1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/selftests.h> 42 #include <net/tso.h> 43 #include <linux/tcp.h> 44 #include <linux/udp.h> 45 #include <linux/icmp.h> 46 #include <linux/spinlock.h> 47 #include <linux/workqueue.h> 48 #include <linux/bitops.h> 49 #include <linux/io.h> 50 #include <linux/irq.h> 51 #include <linux/clk.h> 52 #include <linux/crc32.h> 53 #include <linux/platform_device.h> 54 #include <linux/mdio.h> 55 #include <linux/phy.h> 56 #include <linux/fec.h> 57 #include <linux/of.h> 58 #include <linux/of_device.h> 59 #include <linux/of_mdio.h> 60 #include <linux/of_net.h> 61 #include <linux/regulator/consumer.h> 62 #include <linux/if_vlan.h> 63 #include <linux/pinctrl/consumer.h> 64 #include <linux/gpio/consumer.h> 65 #include <linux/prefetch.h> 66 #include <linux/mfd/syscon.h> 67 #include <linux/regmap.h> 68 #include <soc/imx/cpuidle.h> 69 #include <linux/filter.h> 70 #include <linux/bpf.h> 71 72 #include <asm/cacheflush.h> 73 74 #include "fec.h" 75 76 static void set_multicast_list(struct net_device *ndev); 77 static void fec_enet_itr_coal_set(struct net_device *ndev); 78 79 #define DRIVER_NAME "fec" 80 81 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 82 83 /* Pause frame feild and FIFO threshold */ 84 #define FEC_ENET_FCE (1 << 5) 85 #define FEC_ENET_RSEM_V 0x84 86 #define FEC_ENET_RSFL_V 16 87 #define FEC_ENET_RAEM_V 0x8 88 #define FEC_ENET_RAFL_V 0x8 89 #define FEC_ENET_OPD_V 0xFFF0 90 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 91 92 #define FEC_ENET_XDP_PASS 0 93 #define FEC_ENET_XDP_CONSUMED BIT(0) 94 #define FEC_ENET_XDP_TX BIT(1) 95 #define FEC_ENET_XDP_REDIR BIT(2) 96 97 struct fec_devinfo { 98 u32 quirks; 99 }; 100 101 static const struct fec_devinfo fec_imx25_info = { 102 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 103 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_HAS_MDIO_C45, 104 }; 105 106 static const struct fec_devinfo fec_imx27_info = { 107 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG | 108 FEC_QUIRK_HAS_MDIO_C45, 109 }; 110 111 static const struct fec_devinfo fec_imx28_info = { 112 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 113 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 114 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 115 FEC_QUIRK_NO_HARD_RESET | FEC_QUIRK_HAS_MDIO_C45, 116 }; 117 118 static const struct fec_devinfo fec_imx6q_info = { 119 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 120 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 121 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 122 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII | 123 FEC_QUIRK_HAS_PMQOS | FEC_QUIRK_HAS_MDIO_C45, 124 }; 125 126 static const struct fec_devinfo fec_mvf600_info = { 127 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC | 128 FEC_QUIRK_HAS_MDIO_C45, 129 }; 130 131 static const struct fec_devinfo fec_imx6x_info = { 132 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 133 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 134 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 135 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 136 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 137 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 138 FEC_QUIRK_HAS_MDIO_C45, 139 }; 140 141 static const struct fec_devinfo fec_imx6ul_info = { 142 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 143 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 144 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 145 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 146 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII | 147 FEC_QUIRK_HAS_MDIO_C45, 148 }; 149 150 static const struct fec_devinfo fec_imx8mq_info = { 151 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 152 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 153 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 154 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 155 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 156 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 157 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2 | 158 FEC_QUIRK_HAS_MDIO_C45, 159 }; 160 161 static const struct fec_devinfo fec_imx8qm_info = { 162 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 163 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 164 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 165 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 166 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 167 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 168 FEC_QUIRK_DELAYED_CLKS_SUPPORT | FEC_QUIRK_HAS_MDIO_C45, 169 }; 170 171 static const struct fec_devinfo fec_s32v234_info = { 172 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 173 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 174 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 175 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 176 FEC_QUIRK_HAS_MDIO_C45, 177 }; 178 179 static struct platform_device_id fec_devtype[] = { 180 { 181 /* keep it for coldfire */ 182 .name = DRIVER_NAME, 183 .driver_data = 0, 184 }, { 185 .name = "imx25-fec", 186 .driver_data = (kernel_ulong_t)&fec_imx25_info, 187 }, { 188 .name = "imx27-fec", 189 .driver_data = (kernel_ulong_t)&fec_imx27_info, 190 }, { 191 .name = "imx28-fec", 192 .driver_data = (kernel_ulong_t)&fec_imx28_info, 193 }, { 194 .name = "imx6q-fec", 195 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 196 }, { 197 .name = "mvf600-fec", 198 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 199 }, { 200 .name = "imx6sx-fec", 201 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 202 }, { 203 .name = "imx6ul-fec", 204 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 205 }, { 206 .name = "imx8mq-fec", 207 .driver_data = (kernel_ulong_t)&fec_imx8mq_info, 208 }, { 209 .name = "imx8qm-fec", 210 .driver_data = (kernel_ulong_t)&fec_imx8qm_info, 211 }, { 212 .name = "s32v234-fec", 213 .driver_data = (kernel_ulong_t)&fec_s32v234_info, 214 }, { 215 /* sentinel */ 216 } 217 }; 218 MODULE_DEVICE_TABLE(platform, fec_devtype); 219 220 enum imx_fec_type { 221 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 222 IMX27_FEC, /* runs on i.mx27/35/51 */ 223 IMX28_FEC, 224 IMX6Q_FEC, 225 MVF600_FEC, 226 IMX6SX_FEC, 227 IMX6UL_FEC, 228 IMX8MQ_FEC, 229 IMX8QM_FEC, 230 S32V234_FEC, 231 }; 232 233 static const struct of_device_id fec_dt_ids[] = { 234 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 235 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 236 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 237 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 238 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 239 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 240 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 241 { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], }, 242 { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], }, 243 { .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], }, 244 { /* sentinel */ } 245 }; 246 MODULE_DEVICE_TABLE(of, fec_dt_ids); 247 248 static unsigned char macaddr[ETH_ALEN]; 249 module_param_array(macaddr, byte, NULL, 0); 250 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 251 252 #if defined(CONFIG_M5272) 253 /* 254 * Some hardware gets it MAC address out of local flash memory. 255 * if this is non-zero then assume it is the address to get MAC from. 256 */ 257 #if defined(CONFIG_NETtel) 258 #define FEC_FLASHMAC 0xf0006006 259 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 260 #define FEC_FLASHMAC 0xf0006000 261 #elif defined(CONFIG_CANCam) 262 #define FEC_FLASHMAC 0xf0020000 263 #elif defined (CONFIG_M5272C3) 264 #define FEC_FLASHMAC (0xffe04000 + 4) 265 #elif defined(CONFIG_MOD5272) 266 #define FEC_FLASHMAC 0xffc0406b 267 #else 268 #define FEC_FLASHMAC 0 269 #endif 270 #endif /* CONFIG_M5272 */ 271 272 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 273 * 274 * 2048 byte skbufs are allocated. However, alignment requirements 275 * varies between FEC variants. Worst case is 64, so round down by 64. 276 */ 277 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 278 #define PKT_MINBUF_SIZE 64 279 280 /* FEC receive acceleration */ 281 #define FEC_RACC_IPDIS (1 << 1) 282 #define FEC_RACC_PRODIS (1 << 2) 283 #define FEC_RACC_SHIFT16 BIT(7) 284 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 285 286 /* MIB Control Register */ 287 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 288 289 /* 290 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 291 * size bits. Other FEC hardware does not, so we need to take that into 292 * account when setting it. 293 */ 294 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 295 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 296 defined(CONFIG_ARM64) 297 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 298 #else 299 #define OPT_FRAME_SIZE 0 300 #endif 301 302 /* FEC MII MMFR bits definition */ 303 #define FEC_MMFR_ST (1 << 30) 304 #define FEC_MMFR_ST_C45 (0) 305 #define FEC_MMFR_OP_READ (2 << 28) 306 #define FEC_MMFR_OP_READ_C45 (3 << 28) 307 #define FEC_MMFR_OP_WRITE (1 << 28) 308 #define FEC_MMFR_OP_ADDR_WRITE (0) 309 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 310 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 311 #define FEC_MMFR_TA (2 << 16) 312 #define FEC_MMFR_DATA(v) (v & 0xffff) 313 /* FEC ECR bits definition */ 314 #define FEC_ECR_MAGICEN (1 << 2) 315 #define FEC_ECR_SLEEP (1 << 3) 316 317 #define FEC_MII_TIMEOUT 30000 /* us */ 318 319 /* Transmitter timeout */ 320 #define TX_TIMEOUT (2 * HZ) 321 322 #define FEC_PAUSE_FLAG_AUTONEG 0x1 323 #define FEC_PAUSE_FLAG_ENABLE 0x2 324 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 325 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 326 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 327 328 #define COPYBREAK_DEFAULT 256 329 330 /* Max number of allowed TCP segments for software TSO */ 331 #define FEC_MAX_TSO_SEGS 100 332 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 333 334 #define IS_TSO_HEADER(txq, addr) \ 335 ((addr >= txq->tso_hdrs_dma) && \ 336 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 337 338 static int mii_cnt; 339 340 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 341 struct bufdesc_prop *bd) 342 { 343 return (bdp >= bd->last) ? bd->base 344 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 345 } 346 347 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 348 struct bufdesc_prop *bd) 349 { 350 return (bdp <= bd->base) ? bd->last 351 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 352 } 353 354 static int fec_enet_get_bd_index(struct bufdesc *bdp, 355 struct bufdesc_prop *bd) 356 { 357 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 358 } 359 360 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 361 { 362 int entries; 363 364 entries = (((const char *)txq->dirty_tx - 365 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 366 367 return entries >= 0 ? entries : entries + txq->bd.ring_size; 368 } 369 370 static void swap_buffer(void *bufaddr, int len) 371 { 372 int i; 373 unsigned int *buf = bufaddr; 374 375 for (i = 0; i < len; i += 4, buf++) 376 swab32s(buf); 377 } 378 379 static void fec_dump(struct net_device *ndev) 380 { 381 struct fec_enet_private *fep = netdev_priv(ndev); 382 struct bufdesc *bdp; 383 struct fec_enet_priv_tx_q *txq; 384 int index = 0; 385 386 netdev_info(ndev, "TX ring dump\n"); 387 pr_info("Nr SC addr len SKB\n"); 388 389 txq = fep->tx_queue[0]; 390 bdp = txq->bd.base; 391 392 do { 393 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 394 index, 395 bdp == txq->bd.cur ? 'S' : ' ', 396 bdp == txq->dirty_tx ? 'H' : ' ', 397 fec16_to_cpu(bdp->cbd_sc), 398 fec32_to_cpu(bdp->cbd_bufaddr), 399 fec16_to_cpu(bdp->cbd_datlen), 400 txq->tx_buf[index].skb); 401 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 402 index++; 403 } while (bdp != txq->bd.base); 404 } 405 406 static inline bool is_ipv4_pkt(struct sk_buff *skb) 407 { 408 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 409 } 410 411 static int 412 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 413 { 414 /* Only run for packets requiring a checksum. */ 415 if (skb->ip_summed != CHECKSUM_PARTIAL) 416 return 0; 417 418 if (unlikely(skb_cow_head(skb, 0))) 419 return -1; 420 421 if (is_ipv4_pkt(skb)) 422 ip_hdr(skb)->check = 0; 423 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 424 425 return 0; 426 } 427 428 static int 429 fec_enet_create_page_pool(struct fec_enet_private *fep, 430 struct fec_enet_priv_rx_q *rxq, int size) 431 { 432 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 433 struct page_pool_params pp_params = { 434 .order = 0, 435 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 436 .pool_size = size, 437 .nid = dev_to_node(&fep->pdev->dev), 438 .dev = &fep->pdev->dev, 439 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 440 .offset = FEC_ENET_XDP_HEADROOM, 441 .max_len = FEC_ENET_RX_FRSIZE, 442 }; 443 int err; 444 445 rxq->page_pool = page_pool_create(&pp_params); 446 if (IS_ERR(rxq->page_pool)) { 447 err = PTR_ERR(rxq->page_pool); 448 rxq->page_pool = NULL; 449 return err; 450 } 451 452 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0); 453 if (err < 0) 454 goto err_free_pp; 455 456 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 457 rxq->page_pool); 458 if (err) 459 goto err_unregister_rxq; 460 461 return 0; 462 463 err_unregister_rxq: 464 xdp_rxq_info_unreg(&rxq->xdp_rxq); 465 err_free_pp: 466 page_pool_destroy(rxq->page_pool); 467 rxq->page_pool = NULL; 468 return err; 469 } 470 471 static struct bufdesc * 472 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 473 struct sk_buff *skb, 474 struct net_device *ndev) 475 { 476 struct fec_enet_private *fep = netdev_priv(ndev); 477 struct bufdesc *bdp = txq->bd.cur; 478 struct bufdesc_ex *ebdp; 479 int nr_frags = skb_shinfo(skb)->nr_frags; 480 int frag, frag_len; 481 unsigned short status; 482 unsigned int estatus = 0; 483 skb_frag_t *this_frag; 484 unsigned int index; 485 void *bufaddr; 486 dma_addr_t addr; 487 int i; 488 489 for (frag = 0; frag < nr_frags; frag++) { 490 this_frag = &skb_shinfo(skb)->frags[frag]; 491 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 492 ebdp = (struct bufdesc_ex *)bdp; 493 494 status = fec16_to_cpu(bdp->cbd_sc); 495 status &= ~BD_ENET_TX_STATS; 496 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 497 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 498 499 /* Handle the last BD specially */ 500 if (frag == nr_frags - 1) { 501 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 502 if (fep->bufdesc_ex) { 503 estatus |= BD_ENET_TX_INT; 504 if (unlikely(skb_shinfo(skb)->tx_flags & 505 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 506 estatus |= BD_ENET_TX_TS; 507 } 508 } 509 510 if (fep->bufdesc_ex) { 511 if (fep->quirks & FEC_QUIRK_HAS_AVB) 512 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 513 if (skb->ip_summed == CHECKSUM_PARTIAL) 514 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 515 516 ebdp->cbd_bdu = 0; 517 ebdp->cbd_esc = cpu_to_fec32(estatus); 518 } 519 520 bufaddr = skb_frag_address(this_frag); 521 522 index = fec_enet_get_bd_index(bdp, &txq->bd); 523 if (((unsigned long) bufaddr) & fep->tx_align || 524 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 525 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 526 bufaddr = txq->tx_bounce[index]; 527 528 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 529 swap_buffer(bufaddr, frag_len); 530 } 531 532 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 533 DMA_TO_DEVICE); 534 if (dma_mapping_error(&fep->pdev->dev, addr)) { 535 if (net_ratelimit()) 536 netdev_err(ndev, "Tx DMA memory map failed\n"); 537 goto dma_mapping_error; 538 } 539 540 bdp->cbd_bufaddr = cpu_to_fec32(addr); 541 bdp->cbd_datlen = cpu_to_fec16(frag_len); 542 /* Make sure the updates to rest of the descriptor are 543 * performed before transferring ownership. 544 */ 545 wmb(); 546 bdp->cbd_sc = cpu_to_fec16(status); 547 } 548 549 return bdp; 550 dma_mapping_error: 551 bdp = txq->bd.cur; 552 for (i = 0; i < frag; i++) { 553 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 554 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 555 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 556 } 557 return ERR_PTR(-ENOMEM); 558 } 559 560 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 561 struct sk_buff *skb, struct net_device *ndev) 562 { 563 struct fec_enet_private *fep = netdev_priv(ndev); 564 int nr_frags = skb_shinfo(skb)->nr_frags; 565 struct bufdesc *bdp, *last_bdp; 566 void *bufaddr; 567 dma_addr_t addr; 568 unsigned short status; 569 unsigned short buflen; 570 unsigned int estatus = 0; 571 unsigned int index; 572 int entries_free; 573 574 entries_free = fec_enet_get_free_txdesc_num(txq); 575 if (entries_free < MAX_SKB_FRAGS + 1) { 576 dev_kfree_skb_any(skb); 577 if (net_ratelimit()) 578 netdev_err(ndev, "NOT enough BD for SG!\n"); 579 return NETDEV_TX_OK; 580 } 581 582 /* Protocol checksum off-load for TCP and UDP. */ 583 if (fec_enet_clear_csum(skb, ndev)) { 584 dev_kfree_skb_any(skb); 585 return NETDEV_TX_OK; 586 } 587 588 /* Fill in a Tx ring entry */ 589 bdp = txq->bd.cur; 590 last_bdp = bdp; 591 status = fec16_to_cpu(bdp->cbd_sc); 592 status &= ~BD_ENET_TX_STATS; 593 594 /* Set buffer length and buffer pointer */ 595 bufaddr = skb->data; 596 buflen = skb_headlen(skb); 597 598 index = fec_enet_get_bd_index(bdp, &txq->bd); 599 if (((unsigned long) bufaddr) & fep->tx_align || 600 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 601 memcpy(txq->tx_bounce[index], skb->data, buflen); 602 bufaddr = txq->tx_bounce[index]; 603 604 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 605 swap_buffer(bufaddr, buflen); 606 } 607 608 /* Push the data cache so the CPM does not get stale memory data. */ 609 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 610 if (dma_mapping_error(&fep->pdev->dev, addr)) { 611 dev_kfree_skb_any(skb); 612 if (net_ratelimit()) 613 netdev_err(ndev, "Tx DMA memory map failed\n"); 614 return NETDEV_TX_OK; 615 } 616 617 if (nr_frags) { 618 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 619 if (IS_ERR(last_bdp)) { 620 dma_unmap_single(&fep->pdev->dev, addr, 621 buflen, DMA_TO_DEVICE); 622 dev_kfree_skb_any(skb); 623 return NETDEV_TX_OK; 624 } 625 } else { 626 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 627 if (fep->bufdesc_ex) { 628 estatus = BD_ENET_TX_INT; 629 if (unlikely(skb_shinfo(skb)->tx_flags & 630 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 631 estatus |= BD_ENET_TX_TS; 632 } 633 } 634 bdp->cbd_bufaddr = cpu_to_fec32(addr); 635 bdp->cbd_datlen = cpu_to_fec16(buflen); 636 637 if (fep->bufdesc_ex) { 638 639 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 640 641 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 642 fep->hwts_tx_en)) 643 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 644 645 if (fep->quirks & FEC_QUIRK_HAS_AVB) 646 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 647 648 if (skb->ip_summed == CHECKSUM_PARTIAL) 649 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 650 651 ebdp->cbd_bdu = 0; 652 ebdp->cbd_esc = cpu_to_fec32(estatus); 653 } 654 655 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 656 /* Save skb pointer */ 657 txq->tx_buf[index].skb = skb; 658 659 /* Make sure the updates to rest of the descriptor are performed before 660 * transferring ownership. 661 */ 662 wmb(); 663 664 /* Send it on its way. Tell FEC it's ready, interrupt when done, 665 * it's the last BD of the frame, and to put the CRC on the end. 666 */ 667 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 668 bdp->cbd_sc = cpu_to_fec16(status); 669 670 /* If this was the last BD in the ring, start at the beginning again. */ 671 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 672 673 skb_tx_timestamp(skb); 674 675 /* Make sure the update to bdp is performed before txq->bd.cur. */ 676 wmb(); 677 txq->bd.cur = bdp; 678 679 /* Trigger transmission start */ 680 writel(0, txq->bd.reg_desc_active); 681 682 return 0; 683 } 684 685 static int 686 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 687 struct net_device *ndev, 688 struct bufdesc *bdp, int index, char *data, 689 int size, bool last_tcp, bool is_last) 690 { 691 struct fec_enet_private *fep = netdev_priv(ndev); 692 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 693 unsigned short status; 694 unsigned int estatus = 0; 695 dma_addr_t addr; 696 697 status = fec16_to_cpu(bdp->cbd_sc); 698 status &= ~BD_ENET_TX_STATS; 699 700 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 701 702 if (((unsigned long) data) & fep->tx_align || 703 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 704 memcpy(txq->tx_bounce[index], data, size); 705 data = txq->tx_bounce[index]; 706 707 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 708 swap_buffer(data, size); 709 } 710 711 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 712 if (dma_mapping_error(&fep->pdev->dev, addr)) { 713 dev_kfree_skb_any(skb); 714 if (net_ratelimit()) 715 netdev_err(ndev, "Tx DMA memory map failed\n"); 716 return NETDEV_TX_OK; 717 } 718 719 bdp->cbd_datlen = cpu_to_fec16(size); 720 bdp->cbd_bufaddr = cpu_to_fec32(addr); 721 722 if (fep->bufdesc_ex) { 723 if (fep->quirks & FEC_QUIRK_HAS_AVB) 724 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 725 if (skb->ip_summed == CHECKSUM_PARTIAL) 726 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 727 ebdp->cbd_bdu = 0; 728 ebdp->cbd_esc = cpu_to_fec32(estatus); 729 } 730 731 /* Handle the last BD specially */ 732 if (last_tcp) 733 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 734 if (is_last) { 735 status |= BD_ENET_TX_INTR; 736 if (fep->bufdesc_ex) 737 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 738 } 739 740 bdp->cbd_sc = cpu_to_fec16(status); 741 742 return 0; 743 } 744 745 static int 746 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 747 struct sk_buff *skb, struct net_device *ndev, 748 struct bufdesc *bdp, int index) 749 { 750 struct fec_enet_private *fep = netdev_priv(ndev); 751 int hdr_len = skb_tcp_all_headers(skb); 752 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 753 void *bufaddr; 754 unsigned long dmabuf; 755 unsigned short status; 756 unsigned int estatus = 0; 757 758 status = fec16_to_cpu(bdp->cbd_sc); 759 status &= ~BD_ENET_TX_STATS; 760 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 761 762 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 763 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 764 if (((unsigned long)bufaddr) & fep->tx_align || 765 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 766 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 767 bufaddr = txq->tx_bounce[index]; 768 769 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 770 swap_buffer(bufaddr, hdr_len); 771 772 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 773 hdr_len, DMA_TO_DEVICE); 774 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 775 dev_kfree_skb_any(skb); 776 if (net_ratelimit()) 777 netdev_err(ndev, "Tx DMA memory map failed\n"); 778 return NETDEV_TX_OK; 779 } 780 } 781 782 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 783 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 784 785 if (fep->bufdesc_ex) { 786 if (fep->quirks & FEC_QUIRK_HAS_AVB) 787 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 788 if (skb->ip_summed == CHECKSUM_PARTIAL) 789 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 790 ebdp->cbd_bdu = 0; 791 ebdp->cbd_esc = cpu_to_fec32(estatus); 792 } 793 794 bdp->cbd_sc = cpu_to_fec16(status); 795 796 return 0; 797 } 798 799 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 800 struct sk_buff *skb, 801 struct net_device *ndev) 802 { 803 struct fec_enet_private *fep = netdev_priv(ndev); 804 int hdr_len, total_len, data_left; 805 struct bufdesc *bdp = txq->bd.cur; 806 struct tso_t tso; 807 unsigned int index = 0; 808 int ret; 809 810 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 811 dev_kfree_skb_any(skb); 812 if (net_ratelimit()) 813 netdev_err(ndev, "NOT enough BD for TSO!\n"); 814 return NETDEV_TX_OK; 815 } 816 817 /* Protocol checksum off-load for TCP and UDP. */ 818 if (fec_enet_clear_csum(skb, ndev)) { 819 dev_kfree_skb_any(skb); 820 return NETDEV_TX_OK; 821 } 822 823 /* Initialize the TSO handler, and prepare the first payload */ 824 hdr_len = tso_start(skb, &tso); 825 826 total_len = skb->len - hdr_len; 827 while (total_len > 0) { 828 char *hdr; 829 830 index = fec_enet_get_bd_index(bdp, &txq->bd); 831 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 832 total_len -= data_left; 833 834 /* prepare packet headers: MAC + IP + TCP */ 835 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 836 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 837 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 838 if (ret) 839 goto err_release; 840 841 while (data_left > 0) { 842 int size; 843 844 size = min_t(int, tso.size, data_left); 845 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 846 index = fec_enet_get_bd_index(bdp, &txq->bd); 847 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 848 bdp, index, 849 tso.data, size, 850 size == data_left, 851 total_len == 0); 852 if (ret) 853 goto err_release; 854 855 data_left -= size; 856 tso_build_data(skb, &tso, size); 857 } 858 859 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 860 } 861 862 /* Save skb pointer */ 863 txq->tx_buf[index].skb = skb; 864 865 skb_tx_timestamp(skb); 866 txq->bd.cur = bdp; 867 868 /* Trigger transmission start */ 869 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 870 !readl(txq->bd.reg_desc_active) || 871 !readl(txq->bd.reg_desc_active) || 872 !readl(txq->bd.reg_desc_active) || 873 !readl(txq->bd.reg_desc_active)) 874 writel(0, txq->bd.reg_desc_active); 875 876 return 0; 877 878 err_release: 879 /* TODO: Release all used data descriptors for TSO */ 880 return ret; 881 } 882 883 static netdev_tx_t 884 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 885 { 886 struct fec_enet_private *fep = netdev_priv(ndev); 887 int entries_free; 888 unsigned short queue; 889 struct fec_enet_priv_tx_q *txq; 890 struct netdev_queue *nq; 891 int ret; 892 893 queue = skb_get_queue_mapping(skb); 894 txq = fep->tx_queue[queue]; 895 nq = netdev_get_tx_queue(ndev, queue); 896 897 if (skb_is_gso(skb)) 898 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 899 else 900 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 901 if (ret) 902 return ret; 903 904 entries_free = fec_enet_get_free_txdesc_num(txq); 905 if (entries_free <= txq->tx_stop_threshold) 906 netif_tx_stop_queue(nq); 907 908 return NETDEV_TX_OK; 909 } 910 911 /* Init RX & TX buffer descriptors 912 */ 913 static void fec_enet_bd_init(struct net_device *dev) 914 { 915 struct fec_enet_private *fep = netdev_priv(dev); 916 struct fec_enet_priv_tx_q *txq; 917 struct fec_enet_priv_rx_q *rxq; 918 struct bufdesc *bdp; 919 unsigned int i; 920 unsigned int q; 921 922 for (q = 0; q < fep->num_rx_queues; q++) { 923 /* Initialize the receive buffer descriptors. */ 924 rxq = fep->rx_queue[q]; 925 bdp = rxq->bd.base; 926 927 for (i = 0; i < rxq->bd.ring_size; i++) { 928 929 /* Initialize the BD for every fragment in the page. */ 930 if (bdp->cbd_bufaddr) 931 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 932 else 933 bdp->cbd_sc = cpu_to_fec16(0); 934 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 935 } 936 937 /* Set the last buffer to wrap */ 938 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 939 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 940 941 rxq->bd.cur = rxq->bd.base; 942 } 943 944 for (q = 0; q < fep->num_tx_queues; q++) { 945 /* ...and the same for transmit */ 946 txq = fep->tx_queue[q]; 947 bdp = txq->bd.base; 948 txq->bd.cur = bdp; 949 950 for (i = 0; i < txq->bd.ring_size; i++) { 951 /* Initialize the BD for every fragment in the page. */ 952 bdp->cbd_sc = cpu_to_fec16(0); 953 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) { 954 if (bdp->cbd_bufaddr && 955 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 956 dma_unmap_single(&fep->pdev->dev, 957 fec32_to_cpu(bdp->cbd_bufaddr), 958 fec16_to_cpu(bdp->cbd_datlen), 959 DMA_TO_DEVICE); 960 if (txq->tx_buf[i].skb) { 961 dev_kfree_skb_any(txq->tx_buf[i].skb); 962 txq->tx_buf[i].skb = NULL; 963 } 964 } else { 965 if (bdp->cbd_bufaddr) 966 dma_unmap_single(&fep->pdev->dev, 967 fec32_to_cpu(bdp->cbd_bufaddr), 968 fec16_to_cpu(bdp->cbd_datlen), 969 DMA_TO_DEVICE); 970 971 if (txq->tx_buf[i].xdp) { 972 xdp_return_frame(txq->tx_buf[i].xdp); 973 txq->tx_buf[i].xdp = NULL; 974 } 975 976 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 977 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 978 } 979 980 bdp->cbd_bufaddr = cpu_to_fec32(0); 981 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 982 } 983 984 /* Set the last buffer to wrap */ 985 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 986 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 987 txq->dirty_tx = bdp; 988 } 989 } 990 991 static void fec_enet_active_rxring(struct net_device *ndev) 992 { 993 struct fec_enet_private *fep = netdev_priv(ndev); 994 int i; 995 996 for (i = 0; i < fep->num_rx_queues; i++) 997 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 998 } 999 1000 static void fec_enet_enable_ring(struct net_device *ndev) 1001 { 1002 struct fec_enet_private *fep = netdev_priv(ndev); 1003 struct fec_enet_priv_tx_q *txq; 1004 struct fec_enet_priv_rx_q *rxq; 1005 int i; 1006 1007 for (i = 0; i < fep->num_rx_queues; i++) { 1008 rxq = fep->rx_queue[i]; 1009 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 1010 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 1011 1012 /* enable DMA1/2 */ 1013 if (i) 1014 writel(RCMR_MATCHEN | RCMR_CMP(i), 1015 fep->hwp + FEC_RCMR(i)); 1016 } 1017 1018 for (i = 0; i < fep->num_tx_queues; i++) { 1019 txq = fep->tx_queue[i]; 1020 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 1021 1022 /* enable DMA1/2 */ 1023 if (i) 1024 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 1025 fep->hwp + FEC_DMA_CFG(i)); 1026 } 1027 } 1028 1029 /* 1030 * This function is called to start or restart the FEC during a link 1031 * change, transmit timeout, or to reconfigure the FEC. The network 1032 * packet processing for this device must be stopped before this call. 1033 */ 1034 static void 1035 fec_restart(struct net_device *ndev) 1036 { 1037 struct fec_enet_private *fep = netdev_priv(ndev); 1038 u32 temp_mac[2]; 1039 u32 rcntl = OPT_FRAME_SIZE | 0x04; 1040 u32 ecntl = 0x2; /* ETHEREN */ 1041 1042 /* Whack a reset. We should wait for this. 1043 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1044 * instead of reset MAC itself. 1045 */ 1046 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 1047 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 1048 writel(0, fep->hwp + FEC_ECNTRL); 1049 } else { 1050 writel(1, fep->hwp + FEC_ECNTRL); 1051 udelay(10); 1052 } 1053 1054 /* 1055 * enet-mac reset will reset mac address registers too, 1056 * so need to reconfigure it. 1057 */ 1058 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1059 writel((__force u32)cpu_to_be32(temp_mac[0]), 1060 fep->hwp + FEC_ADDR_LOW); 1061 writel((__force u32)cpu_to_be32(temp_mac[1]), 1062 fep->hwp + FEC_ADDR_HIGH); 1063 1064 /* Clear any outstanding interrupt, except MDIO. */ 1065 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1066 1067 fec_enet_bd_init(ndev); 1068 1069 fec_enet_enable_ring(ndev); 1070 1071 /* Enable MII mode */ 1072 if (fep->full_duplex == DUPLEX_FULL) { 1073 /* FD enable */ 1074 writel(0x04, fep->hwp + FEC_X_CNTRL); 1075 } else { 1076 /* No Rcv on Xmit */ 1077 rcntl |= 0x02; 1078 writel(0x0, fep->hwp + FEC_X_CNTRL); 1079 } 1080 1081 /* Set MII speed */ 1082 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1083 1084 #if !defined(CONFIG_M5272) 1085 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1086 u32 val = readl(fep->hwp + FEC_RACC); 1087 1088 /* align IP header */ 1089 val |= FEC_RACC_SHIFT16; 1090 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1091 /* set RX checksum */ 1092 val |= FEC_RACC_OPTIONS; 1093 else 1094 val &= ~FEC_RACC_OPTIONS; 1095 writel(val, fep->hwp + FEC_RACC); 1096 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1097 } 1098 #endif 1099 1100 /* 1101 * The phy interface and speed need to get configured 1102 * differently on enet-mac. 1103 */ 1104 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1105 /* Enable flow control and length check */ 1106 rcntl |= 0x40000000 | 0x00000020; 1107 1108 /* RGMII, RMII or MII */ 1109 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1110 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1111 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1112 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1113 rcntl |= (1 << 6); 1114 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1115 rcntl |= (1 << 8); 1116 else 1117 rcntl &= ~(1 << 8); 1118 1119 /* 1G, 100M or 10M */ 1120 if (ndev->phydev) { 1121 if (ndev->phydev->speed == SPEED_1000) 1122 ecntl |= (1 << 5); 1123 else if (ndev->phydev->speed == SPEED_100) 1124 rcntl &= ~(1 << 9); 1125 else 1126 rcntl |= (1 << 9); 1127 } 1128 } else { 1129 #ifdef FEC_MIIGSK_ENR 1130 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1131 u32 cfgr; 1132 /* disable the gasket and wait */ 1133 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1134 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1135 udelay(1); 1136 1137 /* 1138 * configure the gasket: 1139 * RMII, 50 MHz, no loopback, no echo 1140 * MII, 25 MHz, no loopback, no echo 1141 */ 1142 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1143 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1144 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1145 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1146 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1147 1148 /* re-enable the gasket */ 1149 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1150 } 1151 #endif 1152 } 1153 1154 #if !defined(CONFIG_M5272) 1155 /* enable pause frame*/ 1156 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1157 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1158 ndev->phydev && ndev->phydev->pause)) { 1159 rcntl |= FEC_ENET_FCE; 1160 1161 /* set FIFO threshold parameter to reduce overrun */ 1162 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1163 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1164 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1165 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1166 1167 /* OPD */ 1168 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1169 } else { 1170 rcntl &= ~FEC_ENET_FCE; 1171 } 1172 #endif /* !defined(CONFIG_M5272) */ 1173 1174 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1175 1176 /* Setup multicast filter. */ 1177 set_multicast_list(ndev); 1178 #ifndef CONFIG_M5272 1179 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1180 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1181 #endif 1182 1183 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1184 /* enable ENET endian swap */ 1185 ecntl |= (1 << 8); 1186 /* enable ENET store and forward mode */ 1187 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1188 } 1189 1190 if (fep->bufdesc_ex) 1191 ecntl |= (1 << 4); 1192 1193 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1194 fep->rgmii_txc_dly) 1195 ecntl |= FEC_ENET_TXC_DLY; 1196 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1197 fep->rgmii_rxc_dly) 1198 ecntl |= FEC_ENET_RXC_DLY; 1199 1200 #ifndef CONFIG_M5272 1201 /* Enable the MIB statistic event counters */ 1202 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1203 #endif 1204 1205 /* And last, enable the transmit and receive processing */ 1206 writel(ecntl, fep->hwp + FEC_ECNTRL); 1207 fec_enet_active_rxring(ndev); 1208 1209 if (fep->bufdesc_ex) 1210 fec_ptp_start_cyclecounter(ndev); 1211 1212 /* Enable interrupts we wish to service */ 1213 if (fep->link) 1214 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1215 else 1216 writel(0, fep->hwp + FEC_IMASK); 1217 1218 /* Init the interrupt coalescing */ 1219 if (fep->quirks & FEC_QUIRK_HAS_COALESCE) 1220 fec_enet_itr_coal_set(ndev); 1221 } 1222 1223 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep) 1224 { 1225 if (!(of_machine_is_compatible("fsl,imx8qm") || 1226 of_machine_is_compatible("fsl,imx8qxp") || 1227 of_machine_is_compatible("fsl,imx8dxl"))) 1228 return 0; 1229 1230 return imx_scu_get_handle(&fep->ipc_handle); 1231 } 1232 1233 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled) 1234 { 1235 struct device_node *np = fep->pdev->dev.of_node; 1236 u32 rsrc_id, val; 1237 int idx; 1238 1239 if (!np || !fep->ipc_handle) 1240 return; 1241 1242 idx = of_alias_get_id(np, "ethernet"); 1243 if (idx < 0) 1244 idx = 0; 1245 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0; 1246 1247 val = enabled ? 1 : 0; 1248 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val); 1249 } 1250 1251 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1252 { 1253 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1254 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1255 1256 if (stop_gpr->gpr) { 1257 if (enabled) 1258 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1259 BIT(stop_gpr->bit), 1260 BIT(stop_gpr->bit)); 1261 else 1262 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1263 BIT(stop_gpr->bit), 0); 1264 } else if (pdata && pdata->sleep_mode_enable) { 1265 pdata->sleep_mode_enable(enabled); 1266 } else { 1267 fec_enet_ipg_stop_set(fep, enabled); 1268 } 1269 } 1270 1271 static void fec_irqs_disable(struct net_device *ndev) 1272 { 1273 struct fec_enet_private *fep = netdev_priv(ndev); 1274 1275 writel(0, fep->hwp + FEC_IMASK); 1276 } 1277 1278 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1279 { 1280 struct fec_enet_private *fep = netdev_priv(ndev); 1281 1282 writel(0, fep->hwp + FEC_IMASK); 1283 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1284 } 1285 1286 static void 1287 fec_stop(struct net_device *ndev) 1288 { 1289 struct fec_enet_private *fep = netdev_priv(ndev); 1290 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1291 u32 val; 1292 1293 /* We cannot expect a graceful transmit stop without link !!! */ 1294 if (fep->link) { 1295 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1296 udelay(10); 1297 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1298 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1299 } 1300 1301 /* Whack a reset. We should wait for this. 1302 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1303 * instead of reset MAC itself. 1304 */ 1305 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1306 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1307 writel(0, fep->hwp + FEC_ECNTRL); 1308 } else { 1309 writel(1, fep->hwp + FEC_ECNTRL); 1310 udelay(10); 1311 } 1312 } else { 1313 val = readl(fep->hwp + FEC_ECNTRL); 1314 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1315 writel(val, fep->hwp + FEC_ECNTRL); 1316 } 1317 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1318 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1319 1320 /* We have to keep ENET enabled to have MII interrupt stay working */ 1321 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1322 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1323 writel(2, fep->hwp + FEC_ECNTRL); 1324 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1325 } 1326 } 1327 1328 1329 static void 1330 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1331 { 1332 struct fec_enet_private *fep = netdev_priv(ndev); 1333 1334 fec_dump(ndev); 1335 1336 ndev->stats.tx_errors++; 1337 1338 schedule_work(&fep->tx_timeout_work); 1339 } 1340 1341 static void fec_enet_timeout_work(struct work_struct *work) 1342 { 1343 struct fec_enet_private *fep = 1344 container_of(work, struct fec_enet_private, tx_timeout_work); 1345 struct net_device *ndev = fep->netdev; 1346 1347 rtnl_lock(); 1348 if (netif_device_present(ndev) || netif_running(ndev)) { 1349 napi_disable(&fep->napi); 1350 netif_tx_lock_bh(ndev); 1351 fec_restart(ndev); 1352 netif_tx_wake_all_queues(ndev); 1353 netif_tx_unlock_bh(ndev); 1354 napi_enable(&fep->napi); 1355 } 1356 rtnl_unlock(); 1357 } 1358 1359 static void 1360 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1361 struct skb_shared_hwtstamps *hwtstamps) 1362 { 1363 unsigned long flags; 1364 u64 ns; 1365 1366 spin_lock_irqsave(&fep->tmreg_lock, flags); 1367 ns = timecounter_cyc2time(&fep->tc, ts); 1368 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1369 1370 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1371 hwtstamps->hwtstamp = ns_to_ktime(ns); 1372 } 1373 1374 static void 1375 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1376 { 1377 struct fec_enet_private *fep; 1378 struct xdp_frame *xdpf; 1379 struct bufdesc *bdp; 1380 unsigned short status; 1381 struct sk_buff *skb; 1382 struct fec_enet_priv_tx_q *txq; 1383 struct netdev_queue *nq; 1384 int index = 0; 1385 int entries_free; 1386 1387 fep = netdev_priv(ndev); 1388 1389 txq = fep->tx_queue[queue_id]; 1390 /* get next bdp of dirty_tx */ 1391 nq = netdev_get_tx_queue(ndev, queue_id); 1392 bdp = txq->dirty_tx; 1393 1394 /* get next bdp of dirty_tx */ 1395 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1396 1397 while (bdp != READ_ONCE(txq->bd.cur)) { 1398 /* Order the load of bd.cur and cbd_sc */ 1399 rmb(); 1400 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1401 if (status & BD_ENET_TX_READY) 1402 break; 1403 1404 index = fec_enet_get_bd_index(bdp, &txq->bd); 1405 1406 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) { 1407 skb = txq->tx_buf[index].skb; 1408 txq->tx_buf[index].skb = NULL; 1409 if (bdp->cbd_bufaddr && 1410 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1411 dma_unmap_single(&fep->pdev->dev, 1412 fec32_to_cpu(bdp->cbd_bufaddr), 1413 fec16_to_cpu(bdp->cbd_datlen), 1414 DMA_TO_DEVICE); 1415 bdp->cbd_bufaddr = cpu_to_fec32(0); 1416 if (!skb) 1417 goto tx_buf_done; 1418 } else { 1419 xdpf = txq->tx_buf[index].xdp; 1420 if (bdp->cbd_bufaddr) 1421 dma_unmap_single(&fep->pdev->dev, 1422 fec32_to_cpu(bdp->cbd_bufaddr), 1423 fec16_to_cpu(bdp->cbd_datlen), 1424 DMA_TO_DEVICE); 1425 bdp->cbd_bufaddr = cpu_to_fec32(0); 1426 if (!xdpf) { 1427 txq->tx_buf[index].type = FEC_TXBUF_T_SKB; 1428 goto tx_buf_done; 1429 } 1430 } 1431 1432 /* Check for errors. */ 1433 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1434 BD_ENET_TX_RL | BD_ENET_TX_UN | 1435 BD_ENET_TX_CSL)) { 1436 ndev->stats.tx_errors++; 1437 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1438 ndev->stats.tx_heartbeat_errors++; 1439 if (status & BD_ENET_TX_LC) /* Late collision */ 1440 ndev->stats.tx_window_errors++; 1441 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1442 ndev->stats.tx_aborted_errors++; 1443 if (status & BD_ENET_TX_UN) /* Underrun */ 1444 ndev->stats.tx_fifo_errors++; 1445 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1446 ndev->stats.tx_carrier_errors++; 1447 } else { 1448 ndev->stats.tx_packets++; 1449 1450 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) 1451 ndev->stats.tx_bytes += skb->len; 1452 else 1453 ndev->stats.tx_bytes += xdpf->len; 1454 } 1455 1456 /* Deferred means some collisions occurred during transmit, 1457 * but we eventually sent the packet OK. 1458 */ 1459 if (status & BD_ENET_TX_DEF) 1460 ndev->stats.collisions++; 1461 1462 if (txq->tx_buf[index].type == FEC_TXBUF_T_SKB) { 1463 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1464 * are to time stamp the packet, so we still need to check time 1465 * stamping enabled flag. 1466 */ 1467 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1468 fep->hwts_tx_en) && fep->bufdesc_ex) { 1469 struct skb_shared_hwtstamps shhwtstamps; 1470 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1471 1472 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1473 skb_tstamp_tx(skb, &shhwtstamps); 1474 } 1475 1476 /* Free the sk buffer associated with this last transmit */ 1477 dev_kfree_skb_any(skb); 1478 } else { 1479 xdp_return_frame(xdpf); 1480 1481 txq->tx_buf[index].xdp = NULL; 1482 /* restore default tx buffer type: FEC_TXBUF_T_SKB */ 1483 txq->tx_buf[index].type = FEC_TXBUF_T_SKB; 1484 } 1485 1486 tx_buf_done: 1487 /* Make sure the update to bdp and tx_buf are performed 1488 * before dirty_tx 1489 */ 1490 wmb(); 1491 txq->dirty_tx = bdp; 1492 1493 /* Update pointer to next buffer descriptor to be transmitted */ 1494 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1495 1496 /* Since we have freed up a buffer, the ring is no longer full 1497 */ 1498 if (netif_tx_queue_stopped(nq)) { 1499 entries_free = fec_enet_get_free_txdesc_num(txq); 1500 if (entries_free >= txq->tx_wake_threshold) 1501 netif_tx_wake_queue(nq); 1502 } 1503 } 1504 1505 /* ERR006358: Keep the transmitter going */ 1506 if (bdp != txq->bd.cur && 1507 readl(txq->bd.reg_desc_active) == 0) 1508 writel(0, txq->bd.reg_desc_active); 1509 } 1510 1511 static void fec_enet_tx(struct net_device *ndev) 1512 { 1513 struct fec_enet_private *fep = netdev_priv(ndev); 1514 int i; 1515 1516 /* Make sure that AVB queues are processed first. */ 1517 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1518 fec_enet_tx_queue(ndev, i); 1519 } 1520 1521 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq, 1522 struct bufdesc *bdp, int index) 1523 { 1524 struct page *new_page; 1525 dma_addr_t phys_addr; 1526 1527 new_page = page_pool_dev_alloc_pages(rxq->page_pool); 1528 WARN_ON(!new_page); 1529 rxq->rx_skb_info[index].page = new_page; 1530 1531 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM; 1532 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM; 1533 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1534 } 1535 1536 static u32 1537 fec_enet_run_xdp(struct fec_enet_private *fep, struct bpf_prog *prog, 1538 struct xdp_buff *xdp, struct fec_enet_priv_rx_q *rxq, int index) 1539 { 1540 unsigned int sync, len = xdp->data_end - xdp->data; 1541 u32 ret = FEC_ENET_XDP_PASS; 1542 struct page *page; 1543 int err; 1544 u32 act; 1545 1546 act = bpf_prog_run_xdp(prog, xdp); 1547 1548 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ 1549 sync = xdp->data_end - xdp->data_hard_start - FEC_ENET_XDP_HEADROOM; 1550 sync = max(sync, len); 1551 1552 switch (act) { 1553 case XDP_PASS: 1554 rxq->stats[RX_XDP_PASS]++; 1555 ret = FEC_ENET_XDP_PASS; 1556 break; 1557 1558 case XDP_REDIRECT: 1559 rxq->stats[RX_XDP_REDIRECT]++; 1560 err = xdp_do_redirect(fep->netdev, xdp, prog); 1561 if (!err) { 1562 ret = FEC_ENET_XDP_REDIR; 1563 } else { 1564 ret = FEC_ENET_XDP_CONSUMED; 1565 page = virt_to_head_page(xdp->data); 1566 page_pool_put_page(rxq->page_pool, page, sync, true); 1567 } 1568 break; 1569 1570 default: 1571 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1572 fallthrough; 1573 1574 case XDP_TX: 1575 bpf_warn_invalid_xdp_action(fep->netdev, prog, act); 1576 fallthrough; 1577 1578 case XDP_ABORTED: 1579 fallthrough; /* handle aborts by dropping packet */ 1580 1581 case XDP_DROP: 1582 rxq->stats[RX_XDP_DROP]++; 1583 ret = FEC_ENET_XDP_CONSUMED; 1584 page = virt_to_head_page(xdp->data); 1585 page_pool_put_page(rxq->page_pool, page, sync, true); 1586 break; 1587 } 1588 1589 return ret; 1590 } 1591 1592 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1593 * When we update through the ring, if the next incoming buffer has 1594 * not been given to the system, we just set the empty indicator, 1595 * effectively tossing the packet. 1596 */ 1597 static int 1598 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1599 { 1600 struct fec_enet_private *fep = netdev_priv(ndev); 1601 struct fec_enet_priv_rx_q *rxq; 1602 struct bufdesc *bdp; 1603 unsigned short status; 1604 struct sk_buff *skb; 1605 ushort pkt_len; 1606 __u8 *data; 1607 int pkt_received = 0; 1608 struct bufdesc_ex *ebdp = NULL; 1609 bool vlan_packet_rcvd = false; 1610 u16 vlan_tag; 1611 int index = 0; 1612 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1613 struct bpf_prog *xdp_prog = READ_ONCE(fep->xdp_prog); 1614 u32 ret, xdp_result = FEC_ENET_XDP_PASS; 1615 u32 data_start = FEC_ENET_XDP_HEADROOM; 1616 struct xdp_buff xdp; 1617 struct page *page; 1618 u32 sub_len = 4; 1619 1620 #if !defined(CONFIG_M5272) 1621 /*If it has the FEC_QUIRK_HAS_RACC quirk property, the bit of 1622 * FEC_RACC_SHIFT16 is set by default in the probe function. 1623 */ 1624 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1625 data_start += 2; 1626 sub_len += 2; 1627 } 1628 #endif 1629 1630 #ifdef CONFIG_M532x 1631 flush_cache_all(); 1632 #endif 1633 rxq = fep->rx_queue[queue_id]; 1634 1635 /* First, grab all of the stats for the incoming packet. 1636 * These get messed up if we get called due to a busy condition. 1637 */ 1638 bdp = rxq->bd.cur; 1639 xdp_init_buff(&xdp, PAGE_SIZE, &rxq->xdp_rxq); 1640 1641 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1642 1643 if (pkt_received >= budget) 1644 break; 1645 pkt_received++; 1646 1647 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1648 1649 /* Check for errors. */ 1650 status ^= BD_ENET_RX_LAST; 1651 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1652 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1653 BD_ENET_RX_CL)) { 1654 ndev->stats.rx_errors++; 1655 if (status & BD_ENET_RX_OV) { 1656 /* FIFO overrun */ 1657 ndev->stats.rx_fifo_errors++; 1658 goto rx_processing_done; 1659 } 1660 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1661 | BD_ENET_RX_LAST)) { 1662 /* Frame too long or too short. */ 1663 ndev->stats.rx_length_errors++; 1664 if (status & BD_ENET_RX_LAST) 1665 netdev_err(ndev, "rcv is not +last\n"); 1666 } 1667 if (status & BD_ENET_RX_CR) /* CRC Error */ 1668 ndev->stats.rx_crc_errors++; 1669 /* Report late collisions as a frame error. */ 1670 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1671 ndev->stats.rx_frame_errors++; 1672 goto rx_processing_done; 1673 } 1674 1675 /* Process the incoming frame. */ 1676 ndev->stats.rx_packets++; 1677 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1678 ndev->stats.rx_bytes += pkt_len; 1679 1680 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1681 page = rxq->rx_skb_info[index].page; 1682 dma_sync_single_for_cpu(&fep->pdev->dev, 1683 fec32_to_cpu(bdp->cbd_bufaddr), 1684 pkt_len, 1685 DMA_FROM_DEVICE); 1686 prefetch(page_address(page)); 1687 fec_enet_update_cbd(rxq, bdp, index); 1688 1689 if (xdp_prog) { 1690 xdp_buff_clear_frags_flag(&xdp); 1691 /* subtract 16bit shift and FCS */ 1692 xdp_prepare_buff(&xdp, page_address(page), 1693 data_start, pkt_len - sub_len, false); 1694 ret = fec_enet_run_xdp(fep, xdp_prog, &xdp, rxq, index); 1695 xdp_result |= ret; 1696 if (ret != FEC_ENET_XDP_PASS) 1697 goto rx_processing_done; 1698 } 1699 1700 /* The packet length includes FCS, but we don't want to 1701 * include that when passing upstream as it messes up 1702 * bridging applications. 1703 */ 1704 skb = build_skb(page_address(page), PAGE_SIZE); 1705 if (unlikely(!skb)) { 1706 page_pool_recycle_direct(rxq->page_pool, page); 1707 ndev->stats.rx_dropped++; 1708 1709 netdev_err_once(ndev, "build_skb failed!\n"); 1710 goto rx_processing_done; 1711 } 1712 1713 skb_reserve(skb, data_start); 1714 skb_put(skb, pkt_len - sub_len); 1715 skb_mark_for_recycle(skb); 1716 1717 if (unlikely(need_swap)) { 1718 data = page_address(page) + FEC_ENET_XDP_HEADROOM; 1719 swap_buffer(data, pkt_len); 1720 } 1721 data = skb->data; 1722 1723 /* Extract the enhanced buffer descriptor */ 1724 ebdp = NULL; 1725 if (fep->bufdesc_ex) 1726 ebdp = (struct bufdesc_ex *)bdp; 1727 1728 /* If this is a VLAN packet remove the VLAN Tag */ 1729 vlan_packet_rcvd = false; 1730 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1731 fep->bufdesc_ex && 1732 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1733 /* Push and remove the vlan tag */ 1734 struct vlan_hdr *vlan_header = 1735 (struct vlan_hdr *) (data + ETH_HLEN); 1736 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1737 1738 vlan_packet_rcvd = true; 1739 1740 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1741 skb_pull(skb, VLAN_HLEN); 1742 } 1743 1744 skb->protocol = eth_type_trans(skb, ndev); 1745 1746 /* Get receive timestamp from the skb */ 1747 if (fep->hwts_rx_en && fep->bufdesc_ex) 1748 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1749 skb_hwtstamps(skb)); 1750 1751 if (fep->bufdesc_ex && 1752 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1753 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1754 /* don't check it */ 1755 skb->ip_summed = CHECKSUM_UNNECESSARY; 1756 } else { 1757 skb_checksum_none_assert(skb); 1758 } 1759 } 1760 1761 /* Handle received VLAN packets */ 1762 if (vlan_packet_rcvd) 1763 __vlan_hwaccel_put_tag(skb, 1764 htons(ETH_P_8021Q), 1765 vlan_tag); 1766 1767 skb_record_rx_queue(skb, queue_id); 1768 napi_gro_receive(&fep->napi, skb); 1769 1770 rx_processing_done: 1771 /* Clear the status flags for this buffer */ 1772 status &= ~BD_ENET_RX_STATS; 1773 1774 /* Mark the buffer empty */ 1775 status |= BD_ENET_RX_EMPTY; 1776 1777 if (fep->bufdesc_ex) { 1778 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1779 1780 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1781 ebdp->cbd_prot = 0; 1782 ebdp->cbd_bdu = 0; 1783 } 1784 /* Make sure the updates to rest of the descriptor are 1785 * performed before transferring ownership. 1786 */ 1787 wmb(); 1788 bdp->cbd_sc = cpu_to_fec16(status); 1789 1790 /* Update BD pointer to next entry */ 1791 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1792 1793 /* Doing this here will keep the FEC running while we process 1794 * incoming frames. On a heavily loaded network, we should be 1795 * able to keep up at the expense of system resources. 1796 */ 1797 writel(0, rxq->bd.reg_desc_active); 1798 } 1799 rxq->bd.cur = bdp; 1800 1801 if (xdp_result & FEC_ENET_XDP_REDIR) 1802 xdp_do_flush_map(); 1803 1804 return pkt_received; 1805 } 1806 1807 static int fec_enet_rx(struct net_device *ndev, int budget) 1808 { 1809 struct fec_enet_private *fep = netdev_priv(ndev); 1810 int i, done = 0; 1811 1812 /* Make sure that AVB queues are processed first. */ 1813 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1814 done += fec_enet_rx_queue(ndev, budget - done, i); 1815 1816 return done; 1817 } 1818 1819 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1820 { 1821 uint int_events; 1822 1823 int_events = readl(fep->hwp + FEC_IEVENT); 1824 1825 /* Don't clear MDIO events, we poll for those */ 1826 int_events &= ~FEC_ENET_MII; 1827 1828 writel(int_events, fep->hwp + FEC_IEVENT); 1829 1830 return int_events != 0; 1831 } 1832 1833 static irqreturn_t 1834 fec_enet_interrupt(int irq, void *dev_id) 1835 { 1836 struct net_device *ndev = dev_id; 1837 struct fec_enet_private *fep = netdev_priv(ndev); 1838 irqreturn_t ret = IRQ_NONE; 1839 1840 if (fec_enet_collect_events(fep) && fep->link) { 1841 ret = IRQ_HANDLED; 1842 1843 if (napi_schedule_prep(&fep->napi)) { 1844 /* Disable interrupts */ 1845 writel(0, fep->hwp + FEC_IMASK); 1846 __napi_schedule(&fep->napi); 1847 } 1848 } 1849 1850 return ret; 1851 } 1852 1853 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1854 { 1855 struct net_device *ndev = napi->dev; 1856 struct fec_enet_private *fep = netdev_priv(ndev); 1857 int done = 0; 1858 1859 do { 1860 done += fec_enet_rx(ndev, budget - done); 1861 fec_enet_tx(ndev); 1862 } while ((done < budget) && fec_enet_collect_events(fep)); 1863 1864 if (done < budget) { 1865 napi_complete_done(napi, done); 1866 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1867 } 1868 1869 return done; 1870 } 1871 1872 /* ------------------------------------------------------------------------- */ 1873 static int fec_get_mac(struct net_device *ndev) 1874 { 1875 struct fec_enet_private *fep = netdev_priv(ndev); 1876 unsigned char *iap, tmpaddr[ETH_ALEN]; 1877 int ret; 1878 1879 /* 1880 * try to get mac address in following order: 1881 * 1882 * 1) module parameter via kernel command line in form 1883 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1884 */ 1885 iap = macaddr; 1886 1887 /* 1888 * 2) from device tree data 1889 */ 1890 if (!is_valid_ether_addr(iap)) { 1891 struct device_node *np = fep->pdev->dev.of_node; 1892 if (np) { 1893 ret = of_get_mac_address(np, tmpaddr); 1894 if (!ret) 1895 iap = tmpaddr; 1896 else if (ret == -EPROBE_DEFER) 1897 return ret; 1898 } 1899 } 1900 1901 /* 1902 * 3) from flash or fuse (via platform data) 1903 */ 1904 if (!is_valid_ether_addr(iap)) { 1905 #ifdef CONFIG_M5272 1906 if (FEC_FLASHMAC) 1907 iap = (unsigned char *)FEC_FLASHMAC; 1908 #else 1909 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1910 1911 if (pdata) 1912 iap = (unsigned char *)&pdata->mac; 1913 #endif 1914 } 1915 1916 /* 1917 * 4) FEC mac registers set by bootloader 1918 */ 1919 if (!is_valid_ether_addr(iap)) { 1920 *((__be32 *) &tmpaddr[0]) = 1921 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1922 *((__be16 *) &tmpaddr[4]) = 1923 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1924 iap = &tmpaddr[0]; 1925 } 1926 1927 /* 1928 * 5) random mac address 1929 */ 1930 if (!is_valid_ether_addr(iap)) { 1931 /* Report it and use a random ethernet address instead */ 1932 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1933 eth_hw_addr_random(ndev); 1934 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1935 ndev->dev_addr); 1936 return 0; 1937 } 1938 1939 /* Adjust MAC if using macaddr */ 1940 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 1941 1942 return 0; 1943 } 1944 1945 /* ------------------------------------------------------------------------- */ 1946 1947 /* 1948 * Phy section 1949 */ 1950 static void fec_enet_adjust_link(struct net_device *ndev) 1951 { 1952 struct fec_enet_private *fep = netdev_priv(ndev); 1953 struct phy_device *phy_dev = ndev->phydev; 1954 int status_change = 0; 1955 1956 /* 1957 * If the netdev is down, or is going down, we're not interested 1958 * in link state events, so just mark our idea of the link as down 1959 * and ignore the event. 1960 */ 1961 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1962 fep->link = 0; 1963 } else if (phy_dev->link) { 1964 if (!fep->link) { 1965 fep->link = phy_dev->link; 1966 status_change = 1; 1967 } 1968 1969 if (fep->full_duplex != phy_dev->duplex) { 1970 fep->full_duplex = phy_dev->duplex; 1971 status_change = 1; 1972 } 1973 1974 if (phy_dev->speed != fep->speed) { 1975 fep->speed = phy_dev->speed; 1976 status_change = 1; 1977 } 1978 1979 /* if any of the above changed restart the FEC */ 1980 if (status_change) { 1981 napi_disable(&fep->napi); 1982 netif_tx_lock_bh(ndev); 1983 fec_restart(ndev); 1984 netif_tx_wake_all_queues(ndev); 1985 netif_tx_unlock_bh(ndev); 1986 napi_enable(&fep->napi); 1987 } 1988 } else { 1989 if (fep->link) { 1990 napi_disable(&fep->napi); 1991 netif_tx_lock_bh(ndev); 1992 fec_stop(ndev); 1993 netif_tx_unlock_bh(ndev); 1994 napi_enable(&fep->napi); 1995 fep->link = phy_dev->link; 1996 status_change = 1; 1997 } 1998 } 1999 2000 if (status_change) 2001 phy_print_status(phy_dev); 2002 } 2003 2004 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 2005 { 2006 uint ievent; 2007 int ret; 2008 2009 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 2010 ievent & FEC_ENET_MII, 2, 30000); 2011 2012 if (!ret) 2013 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2014 2015 return ret; 2016 } 2017 2018 static int fec_enet_mdio_read_c22(struct mii_bus *bus, int mii_id, int regnum) 2019 { 2020 struct fec_enet_private *fep = bus->priv; 2021 struct device *dev = &fep->pdev->dev; 2022 int ret = 0, frame_start, frame_addr, frame_op; 2023 2024 ret = pm_runtime_resume_and_get(dev); 2025 if (ret < 0) 2026 return ret; 2027 2028 /* C22 read */ 2029 frame_op = FEC_MMFR_OP_READ; 2030 frame_start = FEC_MMFR_ST; 2031 frame_addr = regnum; 2032 2033 /* start a read op */ 2034 writel(frame_start | frame_op | 2035 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2036 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2037 2038 /* wait for end of transfer */ 2039 ret = fec_enet_mdio_wait(fep); 2040 if (ret) { 2041 netdev_err(fep->netdev, "MDIO read timeout\n"); 2042 goto out; 2043 } 2044 2045 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2046 2047 out: 2048 pm_runtime_mark_last_busy(dev); 2049 pm_runtime_put_autosuspend(dev); 2050 2051 return ret; 2052 } 2053 2054 static int fec_enet_mdio_read_c45(struct mii_bus *bus, int mii_id, 2055 int devad, int regnum) 2056 { 2057 struct fec_enet_private *fep = bus->priv; 2058 struct device *dev = &fep->pdev->dev; 2059 int ret = 0, frame_start, frame_op; 2060 2061 ret = pm_runtime_resume_and_get(dev); 2062 if (ret < 0) 2063 return ret; 2064 2065 frame_start = FEC_MMFR_ST_C45; 2066 2067 /* write address */ 2068 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2069 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2070 FEC_MMFR_TA | (regnum & 0xFFFF), 2071 fep->hwp + FEC_MII_DATA); 2072 2073 /* wait for end of transfer */ 2074 ret = fec_enet_mdio_wait(fep); 2075 if (ret) { 2076 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2077 goto out; 2078 } 2079 2080 frame_op = FEC_MMFR_OP_READ_C45; 2081 2082 /* start a read op */ 2083 writel(frame_start | frame_op | 2084 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2085 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 2086 2087 /* wait for end of transfer */ 2088 ret = fec_enet_mdio_wait(fep); 2089 if (ret) { 2090 netdev_err(fep->netdev, "MDIO read timeout\n"); 2091 goto out; 2092 } 2093 2094 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 2095 2096 out: 2097 pm_runtime_mark_last_busy(dev); 2098 pm_runtime_put_autosuspend(dev); 2099 2100 return ret; 2101 } 2102 2103 static int fec_enet_mdio_write_c22(struct mii_bus *bus, int mii_id, int regnum, 2104 u16 value) 2105 { 2106 struct fec_enet_private *fep = bus->priv; 2107 struct device *dev = &fep->pdev->dev; 2108 int ret, frame_start, frame_addr; 2109 2110 ret = pm_runtime_resume_and_get(dev); 2111 if (ret < 0) 2112 return ret; 2113 2114 /* C22 write */ 2115 frame_start = FEC_MMFR_ST; 2116 frame_addr = regnum; 2117 2118 /* start a write op */ 2119 writel(frame_start | FEC_MMFR_OP_WRITE | 2120 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 2121 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2122 fep->hwp + FEC_MII_DATA); 2123 2124 /* wait for end of transfer */ 2125 ret = fec_enet_mdio_wait(fep); 2126 if (ret) 2127 netdev_err(fep->netdev, "MDIO write timeout\n"); 2128 2129 pm_runtime_mark_last_busy(dev); 2130 pm_runtime_put_autosuspend(dev); 2131 2132 return ret; 2133 } 2134 2135 static int fec_enet_mdio_write_c45(struct mii_bus *bus, int mii_id, 2136 int devad, int regnum, u16 value) 2137 { 2138 struct fec_enet_private *fep = bus->priv; 2139 struct device *dev = &fep->pdev->dev; 2140 int ret, frame_start; 2141 2142 ret = pm_runtime_resume_and_get(dev); 2143 if (ret < 0) 2144 return ret; 2145 2146 frame_start = FEC_MMFR_ST_C45; 2147 2148 /* write address */ 2149 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 2150 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2151 FEC_MMFR_TA | (regnum & 0xFFFF), 2152 fep->hwp + FEC_MII_DATA); 2153 2154 /* wait for end of transfer */ 2155 ret = fec_enet_mdio_wait(fep); 2156 if (ret) { 2157 netdev_err(fep->netdev, "MDIO address write timeout\n"); 2158 goto out; 2159 } 2160 2161 /* start a write op */ 2162 writel(frame_start | FEC_MMFR_OP_WRITE | 2163 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(devad) | 2164 FEC_MMFR_TA | FEC_MMFR_DATA(value), 2165 fep->hwp + FEC_MII_DATA); 2166 2167 /* wait for end of transfer */ 2168 ret = fec_enet_mdio_wait(fep); 2169 if (ret) 2170 netdev_err(fep->netdev, "MDIO write timeout\n"); 2171 2172 out: 2173 pm_runtime_mark_last_busy(dev); 2174 pm_runtime_put_autosuspend(dev); 2175 2176 return ret; 2177 } 2178 2179 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2180 { 2181 struct fec_enet_private *fep = netdev_priv(ndev); 2182 struct phy_device *phy_dev = ndev->phydev; 2183 2184 if (phy_dev) { 2185 phy_reset_after_clk_enable(phy_dev); 2186 } else if (fep->phy_node) { 2187 /* 2188 * If the PHY still is not bound to the MAC, but there is 2189 * OF PHY node and a matching PHY device instance already, 2190 * use the OF PHY node to obtain the PHY device instance, 2191 * and then use that PHY device instance when triggering 2192 * the PHY reset. 2193 */ 2194 phy_dev = of_phy_find_device(fep->phy_node); 2195 phy_reset_after_clk_enable(phy_dev); 2196 put_device(&phy_dev->mdio.dev); 2197 } 2198 } 2199 2200 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2201 { 2202 struct fec_enet_private *fep = netdev_priv(ndev); 2203 int ret; 2204 2205 if (enable) { 2206 ret = clk_prepare_enable(fep->clk_enet_out); 2207 if (ret) 2208 return ret; 2209 2210 if (fep->clk_ptp) { 2211 mutex_lock(&fep->ptp_clk_mutex); 2212 ret = clk_prepare_enable(fep->clk_ptp); 2213 if (ret) { 2214 mutex_unlock(&fep->ptp_clk_mutex); 2215 goto failed_clk_ptp; 2216 } else { 2217 fep->ptp_clk_on = true; 2218 } 2219 mutex_unlock(&fep->ptp_clk_mutex); 2220 } 2221 2222 ret = clk_prepare_enable(fep->clk_ref); 2223 if (ret) 2224 goto failed_clk_ref; 2225 2226 ret = clk_prepare_enable(fep->clk_2x_txclk); 2227 if (ret) 2228 goto failed_clk_2x_txclk; 2229 2230 fec_enet_phy_reset_after_clk_enable(ndev); 2231 } else { 2232 clk_disable_unprepare(fep->clk_enet_out); 2233 if (fep->clk_ptp) { 2234 mutex_lock(&fep->ptp_clk_mutex); 2235 clk_disable_unprepare(fep->clk_ptp); 2236 fep->ptp_clk_on = false; 2237 mutex_unlock(&fep->ptp_clk_mutex); 2238 } 2239 clk_disable_unprepare(fep->clk_ref); 2240 clk_disable_unprepare(fep->clk_2x_txclk); 2241 } 2242 2243 return 0; 2244 2245 failed_clk_2x_txclk: 2246 if (fep->clk_ref) 2247 clk_disable_unprepare(fep->clk_ref); 2248 failed_clk_ref: 2249 if (fep->clk_ptp) { 2250 mutex_lock(&fep->ptp_clk_mutex); 2251 clk_disable_unprepare(fep->clk_ptp); 2252 fep->ptp_clk_on = false; 2253 mutex_unlock(&fep->ptp_clk_mutex); 2254 } 2255 failed_clk_ptp: 2256 clk_disable_unprepare(fep->clk_enet_out); 2257 2258 return ret; 2259 } 2260 2261 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2262 struct device_node *np) 2263 { 2264 u32 rgmii_tx_delay, rgmii_rx_delay; 2265 2266 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2267 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2268 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2269 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2270 return -EINVAL; 2271 } else if (rgmii_tx_delay == 2000) { 2272 fep->rgmii_txc_dly = true; 2273 } 2274 } 2275 2276 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2277 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2278 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2279 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2280 return -EINVAL; 2281 } else if (rgmii_rx_delay == 2000) { 2282 fep->rgmii_rxc_dly = true; 2283 } 2284 } 2285 2286 return 0; 2287 } 2288 2289 static int fec_enet_mii_probe(struct net_device *ndev) 2290 { 2291 struct fec_enet_private *fep = netdev_priv(ndev); 2292 struct phy_device *phy_dev = NULL; 2293 char mdio_bus_id[MII_BUS_ID_SIZE]; 2294 char phy_name[MII_BUS_ID_SIZE + 3]; 2295 int phy_id; 2296 int dev_id = fep->dev_id; 2297 2298 if (fep->phy_node) { 2299 phy_dev = of_phy_connect(ndev, fep->phy_node, 2300 &fec_enet_adjust_link, 0, 2301 fep->phy_interface); 2302 if (!phy_dev) { 2303 netdev_err(ndev, "Unable to connect to phy\n"); 2304 return -ENODEV; 2305 } 2306 } else { 2307 /* check for attached phy */ 2308 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2309 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2310 continue; 2311 if (dev_id--) 2312 continue; 2313 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2314 break; 2315 } 2316 2317 if (phy_id >= PHY_MAX_ADDR) { 2318 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2319 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2320 phy_id = 0; 2321 } 2322 2323 snprintf(phy_name, sizeof(phy_name), 2324 PHY_ID_FMT, mdio_bus_id, phy_id); 2325 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2326 fep->phy_interface); 2327 } 2328 2329 if (IS_ERR(phy_dev)) { 2330 netdev_err(ndev, "could not attach to PHY\n"); 2331 return PTR_ERR(phy_dev); 2332 } 2333 2334 /* mask with MAC supported features */ 2335 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2336 phy_set_max_speed(phy_dev, 1000); 2337 phy_remove_link_mode(phy_dev, 2338 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2339 #if !defined(CONFIG_M5272) 2340 phy_support_sym_pause(phy_dev); 2341 #endif 2342 } 2343 else 2344 phy_set_max_speed(phy_dev, 100); 2345 2346 fep->link = 0; 2347 fep->full_duplex = 0; 2348 2349 phy_dev->mac_managed_pm = true; 2350 2351 phy_attached_info(phy_dev); 2352 2353 return 0; 2354 } 2355 2356 static int fec_enet_mii_init(struct platform_device *pdev) 2357 { 2358 static struct mii_bus *fec0_mii_bus; 2359 struct net_device *ndev = platform_get_drvdata(pdev); 2360 struct fec_enet_private *fep = netdev_priv(ndev); 2361 bool suppress_preamble = false; 2362 struct device_node *node; 2363 int err = -ENXIO; 2364 u32 mii_speed, holdtime; 2365 u32 bus_freq; 2366 2367 /* 2368 * The i.MX28 dual fec interfaces are not equal. 2369 * Here are the differences: 2370 * 2371 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2372 * - fec0 acts as the 1588 time master while fec1 is slave 2373 * - external phys can only be configured by fec0 2374 * 2375 * That is to say fec1 can not work independently. It only works 2376 * when fec0 is working. The reason behind this design is that the 2377 * second interface is added primarily for Switch mode. 2378 * 2379 * Because of the last point above, both phys are attached on fec0 2380 * mdio interface in board design, and need to be configured by 2381 * fec0 mii_bus. 2382 */ 2383 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2384 /* fec1 uses fec0 mii_bus */ 2385 if (mii_cnt && fec0_mii_bus) { 2386 fep->mii_bus = fec0_mii_bus; 2387 mii_cnt++; 2388 return 0; 2389 } 2390 return -ENOENT; 2391 } 2392 2393 bus_freq = 2500000; /* 2.5MHz by default */ 2394 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2395 if (node) { 2396 of_property_read_u32(node, "clock-frequency", &bus_freq); 2397 suppress_preamble = of_property_read_bool(node, 2398 "suppress-preamble"); 2399 } 2400 2401 /* 2402 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2403 * 2404 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2405 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2406 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2407 * document. 2408 */ 2409 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2410 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2411 mii_speed--; 2412 if (mii_speed > 63) { 2413 dev_err(&pdev->dev, 2414 "fec clock (%lu) too fast to get right mii speed\n", 2415 clk_get_rate(fep->clk_ipg)); 2416 err = -EINVAL; 2417 goto err_out; 2418 } 2419 2420 /* 2421 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2422 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2423 * versions are RAZ there, so just ignore the difference and write the 2424 * register always. 2425 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2426 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2427 * output. 2428 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2429 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2430 * holdtime cannot result in a value greater than 3. 2431 */ 2432 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2433 2434 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2435 2436 if (suppress_preamble) 2437 fep->phy_speed |= BIT(7); 2438 2439 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2440 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2441 * MII event generation condition: 2442 * - writing MSCR: 2443 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2444 * mscr_reg_data_in[7:0] != 0 2445 * - writing MMFR: 2446 * - mscr[7:0]_not_zero 2447 */ 2448 writel(0, fep->hwp + FEC_MII_DATA); 2449 } 2450 2451 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2452 2453 /* Clear any pending transaction complete indication */ 2454 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2455 2456 fep->mii_bus = mdiobus_alloc(); 2457 if (fep->mii_bus == NULL) { 2458 err = -ENOMEM; 2459 goto err_out; 2460 } 2461 2462 fep->mii_bus->name = "fec_enet_mii_bus"; 2463 fep->mii_bus->read = fec_enet_mdio_read_c22; 2464 fep->mii_bus->write = fec_enet_mdio_write_c22; 2465 if (fep->quirks & FEC_QUIRK_HAS_MDIO_C45) { 2466 fep->mii_bus->read_c45 = fec_enet_mdio_read_c45; 2467 fep->mii_bus->write_c45 = fec_enet_mdio_write_c45; 2468 } 2469 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2470 pdev->name, fep->dev_id + 1); 2471 fep->mii_bus->priv = fep; 2472 fep->mii_bus->parent = &pdev->dev; 2473 2474 err = of_mdiobus_register(fep->mii_bus, node); 2475 if (err) 2476 goto err_out_free_mdiobus; 2477 of_node_put(node); 2478 2479 mii_cnt++; 2480 2481 /* save fec0 mii_bus */ 2482 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2483 fec0_mii_bus = fep->mii_bus; 2484 2485 return 0; 2486 2487 err_out_free_mdiobus: 2488 mdiobus_free(fep->mii_bus); 2489 err_out: 2490 of_node_put(node); 2491 return err; 2492 } 2493 2494 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2495 { 2496 if (--mii_cnt == 0) { 2497 mdiobus_unregister(fep->mii_bus); 2498 mdiobus_free(fep->mii_bus); 2499 } 2500 } 2501 2502 static void fec_enet_get_drvinfo(struct net_device *ndev, 2503 struct ethtool_drvinfo *info) 2504 { 2505 struct fec_enet_private *fep = netdev_priv(ndev); 2506 2507 strscpy(info->driver, fep->pdev->dev.driver->name, 2508 sizeof(info->driver)); 2509 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2510 } 2511 2512 static int fec_enet_get_regs_len(struct net_device *ndev) 2513 { 2514 struct fec_enet_private *fep = netdev_priv(ndev); 2515 struct resource *r; 2516 int s = 0; 2517 2518 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2519 if (r) 2520 s = resource_size(r); 2521 2522 return s; 2523 } 2524 2525 /* List of registers that can be safety be read to dump them with ethtool */ 2526 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2527 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2528 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2529 static __u32 fec_enet_register_version = 2; 2530 static u32 fec_enet_register_offset[] = { 2531 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2532 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2533 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2534 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2535 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2536 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2537 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2538 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2539 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2540 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2541 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2542 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2543 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2544 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2545 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2546 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2547 RMON_T_P_GTE2048, RMON_T_OCTETS, 2548 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2549 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2550 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2551 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2552 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2553 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2554 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2555 RMON_R_P_GTE2048, RMON_R_OCTETS, 2556 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2557 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2558 }; 2559 /* for i.MX6ul */ 2560 static u32 fec_enet_register_offset_6ul[] = { 2561 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2562 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2563 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_RXIC0, 2564 FEC_HASH_TABLE_HIGH, FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, 2565 FEC_GRP_HASH_TABLE_LOW, FEC_X_WMRK, FEC_R_DES_START_0, 2566 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2567 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, 2568 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2569 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2570 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2571 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2572 RMON_T_P_GTE2048, RMON_T_OCTETS, 2573 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2574 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2575 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2576 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2577 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2578 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2579 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2580 RMON_R_P_GTE2048, RMON_R_OCTETS, 2581 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2582 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2583 }; 2584 #else 2585 static __u32 fec_enet_register_version = 1; 2586 static u32 fec_enet_register_offset[] = { 2587 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2588 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2589 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2590 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2591 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2592 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2593 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2594 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2595 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2596 }; 2597 #endif 2598 2599 static void fec_enet_get_regs(struct net_device *ndev, 2600 struct ethtool_regs *regs, void *regbuf) 2601 { 2602 struct fec_enet_private *fep = netdev_priv(ndev); 2603 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2604 struct device *dev = &fep->pdev->dev; 2605 u32 *buf = (u32 *)regbuf; 2606 u32 i, off; 2607 int ret; 2608 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2609 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2610 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2611 u32 *reg_list; 2612 u32 reg_cnt; 2613 2614 if (!of_machine_is_compatible("fsl,imx6ul")) { 2615 reg_list = fec_enet_register_offset; 2616 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2617 } else { 2618 reg_list = fec_enet_register_offset_6ul; 2619 reg_cnt = ARRAY_SIZE(fec_enet_register_offset_6ul); 2620 } 2621 #else 2622 /* coldfire */ 2623 static u32 *reg_list = fec_enet_register_offset; 2624 static const u32 reg_cnt = ARRAY_SIZE(fec_enet_register_offset); 2625 #endif 2626 ret = pm_runtime_resume_and_get(dev); 2627 if (ret < 0) 2628 return; 2629 2630 regs->version = fec_enet_register_version; 2631 2632 memset(buf, 0, regs->len); 2633 2634 for (i = 0; i < reg_cnt; i++) { 2635 off = reg_list[i]; 2636 2637 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2638 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2639 continue; 2640 2641 off >>= 2; 2642 buf[off] = readl(&theregs[off]); 2643 } 2644 2645 pm_runtime_mark_last_busy(dev); 2646 pm_runtime_put_autosuspend(dev); 2647 } 2648 2649 static int fec_enet_get_ts_info(struct net_device *ndev, 2650 struct ethtool_ts_info *info) 2651 { 2652 struct fec_enet_private *fep = netdev_priv(ndev); 2653 2654 if (fep->bufdesc_ex) { 2655 2656 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2657 SOF_TIMESTAMPING_RX_SOFTWARE | 2658 SOF_TIMESTAMPING_SOFTWARE | 2659 SOF_TIMESTAMPING_TX_HARDWARE | 2660 SOF_TIMESTAMPING_RX_HARDWARE | 2661 SOF_TIMESTAMPING_RAW_HARDWARE; 2662 if (fep->ptp_clock) 2663 info->phc_index = ptp_clock_index(fep->ptp_clock); 2664 else 2665 info->phc_index = -1; 2666 2667 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2668 (1 << HWTSTAMP_TX_ON); 2669 2670 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2671 (1 << HWTSTAMP_FILTER_ALL); 2672 return 0; 2673 } else { 2674 return ethtool_op_get_ts_info(ndev, info); 2675 } 2676 } 2677 2678 #if !defined(CONFIG_M5272) 2679 2680 static void fec_enet_get_pauseparam(struct net_device *ndev, 2681 struct ethtool_pauseparam *pause) 2682 { 2683 struct fec_enet_private *fep = netdev_priv(ndev); 2684 2685 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2686 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2687 pause->rx_pause = pause->tx_pause; 2688 } 2689 2690 static int fec_enet_set_pauseparam(struct net_device *ndev, 2691 struct ethtool_pauseparam *pause) 2692 { 2693 struct fec_enet_private *fep = netdev_priv(ndev); 2694 2695 if (!ndev->phydev) 2696 return -ENODEV; 2697 2698 if (pause->tx_pause != pause->rx_pause) { 2699 netdev_info(ndev, 2700 "hardware only support enable/disable both tx and rx"); 2701 return -EINVAL; 2702 } 2703 2704 fep->pause_flag = 0; 2705 2706 /* tx pause must be same as rx pause */ 2707 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2708 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2709 2710 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2711 pause->autoneg); 2712 2713 if (pause->autoneg) { 2714 if (netif_running(ndev)) 2715 fec_stop(ndev); 2716 phy_start_aneg(ndev->phydev); 2717 } 2718 if (netif_running(ndev)) { 2719 napi_disable(&fep->napi); 2720 netif_tx_lock_bh(ndev); 2721 fec_restart(ndev); 2722 netif_tx_wake_all_queues(ndev); 2723 netif_tx_unlock_bh(ndev); 2724 napi_enable(&fep->napi); 2725 } 2726 2727 return 0; 2728 } 2729 2730 static const struct fec_stat { 2731 char name[ETH_GSTRING_LEN]; 2732 u16 offset; 2733 } fec_stats[] = { 2734 /* RMON TX */ 2735 { "tx_dropped", RMON_T_DROP }, 2736 { "tx_packets", RMON_T_PACKETS }, 2737 { "tx_broadcast", RMON_T_BC_PKT }, 2738 { "tx_multicast", RMON_T_MC_PKT }, 2739 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2740 { "tx_undersize", RMON_T_UNDERSIZE }, 2741 { "tx_oversize", RMON_T_OVERSIZE }, 2742 { "tx_fragment", RMON_T_FRAG }, 2743 { "tx_jabber", RMON_T_JAB }, 2744 { "tx_collision", RMON_T_COL }, 2745 { "tx_64byte", RMON_T_P64 }, 2746 { "tx_65to127byte", RMON_T_P65TO127 }, 2747 { "tx_128to255byte", RMON_T_P128TO255 }, 2748 { "tx_256to511byte", RMON_T_P256TO511 }, 2749 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2750 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2751 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2752 { "tx_octets", RMON_T_OCTETS }, 2753 2754 /* IEEE TX */ 2755 { "IEEE_tx_drop", IEEE_T_DROP }, 2756 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2757 { "IEEE_tx_1col", IEEE_T_1COL }, 2758 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2759 { "IEEE_tx_def", IEEE_T_DEF }, 2760 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2761 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2762 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2763 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2764 { "IEEE_tx_sqe", IEEE_T_SQE }, 2765 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2766 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2767 2768 /* RMON RX */ 2769 { "rx_packets", RMON_R_PACKETS }, 2770 { "rx_broadcast", RMON_R_BC_PKT }, 2771 { "rx_multicast", RMON_R_MC_PKT }, 2772 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2773 { "rx_undersize", RMON_R_UNDERSIZE }, 2774 { "rx_oversize", RMON_R_OVERSIZE }, 2775 { "rx_fragment", RMON_R_FRAG }, 2776 { "rx_jabber", RMON_R_JAB }, 2777 { "rx_64byte", RMON_R_P64 }, 2778 { "rx_65to127byte", RMON_R_P65TO127 }, 2779 { "rx_128to255byte", RMON_R_P128TO255 }, 2780 { "rx_256to511byte", RMON_R_P256TO511 }, 2781 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2782 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2783 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2784 { "rx_octets", RMON_R_OCTETS }, 2785 2786 /* IEEE RX */ 2787 { "IEEE_rx_drop", IEEE_R_DROP }, 2788 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2789 { "IEEE_rx_crc", IEEE_R_CRC }, 2790 { "IEEE_rx_align", IEEE_R_ALIGN }, 2791 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2792 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2793 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2794 }; 2795 2796 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2797 2798 static const char *fec_xdp_stat_strs[XDP_STATS_TOTAL] = { 2799 "rx_xdp_redirect", /* RX_XDP_REDIRECT = 0, */ 2800 "rx_xdp_pass", /* RX_XDP_PASS, */ 2801 "rx_xdp_drop", /* RX_XDP_DROP, */ 2802 "rx_xdp_tx", /* RX_XDP_TX, */ 2803 "rx_xdp_tx_errors", /* RX_XDP_TX_ERRORS, */ 2804 "tx_xdp_xmit", /* TX_XDP_XMIT, */ 2805 "tx_xdp_xmit_errors", /* TX_XDP_XMIT_ERRORS, */ 2806 }; 2807 2808 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2809 { 2810 struct fec_enet_private *fep = netdev_priv(dev); 2811 int i; 2812 2813 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2814 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2815 } 2816 2817 static void fec_enet_get_xdp_stats(struct fec_enet_private *fep, u64 *data) 2818 { 2819 u64 xdp_stats[XDP_STATS_TOTAL] = { 0 }; 2820 struct fec_enet_priv_rx_q *rxq; 2821 int i, j; 2822 2823 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2824 rxq = fep->rx_queue[i]; 2825 2826 for (j = 0; j < XDP_STATS_TOTAL; j++) 2827 xdp_stats[j] += rxq->stats[j]; 2828 } 2829 2830 memcpy(data, xdp_stats, sizeof(xdp_stats)); 2831 } 2832 2833 static void fec_enet_page_pool_stats(struct fec_enet_private *fep, u64 *data) 2834 { 2835 #ifdef CONFIG_PAGE_POOL_STATS 2836 struct page_pool_stats stats = {}; 2837 struct fec_enet_priv_rx_q *rxq; 2838 int i; 2839 2840 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2841 rxq = fep->rx_queue[i]; 2842 2843 if (!rxq->page_pool) 2844 continue; 2845 2846 page_pool_get_stats(rxq->page_pool, &stats); 2847 } 2848 2849 page_pool_ethtool_stats_get(data, &stats); 2850 #endif 2851 } 2852 2853 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2854 struct ethtool_stats *stats, u64 *data) 2855 { 2856 struct fec_enet_private *fep = netdev_priv(dev); 2857 2858 if (netif_running(dev)) 2859 fec_enet_update_ethtool_stats(dev); 2860 2861 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2862 data += FEC_STATS_SIZE / sizeof(u64); 2863 2864 fec_enet_get_xdp_stats(fep, data); 2865 data += XDP_STATS_TOTAL; 2866 2867 fec_enet_page_pool_stats(fep, data); 2868 } 2869 2870 static void fec_enet_get_strings(struct net_device *netdev, 2871 u32 stringset, u8 *data) 2872 { 2873 int i; 2874 switch (stringset) { 2875 case ETH_SS_STATS: 2876 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) { 2877 memcpy(data, fec_stats[i].name, ETH_GSTRING_LEN); 2878 data += ETH_GSTRING_LEN; 2879 } 2880 for (i = 0; i < ARRAY_SIZE(fec_xdp_stat_strs); i++) { 2881 strncpy(data, fec_xdp_stat_strs[i], ETH_GSTRING_LEN); 2882 data += ETH_GSTRING_LEN; 2883 } 2884 page_pool_ethtool_stats_get_strings(data); 2885 2886 break; 2887 case ETH_SS_TEST: 2888 net_selftest_get_strings(data); 2889 break; 2890 } 2891 } 2892 2893 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2894 { 2895 int count; 2896 2897 switch (sset) { 2898 case ETH_SS_STATS: 2899 count = ARRAY_SIZE(fec_stats) + XDP_STATS_TOTAL; 2900 count += page_pool_ethtool_stats_get_count(); 2901 return count; 2902 2903 case ETH_SS_TEST: 2904 return net_selftest_get_count(); 2905 default: 2906 return -EOPNOTSUPP; 2907 } 2908 } 2909 2910 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2911 { 2912 struct fec_enet_private *fep = netdev_priv(dev); 2913 struct fec_enet_priv_rx_q *rxq; 2914 int i, j; 2915 2916 /* Disable MIB statistics counters */ 2917 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2918 2919 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2920 writel(0, fep->hwp + fec_stats[i].offset); 2921 2922 for (i = fep->num_rx_queues - 1; i >= 0; i--) { 2923 rxq = fep->rx_queue[i]; 2924 for (j = 0; j < XDP_STATS_TOTAL; j++) 2925 rxq->stats[j] = 0; 2926 } 2927 2928 /* Don't disable MIB statistics counters */ 2929 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2930 } 2931 2932 #else /* !defined(CONFIG_M5272) */ 2933 #define FEC_STATS_SIZE 0 2934 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2935 { 2936 } 2937 2938 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2939 { 2940 } 2941 #endif /* !defined(CONFIG_M5272) */ 2942 2943 /* ITR clock source is enet system clock (clk_ahb). 2944 * TCTT unit is cycle_ns * 64 cycle 2945 * So, the ICTT value = X us / (cycle_ns * 64) 2946 */ 2947 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2948 { 2949 struct fec_enet_private *fep = netdev_priv(ndev); 2950 2951 return us * (fep->itr_clk_rate / 64000) / 1000; 2952 } 2953 2954 /* Set threshold for interrupt coalescing */ 2955 static void fec_enet_itr_coal_set(struct net_device *ndev) 2956 { 2957 struct fec_enet_private *fep = netdev_priv(ndev); 2958 int rx_itr, tx_itr; 2959 2960 /* Must be greater than zero to avoid unpredictable behavior */ 2961 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2962 !fep->tx_time_itr || !fep->tx_pkts_itr) 2963 return; 2964 2965 /* Select enet system clock as Interrupt Coalescing 2966 * timer Clock Source 2967 */ 2968 rx_itr = FEC_ITR_CLK_SEL; 2969 tx_itr = FEC_ITR_CLK_SEL; 2970 2971 /* set ICFT and ICTT */ 2972 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2973 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2974 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2975 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2976 2977 rx_itr |= FEC_ITR_EN; 2978 tx_itr |= FEC_ITR_EN; 2979 2980 writel(tx_itr, fep->hwp + FEC_TXIC0); 2981 writel(rx_itr, fep->hwp + FEC_RXIC0); 2982 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 2983 writel(tx_itr, fep->hwp + FEC_TXIC1); 2984 writel(rx_itr, fep->hwp + FEC_RXIC1); 2985 writel(tx_itr, fep->hwp + FEC_TXIC2); 2986 writel(rx_itr, fep->hwp + FEC_RXIC2); 2987 } 2988 } 2989 2990 static int fec_enet_get_coalesce(struct net_device *ndev, 2991 struct ethtool_coalesce *ec, 2992 struct kernel_ethtool_coalesce *kernel_coal, 2993 struct netlink_ext_ack *extack) 2994 { 2995 struct fec_enet_private *fep = netdev_priv(ndev); 2996 2997 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2998 return -EOPNOTSUPP; 2999 3000 ec->rx_coalesce_usecs = fep->rx_time_itr; 3001 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 3002 3003 ec->tx_coalesce_usecs = fep->tx_time_itr; 3004 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 3005 3006 return 0; 3007 } 3008 3009 static int fec_enet_set_coalesce(struct net_device *ndev, 3010 struct ethtool_coalesce *ec, 3011 struct kernel_ethtool_coalesce *kernel_coal, 3012 struct netlink_ext_ack *extack) 3013 { 3014 struct fec_enet_private *fep = netdev_priv(ndev); 3015 struct device *dev = &fep->pdev->dev; 3016 unsigned int cycle; 3017 3018 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 3019 return -EOPNOTSUPP; 3020 3021 if (ec->rx_max_coalesced_frames > 255) { 3022 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 3023 return -EINVAL; 3024 } 3025 3026 if (ec->tx_max_coalesced_frames > 255) { 3027 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 3028 return -EINVAL; 3029 } 3030 3031 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 3032 if (cycle > 0xFFFF) { 3033 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 3034 return -EINVAL; 3035 } 3036 3037 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 3038 if (cycle > 0xFFFF) { 3039 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 3040 return -EINVAL; 3041 } 3042 3043 fep->rx_time_itr = ec->rx_coalesce_usecs; 3044 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 3045 3046 fep->tx_time_itr = ec->tx_coalesce_usecs; 3047 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 3048 3049 fec_enet_itr_coal_set(ndev); 3050 3051 return 0; 3052 } 3053 3054 static int fec_enet_get_tunable(struct net_device *netdev, 3055 const struct ethtool_tunable *tuna, 3056 void *data) 3057 { 3058 struct fec_enet_private *fep = netdev_priv(netdev); 3059 int ret = 0; 3060 3061 switch (tuna->id) { 3062 case ETHTOOL_RX_COPYBREAK: 3063 *(u32 *)data = fep->rx_copybreak; 3064 break; 3065 default: 3066 ret = -EINVAL; 3067 break; 3068 } 3069 3070 return ret; 3071 } 3072 3073 static int fec_enet_set_tunable(struct net_device *netdev, 3074 const struct ethtool_tunable *tuna, 3075 const void *data) 3076 { 3077 struct fec_enet_private *fep = netdev_priv(netdev); 3078 int ret = 0; 3079 3080 switch (tuna->id) { 3081 case ETHTOOL_RX_COPYBREAK: 3082 fep->rx_copybreak = *(u32 *)data; 3083 break; 3084 default: 3085 ret = -EINVAL; 3086 break; 3087 } 3088 3089 return ret; 3090 } 3091 3092 /* LPI Sleep Ts count base on tx clk (clk_ref). 3093 * The lpi sleep cnt value = X us / (cycle_ns). 3094 */ 3095 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 3096 { 3097 struct fec_enet_private *fep = netdev_priv(ndev); 3098 3099 return us * (fep->clk_ref_rate / 1000) / 1000; 3100 } 3101 3102 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 3103 { 3104 struct fec_enet_private *fep = netdev_priv(ndev); 3105 struct ethtool_eee *p = &fep->eee; 3106 unsigned int sleep_cycle, wake_cycle; 3107 int ret = 0; 3108 3109 if (enable) { 3110 ret = phy_init_eee(ndev->phydev, false); 3111 if (ret) 3112 return ret; 3113 3114 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 3115 wake_cycle = sleep_cycle; 3116 } else { 3117 sleep_cycle = 0; 3118 wake_cycle = 0; 3119 } 3120 3121 p->tx_lpi_enabled = enable; 3122 p->eee_enabled = enable; 3123 p->eee_active = enable; 3124 3125 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 3126 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 3127 3128 return 0; 3129 } 3130 3131 static int 3132 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 3133 { 3134 struct fec_enet_private *fep = netdev_priv(ndev); 3135 struct ethtool_eee *p = &fep->eee; 3136 3137 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3138 return -EOPNOTSUPP; 3139 3140 if (!netif_running(ndev)) 3141 return -ENETDOWN; 3142 3143 edata->eee_enabled = p->eee_enabled; 3144 edata->eee_active = p->eee_active; 3145 edata->tx_lpi_timer = p->tx_lpi_timer; 3146 edata->tx_lpi_enabled = p->tx_lpi_enabled; 3147 3148 return phy_ethtool_get_eee(ndev->phydev, edata); 3149 } 3150 3151 static int 3152 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 3153 { 3154 struct fec_enet_private *fep = netdev_priv(ndev); 3155 struct ethtool_eee *p = &fep->eee; 3156 int ret = 0; 3157 3158 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 3159 return -EOPNOTSUPP; 3160 3161 if (!netif_running(ndev)) 3162 return -ENETDOWN; 3163 3164 p->tx_lpi_timer = edata->tx_lpi_timer; 3165 3166 if (!edata->eee_enabled || !edata->tx_lpi_enabled || 3167 !edata->tx_lpi_timer) 3168 ret = fec_enet_eee_mode_set(ndev, false); 3169 else 3170 ret = fec_enet_eee_mode_set(ndev, true); 3171 3172 if (ret) 3173 return ret; 3174 3175 return phy_ethtool_set_eee(ndev->phydev, edata); 3176 } 3177 3178 static void 3179 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3180 { 3181 struct fec_enet_private *fep = netdev_priv(ndev); 3182 3183 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 3184 wol->supported = WAKE_MAGIC; 3185 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 3186 } else { 3187 wol->supported = wol->wolopts = 0; 3188 } 3189 } 3190 3191 static int 3192 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 3193 { 3194 struct fec_enet_private *fep = netdev_priv(ndev); 3195 3196 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 3197 return -EINVAL; 3198 3199 if (wol->wolopts & ~WAKE_MAGIC) 3200 return -EINVAL; 3201 3202 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 3203 if (device_may_wakeup(&ndev->dev)) 3204 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 3205 else 3206 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 3207 3208 return 0; 3209 } 3210 3211 static const struct ethtool_ops fec_enet_ethtool_ops = { 3212 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 3213 ETHTOOL_COALESCE_MAX_FRAMES, 3214 .get_drvinfo = fec_enet_get_drvinfo, 3215 .get_regs_len = fec_enet_get_regs_len, 3216 .get_regs = fec_enet_get_regs, 3217 .nway_reset = phy_ethtool_nway_reset, 3218 .get_link = ethtool_op_get_link, 3219 .get_coalesce = fec_enet_get_coalesce, 3220 .set_coalesce = fec_enet_set_coalesce, 3221 #ifndef CONFIG_M5272 3222 .get_pauseparam = fec_enet_get_pauseparam, 3223 .set_pauseparam = fec_enet_set_pauseparam, 3224 .get_strings = fec_enet_get_strings, 3225 .get_ethtool_stats = fec_enet_get_ethtool_stats, 3226 .get_sset_count = fec_enet_get_sset_count, 3227 #endif 3228 .get_ts_info = fec_enet_get_ts_info, 3229 .get_tunable = fec_enet_get_tunable, 3230 .set_tunable = fec_enet_set_tunable, 3231 .get_wol = fec_enet_get_wol, 3232 .set_wol = fec_enet_set_wol, 3233 .get_eee = fec_enet_get_eee, 3234 .set_eee = fec_enet_set_eee, 3235 .get_link_ksettings = phy_ethtool_get_link_ksettings, 3236 .set_link_ksettings = phy_ethtool_set_link_ksettings, 3237 .self_test = net_selftest, 3238 }; 3239 3240 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 3241 { 3242 struct fec_enet_private *fep = netdev_priv(ndev); 3243 struct phy_device *phydev = ndev->phydev; 3244 3245 if (!netif_running(ndev)) 3246 return -EINVAL; 3247 3248 if (!phydev) 3249 return -ENODEV; 3250 3251 if (fep->bufdesc_ex) { 3252 bool use_fec_hwts = !phy_has_hwtstamp(phydev); 3253 3254 if (cmd == SIOCSHWTSTAMP) { 3255 if (use_fec_hwts) 3256 return fec_ptp_set(ndev, rq); 3257 fec_ptp_disable_hwts(ndev); 3258 } else if (cmd == SIOCGHWTSTAMP) { 3259 if (use_fec_hwts) 3260 return fec_ptp_get(ndev, rq); 3261 } 3262 } 3263 3264 return phy_mii_ioctl(phydev, rq, cmd); 3265 } 3266 3267 static void fec_enet_free_buffers(struct net_device *ndev) 3268 { 3269 struct fec_enet_private *fep = netdev_priv(ndev); 3270 unsigned int i; 3271 struct sk_buff *skb; 3272 struct fec_enet_priv_tx_q *txq; 3273 struct fec_enet_priv_rx_q *rxq; 3274 unsigned int q; 3275 3276 for (q = 0; q < fep->num_rx_queues; q++) { 3277 rxq = fep->rx_queue[q]; 3278 for (i = 0; i < rxq->bd.ring_size; i++) 3279 page_pool_put_full_page(rxq->page_pool, rxq->rx_skb_info[i].page, false); 3280 3281 for (i = 0; i < XDP_STATS_TOTAL; i++) 3282 rxq->stats[i] = 0; 3283 3284 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 3285 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3286 page_pool_destroy(rxq->page_pool); 3287 rxq->page_pool = NULL; 3288 } 3289 3290 for (q = 0; q < fep->num_tx_queues; q++) { 3291 txq = fep->tx_queue[q]; 3292 for (i = 0; i < txq->bd.ring_size; i++) { 3293 kfree(txq->tx_bounce[i]); 3294 txq->tx_bounce[i] = NULL; 3295 3296 if (txq->tx_buf[i].type == FEC_TXBUF_T_SKB) { 3297 skb = txq->tx_buf[i].skb; 3298 txq->tx_buf[i].skb = NULL; 3299 dev_kfree_skb(skb); 3300 } else { 3301 if (txq->tx_buf[i].xdp) { 3302 xdp_return_frame(txq->tx_buf[i].xdp); 3303 txq->tx_buf[i].xdp = NULL; 3304 } 3305 3306 txq->tx_buf[i].type = FEC_TXBUF_T_SKB; 3307 } 3308 } 3309 } 3310 } 3311 3312 static void fec_enet_free_queue(struct net_device *ndev) 3313 { 3314 struct fec_enet_private *fep = netdev_priv(ndev); 3315 int i; 3316 struct fec_enet_priv_tx_q *txq; 3317 3318 for (i = 0; i < fep->num_tx_queues; i++) 3319 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3320 txq = fep->tx_queue[i]; 3321 dma_free_coherent(&fep->pdev->dev, 3322 txq->bd.ring_size * TSO_HEADER_SIZE, 3323 txq->tso_hdrs, 3324 txq->tso_hdrs_dma); 3325 } 3326 3327 for (i = 0; i < fep->num_rx_queues; i++) 3328 kfree(fep->rx_queue[i]); 3329 for (i = 0; i < fep->num_tx_queues; i++) 3330 kfree(fep->tx_queue[i]); 3331 } 3332 3333 static int fec_enet_alloc_queue(struct net_device *ndev) 3334 { 3335 struct fec_enet_private *fep = netdev_priv(ndev); 3336 int i; 3337 int ret = 0; 3338 struct fec_enet_priv_tx_q *txq; 3339 3340 for (i = 0; i < fep->num_tx_queues; i++) { 3341 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3342 if (!txq) { 3343 ret = -ENOMEM; 3344 goto alloc_failed; 3345 } 3346 3347 fep->tx_queue[i] = txq; 3348 txq->bd.ring_size = TX_RING_SIZE; 3349 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3350 3351 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3352 txq->tx_wake_threshold = FEC_MAX_SKB_DESCS + 2 * MAX_SKB_FRAGS; 3353 3354 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 3355 txq->bd.ring_size * TSO_HEADER_SIZE, 3356 &txq->tso_hdrs_dma, 3357 GFP_KERNEL); 3358 if (!txq->tso_hdrs) { 3359 ret = -ENOMEM; 3360 goto alloc_failed; 3361 } 3362 } 3363 3364 for (i = 0; i < fep->num_rx_queues; i++) { 3365 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3366 GFP_KERNEL); 3367 if (!fep->rx_queue[i]) { 3368 ret = -ENOMEM; 3369 goto alloc_failed; 3370 } 3371 3372 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3373 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3374 } 3375 return ret; 3376 3377 alloc_failed: 3378 fec_enet_free_queue(ndev); 3379 return ret; 3380 } 3381 3382 static int 3383 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3384 { 3385 struct fec_enet_private *fep = netdev_priv(ndev); 3386 struct fec_enet_priv_rx_q *rxq; 3387 dma_addr_t phys_addr; 3388 struct bufdesc *bdp; 3389 struct page *page; 3390 int i, err; 3391 3392 rxq = fep->rx_queue[queue]; 3393 bdp = rxq->bd.base; 3394 3395 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size); 3396 if (err < 0) { 3397 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err); 3398 return err; 3399 } 3400 3401 for (i = 0; i < rxq->bd.ring_size; i++) { 3402 page = page_pool_dev_alloc_pages(rxq->page_pool); 3403 if (!page) 3404 goto err_alloc; 3405 3406 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM; 3407 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 3408 3409 rxq->rx_skb_info[i].page = page; 3410 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM; 3411 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3412 3413 if (fep->bufdesc_ex) { 3414 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3415 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3416 } 3417 3418 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3419 } 3420 3421 /* Set the last buffer to wrap. */ 3422 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3423 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3424 return 0; 3425 3426 err_alloc: 3427 fec_enet_free_buffers(ndev); 3428 return -ENOMEM; 3429 } 3430 3431 static int 3432 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3433 { 3434 struct fec_enet_private *fep = netdev_priv(ndev); 3435 unsigned int i; 3436 struct bufdesc *bdp; 3437 struct fec_enet_priv_tx_q *txq; 3438 3439 txq = fep->tx_queue[queue]; 3440 bdp = txq->bd.base; 3441 for (i = 0; i < txq->bd.ring_size; i++) { 3442 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3443 if (!txq->tx_bounce[i]) 3444 goto err_alloc; 3445 3446 bdp->cbd_sc = cpu_to_fec16(0); 3447 bdp->cbd_bufaddr = cpu_to_fec32(0); 3448 3449 if (fep->bufdesc_ex) { 3450 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3451 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3452 } 3453 3454 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3455 } 3456 3457 /* Set the last buffer to wrap. */ 3458 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3459 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3460 3461 return 0; 3462 3463 err_alloc: 3464 fec_enet_free_buffers(ndev); 3465 return -ENOMEM; 3466 } 3467 3468 static int fec_enet_alloc_buffers(struct net_device *ndev) 3469 { 3470 struct fec_enet_private *fep = netdev_priv(ndev); 3471 unsigned int i; 3472 3473 for (i = 0; i < fep->num_rx_queues; i++) 3474 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3475 return -ENOMEM; 3476 3477 for (i = 0; i < fep->num_tx_queues; i++) 3478 if (fec_enet_alloc_txq_buffers(ndev, i)) 3479 return -ENOMEM; 3480 return 0; 3481 } 3482 3483 static int 3484 fec_enet_open(struct net_device *ndev) 3485 { 3486 struct fec_enet_private *fep = netdev_priv(ndev); 3487 int ret; 3488 bool reset_again; 3489 3490 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3491 if (ret < 0) 3492 return ret; 3493 3494 pinctrl_pm_select_default_state(&fep->pdev->dev); 3495 ret = fec_enet_clk_enable(ndev, true); 3496 if (ret) 3497 goto clk_enable; 3498 3499 /* During the first fec_enet_open call the PHY isn't probed at this 3500 * point. Therefore the phy_reset_after_clk_enable() call within 3501 * fec_enet_clk_enable() fails. As we need this reset in order to be 3502 * sure the PHY is working correctly we check if we need to reset again 3503 * later when the PHY is probed 3504 */ 3505 if (ndev->phydev && ndev->phydev->drv) 3506 reset_again = false; 3507 else 3508 reset_again = true; 3509 3510 /* I should reset the ring buffers here, but I don't yet know 3511 * a simple way to do that. 3512 */ 3513 3514 ret = fec_enet_alloc_buffers(ndev); 3515 if (ret) 3516 goto err_enet_alloc; 3517 3518 /* Init MAC prior to mii bus probe */ 3519 fec_restart(ndev); 3520 3521 /* Call phy_reset_after_clk_enable() again if it failed during 3522 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3523 */ 3524 if (reset_again) 3525 fec_enet_phy_reset_after_clk_enable(ndev); 3526 3527 /* Probe and connect to PHY when open the interface */ 3528 ret = fec_enet_mii_probe(ndev); 3529 if (ret) 3530 goto err_enet_mii_probe; 3531 3532 if (fep->quirks & FEC_QUIRK_ERR006687) 3533 imx6q_cpuidle_fec_irqs_used(); 3534 3535 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3536 cpu_latency_qos_add_request(&fep->pm_qos_req, 0); 3537 3538 napi_enable(&fep->napi); 3539 phy_start(ndev->phydev); 3540 netif_tx_start_all_queues(ndev); 3541 3542 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3543 FEC_WOL_FLAG_ENABLE); 3544 3545 return 0; 3546 3547 err_enet_mii_probe: 3548 fec_enet_free_buffers(ndev); 3549 err_enet_alloc: 3550 fec_enet_clk_enable(ndev, false); 3551 clk_enable: 3552 pm_runtime_mark_last_busy(&fep->pdev->dev); 3553 pm_runtime_put_autosuspend(&fep->pdev->dev); 3554 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3555 return ret; 3556 } 3557 3558 static int 3559 fec_enet_close(struct net_device *ndev) 3560 { 3561 struct fec_enet_private *fep = netdev_priv(ndev); 3562 3563 phy_stop(ndev->phydev); 3564 3565 if (netif_device_present(ndev)) { 3566 napi_disable(&fep->napi); 3567 netif_tx_disable(ndev); 3568 fec_stop(ndev); 3569 } 3570 3571 phy_disconnect(ndev->phydev); 3572 3573 if (fep->quirks & FEC_QUIRK_ERR006687) 3574 imx6q_cpuidle_fec_irqs_unused(); 3575 3576 fec_enet_update_ethtool_stats(ndev); 3577 3578 fec_enet_clk_enable(ndev, false); 3579 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3580 cpu_latency_qos_remove_request(&fep->pm_qos_req); 3581 3582 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3583 pm_runtime_mark_last_busy(&fep->pdev->dev); 3584 pm_runtime_put_autosuspend(&fep->pdev->dev); 3585 3586 fec_enet_free_buffers(ndev); 3587 3588 return 0; 3589 } 3590 3591 /* Set or clear the multicast filter for this adaptor. 3592 * Skeleton taken from sunlance driver. 3593 * The CPM Ethernet implementation allows Multicast as well as individual 3594 * MAC address filtering. Some of the drivers check to make sure it is 3595 * a group multicast address, and discard those that are not. I guess I 3596 * will do the same for now, but just remove the test if you want 3597 * individual filtering as well (do the upper net layers want or support 3598 * this kind of feature?). 3599 */ 3600 3601 #define FEC_HASH_BITS 6 /* #bits in hash */ 3602 3603 static void set_multicast_list(struct net_device *ndev) 3604 { 3605 struct fec_enet_private *fep = netdev_priv(ndev); 3606 struct netdev_hw_addr *ha; 3607 unsigned int crc, tmp; 3608 unsigned char hash; 3609 unsigned int hash_high = 0, hash_low = 0; 3610 3611 if (ndev->flags & IFF_PROMISC) { 3612 tmp = readl(fep->hwp + FEC_R_CNTRL); 3613 tmp |= 0x8; 3614 writel(tmp, fep->hwp + FEC_R_CNTRL); 3615 return; 3616 } 3617 3618 tmp = readl(fep->hwp + FEC_R_CNTRL); 3619 tmp &= ~0x8; 3620 writel(tmp, fep->hwp + FEC_R_CNTRL); 3621 3622 if (ndev->flags & IFF_ALLMULTI) { 3623 /* Catch all multicast addresses, so set the 3624 * filter to all 1's 3625 */ 3626 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3627 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3628 3629 return; 3630 } 3631 3632 /* Add the addresses in hash register */ 3633 netdev_for_each_mc_addr(ha, ndev) { 3634 /* calculate crc32 value of mac address */ 3635 crc = ether_crc_le(ndev->addr_len, ha->addr); 3636 3637 /* only upper 6 bits (FEC_HASH_BITS) are used 3638 * which point to specific bit in the hash registers 3639 */ 3640 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3641 3642 if (hash > 31) 3643 hash_high |= 1 << (hash - 32); 3644 else 3645 hash_low |= 1 << hash; 3646 } 3647 3648 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3649 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3650 } 3651 3652 /* Set a MAC change in hardware. */ 3653 static int 3654 fec_set_mac_address(struct net_device *ndev, void *p) 3655 { 3656 struct fec_enet_private *fep = netdev_priv(ndev); 3657 struct sockaddr *addr = p; 3658 3659 if (addr) { 3660 if (!is_valid_ether_addr(addr->sa_data)) 3661 return -EADDRNOTAVAIL; 3662 eth_hw_addr_set(ndev, addr->sa_data); 3663 } 3664 3665 /* Add netif status check here to avoid system hang in below case: 3666 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3667 * After ethx down, fec all clocks are gated off and then register 3668 * access causes system hang. 3669 */ 3670 if (!netif_running(ndev)) 3671 return 0; 3672 3673 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3674 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3675 fep->hwp + FEC_ADDR_LOW); 3676 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3677 fep->hwp + FEC_ADDR_HIGH); 3678 return 0; 3679 } 3680 3681 #ifdef CONFIG_NET_POLL_CONTROLLER 3682 /** 3683 * fec_poll_controller - FEC Poll controller function 3684 * @dev: The FEC network adapter 3685 * 3686 * Polled functionality used by netconsole and others in non interrupt mode 3687 * 3688 */ 3689 static void fec_poll_controller(struct net_device *dev) 3690 { 3691 int i; 3692 struct fec_enet_private *fep = netdev_priv(dev); 3693 3694 for (i = 0; i < FEC_IRQ_NUM; i++) { 3695 if (fep->irq[i] > 0) { 3696 disable_irq(fep->irq[i]); 3697 fec_enet_interrupt(fep->irq[i], dev); 3698 enable_irq(fep->irq[i]); 3699 } 3700 } 3701 } 3702 #endif 3703 3704 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3705 netdev_features_t features) 3706 { 3707 struct fec_enet_private *fep = netdev_priv(netdev); 3708 netdev_features_t changed = features ^ netdev->features; 3709 3710 netdev->features = features; 3711 3712 /* Receive checksum has been changed */ 3713 if (changed & NETIF_F_RXCSUM) { 3714 if (features & NETIF_F_RXCSUM) 3715 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3716 else 3717 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3718 } 3719 } 3720 3721 static int fec_set_features(struct net_device *netdev, 3722 netdev_features_t features) 3723 { 3724 struct fec_enet_private *fep = netdev_priv(netdev); 3725 netdev_features_t changed = features ^ netdev->features; 3726 3727 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3728 napi_disable(&fep->napi); 3729 netif_tx_lock_bh(netdev); 3730 fec_stop(netdev); 3731 fec_enet_set_netdev_features(netdev, features); 3732 fec_restart(netdev); 3733 netif_tx_wake_all_queues(netdev); 3734 netif_tx_unlock_bh(netdev); 3735 napi_enable(&fep->napi); 3736 } else { 3737 fec_enet_set_netdev_features(netdev, features); 3738 } 3739 3740 return 0; 3741 } 3742 3743 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb) 3744 { 3745 struct vlan_ethhdr *vhdr; 3746 unsigned short vlan_TCI = 0; 3747 3748 if (skb->protocol == htons(ETH_P_ALL)) { 3749 vhdr = (struct vlan_ethhdr *)(skb->data); 3750 vlan_TCI = ntohs(vhdr->h_vlan_TCI); 3751 } 3752 3753 return vlan_TCI; 3754 } 3755 3756 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3757 struct net_device *sb_dev) 3758 { 3759 struct fec_enet_private *fep = netdev_priv(ndev); 3760 u16 vlan_tag; 3761 3762 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3763 return netdev_pick_tx(ndev, skb, NULL); 3764 3765 vlan_tag = fec_enet_get_raw_vlan_tci(skb); 3766 if (!vlan_tag) 3767 return vlan_tag; 3768 3769 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3770 } 3771 3772 static int fec_enet_bpf(struct net_device *dev, struct netdev_bpf *bpf) 3773 { 3774 struct fec_enet_private *fep = netdev_priv(dev); 3775 bool is_run = netif_running(dev); 3776 struct bpf_prog *old_prog; 3777 3778 switch (bpf->command) { 3779 case XDP_SETUP_PROG: 3780 /* No need to support the SoCs that require to 3781 * do the frame swap because the performance wouldn't be 3782 * better than the skb mode. 3783 */ 3784 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 3785 return -EOPNOTSUPP; 3786 3787 if (!bpf->prog) 3788 xdp_features_clear_redirect_target(dev); 3789 3790 if (is_run) { 3791 napi_disable(&fep->napi); 3792 netif_tx_disable(dev); 3793 } 3794 3795 old_prog = xchg(&fep->xdp_prog, bpf->prog); 3796 if (old_prog) 3797 bpf_prog_put(old_prog); 3798 3799 fec_restart(dev); 3800 3801 if (is_run) { 3802 napi_enable(&fep->napi); 3803 netif_tx_start_all_queues(dev); 3804 } 3805 3806 if (bpf->prog) 3807 xdp_features_set_redirect_target(dev, false); 3808 3809 return 0; 3810 3811 case XDP_SETUP_XSK_POOL: 3812 return -EOPNOTSUPP; 3813 3814 default: 3815 return -EOPNOTSUPP; 3816 } 3817 } 3818 3819 static int 3820 fec_enet_xdp_get_tx_queue(struct fec_enet_private *fep, int index) 3821 { 3822 if (unlikely(index < 0)) 3823 return 0; 3824 3825 return (index % fep->num_tx_queues); 3826 } 3827 3828 static int fec_enet_txq_xmit_frame(struct fec_enet_private *fep, 3829 struct fec_enet_priv_tx_q *txq, 3830 struct xdp_frame *frame) 3831 { 3832 unsigned int index, status, estatus; 3833 struct bufdesc *bdp; 3834 dma_addr_t dma_addr; 3835 int entries_free; 3836 3837 entries_free = fec_enet_get_free_txdesc_num(txq); 3838 if (entries_free < MAX_SKB_FRAGS + 1) { 3839 netdev_err_once(fep->netdev, "NOT enough BD for SG!\n"); 3840 return -EBUSY; 3841 } 3842 3843 /* Fill in a Tx ring entry */ 3844 bdp = txq->bd.cur; 3845 status = fec16_to_cpu(bdp->cbd_sc); 3846 status &= ~BD_ENET_TX_STATS; 3847 3848 index = fec_enet_get_bd_index(bdp, &txq->bd); 3849 3850 dma_addr = dma_map_single(&fep->pdev->dev, frame->data, 3851 frame->len, DMA_TO_DEVICE); 3852 if (dma_mapping_error(&fep->pdev->dev, dma_addr)) 3853 return -ENOMEM; 3854 3855 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 3856 if (fep->bufdesc_ex) 3857 estatus = BD_ENET_TX_INT; 3858 3859 bdp->cbd_bufaddr = cpu_to_fec32(dma_addr); 3860 bdp->cbd_datlen = cpu_to_fec16(frame->len); 3861 3862 if (fep->bufdesc_ex) { 3863 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3864 3865 if (fep->quirks & FEC_QUIRK_HAS_AVB) 3866 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 3867 3868 ebdp->cbd_bdu = 0; 3869 ebdp->cbd_esc = cpu_to_fec32(estatus); 3870 } 3871 3872 txq->tx_buf[index].type = FEC_TXBUF_T_XDP_NDO; 3873 txq->tx_buf[index].xdp = frame; 3874 3875 /* Make sure the updates to rest of the descriptor are performed before 3876 * transferring ownership. 3877 */ 3878 dma_wmb(); 3879 3880 /* Send it on its way. Tell FEC it's ready, interrupt when done, 3881 * it's the last BD of the frame, and to put the CRC on the end. 3882 */ 3883 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 3884 bdp->cbd_sc = cpu_to_fec16(status); 3885 3886 /* If this was the last BD in the ring, start at the beginning again. */ 3887 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3888 3889 /* Make sure the update to bdp are performed before txq->bd.cur. */ 3890 dma_wmb(); 3891 3892 txq->bd.cur = bdp; 3893 3894 /* Trigger transmission start */ 3895 writel(0, txq->bd.reg_desc_active); 3896 3897 return 0; 3898 } 3899 3900 static int fec_enet_xdp_xmit(struct net_device *dev, 3901 int num_frames, 3902 struct xdp_frame **frames, 3903 u32 flags) 3904 { 3905 struct fec_enet_private *fep = netdev_priv(dev); 3906 struct fec_enet_priv_tx_q *txq; 3907 int cpu = smp_processor_id(); 3908 unsigned int sent_frames = 0; 3909 struct netdev_queue *nq; 3910 unsigned int queue; 3911 int i; 3912 3913 queue = fec_enet_xdp_get_tx_queue(fep, cpu); 3914 txq = fep->tx_queue[queue]; 3915 nq = netdev_get_tx_queue(fep->netdev, queue); 3916 3917 __netif_tx_lock(nq, cpu); 3918 3919 for (i = 0; i < num_frames; i++) { 3920 if (fec_enet_txq_xmit_frame(fep, txq, frames[i]) < 0) 3921 break; 3922 sent_frames++; 3923 } 3924 3925 __netif_tx_unlock(nq); 3926 3927 return sent_frames; 3928 } 3929 3930 static const struct net_device_ops fec_netdev_ops = { 3931 .ndo_open = fec_enet_open, 3932 .ndo_stop = fec_enet_close, 3933 .ndo_start_xmit = fec_enet_start_xmit, 3934 .ndo_select_queue = fec_enet_select_queue, 3935 .ndo_set_rx_mode = set_multicast_list, 3936 .ndo_validate_addr = eth_validate_addr, 3937 .ndo_tx_timeout = fec_timeout, 3938 .ndo_set_mac_address = fec_set_mac_address, 3939 .ndo_eth_ioctl = fec_enet_ioctl, 3940 #ifdef CONFIG_NET_POLL_CONTROLLER 3941 .ndo_poll_controller = fec_poll_controller, 3942 #endif 3943 .ndo_set_features = fec_set_features, 3944 .ndo_bpf = fec_enet_bpf, 3945 .ndo_xdp_xmit = fec_enet_xdp_xmit, 3946 }; 3947 3948 static const unsigned short offset_des_active_rxq[] = { 3949 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3950 }; 3951 3952 static const unsigned short offset_des_active_txq[] = { 3953 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3954 }; 3955 3956 /* 3957 * XXX: We need to clean up on failure exits here. 3958 * 3959 */ 3960 static int fec_enet_init(struct net_device *ndev) 3961 { 3962 struct fec_enet_private *fep = netdev_priv(ndev); 3963 struct bufdesc *cbd_base; 3964 dma_addr_t bd_dma; 3965 int bd_size; 3966 unsigned int i; 3967 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3968 sizeof(struct bufdesc); 3969 unsigned dsize_log2 = __fls(dsize); 3970 int ret; 3971 3972 WARN_ON(dsize != (1 << dsize_log2)); 3973 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3974 fep->rx_align = 0xf; 3975 fep->tx_align = 0xf; 3976 #else 3977 fep->rx_align = 0x3; 3978 fep->tx_align = 0x3; 3979 #endif 3980 fep->rx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 3981 fep->tx_pkts_itr = FEC_ITR_ICFT_DEFAULT; 3982 fep->rx_time_itr = FEC_ITR_ICTT_DEFAULT; 3983 fep->tx_time_itr = FEC_ITR_ICTT_DEFAULT; 3984 3985 /* Check mask of the streaming and coherent API */ 3986 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3987 if (ret < 0) { 3988 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3989 return ret; 3990 } 3991 3992 ret = fec_enet_alloc_queue(ndev); 3993 if (ret) 3994 return ret; 3995 3996 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3997 3998 /* Allocate memory for buffer descriptors. */ 3999 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 4000 GFP_KERNEL); 4001 if (!cbd_base) { 4002 ret = -ENOMEM; 4003 goto free_queue_mem; 4004 } 4005 4006 /* Get the Ethernet address */ 4007 ret = fec_get_mac(ndev); 4008 if (ret) 4009 goto free_queue_mem; 4010 4011 /* make sure MAC we just acquired is programmed into the hw */ 4012 fec_set_mac_address(ndev, NULL); 4013 4014 /* Set receive and transmit descriptor base. */ 4015 for (i = 0; i < fep->num_rx_queues; i++) { 4016 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 4017 unsigned size = dsize * rxq->bd.ring_size; 4018 4019 rxq->bd.qid = i; 4020 rxq->bd.base = cbd_base; 4021 rxq->bd.cur = cbd_base; 4022 rxq->bd.dma = bd_dma; 4023 rxq->bd.dsize = dsize; 4024 rxq->bd.dsize_log2 = dsize_log2; 4025 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 4026 bd_dma += size; 4027 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4028 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4029 } 4030 4031 for (i = 0; i < fep->num_tx_queues; i++) { 4032 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 4033 unsigned size = dsize * txq->bd.ring_size; 4034 4035 txq->bd.qid = i; 4036 txq->bd.base = cbd_base; 4037 txq->bd.cur = cbd_base; 4038 txq->bd.dma = bd_dma; 4039 txq->bd.dsize = dsize; 4040 txq->bd.dsize_log2 = dsize_log2; 4041 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 4042 bd_dma += size; 4043 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 4044 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 4045 } 4046 4047 4048 /* The FEC Ethernet specific entries in the device structure */ 4049 ndev->watchdog_timeo = TX_TIMEOUT; 4050 ndev->netdev_ops = &fec_netdev_ops; 4051 ndev->ethtool_ops = &fec_enet_ethtool_ops; 4052 4053 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 4054 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi); 4055 4056 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 4057 /* enable hw VLAN support */ 4058 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 4059 4060 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 4061 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 4062 4063 /* enable hw accelerator */ 4064 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 4065 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 4066 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 4067 } 4068 4069 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 4070 fep->tx_align = 0; 4071 fep->rx_align = 0x3f; 4072 } 4073 4074 ndev->hw_features = ndev->features; 4075 4076 if (!(fep->quirks & FEC_QUIRK_SWAP_FRAME)) 4077 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | 4078 NETDEV_XDP_ACT_REDIRECT; 4079 4080 fec_restart(ndev); 4081 4082 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 4083 fec_enet_clear_ethtool_stats(ndev); 4084 else 4085 fec_enet_update_ethtool_stats(ndev); 4086 4087 return 0; 4088 4089 free_queue_mem: 4090 fec_enet_free_queue(ndev); 4091 return ret; 4092 } 4093 4094 #ifdef CONFIG_OF 4095 static int fec_reset_phy(struct platform_device *pdev) 4096 { 4097 struct gpio_desc *phy_reset; 4098 int msec = 1, phy_post_delay = 0; 4099 struct device_node *np = pdev->dev.of_node; 4100 int err; 4101 4102 if (!np) 4103 return 0; 4104 4105 err = of_property_read_u32(np, "phy-reset-duration", &msec); 4106 /* A sane reset duration should not be longer than 1s */ 4107 if (!err && msec > 1000) 4108 msec = 1; 4109 4110 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 4111 /* valid reset duration should be less than 1s */ 4112 if (!err && phy_post_delay > 1000) 4113 return -EINVAL; 4114 4115 phy_reset = devm_gpiod_get_optional(&pdev->dev, "phy-reset", 4116 GPIOD_OUT_HIGH); 4117 if (IS_ERR(phy_reset)) 4118 return dev_err_probe(&pdev->dev, PTR_ERR(phy_reset), 4119 "failed to get phy-reset-gpios\n"); 4120 4121 if (!phy_reset) 4122 return 0; 4123 4124 if (msec > 20) 4125 msleep(msec); 4126 else 4127 usleep_range(msec * 1000, msec * 1000 + 1000); 4128 4129 gpiod_set_value_cansleep(phy_reset, 0); 4130 4131 if (!phy_post_delay) 4132 return 0; 4133 4134 if (phy_post_delay > 20) 4135 msleep(phy_post_delay); 4136 else 4137 usleep_range(phy_post_delay * 1000, 4138 phy_post_delay * 1000 + 1000); 4139 4140 return 0; 4141 } 4142 #else /* CONFIG_OF */ 4143 static int fec_reset_phy(struct platform_device *pdev) 4144 { 4145 /* 4146 * In case of platform probe, the reset has been done 4147 * by machine code. 4148 */ 4149 return 0; 4150 } 4151 #endif /* CONFIG_OF */ 4152 4153 static void 4154 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 4155 { 4156 struct device_node *np = pdev->dev.of_node; 4157 4158 *num_tx = *num_rx = 1; 4159 4160 if (!np || !of_device_is_available(np)) 4161 return; 4162 4163 /* parse the num of tx and rx queues */ 4164 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 4165 4166 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 4167 4168 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 4169 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 4170 *num_tx); 4171 *num_tx = 1; 4172 return; 4173 } 4174 4175 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 4176 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 4177 *num_rx); 4178 *num_rx = 1; 4179 return; 4180 } 4181 4182 } 4183 4184 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 4185 { 4186 int irq_cnt = platform_irq_count(pdev); 4187 4188 if (irq_cnt > FEC_IRQ_NUM) 4189 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 4190 else if (irq_cnt == 2) 4191 irq_cnt = 1; /* last for pps */ 4192 else if (irq_cnt <= 0) 4193 irq_cnt = 1; /* At least 1 irq is needed */ 4194 return irq_cnt; 4195 } 4196 4197 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 4198 { 4199 struct net_device *ndev = platform_get_drvdata(pdev); 4200 struct fec_enet_private *fep = netdev_priv(ndev); 4201 4202 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 4203 fep->wake_irq = fep->irq[2]; 4204 else 4205 fep->wake_irq = fep->irq[0]; 4206 } 4207 4208 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 4209 struct device_node *np) 4210 { 4211 struct device_node *gpr_np; 4212 u32 out_val[3]; 4213 int ret = 0; 4214 4215 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 4216 if (!gpr_np) 4217 return 0; 4218 4219 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 4220 ARRAY_SIZE(out_val)); 4221 if (ret) { 4222 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 4223 goto out; 4224 } 4225 4226 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 4227 if (IS_ERR(fep->stop_gpr.gpr)) { 4228 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 4229 ret = PTR_ERR(fep->stop_gpr.gpr); 4230 fep->stop_gpr.gpr = NULL; 4231 goto out; 4232 } 4233 4234 fep->stop_gpr.reg = out_val[1]; 4235 fep->stop_gpr.bit = out_val[2]; 4236 4237 out: 4238 of_node_put(gpr_np); 4239 4240 return ret; 4241 } 4242 4243 static int 4244 fec_probe(struct platform_device *pdev) 4245 { 4246 struct fec_enet_private *fep; 4247 struct fec_platform_data *pdata; 4248 phy_interface_t interface; 4249 struct net_device *ndev; 4250 int i, irq, ret = 0; 4251 const struct of_device_id *of_id; 4252 static int dev_id; 4253 struct device_node *np = pdev->dev.of_node, *phy_node; 4254 int num_tx_qs; 4255 int num_rx_qs; 4256 char irq_name[8]; 4257 int irq_cnt; 4258 struct fec_devinfo *dev_info; 4259 4260 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 4261 4262 /* Init network device */ 4263 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 4264 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 4265 if (!ndev) 4266 return -ENOMEM; 4267 4268 SET_NETDEV_DEV(ndev, &pdev->dev); 4269 4270 /* setup board info structure */ 4271 fep = netdev_priv(ndev); 4272 4273 of_id = of_match_device(fec_dt_ids, &pdev->dev); 4274 if (of_id) 4275 pdev->id_entry = of_id->data; 4276 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 4277 if (dev_info) 4278 fep->quirks = dev_info->quirks; 4279 4280 fep->netdev = ndev; 4281 fep->num_rx_queues = num_rx_qs; 4282 fep->num_tx_queues = num_tx_qs; 4283 4284 #if !defined(CONFIG_M5272) 4285 /* default enable pause frame auto negotiation */ 4286 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 4287 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 4288 #endif 4289 4290 /* Select default pin state */ 4291 pinctrl_pm_select_default_state(&pdev->dev); 4292 4293 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 4294 if (IS_ERR(fep->hwp)) { 4295 ret = PTR_ERR(fep->hwp); 4296 goto failed_ioremap; 4297 } 4298 4299 fep->pdev = pdev; 4300 fep->dev_id = dev_id++; 4301 4302 platform_set_drvdata(pdev, ndev); 4303 4304 if ((of_machine_is_compatible("fsl,imx6q") || 4305 of_machine_is_compatible("fsl,imx6dl")) && 4306 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 4307 fep->quirks |= FEC_QUIRK_ERR006687; 4308 4309 ret = fec_enet_ipc_handle_init(fep); 4310 if (ret) 4311 goto failed_ipc_init; 4312 4313 if (of_property_read_bool(np, "fsl,magic-packet")) 4314 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 4315 4316 ret = fec_enet_init_stop_mode(fep, np); 4317 if (ret) 4318 goto failed_stop_mode; 4319 4320 phy_node = of_parse_phandle(np, "phy-handle", 0); 4321 if (!phy_node && of_phy_is_fixed_link(np)) { 4322 ret = of_phy_register_fixed_link(np); 4323 if (ret < 0) { 4324 dev_err(&pdev->dev, 4325 "broken fixed-link specification\n"); 4326 goto failed_phy; 4327 } 4328 phy_node = of_node_get(np); 4329 } 4330 fep->phy_node = phy_node; 4331 4332 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 4333 if (ret) { 4334 pdata = dev_get_platdata(&pdev->dev); 4335 if (pdata) 4336 fep->phy_interface = pdata->phy; 4337 else 4338 fep->phy_interface = PHY_INTERFACE_MODE_MII; 4339 } else { 4340 fep->phy_interface = interface; 4341 } 4342 4343 ret = fec_enet_parse_rgmii_delay(fep, np); 4344 if (ret) 4345 goto failed_rgmii_delay; 4346 4347 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 4348 if (IS_ERR(fep->clk_ipg)) { 4349 ret = PTR_ERR(fep->clk_ipg); 4350 goto failed_clk; 4351 } 4352 4353 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 4354 if (IS_ERR(fep->clk_ahb)) { 4355 ret = PTR_ERR(fep->clk_ahb); 4356 goto failed_clk; 4357 } 4358 4359 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 4360 4361 /* enet_out is optional, depends on board */ 4362 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 4363 if (IS_ERR(fep->clk_enet_out)) { 4364 ret = PTR_ERR(fep->clk_enet_out); 4365 goto failed_clk; 4366 } 4367 4368 fep->ptp_clk_on = false; 4369 mutex_init(&fep->ptp_clk_mutex); 4370 4371 /* clk_ref is optional, depends on board */ 4372 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 4373 if (IS_ERR(fep->clk_ref)) { 4374 ret = PTR_ERR(fep->clk_ref); 4375 goto failed_clk; 4376 } 4377 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 4378 4379 /* clk_2x_txclk is optional, depends on board */ 4380 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 4381 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 4382 if (IS_ERR(fep->clk_2x_txclk)) 4383 fep->clk_2x_txclk = NULL; 4384 } 4385 4386 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 4387 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 4388 if (IS_ERR(fep->clk_ptp)) { 4389 fep->clk_ptp = NULL; 4390 fep->bufdesc_ex = false; 4391 } 4392 4393 ret = fec_enet_clk_enable(ndev, true); 4394 if (ret) 4395 goto failed_clk; 4396 4397 ret = clk_prepare_enable(fep->clk_ipg); 4398 if (ret) 4399 goto failed_clk_ipg; 4400 ret = clk_prepare_enable(fep->clk_ahb); 4401 if (ret) 4402 goto failed_clk_ahb; 4403 4404 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 4405 if (!IS_ERR(fep->reg_phy)) { 4406 ret = regulator_enable(fep->reg_phy); 4407 if (ret) { 4408 dev_err(&pdev->dev, 4409 "Failed to enable phy regulator: %d\n", ret); 4410 goto failed_regulator; 4411 } 4412 } else { 4413 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 4414 ret = -EPROBE_DEFER; 4415 goto failed_regulator; 4416 } 4417 fep->reg_phy = NULL; 4418 } 4419 4420 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 4421 pm_runtime_use_autosuspend(&pdev->dev); 4422 pm_runtime_get_noresume(&pdev->dev); 4423 pm_runtime_set_active(&pdev->dev); 4424 pm_runtime_enable(&pdev->dev); 4425 4426 ret = fec_reset_phy(pdev); 4427 if (ret) 4428 goto failed_reset; 4429 4430 irq_cnt = fec_enet_get_irq_cnt(pdev); 4431 if (fep->bufdesc_ex) 4432 fec_ptp_init(pdev, irq_cnt); 4433 4434 ret = fec_enet_init(ndev); 4435 if (ret) 4436 goto failed_init; 4437 4438 for (i = 0; i < irq_cnt; i++) { 4439 snprintf(irq_name, sizeof(irq_name), "int%d", i); 4440 irq = platform_get_irq_byname_optional(pdev, irq_name); 4441 if (irq < 0) 4442 irq = platform_get_irq(pdev, i); 4443 if (irq < 0) { 4444 ret = irq; 4445 goto failed_irq; 4446 } 4447 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 4448 0, pdev->name, ndev); 4449 if (ret) 4450 goto failed_irq; 4451 4452 fep->irq[i] = irq; 4453 } 4454 4455 /* Decide which interrupt line is wakeup capable */ 4456 fec_enet_get_wakeup_irq(pdev); 4457 4458 ret = fec_enet_mii_init(pdev); 4459 if (ret) 4460 goto failed_mii_init; 4461 4462 /* Carrier starts down, phylib will bring it up */ 4463 netif_carrier_off(ndev); 4464 fec_enet_clk_enable(ndev, false); 4465 pinctrl_pm_select_sleep_state(&pdev->dev); 4466 4467 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 4468 4469 ret = register_netdev(ndev); 4470 if (ret) 4471 goto failed_register; 4472 4473 device_init_wakeup(&ndev->dev, fep->wol_flag & 4474 FEC_WOL_HAS_MAGIC_PACKET); 4475 4476 if (fep->bufdesc_ex && fep->ptp_clock) 4477 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 4478 4479 fep->rx_copybreak = COPYBREAK_DEFAULT; 4480 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 4481 4482 pm_runtime_mark_last_busy(&pdev->dev); 4483 pm_runtime_put_autosuspend(&pdev->dev); 4484 4485 return 0; 4486 4487 failed_register: 4488 fec_enet_mii_remove(fep); 4489 failed_mii_init: 4490 failed_irq: 4491 failed_init: 4492 fec_ptp_stop(pdev); 4493 failed_reset: 4494 pm_runtime_put_noidle(&pdev->dev); 4495 pm_runtime_disable(&pdev->dev); 4496 if (fep->reg_phy) 4497 regulator_disable(fep->reg_phy); 4498 failed_regulator: 4499 clk_disable_unprepare(fep->clk_ahb); 4500 failed_clk_ahb: 4501 clk_disable_unprepare(fep->clk_ipg); 4502 failed_clk_ipg: 4503 fec_enet_clk_enable(ndev, false); 4504 failed_clk: 4505 failed_rgmii_delay: 4506 if (of_phy_is_fixed_link(np)) 4507 of_phy_deregister_fixed_link(np); 4508 of_node_put(phy_node); 4509 failed_stop_mode: 4510 failed_ipc_init: 4511 failed_phy: 4512 dev_id--; 4513 failed_ioremap: 4514 free_netdev(ndev); 4515 4516 return ret; 4517 } 4518 4519 static int 4520 fec_drv_remove(struct platform_device *pdev) 4521 { 4522 struct net_device *ndev = platform_get_drvdata(pdev); 4523 struct fec_enet_private *fep = netdev_priv(ndev); 4524 struct device_node *np = pdev->dev.of_node; 4525 int ret; 4526 4527 ret = pm_runtime_get_sync(&pdev->dev); 4528 if (ret < 0) 4529 dev_err(&pdev->dev, 4530 "Failed to resume device in remove callback (%pe)\n", 4531 ERR_PTR(ret)); 4532 4533 cancel_work_sync(&fep->tx_timeout_work); 4534 fec_ptp_stop(pdev); 4535 unregister_netdev(ndev); 4536 fec_enet_mii_remove(fep); 4537 if (fep->reg_phy) 4538 regulator_disable(fep->reg_phy); 4539 4540 if (of_phy_is_fixed_link(np)) 4541 of_phy_deregister_fixed_link(np); 4542 of_node_put(fep->phy_node); 4543 4544 /* After pm_runtime_get_sync() failed, the clks are still off, so skip 4545 * disabling them again. 4546 */ 4547 if (ret >= 0) { 4548 clk_disable_unprepare(fep->clk_ahb); 4549 clk_disable_unprepare(fep->clk_ipg); 4550 } 4551 pm_runtime_put_noidle(&pdev->dev); 4552 pm_runtime_disable(&pdev->dev); 4553 4554 free_netdev(ndev); 4555 return 0; 4556 } 4557 4558 static int __maybe_unused fec_suspend(struct device *dev) 4559 { 4560 struct net_device *ndev = dev_get_drvdata(dev); 4561 struct fec_enet_private *fep = netdev_priv(ndev); 4562 int ret; 4563 4564 rtnl_lock(); 4565 if (netif_running(ndev)) { 4566 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4567 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4568 phy_stop(ndev->phydev); 4569 napi_disable(&fep->napi); 4570 netif_tx_lock_bh(ndev); 4571 netif_device_detach(ndev); 4572 netif_tx_unlock_bh(ndev); 4573 fec_stop(ndev); 4574 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4575 fec_irqs_disable(ndev); 4576 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4577 } else { 4578 fec_irqs_disable_except_wakeup(ndev); 4579 if (fep->wake_irq > 0) { 4580 disable_irq(fep->wake_irq); 4581 enable_irq_wake(fep->wake_irq); 4582 } 4583 fec_enet_stop_mode(fep, true); 4584 } 4585 /* It's safe to disable clocks since interrupts are masked */ 4586 fec_enet_clk_enable(ndev, false); 4587 4588 fep->rpm_active = !pm_runtime_status_suspended(dev); 4589 if (fep->rpm_active) { 4590 ret = pm_runtime_force_suspend(dev); 4591 if (ret < 0) { 4592 rtnl_unlock(); 4593 return ret; 4594 } 4595 } 4596 } 4597 rtnl_unlock(); 4598 4599 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4600 regulator_disable(fep->reg_phy); 4601 4602 /* SOC supply clock to phy, when clock is disabled, phy link down 4603 * SOC control phy regulator, when regulator is disabled, phy link down 4604 */ 4605 if (fep->clk_enet_out || fep->reg_phy) 4606 fep->link = 0; 4607 4608 return 0; 4609 } 4610 4611 static int __maybe_unused fec_resume(struct device *dev) 4612 { 4613 struct net_device *ndev = dev_get_drvdata(dev); 4614 struct fec_enet_private *fep = netdev_priv(ndev); 4615 int ret; 4616 int val; 4617 4618 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4619 ret = regulator_enable(fep->reg_phy); 4620 if (ret) 4621 return ret; 4622 } 4623 4624 rtnl_lock(); 4625 if (netif_running(ndev)) { 4626 if (fep->rpm_active) 4627 pm_runtime_force_resume(dev); 4628 4629 ret = fec_enet_clk_enable(ndev, true); 4630 if (ret) { 4631 rtnl_unlock(); 4632 goto failed_clk; 4633 } 4634 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4635 fec_enet_stop_mode(fep, false); 4636 if (fep->wake_irq) { 4637 disable_irq_wake(fep->wake_irq); 4638 enable_irq(fep->wake_irq); 4639 } 4640 4641 val = readl(fep->hwp + FEC_ECNTRL); 4642 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4643 writel(val, fep->hwp + FEC_ECNTRL); 4644 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4645 } else { 4646 pinctrl_pm_select_default_state(&fep->pdev->dev); 4647 } 4648 fec_restart(ndev); 4649 netif_tx_lock_bh(ndev); 4650 netif_device_attach(ndev); 4651 netif_tx_unlock_bh(ndev); 4652 napi_enable(&fep->napi); 4653 phy_init_hw(ndev->phydev); 4654 phy_start(ndev->phydev); 4655 } 4656 rtnl_unlock(); 4657 4658 return 0; 4659 4660 failed_clk: 4661 if (fep->reg_phy) 4662 regulator_disable(fep->reg_phy); 4663 return ret; 4664 } 4665 4666 static int __maybe_unused fec_runtime_suspend(struct device *dev) 4667 { 4668 struct net_device *ndev = dev_get_drvdata(dev); 4669 struct fec_enet_private *fep = netdev_priv(ndev); 4670 4671 clk_disable_unprepare(fep->clk_ahb); 4672 clk_disable_unprepare(fep->clk_ipg); 4673 4674 return 0; 4675 } 4676 4677 static int __maybe_unused fec_runtime_resume(struct device *dev) 4678 { 4679 struct net_device *ndev = dev_get_drvdata(dev); 4680 struct fec_enet_private *fep = netdev_priv(ndev); 4681 int ret; 4682 4683 ret = clk_prepare_enable(fep->clk_ahb); 4684 if (ret) 4685 return ret; 4686 ret = clk_prepare_enable(fep->clk_ipg); 4687 if (ret) 4688 goto failed_clk_ipg; 4689 4690 return 0; 4691 4692 failed_clk_ipg: 4693 clk_disable_unprepare(fep->clk_ahb); 4694 return ret; 4695 } 4696 4697 static const struct dev_pm_ops fec_pm_ops = { 4698 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4699 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4700 }; 4701 4702 static struct platform_driver fec_driver = { 4703 .driver = { 4704 .name = DRIVER_NAME, 4705 .pm = &fec_pm_ops, 4706 .of_match_table = fec_dt_ids, 4707 .suppress_bind_attrs = true, 4708 }, 4709 .id_table = fec_devtype, 4710 .probe = fec_probe, 4711 .remove = fec_drv_remove, 4712 }; 4713 4714 module_platform_driver(fec_driver); 4715 4716 MODULE_LICENSE("GPL"); 4717