xref: /openbmc/linux/drivers/net/ethernet/freescale/fec_main.c (revision 0af5cb349a2c97fbabb3cede96efcde9d54b7940)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/selftests.h>
42 #include <net/tso.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/icmp.h>
46 #include <linux/spinlock.h>
47 #include <linux/workqueue.h>
48 #include <linux/bitops.h>
49 #include <linux/io.h>
50 #include <linux/irq.h>
51 #include <linux/clk.h>
52 #include <linux/crc32.h>
53 #include <linux/platform_device.h>
54 #include <linux/mdio.h>
55 #include <linux/phy.h>
56 #include <linux/fec.h>
57 #include <linux/of.h>
58 #include <linux/of_device.h>
59 #include <linux/of_gpio.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/prefetch.h>
66 #include <linux/mfd/syscon.h>
67 #include <linux/regmap.h>
68 #include <soc/imx/cpuidle.h>
69 
70 #include <asm/cacheflush.h>
71 
72 #include "fec.h"
73 
74 static void set_multicast_list(struct net_device *ndev);
75 static void fec_enet_itr_coal_init(struct net_device *ndev);
76 
77 #define DRIVER_NAME	"fec"
78 
79 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
80 
81 /* Pause frame feild and FIFO threshold */
82 #define FEC_ENET_FCE	(1 << 5)
83 #define FEC_ENET_RSEM_V	0x84
84 #define FEC_ENET_RSFL_V	16
85 #define FEC_ENET_RAEM_V	0x8
86 #define FEC_ENET_RAFL_V	0x8
87 #define FEC_ENET_OPD_V	0xFFF0
88 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
89 
90 struct fec_devinfo {
91 	u32 quirks;
92 };
93 
94 static const struct fec_devinfo fec_imx25_info = {
95 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
96 		  FEC_QUIRK_HAS_FRREG,
97 };
98 
99 static const struct fec_devinfo fec_imx27_info = {
100 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
101 };
102 
103 static const struct fec_devinfo fec_imx28_info = {
104 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
105 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
106 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
107 		  FEC_QUIRK_NO_HARD_RESET,
108 };
109 
110 static const struct fec_devinfo fec_imx6q_info = {
111 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
114 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII,
115 };
116 
117 static const struct fec_devinfo fec_mvf600_info = {
118 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
119 };
120 
121 static const struct fec_devinfo fec_imx6x_info = {
122 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
123 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
124 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
125 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
126 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
127 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES,
128 };
129 
130 static const struct fec_devinfo fec_imx6ul_info = {
131 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
132 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
133 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
134 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
135 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
136 };
137 
138 static const struct fec_devinfo fec_imx8mq_info = {
139 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
140 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
141 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
142 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
143 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
144 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
145 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2,
146 };
147 
148 static const struct fec_devinfo fec_imx8qm_info = {
149 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
150 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
151 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
152 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
153 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
154 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
155 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT,
156 };
157 
158 static struct platform_device_id fec_devtype[] = {
159 	{
160 		/* keep it for coldfire */
161 		.name = DRIVER_NAME,
162 		.driver_data = 0,
163 	}, {
164 		.name = "imx25-fec",
165 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
166 	}, {
167 		.name = "imx27-fec",
168 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
169 	}, {
170 		.name = "imx28-fec",
171 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
172 	}, {
173 		.name = "imx6q-fec",
174 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
175 	}, {
176 		.name = "mvf600-fec",
177 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
178 	}, {
179 		.name = "imx6sx-fec",
180 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
181 	}, {
182 		.name = "imx6ul-fec",
183 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
184 	}, {
185 		.name = "imx8mq-fec",
186 		.driver_data = (kernel_ulong_t)&fec_imx8mq_info,
187 	}, {
188 		.name = "imx8qm-fec",
189 		.driver_data = (kernel_ulong_t)&fec_imx8qm_info,
190 	}, {
191 		/* sentinel */
192 	}
193 };
194 MODULE_DEVICE_TABLE(platform, fec_devtype);
195 
196 enum imx_fec_type {
197 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
198 	IMX27_FEC,	/* runs on i.mx27/35/51 */
199 	IMX28_FEC,
200 	IMX6Q_FEC,
201 	MVF600_FEC,
202 	IMX6SX_FEC,
203 	IMX6UL_FEC,
204 	IMX8MQ_FEC,
205 	IMX8QM_FEC,
206 };
207 
208 static const struct of_device_id fec_dt_ids[] = {
209 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
210 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
211 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
212 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
213 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
214 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
215 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
216 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
217 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
218 	{ /* sentinel */ }
219 };
220 MODULE_DEVICE_TABLE(of, fec_dt_ids);
221 
222 static unsigned char macaddr[ETH_ALEN];
223 module_param_array(macaddr, byte, NULL, 0);
224 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
225 
226 #if defined(CONFIG_M5272)
227 /*
228  * Some hardware gets it MAC address out of local flash memory.
229  * if this is non-zero then assume it is the address to get MAC from.
230  */
231 #if defined(CONFIG_NETtel)
232 #define	FEC_FLASHMAC	0xf0006006
233 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
234 #define	FEC_FLASHMAC	0xf0006000
235 #elif defined(CONFIG_CANCam)
236 #define	FEC_FLASHMAC	0xf0020000
237 #elif defined (CONFIG_M5272C3)
238 #define	FEC_FLASHMAC	(0xffe04000 + 4)
239 #elif defined(CONFIG_MOD5272)
240 #define FEC_FLASHMAC	0xffc0406b
241 #else
242 #define	FEC_FLASHMAC	0
243 #endif
244 #endif /* CONFIG_M5272 */
245 
246 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
247  *
248  * 2048 byte skbufs are allocated. However, alignment requirements
249  * varies between FEC variants. Worst case is 64, so round down by 64.
250  */
251 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
252 #define PKT_MINBUF_SIZE		64
253 
254 /* FEC receive acceleration */
255 #define FEC_RACC_IPDIS		(1 << 1)
256 #define FEC_RACC_PRODIS		(1 << 2)
257 #define FEC_RACC_SHIFT16	BIT(7)
258 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
259 
260 /* MIB Control Register */
261 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
262 
263 /*
264  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
265  * size bits. Other FEC hardware does not, so we need to take that into
266  * account when setting it.
267  */
268 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
269     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
270     defined(CONFIG_ARM64)
271 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
272 #else
273 #define	OPT_FRAME_SIZE	0
274 #endif
275 
276 /* FEC MII MMFR bits definition */
277 #define FEC_MMFR_ST		(1 << 30)
278 #define FEC_MMFR_ST_C45		(0)
279 #define FEC_MMFR_OP_READ	(2 << 28)
280 #define FEC_MMFR_OP_READ_C45	(3 << 28)
281 #define FEC_MMFR_OP_WRITE	(1 << 28)
282 #define FEC_MMFR_OP_ADDR_WRITE	(0)
283 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
284 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
285 #define FEC_MMFR_TA		(2 << 16)
286 #define FEC_MMFR_DATA(v)	(v & 0xffff)
287 /* FEC ECR bits definition */
288 #define FEC_ECR_MAGICEN		(1 << 2)
289 #define FEC_ECR_SLEEP		(1 << 3)
290 
291 #define FEC_MII_TIMEOUT		30000 /* us */
292 
293 /* Transmitter timeout */
294 #define TX_TIMEOUT (2 * HZ)
295 
296 #define FEC_PAUSE_FLAG_AUTONEG	0x1
297 #define FEC_PAUSE_FLAG_ENABLE	0x2
298 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
299 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
300 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
301 
302 #define COPYBREAK_DEFAULT	256
303 
304 /* Max number of allowed TCP segments for software TSO */
305 #define FEC_MAX_TSO_SEGS	100
306 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
307 
308 #define IS_TSO_HEADER(txq, addr) \
309 	((addr >= txq->tso_hdrs_dma) && \
310 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
311 
312 static int mii_cnt;
313 
314 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
315 					     struct bufdesc_prop *bd)
316 {
317 	return (bdp >= bd->last) ? bd->base
318 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
319 }
320 
321 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
322 					     struct bufdesc_prop *bd)
323 {
324 	return (bdp <= bd->base) ? bd->last
325 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
326 }
327 
328 static int fec_enet_get_bd_index(struct bufdesc *bdp,
329 				 struct bufdesc_prop *bd)
330 {
331 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
332 }
333 
334 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
335 {
336 	int entries;
337 
338 	entries = (((const char *)txq->dirty_tx -
339 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
340 
341 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
342 }
343 
344 static void swap_buffer(void *bufaddr, int len)
345 {
346 	int i;
347 	unsigned int *buf = bufaddr;
348 
349 	for (i = 0; i < len; i += 4, buf++)
350 		swab32s(buf);
351 }
352 
353 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
354 {
355 	int i;
356 	unsigned int *src = src_buf;
357 	unsigned int *dst = dst_buf;
358 
359 	for (i = 0; i < len; i += 4, src++, dst++)
360 		*dst = swab32p(src);
361 }
362 
363 static void fec_dump(struct net_device *ndev)
364 {
365 	struct fec_enet_private *fep = netdev_priv(ndev);
366 	struct bufdesc *bdp;
367 	struct fec_enet_priv_tx_q *txq;
368 	int index = 0;
369 
370 	netdev_info(ndev, "TX ring dump\n");
371 	pr_info("Nr     SC     addr       len  SKB\n");
372 
373 	txq = fep->tx_queue[0];
374 	bdp = txq->bd.base;
375 
376 	do {
377 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
378 			index,
379 			bdp == txq->bd.cur ? 'S' : ' ',
380 			bdp == txq->dirty_tx ? 'H' : ' ',
381 			fec16_to_cpu(bdp->cbd_sc),
382 			fec32_to_cpu(bdp->cbd_bufaddr),
383 			fec16_to_cpu(bdp->cbd_datlen),
384 			txq->tx_skbuff[index]);
385 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
386 		index++;
387 	} while (bdp != txq->bd.base);
388 }
389 
390 static inline bool is_ipv4_pkt(struct sk_buff *skb)
391 {
392 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
393 }
394 
395 static int
396 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
397 {
398 	/* Only run for packets requiring a checksum. */
399 	if (skb->ip_summed != CHECKSUM_PARTIAL)
400 		return 0;
401 
402 	if (unlikely(skb_cow_head(skb, 0)))
403 		return -1;
404 
405 	if (is_ipv4_pkt(skb))
406 		ip_hdr(skb)->check = 0;
407 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
408 
409 	return 0;
410 }
411 
412 static struct bufdesc *
413 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
414 			     struct sk_buff *skb,
415 			     struct net_device *ndev)
416 {
417 	struct fec_enet_private *fep = netdev_priv(ndev);
418 	struct bufdesc *bdp = txq->bd.cur;
419 	struct bufdesc_ex *ebdp;
420 	int nr_frags = skb_shinfo(skb)->nr_frags;
421 	int frag, frag_len;
422 	unsigned short status;
423 	unsigned int estatus = 0;
424 	skb_frag_t *this_frag;
425 	unsigned int index;
426 	void *bufaddr;
427 	dma_addr_t addr;
428 	int i;
429 
430 	for (frag = 0; frag < nr_frags; frag++) {
431 		this_frag = &skb_shinfo(skb)->frags[frag];
432 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
433 		ebdp = (struct bufdesc_ex *)bdp;
434 
435 		status = fec16_to_cpu(bdp->cbd_sc);
436 		status &= ~BD_ENET_TX_STATS;
437 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
438 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
439 
440 		/* Handle the last BD specially */
441 		if (frag == nr_frags - 1) {
442 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
443 			if (fep->bufdesc_ex) {
444 				estatus |= BD_ENET_TX_INT;
445 				if (unlikely(skb_shinfo(skb)->tx_flags &
446 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
447 					estatus |= BD_ENET_TX_TS;
448 			}
449 		}
450 
451 		if (fep->bufdesc_ex) {
452 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
453 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
454 			if (skb->ip_summed == CHECKSUM_PARTIAL)
455 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
456 
457 			ebdp->cbd_bdu = 0;
458 			ebdp->cbd_esc = cpu_to_fec32(estatus);
459 		}
460 
461 		bufaddr = skb_frag_address(this_frag);
462 
463 		index = fec_enet_get_bd_index(bdp, &txq->bd);
464 		if (((unsigned long) bufaddr) & fep->tx_align ||
465 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
466 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
467 			bufaddr = txq->tx_bounce[index];
468 
469 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
470 				swap_buffer(bufaddr, frag_len);
471 		}
472 
473 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
474 				      DMA_TO_DEVICE);
475 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
476 			if (net_ratelimit())
477 				netdev_err(ndev, "Tx DMA memory map failed\n");
478 			goto dma_mapping_error;
479 		}
480 
481 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
482 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
483 		/* Make sure the updates to rest of the descriptor are
484 		 * performed before transferring ownership.
485 		 */
486 		wmb();
487 		bdp->cbd_sc = cpu_to_fec16(status);
488 	}
489 
490 	return bdp;
491 dma_mapping_error:
492 	bdp = txq->bd.cur;
493 	for (i = 0; i < frag; i++) {
494 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
495 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
496 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
497 	}
498 	return ERR_PTR(-ENOMEM);
499 }
500 
501 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
502 				   struct sk_buff *skb, struct net_device *ndev)
503 {
504 	struct fec_enet_private *fep = netdev_priv(ndev);
505 	int nr_frags = skb_shinfo(skb)->nr_frags;
506 	struct bufdesc *bdp, *last_bdp;
507 	void *bufaddr;
508 	dma_addr_t addr;
509 	unsigned short status;
510 	unsigned short buflen;
511 	unsigned int estatus = 0;
512 	unsigned int index;
513 	int entries_free;
514 
515 	entries_free = fec_enet_get_free_txdesc_num(txq);
516 	if (entries_free < MAX_SKB_FRAGS + 1) {
517 		dev_kfree_skb_any(skb);
518 		if (net_ratelimit())
519 			netdev_err(ndev, "NOT enough BD for SG!\n");
520 		return NETDEV_TX_OK;
521 	}
522 
523 	/* Protocol checksum off-load for TCP and UDP. */
524 	if (fec_enet_clear_csum(skb, ndev)) {
525 		dev_kfree_skb_any(skb);
526 		return NETDEV_TX_OK;
527 	}
528 
529 	/* Fill in a Tx ring entry */
530 	bdp = txq->bd.cur;
531 	last_bdp = bdp;
532 	status = fec16_to_cpu(bdp->cbd_sc);
533 	status &= ~BD_ENET_TX_STATS;
534 
535 	/* Set buffer length and buffer pointer */
536 	bufaddr = skb->data;
537 	buflen = skb_headlen(skb);
538 
539 	index = fec_enet_get_bd_index(bdp, &txq->bd);
540 	if (((unsigned long) bufaddr) & fep->tx_align ||
541 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
542 		memcpy(txq->tx_bounce[index], skb->data, buflen);
543 		bufaddr = txq->tx_bounce[index];
544 
545 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
546 			swap_buffer(bufaddr, buflen);
547 	}
548 
549 	/* Push the data cache so the CPM does not get stale memory data. */
550 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
551 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
552 		dev_kfree_skb_any(skb);
553 		if (net_ratelimit())
554 			netdev_err(ndev, "Tx DMA memory map failed\n");
555 		return NETDEV_TX_OK;
556 	}
557 
558 	if (nr_frags) {
559 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
560 		if (IS_ERR(last_bdp)) {
561 			dma_unmap_single(&fep->pdev->dev, addr,
562 					 buflen, DMA_TO_DEVICE);
563 			dev_kfree_skb_any(skb);
564 			return NETDEV_TX_OK;
565 		}
566 	} else {
567 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
568 		if (fep->bufdesc_ex) {
569 			estatus = BD_ENET_TX_INT;
570 			if (unlikely(skb_shinfo(skb)->tx_flags &
571 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
572 				estatus |= BD_ENET_TX_TS;
573 		}
574 	}
575 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
576 	bdp->cbd_datlen = cpu_to_fec16(buflen);
577 
578 	if (fep->bufdesc_ex) {
579 
580 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
581 
582 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
583 			fep->hwts_tx_en))
584 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
585 
586 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
587 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
588 
589 		if (skb->ip_summed == CHECKSUM_PARTIAL)
590 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
591 
592 		ebdp->cbd_bdu = 0;
593 		ebdp->cbd_esc = cpu_to_fec32(estatus);
594 	}
595 
596 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
597 	/* Save skb pointer */
598 	txq->tx_skbuff[index] = skb;
599 
600 	/* Make sure the updates to rest of the descriptor are performed before
601 	 * transferring ownership.
602 	 */
603 	wmb();
604 
605 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
606 	 * it's the last BD of the frame, and to put the CRC on the end.
607 	 */
608 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
609 	bdp->cbd_sc = cpu_to_fec16(status);
610 
611 	/* If this was the last BD in the ring, start at the beginning again. */
612 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
613 
614 	skb_tx_timestamp(skb);
615 
616 	/* Make sure the update to bdp and tx_skbuff are performed before
617 	 * txq->bd.cur.
618 	 */
619 	wmb();
620 	txq->bd.cur = bdp;
621 
622 	/* Trigger transmission start */
623 	writel(0, txq->bd.reg_desc_active);
624 
625 	return 0;
626 }
627 
628 static int
629 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
630 			  struct net_device *ndev,
631 			  struct bufdesc *bdp, int index, char *data,
632 			  int size, bool last_tcp, bool is_last)
633 {
634 	struct fec_enet_private *fep = netdev_priv(ndev);
635 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
636 	unsigned short status;
637 	unsigned int estatus = 0;
638 	dma_addr_t addr;
639 
640 	status = fec16_to_cpu(bdp->cbd_sc);
641 	status &= ~BD_ENET_TX_STATS;
642 
643 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
644 
645 	if (((unsigned long) data) & fep->tx_align ||
646 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
647 		memcpy(txq->tx_bounce[index], data, size);
648 		data = txq->tx_bounce[index];
649 
650 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
651 			swap_buffer(data, size);
652 	}
653 
654 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
655 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
656 		dev_kfree_skb_any(skb);
657 		if (net_ratelimit())
658 			netdev_err(ndev, "Tx DMA memory map failed\n");
659 		return NETDEV_TX_BUSY;
660 	}
661 
662 	bdp->cbd_datlen = cpu_to_fec16(size);
663 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
664 
665 	if (fep->bufdesc_ex) {
666 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
667 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
668 		if (skb->ip_summed == CHECKSUM_PARTIAL)
669 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
670 		ebdp->cbd_bdu = 0;
671 		ebdp->cbd_esc = cpu_to_fec32(estatus);
672 	}
673 
674 	/* Handle the last BD specially */
675 	if (last_tcp)
676 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
677 	if (is_last) {
678 		status |= BD_ENET_TX_INTR;
679 		if (fep->bufdesc_ex)
680 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
681 	}
682 
683 	bdp->cbd_sc = cpu_to_fec16(status);
684 
685 	return 0;
686 }
687 
688 static int
689 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
690 			 struct sk_buff *skb, struct net_device *ndev,
691 			 struct bufdesc *bdp, int index)
692 {
693 	struct fec_enet_private *fep = netdev_priv(ndev);
694 	int hdr_len = skb_tcp_all_headers(skb);
695 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
696 	void *bufaddr;
697 	unsigned long dmabuf;
698 	unsigned short status;
699 	unsigned int estatus = 0;
700 
701 	status = fec16_to_cpu(bdp->cbd_sc);
702 	status &= ~BD_ENET_TX_STATS;
703 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
704 
705 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
706 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
707 	if (((unsigned long)bufaddr) & fep->tx_align ||
708 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
709 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
710 		bufaddr = txq->tx_bounce[index];
711 
712 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
713 			swap_buffer(bufaddr, hdr_len);
714 
715 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
716 					hdr_len, DMA_TO_DEVICE);
717 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
718 			dev_kfree_skb_any(skb);
719 			if (net_ratelimit())
720 				netdev_err(ndev, "Tx DMA memory map failed\n");
721 			return NETDEV_TX_BUSY;
722 		}
723 	}
724 
725 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
726 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
727 
728 	if (fep->bufdesc_ex) {
729 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
730 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
731 		if (skb->ip_summed == CHECKSUM_PARTIAL)
732 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
733 		ebdp->cbd_bdu = 0;
734 		ebdp->cbd_esc = cpu_to_fec32(estatus);
735 	}
736 
737 	bdp->cbd_sc = cpu_to_fec16(status);
738 
739 	return 0;
740 }
741 
742 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
743 				   struct sk_buff *skb,
744 				   struct net_device *ndev)
745 {
746 	struct fec_enet_private *fep = netdev_priv(ndev);
747 	int hdr_len, total_len, data_left;
748 	struct bufdesc *bdp = txq->bd.cur;
749 	struct tso_t tso;
750 	unsigned int index = 0;
751 	int ret;
752 
753 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
754 		dev_kfree_skb_any(skb);
755 		if (net_ratelimit())
756 			netdev_err(ndev, "NOT enough BD for TSO!\n");
757 		return NETDEV_TX_OK;
758 	}
759 
760 	/* Protocol checksum off-load for TCP and UDP. */
761 	if (fec_enet_clear_csum(skb, ndev)) {
762 		dev_kfree_skb_any(skb);
763 		return NETDEV_TX_OK;
764 	}
765 
766 	/* Initialize the TSO handler, and prepare the first payload */
767 	hdr_len = tso_start(skb, &tso);
768 
769 	total_len = skb->len - hdr_len;
770 	while (total_len > 0) {
771 		char *hdr;
772 
773 		index = fec_enet_get_bd_index(bdp, &txq->bd);
774 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
775 		total_len -= data_left;
776 
777 		/* prepare packet headers: MAC + IP + TCP */
778 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
779 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
780 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
781 		if (ret)
782 			goto err_release;
783 
784 		while (data_left > 0) {
785 			int size;
786 
787 			size = min_t(int, tso.size, data_left);
788 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
789 			index = fec_enet_get_bd_index(bdp, &txq->bd);
790 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
791 							bdp, index,
792 							tso.data, size,
793 							size == data_left,
794 							total_len == 0);
795 			if (ret)
796 				goto err_release;
797 
798 			data_left -= size;
799 			tso_build_data(skb, &tso, size);
800 		}
801 
802 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
803 	}
804 
805 	/* Save skb pointer */
806 	txq->tx_skbuff[index] = skb;
807 
808 	skb_tx_timestamp(skb);
809 	txq->bd.cur = bdp;
810 
811 	/* Trigger transmission start */
812 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
813 	    !readl(txq->bd.reg_desc_active) ||
814 	    !readl(txq->bd.reg_desc_active) ||
815 	    !readl(txq->bd.reg_desc_active) ||
816 	    !readl(txq->bd.reg_desc_active))
817 		writel(0, txq->bd.reg_desc_active);
818 
819 	return 0;
820 
821 err_release:
822 	/* TODO: Release all used data descriptors for TSO */
823 	return ret;
824 }
825 
826 static netdev_tx_t
827 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
828 {
829 	struct fec_enet_private *fep = netdev_priv(ndev);
830 	int entries_free;
831 	unsigned short queue;
832 	struct fec_enet_priv_tx_q *txq;
833 	struct netdev_queue *nq;
834 	int ret;
835 
836 	queue = skb_get_queue_mapping(skb);
837 	txq = fep->tx_queue[queue];
838 	nq = netdev_get_tx_queue(ndev, queue);
839 
840 	if (skb_is_gso(skb))
841 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
842 	else
843 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
844 	if (ret)
845 		return ret;
846 
847 	entries_free = fec_enet_get_free_txdesc_num(txq);
848 	if (entries_free <= txq->tx_stop_threshold)
849 		netif_tx_stop_queue(nq);
850 
851 	return NETDEV_TX_OK;
852 }
853 
854 /* Init RX & TX buffer descriptors
855  */
856 static void fec_enet_bd_init(struct net_device *dev)
857 {
858 	struct fec_enet_private *fep = netdev_priv(dev);
859 	struct fec_enet_priv_tx_q *txq;
860 	struct fec_enet_priv_rx_q *rxq;
861 	struct bufdesc *bdp;
862 	unsigned int i;
863 	unsigned int q;
864 
865 	for (q = 0; q < fep->num_rx_queues; q++) {
866 		/* Initialize the receive buffer descriptors. */
867 		rxq = fep->rx_queue[q];
868 		bdp = rxq->bd.base;
869 
870 		for (i = 0; i < rxq->bd.ring_size; i++) {
871 
872 			/* Initialize the BD for every fragment in the page. */
873 			if (bdp->cbd_bufaddr)
874 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
875 			else
876 				bdp->cbd_sc = cpu_to_fec16(0);
877 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
878 		}
879 
880 		/* Set the last buffer to wrap */
881 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
882 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
883 
884 		rxq->bd.cur = rxq->bd.base;
885 	}
886 
887 	for (q = 0; q < fep->num_tx_queues; q++) {
888 		/* ...and the same for transmit */
889 		txq = fep->tx_queue[q];
890 		bdp = txq->bd.base;
891 		txq->bd.cur = bdp;
892 
893 		for (i = 0; i < txq->bd.ring_size; i++) {
894 			/* Initialize the BD for every fragment in the page. */
895 			bdp->cbd_sc = cpu_to_fec16(0);
896 			if (bdp->cbd_bufaddr &&
897 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
898 				dma_unmap_single(&fep->pdev->dev,
899 						 fec32_to_cpu(bdp->cbd_bufaddr),
900 						 fec16_to_cpu(bdp->cbd_datlen),
901 						 DMA_TO_DEVICE);
902 			if (txq->tx_skbuff[i]) {
903 				dev_kfree_skb_any(txq->tx_skbuff[i]);
904 				txq->tx_skbuff[i] = NULL;
905 			}
906 			bdp->cbd_bufaddr = cpu_to_fec32(0);
907 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
908 		}
909 
910 		/* Set the last buffer to wrap */
911 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
912 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
913 		txq->dirty_tx = bdp;
914 	}
915 }
916 
917 static void fec_enet_active_rxring(struct net_device *ndev)
918 {
919 	struct fec_enet_private *fep = netdev_priv(ndev);
920 	int i;
921 
922 	for (i = 0; i < fep->num_rx_queues; i++)
923 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
924 }
925 
926 static void fec_enet_enable_ring(struct net_device *ndev)
927 {
928 	struct fec_enet_private *fep = netdev_priv(ndev);
929 	struct fec_enet_priv_tx_q *txq;
930 	struct fec_enet_priv_rx_q *rxq;
931 	int i;
932 
933 	for (i = 0; i < fep->num_rx_queues; i++) {
934 		rxq = fep->rx_queue[i];
935 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
936 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
937 
938 		/* enable DMA1/2 */
939 		if (i)
940 			writel(RCMR_MATCHEN | RCMR_CMP(i),
941 			       fep->hwp + FEC_RCMR(i));
942 	}
943 
944 	for (i = 0; i < fep->num_tx_queues; i++) {
945 		txq = fep->tx_queue[i];
946 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
947 
948 		/* enable DMA1/2 */
949 		if (i)
950 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
951 			       fep->hwp + FEC_DMA_CFG(i));
952 	}
953 }
954 
955 static void fec_enet_reset_skb(struct net_device *ndev)
956 {
957 	struct fec_enet_private *fep = netdev_priv(ndev);
958 	struct fec_enet_priv_tx_q *txq;
959 	int i, j;
960 
961 	for (i = 0; i < fep->num_tx_queues; i++) {
962 		txq = fep->tx_queue[i];
963 
964 		for (j = 0; j < txq->bd.ring_size; j++) {
965 			if (txq->tx_skbuff[j]) {
966 				dev_kfree_skb_any(txq->tx_skbuff[j]);
967 				txq->tx_skbuff[j] = NULL;
968 			}
969 		}
970 	}
971 }
972 
973 /*
974  * This function is called to start or restart the FEC during a link
975  * change, transmit timeout, or to reconfigure the FEC.  The network
976  * packet processing for this device must be stopped before this call.
977  */
978 static void
979 fec_restart(struct net_device *ndev)
980 {
981 	struct fec_enet_private *fep = netdev_priv(ndev);
982 	u32 temp_mac[2];
983 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
984 	u32 ecntl = 0x2; /* ETHEREN */
985 
986 	/* Whack a reset.  We should wait for this.
987 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
988 	 * instead of reset MAC itself.
989 	 */
990 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
991 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
992 		writel(0, fep->hwp + FEC_ECNTRL);
993 	} else {
994 		writel(1, fep->hwp + FEC_ECNTRL);
995 		udelay(10);
996 	}
997 
998 	/*
999 	 * enet-mac reset will reset mac address registers too,
1000 	 * so need to reconfigure it.
1001 	 */
1002 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1003 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1004 	       fep->hwp + FEC_ADDR_LOW);
1005 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1006 	       fep->hwp + FEC_ADDR_HIGH);
1007 
1008 	/* Clear any outstanding interrupt, except MDIO. */
1009 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1010 
1011 	fec_enet_bd_init(ndev);
1012 
1013 	fec_enet_enable_ring(ndev);
1014 
1015 	/* Reset tx SKB buffers. */
1016 	fec_enet_reset_skb(ndev);
1017 
1018 	/* Enable MII mode */
1019 	if (fep->full_duplex == DUPLEX_FULL) {
1020 		/* FD enable */
1021 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1022 	} else {
1023 		/* No Rcv on Xmit */
1024 		rcntl |= 0x02;
1025 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1026 	}
1027 
1028 	/* Set MII speed */
1029 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1030 
1031 #if !defined(CONFIG_M5272)
1032 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1033 		u32 val = readl(fep->hwp + FEC_RACC);
1034 
1035 		/* align IP header */
1036 		val |= FEC_RACC_SHIFT16;
1037 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1038 			/* set RX checksum */
1039 			val |= FEC_RACC_OPTIONS;
1040 		else
1041 			val &= ~FEC_RACC_OPTIONS;
1042 		writel(val, fep->hwp + FEC_RACC);
1043 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1044 	}
1045 #endif
1046 
1047 	/*
1048 	 * The phy interface and speed need to get configured
1049 	 * differently on enet-mac.
1050 	 */
1051 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1052 		/* Enable flow control and length check */
1053 		rcntl |= 0x40000000 | 0x00000020;
1054 
1055 		/* RGMII, RMII or MII */
1056 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1057 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1058 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1059 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1060 			rcntl |= (1 << 6);
1061 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1062 			rcntl |= (1 << 8);
1063 		else
1064 			rcntl &= ~(1 << 8);
1065 
1066 		/* 1G, 100M or 10M */
1067 		if (ndev->phydev) {
1068 			if (ndev->phydev->speed == SPEED_1000)
1069 				ecntl |= (1 << 5);
1070 			else if (ndev->phydev->speed == SPEED_100)
1071 				rcntl &= ~(1 << 9);
1072 			else
1073 				rcntl |= (1 << 9);
1074 		}
1075 	} else {
1076 #ifdef FEC_MIIGSK_ENR
1077 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1078 			u32 cfgr;
1079 			/* disable the gasket and wait */
1080 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1081 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1082 				udelay(1);
1083 
1084 			/*
1085 			 * configure the gasket:
1086 			 *   RMII, 50 MHz, no loopback, no echo
1087 			 *   MII, 25 MHz, no loopback, no echo
1088 			 */
1089 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1090 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1091 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1092 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1093 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1094 
1095 			/* re-enable the gasket */
1096 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1097 		}
1098 #endif
1099 	}
1100 
1101 #if !defined(CONFIG_M5272)
1102 	/* enable pause frame*/
1103 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1104 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1105 	     ndev->phydev && ndev->phydev->pause)) {
1106 		rcntl |= FEC_ENET_FCE;
1107 
1108 		/* set FIFO threshold parameter to reduce overrun */
1109 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1110 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1111 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1112 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1113 
1114 		/* OPD */
1115 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1116 	} else {
1117 		rcntl &= ~FEC_ENET_FCE;
1118 	}
1119 #endif /* !defined(CONFIG_M5272) */
1120 
1121 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1122 
1123 	/* Setup multicast filter. */
1124 	set_multicast_list(ndev);
1125 #ifndef CONFIG_M5272
1126 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1127 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1128 #endif
1129 
1130 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1131 		/* enable ENET endian swap */
1132 		ecntl |= (1 << 8);
1133 		/* enable ENET store and forward mode */
1134 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1135 	}
1136 
1137 	if (fep->bufdesc_ex)
1138 		ecntl |= (1 << 4);
1139 
1140 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1141 	    fep->rgmii_txc_dly)
1142 		ecntl |= FEC_ENET_TXC_DLY;
1143 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1144 	    fep->rgmii_rxc_dly)
1145 		ecntl |= FEC_ENET_RXC_DLY;
1146 
1147 #ifndef CONFIG_M5272
1148 	/* Enable the MIB statistic event counters */
1149 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1150 #endif
1151 
1152 	/* And last, enable the transmit and receive processing */
1153 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1154 	fec_enet_active_rxring(ndev);
1155 
1156 	if (fep->bufdesc_ex)
1157 		fec_ptp_start_cyclecounter(ndev);
1158 
1159 	/* Enable interrupts we wish to service */
1160 	if (fep->link)
1161 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1162 	else
1163 		writel(0, fep->hwp + FEC_IMASK);
1164 
1165 	/* Init the interrupt coalescing */
1166 	fec_enet_itr_coal_init(ndev);
1167 
1168 }
1169 
1170 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1171 {
1172 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1173 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1174 
1175 	if (stop_gpr->gpr) {
1176 		if (enabled)
1177 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1178 					   BIT(stop_gpr->bit),
1179 					   BIT(stop_gpr->bit));
1180 		else
1181 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1182 					   BIT(stop_gpr->bit), 0);
1183 	} else if (pdata && pdata->sleep_mode_enable) {
1184 		pdata->sleep_mode_enable(enabled);
1185 	}
1186 }
1187 
1188 static void fec_irqs_disable(struct net_device *ndev)
1189 {
1190 	struct fec_enet_private *fep = netdev_priv(ndev);
1191 
1192 	writel(0, fep->hwp + FEC_IMASK);
1193 }
1194 
1195 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1196 {
1197 	struct fec_enet_private *fep = netdev_priv(ndev);
1198 
1199 	writel(0, fep->hwp + FEC_IMASK);
1200 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1201 }
1202 
1203 static void
1204 fec_stop(struct net_device *ndev)
1205 {
1206 	struct fec_enet_private *fep = netdev_priv(ndev);
1207 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1208 	u32 val;
1209 
1210 	/* We cannot expect a graceful transmit stop without link !!! */
1211 	if (fep->link) {
1212 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1213 		udelay(10);
1214 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1215 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1216 	}
1217 
1218 	/* Whack a reset.  We should wait for this.
1219 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1220 	 * instead of reset MAC itself.
1221 	 */
1222 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1223 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1224 			writel(0, fep->hwp + FEC_ECNTRL);
1225 		} else {
1226 			writel(1, fep->hwp + FEC_ECNTRL);
1227 			udelay(10);
1228 		}
1229 	} else {
1230 		val = readl(fep->hwp + FEC_ECNTRL);
1231 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1232 		writel(val, fep->hwp + FEC_ECNTRL);
1233 	}
1234 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1235 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1236 
1237 	/* We have to keep ENET enabled to have MII interrupt stay working */
1238 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1239 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1240 		writel(2, fep->hwp + FEC_ECNTRL);
1241 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1242 	}
1243 }
1244 
1245 
1246 static void
1247 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1248 {
1249 	struct fec_enet_private *fep = netdev_priv(ndev);
1250 
1251 	fec_dump(ndev);
1252 
1253 	ndev->stats.tx_errors++;
1254 
1255 	schedule_work(&fep->tx_timeout_work);
1256 }
1257 
1258 static void fec_enet_timeout_work(struct work_struct *work)
1259 {
1260 	struct fec_enet_private *fep =
1261 		container_of(work, struct fec_enet_private, tx_timeout_work);
1262 	struct net_device *ndev = fep->netdev;
1263 
1264 	rtnl_lock();
1265 	if (netif_device_present(ndev) || netif_running(ndev)) {
1266 		napi_disable(&fep->napi);
1267 		netif_tx_lock_bh(ndev);
1268 		fec_restart(ndev);
1269 		netif_tx_wake_all_queues(ndev);
1270 		netif_tx_unlock_bh(ndev);
1271 		napi_enable(&fep->napi);
1272 	}
1273 	rtnl_unlock();
1274 }
1275 
1276 static void
1277 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1278 	struct skb_shared_hwtstamps *hwtstamps)
1279 {
1280 	unsigned long flags;
1281 	u64 ns;
1282 
1283 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1284 	ns = timecounter_cyc2time(&fep->tc, ts);
1285 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1286 
1287 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1288 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1289 }
1290 
1291 static void
1292 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1293 {
1294 	struct	fec_enet_private *fep;
1295 	struct bufdesc *bdp;
1296 	unsigned short status;
1297 	struct	sk_buff	*skb;
1298 	struct fec_enet_priv_tx_q *txq;
1299 	struct netdev_queue *nq;
1300 	int	index = 0;
1301 	int	entries_free;
1302 
1303 	fep = netdev_priv(ndev);
1304 
1305 	txq = fep->tx_queue[queue_id];
1306 	/* get next bdp of dirty_tx */
1307 	nq = netdev_get_tx_queue(ndev, queue_id);
1308 	bdp = txq->dirty_tx;
1309 
1310 	/* get next bdp of dirty_tx */
1311 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1312 
1313 	while (bdp != READ_ONCE(txq->bd.cur)) {
1314 		/* Order the load of bd.cur and cbd_sc */
1315 		rmb();
1316 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1317 		if (status & BD_ENET_TX_READY)
1318 			break;
1319 
1320 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1321 
1322 		skb = txq->tx_skbuff[index];
1323 		txq->tx_skbuff[index] = NULL;
1324 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1325 			dma_unmap_single(&fep->pdev->dev,
1326 					 fec32_to_cpu(bdp->cbd_bufaddr),
1327 					 fec16_to_cpu(bdp->cbd_datlen),
1328 					 DMA_TO_DEVICE);
1329 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1330 		if (!skb)
1331 			goto skb_done;
1332 
1333 		/* Check for errors. */
1334 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1335 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1336 				   BD_ENET_TX_CSL)) {
1337 			ndev->stats.tx_errors++;
1338 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1339 				ndev->stats.tx_heartbeat_errors++;
1340 			if (status & BD_ENET_TX_LC)  /* Late collision */
1341 				ndev->stats.tx_window_errors++;
1342 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1343 				ndev->stats.tx_aborted_errors++;
1344 			if (status & BD_ENET_TX_UN)  /* Underrun */
1345 				ndev->stats.tx_fifo_errors++;
1346 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1347 				ndev->stats.tx_carrier_errors++;
1348 		} else {
1349 			ndev->stats.tx_packets++;
1350 			ndev->stats.tx_bytes += skb->len;
1351 		}
1352 
1353 		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1354 		 * are to time stamp the packet, so we still need to check time
1355 		 * stamping enabled flag.
1356 		 */
1357 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1358 			     fep->hwts_tx_en) &&
1359 		    fep->bufdesc_ex) {
1360 			struct skb_shared_hwtstamps shhwtstamps;
1361 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1362 
1363 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1364 			skb_tstamp_tx(skb, &shhwtstamps);
1365 		}
1366 
1367 		/* Deferred means some collisions occurred during transmit,
1368 		 * but we eventually sent the packet OK.
1369 		 */
1370 		if (status & BD_ENET_TX_DEF)
1371 			ndev->stats.collisions++;
1372 
1373 		/* Free the sk buffer associated with this last transmit */
1374 		dev_kfree_skb_any(skb);
1375 skb_done:
1376 		/* Make sure the update to bdp and tx_skbuff are performed
1377 		 * before dirty_tx
1378 		 */
1379 		wmb();
1380 		txq->dirty_tx = bdp;
1381 
1382 		/* Update pointer to next buffer descriptor to be transmitted */
1383 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1384 
1385 		/* Since we have freed up a buffer, the ring is no longer full
1386 		 */
1387 		if (netif_tx_queue_stopped(nq)) {
1388 			entries_free = fec_enet_get_free_txdesc_num(txq);
1389 			if (entries_free >= txq->tx_wake_threshold)
1390 				netif_tx_wake_queue(nq);
1391 		}
1392 	}
1393 
1394 	/* ERR006358: Keep the transmitter going */
1395 	if (bdp != txq->bd.cur &&
1396 	    readl(txq->bd.reg_desc_active) == 0)
1397 		writel(0, txq->bd.reg_desc_active);
1398 }
1399 
1400 static void fec_enet_tx(struct net_device *ndev)
1401 {
1402 	struct fec_enet_private *fep = netdev_priv(ndev);
1403 	int i;
1404 
1405 	/* Make sure that AVB queues are processed first. */
1406 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1407 		fec_enet_tx_queue(ndev, i);
1408 }
1409 
1410 static int
1411 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1412 {
1413 	struct  fec_enet_private *fep = netdev_priv(ndev);
1414 	int off;
1415 
1416 	off = ((unsigned long)skb->data) & fep->rx_align;
1417 	if (off)
1418 		skb_reserve(skb, fep->rx_align + 1 - off);
1419 
1420 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1421 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1422 		if (net_ratelimit())
1423 			netdev_err(ndev, "Rx DMA memory map failed\n");
1424 		return -ENOMEM;
1425 	}
1426 
1427 	return 0;
1428 }
1429 
1430 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1431 			       struct bufdesc *bdp, u32 length, bool swap)
1432 {
1433 	struct  fec_enet_private *fep = netdev_priv(ndev);
1434 	struct sk_buff *new_skb;
1435 
1436 	if (length > fep->rx_copybreak)
1437 		return false;
1438 
1439 	new_skb = netdev_alloc_skb(ndev, length);
1440 	if (!new_skb)
1441 		return false;
1442 
1443 	dma_sync_single_for_cpu(&fep->pdev->dev,
1444 				fec32_to_cpu(bdp->cbd_bufaddr),
1445 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1446 				DMA_FROM_DEVICE);
1447 	if (!swap)
1448 		memcpy(new_skb->data, (*skb)->data, length);
1449 	else
1450 		swap_buffer2(new_skb->data, (*skb)->data, length);
1451 	*skb = new_skb;
1452 
1453 	return true;
1454 }
1455 
1456 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1457  * When we update through the ring, if the next incoming buffer has
1458  * not been given to the system, we just set the empty indicator,
1459  * effectively tossing the packet.
1460  */
1461 static int
1462 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1463 {
1464 	struct fec_enet_private *fep = netdev_priv(ndev);
1465 	struct fec_enet_priv_rx_q *rxq;
1466 	struct bufdesc *bdp;
1467 	unsigned short status;
1468 	struct  sk_buff *skb_new = NULL;
1469 	struct  sk_buff *skb;
1470 	ushort	pkt_len;
1471 	__u8 *data;
1472 	int	pkt_received = 0;
1473 	struct	bufdesc_ex *ebdp = NULL;
1474 	bool	vlan_packet_rcvd = false;
1475 	u16	vlan_tag;
1476 	int	index = 0;
1477 	bool	is_copybreak;
1478 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1479 
1480 #ifdef CONFIG_M532x
1481 	flush_cache_all();
1482 #endif
1483 	rxq = fep->rx_queue[queue_id];
1484 
1485 	/* First, grab all of the stats for the incoming packet.
1486 	 * These get messed up if we get called due to a busy condition.
1487 	 */
1488 	bdp = rxq->bd.cur;
1489 
1490 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1491 
1492 		if (pkt_received >= budget)
1493 			break;
1494 		pkt_received++;
1495 
1496 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1497 
1498 		/* Check for errors. */
1499 		status ^= BD_ENET_RX_LAST;
1500 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1501 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1502 			   BD_ENET_RX_CL)) {
1503 			ndev->stats.rx_errors++;
1504 			if (status & BD_ENET_RX_OV) {
1505 				/* FIFO overrun */
1506 				ndev->stats.rx_fifo_errors++;
1507 				goto rx_processing_done;
1508 			}
1509 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1510 						| BD_ENET_RX_LAST)) {
1511 				/* Frame too long or too short. */
1512 				ndev->stats.rx_length_errors++;
1513 				if (status & BD_ENET_RX_LAST)
1514 					netdev_err(ndev, "rcv is not +last\n");
1515 			}
1516 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1517 				ndev->stats.rx_crc_errors++;
1518 			/* Report late collisions as a frame error. */
1519 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1520 				ndev->stats.rx_frame_errors++;
1521 			goto rx_processing_done;
1522 		}
1523 
1524 		/* Process the incoming frame. */
1525 		ndev->stats.rx_packets++;
1526 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1527 		ndev->stats.rx_bytes += pkt_len;
1528 
1529 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1530 		skb = rxq->rx_skbuff[index];
1531 
1532 		/* The packet length includes FCS, but we don't want to
1533 		 * include that when passing upstream as it messes up
1534 		 * bridging applications.
1535 		 */
1536 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1537 						  need_swap);
1538 		if (!is_copybreak) {
1539 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1540 			if (unlikely(!skb_new)) {
1541 				ndev->stats.rx_dropped++;
1542 				goto rx_processing_done;
1543 			}
1544 			dma_unmap_single(&fep->pdev->dev,
1545 					 fec32_to_cpu(bdp->cbd_bufaddr),
1546 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1547 					 DMA_FROM_DEVICE);
1548 		}
1549 
1550 		prefetch(skb->data - NET_IP_ALIGN);
1551 		skb_put(skb, pkt_len - 4);
1552 		data = skb->data;
1553 
1554 		if (!is_copybreak && need_swap)
1555 			swap_buffer(data, pkt_len);
1556 
1557 #if !defined(CONFIG_M5272)
1558 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1559 			data = skb_pull_inline(skb, 2);
1560 #endif
1561 
1562 		/* Extract the enhanced buffer descriptor */
1563 		ebdp = NULL;
1564 		if (fep->bufdesc_ex)
1565 			ebdp = (struct bufdesc_ex *)bdp;
1566 
1567 		/* If this is a VLAN packet remove the VLAN Tag */
1568 		vlan_packet_rcvd = false;
1569 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1570 		    fep->bufdesc_ex &&
1571 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1572 			/* Push and remove the vlan tag */
1573 			struct vlan_hdr *vlan_header =
1574 					(struct vlan_hdr *) (data + ETH_HLEN);
1575 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1576 
1577 			vlan_packet_rcvd = true;
1578 
1579 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1580 			skb_pull(skb, VLAN_HLEN);
1581 		}
1582 
1583 		skb->protocol = eth_type_trans(skb, ndev);
1584 
1585 		/* Get receive timestamp from the skb */
1586 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1587 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1588 					  skb_hwtstamps(skb));
1589 
1590 		if (fep->bufdesc_ex &&
1591 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1592 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1593 				/* don't check it */
1594 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1595 			} else {
1596 				skb_checksum_none_assert(skb);
1597 			}
1598 		}
1599 
1600 		/* Handle received VLAN packets */
1601 		if (vlan_packet_rcvd)
1602 			__vlan_hwaccel_put_tag(skb,
1603 					       htons(ETH_P_8021Q),
1604 					       vlan_tag);
1605 
1606 		skb_record_rx_queue(skb, queue_id);
1607 		napi_gro_receive(&fep->napi, skb);
1608 
1609 		if (is_copybreak) {
1610 			dma_sync_single_for_device(&fep->pdev->dev,
1611 						   fec32_to_cpu(bdp->cbd_bufaddr),
1612 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1613 						   DMA_FROM_DEVICE);
1614 		} else {
1615 			rxq->rx_skbuff[index] = skb_new;
1616 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1617 		}
1618 
1619 rx_processing_done:
1620 		/* Clear the status flags for this buffer */
1621 		status &= ~BD_ENET_RX_STATS;
1622 
1623 		/* Mark the buffer empty */
1624 		status |= BD_ENET_RX_EMPTY;
1625 
1626 		if (fep->bufdesc_ex) {
1627 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1628 
1629 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1630 			ebdp->cbd_prot = 0;
1631 			ebdp->cbd_bdu = 0;
1632 		}
1633 		/* Make sure the updates to rest of the descriptor are
1634 		 * performed before transferring ownership.
1635 		 */
1636 		wmb();
1637 		bdp->cbd_sc = cpu_to_fec16(status);
1638 
1639 		/* Update BD pointer to next entry */
1640 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1641 
1642 		/* Doing this here will keep the FEC running while we process
1643 		 * incoming frames.  On a heavily loaded network, we should be
1644 		 * able to keep up at the expense of system resources.
1645 		 */
1646 		writel(0, rxq->bd.reg_desc_active);
1647 	}
1648 	rxq->bd.cur = bdp;
1649 	return pkt_received;
1650 }
1651 
1652 static int fec_enet_rx(struct net_device *ndev, int budget)
1653 {
1654 	struct fec_enet_private *fep = netdev_priv(ndev);
1655 	int i, done = 0;
1656 
1657 	/* Make sure that AVB queues are processed first. */
1658 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1659 		done += fec_enet_rx_queue(ndev, budget - done, i);
1660 
1661 	return done;
1662 }
1663 
1664 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1665 {
1666 	uint int_events;
1667 
1668 	int_events = readl(fep->hwp + FEC_IEVENT);
1669 
1670 	/* Don't clear MDIO events, we poll for those */
1671 	int_events &= ~FEC_ENET_MII;
1672 
1673 	writel(int_events, fep->hwp + FEC_IEVENT);
1674 
1675 	return int_events != 0;
1676 }
1677 
1678 static irqreturn_t
1679 fec_enet_interrupt(int irq, void *dev_id)
1680 {
1681 	struct net_device *ndev = dev_id;
1682 	struct fec_enet_private *fep = netdev_priv(ndev);
1683 	irqreturn_t ret = IRQ_NONE;
1684 
1685 	if (fec_enet_collect_events(fep) && fep->link) {
1686 		ret = IRQ_HANDLED;
1687 
1688 		if (napi_schedule_prep(&fep->napi)) {
1689 			/* Disable interrupts */
1690 			writel(0, fep->hwp + FEC_IMASK);
1691 			__napi_schedule(&fep->napi);
1692 		}
1693 	}
1694 
1695 	return ret;
1696 }
1697 
1698 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1699 {
1700 	struct net_device *ndev = napi->dev;
1701 	struct fec_enet_private *fep = netdev_priv(ndev);
1702 	int done = 0;
1703 
1704 	do {
1705 		done += fec_enet_rx(ndev, budget - done);
1706 		fec_enet_tx(ndev);
1707 	} while ((done < budget) && fec_enet_collect_events(fep));
1708 
1709 	if (done < budget) {
1710 		napi_complete_done(napi, done);
1711 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1712 	}
1713 
1714 	return done;
1715 }
1716 
1717 /* ------------------------------------------------------------------------- */
1718 static int fec_get_mac(struct net_device *ndev)
1719 {
1720 	struct fec_enet_private *fep = netdev_priv(ndev);
1721 	unsigned char *iap, tmpaddr[ETH_ALEN];
1722 	int ret;
1723 
1724 	/*
1725 	 * try to get mac address in following order:
1726 	 *
1727 	 * 1) module parameter via kernel command line in form
1728 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1729 	 */
1730 	iap = macaddr;
1731 
1732 	/*
1733 	 * 2) from device tree data
1734 	 */
1735 	if (!is_valid_ether_addr(iap)) {
1736 		struct device_node *np = fep->pdev->dev.of_node;
1737 		if (np) {
1738 			ret = of_get_mac_address(np, tmpaddr);
1739 			if (!ret)
1740 				iap = tmpaddr;
1741 			else if (ret == -EPROBE_DEFER)
1742 				return ret;
1743 		}
1744 	}
1745 
1746 	/*
1747 	 * 3) from flash or fuse (via platform data)
1748 	 */
1749 	if (!is_valid_ether_addr(iap)) {
1750 #ifdef CONFIG_M5272
1751 		if (FEC_FLASHMAC)
1752 			iap = (unsigned char *)FEC_FLASHMAC;
1753 #else
1754 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1755 
1756 		if (pdata)
1757 			iap = (unsigned char *)&pdata->mac;
1758 #endif
1759 	}
1760 
1761 	/*
1762 	 * 4) FEC mac registers set by bootloader
1763 	 */
1764 	if (!is_valid_ether_addr(iap)) {
1765 		*((__be32 *) &tmpaddr[0]) =
1766 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1767 		*((__be16 *) &tmpaddr[4]) =
1768 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1769 		iap = &tmpaddr[0];
1770 	}
1771 
1772 	/*
1773 	 * 5) random mac address
1774 	 */
1775 	if (!is_valid_ether_addr(iap)) {
1776 		/* Report it and use a random ethernet address instead */
1777 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1778 		eth_hw_addr_random(ndev);
1779 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1780 			 ndev->dev_addr);
1781 		return 0;
1782 	}
1783 
1784 	/* Adjust MAC if using macaddr */
1785 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
1786 
1787 	return 0;
1788 }
1789 
1790 /* ------------------------------------------------------------------------- */
1791 
1792 /*
1793  * Phy section
1794  */
1795 static void fec_enet_adjust_link(struct net_device *ndev)
1796 {
1797 	struct fec_enet_private *fep = netdev_priv(ndev);
1798 	struct phy_device *phy_dev = ndev->phydev;
1799 	int status_change = 0;
1800 
1801 	/*
1802 	 * If the netdev is down, or is going down, we're not interested
1803 	 * in link state events, so just mark our idea of the link as down
1804 	 * and ignore the event.
1805 	 */
1806 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1807 		fep->link = 0;
1808 	} else if (phy_dev->link) {
1809 		if (!fep->link) {
1810 			fep->link = phy_dev->link;
1811 			status_change = 1;
1812 		}
1813 
1814 		if (fep->full_duplex != phy_dev->duplex) {
1815 			fep->full_duplex = phy_dev->duplex;
1816 			status_change = 1;
1817 		}
1818 
1819 		if (phy_dev->speed != fep->speed) {
1820 			fep->speed = phy_dev->speed;
1821 			status_change = 1;
1822 		}
1823 
1824 		/* if any of the above changed restart the FEC */
1825 		if (status_change) {
1826 			napi_disable(&fep->napi);
1827 			netif_tx_lock_bh(ndev);
1828 			fec_restart(ndev);
1829 			netif_tx_wake_all_queues(ndev);
1830 			netif_tx_unlock_bh(ndev);
1831 			napi_enable(&fep->napi);
1832 		}
1833 	} else {
1834 		if (fep->link) {
1835 			napi_disable(&fep->napi);
1836 			netif_tx_lock_bh(ndev);
1837 			fec_stop(ndev);
1838 			netif_tx_unlock_bh(ndev);
1839 			napi_enable(&fep->napi);
1840 			fep->link = phy_dev->link;
1841 			status_change = 1;
1842 		}
1843 	}
1844 
1845 	if (status_change)
1846 		phy_print_status(phy_dev);
1847 }
1848 
1849 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1850 {
1851 	uint ievent;
1852 	int ret;
1853 
1854 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1855 					ievent & FEC_ENET_MII, 2, 30000);
1856 
1857 	if (!ret)
1858 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1859 
1860 	return ret;
1861 }
1862 
1863 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1864 {
1865 	struct fec_enet_private *fep = bus->priv;
1866 	struct device *dev = &fep->pdev->dev;
1867 	int ret = 0, frame_start, frame_addr, frame_op;
1868 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1869 
1870 	ret = pm_runtime_resume_and_get(dev);
1871 	if (ret < 0)
1872 		return ret;
1873 
1874 	if (is_c45) {
1875 		frame_start = FEC_MMFR_ST_C45;
1876 
1877 		/* write address */
1878 		frame_addr = (regnum >> 16);
1879 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1880 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1881 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1882 		       fep->hwp + FEC_MII_DATA);
1883 
1884 		/* wait for end of transfer */
1885 		ret = fec_enet_mdio_wait(fep);
1886 		if (ret) {
1887 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1888 			goto out;
1889 		}
1890 
1891 		frame_op = FEC_MMFR_OP_READ_C45;
1892 
1893 	} else {
1894 		/* C22 read */
1895 		frame_op = FEC_MMFR_OP_READ;
1896 		frame_start = FEC_MMFR_ST;
1897 		frame_addr = regnum;
1898 	}
1899 
1900 	/* start a read op */
1901 	writel(frame_start | frame_op |
1902 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1903 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1904 
1905 	/* wait for end of transfer */
1906 	ret = fec_enet_mdio_wait(fep);
1907 	if (ret) {
1908 		netdev_err(fep->netdev, "MDIO read timeout\n");
1909 		goto out;
1910 	}
1911 
1912 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1913 
1914 out:
1915 	pm_runtime_mark_last_busy(dev);
1916 	pm_runtime_put_autosuspend(dev);
1917 
1918 	return ret;
1919 }
1920 
1921 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1922 			   u16 value)
1923 {
1924 	struct fec_enet_private *fep = bus->priv;
1925 	struct device *dev = &fep->pdev->dev;
1926 	int ret, frame_start, frame_addr;
1927 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1928 
1929 	ret = pm_runtime_resume_and_get(dev);
1930 	if (ret < 0)
1931 		return ret;
1932 
1933 	if (is_c45) {
1934 		frame_start = FEC_MMFR_ST_C45;
1935 
1936 		/* write address */
1937 		frame_addr = (regnum >> 16);
1938 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1939 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1940 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1941 		       fep->hwp + FEC_MII_DATA);
1942 
1943 		/* wait for end of transfer */
1944 		ret = fec_enet_mdio_wait(fep);
1945 		if (ret) {
1946 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1947 			goto out;
1948 		}
1949 	} else {
1950 		/* C22 write */
1951 		frame_start = FEC_MMFR_ST;
1952 		frame_addr = regnum;
1953 	}
1954 
1955 	/* start a write op */
1956 	writel(frame_start | FEC_MMFR_OP_WRITE |
1957 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1958 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1959 		fep->hwp + FEC_MII_DATA);
1960 
1961 	/* wait for end of transfer */
1962 	ret = fec_enet_mdio_wait(fep);
1963 	if (ret)
1964 		netdev_err(fep->netdev, "MDIO write timeout\n");
1965 
1966 out:
1967 	pm_runtime_mark_last_busy(dev);
1968 	pm_runtime_put_autosuspend(dev);
1969 
1970 	return ret;
1971 }
1972 
1973 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
1974 {
1975 	struct fec_enet_private *fep = netdev_priv(ndev);
1976 	struct phy_device *phy_dev = ndev->phydev;
1977 
1978 	if (phy_dev) {
1979 		phy_reset_after_clk_enable(phy_dev);
1980 	} else if (fep->phy_node) {
1981 		/*
1982 		 * If the PHY still is not bound to the MAC, but there is
1983 		 * OF PHY node and a matching PHY device instance already,
1984 		 * use the OF PHY node to obtain the PHY device instance,
1985 		 * and then use that PHY device instance when triggering
1986 		 * the PHY reset.
1987 		 */
1988 		phy_dev = of_phy_find_device(fep->phy_node);
1989 		phy_reset_after_clk_enable(phy_dev);
1990 		put_device(&phy_dev->mdio.dev);
1991 	}
1992 }
1993 
1994 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1995 {
1996 	struct fec_enet_private *fep = netdev_priv(ndev);
1997 	int ret;
1998 
1999 	if (enable) {
2000 		ret = clk_prepare_enable(fep->clk_enet_out);
2001 		if (ret)
2002 			return ret;
2003 
2004 		if (fep->clk_ptp) {
2005 			mutex_lock(&fep->ptp_clk_mutex);
2006 			ret = clk_prepare_enable(fep->clk_ptp);
2007 			if (ret) {
2008 				mutex_unlock(&fep->ptp_clk_mutex);
2009 				goto failed_clk_ptp;
2010 			} else {
2011 				fep->ptp_clk_on = true;
2012 			}
2013 			mutex_unlock(&fep->ptp_clk_mutex);
2014 		}
2015 
2016 		ret = clk_prepare_enable(fep->clk_ref);
2017 		if (ret)
2018 			goto failed_clk_ref;
2019 
2020 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2021 		if (ret)
2022 			goto failed_clk_2x_txclk;
2023 
2024 		fec_enet_phy_reset_after_clk_enable(ndev);
2025 	} else {
2026 		clk_disable_unprepare(fep->clk_enet_out);
2027 		if (fep->clk_ptp) {
2028 			mutex_lock(&fep->ptp_clk_mutex);
2029 			clk_disable_unprepare(fep->clk_ptp);
2030 			fep->ptp_clk_on = false;
2031 			mutex_unlock(&fep->ptp_clk_mutex);
2032 		}
2033 		clk_disable_unprepare(fep->clk_ref);
2034 		clk_disable_unprepare(fep->clk_2x_txclk);
2035 	}
2036 
2037 	return 0;
2038 
2039 failed_clk_2x_txclk:
2040 	if (fep->clk_ref)
2041 		clk_disable_unprepare(fep->clk_ref);
2042 failed_clk_ref:
2043 	if (fep->clk_ptp) {
2044 		mutex_lock(&fep->ptp_clk_mutex);
2045 		clk_disable_unprepare(fep->clk_ptp);
2046 		fep->ptp_clk_on = false;
2047 		mutex_unlock(&fep->ptp_clk_mutex);
2048 	}
2049 failed_clk_ptp:
2050 	clk_disable_unprepare(fep->clk_enet_out);
2051 
2052 	return ret;
2053 }
2054 
2055 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2056 				      struct device_node *np)
2057 {
2058 	u32 rgmii_tx_delay, rgmii_rx_delay;
2059 
2060 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2061 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2062 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2063 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2064 			return -EINVAL;
2065 		} else if (rgmii_tx_delay == 2000) {
2066 			fep->rgmii_txc_dly = true;
2067 		}
2068 	}
2069 
2070 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2071 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2072 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2073 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2074 			return -EINVAL;
2075 		} else if (rgmii_rx_delay == 2000) {
2076 			fep->rgmii_rxc_dly = true;
2077 		}
2078 	}
2079 
2080 	return 0;
2081 }
2082 
2083 static int fec_enet_mii_probe(struct net_device *ndev)
2084 {
2085 	struct fec_enet_private *fep = netdev_priv(ndev);
2086 	struct phy_device *phy_dev = NULL;
2087 	char mdio_bus_id[MII_BUS_ID_SIZE];
2088 	char phy_name[MII_BUS_ID_SIZE + 3];
2089 	int phy_id;
2090 	int dev_id = fep->dev_id;
2091 
2092 	if (fep->phy_node) {
2093 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2094 					 &fec_enet_adjust_link, 0,
2095 					 fep->phy_interface);
2096 		if (!phy_dev) {
2097 			netdev_err(ndev, "Unable to connect to phy\n");
2098 			return -ENODEV;
2099 		}
2100 	} else {
2101 		/* check for attached phy */
2102 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2103 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2104 				continue;
2105 			if (dev_id--)
2106 				continue;
2107 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2108 			break;
2109 		}
2110 
2111 		if (phy_id >= PHY_MAX_ADDR) {
2112 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2113 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2114 			phy_id = 0;
2115 		}
2116 
2117 		snprintf(phy_name, sizeof(phy_name),
2118 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2119 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2120 				      fep->phy_interface);
2121 	}
2122 
2123 	if (IS_ERR(phy_dev)) {
2124 		netdev_err(ndev, "could not attach to PHY\n");
2125 		return PTR_ERR(phy_dev);
2126 	}
2127 
2128 	/* mask with MAC supported features */
2129 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2130 		phy_set_max_speed(phy_dev, 1000);
2131 		phy_remove_link_mode(phy_dev,
2132 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2133 #if !defined(CONFIG_M5272)
2134 		phy_support_sym_pause(phy_dev);
2135 #endif
2136 	}
2137 	else
2138 		phy_set_max_speed(phy_dev, 100);
2139 
2140 	fep->link = 0;
2141 	fep->full_duplex = 0;
2142 
2143 	phy_dev->mac_managed_pm = 1;
2144 
2145 	phy_attached_info(phy_dev);
2146 
2147 	return 0;
2148 }
2149 
2150 static int fec_enet_mii_init(struct platform_device *pdev)
2151 {
2152 	static struct mii_bus *fec0_mii_bus;
2153 	struct net_device *ndev = platform_get_drvdata(pdev);
2154 	struct fec_enet_private *fep = netdev_priv(ndev);
2155 	bool suppress_preamble = false;
2156 	struct device_node *node;
2157 	int err = -ENXIO;
2158 	u32 mii_speed, holdtime;
2159 	u32 bus_freq;
2160 
2161 	/*
2162 	 * The i.MX28 dual fec interfaces are not equal.
2163 	 * Here are the differences:
2164 	 *
2165 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2166 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2167 	 *  - external phys can only be configured by fec0
2168 	 *
2169 	 * That is to say fec1 can not work independently. It only works
2170 	 * when fec0 is working. The reason behind this design is that the
2171 	 * second interface is added primarily for Switch mode.
2172 	 *
2173 	 * Because of the last point above, both phys are attached on fec0
2174 	 * mdio interface in board design, and need to be configured by
2175 	 * fec0 mii_bus.
2176 	 */
2177 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2178 		/* fec1 uses fec0 mii_bus */
2179 		if (mii_cnt && fec0_mii_bus) {
2180 			fep->mii_bus = fec0_mii_bus;
2181 			mii_cnt++;
2182 			return 0;
2183 		}
2184 		return -ENOENT;
2185 	}
2186 
2187 	bus_freq = 2500000; /* 2.5MHz by default */
2188 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2189 	if (node) {
2190 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2191 		suppress_preamble = of_property_read_bool(node,
2192 							  "suppress-preamble");
2193 	}
2194 
2195 	/*
2196 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2197 	 *
2198 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2199 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2200 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2201 	 * document.
2202 	 */
2203 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2204 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2205 		mii_speed--;
2206 	if (mii_speed > 63) {
2207 		dev_err(&pdev->dev,
2208 			"fec clock (%lu) too fast to get right mii speed\n",
2209 			clk_get_rate(fep->clk_ipg));
2210 		err = -EINVAL;
2211 		goto err_out;
2212 	}
2213 
2214 	/*
2215 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2216 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2217 	 * versions are RAZ there, so just ignore the difference and write the
2218 	 * register always.
2219 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2220 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2221 	 * output.
2222 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2223 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2224 	 * holdtime cannot result in a value greater than 3.
2225 	 */
2226 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2227 
2228 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2229 
2230 	if (suppress_preamble)
2231 		fep->phy_speed |= BIT(7);
2232 
2233 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2234 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2235 		 * MII event generation condition:
2236 		 * - writing MSCR:
2237 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2238 		 *	  mscr_reg_data_in[7:0] != 0
2239 		 * - writing MMFR:
2240 		 *	- mscr[7:0]_not_zero
2241 		 */
2242 		writel(0, fep->hwp + FEC_MII_DATA);
2243 	}
2244 
2245 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2246 
2247 	/* Clear any pending transaction complete indication */
2248 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2249 
2250 	fep->mii_bus = mdiobus_alloc();
2251 	if (fep->mii_bus == NULL) {
2252 		err = -ENOMEM;
2253 		goto err_out;
2254 	}
2255 
2256 	fep->mii_bus->name = "fec_enet_mii_bus";
2257 	fep->mii_bus->read = fec_enet_mdio_read;
2258 	fep->mii_bus->write = fec_enet_mdio_write;
2259 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2260 		pdev->name, fep->dev_id + 1);
2261 	fep->mii_bus->priv = fep;
2262 	fep->mii_bus->parent = &pdev->dev;
2263 
2264 	err = of_mdiobus_register(fep->mii_bus, node);
2265 	if (err)
2266 		goto err_out_free_mdiobus;
2267 	of_node_put(node);
2268 
2269 	mii_cnt++;
2270 
2271 	/* save fec0 mii_bus */
2272 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2273 		fec0_mii_bus = fep->mii_bus;
2274 
2275 	return 0;
2276 
2277 err_out_free_mdiobus:
2278 	mdiobus_free(fep->mii_bus);
2279 err_out:
2280 	of_node_put(node);
2281 	return err;
2282 }
2283 
2284 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2285 {
2286 	if (--mii_cnt == 0) {
2287 		mdiobus_unregister(fep->mii_bus);
2288 		mdiobus_free(fep->mii_bus);
2289 	}
2290 }
2291 
2292 static void fec_enet_get_drvinfo(struct net_device *ndev,
2293 				 struct ethtool_drvinfo *info)
2294 {
2295 	struct fec_enet_private *fep = netdev_priv(ndev);
2296 
2297 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2298 		sizeof(info->driver));
2299 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2300 }
2301 
2302 static int fec_enet_get_regs_len(struct net_device *ndev)
2303 {
2304 	struct fec_enet_private *fep = netdev_priv(ndev);
2305 	struct resource *r;
2306 	int s = 0;
2307 
2308 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2309 	if (r)
2310 		s = resource_size(r);
2311 
2312 	return s;
2313 }
2314 
2315 /* List of registers that can be safety be read to dump them with ethtool */
2316 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2317 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2318 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2319 static __u32 fec_enet_register_version = 2;
2320 static u32 fec_enet_register_offset[] = {
2321 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2322 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2323 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2324 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2325 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2326 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2327 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2328 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2329 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2330 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2331 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2332 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2333 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2334 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2335 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2336 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2337 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2338 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2339 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2340 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2341 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2342 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2343 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2344 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2345 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2346 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2347 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2348 };
2349 #else
2350 static __u32 fec_enet_register_version = 1;
2351 static u32 fec_enet_register_offset[] = {
2352 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2353 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2354 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2355 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2356 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2357 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2358 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2359 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2360 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2361 };
2362 #endif
2363 
2364 static void fec_enet_get_regs(struct net_device *ndev,
2365 			      struct ethtool_regs *regs, void *regbuf)
2366 {
2367 	struct fec_enet_private *fep = netdev_priv(ndev);
2368 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2369 	struct device *dev = &fep->pdev->dev;
2370 	u32 *buf = (u32 *)regbuf;
2371 	u32 i, off;
2372 	int ret;
2373 
2374 	ret = pm_runtime_resume_and_get(dev);
2375 	if (ret < 0)
2376 		return;
2377 
2378 	regs->version = fec_enet_register_version;
2379 
2380 	memset(buf, 0, regs->len);
2381 
2382 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2383 		off = fec_enet_register_offset[i];
2384 
2385 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2386 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2387 			continue;
2388 
2389 		off >>= 2;
2390 		buf[off] = readl(&theregs[off]);
2391 	}
2392 
2393 	pm_runtime_mark_last_busy(dev);
2394 	pm_runtime_put_autosuspend(dev);
2395 }
2396 
2397 static int fec_enet_get_ts_info(struct net_device *ndev,
2398 				struct ethtool_ts_info *info)
2399 {
2400 	struct fec_enet_private *fep = netdev_priv(ndev);
2401 
2402 	if (fep->bufdesc_ex) {
2403 
2404 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2405 					SOF_TIMESTAMPING_RX_SOFTWARE |
2406 					SOF_TIMESTAMPING_SOFTWARE |
2407 					SOF_TIMESTAMPING_TX_HARDWARE |
2408 					SOF_TIMESTAMPING_RX_HARDWARE |
2409 					SOF_TIMESTAMPING_RAW_HARDWARE;
2410 		if (fep->ptp_clock)
2411 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2412 		else
2413 			info->phc_index = -1;
2414 
2415 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2416 				 (1 << HWTSTAMP_TX_ON);
2417 
2418 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2419 				   (1 << HWTSTAMP_FILTER_ALL);
2420 		return 0;
2421 	} else {
2422 		return ethtool_op_get_ts_info(ndev, info);
2423 	}
2424 }
2425 
2426 #if !defined(CONFIG_M5272)
2427 
2428 static void fec_enet_get_pauseparam(struct net_device *ndev,
2429 				    struct ethtool_pauseparam *pause)
2430 {
2431 	struct fec_enet_private *fep = netdev_priv(ndev);
2432 
2433 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2434 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2435 	pause->rx_pause = pause->tx_pause;
2436 }
2437 
2438 static int fec_enet_set_pauseparam(struct net_device *ndev,
2439 				   struct ethtool_pauseparam *pause)
2440 {
2441 	struct fec_enet_private *fep = netdev_priv(ndev);
2442 
2443 	if (!ndev->phydev)
2444 		return -ENODEV;
2445 
2446 	if (pause->tx_pause != pause->rx_pause) {
2447 		netdev_info(ndev,
2448 			"hardware only support enable/disable both tx and rx");
2449 		return -EINVAL;
2450 	}
2451 
2452 	fep->pause_flag = 0;
2453 
2454 	/* tx pause must be same as rx pause */
2455 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2456 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2457 
2458 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2459 			  pause->autoneg);
2460 
2461 	if (pause->autoneg) {
2462 		if (netif_running(ndev))
2463 			fec_stop(ndev);
2464 		phy_start_aneg(ndev->phydev);
2465 	}
2466 	if (netif_running(ndev)) {
2467 		napi_disable(&fep->napi);
2468 		netif_tx_lock_bh(ndev);
2469 		fec_restart(ndev);
2470 		netif_tx_wake_all_queues(ndev);
2471 		netif_tx_unlock_bh(ndev);
2472 		napi_enable(&fep->napi);
2473 	}
2474 
2475 	return 0;
2476 }
2477 
2478 static const struct fec_stat {
2479 	char name[ETH_GSTRING_LEN];
2480 	u16 offset;
2481 } fec_stats[] = {
2482 	/* RMON TX */
2483 	{ "tx_dropped", RMON_T_DROP },
2484 	{ "tx_packets", RMON_T_PACKETS },
2485 	{ "tx_broadcast", RMON_T_BC_PKT },
2486 	{ "tx_multicast", RMON_T_MC_PKT },
2487 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2488 	{ "tx_undersize", RMON_T_UNDERSIZE },
2489 	{ "tx_oversize", RMON_T_OVERSIZE },
2490 	{ "tx_fragment", RMON_T_FRAG },
2491 	{ "tx_jabber", RMON_T_JAB },
2492 	{ "tx_collision", RMON_T_COL },
2493 	{ "tx_64byte", RMON_T_P64 },
2494 	{ "tx_65to127byte", RMON_T_P65TO127 },
2495 	{ "tx_128to255byte", RMON_T_P128TO255 },
2496 	{ "tx_256to511byte", RMON_T_P256TO511 },
2497 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2498 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2499 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2500 	{ "tx_octets", RMON_T_OCTETS },
2501 
2502 	/* IEEE TX */
2503 	{ "IEEE_tx_drop", IEEE_T_DROP },
2504 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2505 	{ "IEEE_tx_1col", IEEE_T_1COL },
2506 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2507 	{ "IEEE_tx_def", IEEE_T_DEF },
2508 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2509 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2510 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2511 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2512 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2513 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2514 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2515 
2516 	/* RMON RX */
2517 	{ "rx_packets", RMON_R_PACKETS },
2518 	{ "rx_broadcast", RMON_R_BC_PKT },
2519 	{ "rx_multicast", RMON_R_MC_PKT },
2520 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2521 	{ "rx_undersize", RMON_R_UNDERSIZE },
2522 	{ "rx_oversize", RMON_R_OVERSIZE },
2523 	{ "rx_fragment", RMON_R_FRAG },
2524 	{ "rx_jabber", RMON_R_JAB },
2525 	{ "rx_64byte", RMON_R_P64 },
2526 	{ "rx_65to127byte", RMON_R_P65TO127 },
2527 	{ "rx_128to255byte", RMON_R_P128TO255 },
2528 	{ "rx_256to511byte", RMON_R_P256TO511 },
2529 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2530 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2531 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2532 	{ "rx_octets", RMON_R_OCTETS },
2533 
2534 	/* IEEE RX */
2535 	{ "IEEE_rx_drop", IEEE_R_DROP },
2536 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2537 	{ "IEEE_rx_crc", IEEE_R_CRC },
2538 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2539 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2540 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2541 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2542 };
2543 
2544 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2545 
2546 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2547 {
2548 	struct fec_enet_private *fep = netdev_priv(dev);
2549 	int i;
2550 
2551 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2552 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2553 }
2554 
2555 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2556 				       struct ethtool_stats *stats, u64 *data)
2557 {
2558 	struct fec_enet_private *fep = netdev_priv(dev);
2559 
2560 	if (netif_running(dev))
2561 		fec_enet_update_ethtool_stats(dev);
2562 
2563 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2564 }
2565 
2566 static void fec_enet_get_strings(struct net_device *netdev,
2567 	u32 stringset, u8 *data)
2568 {
2569 	int i;
2570 	switch (stringset) {
2571 	case ETH_SS_STATS:
2572 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2573 			memcpy(data + i * ETH_GSTRING_LEN,
2574 				fec_stats[i].name, ETH_GSTRING_LEN);
2575 		break;
2576 	case ETH_SS_TEST:
2577 		net_selftest_get_strings(data);
2578 		break;
2579 	}
2580 }
2581 
2582 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2583 {
2584 	switch (sset) {
2585 	case ETH_SS_STATS:
2586 		return ARRAY_SIZE(fec_stats);
2587 	case ETH_SS_TEST:
2588 		return net_selftest_get_count();
2589 	default:
2590 		return -EOPNOTSUPP;
2591 	}
2592 }
2593 
2594 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2595 {
2596 	struct fec_enet_private *fep = netdev_priv(dev);
2597 	int i;
2598 
2599 	/* Disable MIB statistics counters */
2600 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2601 
2602 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2603 		writel(0, fep->hwp + fec_stats[i].offset);
2604 
2605 	/* Don't disable MIB statistics counters */
2606 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2607 }
2608 
2609 #else	/* !defined(CONFIG_M5272) */
2610 #define FEC_STATS_SIZE	0
2611 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2612 {
2613 }
2614 
2615 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2616 {
2617 }
2618 #endif /* !defined(CONFIG_M5272) */
2619 
2620 /* ITR clock source is enet system clock (clk_ahb).
2621  * TCTT unit is cycle_ns * 64 cycle
2622  * So, the ICTT value = X us / (cycle_ns * 64)
2623  */
2624 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2625 {
2626 	struct fec_enet_private *fep = netdev_priv(ndev);
2627 
2628 	return us * (fep->itr_clk_rate / 64000) / 1000;
2629 }
2630 
2631 /* Set threshold for interrupt coalescing */
2632 static void fec_enet_itr_coal_set(struct net_device *ndev)
2633 {
2634 	struct fec_enet_private *fep = netdev_priv(ndev);
2635 	int rx_itr, tx_itr;
2636 
2637 	/* Must be greater than zero to avoid unpredictable behavior */
2638 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2639 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2640 		return;
2641 
2642 	/* Select enet system clock as Interrupt Coalescing
2643 	 * timer Clock Source
2644 	 */
2645 	rx_itr = FEC_ITR_CLK_SEL;
2646 	tx_itr = FEC_ITR_CLK_SEL;
2647 
2648 	/* set ICFT and ICTT */
2649 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2650 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2651 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2652 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2653 
2654 	rx_itr |= FEC_ITR_EN;
2655 	tx_itr |= FEC_ITR_EN;
2656 
2657 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2658 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2659 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
2660 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2661 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2662 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2663 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2664 	}
2665 }
2666 
2667 static int fec_enet_get_coalesce(struct net_device *ndev,
2668 				 struct ethtool_coalesce *ec,
2669 				 struct kernel_ethtool_coalesce *kernel_coal,
2670 				 struct netlink_ext_ack *extack)
2671 {
2672 	struct fec_enet_private *fep = netdev_priv(ndev);
2673 
2674 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2675 		return -EOPNOTSUPP;
2676 
2677 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2678 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2679 
2680 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2681 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2682 
2683 	return 0;
2684 }
2685 
2686 static int fec_enet_set_coalesce(struct net_device *ndev,
2687 				 struct ethtool_coalesce *ec,
2688 				 struct kernel_ethtool_coalesce *kernel_coal,
2689 				 struct netlink_ext_ack *extack)
2690 {
2691 	struct fec_enet_private *fep = netdev_priv(ndev);
2692 	struct device *dev = &fep->pdev->dev;
2693 	unsigned int cycle;
2694 
2695 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2696 		return -EOPNOTSUPP;
2697 
2698 	if (ec->rx_max_coalesced_frames > 255) {
2699 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2700 		return -EINVAL;
2701 	}
2702 
2703 	if (ec->tx_max_coalesced_frames > 255) {
2704 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2705 		return -EINVAL;
2706 	}
2707 
2708 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2709 	if (cycle > 0xFFFF) {
2710 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2711 		return -EINVAL;
2712 	}
2713 
2714 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2715 	if (cycle > 0xFFFF) {
2716 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2717 		return -EINVAL;
2718 	}
2719 
2720 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2721 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2722 
2723 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2724 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2725 
2726 	fec_enet_itr_coal_set(ndev);
2727 
2728 	return 0;
2729 }
2730 
2731 static void fec_enet_itr_coal_init(struct net_device *ndev)
2732 {
2733 	struct ethtool_coalesce ec;
2734 
2735 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2736 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2737 
2738 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2739 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2740 
2741 	fec_enet_set_coalesce(ndev, &ec, NULL, NULL);
2742 }
2743 
2744 static int fec_enet_get_tunable(struct net_device *netdev,
2745 				const struct ethtool_tunable *tuna,
2746 				void *data)
2747 {
2748 	struct fec_enet_private *fep = netdev_priv(netdev);
2749 	int ret = 0;
2750 
2751 	switch (tuna->id) {
2752 	case ETHTOOL_RX_COPYBREAK:
2753 		*(u32 *)data = fep->rx_copybreak;
2754 		break;
2755 	default:
2756 		ret = -EINVAL;
2757 		break;
2758 	}
2759 
2760 	return ret;
2761 }
2762 
2763 static int fec_enet_set_tunable(struct net_device *netdev,
2764 				const struct ethtool_tunable *tuna,
2765 				const void *data)
2766 {
2767 	struct fec_enet_private *fep = netdev_priv(netdev);
2768 	int ret = 0;
2769 
2770 	switch (tuna->id) {
2771 	case ETHTOOL_RX_COPYBREAK:
2772 		fep->rx_copybreak = *(u32 *)data;
2773 		break;
2774 	default:
2775 		ret = -EINVAL;
2776 		break;
2777 	}
2778 
2779 	return ret;
2780 }
2781 
2782 /* LPI Sleep Ts count base on tx clk (clk_ref).
2783  * The lpi sleep cnt value = X us / (cycle_ns).
2784  */
2785 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2786 {
2787 	struct fec_enet_private *fep = netdev_priv(ndev);
2788 
2789 	return us * (fep->clk_ref_rate / 1000) / 1000;
2790 }
2791 
2792 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
2793 {
2794 	struct fec_enet_private *fep = netdev_priv(ndev);
2795 	struct ethtool_eee *p = &fep->eee;
2796 	unsigned int sleep_cycle, wake_cycle;
2797 	int ret = 0;
2798 
2799 	if (enable) {
2800 		ret = phy_init_eee(ndev->phydev, false);
2801 		if (ret)
2802 			return ret;
2803 
2804 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
2805 		wake_cycle = sleep_cycle;
2806 	} else {
2807 		sleep_cycle = 0;
2808 		wake_cycle = 0;
2809 	}
2810 
2811 	p->tx_lpi_enabled = enable;
2812 	p->eee_enabled = enable;
2813 	p->eee_active = enable;
2814 
2815 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2816 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2817 
2818 	return 0;
2819 }
2820 
2821 static int
2822 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2823 {
2824 	struct fec_enet_private *fep = netdev_priv(ndev);
2825 	struct ethtool_eee *p = &fep->eee;
2826 
2827 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
2828 		return -EOPNOTSUPP;
2829 
2830 	if (!netif_running(ndev))
2831 		return -ENETDOWN;
2832 
2833 	edata->eee_enabled = p->eee_enabled;
2834 	edata->eee_active = p->eee_active;
2835 	edata->tx_lpi_timer = p->tx_lpi_timer;
2836 	edata->tx_lpi_enabled = p->tx_lpi_enabled;
2837 
2838 	return phy_ethtool_get_eee(ndev->phydev, edata);
2839 }
2840 
2841 static int
2842 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2843 {
2844 	struct fec_enet_private *fep = netdev_priv(ndev);
2845 	struct ethtool_eee *p = &fep->eee;
2846 	int ret = 0;
2847 
2848 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
2849 		return -EOPNOTSUPP;
2850 
2851 	if (!netif_running(ndev))
2852 		return -ENETDOWN;
2853 
2854 	p->tx_lpi_timer = edata->tx_lpi_timer;
2855 
2856 	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
2857 	    !edata->tx_lpi_timer)
2858 		ret = fec_enet_eee_mode_set(ndev, false);
2859 	else
2860 		ret = fec_enet_eee_mode_set(ndev, true);
2861 
2862 	if (ret)
2863 		return ret;
2864 
2865 	return phy_ethtool_set_eee(ndev->phydev, edata);
2866 }
2867 
2868 static void
2869 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2870 {
2871 	struct fec_enet_private *fep = netdev_priv(ndev);
2872 
2873 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2874 		wol->supported = WAKE_MAGIC;
2875 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2876 	} else {
2877 		wol->supported = wol->wolopts = 0;
2878 	}
2879 }
2880 
2881 static int
2882 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2883 {
2884 	struct fec_enet_private *fep = netdev_priv(ndev);
2885 
2886 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2887 		return -EINVAL;
2888 
2889 	if (wol->wolopts & ~WAKE_MAGIC)
2890 		return -EINVAL;
2891 
2892 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2893 	if (device_may_wakeup(&ndev->dev))
2894 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2895 	else
2896 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2897 
2898 	return 0;
2899 }
2900 
2901 static const struct ethtool_ops fec_enet_ethtool_ops = {
2902 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2903 				     ETHTOOL_COALESCE_MAX_FRAMES,
2904 	.get_drvinfo		= fec_enet_get_drvinfo,
2905 	.get_regs_len		= fec_enet_get_regs_len,
2906 	.get_regs		= fec_enet_get_regs,
2907 	.nway_reset		= phy_ethtool_nway_reset,
2908 	.get_link		= ethtool_op_get_link,
2909 	.get_coalesce		= fec_enet_get_coalesce,
2910 	.set_coalesce		= fec_enet_set_coalesce,
2911 #ifndef CONFIG_M5272
2912 	.get_pauseparam		= fec_enet_get_pauseparam,
2913 	.set_pauseparam		= fec_enet_set_pauseparam,
2914 	.get_strings		= fec_enet_get_strings,
2915 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2916 	.get_sset_count		= fec_enet_get_sset_count,
2917 #endif
2918 	.get_ts_info		= fec_enet_get_ts_info,
2919 	.get_tunable		= fec_enet_get_tunable,
2920 	.set_tunable		= fec_enet_set_tunable,
2921 	.get_wol		= fec_enet_get_wol,
2922 	.set_wol		= fec_enet_set_wol,
2923 	.get_eee		= fec_enet_get_eee,
2924 	.set_eee		= fec_enet_set_eee,
2925 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2926 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2927 	.self_test		= net_selftest,
2928 };
2929 
2930 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2931 {
2932 	struct fec_enet_private *fep = netdev_priv(ndev);
2933 	struct phy_device *phydev = ndev->phydev;
2934 
2935 	if (!netif_running(ndev))
2936 		return -EINVAL;
2937 
2938 	if (!phydev)
2939 		return -ENODEV;
2940 
2941 	if (fep->bufdesc_ex) {
2942 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2943 
2944 		if (cmd == SIOCSHWTSTAMP) {
2945 			if (use_fec_hwts)
2946 				return fec_ptp_set(ndev, rq);
2947 			fec_ptp_disable_hwts(ndev);
2948 		} else if (cmd == SIOCGHWTSTAMP) {
2949 			if (use_fec_hwts)
2950 				return fec_ptp_get(ndev, rq);
2951 		}
2952 	}
2953 
2954 	return phy_mii_ioctl(phydev, rq, cmd);
2955 }
2956 
2957 static void fec_enet_free_buffers(struct net_device *ndev)
2958 {
2959 	struct fec_enet_private *fep = netdev_priv(ndev);
2960 	unsigned int i;
2961 	struct sk_buff *skb;
2962 	struct bufdesc	*bdp;
2963 	struct fec_enet_priv_tx_q *txq;
2964 	struct fec_enet_priv_rx_q *rxq;
2965 	unsigned int q;
2966 
2967 	for (q = 0; q < fep->num_rx_queues; q++) {
2968 		rxq = fep->rx_queue[q];
2969 		bdp = rxq->bd.base;
2970 		for (i = 0; i < rxq->bd.ring_size; i++) {
2971 			skb = rxq->rx_skbuff[i];
2972 			rxq->rx_skbuff[i] = NULL;
2973 			if (skb) {
2974 				dma_unmap_single(&fep->pdev->dev,
2975 						 fec32_to_cpu(bdp->cbd_bufaddr),
2976 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2977 						 DMA_FROM_DEVICE);
2978 				dev_kfree_skb(skb);
2979 			}
2980 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2981 		}
2982 	}
2983 
2984 	for (q = 0; q < fep->num_tx_queues; q++) {
2985 		txq = fep->tx_queue[q];
2986 		for (i = 0; i < txq->bd.ring_size; i++) {
2987 			kfree(txq->tx_bounce[i]);
2988 			txq->tx_bounce[i] = NULL;
2989 			skb = txq->tx_skbuff[i];
2990 			txq->tx_skbuff[i] = NULL;
2991 			dev_kfree_skb(skb);
2992 		}
2993 	}
2994 }
2995 
2996 static void fec_enet_free_queue(struct net_device *ndev)
2997 {
2998 	struct fec_enet_private *fep = netdev_priv(ndev);
2999 	int i;
3000 	struct fec_enet_priv_tx_q *txq;
3001 
3002 	for (i = 0; i < fep->num_tx_queues; i++)
3003 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3004 			txq = fep->tx_queue[i];
3005 			dma_free_coherent(&fep->pdev->dev,
3006 					  txq->bd.ring_size * TSO_HEADER_SIZE,
3007 					  txq->tso_hdrs,
3008 					  txq->tso_hdrs_dma);
3009 		}
3010 
3011 	for (i = 0; i < fep->num_rx_queues; i++)
3012 		kfree(fep->rx_queue[i]);
3013 	for (i = 0; i < fep->num_tx_queues; i++)
3014 		kfree(fep->tx_queue[i]);
3015 }
3016 
3017 static int fec_enet_alloc_queue(struct net_device *ndev)
3018 {
3019 	struct fec_enet_private *fep = netdev_priv(ndev);
3020 	int i;
3021 	int ret = 0;
3022 	struct fec_enet_priv_tx_q *txq;
3023 
3024 	for (i = 0; i < fep->num_tx_queues; i++) {
3025 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3026 		if (!txq) {
3027 			ret = -ENOMEM;
3028 			goto alloc_failed;
3029 		}
3030 
3031 		fep->tx_queue[i] = txq;
3032 		txq->bd.ring_size = TX_RING_SIZE;
3033 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3034 
3035 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3036 		txq->tx_wake_threshold =
3037 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
3038 
3039 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3040 					txq->bd.ring_size * TSO_HEADER_SIZE,
3041 					&txq->tso_hdrs_dma,
3042 					GFP_KERNEL);
3043 		if (!txq->tso_hdrs) {
3044 			ret = -ENOMEM;
3045 			goto alloc_failed;
3046 		}
3047 	}
3048 
3049 	for (i = 0; i < fep->num_rx_queues; i++) {
3050 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3051 					   GFP_KERNEL);
3052 		if (!fep->rx_queue[i]) {
3053 			ret = -ENOMEM;
3054 			goto alloc_failed;
3055 		}
3056 
3057 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3058 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3059 	}
3060 	return ret;
3061 
3062 alloc_failed:
3063 	fec_enet_free_queue(ndev);
3064 	return ret;
3065 }
3066 
3067 static int
3068 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3069 {
3070 	struct fec_enet_private *fep = netdev_priv(ndev);
3071 	unsigned int i;
3072 	struct sk_buff *skb;
3073 	struct bufdesc	*bdp;
3074 	struct fec_enet_priv_rx_q *rxq;
3075 
3076 	rxq = fep->rx_queue[queue];
3077 	bdp = rxq->bd.base;
3078 	for (i = 0; i < rxq->bd.ring_size; i++) {
3079 		skb = __netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE, GFP_KERNEL);
3080 		if (!skb)
3081 			goto err_alloc;
3082 
3083 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
3084 			dev_kfree_skb(skb);
3085 			goto err_alloc;
3086 		}
3087 
3088 		rxq->rx_skbuff[i] = skb;
3089 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3090 
3091 		if (fep->bufdesc_ex) {
3092 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3093 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3094 		}
3095 
3096 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3097 	}
3098 
3099 	/* Set the last buffer to wrap. */
3100 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3101 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3102 	return 0;
3103 
3104  err_alloc:
3105 	fec_enet_free_buffers(ndev);
3106 	return -ENOMEM;
3107 }
3108 
3109 static int
3110 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3111 {
3112 	struct fec_enet_private *fep = netdev_priv(ndev);
3113 	unsigned int i;
3114 	struct bufdesc  *bdp;
3115 	struct fec_enet_priv_tx_q *txq;
3116 
3117 	txq = fep->tx_queue[queue];
3118 	bdp = txq->bd.base;
3119 	for (i = 0; i < txq->bd.ring_size; i++) {
3120 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3121 		if (!txq->tx_bounce[i])
3122 			goto err_alloc;
3123 
3124 		bdp->cbd_sc = cpu_to_fec16(0);
3125 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3126 
3127 		if (fep->bufdesc_ex) {
3128 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3129 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3130 		}
3131 
3132 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3133 	}
3134 
3135 	/* Set the last buffer to wrap. */
3136 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3137 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3138 
3139 	return 0;
3140 
3141  err_alloc:
3142 	fec_enet_free_buffers(ndev);
3143 	return -ENOMEM;
3144 }
3145 
3146 static int fec_enet_alloc_buffers(struct net_device *ndev)
3147 {
3148 	struct fec_enet_private *fep = netdev_priv(ndev);
3149 	unsigned int i;
3150 
3151 	for (i = 0; i < fep->num_rx_queues; i++)
3152 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3153 			return -ENOMEM;
3154 
3155 	for (i = 0; i < fep->num_tx_queues; i++)
3156 		if (fec_enet_alloc_txq_buffers(ndev, i))
3157 			return -ENOMEM;
3158 	return 0;
3159 }
3160 
3161 static int
3162 fec_enet_open(struct net_device *ndev)
3163 {
3164 	struct fec_enet_private *fep = netdev_priv(ndev);
3165 	int ret;
3166 	bool reset_again;
3167 
3168 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3169 	if (ret < 0)
3170 		return ret;
3171 
3172 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3173 	ret = fec_enet_clk_enable(ndev, true);
3174 	if (ret)
3175 		goto clk_enable;
3176 
3177 	/* During the first fec_enet_open call the PHY isn't probed at this
3178 	 * point. Therefore the phy_reset_after_clk_enable() call within
3179 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3180 	 * sure the PHY is working correctly we check if we need to reset again
3181 	 * later when the PHY is probed
3182 	 */
3183 	if (ndev->phydev && ndev->phydev->drv)
3184 		reset_again = false;
3185 	else
3186 		reset_again = true;
3187 
3188 	/* I should reset the ring buffers here, but I don't yet know
3189 	 * a simple way to do that.
3190 	 */
3191 
3192 	ret = fec_enet_alloc_buffers(ndev);
3193 	if (ret)
3194 		goto err_enet_alloc;
3195 
3196 	/* Init MAC prior to mii bus probe */
3197 	fec_restart(ndev);
3198 
3199 	/* Call phy_reset_after_clk_enable() again if it failed during
3200 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3201 	 */
3202 	if (reset_again)
3203 		fec_enet_phy_reset_after_clk_enable(ndev);
3204 
3205 	/* Probe and connect to PHY when open the interface */
3206 	ret = fec_enet_mii_probe(ndev);
3207 	if (ret)
3208 		goto err_enet_mii_probe;
3209 
3210 	if (fep->quirks & FEC_QUIRK_ERR006687)
3211 		imx6q_cpuidle_fec_irqs_used();
3212 
3213 	napi_enable(&fep->napi);
3214 	phy_start(ndev->phydev);
3215 	netif_tx_start_all_queues(ndev);
3216 
3217 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3218 				 FEC_WOL_FLAG_ENABLE);
3219 
3220 	return 0;
3221 
3222 err_enet_mii_probe:
3223 	fec_enet_free_buffers(ndev);
3224 err_enet_alloc:
3225 	fec_enet_clk_enable(ndev, false);
3226 clk_enable:
3227 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3228 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3229 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3230 	return ret;
3231 }
3232 
3233 static int
3234 fec_enet_close(struct net_device *ndev)
3235 {
3236 	struct fec_enet_private *fep = netdev_priv(ndev);
3237 
3238 	phy_stop(ndev->phydev);
3239 
3240 	if (netif_device_present(ndev)) {
3241 		napi_disable(&fep->napi);
3242 		netif_tx_disable(ndev);
3243 		fec_stop(ndev);
3244 	}
3245 
3246 	phy_disconnect(ndev->phydev);
3247 
3248 	if (fep->quirks & FEC_QUIRK_ERR006687)
3249 		imx6q_cpuidle_fec_irqs_unused();
3250 
3251 	fec_enet_update_ethtool_stats(ndev);
3252 
3253 	fec_enet_clk_enable(ndev, false);
3254 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3255 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3256 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3257 
3258 	fec_enet_free_buffers(ndev);
3259 
3260 	return 0;
3261 }
3262 
3263 /* Set or clear the multicast filter for this adaptor.
3264  * Skeleton taken from sunlance driver.
3265  * The CPM Ethernet implementation allows Multicast as well as individual
3266  * MAC address filtering.  Some of the drivers check to make sure it is
3267  * a group multicast address, and discard those that are not.  I guess I
3268  * will do the same for now, but just remove the test if you want
3269  * individual filtering as well (do the upper net layers want or support
3270  * this kind of feature?).
3271  */
3272 
3273 #define FEC_HASH_BITS	6		/* #bits in hash */
3274 
3275 static void set_multicast_list(struct net_device *ndev)
3276 {
3277 	struct fec_enet_private *fep = netdev_priv(ndev);
3278 	struct netdev_hw_addr *ha;
3279 	unsigned int crc, tmp;
3280 	unsigned char hash;
3281 	unsigned int hash_high = 0, hash_low = 0;
3282 
3283 	if (ndev->flags & IFF_PROMISC) {
3284 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3285 		tmp |= 0x8;
3286 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3287 		return;
3288 	}
3289 
3290 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3291 	tmp &= ~0x8;
3292 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3293 
3294 	if (ndev->flags & IFF_ALLMULTI) {
3295 		/* Catch all multicast addresses, so set the
3296 		 * filter to all 1's
3297 		 */
3298 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3299 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3300 
3301 		return;
3302 	}
3303 
3304 	/* Add the addresses in hash register */
3305 	netdev_for_each_mc_addr(ha, ndev) {
3306 		/* calculate crc32 value of mac address */
3307 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3308 
3309 		/* only upper 6 bits (FEC_HASH_BITS) are used
3310 		 * which point to specific bit in the hash registers
3311 		 */
3312 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3313 
3314 		if (hash > 31)
3315 			hash_high |= 1 << (hash - 32);
3316 		else
3317 			hash_low |= 1 << hash;
3318 	}
3319 
3320 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3321 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3322 }
3323 
3324 /* Set a MAC change in hardware. */
3325 static int
3326 fec_set_mac_address(struct net_device *ndev, void *p)
3327 {
3328 	struct fec_enet_private *fep = netdev_priv(ndev);
3329 	struct sockaddr *addr = p;
3330 
3331 	if (addr) {
3332 		if (!is_valid_ether_addr(addr->sa_data))
3333 			return -EADDRNOTAVAIL;
3334 		eth_hw_addr_set(ndev, addr->sa_data);
3335 	}
3336 
3337 	/* Add netif status check here to avoid system hang in below case:
3338 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3339 	 * After ethx down, fec all clocks are gated off and then register
3340 	 * access causes system hang.
3341 	 */
3342 	if (!netif_running(ndev))
3343 		return 0;
3344 
3345 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3346 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3347 		fep->hwp + FEC_ADDR_LOW);
3348 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3349 		fep->hwp + FEC_ADDR_HIGH);
3350 	return 0;
3351 }
3352 
3353 #ifdef CONFIG_NET_POLL_CONTROLLER
3354 /**
3355  * fec_poll_controller - FEC Poll controller function
3356  * @dev: The FEC network adapter
3357  *
3358  * Polled functionality used by netconsole and others in non interrupt mode
3359  *
3360  */
3361 static void fec_poll_controller(struct net_device *dev)
3362 {
3363 	int i;
3364 	struct fec_enet_private *fep = netdev_priv(dev);
3365 
3366 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3367 		if (fep->irq[i] > 0) {
3368 			disable_irq(fep->irq[i]);
3369 			fec_enet_interrupt(fep->irq[i], dev);
3370 			enable_irq(fep->irq[i]);
3371 		}
3372 	}
3373 }
3374 #endif
3375 
3376 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3377 	netdev_features_t features)
3378 {
3379 	struct fec_enet_private *fep = netdev_priv(netdev);
3380 	netdev_features_t changed = features ^ netdev->features;
3381 
3382 	netdev->features = features;
3383 
3384 	/* Receive checksum has been changed */
3385 	if (changed & NETIF_F_RXCSUM) {
3386 		if (features & NETIF_F_RXCSUM)
3387 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3388 		else
3389 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3390 	}
3391 }
3392 
3393 static int fec_set_features(struct net_device *netdev,
3394 	netdev_features_t features)
3395 {
3396 	struct fec_enet_private *fep = netdev_priv(netdev);
3397 	netdev_features_t changed = features ^ netdev->features;
3398 
3399 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3400 		napi_disable(&fep->napi);
3401 		netif_tx_lock_bh(netdev);
3402 		fec_stop(netdev);
3403 		fec_enet_set_netdev_features(netdev, features);
3404 		fec_restart(netdev);
3405 		netif_tx_wake_all_queues(netdev);
3406 		netif_tx_unlock_bh(netdev);
3407 		napi_enable(&fep->napi);
3408 	} else {
3409 		fec_enet_set_netdev_features(netdev, features);
3410 	}
3411 
3412 	return 0;
3413 }
3414 
3415 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb)
3416 {
3417 	struct vlan_ethhdr *vhdr;
3418 	unsigned short vlan_TCI = 0;
3419 
3420 	if (skb->protocol == htons(ETH_P_ALL)) {
3421 		vhdr = (struct vlan_ethhdr *)(skb->data);
3422 		vlan_TCI = ntohs(vhdr->h_vlan_TCI);
3423 	}
3424 
3425 	return vlan_TCI;
3426 }
3427 
3428 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3429 				 struct net_device *sb_dev)
3430 {
3431 	struct fec_enet_private *fep = netdev_priv(ndev);
3432 	u16 vlan_tag;
3433 
3434 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3435 		return netdev_pick_tx(ndev, skb, NULL);
3436 
3437 	vlan_tag = fec_enet_get_raw_vlan_tci(skb);
3438 	if (!vlan_tag)
3439 		return vlan_tag;
3440 
3441 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3442 }
3443 
3444 static const struct net_device_ops fec_netdev_ops = {
3445 	.ndo_open		= fec_enet_open,
3446 	.ndo_stop		= fec_enet_close,
3447 	.ndo_start_xmit		= fec_enet_start_xmit,
3448 	.ndo_select_queue       = fec_enet_select_queue,
3449 	.ndo_set_rx_mode	= set_multicast_list,
3450 	.ndo_validate_addr	= eth_validate_addr,
3451 	.ndo_tx_timeout		= fec_timeout,
3452 	.ndo_set_mac_address	= fec_set_mac_address,
3453 	.ndo_eth_ioctl		= fec_enet_ioctl,
3454 #ifdef CONFIG_NET_POLL_CONTROLLER
3455 	.ndo_poll_controller	= fec_poll_controller,
3456 #endif
3457 	.ndo_set_features	= fec_set_features,
3458 };
3459 
3460 static const unsigned short offset_des_active_rxq[] = {
3461 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3462 };
3463 
3464 static const unsigned short offset_des_active_txq[] = {
3465 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3466 };
3467 
3468  /*
3469   * XXX:  We need to clean up on failure exits here.
3470   *
3471   */
3472 static int fec_enet_init(struct net_device *ndev)
3473 {
3474 	struct fec_enet_private *fep = netdev_priv(ndev);
3475 	struct bufdesc *cbd_base;
3476 	dma_addr_t bd_dma;
3477 	int bd_size;
3478 	unsigned int i;
3479 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3480 			sizeof(struct bufdesc);
3481 	unsigned dsize_log2 = __fls(dsize);
3482 	int ret;
3483 
3484 	WARN_ON(dsize != (1 << dsize_log2));
3485 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3486 	fep->rx_align = 0xf;
3487 	fep->tx_align = 0xf;
3488 #else
3489 	fep->rx_align = 0x3;
3490 	fep->tx_align = 0x3;
3491 #endif
3492 
3493 	/* Check mask of the streaming and coherent API */
3494 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3495 	if (ret < 0) {
3496 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3497 		return ret;
3498 	}
3499 
3500 	ret = fec_enet_alloc_queue(ndev);
3501 	if (ret)
3502 		return ret;
3503 
3504 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3505 
3506 	/* Allocate memory for buffer descriptors. */
3507 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3508 				       GFP_KERNEL);
3509 	if (!cbd_base) {
3510 		ret = -ENOMEM;
3511 		goto free_queue_mem;
3512 	}
3513 
3514 	/* Get the Ethernet address */
3515 	ret = fec_get_mac(ndev);
3516 	if (ret)
3517 		goto free_queue_mem;
3518 
3519 	/* make sure MAC we just acquired is programmed into the hw */
3520 	fec_set_mac_address(ndev, NULL);
3521 
3522 	/* Set receive and transmit descriptor base. */
3523 	for (i = 0; i < fep->num_rx_queues; i++) {
3524 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3525 		unsigned size = dsize * rxq->bd.ring_size;
3526 
3527 		rxq->bd.qid = i;
3528 		rxq->bd.base = cbd_base;
3529 		rxq->bd.cur = cbd_base;
3530 		rxq->bd.dma = bd_dma;
3531 		rxq->bd.dsize = dsize;
3532 		rxq->bd.dsize_log2 = dsize_log2;
3533 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3534 		bd_dma += size;
3535 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3536 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3537 	}
3538 
3539 	for (i = 0; i < fep->num_tx_queues; i++) {
3540 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3541 		unsigned size = dsize * txq->bd.ring_size;
3542 
3543 		txq->bd.qid = i;
3544 		txq->bd.base = cbd_base;
3545 		txq->bd.cur = cbd_base;
3546 		txq->bd.dma = bd_dma;
3547 		txq->bd.dsize = dsize;
3548 		txq->bd.dsize_log2 = dsize_log2;
3549 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3550 		bd_dma += size;
3551 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3552 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3553 	}
3554 
3555 
3556 	/* The FEC Ethernet specific entries in the device structure */
3557 	ndev->watchdog_timeo = TX_TIMEOUT;
3558 	ndev->netdev_ops = &fec_netdev_ops;
3559 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3560 
3561 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3562 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3563 
3564 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3565 		/* enable hw VLAN support */
3566 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3567 
3568 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3569 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
3570 
3571 		/* enable hw accelerator */
3572 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3573 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3574 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3575 	}
3576 
3577 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3578 		fep->tx_align = 0;
3579 		fep->rx_align = 0x3f;
3580 	}
3581 
3582 	ndev->hw_features = ndev->features;
3583 
3584 	fec_restart(ndev);
3585 
3586 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3587 		fec_enet_clear_ethtool_stats(ndev);
3588 	else
3589 		fec_enet_update_ethtool_stats(ndev);
3590 
3591 	return 0;
3592 
3593 free_queue_mem:
3594 	fec_enet_free_queue(ndev);
3595 	return ret;
3596 }
3597 
3598 #ifdef CONFIG_OF
3599 static int fec_reset_phy(struct platform_device *pdev)
3600 {
3601 	int err, phy_reset;
3602 	bool active_high = false;
3603 	int msec = 1, phy_post_delay = 0;
3604 	struct device_node *np = pdev->dev.of_node;
3605 
3606 	if (!np)
3607 		return 0;
3608 
3609 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3610 	/* A sane reset duration should not be longer than 1s */
3611 	if (!err && msec > 1000)
3612 		msec = 1;
3613 
3614 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3615 	if (phy_reset == -EPROBE_DEFER)
3616 		return phy_reset;
3617 	else if (!gpio_is_valid(phy_reset))
3618 		return 0;
3619 
3620 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3621 	/* valid reset duration should be less than 1s */
3622 	if (!err && phy_post_delay > 1000)
3623 		return -EINVAL;
3624 
3625 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3626 
3627 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3628 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3629 			"phy-reset");
3630 	if (err) {
3631 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3632 		return err;
3633 	}
3634 
3635 	if (msec > 20)
3636 		msleep(msec);
3637 	else
3638 		usleep_range(msec * 1000, msec * 1000 + 1000);
3639 
3640 	gpio_set_value_cansleep(phy_reset, !active_high);
3641 
3642 	if (!phy_post_delay)
3643 		return 0;
3644 
3645 	if (phy_post_delay > 20)
3646 		msleep(phy_post_delay);
3647 	else
3648 		usleep_range(phy_post_delay * 1000,
3649 			     phy_post_delay * 1000 + 1000);
3650 
3651 	return 0;
3652 }
3653 #else /* CONFIG_OF */
3654 static int fec_reset_phy(struct platform_device *pdev)
3655 {
3656 	/*
3657 	 * In case of platform probe, the reset has been done
3658 	 * by machine code.
3659 	 */
3660 	return 0;
3661 }
3662 #endif /* CONFIG_OF */
3663 
3664 static void
3665 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3666 {
3667 	struct device_node *np = pdev->dev.of_node;
3668 
3669 	*num_tx = *num_rx = 1;
3670 
3671 	if (!np || !of_device_is_available(np))
3672 		return;
3673 
3674 	/* parse the num of tx and rx queues */
3675 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3676 
3677 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3678 
3679 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3680 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3681 			 *num_tx);
3682 		*num_tx = 1;
3683 		return;
3684 	}
3685 
3686 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3687 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3688 			 *num_rx);
3689 		*num_rx = 1;
3690 		return;
3691 	}
3692 
3693 }
3694 
3695 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3696 {
3697 	int irq_cnt = platform_irq_count(pdev);
3698 
3699 	if (irq_cnt > FEC_IRQ_NUM)
3700 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3701 	else if (irq_cnt == 2)
3702 		irq_cnt = 1;	/* last for pps */
3703 	else if (irq_cnt <= 0)
3704 		irq_cnt = 1;	/* At least 1 irq is needed */
3705 	return irq_cnt;
3706 }
3707 
3708 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
3709 {
3710 	struct net_device *ndev = platform_get_drvdata(pdev);
3711 	struct fec_enet_private *fep = netdev_priv(ndev);
3712 
3713 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
3714 		fep->wake_irq = fep->irq[2];
3715 	else
3716 		fep->wake_irq = fep->irq[0];
3717 }
3718 
3719 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3720 				   struct device_node *np)
3721 {
3722 	struct device_node *gpr_np;
3723 	u32 out_val[3];
3724 	int ret = 0;
3725 
3726 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3727 	if (!gpr_np)
3728 		return 0;
3729 
3730 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3731 					 ARRAY_SIZE(out_val));
3732 	if (ret) {
3733 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3734 		goto out;
3735 	}
3736 
3737 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3738 	if (IS_ERR(fep->stop_gpr.gpr)) {
3739 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3740 		ret = PTR_ERR(fep->stop_gpr.gpr);
3741 		fep->stop_gpr.gpr = NULL;
3742 		goto out;
3743 	}
3744 
3745 	fep->stop_gpr.reg = out_val[1];
3746 	fep->stop_gpr.bit = out_val[2];
3747 
3748 out:
3749 	of_node_put(gpr_np);
3750 
3751 	return ret;
3752 }
3753 
3754 static int
3755 fec_probe(struct platform_device *pdev)
3756 {
3757 	struct fec_enet_private *fep;
3758 	struct fec_platform_data *pdata;
3759 	phy_interface_t interface;
3760 	struct net_device *ndev;
3761 	int i, irq, ret = 0;
3762 	const struct of_device_id *of_id;
3763 	static int dev_id;
3764 	struct device_node *np = pdev->dev.of_node, *phy_node;
3765 	int num_tx_qs;
3766 	int num_rx_qs;
3767 	char irq_name[8];
3768 	int irq_cnt;
3769 	struct fec_devinfo *dev_info;
3770 
3771 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3772 
3773 	/* Init network device */
3774 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3775 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3776 	if (!ndev)
3777 		return -ENOMEM;
3778 
3779 	SET_NETDEV_DEV(ndev, &pdev->dev);
3780 
3781 	/* setup board info structure */
3782 	fep = netdev_priv(ndev);
3783 
3784 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3785 	if (of_id)
3786 		pdev->id_entry = of_id->data;
3787 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3788 	if (dev_info)
3789 		fep->quirks = dev_info->quirks;
3790 
3791 	fep->netdev = ndev;
3792 	fep->num_rx_queues = num_rx_qs;
3793 	fep->num_tx_queues = num_tx_qs;
3794 
3795 #if !defined(CONFIG_M5272)
3796 	/* default enable pause frame auto negotiation */
3797 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3798 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3799 #endif
3800 
3801 	/* Select default pin state */
3802 	pinctrl_pm_select_default_state(&pdev->dev);
3803 
3804 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3805 	if (IS_ERR(fep->hwp)) {
3806 		ret = PTR_ERR(fep->hwp);
3807 		goto failed_ioremap;
3808 	}
3809 
3810 	fep->pdev = pdev;
3811 	fep->dev_id = dev_id++;
3812 
3813 	platform_set_drvdata(pdev, ndev);
3814 
3815 	if ((of_machine_is_compatible("fsl,imx6q") ||
3816 	     of_machine_is_compatible("fsl,imx6dl")) &&
3817 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3818 		fep->quirks |= FEC_QUIRK_ERR006687;
3819 
3820 	if (of_get_property(np, "fsl,magic-packet", NULL))
3821 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3822 
3823 	ret = fec_enet_init_stop_mode(fep, np);
3824 	if (ret)
3825 		goto failed_stop_mode;
3826 
3827 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3828 	if (!phy_node && of_phy_is_fixed_link(np)) {
3829 		ret = of_phy_register_fixed_link(np);
3830 		if (ret < 0) {
3831 			dev_err(&pdev->dev,
3832 				"broken fixed-link specification\n");
3833 			goto failed_phy;
3834 		}
3835 		phy_node = of_node_get(np);
3836 	}
3837 	fep->phy_node = phy_node;
3838 
3839 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3840 	if (ret) {
3841 		pdata = dev_get_platdata(&pdev->dev);
3842 		if (pdata)
3843 			fep->phy_interface = pdata->phy;
3844 		else
3845 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3846 	} else {
3847 		fep->phy_interface = interface;
3848 	}
3849 
3850 	ret = fec_enet_parse_rgmii_delay(fep, np);
3851 	if (ret)
3852 		goto failed_rgmii_delay;
3853 
3854 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3855 	if (IS_ERR(fep->clk_ipg)) {
3856 		ret = PTR_ERR(fep->clk_ipg);
3857 		goto failed_clk;
3858 	}
3859 
3860 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3861 	if (IS_ERR(fep->clk_ahb)) {
3862 		ret = PTR_ERR(fep->clk_ahb);
3863 		goto failed_clk;
3864 	}
3865 
3866 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3867 
3868 	/* enet_out is optional, depends on board */
3869 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
3870 	if (IS_ERR(fep->clk_enet_out)) {
3871 		ret = PTR_ERR(fep->clk_enet_out);
3872 		goto failed_clk;
3873 	}
3874 
3875 	fep->ptp_clk_on = false;
3876 	mutex_init(&fep->ptp_clk_mutex);
3877 
3878 	/* clk_ref is optional, depends on board */
3879 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
3880 	if (IS_ERR(fep->clk_ref)) {
3881 		ret = PTR_ERR(fep->clk_ref);
3882 		goto failed_clk;
3883 	}
3884 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
3885 
3886 	/* clk_2x_txclk is optional, depends on board */
3887 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
3888 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
3889 		if (IS_ERR(fep->clk_2x_txclk))
3890 			fep->clk_2x_txclk = NULL;
3891 	}
3892 
3893 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3894 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3895 	if (IS_ERR(fep->clk_ptp)) {
3896 		fep->clk_ptp = NULL;
3897 		fep->bufdesc_ex = false;
3898 	}
3899 
3900 	ret = fec_enet_clk_enable(ndev, true);
3901 	if (ret)
3902 		goto failed_clk;
3903 
3904 	ret = clk_prepare_enable(fep->clk_ipg);
3905 	if (ret)
3906 		goto failed_clk_ipg;
3907 	ret = clk_prepare_enable(fep->clk_ahb);
3908 	if (ret)
3909 		goto failed_clk_ahb;
3910 
3911 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3912 	if (!IS_ERR(fep->reg_phy)) {
3913 		ret = regulator_enable(fep->reg_phy);
3914 		if (ret) {
3915 			dev_err(&pdev->dev,
3916 				"Failed to enable phy regulator: %d\n", ret);
3917 			goto failed_regulator;
3918 		}
3919 	} else {
3920 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3921 			ret = -EPROBE_DEFER;
3922 			goto failed_regulator;
3923 		}
3924 		fep->reg_phy = NULL;
3925 	}
3926 
3927 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3928 	pm_runtime_use_autosuspend(&pdev->dev);
3929 	pm_runtime_get_noresume(&pdev->dev);
3930 	pm_runtime_set_active(&pdev->dev);
3931 	pm_runtime_enable(&pdev->dev);
3932 
3933 	ret = fec_reset_phy(pdev);
3934 	if (ret)
3935 		goto failed_reset;
3936 
3937 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3938 	if (fep->bufdesc_ex)
3939 		fec_ptp_init(pdev, irq_cnt);
3940 
3941 	ret = fec_enet_init(ndev);
3942 	if (ret)
3943 		goto failed_init;
3944 
3945 	for (i = 0; i < irq_cnt; i++) {
3946 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3947 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3948 		if (irq < 0)
3949 			irq = platform_get_irq(pdev, i);
3950 		if (irq < 0) {
3951 			ret = irq;
3952 			goto failed_irq;
3953 		}
3954 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3955 				       0, pdev->name, ndev);
3956 		if (ret)
3957 			goto failed_irq;
3958 
3959 		fep->irq[i] = irq;
3960 	}
3961 
3962 	/* Decide which interrupt line is wakeup capable */
3963 	fec_enet_get_wakeup_irq(pdev);
3964 
3965 	ret = fec_enet_mii_init(pdev);
3966 	if (ret)
3967 		goto failed_mii_init;
3968 
3969 	/* Carrier starts down, phylib will bring it up */
3970 	netif_carrier_off(ndev);
3971 	fec_enet_clk_enable(ndev, false);
3972 	pinctrl_pm_select_sleep_state(&pdev->dev);
3973 
3974 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3975 
3976 	ret = register_netdev(ndev);
3977 	if (ret)
3978 		goto failed_register;
3979 
3980 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3981 			   FEC_WOL_HAS_MAGIC_PACKET);
3982 
3983 	if (fep->bufdesc_ex && fep->ptp_clock)
3984 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3985 
3986 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3987 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3988 
3989 	pm_runtime_mark_last_busy(&pdev->dev);
3990 	pm_runtime_put_autosuspend(&pdev->dev);
3991 
3992 	return 0;
3993 
3994 failed_register:
3995 	fec_enet_mii_remove(fep);
3996 failed_mii_init:
3997 failed_irq:
3998 failed_init:
3999 	fec_ptp_stop(pdev);
4000 failed_reset:
4001 	pm_runtime_put_noidle(&pdev->dev);
4002 	pm_runtime_disable(&pdev->dev);
4003 	if (fep->reg_phy)
4004 		regulator_disable(fep->reg_phy);
4005 failed_regulator:
4006 	clk_disable_unprepare(fep->clk_ahb);
4007 failed_clk_ahb:
4008 	clk_disable_unprepare(fep->clk_ipg);
4009 failed_clk_ipg:
4010 	fec_enet_clk_enable(ndev, false);
4011 failed_clk:
4012 failed_rgmii_delay:
4013 	if (of_phy_is_fixed_link(np))
4014 		of_phy_deregister_fixed_link(np);
4015 	of_node_put(phy_node);
4016 failed_stop_mode:
4017 failed_phy:
4018 	dev_id--;
4019 failed_ioremap:
4020 	free_netdev(ndev);
4021 
4022 	return ret;
4023 }
4024 
4025 static int
4026 fec_drv_remove(struct platform_device *pdev)
4027 {
4028 	struct net_device *ndev = platform_get_drvdata(pdev);
4029 	struct fec_enet_private *fep = netdev_priv(ndev);
4030 	struct device_node *np = pdev->dev.of_node;
4031 	int ret;
4032 
4033 	ret = pm_runtime_resume_and_get(&pdev->dev);
4034 	if (ret < 0)
4035 		return ret;
4036 
4037 	cancel_work_sync(&fep->tx_timeout_work);
4038 	fec_ptp_stop(pdev);
4039 	unregister_netdev(ndev);
4040 	fec_enet_mii_remove(fep);
4041 	if (fep->reg_phy)
4042 		regulator_disable(fep->reg_phy);
4043 
4044 	if (of_phy_is_fixed_link(np))
4045 		of_phy_deregister_fixed_link(np);
4046 	of_node_put(fep->phy_node);
4047 
4048 	clk_disable_unprepare(fep->clk_ahb);
4049 	clk_disable_unprepare(fep->clk_ipg);
4050 	pm_runtime_put_noidle(&pdev->dev);
4051 	pm_runtime_disable(&pdev->dev);
4052 
4053 	free_netdev(ndev);
4054 	return 0;
4055 }
4056 
4057 static int __maybe_unused fec_suspend(struct device *dev)
4058 {
4059 	struct net_device *ndev = dev_get_drvdata(dev);
4060 	struct fec_enet_private *fep = netdev_priv(ndev);
4061 
4062 	rtnl_lock();
4063 	if (netif_running(ndev)) {
4064 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4065 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4066 		phy_stop(ndev->phydev);
4067 		napi_disable(&fep->napi);
4068 		netif_tx_lock_bh(ndev);
4069 		netif_device_detach(ndev);
4070 		netif_tx_unlock_bh(ndev);
4071 		fec_stop(ndev);
4072 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4073 			fec_irqs_disable(ndev);
4074 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4075 		} else {
4076 			fec_irqs_disable_except_wakeup(ndev);
4077 			if (fep->wake_irq > 0) {
4078 				disable_irq(fep->wake_irq);
4079 				enable_irq_wake(fep->wake_irq);
4080 			}
4081 			fec_enet_stop_mode(fep, true);
4082 		}
4083 		/* It's safe to disable clocks since interrupts are masked */
4084 		fec_enet_clk_enable(ndev, false);
4085 	}
4086 	rtnl_unlock();
4087 
4088 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4089 		regulator_disable(fep->reg_phy);
4090 
4091 	/* SOC supply clock to phy, when clock is disabled, phy link down
4092 	 * SOC control phy regulator, when regulator is disabled, phy link down
4093 	 */
4094 	if (fep->clk_enet_out || fep->reg_phy)
4095 		fep->link = 0;
4096 
4097 	return 0;
4098 }
4099 
4100 static int __maybe_unused fec_resume(struct device *dev)
4101 {
4102 	struct net_device *ndev = dev_get_drvdata(dev);
4103 	struct fec_enet_private *fep = netdev_priv(ndev);
4104 	int ret;
4105 	int val;
4106 
4107 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4108 		ret = regulator_enable(fep->reg_phy);
4109 		if (ret)
4110 			return ret;
4111 	}
4112 
4113 	rtnl_lock();
4114 	if (netif_running(ndev)) {
4115 		ret = fec_enet_clk_enable(ndev, true);
4116 		if (ret) {
4117 			rtnl_unlock();
4118 			goto failed_clk;
4119 		}
4120 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4121 			fec_enet_stop_mode(fep, false);
4122 			if (fep->wake_irq) {
4123 				disable_irq_wake(fep->wake_irq);
4124 				enable_irq(fep->wake_irq);
4125 			}
4126 
4127 			val = readl(fep->hwp + FEC_ECNTRL);
4128 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4129 			writel(val, fep->hwp + FEC_ECNTRL);
4130 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4131 		} else {
4132 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4133 		}
4134 		fec_restart(ndev);
4135 		netif_tx_lock_bh(ndev);
4136 		netif_device_attach(ndev);
4137 		netif_tx_unlock_bh(ndev);
4138 		napi_enable(&fep->napi);
4139 		phy_init_hw(ndev->phydev);
4140 		phy_start(ndev->phydev);
4141 	}
4142 	rtnl_unlock();
4143 
4144 	return 0;
4145 
4146 failed_clk:
4147 	if (fep->reg_phy)
4148 		regulator_disable(fep->reg_phy);
4149 	return ret;
4150 }
4151 
4152 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4153 {
4154 	struct net_device *ndev = dev_get_drvdata(dev);
4155 	struct fec_enet_private *fep = netdev_priv(ndev);
4156 
4157 	clk_disable_unprepare(fep->clk_ahb);
4158 	clk_disable_unprepare(fep->clk_ipg);
4159 
4160 	return 0;
4161 }
4162 
4163 static int __maybe_unused fec_runtime_resume(struct device *dev)
4164 {
4165 	struct net_device *ndev = dev_get_drvdata(dev);
4166 	struct fec_enet_private *fep = netdev_priv(ndev);
4167 	int ret;
4168 
4169 	ret = clk_prepare_enable(fep->clk_ahb);
4170 	if (ret)
4171 		return ret;
4172 	ret = clk_prepare_enable(fep->clk_ipg);
4173 	if (ret)
4174 		goto failed_clk_ipg;
4175 
4176 	return 0;
4177 
4178 failed_clk_ipg:
4179 	clk_disable_unprepare(fep->clk_ahb);
4180 	return ret;
4181 }
4182 
4183 static const struct dev_pm_ops fec_pm_ops = {
4184 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4185 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4186 };
4187 
4188 static struct platform_driver fec_driver = {
4189 	.driver	= {
4190 		.name	= DRIVER_NAME,
4191 		.pm	= &fec_pm_ops,
4192 		.of_match_table = fec_dt_ids,
4193 		.suppress_bind_attrs = true,
4194 	},
4195 	.id_table = fec_devtype,
4196 	.probe	= fec_probe,
4197 	.remove	= fec_drv_remove,
4198 };
4199 
4200 module_platform_driver(fec_driver);
4201 
4202 MODULE_LICENSE("GPL");
4203