xref: /openbmc/linux/drivers/net/ethernet/freescale/fec_main.c (revision 0ca8d3ca4561535f97b31e7b8de569c69bc3b27b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/selftests.h>
42 #include <net/tso.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/icmp.h>
46 #include <linux/spinlock.h>
47 #include <linux/workqueue.h>
48 #include <linux/bitops.h>
49 #include <linux/io.h>
50 #include <linux/irq.h>
51 #include <linux/clk.h>
52 #include <linux/crc32.h>
53 #include <linux/platform_device.h>
54 #include <linux/mdio.h>
55 #include <linux/phy.h>
56 #include <linux/fec.h>
57 #include <linux/of.h>
58 #include <linux/of_device.h>
59 #include <linux/of_gpio.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/prefetch.h>
66 #include <linux/mfd/syscon.h>
67 #include <linux/regmap.h>
68 #include <soc/imx/cpuidle.h>
69 
70 #include <asm/cacheflush.h>
71 
72 #include "fec.h"
73 
74 static void set_multicast_list(struct net_device *ndev);
75 static void fec_enet_itr_coal_init(struct net_device *ndev);
76 
77 #define DRIVER_NAME	"fec"
78 
79 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
80 
81 /* Pause frame feild and FIFO threshold */
82 #define FEC_ENET_FCE	(1 << 5)
83 #define FEC_ENET_RSEM_V	0x84
84 #define FEC_ENET_RSFL_V	16
85 #define FEC_ENET_RAEM_V	0x8
86 #define FEC_ENET_RAFL_V	0x8
87 #define FEC_ENET_OPD_V	0xFFF0
88 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
89 
90 struct fec_devinfo {
91 	u32 quirks;
92 };
93 
94 static const struct fec_devinfo fec_imx25_info = {
95 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
96 		  FEC_QUIRK_HAS_FRREG,
97 };
98 
99 static const struct fec_devinfo fec_imx27_info = {
100 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
101 };
102 
103 static const struct fec_devinfo fec_imx28_info = {
104 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
105 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
106 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
107 		  FEC_QUIRK_NO_HARD_RESET,
108 };
109 
110 static const struct fec_devinfo fec_imx6q_info = {
111 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
114 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII,
115 };
116 
117 static const struct fec_devinfo fec_mvf600_info = {
118 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
119 };
120 
121 static const struct fec_devinfo fec_imx6x_info = {
122 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
125 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
126 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
127 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES,
128 };
129 
130 static const struct fec_devinfo fec_imx6ul_info = {
131 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
132 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
133 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
134 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
135 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
136 };
137 
138 static const struct fec_devinfo fec_imx8mq_info = {
139 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
140 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
141 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
142 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
143 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
144 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
145 		  FEC_QUIRK_HAS_EEE,
146 };
147 
148 static const struct fec_devinfo fec_imx8qm_info = {
149 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
150 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
151 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
152 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
153 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
154 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
155 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT,
156 };
157 
158 static struct platform_device_id fec_devtype[] = {
159 	{
160 		/* keep it for coldfire */
161 		.name = DRIVER_NAME,
162 		.driver_data = 0,
163 	}, {
164 		.name = "imx25-fec",
165 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
166 	}, {
167 		.name = "imx27-fec",
168 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
169 	}, {
170 		.name = "imx28-fec",
171 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
172 	}, {
173 		.name = "imx6q-fec",
174 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
175 	}, {
176 		.name = "mvf600-fec",
177 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
178 	}, {
179 		.name = "imx6sx-fec",
180 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
181 	}, {
182 		.name = "imx6ul-fec",
183 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
184 	}, {
185 		.name = "imx8mq-fec",
186 		.driver_data = (kernel_ulong_t)&fec_imx8mq_info,
187 	}, {
188 		.name = "imx8qm-fec",
189 		.driver_data = (kernel_ulong_t)&fec_imx8qm_info,
190 	}, {
191 		/* sentinel */
192 	}
193 };
194 MODULE_DEVICE_TABLE(platform, fec_devtype);
195 
196 enum imx_fec_type {
197 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
198 	IMX27_FEC,	/* runs on i.mx27/35/51 */
199 	IMX28_FEC,
200 	IMX6Q_FEC,
201 	MVF600_FEC,
202 	IMX6SX_FEC,
203 	IMX6UL_FEC,
204 	IMX8MQ_FEC,
205 	IMX8QM_FEC,
206 };
207 
208 static const struct of_device_id fec_dt_ids[] = {
209 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
210 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
211 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
212 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
213 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
214 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
215 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
216 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
217 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
218 	{ /* sentinel */ }
219 };
220 MODULE_DEVICE_TABLE(of, fec_dt_ids);
221 
222 static unsigned char macaddr[ETH_ALEN];
223 module_param_array(macaddr, byte, NULL, 0);
224 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
225 
226 #if defined(CONFIG_M5272)
227 /*
228  * Some hardware gets it MAC address out of local flash memory.
229  * if this is non-zero then assume it is the address to get MAC from.
230  */
231 #if defined(CONFIG_NETtel)
232 #define	FEC_FLASHMAC	0xf0006006
233 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
234 #define	FEC_FLASHMAC	0xf0006000
235 #elif defined(CONFIG_CANCam)
236 #define	FEC_FLASHMAC	0xf0020000
237 #elif defined (CONFIG_M5272C3)
238 #define	FEC_FLASHMAC	(0xffe04000 + 4)
239 #elif defined(CONFIG_MOD5272)
240 #define FEC_FLASHMAC	0xffc0406b
241 #else
242 #define	FEC_FLASHMAC	0
243 #endif
244 #endif /* CONFIG_M5272 */
245 
246 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
247  *
248  * 2048 byte skbufs are allocated. However, alignment requirements
249  * varies between FEC variants. Worst case is 64, so round down by 64.
250  */
251 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
252 #define PKT_MINBUF_SIZE		64
253 
254 /* FEC receive acceleration */
255 #define FEC_RACC_IPDIS		(1 << 1)
256 #define FEC_RACC_PRODIS		(1 << 2)
257 #define FEC_RACC_SHIFT16	BIT(7)
258 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
259 
260 /* MIB Control Register */
261 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
262 
263 /*
264  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
265  * size bits. Other FEC hardware does not, so we need to take that into
266  * account when setting it.
267  */
268 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
269     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
270     defined(CONFIG_ARM64)
271 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
272 #else
273 #define	OPT_FRAME_SIZE	0
274 #endif
275 
276 /* FEC MII MMFR bits definition */
277 #define FEC_MMFR_ST		(1 << 30)
278 #define FEC_MMFR_ST_C45		(0)
279 #define FEC_MMFR_OP_READ	(2 << 28)
280 #define FEC_MMFR_OP_READ_C45	(3 << 28)
281 #define FEC_MMFR_OP_WRITE	(1 << 28)
282 #define FEC_MMFR_OP_ADDR_WRITE	(0)
283 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
284 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
285 #define FEC_MMFR_TA		(2 << 16)
286 #define FEC_MMFR_DATA(v)	(v & 0xffff)
287 /* FEC ECR bits definition */
288 #define FEC_ECR_MAGICEN		(1 << 2)
289 #define FEC_ECR_SLEEP		(1 << 3)
290 
291 #define FEC_MII_TIMEOUT		30000 /* us */
292 
293 /* Transmitter timeout */
294 #define TX_TIMEOUT (2 * HZ)
295 
296 #define FEC_PAUSE_FLAG_AUTONEG	0x1
297 #define FEC_PAUSE_FLAG_ENABLE	0x2
298 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
299 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
300 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
301 
302 #define COPYBREAK_DEFAULT	256
303 
304 /* Max number of allowed TCP segments for software TSO */
305 #define FEC_MAX_TSO_SEGS	100
306 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
307 
308 #define IS_TSO_HEADER(txq, addr) \
309 	((addr >= txq->tso_hdrs_dma) && \
310 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
311 
312 static int mii_cnt;
313 
314 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
315 					     struct bufdesc_prop *bd)
316 {
317 	return (bdp >= bd->last) ? bd->base
318 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
319 }
320 
321 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
322 					     struct bufdesc_prop *bd)
323 {
324 	return (bdp <= bd->base) ? bd->last
325 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
326 }
327 
328 static int fec_enet_get_bd_index(struct bufdesc *bdp,
329 				 struct bufdesc_prop *bd)
330 {
331 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
332 }
333 
334 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
335 {
336 	int entries;
337 
338 	entries = (((const char *)txq->dirty_tx -
339 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
340 
341 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
342 }
343 
344 static void swap_buffer(void *bufaddr, int len)
345 {
346 	int i;
347 	unsigned int *buf = bufaddr;
348 
349 	for (i = 0; i < len; i += 4, buf++)
350 		swab32s(buf);
351 }
352 
353 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
354 {
355 	int i;
356 	unsigned int *src = src_buf;
357 	unsigned int *dst = dst_buf;
358 
359 	for (i = 0; i < len; i += 4, src++, dst++)
360 		*dst = swab32p(src);
361 }
362 
363 static void fec_dump(struct net_device *ndev)
364 {
365 	struct fec_enet_private *fep = netdev_priv(ndev);
366 	struct bufdesc *bdp;
367 	struct fec_enet_priv_tx_q *txq;
368 	int index = 0;
369 
370 	netdev_info(ndev, "TX ring dump\n");
371 	pr_info("Nr     SC     addr       len  SKB\n");
372 
373 	txq = fep->tx_queue[0];
374 	bdp = txq->bd.base;
375 
376 	do {
377 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
378 			index,
379 			bdp == txq->bd.cur ? 'S' : ' ',
380 			bdp == txq->dirty_tx ? 'H' : ' ',
381 			fec16_to_cpu(bdp->cbd_sc),
382 			fec32_to_cpu(bdp->cbd_bufaddr),
383 			fec16_to_cpu(bdp->cbd_datlen),
384 			txq->tx_skbuff[index]);
385 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
386 		index++;
387 	} while (bdp != txq->bd.base);
388 }
389 
390 static inline bool is_ipv4_pkt(struct sk_buff *skb)
391 {
392 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
393 }
394 
395 static int
396 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
397 {
398 	/* Only run for packets requiring a checksum. */
399 	if (skb->ip_summed != CHECKSUM_PARTIAL)
400 		return 0;
401 
402 	if (unlikely(skb_cow_head(skb, 0)))
403 		return -1;
404 
405 	if (is_ipv4_pkt(skb))
406 		ip_hdr(skb)->check = 0;
407 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
408 
409 	return 0;
410 }
411 
412 static struct bufdesc *
413 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
414 			     struct sk_buff *skb,
415 			     struct net_device *ndev)
416 {
417 	struct fec_enet_private *fep = netdev_priv(ndev);
418 	struct bufdesc *bdp = txq->bd.cur;
419 	struct bufdesc_ex *ebdp;
420 	int nr_frags = skb_shinfo(skb)->nr_frags;
421 	int frag, frag_len;
422 	unsigned short status;
423 	unsigned int estatus = 0;
424 	skb_frag_t *this_frag;
425 	unsigned int index;
426 	void *bufaddr;
427 	dma_addr_t addr;
428 	int i;
429 
430 	for (frag = 0; frag < nr_frags; frag++) {
431 		this_frag = &skb_shinfo(skb)->frags[frag];
432 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
433 		ebdp = (struct bufdesc_ex *)bdp;
434 
435 		status = fec16_to_cpu(bdp->cbd_sc);
436 		status &= ~BD_ENET_TX_STATS;
437 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
438 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
439 
440 		/* Handle the last BD specially */
441 		if (frag == nr_frags - 1) {
442 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
443 			if (fep->bufdesc_ex) {
444 				estatus |= BD_ENET_TX_INT;
445 				if (unlikely(skb_shinfo(skb)->tx_flags &
446 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
447 					estatus |= BD_ENET_TX_TS;
448 			}
449 		}
450 
451 		if (fep->bufdesc_ex) {
452 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
453 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
454 			if (skb->ip_summed == CHECKSUM_PARTIAL)
455 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
456 
457 			ebdp->cbd_bdu = 0;
458 			ebdp->cbd_esc = cpu_to_fec32(estatus);
459 		}
460 
461 		bufaddr = skb_frag_address(this_frag);
462 
463 		index = fec_enet_get_bd_index(bdp, &txq->bd);
464 		if (((unsigned long) bufaddr) & fep->tx_align ||
465 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
466 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
467 			bufaddr = txq->tx_bounce[index];
468 
469 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
470 				swap_buffer(bufaddr, frag_len);
471 		}
472 
473 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
474 				      DMA_TO_DEVICE);
475 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
476 			if (net_ratelimit())
477 				netdev_err(ndev, "Tx DMA memory map failed\n");
478 			goto dma_mapping_error;
479 		}
480 
481 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
482 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
483 		/* Make sure the updates to rest of the descriptor are
484 		 * performed before transferring ownership.
485 		 */
486 		wmb();
487 		bdp->cbd_sc = cpu_to_fec16(status);
488 	}
489 
490 	return bdp;
491 dma_mapping_error:
492 	bdp = txq->bd.cur;
493 	for (i = 0; i < frag; i++) {
494 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
495 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
496 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
497 	}
498 	return ERR_PTR(-ENOMEM);
499 }
500 
501 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
502 				   struct sk_buff *skb, struct net_device *ndev)
503 {
504 	struct fec_enet_private *fep = netdev_priv(ndev);
505 	int nr_frags = skb_shinfo(skb)->nr_frags;
506 	struct bufdesc *bdp, *last_bdp;
507 	void *bufaddr;
508 	dma_addr_t addr;
509 	unsigned short status;
510 	unsigned short buflen;
511 	unsigned int estatus = 0;
512 	unsigned int index;
513 	int entries_free;
514 
515 	entries_free = fec_enet_get_free_txdesc_num(txq);
516 	if (entries_free < MAX_SKB_FRAGS + 1) {
517 		dev_kfree_skb_any(skb);
518 		if (net_ratelimit())
519 			netdev_err(ndev, "NOT enough BD for SG!\n");
520 		return NETDEV_TX_OK;
521 	}
522 
523 	/* Protocol checksum off-load for TCP and UDP. */
524 	if (fec_enet_clear_csum(skb, ndev)) {
525 		dev_kfree_skb_any(skb);
526 		return NETDEV_TX_OK;
527 	}
528 
529 	/* Fill in a Tx ring entry */
530 	bdp = txq->bd.cur;
531 	last_bdp = bdp;
532 	status = fec16_to_cpu(bdp->cbd_sc);
533 	status &= ~BD_ENET_TX_STATS;
534 
535 	/* Set buffer length and buffer pointer */
536 	bufaddr = skb->data;
537 	buflen = skb_headlen(skb);
538 
539 	index = fec_enet_get_bd_index(bdp, &txq->bd);
540 	if (((unsigned long) bufaddr) & fep->tx_align ||
541 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
542 		memcpy(txq->tx_bounce[index], skb->data, buflen);
543 		bufaddr = txq->tx_bounce[index];
544 
545 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
546 			swap_buffer(bufaddr, buflen);
547 	}
548 
549 	/* Push the data cache so the CPM does not get stale memory data. */
550 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
551 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
552 		dev_kfree_skb_any(skb);
553 		if (net_ratelimit())
554 			netdev_err(ndev, "Tx DMA memory map failed\n");
555 		return NETDEV_TX_OK;
556 	}
557 
558 	if (nr_frags) {
559 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
560 		if (IS_ERR(last_bdp)) {
561 			dma_unmap_single(&fep->pdev->dev, addr,
562 					 buflen, DMA_TO_DEVICE);
563 			dev_kfree_skb_any(skb);
564 			return NETDEV_TX_OK;
565 		}
566 	} else {
567 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
568 		if (fep->bufdesc_ex) {
569 			estatus = BD_ENET_TX_INT;
570 			if (unlikely(skb_shinfo(skb)->tx_flags &
571 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
572 				estatus |= BD_ENET_TX_TS;
573 		}
574 	}
575 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
576 	bdp->cbd_datlen = cpu_to_fec16(buflen);
577 
578 	if (fep->bufdesc_ex) {
579 
580 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
581 
582 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
583 			fep->hwts_tx_en))
584 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
585 
586 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
587 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
588 
589 		if (skb->ip_summed == CHECKSUM_PARTIAL)
590 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
591 
592 		ebdp->cbd_bdu = 0;
593 		ebdp->cbd_esc = cpu_to_fec32(estatus);
594 	}
595 
596 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
597 	/* Save skb pointer */
598 	txq->tx_skbuff[index] = skb;
599 
600 	/* Make sure the updates to rest of the descriptor are performed before
601 	 * transferring ownership.
602 	 */
603 	wmb();
604 
605 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
606 	 * it's the last BD of the frame, and to put the CRC on the end.
607 	 */
608 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
609 	bdp->cbd_sc = cpu_to_fec16(status);
610 
611 	/* If this was the last BD in the ring, start at the beginning again. */
612 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
613 
614 	skb_tx_timestamp(skb);
615 
616 	/* Make sure the update to bdp and tx_skbuff are performed before
617 	 * txq->bd.cur.
618 	 */
619 	wmb();
620 	txq->bd.cur = bdp;
621 
622 	/* Trigger transmission start */
623 	writel(0, txq->bd.reg_desc_active);
624 
625 	return 0;
626 }
627 
628 static int
629 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
630 			  struct net_device *ndev,
631 			  struct bufdesc *bdp, int index, char *data,
632 			  int size, bool last_tcp, bool is_last)
633 {
634 	struct fec_enet_private *fep = netdev_priv(ndev);
635 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
636 	unsigned short status;
637 	unsigned int estatus = 0;
638 	dma_addr_t addr;
639 
640 	status = fec16_to_cpu(bdp->cbd_sc);
641 	status &= ~BD_ENET_TX_STATS;
642 
643 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
644 
645 	if (((unsigned long) data) & fep->tx_align ||
646 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
647 		memcpy(txq->tx_bounce[index], data, size);
648 		data = txq->tx_bounce[index];
649 
650 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
651 			swap_buffer(data, size);
652 	}
653 
654 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
655 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
656 		dev_kfree_skb_any(skb);
657 		if (net_ratelimit())
658 			netdev_err(ndev, "Tx DMA memory map failed\n");
659 		return NETDEV_TX_BUSY;
660 	}
661 
662 	bdp->cbd_datlen = cpu_to_fec16(size);
663 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
664 
665 	if (fep->bufdesc_ex) {
666 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
667 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
668 		if (skb->ip_summed == CHECKSUM_PARTIAL)
669 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
670 		ebdp->cbd_bdu = 0;
671 		ebdp->cbd_esc = cpu_to_fec32(estatus);
672 	}
673 
674 	/* Handle the last BD specially */
675 	if (last_tcp)
676 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
677 	if (is_last) {
678 		status |= BD_ENET_TX_INTR;
679 		if (fep->bufdesc_ex)
680 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
681 	}
682 
683 	bdp->cbd_sc = cpu_to_fec16(status);
684 
685 	return 0;
686 }
687 
688 static int
689 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
690 			 struct sk_buff *skb, struct net_device *ndev,
691 			 struct bufdesc *bdp, int index)
692 {
693 	struct fec_enet_private *fep = netdev_priv(ndev);
694 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
695 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
696 	void *bufaddr;
697 	unsigned long dmabuf;
698 	unsigned short status;
699 	unsigned int estatus = 0;
700 
701 	status = fec16_to_cpu(bdp->cbd_sc);
702 	status &= ~BD_ENET_TX_STATS;
703 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
704 
705 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
706 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
707 	if (((unsigned long)bufaddr) & fep->tx_align ||
708 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
709 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
710 		bufaddr = txq->tx_bounce[index];
711 
712 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
713 			swap_buffer(bufaddr, hdr_len);
714 
715 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
716 					hdr_len, DMA_TO_DEVICE);
717 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
718 			dev_kfree_skb_any(skb);
719 			if (net_ratelimit())
720 				netdev_err(ndev, "Tx DMA memory map failed\n");
721 			return NETDEV_TX_BUSY;
722 		}
723 	}
724 
725 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
726 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
727 
728 	if (fep->bufdesc_ex) {
729 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
730 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
731 		if (skb->ip_summed == CHECKSUM_PARTIAL)
732 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
733 		ebdp->cbd_bdu = 0;
734 		ebdp->cbd_esc = cpu_to_fec32(estatus);
735 	}
736 
737 	bdp->cbd_sc = cpu_to_fec16(status);
738 
739 	return 0;
740 }
741 
742 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
743 				   struct sk_buff *skb,
744 				   struct net_device *ndev)
745 {
746 	struct fec_enet_private *fep = netdev_priv(ndev);
747 	int hdr_len, total_len, data_left;
748 	struct bufdesc *bdp = txq->bd.cur;
749 	struct tso_t tso;
750 	unsigned int index = 0;
751 	int ret;
752 
753 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
754 		dev_kfree_skb_any(skb);
755 		if (net_ratelimit())
756 			netdev_err(ndev, "NOT enough BD for TSO!\n");
757 		return NETDEV_TX_OK;
758 	}
759 
760 	/* Protocol checksum off-load for TCP and UDP. */
761 	if (fec_enet_clear_csum(skb, ndev)) {
762 		dev_kfree_skb_any(skb);
763 		return NETDEV_TX_OK;
764 	}
765 
766 	/* Initialize the TSO handler, and prepare the first payload */
767 	hdr_len = tso_start(skb, &tso);
768 
769 	total_len = skb->len - hdr_len;
770 	while (total_len > 0) {
771 		char *hdr;
772 
773 		index = fec_enet_get_bd_index(bdp, &txq->bd);
774 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
775 		total_len -= data_left;
776 
777 		/* prepare packet headers: MAC + IP + TCP */
778 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
779 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
780 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
781 		if (ret)
782 			goto err_release;
783 
784 		while (data_left > 0) {
785 			int size;
786 
787 			size = min_t(int, tso.size, data_left);
788 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
789 			index = fec_enet_get_bd_index(bdp, &txq->bd);
790 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
791 							bdp, index,
792 							tso.data, size,
793 							size == data_left,
794 							total_len == 0);
795 			if (ret)
796 				goto err_release;
797 
798 			data_left -= size;
799 			tso_build_data(skb, &tso, size);
800 		}
801 
802 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
803 	}
804 
805 	/* Save skb pointer */
806 	txq->tx_skbuff[index] = skb;
807 
808 	skb_tx_timestamp(skb);
809 	txq->bd.cur = bdp;
810 
811 	/* Trigger transmission start */
812 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
813 	    !readl(txq->bd.reg_desc_active) ||
814 	    !readl(txq->bd.reg_desc_active) ||
815 	    !readl(txq->bd.reg_desc_active) ||
816 	    !readl(txq->bd.reg_desc_active))
817 		writel(0, txq->bd.reg_desc_active);
818 
819 	return 0;
820 
821 err_release:
822 	/* TODO: Release all used data descriptors for TSO */
823 	return ret;
824 }
825 
826 static netdev_tx_t
827 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
828 {
829 	struct fec_enet_private *fep = netdev_priv(ndev);
830 	int entries_free;
831 	unsigned short queue;
832 	struct fec_enet_priv_tx_q *txq;
833 	struct netdev_queue *nq;
834 	int ret;
835 
836 	queue = skb_get_queue_mapping(skb);
837 	txq = fep->tx_queue[queue];
838 	nq = netdev_get_tx_queue(ndev, queue);
839 
840 	if (skb_is_gso(skb))
841 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
842 	else
843 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
844 	if (ret)
845 		return ret;
846 
847 	entries_free = fec_enet_get_free_txdesc_num(txq);
848 	if (entries_free <= txq->tx_stop_threshold)
849 		netif_tx_stop_queue(nq);
850 
851 	return NETDEV_TX_OK;
852 }
853 
854 /* Init RX & TX buffer descriptors
855  */
856 static void fec_enet_bd_init(struct net_device *dev)
857 {
858 	struct fec_enet_private *fep = netdev_priv(dev);
859 	struct fec_enet_priv_tx_q *txq;
860 	struct fec_enet_priv_rx_q *rxq;
861 	struct bufdesc *bdp;
862 	unsigned int i;
863 	unsigned int q;
864 
865 	for (q = 0; q < fep->num_rx_queues; q++) {
866 		/* Initialize the receive buffer descriptors. */
867 		rxq = fep->rx_queue[q];
868 		bdp = rxq->bd.base;
869 
870 		for (i = 0; i < rxq->bd.ring_size; i++) {
871 
872 			/* Initialize the BD for every fragment in the page. */
873 			if (bdp->cbd_bufaddr)
874 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
875 			else
876 				bdp->cbd_sc = cpu_to_fec16(0);
877 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
878 		}
879 
880 		/* Set the last buffer to wrap */
881 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
882 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
883 
884 		rxq->bd.cur = rxq->bd.base;
885 	}
886 
887 	for (q = 0; q < fep->num_tx_queues; q++) {
888 		/* ...and the same for transmit */
889 		txq = fep->tx_queue[q];
890 		bdp = txq->bd.base;
891 		txq->bd.cur = bdp;
892 
893 		for (i = 0; i < txq->bd.ring_size; i++) {
894 			/* Initialize the BD for every fragment in the page. */
895 			bdp->cbd_sc = cpu_to_fec16(0);
896 			if (bdp->cbd_bufaddr &&
897 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
898 				dma_unmap_single(&fep->pdev->dev,
899 						 fec32_to_cpu(bdp->cbd_bufaddr),
900 						 fec16_to_cpu(bdp->cbd_datlen),
901 						 DMA_TO_DEVICE);
902 			if (txq->tx_skbuff[i]) {
903 				dev_kfree_skb_any(txq->tx_skbuff[i]);
904 				txq->tx_skbuff[i] = NULL;
905 			}
906 			bdp->cbd_bufaddr = cpu_to_fec32(0);
907 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
908 		}
909 
910 		/* Set the last buffer to wrap */
911 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
912 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
913 		txq->dirty_tx = bdp;
914 	}
915 }
916 
917 static void fec_enet_active_rxring(struct net_device *ndev)
918 {
919 	struct fec_enet_private *fep = netdev_priv(ndev);
920 	int i;
921 
922 	for (i = 0; i < fep->num_rx_queues; i++)
923 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
924 }
925 
926 static void fec_enet_enable_ring(struct net_device *ndev)
927 {
928 	struct fec_enet_private *fep = netdev_priv(ndev);
929 	struct fec_enet_priv_tx_q *txq;
930 	struct fec_enet_priv_rx_q *rxq;
931 	int i;
932 
933 	for (i = 0; i < fep->num_rx_queues; i++) {
934 		rxq = fep->rx_queue[i];
935 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
936 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
937 
938 		/* enable DMA1/2 */
939 		if (i)
940 			writel(RCMR_MATCHEN | RCMR_CMP(i),
941 			       fep->hwp + FEC_RCMR(i));
942 	}
943 
944 	for (i = 0; i < fep->num_tx_queues; i++) {
945 		txq = fep->tx_queue[i];
946 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
947 
948 		/* enable DMA1/2 */
949 		if (i)
950 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
951 			       fep->hwp + FEC_DMA_CFG(i));
952 	}
953 }
954 
955 static void fec_enet_reset_skb(struct net_device *ndev)
956 {
957 	struct fec_enet_private *fep = netdev_priv(ndev);
958 	struct fec_enet_priv_tx_q *txq;
959 	int i, j;
960 
961 	for (i = 0; i < fep->num_tx_queues; i++) {
962 		txq = fep->tx_queue[i];
963 
964 		for (j = 0; j < txq->bd.ring_size; j++) {
965 			if (txq->tx_skbuff[j]) {
966 				dev_kfree_skb_any(txq->tx_skbuff[j]);
967 				txq->tx_skbuff[j] = NULL;
968 			}
969 		}
970 	}
971 }
972 
973 /*
974  * This function is called to start or restart the FEC during a link
975  * change, transmit timeout, or to reconfigure the FEC.  The network
976  * packet processing for this device must be stopped before this call.
977  */
978 static void
979 fec_restart(struct net_device *ndev)
980 {
981 	struct fec_enet_private *fep = netdev_priv(ndev);
982 	u32 temp_mac[2];
983 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
984 	u32 ecntl = 0x2; /* ETHEREN */
985 
986 	/* Whack a reset.  We should wait for this.
987 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
988 	 * instead of reset MAC itself.
989 	 */
990 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
991 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
992 		writel(0, fep->hwp + FEC_ECNTRL);
993 	} else {
994 		writel(1, fep->hwp + FEC_ECNTRL);
995 		udelay(10);
996 	}
997 
998 	/*
999 	 * enet-mac reset will reset mac address registers too,
1000 	 * so need to reconfigure it.
1001 	 */
1002 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1003 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1004 	       fep->hwp + FEC_ADDR_LOW);
1005 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1006 	       fep->hwp + FEC_ADDR_HIGH);
1007 
1008 	/* Clear any outstanding interrupt, except MDIO. */
1009 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1010 
1011 	fec_enet_bd_init(ndev);
1012 
1013 	fec_enet_enable_ring(ndev);
1014 
1015 	/* Reset tx SKB buffers. */
1016 	fec_enet_reset_skb(ndev);
1017 
1018 	/* Enable MII mode */
1019 	if (fep->full_duplex == DUPLEX_FULL) {
1020 		/* FD enable */
1021 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1022 	} else {
1023 		/* No Rcv on Xmit */
1024 		rcntl |= 0x02;
1025 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1026 	}
1027 
1028 	/* Set MII speed */
1029 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1030 
1031 #if !defined(CONFIG_M5272)
1032 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1033 		u32 val = readl(fep->hwp + FEC_RACC);
1034 
1035 		/* align IP header */
1036 		val |= FEC_RACC_SHIFT16;
1037 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1038 			/* set RX checksum */
1039 			val |= FEC_RACC_OPTIONS;
1040 		else
1041 			val &= ~FEC_RACC_OPTIONS;
1042 		writel(val, fep->hwp + FEC_RACC);
1043 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1044 	}
1045 #endif
1046 
1047 	/*
1048 	 * The phy interface and speed need to get configured
1049 	 * differently on enet-mac.
1050 	 */
1051 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1052 		/* Enable flow control and length check */
1053 		rcntl |= 0x40000000 | 0x00000020;
1054 
1055 		/* RGMII, RMII or MII */
1056 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1057 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1058 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1059 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1060 			rcntl |= (1 << 6);
1061 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1062 			rcntl |= (1 << 8);
1063 		else
1064 			rcntl &= ~(1 << 8);
1065 
1066 		/* 1G, 100M or 10M */
1067 		if (ndev->phydev) {
1068 			if (ndev->phydev->speed == SPEED_1000)
1069 				ecntl |= (1 << 5);
1070 			else if (ndev->phydev->speed == SPEED_100)
1071 				rcntl &= ~(1 << 9);
1072 			else
1073 				rcntl |= (1 << 9);
1074 		}
1075 	} else {
1076 #ifdef FEC_MIIGSK_ENR
1077 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1078 			u32 cfgr;
1079 			/* disable the gasket and wait */
1080 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1081 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1082 				udelay(1);
1083 
1084 			/*
1085 			 * configure the gasket:
1086 			 *   RMII, 50 MHz, no loopback, no echo
1087 			 *   MII, 25 MHz, no loopback, no echo
1088 			 */
1089 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1090 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1091 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1092 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1093 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1094 
1095 			/* re-enable the gasket */
1096 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1097 		}
1098 #endif
1099 	}
1100 
1101 #if !defined(CONFIG_M5272)
1102 	/* enable pause frame*/
1103 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1104 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1105 	     ndev->phydev && ndev->phydev->pause)) {
1106 		rcntl |= FEC_ENET_FCE;
1107 
1108 		/* set FIFO threshold parameter to reduce overrun */
1109 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1110 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1111 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1112 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1113 
1114 		/* OPD */
1115 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1116 	} else {
1117 		rcntl &= ~FEC_ENET_FCE;
1118 	}
1119 #endif /* !defined(CONFIG_M5272) */
1120 
1121 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1122 
1123 	/* Setup multicast filter. */
1124 	set_multicast_list(ndev);
1125 #ifndef CONFIG_M5272
1126 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1127 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1128 #endif
1129 
1130 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1131 		/* enable ENET endian swap */
1132 		ecntl |= (1 << 8);
1133 		/* enable ENET store and forward mode */
1134 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1135 	}
1136 
1137 	if (fep->bufdesc_ex)
1138 		ecntl |= (1 << 4);
1139 
1140 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1141 	    fep->rgmii_txc_dly)
1142 		ecntl |= FEC_ENET_TXC_DLY;
1143 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1144 	    fep->rgmii_rxc_dly)
1145 		ecntl |= FEC_ENET_RXC_DLY;
1146 
1147 #ifndef CONFIG_M5272
1148 	/* Enable the MIB statistic event counters */
1149 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1150 #endif
1151 
1152 	/* And last, enable the transmit and receive processing */
1153 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1154 	fec_enet_active_rxring(ndev);
1155 
1156 	if (fep->bufdesc_ex)
1157 		fec_ptp_start_cyclecounter(ndev);
1158 
1159 	/* Enable interrupts we wish to service */
1160 	if (fep->link)
1161 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1162 	else
1163 		writel(0, fep->hwp + FEC_IMASK);
1164 
1165 	/* Init the interrupt coalescing */
1166 	fec_enet_itr_coal_init(ndev);
1167 
1168 }
1169 
1170 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1171 {
1172 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1173 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1174 
1175 	if (stop_gpr->gpr) {
1176 		if (enabled)
1177 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1178 					   BIT(stop_gpr->bit),
1179 					   BIT(stop_gpr->bit));
1180 		else
1181 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1182 					   BIT(stop_gpr->bit), 0);
1183 	} else if (pdata && pdata->sleep_mode_enable) {
1184 		pdata->sleep_mode_enable(enabled);
1185 	}
1186 }
1187 
1188 static void
1189 fec_stop(struct net_device *ndev)
1190 {
1191 	struct fec_enet_private *fep = netdev_priv(ndev);
1192 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1193 	u32 val;
1194 
1195 	/* We cannot expect a graceful transmit stop without link !!! */
1196 	if (fep->link) {
1197 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1198 		udelay(10);
1199 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1200 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1201 	}
1202 
1203 	/* Whack a reset.  We should wait for this.
1204 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1205 	 * instead of reset MAC itself.
1206 	 */
1207 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1208 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1209 			writel(0, fep->hwp + FEC_ECNTRL);
1210 		} else {
1211 			writel(1, fep->hwp + FEC_ECNTRL);
1212 			udelay(10);
1213 		}
1214 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1215 	} else {
1216 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1217 		val = readl(fep->hwp + FEC_ECNTRL);
1218 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1219 		writel(val, fep->hwp + FEC_ECNTRL);
1220 		fec_enet_stop_mode(fep, true);
1221 	}
1222 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1223 
1224 	/* We have to keep ENET enabled to have MII interrupt stay working */
1225 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1226 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1227 		writel(2, fep->hwp + FEC_ECNTRL);
1228 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1229 	}
1230 }
1231 
1232 
1233 static void
1234 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1235 {
1236 	struct fec_enet_private *fep = netdev_priv(ndev);
1237 
1238 	fec_dump(ndev);
1239 
1240 	ndev->stats.tx_errors++;
1241 
1242 	schedule_work(&fep->tx_timeout_work);
1243 }
1244 
1245 static void fec_enet_timeout_work(struct work_struct *work)
1246 {
1247 	struct fec_enet_private *fep =
1248 		container_of(work, struct fec_enet_private, tx_timeout_work);
1249 	struct net_device *ndev = fep->netdev;
1250 
1251 	rtnl_lock();
1252 	if (netif_device_present(ndev) || netif_running(ndev)) {
1253 		napi_disable(&fep->napi);
1254 		netif_tx_lock_bh(ndev);
1255 		fec_restart(ndev);
1256 		netif_tx_wake_all_queues(ndev);
1257 		netif_tx_unlock_bh(ndev);
1258 		napi_enable(&fep->napi);
1259 	}
1260 	rtnl_unlock();
1261 }
1262 
1263 static void
1264 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1265 	struct skb_shared_hwtstamps *hwtstamps)
1266 {
1267 	unsigned long flags;
1268 	u64 ns;
1269 
1270 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1271 	ns = timecounter_cyc2time(&fep->tc, ts);
1272 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1273 
1274 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1275 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1276 }
1277 
1278 static void
1279 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1280 {
1281 	struct	fec_enet_private *fep;
1282 	struct bufdesc *bdp;
1283 	unsigned short status;
1284 	struct	sk_buff	*skb;
1285 	struct fec_enet_priv_tx_q *txq;
1286 	struct netdev_queue *nq;
1287 	int	index = 0;
1288 	int	entries_free;
1289 
1290 	fep = netdev_priv(ndev);
1291 
1292 	txq = fep->tx_queue[queue_id];
1293 	/* get next bdp of dirty_tx */
1294 	nq = netdev_get_tx_queue(ndev, queue_id);
1295 	bdp = txq->dirty_tx;
1296 
1297 	/* get next bdp of dirty_tx */
1298 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1299 
1300 	while (bdp != READ_ONCE(txq->bd.cur)) {
1301 		/* Order the load of bd.cur and cbd_sc */
1302 		rmb();
1303 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1304 		if (status & BD_ENET_TX_READY)
1305 			break;
1306 
1307 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1308 
1309 		skb = txq->tx_skbuff[index];
1310 		txq->tx_skbuff[index] = NULL;
1311 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1312 			dma_unmap_single(&fep->pdev->dev,
1313 					 fec32_to_cpu(bdp->cbd_bufaddr),
1314 					 fec16_to_cpu(bdp->cbd_datlen),
1315 					 DMA_TO_DEVICE);
1316 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1317 		if (!skb)
1318 			goto skb_done;
1319 
1320 		/* Check for errors. */
1321 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1322 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1323 				   BD_ENET_TX_CSL)) {
1324 			ndev->stats.tx_errors++;
1325 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1326 				ndev->stats.tx_heartbeat_errors++;
1327 			if (status & BD_ENET_TX_LC)  /* Late collision */
1328 				ndev->stats.tx_window_errors++;
1329 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1330 				ndev->stats.tx_aborted_errors++;
1331 			if (status & BD_ENET_TX_UN)  /* Underrun */
1332 				ndev->stats.tx_fifo_errors++;
1333 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1334 				ndev->stats.tx_carrier_errors++;
1335 		} else {
1336 			ndev->stats.tx_packets++;
1337 			ndev->stats.tx_bytes += skb->len;
1338 		}
1339 
1340 		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1341 		 * are to time stamp the packet, so we still need to check time
1342 		 * stamping enabled flag.
1343 		 */
1344 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1345 			     fep->hwts_tx_en) &&
1346 		    fep->bufdesc_ex) {
1347 			struct skb_shared_hwtstamps shhwtstamps;
1348 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1349 
1350 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1351 			skb_tstamp_tx(skb, &shhwtstamps);
1352 		}
1353 
1354 		/* Deferred means some collisions occurred during transmit,
1355 		 * but we eventually sent the packet OK.
1356 		 */
1357 		if (status & BD_ENET_TX_DEF)
1358 			ndev->stats.collisions++;
1359 
1360 		/* Free the sk buffer associated with this last transmit */
1361 		dev_kfree_skb_any(skb);
1362 skb_done:
1363 		/* Make sure the update to bdp and tx_skbuff are performed
1364 		 * before dirty_tx
1365 		 */
1366 		wmb();
1367 		txq->dirty_tx = bdp;
1368 
1369 		/* Update pointer to next buffer descriptor to be transmitted */
1370 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1371 
1372 		/* Since we have freed up a buffer, the ring is no longer full
1373 		 */
1374 		if (netif_tx_queue_stopped(nq)) {
1375 			entries_free = fec_enet_get_free_txdesc_num(txq);
1376 			if (entries_free >= txq->tx_wake_threshold)
1377 				netif_tx_wake_queue(nq);
1378 		}
1379 	}
1380 
1381 	/* ERR006358: Keep the transmitter going */
1382 	if (bdp != txq->bd.cur &&
1383 	    readl(txq->bd.reg_desc_active) == 0)
1384 		writel(0, txq->bd.reg_desc_active);
1385 }
1386 
1387 static void fec_enet_tx(struct net_device *ndev)
1388 {
1389 	struct fec_enet_private *fep = netdev_priv(ndev);
1390 	int i;
1391 
1392 	/* Make sure that AVB queues are processed first. */
1393 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1394 		fec_enet_tx_queue(ndev, i);
1395 }
1396 
1397 static int
1398 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1399 {
1400 	struct  fec_enet_private *fep = netdev_priv(ndev);
1401 	int off;
1402 
1403 	off = ((unsigned long)skb->data) & fep->rx_align;
1404 	if (off)
1405 		skb_reserve(skb, fep->rx_align + 1 - off);
1406 
1407 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1408 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1409 		if (net_ratelimit())
1410 			netdev_err(ndev, "Rx DMA memory map failed\n");
1411 		return -ENOMEM;
1412 	}
1413 
1414 	return 0;
1415 }
1416 
1417 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1418 			       struct bufdesc *bdp, u32 length, bool swap)
1419 {
1420 	struct  fec_enet_private *fep = netdev_priv(ndev);
1421 	struct sk_buff *new_skb;
1422 
1423 	if (length > fep->rx_copybreak)
1424 		return false;
1425 
1426 	new_skb = netdev_alloc_skb(ndev, length);
1427 	if (!new_skb)
1428 		return false;
1429 
1430 	dma_sync_single_for_cpu(&fep->pdev->dev,
1431 				fec32_to_cpu(bdp->cbd_bufaddr),
1432 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1433 				DMA_FROM_DEVICE);
1434 	if (!swap)
1435 		memcpy(new_skb->data, (*skb)->data, length);
1436 	else
1437 		swap_buffer2(new_skb->data, (*skb)->data, length);
1438 	*skb = new_skb;
1439 
1440 	return true;
1441 }
1442 
1443 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1444  * When we update through the ring, if the next incoming buffer has
1445  * not been given to the system, we just set the empty indicator,
1446  * effectively tossing the packet.
1447  */
1448 static int
1449 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1450 {
1451 	struct fec_enet_private *fep = netdev_priv(ndev);
1452 	struct fec_enet_priv_rx_q *rxq;
1453 	struct bufdesc *bdp;
1454 	unsigned short status;
1455 	struct  sk_buff *skb_new = NULL;
1456 	struct  sk_buff *skb;
1457 	ushort	pkt_len;
1458 	__u8 *data;
1459 	int	pkt_received = 0;
1460 	struct	bufdesc_ex *ebdp = NULL;
1461 	bool	vlan_packet_rcvd = false;
1462 	u16	vlan_tag;
1463 	int	index = 0;
1464 	bool	is_copybreak;
1465 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1466 
1467 #ifdef CONFIG_M532x
1468 	flush_cache_all();
1469 #endif
1470 	rxq = fep->rx_queue[queue_id];
1471 
1472 	/* First, grab all of the stats for the incoming packet.
1473 	 * These get messed up if we get called due to a busy condition.
1474 	 */
1475 	bdp = rxq->bd.cur;
1476 
1477 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1478 
1479 		if (pkt_received >= budget)
1480 			break;
1481 		pkt_received++;
1482 
1483 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1484 
1485 		/* Check for errors. */
1486 		status ^= BD_ENET_RX_LAST;
1487 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1488 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1489 			   BD_ENET_RX_CL)) {
1490 			ndev->stats.rx_errors++;
1491 			if (status & BD_ENET_RX_OV) {
1492 				/* FIFO overrun */
1493 				ndev->stats.rx_fifo_errors++;
1494 				goto rx_processing_done;
1495 			}
1496 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1497 						| BD_ENET_RX_LAST)) {
1498 				/* Frame too long or too short. */
1499 				ndev->stats.rx_length_errors++;
1500 				if (status & BD_ENET_RX_LAST)
1501 					netdev_err(ndev, "rcv is not +last\n");
1502 			}
1503 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1504 				ndev->stats.rx_crc_errors++;
1505 			/* Report late collisions as a frame error. */
1506 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1507 				ndev->stats.rx_frame_errors++;
1508 			goto rx_processing_done;
1509 		}
1510 
1511 		/* Process the incoming frame. */
1512 		ndev->stats.rx_packets++;
1513 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1514 		ndev->stats.rx_bytes += pkt_len;
1515 
1516 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1517 		skb = rxq->rx_skbuff[index];
1518 
1519 		/* The packet length includes FCS, but we don't want to
1520 		 * include that when passing upstream as it messes up
1521 		 * bridging applications.
1522 		 */
1523 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1524 						  need_swap);
1525 		if (!is_copybreak) {
1526 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1527 			if (unlikely(!skb_new)) {
1528 				ndev->stats.rx_dropped++;
1529 				goto rx_processing_done;
1530 			}
1531 			dma_unmap_single(&fep->pdev->dev,
1532 					 fec32_to_cpu(bdp->cbd_bufaddr),
1533 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1534 					 DMA_FROM_DEVICE);
1535 		}
1536 
1537 		prefetch(skb->data - NET_IP_ALIGN);
1538 		skb_put(skb, pkt_len - 4);
1539 		data = skb->data;
1540 
1541 		if (!is_copybreak && need_swap)
1542 			swap_buffer(data, pkt_len);
1543 
1544 #if !defined(CONFIG_M5272)
1545 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1546 			data = skb_pull_inline(skb, 2);
1547 #endif
1548 
1549 		/* Extract the enhanced buffer descriptor */
1550 		ebdp = NULL;
1551 		if (fep->bufdesc_ex)
1552 			ebdp = (struct bufdesc_ex *)bdp;
1553 
1554 		/* If this is a VLAN packet remove the VLAN Tag */
1555 		vlan_packet_rcvd = false;
1556 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1557 		    fep->bufdesc_ex &&
1558 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1559 			/* Push and remove the vlan tag */
1560 			struct vlan_hdr *vlan_header =
1561 					(struct vlan_hdr *) (data + ETH_HLEN);
1562 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1563 
1564 			vlan_packet_rcvd = true;
1565 
1566 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1567 			skb_pull(skb, VLAN_HLEN);
1568 		}
1569 
1570 		skb->protocol = eth_type_trans(skb, ndev);
1571 
1572 		/* Get receive timestamp from the skb */
1573 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1574 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1575 					  skb_hwtstamps(skb));
1576 
1577 		if (fep->bufdesc_ex &&
1578 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1579 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1580 				/* don't check it */
1581 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1582 			} else {
1583 				skb_checksum_none_assert(skb);
1584 			}
1585 		}
1586 
1587 		/* Handle received VLAN packets */
1588 		if (vlan_packet_rcvd)
1589 			__vlan_hwaccel_put_tag(skb,
1590 					       htons(ETH_P_8021Q),
1591 					       vlan_tag);
1592 
1593 		skb_record_rx_queue(skb, queue_id);
1594 		napi_gro_receive(&fep->napi, skb);
1595 
1596 		if (is_copybreak) {
1597 			dma_sync_single_for_device(&fep->pdev->dev,
1598 						   fec32_to_cpu(bdp->cbd_bufaddr),
1599 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1600 						   DMA_FROM_DEVICE);
1601 		} else {
1602 			rxq->rx_skbuff[index] = skb_new;
1603 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1604 		}
1605 
1606 rx_processing_done:
1607 		/* Clear the status flags for this buffer */
1608 		status &= ~BD_ENET_RX_STATS;
1609 
1610 		/* Mark the buffer empty */
1611 		status |= BD_ENET_RX_EMPTY;
1612 
1613 		if (fep->bufdesc_ex) {
1614 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1615 
1616 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1617 			ebdp->cbd_prot = 0;
1618 			ebdp->cbd_bdu = 0;
1619 		}
1620 		/* Make sure the updates to rest of the descriptor are
1621 		 * performed before transferring ownership.
1622 		 */
1623 		wmb();
1624 		bdp->cbd_sc = cpu_to_fec16(status);
1625 
1626 		/* Update BD pointer to next entry */
1627 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1628 
1629 		/* Doing this here will keep the FEC running while we process
1630 		 * incoming frames.  On a heavily loaded network, we should be
1631 		 * able to keep up at the expense of system resources.
1632 		 */
1633 		writel(0, rxq->bd.reg_desc_active);
1634 	}
1635 	rxq->bd.cur = bdp;
1636 	return pkt_received;
1637 }
1638 
1639 static int fec_enet_rx(struct net_device *ndev, int budget)
1640 {
1641 	struct fec_enet_private *fep = netdev_priv(ndev);
1642 	int i, done = 0;
1643 
1644 	/* Make sure that AVB queues are processed first. */
1645 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1646 		done += fec_enet_rx_queue(ndev, budget - done, i);
1647 
1648 	return done;
1649 }
1650 
1651 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1652 {
1653 	uint int_events;
1654 
1655 	int_events = readl(fep->hwp + FEC_IEVENT);
1656 
1657 	/* Don't clear MDIO events, we poll for those */
1658 	int_events &= ~FEC_ENET_MII;
1659 
1660 	writel(int_events, fep->hwp + FEC_IEVENT);
1661 
1662 	return int_events != 0;
1663 }
1664 
1665 static irqreturn_t
1666 fec_enet_interrupt(int irq, void *dev_id)
1667 {
1668 	struct net_device *ndev = dev_id;
1669 	struct fec_enet_private *fep = netdev_priv(ndev);
1670 	irqreturn_t ret = IRQ_NONE;
1671 
1672 	if (fec_enet_collect_events(fep) && fep->link) {
1673 		ret = IRQ_HANDLED;
1674 
1675 		if (napi_schedule_prep(&fep->napi)) {
1676 			/* Disable interrupts */
1677 			writel(0, fep->hwp + FEC_IMASK);
1678 			__napi_schedule(&fep->napi);
1679 		}
1680 	}
1681 
1682 	return ret;
1683 }
1684 
1685 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1686 {
1687 	struct net_device *ndev = napi->dev;
1688 	struct fec_enet_private *fep = netdev_priv(ndev);
1689 	int done = 0;
1690 
1691 	do {
1692 		done += fec_enet_rx(ndev, budget - done);
1693 		fec_enet_tx(ndev);
1694 	} while ((done < budget) && fec_enet_collect_events(fep));
1695 
1696 	if (done < budget) {
1697 		napi_complete_done(napi, done);
1698 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1699 	}
1700 
1701 	return done;
1702 }
1703 
1704 /* ------------------------------------------------------------------------- */
1705 static int fec_get_mac(struct net_device *ndev)
1706 {
1707 	struct fec_enet_private *fep = netdev_priv(ndev);
1708 	unsigned char *iap, tmpaddr[ETH_ALEN];
1709 	int ret;
1710 
1711 	/*
1712 	 * try to get mac address in following order:
1713 	 *
1714 	 * 1) module parameter via kernel command line in form
1715 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1716 	 */
1717 	iap = macaddr;
1718 
1719 	/*
1720 	 * 2) from device tree data
1721 	 */
1722 	if (!is_valid_ether_addr(iap)) {
1723 		struct device_node *np = fep->pdev->dev.of_node;
1724 		if (np) {
1725 			ret = of_get_mac_address(np, tmpaddr);
1726 			if (!ret)
1727 				iap = tmpaddr;
1728 			else if (ret == -EPROBE_DEFER)
1729 				return ret;
1730 		}
1731 	}
1732 
1733 	/*
1734 	 * 3) from flash or fuse (via platform data)
1735 	 */
1736 	if (!is_valid_ether_addr(iap)) {
1737 #ifdef CONFIG_M5272
1738 		if (FEC_FLASHMAC)
1739 			iap = (unsigned char *)FEC_FLASHMAC;
1740 #else
1741 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1742 
1743 		if (pdata)
1744 			iap = (unsigned char *)&pdata->mac;
1745 #endif
1746 	}
1747 
1748 	/*
1749 	 * 4) FEC mac registers set by bootloader
1750 	 */
1751 	if (!is_valid_ether_addr(iap)) {
1752 		*((__be32 *) &tmpaddr[0]) =
1753 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1754 		*((__be16 *) &tmpaddr[4]) =
1755 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1756 		iap = &tmpaddr[0];
1757 	}
1758 
1759 	/*
1760 	 * 5) random mac address
1761 	 */
1762 	if (!is_valid_ether_addr(iap)) {
1763 		/* Report it and use a random ethernet address instead */
1764 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1765 		eth_hw_addr_random(ndev);
1766 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1767 			 ndev->dev_addr);
1768 		return 0;
1769 	}
1770 
1771 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1772 
1773 	/* Adjust MAC if using macaddr */
1774 	if (iap == macaddr)
1775 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1776 
1777 	return 0;
1778 }
1779 
1780 /* ------------------------------------------------------------------------- */
1781 
1782 /*
1783  * Phy section
1784  */
1785 static void fec_enet_adjust_link(struct net_device *ndev)
1786 {
1787 	struct fec_enet_private *fep = netdev_priv(ndev);
1788 	struct phy_device *phy_dev = ndev->phydev;
1789 	int status_change = 0;
1790 
1791 	/*
1792 	 * If the netdev is down, or is going down, we're not interested
1793 	 * in link state events, so just mark our idea of the link as down
1794 	 * and ignore the event.
1795 	 */
1796 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1797 		fep->link = 0;
1798 	} else if (phy_dev->link) {
1799 		if (!fep->link) {
1800 			fep->link = phy_dev->link;
1801 			status_change = 1;
1802 		}
1803 
1804 		if (fep->full_duplex != phy_dev->duplex) {
1805 			fep->full_duplex = phy_dev->duplex;
1806 			status_change = 1;
1807 		}
1808 
1809 		if (phy_dev->speed != fep->speed) {
1810 			fep->speed = phy_dev->speed;
1811 			status_change = 1;
1812 		}
1813 
1814 		/* if any of the above changed restart the FEC */
1815 		if (status_change) {
1816 			napi_disable(&fep->napi);
1817 			netif_tx_lock_bh(ndev);
1818 			fec_restart(ndev);
1819 			netif_tx_wake_all_queues(ndev);
1820 			netif_tx_unlock_bh(ndev);
1821 			napi_enable(&fep->napi);
1822 		}
1823 	} else {
1824 		if (fep->link) {
1825 			napi_disable(&fep->napi);
1826 			netif_tx_lock_bh(ndev);
1827 			fec_stop(ndev);
1828 			netif_tx_unlock_bh(ndev);
1829 			napi_enable(&fep->napi);
1830 			fep->link = phy_dev->link;
1831 			status_change = 1;
1832 		}
1833 	}
1834 
1835 	if (status_change)
1836 		phy_print_status(phy_dev);
1837 }
1838 
1839 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1840 {
1841 	uint ievent;
1842 	int ret;
1843 
1844 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1845 					ievent & FEC_ENET_MII, 2, 30000);
1846 
1847 	if (!ret)
1848 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1849 
1850 	return ret;
1851 }
1852 
1853 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1854 {
1855 	struct fec_enet_private *fep = bus->priv;
1856 	struct device *dev = &fep->pdev->dev;
1857 	int ret = 0, frame_start, frame_addr, frame_op;
1858 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1859 
1860 	ret = pm_runtime_resume_and_get(dev);
1861 	if (ret < 0)
1862 		return ret;
1863 
1864 	if (is_c45) {
1865 		frame_start = FEC_MMFR_ST_C45;
1866 
1867 		/* write address */
1868 		frame_addr = (regnum >> 16);
1869 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1870 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1871 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1872 		       fep->hwp + FEC_MII_DATA);
1873 
1874 		/* wait for end of transfer */
1875 		ret = fec_enet_mdio_wait(fep);
1876 		if (ret) {
1877 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1878 			goto out;
1879 		}
1880 
1881 		frame_op = FEC_MMFR_OP_READ_C45;
1882 
1883 	} else {
1884 		/* C22 read */
1885 		frame_op = FEC_MMFR_OP_READ;
1886 		frame_start = FEC_MMFR_ST;
1887 		frame_addr = regnum;
1888 	}
1889 
1890 	/* start a read op */
1891 	writel(frame_start | frame_op |
1892 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1893 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1894 
1895 	/* wait for end of transfer */
1896 	ret = fec_enet_mdio_wait(fep);
1897 	if (ret) {
1898 		netdev_err(fep->netdev, "MDIO read timeout\n");
1899 		goto out;
1900 	}
1901 
1902 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1903 
1904 out:
1905 	pm_runtime_mark_last_busy(dev);
1906 	pm_runtime_put_autosuspend(dev);
1907 
1908 	return ret;
1909 }
1910 
1911 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1912 			   u16 value)
1913 {
1914 	struct fec_enet_private *fep = bus->priv;
1915 	struct device *dev = &fep->pdev->dev;
1916 	int ret, frame_start, frame_addr;
1917 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1918 
1919 	ret = pm_runtime_resume_and_get(dev);
1920 	if (ret < 0)
1921 		return ret;
1922 
1923 	if (is_c45) {
1924 		frame_start = FEC_MMFR_ST_C45;
1925 
1926 		/* write address */
1927 		frame_addr = (regnum >> 16);
1928 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1929 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1930 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1931 		       fep->hwp + FEC_MII_DATA);
1932 
1933 		/* wait for end of transfer */
1934 		ret = fec_enet_mdio_wait(fep);
1935 		if (ret) {
1936 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1937 			goto out;
1938 		}
1939 	} else {
1940 		/* C22 write */
1941 		frame_start = FEC_MMFR_ST;
1942 		frame_addr = regnum;
1943 	}
1944 
1945 	/* start a write op */
1946 	writel(frame_start | FEC_MMFR_OP_WRITE |
1947 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1948 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1949 		fep->hwp + FEC_MII_DATA);
1950 
1951 	/* wait for end of transfer */
1952 	ret = fec_enet_mdio_wait(fep);
1953 	if (ret)
1954 		netdev_err(fep->netdev, "MDIO write timeout\n");
1955 
1956 out:
1957 	pm_runtime_mark_last_busy(dev);
1958 	pm_runtime_put_autosuspend(dev);
1959 
1960 	return ret;
1961 }
1962 
1963 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
1964 {
1965 	struct fec_enet_private *fep = netdev_priv(ndev);
1966 	struct phy_device *phy_dev = ndev->phydev;
1967 
1968 	if (phy_dev) {
1969 		phy_reset_after_clk_enable(phy_dev);
1970 	} else if (fep->phy_node) {
1971 		/*
1972 		 * If the PHY still is not bound to the MAC, but there is
1973 		 * OF PHY node and a matching PHY device instance already,
1974 		 * use the OF PHY node to obtain the PHY device instance,
1975 		 * and then use that PHY device instance when triggering
1976 		 * the PHY reset.
1977 		 */
1978 		phy_dev = of_phy_find_device(fep->phy_node);
1979 		phy_reset_after_clk_enable(phy_dev);
1980 		put_device(&phy_dev->mdio.dev);
1981 	}
1982 }
1983 
1984 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1985 {
1986 	struct fec_enet_private *fep = netdev_priv(ndev);
1987 	int ret;
1988 
1989 	if (enable) {
1990 		ret = clk_prepare_enable(fep->clk_enet_out);
1991 		if (ret)
1992 			return ret;
1993 
1994 		if (fep->clk_ptp) {
1995 			mutex_lock(&fep->ptp_clk_mutex);
1996 			ret = clk_prepare_enable(fep->clk_ptp);
1997 			if (ret) {
1998 				mutex_unlock(&fep->ptp_clk_mutex);
1999 				goto failed_clk_ptp;
2000 			} else {
2001 				fep->ptp_clk_on = true;
2002 			}
2003 			mutex_unlock(&fep->ptp_clk_mutex);
2004 		}
2005 
2006 		ret = clk_prepare_enable(fep->clk_ref);
2007 		if (ret)
2008 			goto failed_clk_ref;
2009 
2010 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2011 		if (ret)
2012 			goto failed_clk_2x_txclk;
2013 
2014 		fec_enet_phy_reset_after_clk_enable(ndev);
2015 	} else {
2016 		clk_disable_unprepare(fep->clk_enet_out);
2017 		if (fep->clk_ptp) {
2018 			mutex_lock(&fep->ptp_clk_mutex);
2019 			clk_disable_unprepare(fep->clk_ptp);
2020 			fep->ptp_clk_on = false;
2021 			mutex_unlock(&fep->ptp_clk_mutex);
2022 		}
2023 		clk_disable_unprepare(fep->clk_ref);
2024 		clk_disable_unprepare(fep->clk_2x_txclk);
2025 	}
2026 
2027 	return 0;
2028 
2029 failed_clk_2x_txclk:
2030 	if (fep->clk_ref)
2031 		clk_disable_unprepare(fep->clk_ref);
2032 failed_clk_ref:
2033 	if (fep->clk_ptp) {
2034 		mutex_lock(&fep->ptp_clk_mutex);
2035 		clk_disable_unprepare(fep->clk_ptp);
2036 		fep->ptp_clk_on = false;
2037 		mutex_unlock(&fep->ptp_clk_mutex);
2038 	}
2039 failed_clk_ptp:
2040 	clk_disable_unprepare(fep->clk_enet_out);
2041 
2042 	return ret;
2043 }
2044 
2045 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2046 				      struct device_node *np)
2047 {
2048 	u32 rgmii_tx_delay, rgmii_rx_delay;
2049 
2050 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2051 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2052 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2053 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2054 			return -EINVAL;
2055 		} else if (rgmii_tx_delay == 2000) {
2056 			fep->rgmii_txc_dly = true;
2057 		}
2058 	}
2059 
2060 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2061 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2062 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2063 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2064 			return -EINVAL;
2065 		} else if (rgmii_rx_delay == 2000) {
2066 			fep->rgmii_rxc_dly = true;
2067 		}
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 static int fec_enet_mii_probe(struct net_device *ndev)
2074 {
2075 	struct fec_enet_private *fep = netdev_priv(ndev);
2076 	struct phy_device *phy_dev = NULL;
2077 	char mdio_bus_id[MII_BUS_ID_SIZE];
2078 	char phy_name[MII_BUS_ID_SIZE + 3];
2079 	int phy_id;
2080 	int dev_id = fep->dev_id;
2081 
2082 	if (fep->phy_node) {
2083 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2084 					 &fec_enet_adjust_link, 0,
2085 					 fep->phy_interface);
2086 		if (!phy_dev) {
2087 			netdev_err(ndev, "Unable to connect to phy\n");
2088 			return -ENODEV;
2089 		}
2090 	} else {
2091 		/* check for attached phy */
2092 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2093 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2094 				continue;
2095 			if (dev_id--)
2096 				continue;
2097 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2098 			break;
2099 		}
2100 
2101 		if (phy_id >= PHY_MAX_ADDR) {
2102 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2103 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2104 			phy_id = 0;
2105 		}
2106 
2107 		snprintf(phy_name, sizeof(phy_name),
2108 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2109 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2110 				      fep->phy_interface);
2111 	}
2112 
2113 	if (IS_ERR(phy_dev)) {
2114 		netdev_err(ndev, "could not attach to PHY\n");
2115 		return PTR_ERR(phy_dev);
2116 	}
2117 
2118 	/* mask with MAC supported features */
2119 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2120 		phy_set_max_speed(phy_dev, 1000);
2121 		phy_remove_link_mode(phy_dev,
2122 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2123 #if !defined(CONFIG_M5272)
2124 		phy_support_sym_pause(phy_dev);
2125 #endif
2126 	}
2127 	else
2128 		phy_set_max_speed(phy_dev, 100);
2129 
2130 	fep->link = 0;
2131 	fep->full_duplex = 0;
2132 
2133 	phy_dev->mac_managed_pm = 1;
2134 
2135 	phy_attached_info(phy_dev);
2136 
2137 	return 0;
2138 }
2139 
2140 static int fec_enet_mii_init(struct platform_device *pdev)
2141 {
2142 	static struct mii_bus *fec0_mii_bus;
2143 	struct net_device *ndev = platform_get_drvdata(pdev);
2144 	struct fec_enet_private *fep = netdev_priv(ndev);
2145 	bool suppress_preamble = false;
2146 	struct device_node *node;
2147 	int err = -ENXIO;
2148 	u32 mii_speed, holdtime;
2149 	u32 bus_freq;
2150 
2151 	/*
2152 	 * The i.MX28 dual fec interfaces are not equal.
2153 	 * Here are the differences:
2154 	 *
2155 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2156 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2157 	 *  - external phys can only be configured by fec0
2158 	 *
2159 	 * That is to say fec1 can not work independently. It only works
2160 	 * when fec0 is working. The reason behind this design is that the
2161 	 * second interface is added primarily for Switch mode.
2162 	 *
2163 	 * Because of the last point above, both phys are attached on fec0
2164 	 * mdio interface in board design, and need to be configured by
2165 	 * fec0 mii_bus.
2166 	 */
2167 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2168 		/* fec1 uses fec0 mii_bus */
2169 		if (mii_cnt && fec0_mii_bus) {
2170 			fep->mii_bus = fec0_mii_bus;
2171 			mii_cnt++;
2172 			return 0;
2173 		}
2174 		return -ENOENT;
2175 	}
2176 
2177 	bus_freq = 2500000; /* 2.5MHz by default */
2178 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2179 	if (node) {
2180 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2181 		suppress_preamble = of_property_read_bool(node,
2182 							  "suppress-preamble");
2183 	}
2184 
2185 	/*
2186 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2187 	 *
2188 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2189 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2190 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2191 	 * document.
2192 	 */
2193 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2194 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2195 		mii_speed--;
2196 	if (mii_speed > 63) {
2197 		dev_err(&pdev->dev,
2198 			"fec clock (%lu) too fast to get right mii speed\n",
2199 			clk_get_rate(fep->clk_ipg));
2200 		err = -EINVAL;
2201 		goto err_out;
2202 	}
2203 
2204 	/*
2205 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2206 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2207 	 * versions are RAZ there, so just ignore the difference and write the
2208 	 * register always.
2209 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2210 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2211 	 * output.
2212 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2213 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2214 	 * holdtime cannot result in a value greater than 3.
2215 	 */
2216 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2217 
2218 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2219 
2220 	if (suppress_preamble)
2221 		fep->phy_speed |= BIT(7);
2222 
2223 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2224 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2225 		 * MII event generation condition:
2226 		 * - writing MSCR:
2227 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2228 		 *	  mscr_reg_data_in[7:0] != 0
2229 		 * - writing MMFR:
2230 		 *	- mscr[7:0]_not_zero
2231 		 */
2232 		writel(0, fep->hwp + FEC_MII_DATA);
2233 	}
2234 
2235 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2236 
2237 	/* Clear any pending transaction complete indication */
2238 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2239 
2240 	fep->mii_bus = mdiobus_alloc();
2241 	if (fep->mii_bus == NULL) {
2242 		err = -ENOMEM;
2243 		goto err_out;
2244 	}
2245 
2246 	fep->mii_bus->name = "fec_enet_mii_bus";
2247 	fep->mii_bus->read = fec_enet_mdio_read;
2248 	fep->mii_bus->write = fec_enet_mdio_write;
2249 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2250 		pdev->name, fep->dev_id + 1);
2251 	fep->mii_bus->priv = fep;
2252 	fep->mii_bus->parent = &pdev->dev;
2253 
2254 	err = of_mdiobus_register(fep->mii_bus, node);
2255 	if (err)
2256 		goto err_out_free_mdiobus;
2257 	of_node_put(node);
2258 
2259 	mii_cnt++;
2260 
2261 	/* save fec0 mii_bus */
2262 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2263 		fec0_mii_bus = fep->mii_bus;
2264 
2265 	return 0;
2266 
2267 err_out_free_mdiobus:
2268 	mdiobus_free(fep->mii_bus);
2269 err_out:
2270 	of_node_put(node);
2271 	return err;
2272 }
2273 
2274 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2275 {
2276 	if (--mii_cnt == 0) {
2277 		mdiobus_unregister(fep->mii_bus);
2278 		mdiobus_free(fep->mii_bus);
2279 	}
2280 }
2281 
2282 static void fec_enet_get_drvinfo(struct net_device *ndev,
2283 				 struct ethtool_drvinfo *info)
2284 {
2285 	struct fec_enet_private *fep = netdev_priv(ndev);
2286 
2287 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2288 		sizeof(info->driver));
2289 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2290 }
2291 
2292 static int fec_enet_get_regs_len(struct net_device *ndev)
2293 {
2294 	struct fec_enet_private *fep = netdev_priv(ndev);
2295 	struct resource *r;
2296 	int s = 0;
2297 
2298 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2299 	if (r)
2300 		s = resource_size(r);
2301 
2302 	return s;
2303 }
2304 
2305 /* List of registers that can be safety be read to dump them with ethtool */
2306 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2307 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2308 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2309 static __u32 fec_enet_register_version = 2;
2310 static u32 fec_enet_register_offset[] = {
2311 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2312 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2313 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2314 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2315 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2316 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2317 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2318 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2319 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2320 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2321 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2322 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2323 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2324 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2325 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2326 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2327 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2328 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2329 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2330 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2331 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2332 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2333 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2334 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2335 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2336 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2337 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2338 };
2339 #else
2340 static __u32 fec_enet_register_version = 1;
2341 static u32 fec_enet_register_offset[] = {
2342 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2343 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2344 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2345 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2346 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2347 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2348 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2349 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2350 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2351 };
2352 #endif
2353 
2354 static void fec_enet_get_regs(struct net_device *ndev,
2355 			      struct ethtool_regs *regs, void *regbuf)
2356 {
2357 	struct fec_enet_private *fep = netdev_priv(ndev);
2358 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2359 	struct device *dev = &fep->pdev->dev;
2360 	u32 *buf = (u32 *)regbuf;
2361 	u32 i, off;
2362 	int ret;
2363 
2364 	ret = pm_runtime_resume_and_get(dev);
2365 	if (ret < 0)
2366 		return;
2367 
2368 	regs->version = fec_enet_register_version;
2369 
2370 	memset(buf, 0, regs->len);
2371 
2372 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2373 		off = fec_enet_register_offset[i];
2374 
2375 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2376 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2377 			continue;
2378 
2379 		off >>= 2;
2380 		buf[off] = readl(&theregs[off]);
2381 	}
2382 
2383 	pm_runtime_mark_last_busy(dev);
2384 	pm_runtime_put_autosuspend(dev);
2385 }
2386 
2387 static int fec_enet_get_ts_info(struct net_device *ndev,
2388 				struct ethtool_ts_info *info)
2389 {
2390 	struct fec_enet_private *fep = netdev_priv(ndev);
2391 
2392 	if (fep->bufdesc_ex) {
2393 
2394 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2395 					SOF_TIMESTAMPING_RX_SOFTWARE |
2396 					SOF_TIMESTAMPING_SOFTWARE |
2397 					SOF_TIMESTAMPING_TX_HARDWARE |
2398 					SOF_TIMESTAMPING_RX_HARDWARE |
2399 					SOF_TIMESTAMPING_RAW_HARDWARE;
2400 		if (fep->ptp_clock)
2401 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2402 		else
2403 			info->phc_index = -1;
2404 
2405 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2406 				 (1 << HWTSTAMP_TX_ON);
2407 
2408 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2409 				   (1 << HWTSTAMP_FILTER_ALL);
2410 		return 0;
2411 	} else {
2412 		return ethtool_op_get_ts_info(ndev, info);
2413 	}
2414 }
2415 
2416 #if !defined(CONFIG_M5272)
2417 
2418 static void fec_enet_get_pauseparam(struct net_device *ndev,
2419 				    struct ethtool_pauseparam *pause)
2420 {
2421 	struct fec_enet_private *fep = netdev_priv(ndev);
2422 
2423 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2424 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2425 	pause->rx_pause = pause->tx_pause;
2426 }
2427 
2428 static int fec_enet_set_pauseparam(struct net_device *ndev,
2429 				   struct ethtool_pauseparam *pause)
2430 {
2431 	struct fec_enet_private *fep = netdev_priv(ndev);
2432 
2433 	if (!ndev->phydev)
2434 		return -ENODEV;
2435 
2436 	if (pause->tx_pause != pause->rx_pause) {
2437 		netdev_info(ndev,
2438 			"hardware only support enable/disable both tx and rx");
2439 		return -EINVAL;
2440 	}
2441 
2442 	fep->pause_flag = 0;
2443 
2444 	/* tx pause must be same as rx pause */
2445 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2446 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2447 
2448 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2449 			  pause->autoneg);
2450 
2451 	if (pause->autoneg) {
2452 		if (netif_running(ndev))
2453 			fec_stop(ndev);
2454 		phy_start_aneg(ndev->phydev);
2455 	}
2456 	if (netif_running(ndev)) {
2457 		napi_disable(&fep->napi);
2458 		netif_tx_lock_bh(ndev);
2459 		fec_restart(ndev);
2460 		netif_tx_wake_all_queues(ndev);
2461 		netif_tx_unlock_bh(ndev);
2462 		napi_enable(&fep->napi);
2463 	}
2464 
2465 	return 0;
2466 }
2467 
2468 static const struct fec_stat {
2469 	char name[ETH_GSTRING_LEN];
2470 	u16 offset;
2471 } fec_stats[] = {
2472 	/* RMON TX */
2473 	{ "tx_dropped", RMON_T_DROP },
2474 	{ "tx_packets", RMON_T_PACKETS },
2475 	{ "tx_broadcast", RMON_T_BC_PKT },
2476 	{ "tx_multicast", RMON_T_MC_PKT },
2477 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2478 	{ "tx_undersize", RMON_T_UNDERSIZE },
2479 	{ "tx_oversize", RMON_T_OVERSIZE },
2480 	{ "tx_fragment", RMON_T_FRAG },
2481 	{ "tx_jabber", RMON_T_JAB },
2482 	{ "tx_collision", RMON_T_COL },
2483 	{ "tx_64byte", RMON_T_P64 },
2484 	{ "tx_65to127byte", RMON_T_P65TO127 },
2485 	{ "tx_128to255byte", RMON_T_P128TO255 },
2486 	{ "tx_256to511byte", RMON_T_P256TO511 },
2487 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2488 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2489 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2490 	{ "tx_octets", RMON_T_OCTETS },
2491 
2492 	/* IEEE TX */
2493 	{ "IEEE_tx_drop", IEEE_T_DROP },
2494 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2495 	{ "IEEE_tx_1col", IEEE_T_1COL },
2496 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2497 	{ "IEEE_tx_def", IEEE_T_DEF },
2498 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2499 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2500 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2501 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2502 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2503 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2504 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2505 
2506 	/* RMON RX */
2507 	{ "rx_packets", RMON_R_PACKETS },
2508 	{ "rx_broadcast", RMON_R_BC_PKT },
2509 	{ "rx_multicast", RMON_R_MC_PKT },
2510 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2511 	{ "rx_undersize", RMON_R_UNDERSIZE },
2512 	{ "rx_oversize", RMON_R_OVERSIZE },
2513 	{ "rx_fragment", RMON_R_FRAG },
2514 	{ "rx_jabber", RMON_R_JAB },
2515 	{ "rx_64byte", RMON_R_P64 },
2516 	{ "rx_65to127byte", RMON_R_P65TO127 },
2517 	{ "rx_128to255byte", RMON_R_P128TO255 },
2518 	{ "rx_256to511byte", RMON_R_P256TO511 },
2519 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2520 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2521 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2522 	{ "rx_octets", RMON_R_OCTETS },
2523 
2524 	/* IEEE RX */
2525 	{ "IEEE_rx_drop", IEEE_R_DROP },
2526 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2527 	{ "IEEE_rx_crc", IEEE_R_CRC },
2528 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2529 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2530 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2531 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2532 };
2533 
2534 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2535 
2536 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2537 {
2538 	struct fec_enet_private *fep = netdev_priv(dev);
2539 	int i;
2540 
2541 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2542 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2543 }
2544 
2545 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2546 				       struct ethtool_stats *stats, u64 *data)
2547 {
2548 	struct fec_enet_private *fep = netdev_priv(dev);
2549 
2550 	if (netif_running(dev))
2551 		fec_enet_update_ethtool_stats(dev);
2552 
2553 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2554 }
2555 
2556 static void fec_enet_get_strings(struct net_device *netdev,
2557 	u32 stringset, u8 *data)
2558 {
2559 	int i;
2560 	switch (stringset) {
2561 	case ETH_SS_STATS:
2562 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2563 			memcpy(data + i * ETH_GSTRING_LEN,
2564 				fec_stats[i].name, ETH_GSTRING_LEN);
2565 		break;
2566 	case ETH_SS_TEST:
2567 		net_selftest_get_strings(data);
2568 		break;
2569 	}
2570 }
2571 
2572 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2573 {
2574 	switch (sset) {
2575 	case ETH_SS_STATS:
2576 		return ARRAY_SIZE(fec_stats);
2577 	case ETH_SS_TEST:
2578 		return net_selftest_get_count();
2579 	default:
2580 		return -EOPNOTSUPP;
2581 	}
2582 }
2583 
2584 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2585 {
2586 	struct fec_enet_private *fep = netdev_priv(dev);
2587 	int i;
2588 
2589 	/* Disable MIB statistics counters */
2590 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2591 
2592 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2593 		writel(0, fep->hwp + fec_stats[i].offset);
2594 
2595 	/* Don't disable MIB statistics counters */
2596 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2597 }
2598 
2599 #else	/* !defined(CONFIG_M5272) */
2600 #define FEC_STATS_SIZE	0
2601 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2602 {
2603 }
2604 
2605 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2606 {
2607 }
2608 #endif /* !defined(CONFIG_M5272) */
2609 
2610 /* ITR clock source is enet system clock (clk_ahb).
2611  * TCTT unit is cycle_ns * 64 cycle
2612  * So, the ICTT value = X us / (cycle_ns * 64)
2613  */
2614 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2615 {
2616 	struct fec_enet_private *fep = netdev_priv(ndev);
2617 
2618 	return us * (fep->itr_clk_rate / 64000) / 1000;
2619 }
2620 
2621 /* Set threshold for interrupt coalescing */
2622 static void fec_enet_itr_coal_set(struct net_device *ndev)
2623 {
2624 	struct fec_enet_private *fep = netdev_priv(ndev);
2625 	int rx_itr, tx_itr;
2626 
2627 	/* Must be greater than zero to avoid unpredictable behavior */
2628 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2629 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2630 		return;
2631 
2632 	/* Select enet system clock as Interrupt Coalescing
2633 	 * timer Clock Source
2634 	 */
2635 	rx_itr = FEC_ITR_CLK_SEL;
2636 	tx_itr = FEC_ITR_CLK_SEL;
2637 
2638 	/* set ICFT and ICTT */
2639 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2640 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2641 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2642 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2643 
2644 	rx_itr |= FEC_ITR_EN;
2645 	tx_itr |= FEC_ITR_EN;
2646 
2647 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2648 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2649 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
2650 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2651 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2652 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2653 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2654 	}
2655 }
2656 
2657 static int
2658 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2659 {
2660 	struct fec_enet_private *fep = netdev_priv(ndev);
2661 
2662 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2663 		return -EOPNOTSUPP;
2664 
2665 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2666 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2667 
2668 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2669 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2670 
2671 	return 0;
2672 }
2673 
2674 static int
2675 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2676 {
2677 	struct fec_enet_private *fep = netdev_priv(ndev);
2678 	struct device *dev = &fep->pdev->dev;
2679 	unsigned int cycle;
2680 
2681 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2682 		return -EOPNOTSUPP;
2683 
2684 	if (ec->rx_max_coalesced_frames > 255) {
2685 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2686 		return -EINVAL;
2687 	}
2688 
2689 	if (ec->tx_max_coalesced_frames > 255) {
2690 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2691 		return -EINVAL;
2692 	}
2693 
2694 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2695 	if (cycle > 0xFFFF) {
2696 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2697 		return -EINVAL;
2698 	}
2699 
2700 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2701 	if (cycle > 0xFFFF) {
2702 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2703 		return -EINVAL;
2704 	}
2705 
2706 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2707 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2708 
2709 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2710 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2711 
2712 	fec_enet_itr_coal_set(ndev);
2713 
2714 	return 0;
2715 }
2716 
2717 static void fec_enet_itr_coal_init(struct net_device *ndev)
2718 {
2719 	struct ethtool_coalesce ec;
2720 
2721 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2722 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2723 
2724 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2725 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2726 
2727 	fec_enet_set_coalesce(ndev, &ec);
2728 }
2729 
2730 static int fec_enet_get_tunable(struct net_device *netdev,
2731 				const struct ethtool_tunable *tuna,
2732 				void *data)
2733 {
2734 	struct fec_enet_private *fep = netdev_priv(netdev);
2735 	int ret = 0;
2736 
2737 	switch (tuna->id) {
2738 	case ETHTOOL_RX_COPYBREAK:
2739 		*(u32 *)data = fep->rx_copybreak;
2740 		break;
2741 	default:
2742 		ret = -EINVAL;
2743 		break;
2744 	}
2745 
2746 	return ret;
2747 }
2748 
2749 static int fec_enet_set_tunable(struct net_device *netdev,
2750 				const struct ethtool_tunable *tuna,
2751 				const void *data)
2752 {
2753 	struct fec_enet_private *fep = netdev_priv(netdev);
2754 	int ret = 0;
2755 
2756 	switch (tuna->id) {
2757 	case ETHTOOL_RX_COPYBREAK:
2758 		fep->rx_copybreak = *(u32 *)data;
2759 		break;
2760 	default:
2761 		ret = -EINVAL;
2762 		break;
2763 	}
2764 
2765 	return ret;
2766 }
2767 
2768 /* LPI Sleep Ts count base on tx clk (clk_ref).
2769  * The lpi sleep cnt value = X us / (cycle_ns).
2770  */
2771 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2772 {
2773 	struct fec_enet_private *fep = netdev_priv(ndev);
2774 
2775 	return us * (fep->clk_ref_rate / 1000) / 1000;
2776 }
2777 
2778 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
2779 {
2780 	struct fec_enet_private *fep = netdev_priv(ndev);
2781 	struct ethtool_eee *p = &fep->eee;
2782 	unsigned int sleep_cycle, wake_cycle;
2783 	int ret = 0;
2784 
2785 	if (enable) {
2786 		ret = phy_init_eee(ndev->phydev, 0);
2787 		if (ret)
2788 			return ret;
2789 
2790 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
2791 		wake_cycle = sleep_cycle;
2792 	} else {
2793 		sleep_cycle = 0;
2794 		wake_cycle = 0;
2795 	}
2796 
2797 	p->tx_lpi_enabled = enable;
2798 	p->eee_enabled = enable;
2799 	p->eee_active = enable;
2800 
2801 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2802 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2803 
2804 	return 0;
2805 }
2806 
2807 static int
2808 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2809 {
2810 	struct fec_enet_private *fep = netdev_priv(ndev);
2811 	struct ethtool_eee *p = &fep->eee;
2812 
2813 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
2814 		return -EOPNOTSUPP;
2815 
2816 	if (!netif_running(ndev))
2817 		return -ENETDOWN;
2818 
2819 	edata->eee_enabled = p->eee_enabled;
2820 	edata->eee_active = p->eee_active;
2821 	edata->tx_lpi_timer = p->tx_lpi_timer;
2822 	edata->tx_lpi_enabled = p->tx_lpi_enabled;
2823 
2824 	return phy_ethtool_get_eee(ndev->phydev, edata);
2825 }
2826 
2827 static int
2828 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2829 {
2830 	struct fec_enet_private *fep = netdev_priv(ndev);
2831 	struct ethtool_eee *p = &fep->eee;
2832 	int ret = 0;
2833 
2834 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
2835 		return -EOPNOTSUPP;
2836 
2837 	if (!netif_running(ndev))
2838 		return -ENETDOWN;
2839 
2840 	p->tx_lpi_timer = edata->tx_lpi_timer;
2841 
2842 	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
2843 	    !edata->tx_lpi_timer)
2844 		ret = fec_enet_eee_mode_set(ndev, false);
2845 	else
2846 		ret = fec_enet_eee_mode_set(ndev, true);
2847 
2848 	if (ret)
2849 		return ret;
2850 
2851 	return phy_ethtool_set_eee(ndev->phydev, edata);
2852 }
2853 
2854 static void
2855 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2856 {
2857 	struct fec_enet_private *fep = netdev_priv(ndev);
2858 
2859 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2860 		wol->supported = WAKE_MAGIC;
2861 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2862 	} else {
2863 		wol->supported = wol->wolopts = 0;
2864 	}
2865 }
2866 
2867 static int
2868 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2869 {
2870 	struct fec_enet_private *fep = netdev_priv(ndev);
2871 
2872 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2873 		return -EINVAL;
2874 
2875 	if (wol->wolopts & ~WAKE_MAGIC)
2876 		return -EINVAL;
2877 
2878 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2879 	if (device_may_wakeup(&ndev->dev)) {
2880 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2881 		if (fep->irq[0] > 0)
2882 			enable_irq_wake(fep->irq[0]);
2883 	} else {
2884 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2885 		if (fep->irq[0] > 0)
2886 			disable_irq_wake(fep->irq[0]);
2887 	}
2888 
2889 	return 0;
2890 }
2891 
2892 static const struct ethtool_ops fec_enet_ethtool_ops = {
2893 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2894 				     ETHTOOL_COALESCE_MAX_FRAMES,
2895 	.get_drvinfo		= fec_enet_get_drvinfo,
2896 	.get_regs_len		= fec_enet_get_regs_len,
2897 	.get_regs		= fec_enet_get_regs,
2898 	.nway_reset		= phy_ethtool_nway_reset,
2899 	.get_link		= ethtool_op_get_link,
2900 	.get_coalesce		= fec_enet_get_coalesce,
2901 	.set_coalesce		= fec_enet_set_coalesce,
2902 #ifndef CONFIG_M5272
2903 	.get_pauseparam		= fec_enet_get_pauseparam,
2904 	.set_pauseparam		= fec_enet_set_pauseparam,
2905 	.get_strings		= fec_enet_get_strings,
2906 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2907 	.get_sset_count		= fec_enet_get_sset_count,
2908 #endif
2909 	.get_ts_info		= fec_enet_get_ts_info,
2910 	.get_tunable		= fec_enet_get_tunable,
2911 	.set_tunable		= fec_enet_set_tunable,
2912 	.get_wol		= fec_enet_get_wol,
2913 	.set_wol		= fec_enet_set_wol,
2914 	.get_eee		= fec_enet_get_eee,
2915 	.set_eee		= fec_enet_set_eee,
2916 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2917 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2918 	.self_test		= net_selftest,
2919 };
2920 
2921 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2922 {
2923 	struct fec_enet_private *fep = netdev_priv(ndev);
2924 	struct phy_device *phydev = ndev->phydev;
2925 
2926 	if (!netif_running(ndev))
2927 		return -EINVAL;
2928 
2929 	if (!phydev)
2930 		return -ENODEV;
2931 
2932 	if (fep->bufdesc_ex) {
2933 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2934 
2935 		if (cmd == SIOCSHWTSTAMP) {
2936 			if (use_fec_hwts)
2937 				return fec_ptp_set(ndev, rq);
2938 			fec_ptp_disable_hwts(ndev);
2939 		} else if (cmd == SIOCGHWTSTAMP) {
2940 			if (use_fec_hwts)
2941 				return fec_ptp_get(ndev, rq);
2942 		}
2943 	}
2944 
2945 	return phy_mii_ioctl(phydev, rq, cmd);
2946 }
2947 
2948 static void fec_enet_free_buffers(struct net_device *ndev)
2949 {
2950 	struct fec_enet_private *fep = netdev_priv(ndev);
2951 	unsigned int i;
2952 	struct sk_buff *skb;
2953 	struct bufdesc	*bdp;
2954 	struct fec_enet_priv_tx_q *txq;
2955 	struct fec_enet_priv_rx_q *rxq;
2956 	unsigned int q;
2957 
2958 	for (q = 0; q < fep->num_rx_queues; q++) {
2959 		rxq = fep->rx_queue[q];
2960 		bdp = rxq->bd.base;
2961 		for (i = 0; i < rxq->bd.ring_size; i++) {
2962 			skb = rxq->rx_skbuff[i];
2963 			rxq->rx_skbuff[i] = NULL;
2964 			if (skb) {
2965 				dma_unmap_single(&fep->pdev->dev,
2966 						 fec32_to_cpu(bdp->cbd_bufaddr),
2967 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2968 						 DMA_FROM_DEVICE);
2969 				dev_kfree_skb(skb);
2970 			}
2971 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2972 		}
2973 	}
2974 
2975 	for (q = 0; q < fep->num_tx_queues; q++) {
2976 		txq = fep->tx_queue[q];
2977 		for (i = 0; i < txq->bd.ring_size; i++) {
2978 			kfree(txq->tx_bounce[i]);
2979 			txq->tx_bounce[i] = NULL;
2980 			skb = txq->tx_skbuff[i];
2981 			txq->tx_skbuff[i] = NULL;
2982 			dev_kfree_skb(skb);
2983 		}
2984 	}
2985 }
2986 
2987 static void fec_enet_free_queue(struct net_device *ndev)
2988 {
2989 	struct fec_enet_private *fep = netdev_priv(ndev);
2990 	int i;
2991 	struct fec_enet_priv_tx_q *txq;
2992 
2993 	for (i = 0; i < fep->num_tx_queues; i++)
2994 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2995 			txq = fep->tx_queue[i];
2996 			dma_free_coherent(&fep->pdev->dev,
2997 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2998 					  txq->tso_hdrs,
2999 					  txq->tso_hdrs_dma);
3000 		}
3001 
3002 	for (i = 0; i < fep->num_rx_queues; i++)
3003 		kfree(fep->rx_queue[i]);
3004 	for (i = 0; i < fep->num_tx_queues; i++)
3005 		kfree(fep->tx_queue[i]);
3006 }
3007 
3008 static int fec_enet_alloc_queue(struct net_device *ndev)
3009 {
3010 	struct fec_enet_private *fep = netdev_priv(ndev);
3011 	int i;
3012 	int ret = 0;
3013 	struct fec_enet_priv_tx_q *txq;
3014 
3015 	for (i = 0; i < fep->num_tx_queues; i++) {
3016 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3017 		if (!txq) {
3018 			ret = -ENOMEM;
3019 			goto alloc_failed;
3020 		}
3021 
3022 		fep->tx_queue[i] = txq;
3023 		txq->bd.ring_size = TX_RING_SIZE;
3024 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3025 
3026 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3027 		txq->tx_wake_threshold =
3028 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
3029 
3030 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3031 					txq->bd.ring_size * TSO_HEADER_SIZE,
3032 					&txq->tso_hdrs_dma,
3033 					GFP_KERNEL);
3034 		if (!txq->tso_hdrs) {
3035 			ret = -ENOMEM;
3036 			goto alloc_failed;
3037 		}
3038 	}
3039 
3040 	for (i = 0; i < fep->num_rx_queues; i++) {
3041 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3042 					   GFP_KERNEL);
3043 		if (!fep->rx_queue[i]) {
3044 			ret = -ENOMEM;
3045 			goto alloc_failed;
3046 		}
3047 
3048 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3049 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3050 	}
3051 	return ret;
3052 
3053 alloc_failed:
3054 	fec_enet_free_queue(ndev);
3055 	return ret;
3056 }
3057 
3058 static int
3059 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3060 {
3061 	struct fec_enet_private *fep = netdev_priv(ndev);
3062 	unsigned int i;
3063 	struct sk_buff *skb;
3064 	struct bufdesc	*bdp;
3065 	struct fec_enet_priv_rx_q *rxq;
3066 
3067 	rxq = fep->rx_queue[queue];
3068 	bdp = rxq->bd.base;
3069 	for (i = 0; i < rxq->bd.ring_size; i++) {
3070 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
3071 		if (!skb)
3072 			goto err_alloc;
3073 
3074 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
3075 			dev_kfree_skb(skb);
3076 			goto err_alloc;
3077 		}
3078 
3079 		rxq->rx_skbuff[i] = skb;
3080 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3081 
3082 		if (fep->bufdesc_ex) {
3083 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3084 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3085 		}
3086 
3087 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3088 	}
3089 
3090 	/* Set the last buffer to wrap. */
3091 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3092 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3093 	return 0;
3094 
3095  err_alloc:
3096 	fec_enet_free_buffers(ndev);
3097 	return -ENOMEM;
3098 }
3099 
3100 static int
3101 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3102 {
3103 	struct fec_enet_private *fep = netdev_priv(ndev);
3104 	unsigned int i;
3105 	struct bufdesc  *bdp;
3106 	struct fec_enet_priv_tx_q *txq;
3107 
3108 	txq = fep->tx_queue[queue];
3109 	bdp = txq->bd.base;
3110 	for (i = 0; i < txq->bd.ring_size; i++) {
3111 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3112 		if (!txq->tx_bounce[i])
3113 			goto err_alloc;
3114 
3115 		bdp->cbd_sc = cpu_to_fec16(0);
3116 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3117 
3118 		if (fep->bufdesc_ex) {
3119 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3120 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3121 		}
3122 
3123 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3124 	}
3125 
3126 	/* Set the last buffer to wrap. */
3127 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3128 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3129 
3130 	return 0;
3131 
3132  err_alloc:
3133 	fec_enet_free_buffers(ndev);
3134 	return -ENOMEM;
3135 }
3136 
3137 static int fec_enet_alloc_buffers(struct net_device *ndev)
3138 {
3139 	struct fec_enet_private *fep = netdev_priv(ndev);
3140 	unsigned int i;
3141 
3142 	for (i = 0; i < fep->num_rx_queues; i++)
3143 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3144 			return -ENOMEM;
3145 
3146 	for (i = 0; i < fep->num_tx_queues; i++)
3147 		if (fec_enet_alloc_txq_buffers(ndev, i))
3148 			return -ENOMEM;
3149 	return 0;
3150 }
3151 
3152 static int
3153 fec_enet_open(struct net_device *ndev)
3154 {
3155 	struct fec_enet_private *fep = netdev_priv(ndev);
3156 	int ret;
3157 	bool reset_again;
3158 
3159 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3160 	if (ret < 0)
3161 		return ret;
3162 
3163 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3164 	ret = fec_enet_clk_enable(ndev, true);
3165 	if (ret)
3166 		goto clk_enable;
3167 
3168 	/* During the first fec_enet_open call the PHY isn't probed at this
3169 	 * point. Therefore the phy_reset_after_clk_enable() call within
3170 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3171 	 * sure the PHY is working correctly we check if we need to reset again
3172 	 * later when the PHY is probed
3173 	 */
3174 	if (ndev->phydev && ndev->phydev->drv)
3175 		reset_again = false;
3176 	else
3177 		reset_again = true;
3178 
3179 	/* I should reset the ring buffers here, but I don't yet know
3180 	 * a simple way to do that.
3181 	 */
3182 
3183 	ret = fec_enet_alloc_buffers(ndev);
3184 	if (ret)
3185 		goto err_enet_alloc;
3186 
3187 	/* Init MAC prior to mii bus probe */
3188 	fec_restart(ndev);
3189 
3190 	/* Call phy_reset_after_clk_enable() again if it failed during
3191 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3192 	 */
3193 	if (reset_again)
3194 		fec_enet_phy_reset_after_clk_enable(ndev);
3195 
3196 	/* Probe and connect to PHY when open the interface */
3197 	ret = fec_enet_mii_probe(ndev);
3198 	if (ret)
3199 		goto err_enet_mii_probe;
3200 
3201 	if (fep->quirks & FEC_QUIRK_ERR006687)
3202 		imx6q_cpuidle_fec_irqs_used();
3203 
3204 	napi_enable(&fep->napi);
3205 	phy_start(ndev->phydev);
3206 	netif_tx_start_all_queues(ndev);
3207 
3208 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3209 				 FEC_WOL_FLAG_ENABLE);
3210 
3211 	return 0;
3212 
3213 err_enet_mii_probe:
3214 	fec_enet_free_buffers(ndev);
3215 err_enet_alloc:
3216 	fec_enet_clk_enable(ndev, false);
3217 clk_enable:
3218 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3219 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3220 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3221 	return ret;
3222 }
3223 
3224 static int
3225 fec_enet_close(struct net_device *ndev)
3226 {
3227 	struct fec_enet_private *fep = netdev_priv(ndev);
3228 
3229 	phy_stop(ndev->phydev);
3230 
3231 	if (netif_device_present(ndev)) {
3232 		napi_disable(&fep->napi);
3233 		netif_tx_disable(ndev);
3234 		fec_stop(ndev);
3235 	}
3236 
3237 	phy_disconnect(ndev->phydev);
3238 
3239 	if (fep->quirks & FEC_QUIRK_ERR006687)
3240 		imx6q_cpuidle_fec_irqs_unused();
3241 
3242 	fec_enet_update_ethtool_stats(ndev);
3243 
3244 	fec_enet_clk_enable(ndev, false);
3245 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3246 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3247 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3248 
3249 	fec_enet_free_buffers(ndev);
3250 
3251 	return 0;
3252 }
3253 
3254 /* Set or clear the multicast filter for this adaptor.
3255  * Skeleton taken from sunlance driver.
3256  * The CPM Ethernet implementation allows Multicast as well as individual
3257  * MAC address filtering.  Some of the drivers check to make sure it is
3258  * a group multicast address, and discard those that are not.  I guess I
3259  * will do the same for now, but just remove the test if you want
3260  * individual filtering as well (do the upper net layers want or support
3261  * this kind of feature?).
3262  */
3263 
3264 #define FEC_HASH_BITS	6		/* #bits in hash */
3265 
3266 static void set_multicast_list(struct net_device *ndev)
3267 {
3268 	struct fec_enet_private *fep = netdev_priv(ndev);
3269 	struct netdev_hw_addr *ha;
3270 	unsigned int crc, tmp;
3271 	unsigned char hash;
3272 	unsigned int hash_high = 0, hash_low = 0;
3273 
3274 	if (ndev->flags & IFF_PROMISC) {
3275 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3276 		tmp |= 0x8;
3277 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3278 		return;
3279 	}
3280 
3281 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3282 	tmp &= ~0x8;
3283 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3284 
3285 	if (ndev->flags & IFF_ALLMULTI) {
3286 		/* Catch all multicast addresses, so set the
3287 		 * filter to all 1's
3288 		 */
3289 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3290 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3291 
3292 		return;
3293 	}
3294 
3295 	/* Add the addresses in hash register */
3296 	netdev_for_each_mc_addr(ha, ndev) {
3297 		/* calculate crc32 value of mac address */
3298 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3299 
3300 		/* only upper 6 bits (FEC_HASH_BITS) are used
3301 		 * which point to specific bit in the hash registers
3302 		 */
3303 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3304 
3305 		if (hash > 31)
3306 			hash_high |= 1 << (hash - 32);
3307 		else
3308 			hash_low |= 1 << hash;
3309 	}
3310 
3311 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3312 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3313 }
3314 
3315 /* Set a MAC change in hardware. */
3316 static int
3317 fec_set_mac_address(struct net_device *ndev, void *p)
3318 {
3319 	struct fec_enet_private *fep = netdev_priv(ndev);
3320 	struct sockaddr *addr = p;
3321 
3322 	if (addr) {
3323 		if (!is_valid_ether_addr(addr->sa_data))
3324 			return -EADDRNOTAVAIL;
3325 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3326 	}
3327 
3328 	/* Add netif status check here to avoid system hang in below case:
3329 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3330 	 * After ethx down, fec all clocks are gated off and then register
3331 	 * access causes system hang.
3332 	 */
3333 	if (!netif_running(ndev))
3334 		return 0;
3335 
3336 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3337 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3338 		fep->hwp + FEC_ADDR_LOW);
3339 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3340 		fep->hwp + FEC_ADDR_HIGH);
3341 	return 0;
3342 }
3343 
3344 #ifdef CONFIG_NET_POLL_CONTROLLER
3345 /**
3346  * fec_poll_controller - FEC Poll controller function
3347  * @dev: The FEC network adapter
3348  *
3349  * Polled functionality used by netconsole and others in non interrupt mode
3350  *
3351  */
3352 static void fec_poll_controller(struct net_device *dev)
3353 {
3354 	int i;
3355 	struct fec_enet_private *fep = netdev_priv(dev);
3356 
3357 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3358 		if (fep->irq[i] > 0) {
3359 			disable_irq(fep->irq[i]);
3360 			fec_enet_interrupt(fep->irq[i], dev);
3361 			enable_irq(fep->irq[i]);
3362 		}
3363 	}
3364 }
3365 #endif
3366 
3367 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3368 	netdev_features_t features)
3369 {
3370 	struct fec_enet_private *fep = netdev_priv(netdev);
3371 	netdev_features_t changed = features ^ netdev->features;
3372 
3373 	netdev->features = features;
3374 
3375 	/* Receive checksum has been changed */
3376 	if (changed & NETIF_F_RXCSUM) {
3377 		if (features & NETIF_F_RXCSUM)
3378 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3379 		else
3380 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3381 	}
3382 }
3383 
3384 static int fec_set_features(struct net_device *netdev,
3385 	netdev_features_t features)
3386 {
3387 	struct fec_enet_private *fep = netdev_priv(netdev);
3388 	netdev_features_t changed = features ^ netdev->features;
3389 
3390 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3391 		napi_disable(&fep->napi);
3392 		netif_tx_lock_bh(netdev);
3393 		fec_stop(netdev);
3394 		fec_enet_set_netdev_features(netdev, features);
3395 		fec_restart(netdev);
3396 		netif_tx_wake_all_queues(netdev);
3397 		netif_tx_unlock_bh(netdev);
3398 		napi_enable(&fep->napi);
3399 	} else {
3400 		fec_enet_set_netdev_features(netdev, features);
3401 	}
3402 
3403 	return 0;
3404 }
3405 
3406 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb)
3407 {
3408 	struct vlan_ethhdr *vhdr;
3409 	unsigned short vlan_TCI = 0;
3410 
3411 	if (skb->protocol == htons(ETH_P_ALL)) {
3412 		vhdr = (struct vlan_ethhdr *)(skb->data);
3413 		vlan_TCI = ntohs(vhdr->h_vlan_TCI);
3414 	}
3415 
3416 	return vlan_TCI;
3417 }
3418 
3419 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3420 				 struct net_device *sb_dev)
3421 {
3422 	struct fec_enet_private *fep = netdev_priv(ndev);
3423 	u16 vlan_tag;
3424 
3425 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3426 		return netdev_pick_tx(ndev, skb, NULL);
3427 
3428 	vlan_tag = fec_enet_get_raw_vlan_tci(skb);
3429 	if (!vlan_tag)
3430 		return vlan_tag;
3431 
3432 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3433 }
3434 
3435 static const struct net_device_ops fec_netdev_ops = {
3436 	.ndo_open		= fec_enet_open,
3437 	.ndo_stop		= fec_enet_close,
3438 	.ndo_start_xmit		= fec_enet_start_xmit,
3439 	.ndo_select_queue       = fec_enet_select_queue,
3440 	.ndo_set_rx_mode	= set_multicast_list,
3441 	.ndo_validate_addr	= eth_validate_addr,
3442 	.ndo_tx_timeout		= fec_timeout,
3443 	.ndo_set_mac_address	= fec_set_mac_address,
3444 	.ndo_eth_ioctl		= fec_enet_ioctl,
3445 #ifdef CONFIG_NET_POLL_CONTROLLER
3446 	.ndo_poll_controller	= fec_poll_controller,
3447 #endif
3448 	.ndo_set_features	= fec_set_features,
3449 };
3450 
3451 static const unsigned short offset_des_active_rxq[] = {
3452 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3453 };
3454 
3455 static const unsigned short offset_des_active_txq[] = {
3456 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3457 };
3458 
3459  /*
3460   * XXX:  We need to clean up on failure exits here.
3461   *
3462   */
3463 static int fec_enet_init(struct net_device *ndev)
3464 {
3465 	struct fec_enet_private *fep = netdev_priv(ndev);
3466 	struct bufdesc *cbd_base;
3467 	dma_addr_t bd_dma;
3468 	int bd_size;
3469 	unsigned int i;
3470 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3471 			sizeof(struct bufdesc);
3472 	unsigned dsize_log2 = __fls(dsize);
3473 	int ret;
3474 
3475 	WARN_ON(dsize != (1 << dsize_log2));
3476 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3477 	fep->rx_align = 0xf;
3478 	fep->tx_align = 0xf;
3479 #else
3480 	fep->rx_align = 0x3;
3481 	fep->tx_align = 0x3;
3482 #endif
3483 
3484 	/* Check mask of the streaming and coherent API */
3485 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3486 	if (ret < 0) {
3487 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3488 		return ret;
3489 	}
3490 
3491 	ret = fec_enet_alloc_queue(ndev);
3492 	if (ret)
3493 		return ret;
3494 
3495 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3496 
3497 	/* Allocate memory for buffer descriptors. */
3498 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3499 				       GFP_KERNEL);
3500 	if (!cbd_base) {
3501 		ret = -ENOMEM;
3502 		goto free_queue_mem;
3503 	}
3504 
3505 	/* Get the Ethernet address */
3506 	ret = fec_get_mac(ndev);
3507 	if (ret)
3508 		goto free_queue_mem;
3509 
3510 	/* make sure MAC we just acquired is programmed into the hw */
3511 	fec_set_mac_address(ndev, NULL);
3512 
3513 	/* Set receive and transmit descriptor base. */
3514 	for (i = 0; i < fep->num_rx_queues; i++) {
3515 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3516 		unsigned size = dsize * rxq->bd.ring_size;
3517 
3518 		rxq->bd.qid = i;
3519 		rxq->bd.base = cbd_base;
3520 		rxq->bd.cur = cbd_base;
3521 		rxq->bd.dma = bd_dma;
3522 		rxq->bd.dsize = dsize;
3523 		rxq->bd.dsize_log2 = dsize_log2;
3524 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3525 		bd_dma += size;
3526 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3527 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3528 	}
3529 
3530 	for (i = 0; i < fep->num_tx_queues; i++) {
3531 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3532 		unsigned size = dsize * txq->bd.ring_size;
3533 
3534 		txq->bd.qid = i;
3535 		txq->bd.base = cbd_base;
3536 		txq->bd.cur = cbd_base;
3537 		txq->bd.dma = bd_dma;
3538 		txq->bd.dsize = dsize;
3539 		txq->bd.dsize_log2 = dsize_log2;
3540 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3541 		bd_dma += size;
3542 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3543 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3544 	}
3545 
3546 
3547 	/* The FEC Ethernet specific entries in the device structure */
3548 	ndev->watchdog_timeo = TX_TIMEOUT;
3549 	ndev->netdev_ops = &fec_netdev_ops;
3550 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3551 
3552 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3553 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3554 
3555 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3556 		/* enable hw VLAN support */
3557 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3558 
3559 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3560 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3561 
3562 		/* enable hw accelerator */
3563 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3564 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3565 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3566 	}
3567 
3568 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3569 		fep->tx_align = 0;
3570 		fep->rx_align = 0x3f;
3571 	}
3572 
3573 	ndev->hw_features = ndev->features;
3574 
3575 	fec_restart(ndev);
3576 
3577 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3578 		fec_enet_clear_ethtool_stats(ndev);
3579 	else
3580 		fec_enet_update_ethtool_stats(ndev);
3581 
3582 	return 0;
3583 
3584 free_queue_mem:
3585 	fec_enet_free_queue(ndev);
3586 	return ret;
3587 }
3588 
3589 #ifdef CONFIG_OF
3590 static int fec_reset_phy(struct platform_device *pdev)
3591 {
3592 	int err, phy_reset;
3593 	bool active_high = false;
3594 	int msec = 1, phy_post_delay = 0;
3595 	struct device_node *np = pdev->dev.of_node;
3596 
3597 	if (!np)
3598 		return 0;
3599 
3600 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3601 	/* A sane reset duration should not be longer than 1s */
3602 	if (!err && msec > 1000)
3603 		msec = 1;
3604 
3605 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3606 	if (phy_reset == -EPROBE_DEFER)
3607 		return phy_reset;
3608 	else if (!gpio_is_valid(phy_reset))
3609 		return 0;
3610 
3611 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3612 	/* valid reset duration should be less than 1s */
3613 	if (!err && phy_post_delay > 1000)
3614 		return -EINVAL;
3615 
3616 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3617 
3618 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3619 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3620 			"phy-reset");
3621 	if (err) {
3622 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3623 		return err;
3624 	}
3625 
3626 	if (msec > 20)
3627 		msleep(msec);
3628 	else
3629 		usleep_range(msec * 1000, msec * 1000 + 1000);
3630 
3631 	gpio_set_value_cansleep(phy_reset, !active_high);
3632 
3633 	if (!phy_post_delay)
3634 		return 0;
3635 
3636 	if (phy_post_delay > 20)
3637 		msleep(phy_post_delay);
3638 	else
3639 		usleep_range(phy_post_delay * 1000,
3640 			     phy_post_delay * 1000 + 1000);
3641 
3642 	return 0;
3643 }
3644 #else /* CONFIG_OF */
3645 static int fec_reset_phy(struct platform_device *pdev)
3646 {
3647 	/*
3648 	 * In case of platform probe, the reset has been done
3649 	 * by machine code.
3650 	 */
3651 	return 0;
3652 }
3653 #endif /* CONFIG_OF */
3654 
3655 static void
3656 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3657 {
3658 	struct device_node *np = pdev->dev.of_node;
3659 
3660 	*num_tx = *num_rx = 1;
3661 
3662 	if (!np || !of_device_is_available(np))
3663 		return;
3664 
3665 	/* parse the num of tx and rx queues */
3666 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3667 
3668 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3669 
3670 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3671 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3672 			 *num_tx);
3673 		*num_tx = 1;
3674 		return;
3675 	}
3676 
3677 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3678 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3679 			 *num_rx);
3680 		*num_rx = 1;
3681 		return;
3682 	}
3683 
3684 }
3685 
3686 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3687 {
3688 	int irq_cnt = platform_irq_count(pdev);
3689 
3690 	if (irq_cnt > FEC_IRQ_NUM)
3691 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3692 	else if (irq_cnt == 2)
3693 		irq_cnt = 1;	/* last for pps */
3694 	else if (irq_cnt <= 0)
3695 		irq_cnt = 1;	/* At least 1 irq is needed */
3696 	return irq_cnt;
3697 }
3698 
3699 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3700 				   struct device_node *np)
3701 {
3702 	struct device_node *gpr_np;
3703 	u32 out_val[3];
3704 	int ret = 0;
3705 
3706 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3707 	if (!gpr_np)
3708 		return 0;
3709 
3710 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3711 					 ARRAY_SIZE(out_val));
3712 	if (ret) {
3713 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3714 		return ret;
3715 	}
3716 
3717 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3718 	if (IS_ERR(fep->stop_gpr.gpr)) {
3719 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3720 		ret = PTR_ERR(fep->stop_gpr.gpr);
3721 		fep->stop_gpr.gpr = NULL;
3722 		goto out;
3723 	}
3724 
3725 	fep->stop_gpr.reg = out_val[1];
3726 	fep->stop_gpr.bit = out_val[2];
3727 
3728 out:
3729 	of_node_put(gpr_np);
3730 
3731 	return ret;
3732 }
3733 
3734 static int
3735 fec_probe(struct platform_device *pdev)
3736 {
3737 	struct fec_enet_private *fep;
3738 	struct fec_platform_data *pdata;
3739 	phy_interface_t interface;
3740 	struct net_device *ndev;
3741 	int i, irq, ret = 0;
3742 	const struct of_device_id *of_id;
3743 	static int dev_id;
3744 	struct device_node *np = pdev->dev.of_node, *phy_node;
3745 	int num_tx_qs;
3746 	int num_rx_qs;
3747 	char irq_name[8];
3748 	int irq_cnt;
3749 	struct fec_devinfo *dev_info;
3750 
3751 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3752 
3753 	/* Init network device */
3754 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3755 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3756 	if (!ndev)
3757 		return -ENOMEM;
3758 
3759 	SET_NETDEV_DEV(ndev, &pdev->dev);
3760 
3761 	/* setup board info structure */
3762 	fep = netdev_priv(ndev);
3763 
3764 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3765 	if (of_id)
3766 		pdev->id_entry = of_id->data;
3767 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3768 	if (dev_info)
3769 		fep->quirks = dev_info->quirks;
3770 
3771 	fep->netdev = ndev;
3772 	fep->num_rx_queues = num_rx_qs;
3773 	fep->num_tx_queues = num_tx_qs;
3774 
3775 #if !defined(CONFIG_M5272)
3776 	/* default enable pause frame auto negotiation */
3777 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3778 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3779 #endif
3780 
3781 	/* Select default pin state */
3782 	pinctrl_pm_select_default_state(&pdev->dev);
3783 
3784 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3785 	if (IS_ERR(fep->hwp)) {
3786 		ret = PTR_ERR(fep->hwp);
3787 		goto failed_ioremap;
3788 	}
3789 
3790 	fep->pdev = pdev;
3791 	fep->dev_id = dev_id++;
3792 
3793 	platform_set_drvdata(pdev, ndev);
3794 
3795 	if ((of_machine_is_compatible("fsl,imx6q") ||
3796 	     of_machine_is_compatible("fsl,imx6dl")) &&
3797 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3798 		fep->quirks |= FEC_QUIRK_ERR006687;
3799 
3800 	if (of_get_property(np, "fsl,magic-packet", NULL))
3801 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3802 
3803 	ret = fec_enet_init_stop_mode(fep, np);
3804 	if (ret)
3805 		goto failed_stop_mode;
3806 
3807 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3808 	if (!phy_node && of_phy_is_fixed_link(np)) {
3809 		ret = of_phy_register_fixed_link(np);
3810 		if (ret < 0) {
3811 			dev_err(&pdev->dev,
3812 				"broken fixed-link specification\n");
3813 			goto failed_phy;
3814 		}
3815 		phy_node = of_node_get(np);
3816 	}
3817 	fep->phy_node = phy_node;
3818 
3819 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3820 	if (ret) {
3821 		pdata = dev_get_platdata(&pdev->dev);
3822 		if (pdata)
3823 			fep->phy_interface = pdata->phy;
3824 		else
3825 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3826 	} else {
3827 		fep->phy_interface = interface;
3828 	}
3829 
3830 	ret = fec_enet_parse_rgmii_delay(fep, np);
3831 	if (ret)
3832 		goto failed_rgmii_delay;
3833 
3834 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3835 	if (IS_ERR(fep->clk_ipg)) {
3836 		ret = PTR_ERR(fep->clk_ipg);
3837 		goto failed_clk;
3838 	}
3839 
3840 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3841 	if (IS_ERR(fep->clk_ahb)) {
3842 		ret = PTR_ERR(fep->clk_ahb);
3843 		goto failed_clk;
3844 	}
3845 
3846 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3847 
3848 	/* enet_out is optional, depends on board */
3849 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3850 	if (IS_ERR(fep->clk_enet_out))
3851 		fep->clk_enet_out = NULL;
3852 
3853 	fep->ptp_clk_on = false;
3854 	mutex_init(&fep->ptp_clk_mutex);
3855 
3856 	/* clk_ref is optional, depends on board */
3857 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3858 	if (IS_ERR(fep->clk_ref))
3859 		fep->clk_ref = NULL;
3860 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
3861 
3862 	/* clk_2x_txclk is optional, depends on board */
3863 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
3864 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
3865 		if (IS_ERR(fep->clk_2x_txclk))
3866 			fep->clk_2x_txclk = NULL;
3867 	}
3868 
3869 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3870 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3871 	if (IS_ERR(fep->clk_ptp)) {
3872 		fep->clk_ptp = NULL;
3873 		fep->bufdesc_ex = false;
3874 	}
3875 
3876 	ret = fec_enet_clk_enable(ndev, true);
3877 	if (ret)
3878 		goto failed_clk;
3879 
3880 	ret = clk_prepare_enable(fep->clk_ipg);
3881 	if (ret)
3882 		goto failed_clk_ipg;
3883 	ret = clk_prepare_enable(fep->clk_ahb);
3884 	if (ret)
3885 		goto failed_clk_ahb;
3886 
3887 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3888 	if (!IS_ERR(fep->reg_phy)) {
3889 		ret = regulator_enable(fep->reg_phy);
3890 		if (ret) {
3891 			dev_err(&pdev->dev,
3892 				"Failed to enable phy regulator: %d\n", ret);
3893 			goto failed_regulator;
3894 		}
3895 	} else {
3896 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3897 			ret = -EPROBE_DEFER;
3898 			goto failed_regulator;
3899 		}
3900 		fep->reg_phy = NULL;
3901 	}
3902 
3903 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3904 	pm_runtime_use_autosuspend(&pdev->dev);
3905 	pm_runtime_get_noresume(&pdev->dev);
3906 	pm_runtime_set_active(&pdev->dev);
3907 	pm_runtime_enable(&pdev->dev);
3908 
3909 	ret = fec_reset_phy(pdev);
3910 	if (ret)
3911 		goto failed_reset;
3912 
3913 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3914 	if (fep->bufdesc_ex)
3915 		fec_ptp_init(pdev, irq_cnt);
3916 
3917 	ret = fec_enet_init(ndev);
3918 	if (ret)
3919 		goto failed_init;
3920 
3921 	for (i = 0; i < irq_cnt; i++) {
3922 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3923 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3924 		if (irq < 0)
3925 			irq = platform_get_irq(pdev, i);
3926 		if (irq < 0) {
3927 			ret = irq;
3928 			goto failed_irq;
3929 		}
3930 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3931 				       0, pdev->name, ndev);
3932 		if (ret)
3933 			goto failed_irq;
3934 
3935 		fep->irq[i] = irq;
3936 	}
3937 
3938 	ret = fec_enet_mii_init(pdev);
3939 	if (ret)
3940 		goto failed_mii_init;
3941 
3942 	/* Carrier starts down, phylib will bring it up */
3943 	netif_carrier_off(ndev);
3944 	fec_enet_clk_enable(ndev, false);
3945 	pinctrl_pm_select_sleep_state(&pdev->dev);
3946 
3947 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3948 
3949 	ret = register_netdev(ndev);
3950 	if (ret)
3951 		goto failed_register;
3952 
3953 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3954 			   FEC_WOL_HAS_MAGIC_PACKET);
3955 
3956 	if (fep->bufdesc_ex && fep->ptp_clock)
3957 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3958 
3959 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3960 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3961 
3962 	pm_runtime_mark_last_busy(&pdev->dev);
3963 	pm_runtime_put_autosuspend(&pdev->dev);
3964 
3965 	return 0;
3966 
3967 failed_register:
3968 	fec_enet_mii_remove(fep);
3969 failed_mii_init:
3970 failed_irq:
3971 failed_init:
3972 	fec_ptp_stop(pdev);
3973 failed_reset:
3974 	pm_runtime_put_noidle(&pdev->dev);
3975 	pm_runtime_disable(&pdev->dev);
3976 	if (fep->reg_phy)
3977 		regulator_disable(fep->reg_phy);
3978 failed_regulator:
3979 	clk_disable_unprepare(fep->clk_ahb);
3980 failed_clk_ahb:
3981 	clk_disable_unprepare(fep->clk_ipg);
3982 failed_clk_ipg:
3983 	fec_enet_clk_enable(ndev, false);
3984 failed_clk:
3985 failed_rgmii_delay:
3986 	if (of_phy_is_fixed_link(np))
3987 		of_phy_deregister_fixed_link(np);
3988 	of_node_put(phy_node);
3989 failed_stop_mode:
3990 failed_phy:
3991 	dev_id--;
3992 failed_ioremap:
3993 	free_netdev(ndev);
3994 
3995 	return ret;
3996 }
3997 
3998 static int
3999 fec_drv_remove(struct platform_device *pdev)
4000 {
4001 	struct net_device *ndev = platform_get_drvdata(pdev);
4002 	struct fec_enet_private *fep = netdev_priv(ndev);
4003 	struct device_node *np = pdev->dev.of_node;
4004 	int ret;
4005 
4006 	ret = pm_runtime_resume_and_get(&pdev->dev);
4007 	if (ret < 0)
4008 		return ret;
4009 
4010 	cancel_work_sync(&fep->tx_timeout_work);
4011 	fec_ptp_stop(pdev);
4012 	unregister_netdev(ndev);
4013 	fec_enet_mii_remove(fep);
4014 	if (fep->reg_phy)
4015 		regulator_disable(fep->reg_phy);
4016 
4017 	if (of_phy_is_fixed_link(np))
4018 		of_phy_deregister_fixed_link(np);
4019 	of_node_put(fep->phy_node);
4020 
4021 	clk_disable_unprepare(fep->clk_ahb);
4022 	clk_disable_unprepare(fep->clk_ipg);
4023 	pm_runtime_put_noidle(&pdev->dev);
4024 	pm_runtime_disable(&pdev->dev);
4025 
4026 	free_netdev(ndev);
4027 	return 0;
4028 }
4029 
4030 static int __maybe_unused fec_suspend(struct device *dev)
4031 {
4032 	struct net_device *ndev = dev_get_drvdata(dev);
4033 	struct fec_enet_private *fep = netdev_priv(ndev);
4034 
4035 	rtnl_lock();
4036 	if (netif_running(ndev)) {
4037 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4038 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4039 		phy_stop(ndev->phydev);
4040 		napi_disable(&fep->napi);
4041 		netif_tx_lock_bh(ndev);
4042 		netif_device_detach(ndev);
4043 		netif_tx_unlock_bh(ndev);
4044 		fec_stop(ndev);
4045 		fec_enet_clk_enable(ndev, false);
4046 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4047 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4048 	}
4049 	rtnl_unlock();
4050 
4051 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4052 		regulator_disable(fep->reg_phy);
4053 
4054 	/* SOC supply clock to phy, when clock is disabled, phy link down
4055 	 * SOC control phy regulator, when regulator is disabled, phy link down
4056 	 */
4057 	if (fep->clk_enet_out || fep->reg_phy)
4058 		fep->link = 0;
4059 
4060 	return 0;
4061 }
4062 
4063 static int __maybe_unused fec_resume(struct device *dev)
4064 {
4065 	struct net_device *ndev = dev_get_drvdata(dev);
4066 	struct fec_enet_private *fep = netdev_priv(ndev);
4067 	int ret;
4068 	int val;
4069 
4070 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4071 		ret = regulator_enable(fep->reg_phy);
4072 		if (ret)
4073 			return ret;
4074 	}
4075 
4076 	rtnl_lock();
4077 	if (netif_running(ndev)) {
4078 		ret = fec_enet_clk_enable(ndev, true);
4079 		if (ret) {
4080 			rtnl_unlock();
4081 			goto failed_clk;
4082 		}
4083 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4084 			fec_enet_stop_mode(fep, false);
4085 
4086 			val = readl(fep->hwp + FEC_ECNTRL);
4087 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4088 			writel(val, fep->hwp + FEC_ECNTRL);
4089 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4090 		} else {
4091 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4092 		}
4093 		fec_restart(ndev);
4094 		netif_tx_lock_bh(ndev);
4095 		netif_device_attach(ndev);
4096 		netif_tx_unlock_bh(ndev);
4097 		napi_enable(&fep->napi);
4098 		phy_init_hw(ndev->phydev);
4099 		phy_start(ndev->phydev);
4100 	}
4101 	rtnl_unlock();
4102 
4103 	return 0;
4104 
4105 failed_clk:
4106 	if (fep->reg_phy)
4107 		regulator_disable(fep->reg_phy);
4108 	return ret;
4109 }
4110 
4111 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4112 {
4113 	struct net_device *ndev = dev_get_drvdata(dev);
4114 	struct fec_enet_private *fep = netdev_priv(ndev);
4115 
4116 	clk_disable_unprepare(fep->clk_ahb);
4117 	clk_disable_unprepare(fep->clk_ipg);
4118 
4119 	return 0;
4120 }
4121 
4122 static int __maybe_unused fec_runtime_resume(struct device *dev)
4123 {
4124 	struct net_device *ndev = dev_get_drvdata(dev);
4125 	struct fec_enet_private *fep = netdev_priv(ndev);
4126 	int ret;
4127 
4128 	ret = clk_prepare_enable(fep->clk_ahb);
4129 	if (ret)
4130 		return ret;
4131 	ret = clk_prepare_enable(fep->clk_ipg);
4132 	if (ret)
4133 		goto failed_clk_ipg;
4134 
4135 	return 0;
4136 
4137 failed_clk_ipg:
4138 	clk_disable_unprepare(fep->clk_ahb);
4139 	return ret;
4140 }
4141 
4142 static const struct dev_pm_ops fec_pm_ops = {
4143 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4144 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4145 };
4146 
4147 static struct platform_driver fec_driver = {
4148 	.driver	= {
4149 		.name	= DRIVER_NAME,
4150 		.pm	= &fec_pm_ops,
4151 		.of_match_table = fec_dt_ids,
4152 		.suppress_bind_attrs = true,
4153 	},
4154 	.id_table = fec_devtype,
4155 	.probe	= fec_probe,
4156 	.remove	= fec_drv_remove,
4157 };
4158 
4159 module_platform_driver(fec_driver);
4160 
4161 MODULE_ALIAS("platform:"DRIVER_NAME);
4162 MODULE_LICENSE("GPL");
4163