwts(ndev); 2757 } else if (cmd == SIOCGHWTSTAMP) { 2758 if (use_fec_hwts) 2759 return fec_ptp_get(ndev, rq); 2760 } 2761 } 2762 2763 return phy_mii_ioctl(phydev, rq, cmd); 2764 } 2765 2766 static void fec_enet_free_buffers(struct net_device *ndev) 2767 { 2768 struct fec_enet_private *fep = netdev_priv(ndev); 2769 unsigned int i; 2770 struct sk_buff *skb; 2771 struct bufdesc *bdp; 2772 struct fec_enet_priv_tx_q *txq; 2773 struct fec_enet_priv_rx_q *rxq; 2774 unsigned int q; 2775 2776 for (q = 0; q < fep->num_rx_queues; q++) { 2777 rxq = fep->rx_queue[q]; 2778 bdp = rxq->bd.base; 2779 for (i = 0; i < rxq->bd.ring_size; i++) { 2780 skb = rxq->rx_skbuff[i]; 2781 rxq->rx_skbuff[i] = NULL; 2782 if (skb) { 2783 dma_unmap_single(&fep->pdev->dev, 2784 fec32_to_cpu(bdp->cbd_bufaddr), 2785 FEC_ENET_RX_FRSIZE - fep->rx_align, 2786 DMA_FROM_DEVICE); 2787 dev_kfree_skb(skb); 2788 } 2789 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2790 } 2791 } 2792 2793 for (q = 0; q < fep->num_tx_queues; q++) { 2794 txq = fep->tx_queue[q]; 2795 for (i = 0; i < txq->bd.ring_size; i++) { 2796 kfree(txq->tx_bounce[i]); 2797 txq->tx_bounce[i] = NULL; 2798 skb = txq->tx_skbuff[i]; 2799 txq->tx_skbuff[i] = NULL; 2800 dev_kfree_skb(skb); 2801 } 2802 } 2803 } 2804 2805 static void fec_enet_free_queue(struct net_device *ndev) 2806 { 2807 struct fec_enet_private *fep = netdev_priv(ndev); 2808 int i; 2809 struct fec_enet_priv_tx_q *txq; 2810 2811 for (i = 0; i < fep->num_tx_queues; i++) 2812 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 2813 txq = fep->tx_queue[i]; 2814 dma_free_coherent(&fep->pdev->dev, 2815 txq->bd.ring_size * TSO_HEADER_SIZE, 2816 txq->tso_hdrs, 2817 txq->tso_hdrs_dma); 2818 } 2819 2820 for (i = 0; i < fep->num_rx_queues; i++) 2821 kfree(fep->rx_queue[i]); 2822 for (i = 0; i < fep->num_tx_queues; i++) 2823 kfree(fep->tx_queue[i]); 2824 } 2825 2826 static int fec_enet_alloc_queue(struct net_device *ndev) 2827 { 2828 struct fec_enet_private *fep = netdev_priv(ndev); 2829 int i; 2830 int ret = 0; 2831 struct fec_enet_priv_tx_q *txq; 2832 2833 for (i = 0; i < fep->num_tx_queues; i++) { 2834 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 2835 if (!txq) { 2836 ret = -ENOMEM; 2837 goto alloc_failed; 2838 } 2839 2840 fep->tx_queue[i] = txq; 2841 txq->bd.ring_size = TX_RING_SIZE; 2842 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 2843 2844 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 2845 txq->tx_wake_threshold = 2846 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 2847 2848 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 2849 txq->bd.ring_size * TSO_HEADER_SIZE, 2850 &txq->tso_hdrs_dma, 2851 GFP_KERNEL); 2852 if (!txq->tso_hdrs) { 2853 ret = -ENOMEM; 2854 goto alloc_failed; 2855 } 2856 } 2857 2858 for (i = 0; i < fep->num_rx_queues; i++) { 2859 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 2860 GFP_KERNEL); 2861 if (!fep->rx_queue[i]) { 2862 ret = -ENOMEM; 2863 goto alloc_failed; 2864 } 2865 2866 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 2867 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 2868 } 2869 return ret; 2870 2871 alloc_failed: 2872 fec_enet_free_queue(ndev); 2873 return ret; 2874 } 2875 2876 static int 2877 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 2878 { 2879 struct fec_enet_private *fep = netdev_priv(ndev); 2880 unsigned int i; 2881 struct sk_buff *skb; 2882 struct bufdesc *bdp; 2883 struct fec_enet_priv_rx_q *rxq; 2884 2885 rxq = fep->rx_queue[queue]; 2886 bdp = rxq->bd.base; 2887 for (i = 0; i < rxq->bd.ring_size; i++) { 2888 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); 2889 if (!skb) 2890 goto err_alloc; 2891 2892 if (fec_enet_new_rxbdp(ndev, bdp, skb)) { 2893 dev_kfree_skb(skb); 2894 goto err_alloc; 2895 } 2896 2897 rxq->rx_skbuff[i] = skb; 2898 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 2899 2900 if (fep->bufdesc_ex) { 2901 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2902 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 2903 } 2904 2905 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 2906 } 2907 2908 /* Set the last buffer to wrap. */ 2909 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 2910 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2911 return 0; 2912 2913 err_alloc: 2914 fec_enet_free_buffers(ndev); 2915 return -ENOMEM; 2916 } 2917 2918 static int 2919 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 2920 { 2921 struct fec_enet_private *fep = netdev_priv(ndev); 2922 unsigned int i; 2923 struct bufdesc *bdp; 2924 struct fec_enet_priv_tx_q *txq; 2925 2926 txq = fep->tx_queue[queue]; 2927 bdp = txq->bd.base; 2928 for (i = 0; i < txq->bd.ring_size; i++) { 2929 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 2930 if (!txq->tx_bounce[i]) 2931 goto err_alloc; 2932 2933 bdp->cbd_sc = cpu_to_fec16(0); 2934 bdp->cbd_bufaddr = cpu_to_fec32(0); 2935 2936 if (fep->bufdesc_ex) { 2937 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 2938 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 2939 } 2940 2941 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 2942 } 2943 2944 /* Set the last buffer to wrap. */ 2945 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 2946 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 2947 2948 return 0; 2949 2950 err_alloc: 2951 fec_enet_free_buffers(ndev); 2952 return -ENOMEM; 2953 } 2954 2955 static int fec_enet_alloc_buffers(struct net_device *ndev) 2956 { 2957 struct fec_enet_private *fep = netdev_priv(ndev); 2958 unsigned int i; 2959 2960 for (i = 0; i < fep->num_rx_queues; i++) 2961 if (fec_enet_alloc_rxq_buffers(ndev, i)) 2962 return -ENOMEM; 2963 2964 for (i = 0; i < fep->num_tx_queues; i++) 2965 if (fec_enet_alloc_txq_buffers(ndev, i)) 2966 return -ENOMEM; 2967 return 0; 2968 } 2969 2970 static int 2971 fec_enet_open(struct net_device *ndev) 2972 { 2973 struct fec_enet_private *fep = netdev_priv(ndev); 2974 int ret; 2975 bool reset_again; 2976 2977 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 2978 if (ret < 0) 2979 return ret; 2980 2981 pinctrl_pm_select_default_state(&fep->pdev->dev); 2982 ret = fec_enet_clk_enable(ndev, true); 2983 if (ret) 2984 goto clk_enable; 2985 2986 /* During the first fec_enet_open call the PHY isn't probed at this 2987 * point. Therefore the phy_reset_after_clk_enable() call within 2988 * fec_enet_clk_enable() fails. As we need this reset in order to be 2989 * sure the PHY is working correctly we check if we need to reset again 2990 * later when the PHY is probed 2991 */ 2992 if (ndev->phydev && ndev->phydev->drv) 2993 reset_again = false; 2994 else 2995 reset_again = true; 2996 2997 /* I should reset the ring buffers here, but I don't yet know 2998 * a simple way to do that. 2999 */ 3000 3001 ret = fec_enet_alloc_buffers(ndev); 3002 if (ret) 3003 goto err_enet_alloc; 3004 3005 /* Init MAC prior to mii bus probe */ 3006 fec_restart(ndev); 3007 3008 /* Call phy_reset_after_clk_enable() again if it failed during 3009 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3010 */ 3011 if (reset_again) 3012 fec_enet_phy_reset_after_clk_enable(ndev); 3013 3014 /* Probe and connect to PHY when open the interface */ 3015 ret = fec_enet_mii_probe(ndev); 3016 if (ret) 3017 goto err_enet_mii_probe; 3018 3019 if (fep->quirks & FEC_QUIRK_ERR006687) 3020 imx6q_cpuidle_fec_irqs_used(); 3021 3022 napi_enable(&fep->napi); 3023 phy_start(ndev->phydev); 3024 netif_tx_start_all_queues(ndev); 3025 3026 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3027 FEC_WOL_FLAG_ENABLE); 3028 3029 return 0; 3030 3031 err_enet_mii_probe: 3032 fec_enet_free_buffers(ndev); 3033 err_enet_alloc: 3034 fec_enet_clk_enable(ndev, false); 3035 clk_enable: 3036 pm_runtime_mark_last_busy(&fep->pdev->dev); 3037 pm_runtime_put_autosuspend(&fep->pdev->dev); 3038 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3039 return ret; 3040 } 3041 3042 static int 3043 fec_enet_close(struct net_device *ndev) 3044 { 3045 struct fec_enet_private *fep = netdev_priv(ndev); 3046 3047 phy_stop(ndev->phydev); 3048 3049 if (netif_device_present(ndev)) { 3050 napi_disable(&fep->napi); 3051 netif_tx_disable(ndev); 3052 fec_stop(ndev); 3053 } 3054 3055 phy_disconnect(ndev->phydev); 3056 3057 if (fep->quirks & FEC_QUIRK_ERR006687) 3058 imx6q_cpuidle_fec_irqs_unused(); 3059 3060 fec_enet_update_ethtool_stats(ndev); 3061 3062 fec_enet_clk_enable(ndev, false); 3063 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3064 pm_runtime_mark_last_busy(&fep->pdev->dev); 3065 pm_runtime_put_autosuspend(&fep->pdev->dev); 3066 3067 fec_enet_free_buffers(ndev); 3068 3069 return 0; 3070 } 3071 3072 /* Set or clear the multicast filter for this adaptor. 3073 * Skeleton taken from sunlance driver. 3074 * The CPM Ethernet implementation allows Multicast as well as individual 3075 * MAC address filtering. Some of the drivers check to make sure it is 3076 * a group multicast address, and discard those that are not. I guess I 3077 * will do the same for now, but just remove the test if you want 3078 * individual filtering as well (do the upper net layers want or support 3079 * this kind of feature?). 3080 */ 3081 3082 #define FEC_HASH_BITS 6 /* #bits in hash */ 3083 3084 static void set_multicast_list(struct net_device *ndev) 3085 { 3086 struct fec_enet_private *fep = netdev_priv(ndev); 3087 struct netdev_hw_addr *ha; 3088 unsigned int crc, tmp; 3089 unsigned char hash; 3090 unsigned int hash_high = 0, hash_low = 0; 3091 3092 if (ndev->flags & IFF_PROMISC) { 3093 tmp = readl(fep->hwp + FEC_R_CNTRL); 3094 tmp |= 0x8; 3095 writel(tmp, fep->hwp + FEC_R_CNTRL); 3096 return; 3097 } 3098 3099 tmp = readl(fep->hwp + FEC_R_CNTRL); 3100 tmp &= ~0x8; 3101 writel(tmp, fep->hwp + FEC_R_CNTRL); 3102 3103 if (ndev->flags & IFF_ALLMULTI) { 3104 /* Catch all multicast addresses, so set the 3105 * filter to all 1's 3106 */ 3107 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3108 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3109 3110 return; 3111 } 3112 3113 /* Add the addresses in hash register */ 3114 netdev_for_each_mc_addr(ha, ndev) { 3115 /* calculate crc32 value of mac address */ 3116 crc = ether_crc_le(ndev->addr_len, ha->addr); 3117 3118 /* only upper 6 bits (FEC_HASH_BITS) are used 3119 * which point to specific bit in the hash registers 3120 */ 3121 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3122 3123 if (hash > 31) 3124 hash_high |= 1 << (hash - 32); 3125 else 3126 hash_low |= 1 << hash; 3127 } 3128 3129 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3130 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3131 } 3132 3133 /* Set a MAC change in hardware. */ 3134 static int 3135 fec_set_mac_address(struct net_device *ndev, void *p) 3136 { 3137 struct fec_enet_private *fep = netdev_priv(ndev); 3138 struct sockaddr *addr = p; 3139 3140 if (addr) { 3141 if (!is_valid_ether_addr(addr->sa_data)) 3142 return -EADDRNOTAVAIL; 3143 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); 3144 } 3145 3146 /* Add netif status check here to avoid system hang in below case: 3147 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3148 * After ethx down, fec all clocks are gated off and then register 3149 * access causes system hang. 3150 */ 3151 if (!netif_running(ndev)) 3152 return 0; 3153 3154 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3155 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3156 fep->hwp + FEC_ADDR_LOW); 3157 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3158 fep->hwp + FEC_ADDR_HIGH); 3159 return 0; 3160 } 3161 3162 #ifdef CONFIG_NET_POLL_CONTROLLER 3163 /** 3164 * fec_poll_controller - FEC Poll controller function 3165 * @dev: The FEC network adapter 3166 * 3167 * Polled functionality used by netconsole and others in non interrupt mode 3168 * 3169 */ 3170 static void fec_poll_controller(struct net_device *dev) 3171 { 3172 int i; 3173 struct fec_enet_private *fep = netdev_priv(dev); 3174 3175 for (i = 0; i < FEC_IRQ_NUM; i++) { 3176 if (fep->irq[i] > 0) { 3177 disable_irq(fep->irq[i]); 3178 fec_enet_interrupt(fep->irq[i], dev); 3179 enable_irq(fep->irq[i]); 3180 } 3181 } 3182 } 3183 #endif 3184 3185 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3186 netdev_features_t features) 3187 { 3188 struct fec_enet_private *fep = netdev_priv(netdev); 3189 netdev_features_t changed = features ^ netdev->features; 3190 3191 netdev->features = features; 3192 3193 /* Receive checksum has been changed */ 3194 if (changed & NETIF_F_RXCSUM) { 3195 if (features & NETIF_F_RXCSUM) 3196 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3197 else 3198 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3199 } 3200 } 3201 3202 static int fec_set_features(struct net_device *netdev, 3203 netdev_features_t features) 3204 { 3205 struct fec_enet_private *fep = netdev_priv(netdev); 3206 netdev_features_t changed = features ^ netdev->features; 3207 3208 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3209 napi_disable(&fep->napi); 3210 netif_tx_lock_bh(netdev); 3211 fec_stop(netdev); 3212 fec_enet_set_netdev_features(netdev, features); 3213 fec_restart(netdev); 3214 netif_tx_wake_all_queues(netdev); 3215 netif_tx_unlock_bh(netdev); 3216 napi_enable(&fep->napi); 3217 } else { 3218 fec_enet_set_netdev_features(netdev, features); 3219 } 3220 3221 return 0; 3222 } 3223 3224 static const struct net_device_ops fec_netdev_ops = { 3225 .ndo_open = fec_enet_open, 3226 .ndo_stop = fec_enet_close, 3227 .ndo_start_xmit = fec_enet_start_xmit, 3228 .ndo_set_rx_mode = set_multicast_list, 3229 .ndo_validate_addr = eth_validate_addr, 3230 .ndo_tx_timeout = fec_timeout, 3231 .ndo_set_mac_address = fec_set_mac_address, 3232 .ndo_do_ioctl = fec_enet_ioctl, 3233 #ifdef CONFIG_NET_POLL_CONTROLLER 3234 .ndo_poll_controller = fec_poll_controller, 3235 #endif 3236 .ndo_set_features = fec_set_features, 3237 }; 3238 3239 static const unsigned short offset_des_active_rxq[] = { 3240 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3241 }; 3242 3243 static const unsigned short offset_des_active_txq[] = { 3244 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3245 }; 3246 3247 /* 3248 * XXX: We need to clean up on failure exits here. 3249 * 3250 */ 3251 static int fec_enet_init(struct net_device *ndev) 3252 { 3253 struct fec_enet_private *fep = netdev_priv(ndev); 3254 struct bufdesc *cbd_base; 3255 dma_addr_t bd_dma; 3256 int bd_size; 3257 unsigned int i; 3258 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3259 sizeof(struct bufdesc); 3260 unsigned dsize_log2 = __fls(dsize); 3261 int ret; 3262 3263 WARN_ON(dsize != (1 << dsize_log2)); 3264 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3265 fep->rx_align = 0xf; 3266 fep->tx_align = 0xf; 3267 #else 3268 fep->rx_align = 0x3; 3269 fep->tx_align = 0x3; 3270 #endif 3271 3272 /* Check mask of the streaming and coherent API */ 3273 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3274 if (ret < 0) { 3275 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3276 return ret; 3277 } 3278 3279 fec_enet_alloc_queue(ndev); 3280 3281 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3282 3283 /* Allocate memory for buffer descriptors. */ 3284 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3285 GFP_KERNEL); 3286 if (!cbd_base) { 3287 return -ENOMEM; 3288 } 3289 3290 /* Get the Ethernet address */ 3291 fec_get_mac(ndev); 3292 /* make sure MAC we just acquired is programmed into the hw */ 3293 fec_set_mac_address(ndev, NULL); 3294 3295 /* Set receive and transmit descriptor base. */ 3296 for (i = 0; i < fep->num_rx_queues; i++) { 3297 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3298 unsigned size = dsize * rxq->bd.ring_size; 3299 3300 rxq->bd.qid = i; 3301 rxq->bd.base = cbd_base; 3302 rxq->bd.cur = cbd_base; 3303 rxq->bd.dma = bd_dma; 3304 rxq->bd.dsize = dsize; 3305 rxq->bd.dsize_log2 = dsize_log2; 3306 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3307 bd_dma += size; 3308 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3309 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3310 } 3311 3312 for (i = 0; i < fep->num_tx_queues; i++) { 3313 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3314 unsigned size = dsize * txq->bd.ring_size; 3315 3316 txq->bd.qid = i; 3317 txq->bd.base = cbd_base; 3318 txq->bd.cur = cbd_base; 3319 txq->bd.dma = bd_dma; 3320 txq->bd.dsize = dsize; 3321 txq->bd.dsize_log2 = dsize_log2; 3322 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3323 bd_dma += size; 3324 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3325 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3326 } 3327 3328 3329 /* The FEC Ethernet specific entries in the device structure */ 3330 ndev->watchdog_timeo = TX_TIMEOUT; 3331 ndev->netdev_ops = &fec_netdev_ops; 3332 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3333 3334 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3335 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); 3336 3337 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3338 /* enable hw VLAN support */ 3339 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3340 3341 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3342 ndev->gso_max_segs = FEC_MAX_TSO_SEGS; 3343 3344 /* enable hw accelerator */ 3345 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3346 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3347 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3348 } 3349 3350 if (fep->quirks & FEC_QUIRK_HAS_AVB) { 3351 fep->tx_align = 0; 3352 fep->rx_align = 0x3f; 3353 } 3354 3355 ndev->hw_features = ndev->features; 3356 3357 fec_restart(ndev); 3358 3359 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3360 fec_enet_clear_ethtool_stats(ndev); 3361 else 3362 fec_enet_update_ethtool_stats(ndev); 3363 3364 return 0; 3365 } 3366 3367 #ifdef CONFIG_OF 3368 static int fec_reset_phy(struct platform_device *pdev) 3369 { 3370 int err, phy_reset; 3371 bool active_high = false; 3372 int msec = 1, phy_post_delay = 0; 3373 struct device_node *np = pdev->dev.of_node; 3374 3375 if (!np) 3376 return 0; 3377 3378 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3379 /* A sane reset duration should not be longer than 1s */ 3380 if (!err && msec > 1000) 3381 msec = 1; 3382 3383 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3384 if (phy_reset == -EPROBE_DEFER) 3385 return phy_reset; 3386 else if (!gpio_is_valid(phy_reset)) 3387 return 0; 3388 3389 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 3390 /* valid reset duration should be less than 1s */ 3391 if (!err && phy_post_delay > 1000) 3392 return -EINVAL; 3393 3394 active_high = of_property_read_bool(np, "phy-reset-active-high"); 3395 3396 err = devm_gpio_request_one(&pdev->dev, phy_reset, 3397 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 3398 "phy-reset"); 3399 if (err) { 3400 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 3401 return err; 3402 } 3403 3404 if (msec > 20) 3405 msleep(msec); 3406 else 3407 usleep_range(msec * 1000, msec * 1000 + 1000); 3408 3409 gpio_set_value_cansleep(phy_reset, !active_high); 3410 3411 if (!phy_post_delay) 3412 return 0; 3413 3414 if (phy_post_delay > 20) 3415 msleep(phy_post_delay); 3416 else 3417 usleep_range(phy_post_delay * 1000, 3418 phy_post_delay * 1000 + 1000); 3419 3420 return 0; 3421 } 3422 #else /* CONFIG_OF */ 3423 static int fec_reset_phy(struct platform_device *pdev) 3424 { 3425 /* 3426 * In case of platform probe, the reset has been done 3427 * by machine code. 3428 */ 3429 return 0; 3430 } 3431 #endif /* CONFIG_OF */ 3432 3433 static void 3434 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 3435 { 3436 struct device_node *np = pdev->dev.of_node; 3437 3438 *num_tx = *num_rx = 1; 3439 3440 if (!np || !of_device_is_available(np)) 3441 return; 3442 3443 /* parse the num of tx and rx queues */ 3444 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 3445 3446 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 3447 3448 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 3449 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 3450 *num_tx); 3451 *num_tx = 1; 3452 return; 3453 } 3454 3455 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 3456 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 3457 *num_rx); 3458 *num_rx = 1; 3459 return; 3460 } 3461 3462 } 3463 3464 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 3465 { 3466 int irq_cnt = platform_irq_count(pdev); 3467 3468 if (irq_cnt > FEC_IRQ_NUM) 3469 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 3470 else if (irq_cnt == 2) 3471 irq_cnt = 1; /* last for pps */ 3472 else if (irq_cnt <= 0) 3473 irq_cnt = 1; /* At least 1 irq is needed */ 3474 return irq_cnt; 3475 } 3476 3477 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 3478 struct device_node *np) 3479 { 3480 struct device_node *gpr_np; 3481 u32 out_val[3]; 3482 int ret = 0; 3483 3484 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 3485 if (!gpr_np) 3486 return 0; 3487 3488 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 3489 ARRAY_SIZE(out_val)); 3490 if (ret) { 3491 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 3492 return ret; 3493 } 3494 3495 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 3496 if (IS_ERR(fep->stop_gpr.gpr)) { 3497 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 3498 ret = PTR_ERR(fep->stop_gpr.gpr); 3499 fep->stop_gpr.gpr = NULL; 3500 goto out; 3501 } 3502 3503 fep->stop_gpr.reg = out_val[1]; 3504 fep->stop_gpr.bit = out_val[2]; 3505 3506 out: 3507 of_node_put(gpr_np); 3508 3509 return ret; 3510 } 3511 3512 static int 3513 fec_probe(struct platform_device *pdev) 3514 { 3515 struct fec_enet_private *fep; 3516 struct fec_platform_data *pdata; 3517 phy_interface_t interface; 3518 struct net_device *ndev; 3519 int i, irq, ret = 0; 3520 const struct of_device_id *of_id; 3521 static int dev_id; 3522 struct device_node *np = pdev->dev.of_node, *phy_node; 3523 int num_tx_qs; 3524 int num_rx_qs; 3525 char irq_name[8]; 3526 int irq_cnt; 3527 struct fec_devinfo *dev_info; 3528 3529 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 3530 3531 /* Init network device */ 3532 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 3533 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 3534 if (!ndev) 3535 return -ENOMEM; 3536 3537 SET_NETDEV_DEV(ndev, &pdev->dev); 3538 3539 /* setup board info structure */ 3540 fep = netdev_priv(ndev); 3541 3542 of_id = of_match_device(fec_dt_ids, &pdev->dev); 3543 if (of_id) 3544 pdev->id_entry = of_id->data; 3545 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 3546 if (dev_info) 3547 fep->quirks = dev_info->quirks; 3548 3549 fep->netdev = ndev; 3550 fep->num_rx_queues = num_rx_qs; 3551 fep->num_tx_queues = num_tx_qs; 3552 3553 #if !defined(CONFIG_M5272) 3554 /* default enable pause frame auto negotiation */ 3555 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 3556 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 3557 #endif 3558 3559 /* Select default pin state */ 3560 pinctrl_pm_select_default_state(&pdev->dev); 3561 3562 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 3563 if (IS_ERR(fep->hwp)) { 3564 ret = PTR_ERR(fep->hwp); 3565 goto failed_ioremap; 3566 } 3567 3568 fep->pdev = pdev; 3569 fep->dev_id = dev_id++; 3570 3571 platform_set_drvdata(pdev, ndev); 3572 3573 if ((of_machine_is_compatible("fsl,imx6q") || 3574 of_machine_is_compatible("fsl,imx6dl")) && 3575 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 3576 fep->quirks |= FEC_QUIRK_ERR006687; 3577 3578 if (of_get_property(np, "fsl,magic-packet", NULL)) 3579 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 3580 3581 ret = fec_enet_init_stop_mode(fep, np); 3582 if (ret) 3583 goto failed_stop_mode; 3584 3585 phy_node = of_parse_phandle(np, "phy-handle", 0); 3586 if (!phy_node && of_phy_is_fixed_link(np)) { 3587 ret = of_phy_register_fixed_link(np); 3588 if (ret < 0) { 3589 dev_err(&pdev->dev, 3590 "broken fixed-link specification\n"); 3591 goto failed_phy; 3592 } 3593 phy_node = of_node_get(np); 3594 } 3595 fep->phy_node = phy_node; 3596 3597 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 3598 if (ret) { 3599 pdata = dev_get_platdata(&pdev->dev); 3600 if (pdata) 3601 fep->phy_interface = pdata->phy; 3602 else 3603 fep->phy_interface = PHY_INTERFACE_MODE_MII; 3604 } else { 3605 fep->phy_interface = interface; 3606 } 3607 3608 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 3609 if (IS_ERR(fep->clk_ipg)) { 3610 ret = PTR_ERR(fep->clk_ipg); 3611 goto failed_clk; 3612 } 3613 3614 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 3615 if (IS_ERR(fep->clk_ahb)) { 3616 ret = PTR_ERR(fep->clk_ahb); 3617 goto failed_clk; 3618 } 3619 3620 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 3621 3622 /* enet_out is optional, depends on board */ 3623 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); 3624 if (IS_ERR(fep->clk_enet_out)) 3625 fep->clk_enet_out = NULL; 3626 3627 fep->ptp_clk_on = false; 3628 mutex_init(&fep->ptp_clk_mutex); 3629 3630 /* clk_ref is optional, depends on board */ 3631 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); 3632 if (IS_ERR(fep->clk_ref)) 3633 fep->clk_ref = NULL; 3634 3635 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 3636 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 3637 if (IS_ERR(fep->clk_ptp)) { 3638 fep->clk_ptp = NULL; 3639 fep->bufdesc_ex = false; 3640 } 3641 3642 ret = fec_enet_clk_enable(ndev, true); 3643 if (ret) 3644 goto failed_clk; 3645 3646 ret = clk_prepare_enable(fep->clk_ipg); 3647 if (ret) 3648 goto failed_clk_ipg; 3649 ret = clk_prepare_enable(fep->clk_ahb); 3650 if (ret) 3651 goto failed_clk_ahb; 3652 3653 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 3654 if (!IS_ERR(fep->reg_phy)) { 3655 ret = regulator_enable(fep->reg_phy); 3656 if (ret) { 3657 dev_err(&pdev->dev, 3658 "Failed to enable phy regulator: %d\n", ret); 3659 goto failed_regulator; 3660 } 3661 } else { 3662 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 3663 ret = -EPROBE_DEFER; 3664 goto failed_regulator; 3665 } 3666 fep->reg_phy = NULL; 3667 } 3668 3669 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 3670 pm_runtime_use_autosuspend(&pdev->dev); 3671 pm_runtime_get_noresume(&pdev->dev); 3672 pm_runtime_set_active(&pdev->dev); 3673 pm_runtime_enable(&pdev->dev); 3674 3675 ret = fec_reset_phy(pdev); 3676 if (ret) 3677 goto failed_reset; 3678 3679 irq_cnt = fec_enet_get_irq_cnt(pdev); 3680 if (fep->bufdesc_ex) 3681 fec_ptp_init(pdev, irq_cnt); 3682 3683 ret = fec_enet_init(ndev); 3684 if (ret) 3685 goto failed_init; 3686 3687 for (i = 0; i < irq_cnt; i++) { 3688 snprintf(irq_name, sizeof(irq_name), "int%d", i); 3689 irq = platform_get_irq_byname_optional(pdev, irq_name); 3690 if (irq < 0) 3691 irq = platform_get_irq(pdev, i); 3692 if (irq < 0) { 3693 ret = irq; 3694 goto failed_irq; 3695 } 3696 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 3697 0, pdev->name, ndev); 3698 if (ret) 3699 goto failed_irq; 3700 3701 fep->irq[i] = irq; 3702 } 3703 3704 ret = fec_enet_mii_init(pdev); 3705 if (ret) 3706 goto failed_mii_init; 3707 3708 /* Carrier starts down, phylib will bring it up */ 3709 netif_carrier_off(ndev); 3710 fec_enet_clk_enable(ndev, false); 3711 pinctrl_pm_select_sleep_state(&pdev->dev); 3712 3713 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 3714 3715 ret = register_netdev(ndev); 3716 if (ret) 3717 goto failed_register; 3718 3719 device_init_wakeup(&ndev->dev, fep->wol_flag & 3720 FEC_WOL_HAS_MAGIC_PACKET); 3721 3722 if (fep->bufdesc_ex && fep->ptp_clock) 3723 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 3724 3725 fep->rx_copybreak = COPYBREAK_DEFAULT; 3726 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 3727 3728 pm_runtime_mark_last_busy(&pdev->dev); 3729 pm_runtime_put_autosuspend(&pdev->dev); 3730 3731 return 0; 3732 3733 failed_register: 3734 fec_enet_mii_remove(fep); 3735 failed_mii_init: 3736 failed_irq: 3737 failed_init: 3738 fec_ptp_stop(pdev); 3739 failed_reset: 3740 pm_runtime_put_noidle(&pdev->dev); 3741 pm_runtime_disable(&pdev->dev); 3742 if (fep->reg_phy) 3743 regulator_disable(fep->reg_phy); 3744 failed_regulator: 3745 clk_disable_unprepare(fep->clk_ahb); 3746 failed_clk_ahb: 3747 clk_disable_unprepare(fep->clk_ipg); 3748 failed_clk_ipg: 3749 fec_enet_clk_enable(ndev, false); 3750 failed_clk: 3751 if (of_phy_is_fixed_link(np)) 3752 of_phy_deregister_fixed_link(np); 3753 of_node_put(phy_node); 3754 failed_stop_mode: 3755 failed_phy: 3756 dev_id--; 3757 failed_ioremap: 3758 free_netdev(ndev); 3759 3760 return ret; 3761 } 3762 3763 static int 3764 fec_drv_remove(struct platform_device *pdev) 3765 { 3766 struct net_device *ndev = platform_get_drvdata(pdev); 3767 struct fec_enet_private *fep = netdev_priv(ndev); 3768 struct device_node *np = pdev->dev.of_node; 3769 int ret; 3770 3771 ret = pm_runtime_resume_and_get(&pdev->dev); 3772 if (ret < 0) 3773 return ret; 3774 3775 cancel_work_sync(&fep->tx_timeout_work); 3776 fec_ptp_stop(pdev); 3777 unregister_netdev(ndev); 3778 fec_enet_mii_remove(fep); 3779 if (fep->reg_phy) 3780 regulator_disable(fep->reg_phy); 3781 3782 if (of_phy_is_fixed_link(np)) 3783 of_phy_deregister_fixed_link(np); 3784 of_node_put(fep->phy_node); 3785 free_netdev(ndev); 3786 3787 clk_disable_unprepare(fep->clk_ahb); 3788 clk_disable_unprepare(fep->clk_ipg); 3789 pm_runtime_put_noidle(&pdev->dev); 3790 pm_runtime_disable(&pdev->dev); 3791 3792 return 0; 3793 } 3794 3795 static int __maybe_unused fec_suspend(struct device *dev) 3796 { 3797 struct net_device *ndev = dev_get_drvdata(dev); 3798 struct fec_enet_private *fep = netdev_priv(ndev); 3799 3800 rtnl_lock(); 3801 if (netif_running(ndev)) { 3802 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 3803 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 3804 phy_stop(ndev->phydev); 3805 napi_disable(&fep->napi); 3806 netif_tx_lock_bh(ndev); 3807 netif_device_detach(ndev); 3808 netif_tx_unlock_bh(ndev); 3809 fec_stop(ndev); 3810 fec_enet_clk_enable(ndev, false); 3811 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3812 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3813 } 3814 rtnl_unlock(); 3815 3816 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 3817 regulator_disable(fep->reg_phy); 3818 3819 /* SOC supply clock to phy, when clock is disabled, phy link down 3820 * SOC control phy regulator, when regulator is disabled, phy link down 3821 */ 3822 if (fep->clk_enet_out || fep->reg_phy) 3823 fep->link = 0; 3824 3825 return 0; 3826 } 3827 3828 static int __maybe_unused fec_resume(struct device *dev) 3829 { 3830 struct net_device *ndev = dev_get_drvdata(dev); 3831 struct fec_enet_private *fep = netdev_priv(ndev); 3832 int ret; 3833 int val; 3834 3835 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 3836 ret = regulator_enable(fep->reg_phy); 3837 if (ret) 3838 return ret; 3839 } 3840 3841 rtnl_lock(); 3842 if (netif_running(ndev)) { 3843 ret = fec_enet_clk_enable(ndev, true); 3844 if (ret) { 3845 rtnl_unlock(); 3846 goto failed_clk; 3847 } 3848 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 3849 fec_enet_stop_mode(fep, false); 3850 3851 val = readl(fep->hwp + FEC_ECNTRL); 3852 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 3853 writel(val, fep->hwp + FEC_ECNTRL); 3854 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 3855 } else { 3856 pinctrl_pm_select_default_state(&fep->pdev->dev); 3857 } 3858 fec_restart(ndev); 3859 netif_tx_lock_bh(ndev); 3860 netif_device_attach(ndev); 3861 netif_tx_unlock_bh(ndev); 3862 napi_enable(&fep->napi); 3863 phy_start(ndev->phydev); 3864 } 3865 rtnl_unlock(); 3866 3867 return 0; 3868 3869 failed_clk: 3870 if (fep->reg_phy) 3871 regulator_disable(fep->reg_phy); 3872 return ret; 3873 } 3874 3875 static int __maybe_unused fec_runtime_suspend(struct device *dev) 3876 { 3877 struct net_device *ndev = dev_get_drvdata(dev); 3878 struct fec_enet_private *fep = netdev_priv(ndev); 3879 3880 clk_disable_unprepare(fep->clk_ahb); 3881 clk_disable_unprepare(fep->clk_ipg); 3882 3883 return 0; 3884 } 3885 3886 static int __maybe_unused fec_runtime_resume(struct device *dev) 3887 { 3888 struct net_device *ndev = dev_get_drvdata(dev); 3889 struct fec_enet_private *fep = netdev_priv(ndev); 3890 int ret; 3891 3892 ret = clk_prepare_enable(fep->clk_ahb); 3893 if (ret) 3894 return ret; 3895 ret = clk_prepare_enable(fep->clk_ipg); 3896 if (ret) 3897 goto failed_clk_ipg; 3898 3899 return 0; 3900 3901 failed_clk_ipg: 3902 clk_disable_unprepare(fep->clk_ahb); 3903 return ret; 3904 } 3905 3906 static const struct dev_pm_ops fec_pm_ops = { 3907 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 3908 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 3909 }; 3910 3911 static struct platform_driver fec_driver = { 3912 .driver = { 3913 .name = DRIVER_NAME, 3914 .pm = &fec_pm_ops, 3915 .of_match_table = fec_dt_ids, 3916 .suppress_bind_attrs = true, 3917 }, 3918 .id_table = fec_devtype, 3919 .probe = fec_probe, 3920 .remove = fec_drv_remove, 3921 }; 3922 3923 module_platform_driver(fec_driver); 3924 3925 MODULE_ALIAS("platform:"DRIVER_NAME); 3926 MODULE_LICENSE("GPL"); 3927