1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/selftests.h>
42 #include <net/tso.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/icmp.h>
46 #include <linux/spinlock.h>
47 #include <linux/workqueue.h>
48 #include <linux/bitops.h>
49 #include <linux/io.h>
50 #include <linux/irq.h>
51 #include <linux/clk.h>
52 #include <linux/crc32.h>
53 #include <linux/platform_device.h>
54 #include <linux/mdio.h>
55 #include <linux/phy.h>
56 #include <linux/fec.h>
57 #include <linux/of.h>
58 #include <linux/of_device.h>
59 #include <linux/of_gpio.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/prefetch.h>
66 #include <linux/mfd/syscon.h>
67 #include <linux/regmap.h>
68 #include <soc/imx/cpuidle.h>
69 
70 #include <asm/cacheflush.h>
71 
72 #include "fec.h"
73 
74 static void set_multicast_list(struct net_device *ndev);
75 static void fec_enet_itr_coal_init(struct net_device *ndev);
76 
77 #define DRIVER_NAME	"fec"
78 
79 /* Pause frame feild and FIFO threshold */
80 #define FEC_ENET_FCE	(1 << 5)
81 #define FEC_ENET_RSEM_V	0x84
82 #define FEC_ENET_RSFL_V	16
83 #define FEC_ENET_RAEM_V	0x8
84 #define FEC_ENET_RAFL_V	0x8
85 #define FEC_ENET_OPD_V	0xFFF0
86 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
87 
88 struct fec_devinfo {
89 	u32 quirks;
90 };
91 
92 static const struct fec_devinfo fec_imx25_info = {
93 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
94 		  FEC_QUIRK_HAS_FRREG,
95 };
96 
97 static const struct fec_devinfo fec_imx27_info = {
98 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
99 };
100 
101 static const struct fec_devinfo fec_imx28_info = {
102 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
103 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
104 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
105 		  FEC_QUIRK_NO_HARD_RESET,
106 };
107 
108 static const struct fec_devinfo fec_imx6q_info = {
109 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
110 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
111 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
112 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII,
113 };
114 
115 static const struct fec_devinfo fec_mvf600_info = {
116 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
117 };
118 
119 static const struct fec_devinfo fec_imx6x_info = {
120 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
121 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
122 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
123 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
124 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
125 		  FEC_QUIRK_CLEAR_SETUP_MII,
126 };
127 
128 static const struct fec_devinfo fec_imx6ul_info = {
129 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
130 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
131 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
132 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
133 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
134 };
135 
136 static struct platform_device_id fec_devtype[] = {
137 	{
138 		/* keep it for coldfire */
139 		.name = DRIVER_NAME,
140 		.driver_data = 0,
141 	}, {
142 		.name = "imx25-fec",
143 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
144 	}, {
145 		.name = "imx27-fec",
146 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
147 	}, {
148 		.name = "imx28-fec",
149 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
150 	}, {
151 		.name = "imx6q-fec",
152 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
153 	}, {
154 		.name = "mvf600-fec",
155 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
156 	}, {
157 		.name = "imx6sx-fec",
158 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
159 	}, {
160 		.name = "imx6ul-fec",
161 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
162 	}, {
163 		/* sentinel */
164 	}
165 };
166 MODULE_DEVICE_TABLE(platform, fec_devtype);
167 
168 enum imx_fec_type {
169 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
170 	IMX27_FEC,	/* runs on i.mx27/35/51 */
171 	IMX28_FEC,
172 	IMX6Q_FEC,
173 	MVF600_FEC,
174 	IMX6SX_FEC,
175 	IMX6UL_FEC,
176 };
177 
178 static const struct of_device_id fec_dt_ids[] = {
179 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
180 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
181 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
182 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
183 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
184 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
185 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
186 	{ /* sentinel */ }
187 };
188 MODULE_DEVICE_TABLE(of, fec_dt_ids);
189 
190 static unsigned char macaddr[ETH_ALEN];
191 module_param_array(macaddr, byte, NULL, 0);
192 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
193 
194 #if defined(CONFIG_M5272)
195 /*
196  * Some hardware gets it MAC address out of local flash memory.
197  * if this is non-zero then assume it is the address to get MAC from.
198  */
199 #if defined(CONFIG_NETtel)
200 #define	FEC_FLASHMAC	0xf0006006
201 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
202 #define	FEC_FLASHMAC	0xf0006000
203 #elif defined(CONFIG_CANCam)
204 #define	FEC_FLASHMAC	0xf0020000
205 #elif defined (CONFIG_M5272C3)
206 #define	FEC_FLASHMAC	(0xffe04000 + 4)
207 #elif defined(CONFIG_MOD5272)
208 #define FEC_FLASHMAC	0xffc0406b
209 #else
210 #define	FEC_FLASHMAC	0
211 #endif
212 #endif /* CONFIG_M5272 */
213 
214 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
215  *
216  * 2048 byte skbufs are allocated. However, alignment requirements
217  * varies between FEC variants. Worst case is 64, so round down by 64.
218  */
219 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
220 #define PKT_MINBUF_SIZE		64
221 
222 /* FEC receive acceleration */
223 #define FEC_RACC_IPDIS		(1 << 1)
224 #define FEC_RACC_PRODIS		(1 << 2)
225 #define FEC_RACC_SHIFT16	BIT(7)
226 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
227 
228 /* MIB Control Register */
229 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
230 
231 /*
232  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
233  * size bits. Other FEC hardware does not, so we need to take that into
234  * account when setting it.
235  */
236 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
237     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
238     defined(CONFIG_ARM64)
239 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
240 #else
241 #define	OPT_FRAME_SIZE	0
242 #endif
243 
244 /* FEC MII MMFR bits definition */
245 #define FEC_MMFR_ST		(1 << 30)
246 #define FEC_MMFR_ST_C45		(0)
247 #define FEC_MMFR_OP_READ	(2 << 28)
248 #define FEC_MMFR_OP_READ_C45	(3 << 28)
249 #define FEC_MMFR_OP_WRITE	(1 << 28)
250 #define FEC_MMFR_OP_ADDR_WRITE	(0)
251 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
252 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
253 #define FEC_MMFR_TA		(2 << 16)
254 #define FEC_MMFR_DATA(v)	(v & 0xffff)
255 /* FEC ECR bits definition */
256 #define FEC_ECR_MAGICEN		(1 << 2)
257 #define FEC_ECR_SLEEP		(1 << 3)
258 
259 #define FEC_MII_TIMEOUT		30000 /* us */
260 
261 /* Transmitter timeout */
262 #define TX_TIMEOUT (2 * HZ)
263 
264 #define FEC_PAUSE_FLAG_AUTONEG	0x1
265 #define FEC_PAUSE_FLAG_ENABLE	0x2
266 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
267 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
268 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
269 
270 #define COPYBREAK_DEFAULT	256
271 
272 /* Max number of allowed TCP segments for software TSO */
273 #define FEC_MAX_TSO_SEGS	100
274 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
275 
276 #define IS_TSO_HEADER(txq, addr) \
277 	((addr >= txq->tso_hdrs_dma) && \
278 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
279 
280 static int mii_cnt;
281 
282 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
283 					     struct bufdesc_prop *bd)
284 {
285 	return (bdp >= bd->last) ? bd->base
286 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
287 }
288 
289 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
290 					     struct bufdesc_prop *bd)
291 {
292 	return (bdp <= bd->base) ? bd->last
293 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
294 }
295 
296 static int fec_enet_get_bd_index(struct bufdesc *bdp,
297 				 struct bufdesc_prop *bd)
298 {
299 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
300 }
301 
302 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
303 {
304 	int entries;
305 
306 	entries = (((const char *)txq->dirty_tx -
307 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
308 
309 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
310 }
311 
312 static void swap_buffer(void *bufaddr, int len)
313 {
314 	int i;
315 	unsigned int *buf = bufaddr;
316 
317 	for (i = 0; i < len; i += 4, buf++)
318 		swab32s(buf);
319 }
320 
321 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
322 {
323 	int i;
324 	unsigned int *src = src_buf;
325 	unsigned int *dst = dst_buf;
326 
327 	for (i = 0; i < len; i += 4, src++, dst++)
328 		*dst = swab32p(src);
329 }
330 
331 static void fec_dump(struct net_device *ndev)
332 {
333 	struct fec_enet_private *fep = netdev_priv(ndev);
334 	struct bufdesc *bdp;
335 	struct fec_enet_priv_tx_q *txq;
336 	int index = 0;
337 
338 	netdev_info(ndev, "TX ring dump\n");
339 	pr_info("Nr     SC     addr       len  SKB\n");
340 
341 	txq = fep->tx_queue[0];
342 	bdp = txq->bd.base;
343 
344 	do {
345 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
346 			index,
347 			bdp == txq->bd.cur ? 'S' : ' ',
348 			bdp == txq->dirty_tx ? 'H' : ' ',
349 			fec16_to_cpu(bdp->cbd_sc),
350 			fec32_to_cpu(bdp->cbd_bufaddr),
351 			fec16_to_cpu(bdp->cbd_datlen),
352 			txq->tx_skbuff[index]);
353 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
354 		index++;
355 	} while (bdp != txq->bd.base);
356 }
357 
358 static inline bool is_ipv4_pkt(struct sk_buff *skb)
359 {
360 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
361 }
362 
363 static int
364 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
365 {
366 	/* Only run for packets requiring a checksum. */
367 	if (skb->ip_summed != CHECKSUM_PARTIAL)
368 		return 0;
369 
370 	if (unlikely(skb_cow_head(skb, 0)))
371 		return -1;
372 
373 	if (is_ipv4_pkt(skb))
374 		ip_hdr(skb)->check = 0;
375 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
376 
377 	return 0;
378 }
379 
380 static struct bufdesc *
381 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
382 			     struct sk_buff *skb,
383 			     struct net_device *ndev)
384 {
385 	struct fec_enet_private *fep = netdev_priv(ndev);
386 	struct bufdesc *bdp = txq->bd.cur;
387 	struct bufdesc_ex *ebdp;
388 	int nr_frags = skb_shinfo(skb)->nr_frags;
389 	int frag, frag_len;
390 	unsigned short status;
391 	unsigned int estatus = 0;
392 	skb_frag_t *this_frag;
393 	unsigned int index;
394 	void *bufaddr;
395 	dma_addr_t addr;
396 	int i;
397 
398 	for (frag = 0; frag < nr_frags; frag++) {
399 		this_frag = &skb_shinfo(skb)->frags[frag];
400 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
401 		ebdp = (struct bufdesc_ex *)bdp;
402 
403 		status = fec16_to_cpu(bdp->cbd_sc);
404 		status &= ~BD_ENET_TX_STATS;
405 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
406 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
407 
408 		/* Handle the last BD specially */
409 		if (frag == nr_frags - 1) {
410 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
411 			if (fep->bufdesc_ex) {
412 				estatus |= BD_ENET_TX_INT;
413 				if (unlikely(skb_shinfo(skb)->tx_flags &
414 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
415 					estatus |= BD_ENET_TX_TS;
416 			}
417 		}
418 
419 		if (fep->bufdesc_ex) {
420 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
421 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
422 			if (skb->ip_summed == CHECKSUM_PARTIAL)
423 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
424 			ebdp->cbd_bdu = 0;
425 			ebdp->cbd_esc = cpu_to_fec32(estatus);
426 		}
427 
428 		bufaddr = skb_frag_address(this_frag);
429 
430 		index = fec_enet_get_bd_index(bdp, &txq->bd);
431 		if (((unsigned long) bufaddr) & fep->tx_align ||
432 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
433 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
434 			bufaddr = txq->tx_bounce[index];
435 
436 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
437 				swap_buffer(bufaddr, frag_len);
438 		}
439 
440 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
441 				      DMA_TO_DEVICE);
442 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
443 			if (net_ratelimit())
444 				netdev_err(ndev, "Tx DMA memory map failed\n");
445 			goto dma_mapping_error;
446 		}
447 
448 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
449 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
450 		/* Make sure the updates to rest of the descriptor are
451 		 * performed before transferring ownership.
452 		 */
453 		wmb();
454 		bdp->cbd_sc = cpu_to_fec16(status);
455 	}
456 
457 	return bdp;
458 dma_mapping_error:
459 	bdp = txq->bd.cur;
460 	for (i = 0; i < frag; i++) {
461 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
462 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
463 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
464 	}
465 	return ERR_PTR(-ENOMEM);
466 }
467 
468 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
469 				   struct sk_buff *skb, struct net_device *ndev)
470 {
471 	struct fec_enet_private *fep = netdev_priv(ndev);
472 	int nr_frags = skb_shinfo(skb)->nr_frags;
473 	struct bufdesc *bdp, *last_bdp;
474 	void *bufaddr;
475 	dma_addr_t addr;
476 	unsigned short status;
477 	unsigned short buflen;
478 	unsigned int estatus = 0;
479 	unsigned int index;
480 	int entries_free;
481 
482 	entries_free = fec_enet_get_free_txdesc_num(txq);
483 	if (entries_free < MAX_SKB_FRAGS + 1) {
484 		dev_kfree_skb_any(skb);
485 		if (net_ratelimit())
486 			netdev_err(ndev, "NOT enough BD for SG!\n");
487 		return NETDEV_TX_OK;
488 	}
489 
490 	/* Protocol checksum off-load for TCP and UDP. */
491 	if (fec_enet_clear_csum(skb, ndev)) {
492 		dev_kfree_skb_any(skb);
493 		return NETDEV_TX_OK;
494 	}
495 
496 	/* Fill in a Tx ring entry */
497 	bdp = txq->bd.cur;
498 	last_bdp = bdp;
499 	status = fec16_to_cpu(bdp->cbd_sc);
500 	status &= ~BD_ENET_TX_STATS;
501 
502 	/* Set buffer length and buffer pointer */
503 	bufaddr = skb->data;
504 	buflen = skb_headlen(skb);
505 
506 	index = fec_enet_get_bd_index(bdp, &txq->bd);
507 	if (((unsigned long) bufaddr) & fep->tx_align ||
508 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
509 		memcpy(txq->tx_bounce[index], skb->data, buflen);
510 		bufaddr = txq->tx_bounce[index];
511 
512 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
513 			swap_buffer(bufaddr, buflen);
514 	}
515 
516 	/* Push the data cache so the CPM does not get stale memory data. */
517 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
518 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
519 		dev_kfree_skb_any(skb);
520 		if (net_ratelimit())
521 			netdev_err(ndev, "Tx DMA memory map failed\n");
522 		return NETDEV_TX_OK;
523 	}
524 
525 	if (nr_frags) {
526 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
527 		if (IS_ERR(last_bdp)) {
528 			dma_unmap_single(&fep->pdev->dev, addr,
529 					 buflen, DMA_TO_DEVICE);
530 			dev_kfree_skb_any(skb);
531 			return NETDEV_TX_OK;
532 		}
533 	} else {
534 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
535 		if (fep->bufdesc_ex) {
536 			estatus = BD_ENET_TX_INT;
537 			if (unlikely(skb_shinfo(skb)->tx_flags &
538 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
539 				estatus |= BD_ENET_TX_TS;
540 		}
541 	}
542 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
543 	bdp->cbd_datlen = cpu_to_fec16(buflen);
544 
545 	if (fep->bufdesc_ex) {
546 
547 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
548 
549 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
550 			fep->hwts_tx_en))
551 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
552 
553 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
554 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
555 
556 		if (skb->ip_summed == CHECKSUM_PARTIAL)
557 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
558 
559 		ebdp->cbd_bdu = 0;
560 		ebdp->cbd_esc = cpu_to_fec32(estatus);
561 	}
562 
563 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
564 	/* Save skb pointer */
565 	txq->tx_skbuff[index] = skb;
566 
567 	/* Make sure the updates to rest of the descriptor are performed before
568 	 * transferring ownership.
569 	 */
570 	wmb();
571 
572 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
573 	 * it's the last BD of the frame, and to put the CRC on the end.
574 	 */
575 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
576 	bdp->cbd_sc = cpu_to_fec16(status);
577 
578 	/* If this was the last BD in the ring, start at the beginning again. */
579 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
580 
581 	skb_tx_timestamp(skb);
582 
583 	/* Make sure the update to bdp and tx_skbuff are performed before
584 	 * txq->bd.cur.
585 	 */
586 	wmb();
587 	txq->bd.cur = bdp;
588 
589 	/* Trigger transmission start */
590 	writel(0, txq->bd.reg_desc_active);
591 
592 	return 0;
593 }
594 
595 static int
596 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
597 			  struct net_device *ndev,
598 			  struct bufdesc *bdp, int index, char *data,
599 			  int size, bool last_tcp, bool is_last)
600 {
601 	struct fec_enet_private *fep = netdev_priv(ndev);
602 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
603 	unsigned short status;
604 	unsigned int estatus = 0;
605 	dma_addr_t addr;
606 
607 	status = fec16_to_cpu(bdp->cbd_sc);
608 	status &= ~BD_ENET_TX_STATS;
609 
610 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
611 
612 	if (((unsigned long) data) & fep->tx_align ||
613 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
614 		memcpy(txq->tx_bounce[index], data, size);
615 		data = txq->tx_bounce[index];
616 
617 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
618 			swap_buffer(data, size);
619 	}
620 
621 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
622 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
623 		dev_kfree_skb_any(skb);
624 		if (net_ratelimit())
625 			netdev_err(ndev, "Tx DMA memory map failed\n");
626 		return NETDEV_TX_BUSY;
627 	}
628 
629 	bdp->cbd_datlen = cpu_to_fec16(size);
630 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
631 
632 	if (fep->bufdesc_ex) {
633 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
634 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
635 		if (skb->ip_summed == CHECKSUM_PARTIAL)
636 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
637 		ebdp->cbd_bdu = 0;
638 		ebdp->cbd_esc = cpu_to_fec32(estatus);
639 	}
640 
641 	/* Handle the last BD specially */
642 	if (last_tcp)
643 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
644 	if (is_last) {
645 		status |= BD_ENET_TX_INTR;
646 		if (fep->bufdesc_ex)
647 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
648 	}
649 
650 	bdp->cbd_sc = cpu_to_fec16(status);
651 
652 	return 0;
653 }
654 
655 static int
656 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
657 			 struct sk_buff *skb, struct net_device *ndev,
658 			 struct bufdesc *bdp, int index)
659 {
660 	struct fec_enet_private *fep = netdev_priv(ndev);
661 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
662 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
663 	void *bufaddr;
664 	unsigned long dmabuf;
665 	unsigned short status;
666 	unsigned int estatus = 0;
667 
668 	status = fec16_to_cpu(bdp->cbd_sc);
669 	status &= ~BD_ENET_TX_STATS;
670 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
671 
672 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
673 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
674 	if (((unsigned long)bufaddr) & fep->tx_align ||
675 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
676 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
677 		bufaddr = txq->tx_bounce[index];
678 
679 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
680 			swap_buffer(bufaddr, hdr_len);
681 
682 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
683 					hdr_len, DMA_TO_DEVICE);
684 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
685 			dev_kfree_skb_any(skb);
686 			if (net_ratelimit())
687 				netdev_err(ndev, "Tx DMA memory map failed\n");
688 			return NETDEV_TX_BUSY;
689 		}
690 	}
691 
692 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
693 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
694 
695 	if (fep->bufdesc_ex) {
696 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
697 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
698 		if (skb->ip_summed == CHECKSUM_PARTIAL)
699 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
700 		ebdp->cbd_bdu = 0;
701 		ebdp->cbd_esc = cpu_to_fec32(estatus);
702 	}
703 
704 	bdp->cbd_sc = cpu_to_fec16(status);
705 
706 	return 0;
707 }
708 
709 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
710 				   struct sk_buff *skb,
711 				   struct net_device *ndev)
712 {
713 	struct fec_enet_private *fep = netdev_priv(ndev);
714 	int hdr_len, total_len, data_left;
715 	struct bufdesc *bdp = txq->bd.cur;
716 	struct tso_t tso;
717 	unsigned int index = 0;
718 	int ret;
719 
720 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
721 		dev_kfree_skb_any(skb);
722 		if (net_ratelimit())
723 			netdev_err(ndev, "NOT enough BD for TSO!\n");
724 		return NETDEV_TX_OK;
725 	}
726 
727 	/* Protocol checksum off-load for TCP and UDP. */
728 	if (fec_enet_clear_csum(skb, ndev)) {
729 		dev_kfree_skb_any(skb);
730 		return NETDEV_TX_OK;
731 	}
732 
733 	/* Initialize the TSO handler, and prepare the first payload */
734 	hdr_len = tso_start(skb, &tso);
735 
736 	total_len = skb->len - hdr_len;
737 	while (total_len > 0) {
738 		char *hdr;
739 
740 		index = fec_enet_get_bd_index(bdp, &txq->bd);
741 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
742 		total_len -= data_left;
743 
744 		/* prepare packet headers: MAC + IP + TCP */
745 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
746 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
747 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
748 		if (ret)
749 			goto err_release;
750 
751 		while (data_left > 0) {
752 			int size;
753 
754 			size = min_t(int, tso.size, data_left);
755 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
756 			index = fec_enet_get_bd_index(bdp, &txq->bd);
757 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
758 							bdp, index,
759 							tso.data, size,
760 							size == data_left,
761 							total_len == 0);
762 			if (ret)
763 				goto err_release;
764 
765 			data_left -= size;
766 			tso_build_data(skb, &tso, size);
767 		}
768 
769 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
770 	}
771 
772 	/* Save skb pointer */
773 	txq->tx_skbuff[index] = skb;
774 
775 	skb_tx_timestamp(skb);
776 	txq->bd.cur = bdp;
777 
778 	/* Trigger transmission start */
779 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
780 	    !readl(txq->bd.reg_desc_active) ||
781 	    !readl(txq->bd.reg_desc_active) ||
782 	    !readl(txq->bd.reg_desc_active) ||
783 	    !readl(txq->bd.reg_desc_active))
784 		writel(0, txq->bd.reg_desc_active);
785 
786 	return 0;
787 
788 err_release:
789 	/* TODO: Release all used data descriptors for TSO */
790 	return ret;
791 }
792 
793 static netdev_tx_t
794 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
795 {
796 	struct fec_enet_private *fep = netdev_priv(ndev);
797 	int entries_free;
798 	unsigned short queue;
799 	struct fec_enet_priv_tx_q *txq;
800 	struct netdev_queue *nq;
801 	int ret;
802 
803 	queue = skb_get_queue_mapping(skb);
804 	txq = fep->tx_queue[queue];
805 	nq = netdev_get_tx_queue(ndev, queue);
806 
807 	if (skb_is_gso(skb))
808 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
809 	else
810 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
811 	if (ret)
812 		return ret;
813 
814 	entries_free = fec_enet_get_free_txdesc_num(txq);
815 	if (entries_free <= txq->tx_stop_threshold)
816 		netif_tx_stop_queue(nq);
817 
818 	return NETDEV_TX_OK;
819 }
820 
821 /* Init RX & TX buffer descriptors
822  */
823 static void fec_enet_bd_init(struct net_device *dev)
824 {
825 	struct fec_enet_private *fep = netdev_priv(dev);
826 	struct fec_enet_priv_tx_q *txq;
827 	struct fec_enet_priv_rx_q *rxq;
828 	struct bufdesc *bdp;
829 	unsigned int i;
830 	unsigned int q;
831 
832 	for (q = 0; q < fep->num_rx_queues; q++) {
833 		/* Initialize the receive buffer descriptors. */
834 		rxq = fep->rx_queue[q];
835 		bdp = rxq->bd.base;
836 
837 		for (i = 0; i < rxq->bd.ring_size; i++) {
838 
839 			/* Initialize the BD for every fragment in the page. */
840 			if (bdp->cbd_bufaddr)
841 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
842 			else
843 				bdp->cbd_sc = cpu_to_fec16(0);
844 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
845 		}
846 
847 		/* Set the last buffer to wrap */
848 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
849 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
850 
851 		rxq->bd.cur = rxq->bd.base;
852 	}
853 
854 	for (q = 0; q < fep->num_tx_queues; q++) {
855 		/* ...and the same for transmit */
856 		txq = fep->tx_queue[q];
857 		bdp = txq->bd.base;
858 		txq->bd.cur = bdp;
859 
860 		for (i = 0; i < txq->bd.ring_size; i++) {
861 			/* Initialize the BD for every fragment in the page. */
862 			bdp->cbd_sc = cpu_to_fec16(0);
863 			if (bdp->cbd_bufaddr &&
864 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
865 				dma_unmap_single(&fep->pdev->dev,
866 						 fec32_to_cpu(bdp->cbd_bufaddr),
867 						 fec16_to_cpu(bdp->cbd_datlen),
868 						 DMA_TO_DEVICE);
869 			if (txq->tx_skbuff[i]) {
870 				dev_kfree_skb_any(txq->tx_skbuff[i]);
871 				txq->tx_skbuff[i] = NULL;
872 			}
873 			bdp->cbd_bufaddr = cpu_to_fec32(0);
874 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
875 		}
876 
877 		/* Set the last buffer to wrap */
878 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
879 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
880 		txq->dirty_tx = bdp;
881 	}
882 }
883 
884 static void fec_enet_active_rxring(struct net_device *ndev)
885 {
886 	struct fec_enet_private *fep = netdev_priv(ndev);
887 	int i;
888 
889 	for (i = 0; i < fep->num_rx_queues; i++)
890 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
891 }
892 
893 static void fec_enet_enable_ring(struct net_device *ndev)
894 {
895 	struct fec_enet_private *fep = netdev_priv(ndev);
896 	struct fec_enet_priv_tx_q *txq;
897 	struct fec_enet_priv_rx_q *rxq;
898 	int i;
899 
900 	for (i = 0; i < fep->num_rx_queues; i++) {
901 		rxq = fep->rx_queue[i];
902 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
903 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
904 
905 		/* enable DMA1/2 */
906 		if (i)
907 			writel(RCMR_MATCHEN | RCMR_CMP(i),
908 			       fep->hwp + FEC_RCMR(i));
909 	}
910 
911 	for (i = 0; i < fep->num_tx_queues; i++) {
912 		txq = fep->tx_queue[i];
913 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
914 
915 		/* enable DMA1/2 */
916 		if (i)
917 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
918 			       fep->hwp + FEC_DMA_CFG(i));
919 	}
920 }
921 
922 static void fec_enet_reset_skb(struct net_device *ndev)
923 {
924 	struct fec_enet_private *fep = netdev_priv(ndev);
925 	struct fec_enet_priv_tx_q *txq;
926 	int i, j;
927 
928 	for (i = 0; i < fep->num_tx_queues; i++) {
929 		txq = fep->tx_queue[i];
930 
931 		for (j = 0; j < txq->bd.ring_size; j++) {
932 			if (txq->tx_skbuff[j]) {
933 				dev_kfree_skb_any(txq->tx_skbuff[j]);
934 				txq->tx_skbuff[j] = NULL;
935 			}
936 		}
937 	}
938 }
939 
940 /*
941  * This function is called to start or restart the FEC during a link
942  * change, transmit timeout, or to reconfigure the FEC.  The network
943  * packet processing for this device must be stopped before this call.
944  */
945 static void
946 fec_restart(struct net_device *ndev)
947 {
948 	struct fec_enet_private *fep = netdev_priv(ndev);
949 	u32 temp_mac[2];
950 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
951 	u32 ecntl = 0x2; /* ETHEREN */
952 
953 	/* Whack a reset.  We should wait for this.
954 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
955 	 * instead of reset MAC itself.
956 	 */
957 	if (fep->quirks & FEC_QUIRK_HAS_AVB ||
958 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
959 		writel(0, fep->hwp + FEC_ECNTRL);
960 	} else {
961 		writel(1, fep->hwp + FEC_ECNTRL);
962 		udelay(10);
963 	}
964 
965 	/*
966 	 * enet-mac reset will reset mac address registers too,
967 	 * so need to reconfigure it.
968 	 */
969 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
970 	writel((__force u32)cpu_to_be32(temp_mac[0]),
971 	       fep->hwp + FEC_ADDR_LOW);
972 	writel((__force u32)cpu_to_be32(temp_mac[1]),
973 	       fep->hwp + FEC_ADDR_HIGH);
974 
975 	/* Clear any outstanding interrupt, except MDIO. */
976 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
977 
978 	fec_enet_bd_init(ndev);
979 
980 	fec_enet_enable_ring(ndev);
981 
982 	/* Reset tx SKB buffers. */
983 	fec_enet_reset_skb(ndev);
984 
985 	/* Enable MII mode */
986 	if (fep->full_duplex == DUPLEX_FULL) {
987 		/* FD enable */
988 		writel(0x04, fep->hwp + FEC_X_CNTRL);
989 	} else {
990 		/* No Rcv on Xmit */
991 		rcntl |= 0x02;
992 		writel(0x0, fep->hwp + FEC_X_CNTRL);
993 	}
994 
995 	/* Set MII speed */
996 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
997 
998 #if !defined(CONFIG_M5272)
999 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1000 		u32 val = readl(fep->hwp + FEC_RACC);
1001 
1002 		/* align IP header */
1003 		val |= FEC_RACC_SHIFT16;
1004 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1005 			/* set RX checksum */
1006 			val |= FEC_RACC_OPTIONS;
1007 		else
1008 			val &= ~FEC_RACC_OPTIONS;
1009 		writel(val, fep->hwp + FEC_RACC);
1010 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1011 	}
1012 #endif
1013 
1014 	/*
1015 	 * The phy interface and speed need to get configured
1016 	 * differently on enet-mac.
1017 	 */
1018 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1019 		/* Enable flow control and length check */
1020 		rcntl |= 0x40000000 | 0x00000020;
1021 
1022 		/* RGMII, RMII or MII */
1023 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1024 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1025 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1026 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1027 			rcntl |= (1 << 6);
1028 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1029 			rcntl |= (1 << 8);
1030 		else
1031 			rcntl &= ~(1 << 8);
1032 
1033 		/* 1G, 100M or 10M */
1034 		if (ndev->phydev) {
1035 			if (ndev->phydev->speed == SPEED_1000)
1036 				ecntl |= (1 << 5);
1037 			else if (ndev->phydev->speed == SPEED_100)
1038 				rcntl &= ~(1 << 9);
1039 			else
1040 				rcntl |= (1 << 9);
1041 		}
1042 	} else {
1043 #ifdef FEC_MIIGSK_ENR
1044 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1045 			u32 cfgr;
1046 			/* disable the gasket and wait */
1047 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1048 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1049 				udelay(1);
1050 
1051 			/*
1052 			 * configure the gasket:
1053 			 *   RMII, 50 MHz, no loopback, no echo
1054 			 *   MII, 25 MHz, no loopback, no echo
1055 			 */
1056 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1057 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1058 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1059 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1060 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1061 
1062 			/* re-enable the gasket */
1063 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1064 		}
1065 #endif
1066 	}
1067 
1068 #if !defined(CONFIG_M5272)
1069 	/* enable pause frame*/
1070 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1071 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1072 	     ndev->phydev && ndev->phydev->pause)) {
1073 		rcntl |= FEC_ENET_FCE;
1074 
1075 		/* set FIFO threshold parameter to reduce overrun */
1076 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1077 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1078 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1079 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1080 
1081 		/* OPD */
1082 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1083 	} else {
1084 		rcntl &= ~FEC_ENET_FCE;
1085 	}
1086 #endif /* !defined(CONFIG_M5272) */
1087 
1088 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1089 
1090 	/* Setup multicast filter. */
1091 	set_multicast_list(ndev);
1092 #ifndef CONFIG_M5272
1093 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1094 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1095 #endif
1096 
1097 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1098 		/* enable ENET endian swap */
1099 		ecntl |= (1 << 8);
1100 		/* enable ENET store and forward mode */
1101 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1102 	}
1103 
1104 	if (fep->bufdesc_ex)
1105 		ecntl |= (1 << 4);
1106 
1107 #ifndef CONFIG_M5272
1108 	/* Enable the MIB statistic event counters */
1109 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1110 #endif
1111 
1112 	/* And last, enable the transmit and receive processing */
1113 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1114 	fec_enet_active_rxring(ndev);
1115 
1116 	if (fep->bufdesc_ex)
1117 		fec_ptp_start_cyclecounter(ndev);
1118 
1119 	/* Enable interrupts we wish to service */
1120 	if (fep->link)
1121 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1122 	else
1123 		writel(0, fep->hwp + FEC_IMASK);
1124 
1125 	/* Init the interrupt coalescing */
1126 	fec_enet_itr_coal_init(ndev);
1127 
1128 }
1129 
1130 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1131 {
1132 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1133 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1134 
1135 	if (stop_gpr->gpr) {
1136 		if (enabled)
1137 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1138 					   BIT(stop_gpr->bit),
1139 					   BIT(stop_gpr->bit));
1140 		else
1141 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1142 					   BIT(stop_gpr->bit), 0);
1143 	} else if (pdata && pdata->sleep_mode_enable) {
1144 		pdata->sleep_mode_enable(enabled);
1145 	}
1146 }
1147 
1148 static void
1149 fec_stop(struct net_device *ndev)
1150 {
1151 	struct fec_enet_private *fep = netdev_priv(ndev);
1152 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1153 	u32 val;
1154 
1155 	/* We cannot expect a graceful transmit stop without link !!! */
1156 	if (fep->link) {
1157 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1158 		udelay(10);
1159 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1160 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1161 	}
1162 
1163 	/* Whack a reset.  We should wait for this.
1164 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1165 	 * instead of reset MAC itself.
1166 	 */
1167 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1168 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1169 			writel(0, fep->hwp + FEC_ECNTRL);
1170 		} else {
1171 			writel(1, fep->hwp + FEC_ECNTRL);
1172 			udelay(10);
1173 		}
1174 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1175 	} else {
1176 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1177 		val = readl(fep->hwp + FEC_ECNTRL);
1178 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1179 		writel(val, fep->hwp + FEC_ECNTRL);
1180 		fec_enet_stop_mode(fep, true);
1181 	}
1182 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1183 
1184 	/* We have to keep ENET enabled to have MII interrupt stay working */
1185 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1186 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1187 		writel(2, fep->hwp + FEC_ECNTRL);
1188 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1189 	}
1190 }
1191 
1192 
1193 static void
1194 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1195 {
1196 	struct fec_enet_private *fep = netdev_priv(ndev);
1197 
1198 	fec_dump(ndev);
1199 
1200 	ndev->stats.tx_errors++;
1201 
1202 	schedule_work(&fep->tx_timeout_work);
1203 }
1204 
1205 static void fec_enet_timeout_work(struct work_struct *work)
1206 {
1207 	struct fec_enet_private *fep =
1208 		container_of(work, struct fec_enet_private, tx_timeout_work);
1209 	struct net_device *ndev = fep->netdev;
1210 
1211 	rtnl_lock();
1212 	if (netif_device_present(ndev) || netif_running(ndev)) {
1213 		napi_disable(&fep->napi);
1214 		netif_tx_lock_bh(ndev);
1215 		fec_restart(ndev);
1216 		netif_tx_wake_all_queues(ndev);
1217 		netif_tx_unlock_bh(ndev);
1218 		napi_enable(&fep->napi);
1219 	}
1220 	rtnl_unlock();
1221 }
1222 
1223 static void
1224 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1225 	struct skb_shared_hwtstamps *hwtstamps)
1226 {
1227 	unsigned long flags;
1228 	u64 ns;
1229 
1230 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1231 	ns = timecounter_cyc2time(&fep->tc, ts);
1232 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1233 
1234 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1235 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1236 }
1237 
1238 static void
1239 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1240 {
1241 	struct	fec_enet_private *fep;
1242 	struct bufdesc *bdp;
1243 	unsigned short status;
1244 	struct	sk_buff	*skb;
1245 	struct fec_enet_priv_tx_q *txq;
1246 	struct netdev_queue *nq;
1247 	int	index = 0;
1248 	int	entries_free;
1249 
1250 	fep = netdev_priv(ndev);
1251 
1252 	txq = fep->tx_queue[queue_id];
1253 	/* get next bdp of dirty_tx */
1254 	nq = netdev_get_tx_queue(ndev, queue_id);
1255 	bdp = txq->dirty_tx;
1256 
1257 	/* get next bdp of dirty_tx */
1258 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1259 
1260 	while (bdp != READ_ONCE(txq->bd.cur)) {
1261 		/* Order the load of bd.cur and cbd_sc */
1262 		rmb();
1263 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1264 		if (status & BD_ENET_TX_READY)
1265 			break;
1266 
1267 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1268 
1269 		skb = txq->tx_skbuff[index];
1270 		txq->tx_skbuff[index] = NULL;
1271 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1272 			dma_unmap_single(&fep->pdev->dev,
1273 					 fec32_to_cpu(bdp->cbd_bufaddr),
1274 					 fec16_to_cpu(bdp->cbd_datlen),
1275 					 DMA_TO_DEVICE);
1276 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1277 		if (!skb)
1278 			goto skb_done;
1279 
1280 		/* Check for errors. */
1281 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1282 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1283 				   BD_ENET_TX_CSL)) {
1284 			ndev->stats.tx_errors++;
1285 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1286 				ndev->stats.tx_heartbeat_errors++;
1287 			if (status & BD_ENET_TX_LC)  /* Late collision */
1288 				ndev->stats.tx_window_errors++;
1289 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1290 				ndev->stats.tx_aborted_errors++;
1291 			if (status & BD_ENET_TX_UN)  /* Underrun */
1292 				ndev->stats.tx_fifo_errors++;
1293 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1294 				ndev->stats.tx_carrier_errors++;
1295 		} else {
1296 			ndev->stats.tx_packets++;
1297 			ndev->stats.tx_bytes += skb->len;
1298 		}
1299 
1300 		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1301 		 * are to time stamp the packet, so we still need to check time
1302 		 * stamping enabled flag.
1303 		 */
1304 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1305 			     fep->hwts_tx_en) &&
1306 		    fep->bufdesc_ex) {
1307 			struct skb_shared_hwtstamps shhwtstamps;
1308 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1309 
1310 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1311 			skb_tstamp_tx(skb, &shhwtstamps);
1312 		}
1313 
1314 		/* Deferred means some collisions occurred during transmit,
1315 		 * but we eventually sent the packet OK.
1316 		 */
1317 		if (status & BD_ENET_TX_DEF)
1318 			ndev->stats.collisions++;
1319 
1320 		/* Free the sk buffer associated with this last transmit */
1321 		dev_kfree_skb_any(skb);
1322 skb_done:
1323 		/* Make sure the update to bdp and tx_skbuff are performed
1324 		 * before dirty_tx
1325 		 */
1326 		wmb();
1327 		txq->dirty_tx = bdp;
1328 
1329 		/* Update pointer to next buffer descriptor to be transmitted */
1330 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1331 
1332 		/* Since we have freed up a buffer, the ring is no longer full
1333 		 */
1334 		if (netif_tx_queue_stopped(nq)) {
1335 			entries_free = fec_enet_get_free_txdesc_num(txq);
1336 			if (entries_free >= txq->tx_wake_threshold)
1337 				netif_tx_wake_queue(nq);
1338 		}
1339 	}
1340 
1341 	/* ERR006358: Keep the transmitter going */
1342 	if (bdp != txq->bd.cur &&
1343 	    readl(txq->bd.reg_desc_active) == 0)
1344 		writel(0, txq->bd.reg_desc_active);
1345 }
1346 
1347 static void fec_enet_tx(struct net_device *ndev)
1348 {
1349 	struct fec_enet_private *fep = netdev_priv(ndev);
1350 	int i;
1351 
1352 	/* Make sure that AVB queues are processed first. */
1353 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1354 		fec_enet_tx_queue(ndev, i);
1355 }
1356 
1357 static int
1358 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1359 {
1360 	struct  fec_enet_private *fep = netdev_priv(ndev);
1361 	int off;
1362 
1363 	off = ((unsigned long)skb->data) & fep->rx_align;
1364 	if (off)
1365 		skb_reserve(skb, fep->rx_align + 1 - off);
1366 
1367 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1368 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1369 		if (net_ratelimit())
1370 			netdev_err(ndev, "Rx DMA memory map failed\n");
1371 		return -ENOMEM;
1372 	}
1373 
1374 	return 0;
1375 }
1376 
1377 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1378 			       struct bufdesc *bdp, u32 length, bool swap)
1379 {
1380 	struct  fec_enet_private *fep = netdev_priv(ndev);
1381 	struct sk_buff *new_skb;
1382 
1383 	if (length > fep->rx_copybreak)
1384 		return false;
1385 
1386 	new_skb = netdev_alloc_skb(ndev, length);
1387 	if (!new_skb)
1388 		return false;
1389 
1390 	dma_sync_single_for_cpu(&fep->pdev->dev,
1391 				fec32_to_cpu(bdp->cbd_bufaddr),
1392 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1393 				DMA_FROM_DEVICE);
1394 	if (!swap)
1395 		memcpy(new_skb->data, (*skb)->data, length);
1396 	else
1397 		swap_buffer2(new_skb->data, (*skb)->data, length);
1398 	*skb = new_skb;
1399 
1400 	return true;
1401 }
1402 
1403 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1404  * When we update through the ring, if the next incoming buffer has
1405  * not been given to the system, we just set the empty indicator,
1406  * effectively tossing the packet.
1407  */
1408 static int
1409 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1410 {
1411 	struct fec_enet_private *fep = netdev_priv(ndev);
1412 	struct fec_enet_priv_rx_q *rxq;
1413 	struct bufdesc *bdp;
1414 	unsigned short status;
1415 	struct  sk_buff *skb_new = NULL;
1416 	struct  sk_buff *skb;
1417 	ushort	pkt_len;
1418 	__u8 *data;
1419 	int	pkt_received = 0;
1420 	struct	bufdesc_ex *ebdp = NULL;
1421 	bool	vlan_packet_rcvd = false;
1422 	u16	vlan_tag;
1423 	int	index = 0;
1424 	bool	is_copybreak;
1425 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1426 
1427 #ifdef CONFIG_M532x
1428 	flush_cache_all();
1429 #endif
1430 	rxq = fep->rx_queue[queue_id];
1431 
1432 	/* First, grab all of the stats for the incoming packet.
1433 	 * These get messed up if we get called due to a busy condition.
1434 	 */
1435 	bdp = rxq->bd.cur;
1436 
1437 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1438 
1439 		if (pkt_received >= budget)
1440 			break;
1441 		pkt_received++;
1442 
1443 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1444 
1445 		/* Check for errors. */
1446 		status ^= BD_ENET_RX_LAST;
1447 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1448 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1449 			   BD_ENET_RX_CL)) {
1450 			ndev->stats.rx_errors++;
1451 			if (status & BD_ENET_RX_OV) {
1452 				/* FIFO overrun */
1453 				ndev->stats.rx_fifo_errors++;
1454 				goto rx_processing_done;
1455 			}
1456 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1457 						| BD_ENET_RX_LAST)) {
1458 				/* Frame too long or too short. */
1459 				ndev->stats.rx_length_errors++;
1460 				if (status & BD_ENET_RX_LAST)
1461 					netdev_err(ndev, "rcv is not +last\n");
1462 			}
1463 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1464 				ndev->stats.rx_crc_errors++;
1465 			/* Report late collisions as a frame error. */
1466 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1467 				ndev->stats.rx_frame_errors++;
1468 			goto rx_processing_done;
1469 		}
1470 
1471 		/* Process the incoming frame. */
1472 		ndev->stats.rx_packets++;
1473 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1474 		ndev->stats.rx_bytes += pkt_len;
1475 
1476 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1477 		skb = rxq->rx_skbuff[index];
1478 
1479 		/* The packet length includes FCS, but we don't want to
1480 		 * include that when passing upstream as it messes up
1481 		 * bridging applications.
1482 		 */
1483 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1484 						  need_swap);
1485 		if (!is_copybreak) {
1486 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1487 			if (unlikely(!skb_new)) {
1488 				ndev->stats.rx_dropped++;
1489 				goto rx_processing_done;
1490 			}
1491 			dma_unmap_single(&fep->pdev->dev,
1492 					 fec32_to_cpu(bdp->cbd_bufaddr),
1493 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1494 					 DMA_FROM_DEVICE);
1495 		}
1496 
1497 		prefetch(skb->data - NET_IP_ALIGN);
1498 		skb_put(skb, pkt_len - 4);
1499 		data = skb->data;
1500 
1501 		if (!is_copybreak && need_swap)
1502 			swap_buffer(data, pkt_len);
1503 
1504 #if !defined(CONFIG_M5272)
1505 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1506 			data = skb_pull_inline(skb, 2);
1507 #endif
1508 
1509 		/* Extract the enhanced buffer descriptor */
1510 		ebdp = NULL;
1511 		if (fep->bufdesc_ex)
1512 			ebdp = (struct bufdesc_ex *)bdp;
1513 
1514 		/* If this is a VLAN packet remove the VLAN Tag */
1515 		vlan_packet_rcvd = false;
1516 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1517 		    fep->bufdesc_ex &&
1518 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1519 			/* Push and remove the vlan tag */
1520 			struct vlan_hdr *vlan_header =
1521 					(struct vlan_hdr *) (data + ETH_HLEN);
1522 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1523 
1524 			vlan_packet_rcvd = true;
1525 
1526 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1527 			skb_pull(skb, VLAN_HLEN);
1528 		}
1529 
1530 		skb->protocol = eth_type_trans(skb, ndev);
1531 
1532 		/* Get receive timestamp from the skb */
1533 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1534 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1535 					  skb_hwtstamps(skb));
1536 
1537 		if (fep->bufdesc_ex &&
1538 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1539 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1540 				/* don't check it */
1541 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1542 			} else {
1543 				skb_checksum_none_assert(skb);
1544 			}
1545 		}
1546 
1547 		/* Handle received VLAN packets */
1548 		if (vlan_packet_rcvd)
1549 			__vlan_hwaccel_put_tag(skb,
1550 					       htons(ETH_P_8021Q),
1551 					       vlan_tag);
1552 
1553 		skb_record_rx_queue(skb, queue_id);
1554 		napi_gro_receive(&fep->napi, skb);
1555 
1556 		if (is_copybreak) {
1557 			dma_sync_single_for_device(&fep->pdev->dev,
1558 						   fec32_to_cpu(bdp->cbd_bufaddr),
1559 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1560 						   DMA_FROM_DEVICE);
1561 		} else {
1562 			rxq->rx_skbuff[index] = skb_new;
1563 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1564 		}
1565 
1566 rx_processing_done:
1567 		/* Clear the status flags for this buffer */
1568 		status &= ~BD_ENET_RX_STATS;
1569 
1570 		/* Mark the buffer empty */
1571 		status |= BD_ENET_RX_EMPTY;
1572 
1573 		if (fep->bufdesc_ex) {
1574 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1575 
1576 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1577 			ebdp->cbd_prot = 0;
1578 			ebdp->cbd_bdu = 0;
1579 		}
1580 		/* Make sure the updates to rest of the descriptor are
1581 		 * performed before transferring ownership.
1582 		 */
1583 		wmb();
1584 		bdp->cbd_sc = cpu_to_fec16(status);
1585 
1586 		/* Update BD pointer to next entry */
1587 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1588 
1589 		/* Doing this here will keep the FEC running while we process
1590 		 * incoming frames.  On a heavily loaded network, we should be
1591 		 * able to keep up at the expense of system resources.
1592 		 */
1593 		writel(0, rxq->bd.reg_desc_active);
1594 	}
1595 	rxq->bd.cur = bdp;
1596 	return pkt_received;
1597 }
1598 
1599 static int fec_enet_rx(struct net_device *ndev, int budget)
1600 {
1601 	struct fec_enet_private *fep = netdev_priv(ndev);
1602 	int i, done = 0;
1603 
1604 	/* Make sure that AVB queues are processed first. */
1605 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1606 		done += fec_enet_rx_queue(ndev, budget - done, i);
1607 
1608 	return done;
1609 }
1610 
1611 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1612 {
1613 	uint int_events;
1614 
1615 	int_events = readl(fep->hwp + FEC_IEVENT);
1616 
1617 	/* Don't clear MDIO events, we poll for those */
1618 	int_events &= ~FEC_ENET_MII;
1619 
1620 	writel(int_events, fep->hwp + FEC_IEVENT);
1621 
1622 	return int_events != 0;
1623 }
1624 
1625 static irqreturn_t
1626 fec_enet_interrupt(int irq, void *dev_id)
1627 {
1628 	struct net_device *ndev = dev_id;
1629 	struct fec_enet_private *fep = netdev_priv(ndev);
1630 	irqreturn_t ret = IRQ_NONE;
1631 
1632 	if (fec_enet_collect_events(fep) && fep->link) {
1633 		ret = IRQ_HANDLED;
1634 
1635 		if (napi_schedule_prep(&fep->napi)) {
1636 			/* Disable interrupts */
1637 			writel(0, fep->hwp + FEC_IMASK);
1638 			__napi_schedule(&fep->napi);
1639 		}
1640 	}
1641 
1642 	return ret;
1643 }
1644 
1645 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1646 {
1647 	struct net_device *ndev = napi->dev;
1648 	struct fec_enet_private *fep = netdev_priv(ndev);
1649 	int done = 0;
1650 
1651 	do {
1652 		done += fec_enet_rx(ndev, budget - done);
1653 		fec_enet_tx(ndev);
1654 	} while ((done < budget) && fec_enet_collect_events(fep));
1655 
1656 	if (done < budget) {
1657 		napi_complete_done(napi, done);
1658 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1659 	}
1660 
1661 	return done;
1662 }
1663 
1664 /* ------------------------------------------------------------------------- */
1665 static int fec_get_mac(struct net_device *ndev)
1666 {
1667 	struct fec_enet_private *fep = netdev_priv(ndev);
1668 	unsigned char *iap, tmpaddr[ETH_ALEN];
1669 	int ret;
1670 
1671 	/*
1672 	 * try to get mac address in following order:
1673 	 *
1674 	 * 1) module parameter via kernel command line in form
1675 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1676 	 */
1677 	iap = macaddr;
1678 
1679 	/*
1680 	 * 2) from device tree data
1681 	 */
1682 	if (!is_valid_ether_addr(iap)) {
1683 		struct device_node *np = fep->pdev->dev.of_node;
1684 		if (np) {
1685 			ret = of_get_mac_address(np, tmpaddr);
1686 			if (!ret)
1687 				iap = tmpaddr;
1688 			else if (ret == -EPROBE_DEFER)
1689 				return ret;
1690 		}
1691 	}
1692 
1693 	/*
1694 	 * 3) from flash or fuse (via platform data)
1695 	 */
1696 	if (!is_valid_ether_addr(iap)) {
1697 #ifdef CONFIG_M5272
1698 		if (FEC_FLASHMAC)
1699 			iap = (unsigned char *)FEC_FLASHMAC;
1700 #else
1701 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1702 
1703 		if (pdata)
1704 			iap = (unsigned char *)&pdata->mac;
1705 #endif
1706 	}
1707 
1708 	/*
1709 	 * 4) FEC mac registers set by bootloader
1710 	 */
1711 	if (!is_valid_ether_addr(iap)) {
1712 		*((__be32 *) &tmpaddr[0]) =
1713 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1714 		*((__be16 *) &tmpaddr[4]) =
1715 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1716 		iap = &tmpaddr[0];
1717 	}
1718 
1719 	/*
1720 	 * 5) random mac address
1721 	 */
1722 	if (!is_valid_ether_addr(iap)) {
1723 		/* Report it and use a random ethernet address instead */
1724 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1725 		eth_hw_addr_random(ndev);
1726 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1727 			 ndev->dev_addr);
1728 		return 0;
1729 	}
1730 
1731 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1732 
1733 	/* Adjust MAC if using macaddr */
1734 	if (iap == macaddr)
1735 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1736 
1737 	return 0;
1738 }
1739 
1740 /* ------------------------------------------------------------------------- */
1741 
1742 /*
1743  * Phy section
1744  */
1745 static void fec_enet_adjust_link(struct net_device *ndev)
1746 {
1747 	struct fec_enet_private *fep = netdev_priv(ndev);
1748 	struct phy_device *phy_dev = ndev->phydev;
1749 	int status_change = 0;
1750 
1751 	/*
1752 	 * If the netdev is down, or is going down, we're not interested
1753 	 * in link state events, so just mark our idea of the link as down
1754 	 * and ignore the event.
1755 	 */
1756 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1757 		fep->link = 0;
1758 	} else if (phy_dev->link) {
1759 		if (!fep->link) {
1760 			fep->link = phy_dev->link;
1761 			status_change = 1;
1762 		}
1763 
1764 		if (fep->full_duplex != phy_dev->duplex) {
1765 			fep->full_duplex = phy_dev->duplex;
1766 			status_change = 1;
1767 		}
1768 
1769 		if (phy_dev->speed != fep->speed) {
1770 			fep->speed = phy_dev->speed;
1771 			status_change = 1;
1772 		}
1773 
1774 		/* if any of the above changed restart the FEC */
1775 		if (status_change) {
1776 			napi_disable(&fep->napi);
1777 			netif_tx_lock_bh(ndev);
1778 			fec_restart(ndev);
1779 			netif_tx_wake_all_queues(ndev);
1780 			netif_tx_unlock_bh(ndev);
1781 			napi_enable(&fep->napi);
1782 		}
1783 	} else {
1784 		if (fep->link) {
1785 			napi_disable(&fep->napi);
1786 			netif_tx_lock_bh(ndev);
1787 			fec_stop(ndev);
1788 			netif_tx_unlock_bh(ndev);
1789 			napi_enable(&fep->napi);
1790 			fep->link = phy_dev->link;
1791 			status_change = 1;
1792 		}
1793 	}
1794 
1795 	if (status_change)
1796 		phy_print_status(phy_dev);
1797 }
1798 
1799 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1800 {
1801 	uint ievent;
1802 	int ret;
1803 
1804 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1805 					ievent & FEC_ENET_MII, 2, 30000);
1806 
1807 	if (!ret)
1808 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1809 
1810 	return ret;
1811 }
1812 
1813 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1814 {
1815 	struct fec_enet_private *fep = bus->priv;
1816 	struct device *dev = &fep->pdev->dev;
1817 	int ret = 0, frame_start, frame_addr, frame_op;
1818 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1819 
1820 	ret = pm_runtime_resume_and_get(dev);
1821 	if (ret < 0)
1822 		return ret;
1823 
1824 	if (is_c45) {
1825 		frame_start = FEC_MMFR_ST_C45;
1826 
1827 		/* write address */
1828 		frame_addr = (regnum >> 16);
1829 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1830 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1831 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1832 		       fep->hwp + FEC_MII_DATA);
1833 
1834 		/* wait for end of transfer */
1835 		ret = fec_enet_mdio_wait(fep);
1836 		if (ret) {
1837 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1838 			goto out;
1839 		}
1840 
1841 		frame_op = FEC_MMFR_OP_READ_C45;
1842 
1843 	} else {
1844 		/* C22 read */
1845 		frame_op = FEC_MMFR_OP_READ;
1846 		frame_start = FEC_MMFR_ST;
1847 		frame_addr = regnum;
1848 	}
1849 
1850 	/* start a read op */
1851 	writel(frame_start | frame_op |
1852 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1853 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1854 
1855 	/* wait for end of transfer */
1856 	ret = fec_enet_mdio_wait(fep);
1857 	if (ret) {
1858 		netdev_err(fep->netdev, "MDIO read timeout\n");
1859 		goto out;
1860 	}
1861 
1862 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1863 
1864 out:
1865 	pm_runtime_mark_last_busy(dev);
1866 	pm_runtime_put_autosuspend(dev);
1867 
1868 	return ret;
1869 }
1870 
1871 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1872 			   u16 value)
1873 {
1874 	struct fec_enet_private *fep = bus->priv;
1875 	struct device *dev = &fep->pdev->dev;
1876 	int ret, frame_start, frame_addr;
1877 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1878 
1879 	ret = pm_runtime_resume_and_get(dev);
1880 	if (ret < 0)
1881 		return ret;
1882 
1883 	if (is_c45) {
1884 		frame_start = FEC_MMFR_ST_C45;
1885 
1886 		/* write address */
1887 		frame_addr = (regnum >> 16);
1888 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1889 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1890 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1891 		       fep->hwp + FEC_MII_DATA);
1892 
1893 		/* wait for end of transfer */
1894 		ret = fec_enet_mdio_wait(fep);
1895 		if (ret) {
1896 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1897 			goto out;
1898 		}
1899 	} else {
1900 		/* C22 write */
1901 		frame_start = FEC_MMFR_ST;
1902 		frame_addr = regnum;
1903 	}
1904 
1905 	/* start a write op */
1906 	writel(frame_start | FEC_MMFR_OP_WRITE |
1907 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1908 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1909 		fep->hwp + FEC_MII_DATA);
1910 
1911 	/* wait for end of transfer */
1912 	ret = fec_enet_mdio_wait(fep);
1913 	if (ret)
1914 		netdev_err(fep->netdev, "MDIO write timeout\n");
1915 
1916 out:
1917 	pm_runtime_mark_last_busy(dev);
1918 	pm_runtime_put_autosuspend(dev);
1919 
1920 	return ret;
1921 }
1922 
1923 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
1924 {
1925 	struct fec_enet_private *fep = netdev_priv(ndev);
1926 	struct phy_device *phy_dev = ndev->phydev;
1927 
1928 	if (phy_dev) {
1929 		phy_reset_after_clk_enable(phy_dev);
1930 	} else if (fep->phy_node) {
1931 		/*
1932 		 * If the PHY still is not bound to the MAC, but there is
1933 		 * OF PHY node and a matching PHY device instance already,
1934 		 * use the OF PHY node to obtain the PHY device instance,
1935 		 * and then use that PHY device instance when triggering
1936 		 * the PHY reset.
1937 		 */
1938 		phy_dev = of_phy_find_device(fep->phy_node);
1939 		phy_reset_after_clk_enable(phy_dev);
1940 		put_device(&phy_dev->mdio.dev);
1941 	}
1942 }
1943 
1944 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1945 {
1946 	struct fec_enet_private *fep = netdev_priv(ndev);
1947 	int ret;
1948 
1949 	if (enable) {
1950 		ret = clk_prepare_enable(fep->clk_enet_out);
1951 		if (ret)
1952 			return ret;
1953 
1954 		if (fep->clk_ptp) {
1955 			mutex_lock(&fep->ptp_clk_mutex);
1956 			ret = clk_prepare_enable(fep->clk_ptp);
1957 			if (ret) {
1958 				mutex_unlock(&fep->ptp_clk_mutex);
1959 				goto failed_clk_ptp;
1960 			} else {
1961 				fep->ptp_clk_on = true;
1962 			}
1963 			mutex_unlock(&fep->ptp_clk_mutex);
1964 		}
1965 
1966 		ret = clk_prepare_enable(fep->clk_ref);
1967 		if (ret)
1968 			goto failed_clk_ref;
1969 
1970 		fec_enet_phy_reset_after_clk_enable(ndev);
1971 	} else {
1972 		clk_disable_unprepare(fep->clk_enet_out);
1973 		if (fep->clk_ptp) {
1974 			mutex_lock(&fep->ptp_clk_mutex);
1975 			clk_disable_unprepare(fep->clk_ptp);
1976 			fep->ptp_clk_on = false;
1977 			mutex_unlock(&fep->ptp_clk_mutex);
1978 		}
1979 		clk_disable_unprepare(fep->clk_ref);
1980 	}
1981 
1982 	return 0;
1983 
1984 failed_clk_ref:
1985 	if (fep->clk_ptp) {
1986 		mutex_lock(&fep->ptp_clk_mutex);
1987 		clk_disable_unprepare(fep->clk_ptp);
1988 		fep->ptp_clk_on = false;
1989 		mutex_unlock(&fep->ptp_clk_mutex);
1990 	}
1991 failed_clk_ptp:
1992 	clk_disable_unprepare(fep->clk_enet_out);
1993 
1994 	return ret;
1995 }
1996 
1997 static int fec_enet_mii_probe(struct net_device *ndev)
1998 {
1999 	struct fec_enet_private *fep = netdev_priv(ndev);
2000 	struct phy_device *phy_dev = NULL;
2001 	char mdio_bus_id[MII_BUS_ID_SIZE];
2002 	char phy_name[MII_BUS_ID_SIZE + 3];
2003 	int phy_id;
2004 	int dev_id = fep->dev_id;
2005 
2006 	if (fep->phy_node) {
2007 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2008 					 &fec_enet_adjust_link, 0,
2009 					 fep->phy_interface);
2010 		if (!phy_dev) {
2011 			netdev_err(ndev, "Unable to connect to phy\n");
2012 			return -ENODEV;
2013 		}
2014 	} else {
2015 		/* check for attached phy */
2016 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2017 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2018 				continue;
2019 			if (dev_id--)
2020 				continue;
2021 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2022 			break;
2023 		}
2024 
2025 		if (phy_id >= PHY_MAX_ADDR) {
2026 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2027 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2028 			phy_id = 0;
2029 		}
2030 
2031 		snprintf(phy_name, sizeof(phy_name),
2032 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2033 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2034 				      fep->phy_interface);
2035 	}
2036 
2037 	if (IS_ERR(phy_dev)) {
2038 		netdev_err(ndev, "could not attach to PHY\n");
2039 		return PTR_ERR(phy_dev);
2040 	}
2041 
2042 	/* mask with MAC supported features */
2043 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2044 		phy_set_max_speed(phy_dev, 1000);
2045 		phy_remove_link_mode(phy_dev,
2046 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2047 #if !defined(CONFIG_M5272)
2048 		phy_support_sym_pause(phy_dev);
2049 #endif
2050 	}
2051 	else
2052 		phy_set_max_speed(phy_dev, 100);
2053 
2054 	fep->link = 0;
2055 	fep->full_duplex = 0;
2056 
2057 	phy_dev->mac_managed_pm = 1;
2058 
2059 	phy_attached_info(phy_dev);
2060 
2061 	return 0;
2062 }
2063 
2064 static int fec_enet_mii_init(struct platform_device *pdev)
2065 {
2066 	static struct mii_bus *fec0_mii_bus;
2067 	struct net_device *ndev = platform_get_drvdata(pdev);
2068 	struct fec_enet_private *fep = netdev_priv(ndev);
2069 	bool suppress_preamble = false;
2070 	struct device_node *node;
2071 	int err = -ENXIO;
2072 	u32 mii_speed, holdtime;
2073 	u32 bus_freq;
2074 
2075 	/*
2076 	 * The i.MX28 dual fec interfaces are not equal.
2077 	 * Here are the differences:
2078 	 *
2079 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2080 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2081 	 *  - external phys can only be configured by fec0
2082 	 *
2083 	 * That is to say fec1 can not work independently. It only works
2084 	 * when fec0 is working. The reason behind this design is that the
2085 	 * second interface is added primarily for Switch mode.
2086 	 *
2087 	 * Because of the last point above, both phys are attached on fec0
2088 	 * mdio interface in board design, and need to be configured by
2089 	 * fec0 mii_bus.
2090 	 */
2091 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2092 		/* fec1 uses fec0 mii_bus */
2093 		if (mii_cnt && fec0_mii_bus) {
2094 			fep->mii_bus = fec0_mii_bus;
2095 			mii_cnt++;
2096 			return 0;
2097 		}
2098 		return -ENOENT;
2099 	}
2100 
2101 	bus_freq = 2500000; /* 2.5MHz by default */
2102 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2103 	if (node) {
2104 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2105 		suppress_preamble = of_property_read_bool(node,
2106 							  "suppress-preamble");
2107 	}
2108 
2109 	/*
2110 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2111 	 *
2112 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2113 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2114 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2115 	 * document.
2116 	 */
2117 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2118 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2119 		mii_speed--;
2120 	if (mii_speed > 63) {
2121 		dev_err(&pdev->dev,
2122 			"fec clock (%lu) too fast to get right mii speed\n",
2123 			clk_get_rate(fep->clk_ipg));
2124 		err = -EINVAL;
2125 		goto err_out;
2126 	}
2127 
2128 	/*
2129 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2130 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2131 	 * versions are RAZ there, so just ignore the difference and write the
2132 	 * register always.
2133 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2134 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2135 	 * output.
2136 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2137 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2138 	 * holdtime cannot result in a value greater than 3.
2139 	 */
2140 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2141 
2142 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2143 
2144 	if (suppress_preamble)
2145 		fep->phy_speed |= BIT(7);
2146 
2147 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2148 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2149 		 * MII event generation condition:
2150 		 * - writing MSCR:
2151 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2152 		 *	  mscr_reg_data_in[7:0] != 0
2153 		 * - writing MMFR:
2154 		 *	- mscr[7:0]_not_zero
2155 		 */
2156 		writel(0, fep->hwp + FEC_MII_DATA);
2157 	}
2158 
2159 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2160 
2161 	/* Clear any pending transaction complete indication */
2162 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2163 
2164 	fep->mii_bus = mdiobus_alloc();
2165 	if (fep->mii_bus == NULL) {
2166 		err = -ENOMEM;
2167 		goto err_out;
2168 	}
2169 
2170 	fep->mii_bus->name = "fec_enet_mii_bus";
2171 	fep->mii_bus->read = fec_enet_mdio_read;
2172 	fep->mii_bus->write = fec_enet_mdio_write;
2173 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2174 		pdev->name, fep->dev_id + 1);
2175 	fep->mii_bus->priv = fep;
2176 	fep->mii_bus->parent = &pdev->dev;
2177 
2178 	err = of_mdiobus_register(fep->mii_bus, node);
2179 	if (err)
2180 		goto err_out_free_mdiobus;
2181 	of_node_put(node);
2182 
2183 	mii_cnt++;
2184 
2185 	/* save fec0 mii_bus */
2186 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2187 		fec0_mii_bus = fep->mii_bus;
2188 
2189 	return 0;
2190 
2191 err_out_free_mdiobus:
2192 	mdiobus_free(fep->mii_bus);
2193 err_out:
2194 	of_node_put(node);
2195 	return err;
2196 }
2197 
2198 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2199 {
2200 	if (--mii_cnt == 0) {
2201 		mdiobus_unregister(fep->mii_bus);
2202 		mdiobus_free(fep->mii_bus);
2203 	}
2204 }
2205 
2206 static void fec_enet_get_drvinfo(struct net_device *ndev,
2207 				 struct ethtool_drvinfo *info)
2208 {
2209 	struct fec_enet_private *fep = netdev_priv(ndev);
2210 
2211 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2212 		sizeof(info->driver));
2213 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2214 }
2215 
2216 static int fec_enet_get_regs_len(struct net_device *ndev)
2217 {
2218 	struct fec_enet_private *fep = netdev_priv(ndev);
2219 	struct resource *r;
2220 	int s = 0;
2221 
2222 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2223 	if (r)
2224 		s = resource_size(r);
2225 
2226 	return s;
2227 }
2228 
2229 /* List of registers that can be safety be read to dump them with ethtool */
2230 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2231 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2232 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2233 static __u32 fec_enet_register_version = 2;
2234 static u32 fec_enet_register_offset[] = {
2235 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2236 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2237 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2238 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2239 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2240 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2241 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2242 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2243 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2244 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2245 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2246 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2247 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2248 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2249 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2250 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2251 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2252 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2253 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2254 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2255 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2256 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2257 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2258 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2259 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2260 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2261 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2262 };
2263 #else
2264 static __u32 fec_enet_register_version = 1;
2265 static u32 fec_enet_register_offset[] = {
2266 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2267 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2268 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2269 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2270 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2271 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2272 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2273 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2274 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2275 };
2276 #endif
2277 
2278 static void fec_enet_get_regs(struct net_device *ndev,
2279 			      struct ethtool_regs *regs, void *regbuf)
2280 {
2281 	struct fec_enet_private *fep = netdev_priv(ndev);
2282 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2283 	struct device *dev = &fep->pdev->dev;
2284 	u32 *buf = (u32 *)regbuf;
2285 	u32 i, off;
2286 	int ret;
2287 
2288 	ret = pm_runtime_resume_and_get(dev);
2289 	if (ret < 0)
2290 		return;
2291 
2292 	regs->version = fec_enet_register_version;
2293 
2294 	memset(buf, 0, regs->len);
2295 
2296 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2297 		off = fec_enet_register_offset[i];
2298 
2299 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2300 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2301 			continue;
2302 
2303 		off >>= 2;
2304 		buf[off] = readl(&theregs[off]);
2305 	}
2306 
2307 	pm_runtime_mark_last_busy(dev);
2308 	pm_runtime_put_autosuspend(dev);
2309 }
2310 
2311 static int fec_enet_get_ts_info(struct net_device *ndev,
2312 				struct ethtool_ts_info *info)
2313 {
2314 	struct fec_enet_private *fep = netdev_priv(ndev);
2315 
2316 	if (fep->bufdesc_ex) {
2317 
2318 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2319 					SOF_TIMESTAMPING_RX_SOFTWARE |
2320 					SOF_TIMESTAMPING_SOFTWARE |
2321 					SOF_TIMESTAMPING_TX_HARDWARE |
2322 					SOF_TIMESTAMPING_RX_HARDWARE |
2323 					SOF_TIMESTAMPING_RAW_HARDWARE;
2324 		if (fep->ptp_clock)
2325 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2326 		else
2327 			info->phc_index = -1;
2328 
2329 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2330 				 (1 << HWTSTAMP_TX_ON);
2331 
2332 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2333 				   (1 << HWTSTAMP_FILTER_ALL);
2334 		return 0;
2335 	} else {
2336 		return ethtool_op_get_ts_info(ndev, info);
2337 	}
2338 }
2339 
2340 #if !defined(CONFIG_M5272)
2341 
2342 static void fec_enet_get_pauseparam(struct net_device *ndev,
2343 				    struct ethtool_pauseparam *pause)
2344 {
2345 	struct fec_enet_private *fep = netdev_priv(ndev);
2346 
2347 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2348 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2349 	pause->rx_pause = pause->tx_pause;
2350 }
2351 
2352 static int fec_enet_set_pauseparam(struct net_device *ndev,
2353 				   struct ethtool_pauseparam *pause)
2354 {
2355 	struct fec_enet_private *fep = netdev_priv(ndev);
2356 
2357 	if (!ndev->phydev)
2358 		return -ENODEV;
2359 
2360 	if (pause->tx_pause != pause->rx_pause) {
2361 		netdev_info(ndev,
2362 			"hardware only support enable/disable both tx and rx");
2363 		return -EINVAL;
2364 	}
2365 
2366 	fep->pause_flag = 0;
2367 
2368 	/* tx pause must be same as rx pause */
2369 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2370 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2371 
2372 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2373 			  pause->autoneg);
2374 
2375 	if (pause->autoneg) {
2376 		if (netif_running(ndev))
2377 			fec_stop(ndev);
2378 		phy_start_aneg(ndev->phydev);
2379 	}
2380 	if (netif_running(ndev)) {
2381 		napi_disable(&fep->napi);
2382 		netif_tx_lock_bh(ndev);
2383 		fec_restart(ndev);
2384 		netif_tx_wake_all_queues(ndev);
2385 		netif_tx_unlock_bh(ndev);
2386 		napi_enable(&fep->napi);
2387 	}
2388 
2389 	return 0;
2390 }
2391 
2392 static const struct fec_stat {
2393 	char name[ETH_GSTRING_LEN];
2394 	u16 offset;
2395 } fec_stats[] = {
2396 	/* RMON TX */
2397 	{ "tx_dropped", RMON_T_DROP },
2398 	{ "tx_packets", RMON_T_PACKETS },
2399 	{ "tx_broadcast", RMON_T_BC_PKT },
2400 	{ "tx_multicast", RMON_T_MC_PKT },
2401 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2402 	{ "tx_undersize", RMON_T_UNDERSIZE },
2403 	{ "tx_oversize", RMON_T_OVERSIZE },
2404 	{ "tx_fragment", RMON_T_FRAG },
2405 	{ "tx_jabber", RMON_T_JAB },
2406 	{ "tx_collision", RMON_T_COL },
2407 	{ "tx_64byte", RMON_T_P64 },
2408 	{ "tx_65to127byte", RMON_T_P65TO127 },
2409 	{ "tx_128to255byte", RMON_T_P128TO255 },
2410 	{ "tx_256to511byte", RMON_T_P256TO511 },
2411 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2412 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2413 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2414 	{ "tx_octets", RMON_T_OCTETS },
2415 
2416 	/* IEEE TX */
2417 	{ "IEEE_tx_drop", IEEE_T_DROP },
2418 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2419 	{ "IEEE_tx_1col", IEEE_T_1COL },
2420 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2421 	{ "IEEE_tx_def", IEEE_T_DEF },
2422 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2423 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2424 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2425 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2426 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2427 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2428 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2429 
2430 	/* RMON RX */
2431 	{ "rx_packets", RMON_R_PACKETS },
2432 	{ "rx_broadcast", RMON_R_BC_PKT },
2433 	{ "rx_multicast", RMON_R_MC_PKT },
2434 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2435 	{ "rx_undersize", RMON_R_UNDERSIZE },
2436 	{ "rx_oversize", RMON_R_OVERSIZE },
2437 	{ "rx_fragment", RMON_R_FRAG },
2438 	{ "rx_jabber", RMON_R_JAB },
2439 	{ "rx_64byte", RMON_R_P64 },
2440 	{ "rx_65to127byte", RMON_R_P65TO127 },
2441 	{ "rx_128to255byte", RMON_R_P128TO255 },
2442 	{ "rx_256to511byte", RMON_R_P256TO511 },
2443 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2444 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2445 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2446 	{ "rx_octets", RMON_R_OCTETS },
2447 
2448 	/* IEEE RX */
2449 	{ "IEEE_rx_drop", IEEE_R_DROP },
2450 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2451 	{ "IEEE_rx_crc", IEEE_R_CRC },
2452 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2453 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2454 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2455 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2456 };
2457 
2458 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2459 
2460 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2461 {
2462 	struct fec_enet_private *fep = netdev_priv(dev);
2463 	int i;
2464 
2465 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2466 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2467 }
2468 
2469 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2470 				       struct ethtool_stats *stats, u64 *data)
2471 {
2472 	struct fec_enet_private *fep = netdev_priv(dev);
2473 
2474 	if (netif_running(dev))
2475 		fec_enet_update_ethtool_stats(dev);
2476 
2477 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2478 }
2479 
2480 static void fec_enet_get_strings(struct net_device *netdev,
2481 	u32 stringset, u8 *data)
2482 {
2483 	int i;
2484 	switch (stringset) {
2485 	case ETH_SS_STATS:
2486 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2487 			memcpy(data + i * ETH_GSTRING_LEN,
2488 				fec_stats[i].name, ETH_GSTRING_LEN);
2489 		break;
2490 	case ETH_SS_TEST:
2491 		net_selftest_get_strings(data);
2492 		break;
2493 	}
2494 }
2495 
2496 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2497 {
2498 	switch (sset) {
2499 	case ETH_SS_STATS:
2500 		return ARRAY_SIZE(fec_stats);
2501 	case ETH_SS_TEST:
2502 		return net_selftest_get_count();
2503 	default:
2504 		return -EOPNOTSUPP;
2505 	}
2506 }
2507 
2508 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2509 {
2510 	struct fec_enet_private *fep = netdev_priv(dev);
2511 	int i;
2512 
2513 	/* Disable MIB statistics counters */
2514 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2515 
2516 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2517 		writel(0, fep->hwp + fec_stats[i].offset);
2518 
2519 	/* Don't disable MIB statistics counters */
2520 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2521 }
2522 
2523 #else	/* !defined(CONFIG_M5272) */
2524 #define FEC_STATS_SIZE	0
2525 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2526 {
2527 }
2528 
2529 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2530 {
2531 }
2532 #endif /* !defined(CONFIG_M5272) */
2533 
2534 /* ITR clock source is enet system clock (clk_ahb).
2535  * TCTT unit is cycle_ns * 64 cycle
2536  * So, the ICTT value = X us / (cycle_ns * 64)
2537  */
2538 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2539 {
2540 	struct fec_enet_private *fep = netdev_priv(ndev);
2541 
2542 	return us * (fep->itr_clk_rate / 64000) / 1000;
2543 }
2544 
2545 /* Set threshold for interrupt coalescing */
2546 static void fec_enet_itr_coal_set(struct net_device *ndev)
2547 {
2548 	struct fec_enet_private *fep = netdev_priv(ndev);
2549 	int rx_itr, tx_itr;
2550 
2551 	/* Must be greater than zero to avoid unpredictable behavior */
2552 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2553 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2554 		return;
2555 
2556 	/* Select enet system clock as Interrupt Coalescing
2557 	 * timer Clock Source
2558 	 */
2559 	rx_itr = FEC_ITR_CLK_SEL;
2560 	tx_itr = FEC_ITR_CLK_SEL;
2561 
2562 	/* set ICFT and ICTT */
2563 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2564 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2565 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2566 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2567 
2568 	rx_itr |= FEC_ITR_EN;
2569 	tx_itr |= FEC_ITR_EN;
2570 
2571 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2572 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2573 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2574 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2575 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2576 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2577 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2578 	}
2579 }
2580 
2581 static int
2582 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2583 {
2584 	struct fec_enet_private *fep = netdev_priv(ndev);
2585 
2586 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2587 		return -EOPNOTSUPP;
2588 
2589 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2590 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2591 
2592 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2593 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2594 
2595 	return 0;
2596 }
2597 
2598 static int
2599 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2600 {
2601 	struct fec_enet_private *fep = netdev_priv(ndev);
2602 	struct device *dev = &fep->pdev->dev;
2603 	unsigned int cycle;
2604 
2605 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2606 		return -EOPNOTSUPP;
2607 
2608 	if (ec->rx_max_coalesced_frames > 255) {
2609 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2610 		return -EINVAL;
2611 	}
2612 
2613 	if (ec->tx_max_coalesced_frames > 255) {
2614 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2615 		return -EINVAL;
2616 	}
2617 
2618 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2619 	if (cycle > 0xFFFF) {
2620 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2621 		return -EINVAL;
2622 	}
2623 
2624 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2625 	if (cycle > 0xFFFF) {
2626 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2627 		return -EINVAL;
2628 	}
2629 
2630 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2631 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2632 
2633 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2634 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2635 
2636 	fec_enet_itr_coal_set(ndev);
2637 
2638 	return 0;
2639 }
2640 
2641 static void fec_enet_itr_coal_init(struct net_device *ndev)
2642 {
2643 	struct ethtool_coalesce ec;
2644 
2645 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2646 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2647 
2648 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2649 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2650 
2651 	fec_enet_set_coalesce(ndev, &ec);
2652 }
2653 
2654 static int fec_enet_get_tunable(struct net_device *netdev,
2655 				const struct ethtool_tunable *tuna,
2656 				void *data)
2657 {
2658 	struct fec_enet_private *fep = netdev_priv(netdev);
2659 	int ret = 0;
2660 
2661 	switch (tuna->id) {
2662 	case ETHTOOL_RX_COPYBREAK:
2663 		*(u32 *)data = fep->rx_copybreak;
2664 		break;
2665 	default:
2666 		ret = -EINVAL;
2667 		break;
2668 	}
2669 
2670 	return ret;
2671 }
2672 
2673 static int fec_enet_set_tunable(struct net_device *netdev,
2674 				const struct ethtool_tunable *tuna,
2675 				const void *data)
2676 {
2677 	struct fec_enet_private *fep = netdev_priv(netdev);
2678 	int ret = 0;
2679 
2680 	switch (tuna->id) {
2681 	case ETHTOOL_RX_COPYBREAK:
2682 		fep->rx_copybreak = *(u32 *)data;
2683 		break;
2684 	default:
2685 		ret = -EINVAL;
2686 		break;
2687 	}
2688 
2689 	return ret;
2690 }
2691 
2692 static void
2693 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2694 {
2695 	struct fec_enet_private *fep = netdev_priv(ndev);
2696 
2697 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2698 		wol->supported = WAKE_MAGIC;
2699 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2700 	} else {
2701 		wol->supported = wol->wolopts = 0;
2702 	}
2703 }
2704 
2705 static int
2706 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2707 {
2708 	struct fec_enet_private *fep = netdev_priv(ndev);
2709 
2710 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2711 		return -EINVAL;
2712 
2713 	if (wol->wolopts & ~WAKE_MAGIC)
2714 		return -EINVAL;
2715 
2716 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2717 	if (device_may_wakeup(&ndev->dev)) {
2718 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2719 		if (fep->irq[0] > 0)
2720 			enable_irq_wake(fep->irq[0]);
2721 	} else {
2722 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2723 		if (fep->irq[0] > 0)
2724 			disable_irq_wake(fep->irq[0]);
2725 	}
2726 
2727 	return 0;
2728 }
2729 
2730 static const struct ethtool_ops fec_enet_ethtool_ops = {
2731 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2732 				     ETHTOOL_COALESCE_MAX_FRAMES,
2733 	.get_drvinfo		= fec_enet_get_drvinfo,
2734 	.get_regs_len		= fec_enet_get_regs_len,
2735 	.get_regs		= fec_enet_get_regs,
2736 	.nway_reset		= phy_ethtool_nway_reset,
2737 	.get_link		= ethtool_op_get_link,
2738 	.get_coalesce		= fec_enet_get_coalesce,
2739 	.set_coalesce		= fec_enet_set_coalesce,
2740 #ifndef CONFIG_M5272
2741 	.get_pauseparam		= fec_enet_get_pauseparam,
2742 	.set_pauseparam		= fec_enet_set_pauseparam,
2743 	.get_strings		= fec_enet_get_strings,
2744 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2745 	.get_sset_count		= fec_enet_get_sset_count,
2746 #endif
2747 	.get_ts_info		= fec_enet_get_ts_info,
2748 	.get_tunable		= fec_enet_get_tunable,
2749 	.set_tunable		= fec_enet_set_tunable,
2750 	.get_wol		= fec_enet_get_wol,
2751 	.set_wol		= fec_enet_set_wol,
2752 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2753 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2754 	.self_test		= net_selftest,
2755 };
2756 
2757 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2758 {
2759 	struct fec_enet_private *fep = netdev_priv(ndev);
2760 	struct phy_device *phydev = ndev->phydev;
2761 
2762 	if (!netif_running(ndev))
2763 		return -EINVAL;
2764 
2765 	if (!phydev)
2766 		return -ENODEV;
2767 
2768 	if (fep->bufdesc_ex) {
2769 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2770 
2771 		if (cmd == SIOCSHWTSTAMP) {
2772 			if (use_fec_hwts)
2773 				return fec_ptp_set(ndev, rq);
2774 			fec_ptp_disable_hwts(ndev);
2775 		} else if (cmd == SIOCGHWTSTAMP) {
2776 			if (use_fec_hwts)
2777 				return fec_ptp_get(ndev, rq);
2778 		}
2779 	}
2780 
2781 	return phy_mii_ioctl(phydev, rq, cmd);
2782 }
2783 
2784 static void fec_enet_free_buffers(struct net_device *ndev)
2785 {
2786 	struct fec_enet_private *fep = netdev_priv(ndev);
2787 	unsigned int i;
2788 	struct sk_buff *skb;
2789 	struct bufdesc	*bdp;
2790 	struct fec_enet_priv_tx_q *txq;
2791 	struct fec_enet_priv_rx_q *rxq;
2792 	unsigned int q;
2793 
2794 	for (q = 0; q < fep->num_rx_queues; q++) {
2795 		rxq = fep->rx_queue[q];
2796 		bdp = rxq->bd.base;
2797 		for (i = 0; i < rxq->bd.ring_size; i++) {
2798 			skb = rxq->rx_skbuff[i];
2799 			rxq->rx_skbuff[i] = NULL;
2800 			if (skb) {
2801 				dma_unmap_single(&fep->pdev->dev,
2802 						 fec32_to_cpu(bdp->cbd_bufaddr),
2803 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2804 						 DMA_FROM_DEVICE);
2805 				dev_kfree_skb(skb);
2806 			}
2807 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2808 		}
2809 	}
2810 
2811 	for (q = 0; q < fep->num_tx_queues; q++) {
2812 		txq = fep->tx_queue[q];
2813 		for (i = 0; i < txq->bd.ring_size; i++) {
2814 			kfree(txq->tx_bounce[i]);
2815 			txq->tx_bounce[i] = NULL;
2816 			skb = txq->tx_skbuff[i];
2817 			txq->tx_skbuff[i] = NULL;
2818 			dev_kfree_skb(skb);
2819 		}
2820 	}
2821 }
2822 
2823 static void fec_enet_free_queue(struct net_device *ndev)
2824 {
2825 	struct fec_enet_private *fep = netdev_priv(ndev);
2826 	int i;
2827 	struct fec_enet_priv_tx_q *txq;
2828 
2829 	for (i = 0; i < fep->num_tx_queues; i++)
2830 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2831 			txq = fep->tx_queue[i];
2832 			dma_free_coherent(&fep->pdev->dev,
2833 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2834 					  txq->tso_hdrs,
2835 					  txq->tso_hdrs_dma);
2836 		}
2837 
2838 	for (i = 0; i < fep->num_rx_queues; i++)
2839 		kfree(fep->rx_queue[i]);
2840 	for (i = 0; i < fep->num_tx_queues; i++)
2841 		kfree(fep->tx_queue[i]);
2842 }
2843 
2844 static int fec_enet_alloc_queue(struct net_device *ndev)
2845 {
2846 	struct fec_enet_private *fep = netdev_priv(ndev);
2847 	int i;
2848 	int ret = 0;
2849 	struct fec_enet_priv_tx_q *txq;
2850 
2851 	for (i = 0; i < fep->num_tx_queues; i++) {
2852 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2853 		if (!txq) {
2854 			ret = -ENOMEM;
2855 			goto alloc_failed;
2856 		}
2857 
2858 		fep->tx_queue[i] = txq;
2859 		txq->bd.ring_size = TX_RING_SIZE;
2860 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2861 
2862 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2863 		txq->tx_wake_threshold =
2864 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2865 
2866 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2867 					txq->bd.ring_size * TSO_HEADER_SIZE,
2868 					&txq->tso_hdrs_dma,
2869 					GFP_KERNEL);
2870 		if (!txq->tso_hdrs) {
2871 			ret = -ENOMEM;
2872 			goto alloc_failed;
2873 		}
2874 	}
2875 
2876 	for (i = 0; i < fep->num_rx_queues; i++) {
2877 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2878 					   GFP_KERNEL);
2879 		if (!fep->rx_queue[i]) {
2880 			ret = -ENOMEM;
2881 			goto alloc_failed;
2882 		}
2883 
2884 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2885 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2886 	}
2887 	return ret;
2888 
2889 alloc_failed:
2890 	fec_enet_free_queue(ndev);
2891 	return ret;
2892 }
2893 
2894 static int
2895 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2896 {
2897 	struct fec_enet_private *fep = netdev_priv(ndev);
2898 	unsigned int i;
2899 	struct sk_buff *skb;
2900 	struct bufdesc	*bdp;
2901 	struct fec_enet_priv_rx_q *rxq;
2902 
2903 	rxq = fep->rx_queue[queue];
2904 	bdp = rxq->bd.base;
2905 	for (i = 0; i < rxq->bd.ring_size; i++) {
2906 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2907 		if (!skb)
2908 			goto err_alloc;
2909 
2910 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2911 			dev_kfree_skb(skb);
2912 			goto err_alloc;
2913 		}
2914 
2915 		rxq->rx_skbuff[i] = skb;
2916 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2917 
2918 		if (fep->bufdesc_ex) {
2919 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2920 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2921 		}
2922 
2923 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2924 	}
2925 
2926 	/* Set the last buffer to wrap. */
2927 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2928 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2929 	return 0;
2930 
2931  err_alloc:
2932 	fec_enet_free_buffers(ndev);
2933 	return -ENOMEM;
2934 }
2935 
2936 static int
2937 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2938 {
2939 	struct fec_enet_private *fep = netdev_priv(ndev);
2940 	unsigned int i;
2941 	struct bufdesc  *bdp;
2942 	struct fec_enet_priv_tx_q *txq;
2943 
2944 	txq = fep->tx_queue[queue];
2945 	bdp = txq->bd.base;
2946 	for (i = 0; i < txq->bd.ring_size; i++) {
2947 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2948 		if (!txq->tx_bounce[i])
2949 			goto err_alloc;
2950 
2951 		bdp->cbd_sc = cpu_to_fec16(0);
2952 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2953 
2954 		if (fep->bufdesc_ex) {
2955 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2956 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2957 		}
2958 
2959 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2960 	}
2961 
2962 	/* Set the last buffer to wrap. */
2963 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2964 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2965 
2966 	return 0;
2967 
2968  err_alloc:
2969 	fec_enet_free_buffers(ndev);
2970 	return -ENOMEM;
2971 }
2972 
2973 static int fec_enet_alloc_buffers(struct net_device *ndev)
2974 {
2975 	struct fec_enet_private *fep = netdev_priv(ndev);
2976 	unsigned int i;
2977 
2978 	for (i = 0; i < fep->num_rx_queues; i++)
2979 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2980 			return -ENOMEM;
2981 
2982 	for (i = 0; i < fep->num_tx_queues; i++)
2983 		if (fec_enet_alloc_txq_buffers(ndev, i))
2984 			return -ENOMEM;
2985 	return 0;
2986 }
2987 
2988 static int
2989 fec_enet_open(struct net_device *ndev)
2990 {
2991 	struct fec_enet_private *fep = netdev_priv(ndev);
2992 	int ret;
2993 	bool reset_again;
2994 
2995 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
2996 	if (ret < 0)
2997 		return ret;
2998 
2999 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3000 	ret = fec_enet_clk_enable(ndev, true);
3001 	if (ret)
3002 		goto clk_enable;
3003 
3004 	/* During the first fec_enet_open call the PHY isn't probed at this
3005 	 * point. Therefore the phy_reset_after_clk_enable() call within
3006 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3007 	 * sure the PHY is working correctly we check if we need to reset again
3008 	 * later when the PHY is probed
3009 	 */
3010 	if (ndev->phydev && ndev->phydev->drv)
3011 		reset_again = false;
3012 	else
3013 		reset_again = true;
3014 
3015 	/* I should reset the ring buffers here, but I don't yet know
3016 	 * a simple way to do that.
3017 	 */
3018 
3019 	ret = fec_enet_alloc_buffers(ndev);
3020 	if (ret)
3021 		goto err_enet_alloc;
3022 
3023 	/* Init MAC prior to mii bus probe */
3024 	fec_restart(ndev);
3025 
3026 	/* Call phy_reset_after_clk_enable() again if it failed during
3027 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3028 	 */
3029 	if (reset_again)
3030 		fec_enet_phy_reset_after_clk_enable(ndev);
3031 
3032 	/* Probe and connect to PHY when open the interface */
3033 	ret = fec_enet_mii_probe(ndev);
3034 	if (ret)
3035 		goto err_enet_mii_probe;
3036 
3037 	if (fep->quirks & FEC_QUIRK_ERR006687)
3038 		imx6q_cpuidle_fec_irqs_used();
3039 
3040 	napi_enable(&fep->napi);
3041 	phy_start(ndev->phydev);
3042 	netif_tx_start_all_queues(ndev);
3043 
3044 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3045 				 FEC_WOL_FLAG_ENABLE);
3046 
3047 	return 0;
3048 
3049 err_enet_mii_probe:
3050 	fec_enet_free_buffers(ndev);
3051 err_enet_alloc:
3052 	fec_enet_clk_enable(ndev, false);
3053 clk_enable:
3054 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3055 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3056 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3057 	return ret;
3058 }
3059 
3060 static int
3061 fec_enet_close(struct net_device *ndev)
3062 {
3063 	struct fec_enet_private *fep = netdev_priv(ndev);
3064 
3065 	phy_stop(ndev->phydev);
3066 
3067 	if (netif_device_present(ndev)) {
3068 		napi_disable(&fep->napi);
3069 		netif_tx_disable(ndev);
3070 		fec_stop(ndev);
3071 	}
3072 
3073 	phy_disconnect(ndev->phydev);
3074 
3075 	if (fep->quirks & FEC_QUIRK_ERR006687)
3076 		imx6q_cpuidle_fec_irqs_unused();
3077 
3078 	fec_enet_update_ethtool_stats(ndev);
3079 
3080 	fec_enet_clk_enable(ndev, false);
3081 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3082 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3083 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3084 
3085 	fec_enet_free_buffers(ndev);
3086 
3087 	return 0;
3088 }
3089 
3090 /* Set or clear the multicast filter for this adaptor.
3091  * Skeleton taken from sunlance driver.
3092  * The CPM Ethernet implementation allows Multicast as well as individual
3093  * MAC address filtering.  Some of the drivers check to make sure it is
3094  * a group multicast address, and discard those that are not.  I guess I
3095  * will do the same for now, but just remove the test if you want
3096  * individual filtering as well (do the upper net layers want or support
3097  * this kind of feature?).
3098  */
3099 
3100 #define FEC_HASH_BITS	6		/* #bits in hash */
3101 
3102 static void set_multicast_list(struct net_device *ndev)
3103 {
3104 	struct fec_enet_private *fep = netdev_priv(ndev);
3105 	struct netdev_hw_addr *ha;
3106 	unsigned int crc, tmp;
3107 	unsigned char hash;
3108 	unsigned int hash_high = 0, hash_low = 0;
3109 
3110 	if (ndev->flags & IFF_PROMISC) {
3111 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3112 		tmp |= 0x8;
3113 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3114 		return;
3115 	}
3116 
3117 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3118 	tmp &= ~0x8;
3119 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3120 
3121 	if (ndev->flags & IFF_ALLMULTI) {
3122 		/* Catch all multicast addresses, so set the
3123 		 * filter to all 1's
3124 		 */
3125 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3126 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3127 
3128 		return;
3129 	}
3130 
3131 	/* Add the addresses in hash register */
3132 	netdev_for_each_mc_addr(ha, ndev) {
3133 		/* calculate crc32 value of mac address */
3134 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3135 
3136 		/* only upper 6 bits (FEC_HASH_BITS) are used
3137 		 * which point to specific bit in the hash registers
3138 		 */
3139 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3140 
3141 		if (hash > 31)
3142 			hash_high |= 1 << (hash - 32);
3143 		else
3144 			hash_low |= 1 << hash;
3145 	}
3146 
3147 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3148 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3149 }
3150 
3151 /* Set a MAC change in hardware. */
3152 static int
3153 fec_set_mac_address(struct net_device *ndev, void *p)
3154 {
3155 	struct fec_enet_private *fep = netdev_priv(ndev);
3156 	struct sockaddr *addr = p;
3157 
3158 	if (addr) {
3159 		if (!is_valid_ether_addr(addr->sa_data))
3160 			return -EADDRNOTAVAIL;
3161 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3162 	}
3163 
3164 	/* Add netif status check here to avoid system hang in below case:
3165 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3166 	 * After ethx down, fec all clocks are gated off and then register
3167 	 * access causes system hang.
3168 	 */
3169 	if (!netif_running(ndev))
3170 		return 0;
3171 
3172 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3173 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3174 		fep->hwp + FEC_ADDR_LOW);
3175 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3176 		fep->hwp + FEC_ADDR_HIGH);
3177 	return 0;
3178 }
3179 
3180 #ifdef CONFIG_NET_POLL_CONTROLLER
3181 /**
3182  * fec_poll_controller - FEC Poll controller function
3183  * @dev: The FEC network adapter
3184  *
3185  * Polled functionality used by netconsole and others in non interrupt mode
3186  *
3187  */
3188 static void fec_poll_controller(struct net_device *dev)
3189 {
3190 	int i;
3191 	struct fec_enet_private *fep = netdev_priv(dev);
3192 
3193 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3194 		if (fep->irq[i] > 0) {
3195 			disable_irq(fep->irq[i]);
3196 			fec_enet_interrupt(fep->irq[i], dev);
3197 			enable_irq(fep->irq[i]);
3198 		}
3199 	}
3200 }
3201 #endif
3202 
3203 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3204 	netdev_features_t features)
3205 {
3206 	struct fec_enet_private *fep = netdev_priv(netdev);
3207 	netdev_features_t changed = features ^ netdev->features;
3208 
3209 	netdev->features = features;
3210 
3211 	/* Receive checksum has been changed */
3212 	if (changed & NETIF_F_RXCSUM) {
3213 		if (features & NETIF_F_RXCSUM)
3214 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3215 		else
3216 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3217 	}
3218 }
3219 
3220 static int fec_set_features(struct net_device *netdev,
3221 	netdev_features_t features)
3222 {
3223 	struct fec_enet_private *fep = netdev_priv(netdev);
3224 	netdev_features_t changed = features ^ netdev->features;
3225 
3226 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3227 		napi_disable(&fep->napi);
3228 		netif_tx_lock_bh(netdev);
3229 		fec_stop(netdev);
3230 		fec_enet_set_netdev_features(netdev, features);
3231 		fec_restart(netdev);
3232 		netif_tx_wake_all_queues(netdev);
3233 		netif_tx_unlock_bh(netdev);
3234 		napi_enable(&fep->napi);
3235 	} else {
3236 		fec_enet_set_netdev_features(netdev, features);
3237 	}
3238 
3239 	return 0;
3240 }
3241 
3242 static const struct net_device_ops fec_netdev_ops = {
3243 	.ndo_open		= fec_enet_open,
3244 	.ndo_stop		= fec_enet_close,
3245 	.ndo_start_xmit		= fec_enet_start_xmit,
3246 	.ndo_set_rx_mode	= set_multicast_list,
3247 	.ndo_validate_addr	= eth_validate_addr,
3248 	.ndo_tx_timeout		= fec_timeout,
3249 	.ndo_set_mac_address	= fec_set_mac_address,
3250 	.ndo_do_ioctl		= fec_enet_ioctl,
3251 #ifdef CONFIG_NET_POLL_CONTROLLER
3252 	.ndo_poll_controller	= fec_poll_controller,
3253 #endif
3254 	.ndo_set_features	= fec_set_features,
3255 };
3256 
3257 static const unsigned short offset_des_active_rxq[] = {
3258 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3259 };
3260 
3261 static const unsigned short offset_des_active_txq[] = {
3262 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3263 };
3264 
3265  /*
3266   * XXX:  We need to clean up on failure exits here.
3267   *
3268   */
3269 static int fec_enet_init(struct net_device *ndev)
3270 {
3271 	struct fec_enet_private *fep = netdev_priv(ndev);
3272 	struct bufdesc *cbd_base;
3273 	dma_addr_t bd_dma;
3274 	int bd_size;
3275 	unsigned int i;
3276 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3277 			sizeof(struct bufdesc);
3278 	unsigned dsize_log2 = __fls(dsize);
3279 	int ret;
3280 
3281 	WARN_ON(dsize != (1 << dsize_log2));
3282 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3283 	fep->rx_align = 0xf;
3284 	fep->tx_align = 0xf;
3285 #else
3286 	fep->rx_align = 0x3;
3287 	fep->tx_align = 0x3;
3288 #endif
3289 
3290 	/* Check mask of the streaming and coherent API */
3291 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3292 	if (ret < 0) {
3293 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3294 		return ret;
3295 	}
3296 
3297 	ret = fec_enet_alloc_queue(ndev);
3298 	if (ret)
3299 		return ret;
3300 
3301 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3302 
3303 	/* Allocate memory for buffer descriptors. */
3304 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3305 				       GFP_KERNEL);
3306 	if (!cbd_base) {
3307 		ret = -ENOMEM;
3308 		goto free_queue_mem;
3309 	}
3310 
3311 	/* Get the Ethernet address */
3312 	ret = fec_get_mac(ndev);
3313 	if (ret)
3314 		goto free_queue_mem;
3315 
3316 	/* make sure MAC we just acquired is programmed into the hw */
3317 	fec_set_mac_address(ndev, NULL);
3318 
3319 	/* Set receive and transmit descriptor base. */
3320 	for (i = 0; i < fep->num_rx_queues; i++) {
3321 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3322 		unsigned size = dsize * rxq->bd.ring_size;
3323 
3324 		rxq->bd.qid = i;
3325 		rxq->bd.base = cbd_base;
3326 		rxq->bd.cur = cbd_base;
3327 		rxq->bd.dma = bd_dma;
3328 		rxq->bd.dsize = dsize;
3329 		rxq->bd.dsize_log2 = dsize_log2;
3330 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3331 		bd_dma += size;
3332 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3333 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3334 	}
3335 
3336 	for (i = 0; i < fep->num_tx_queues; i++) {
3337 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3338 		unsigned size = dsize * txq->bd.ring_size;
3339 
3340 		txq->bd.qid = i;
3341 		txq->bd.base = cbd_base;
3342 		txq->bd.cur = cbd_base;
3343 		txq->bd.dma = bd_dma;
3344 		txq->bd.dsize = dsize;
3345 		txq->bd.dsize_log2 = dsize_log2;
3346 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3347 		bd_dma += size;
3348 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3349 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3350 	}
3351 
3352 
3353 	/* The FEC Ethernet specific entries in the device structure */
3354 	ndev->watchdog_timeo = TX_TIMEOUT;
3355 	ndev->netdev_ops = &fec_netdev_ops;
3356 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3357 
3358 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3359 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3360 
3361 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3362 		/* enable hw VLAN support */
3363 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3364 
3365 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3366 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3367 
3368 		/* enable hw accelerator */
3369 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3370 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3371 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3372 	}
3373 
3374 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3375 		fep->tx_align = 0;
3376 		fep->rx_align = 0x3f;
3377 	}
3378 
3379 	ndev->hw_features = ndev->features;
3380 
3381 	fec_restart(ndev);
3382 
3383 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3384 		fec_enet_clear_ethtool_stats(ndev);
3385 	else
3386 		fec_enet_update_ethtool_stats(ndev);
3387 
3388 	return 0;
3389 
3390 free_queue_mem:
3391 	fec_enet_free_queue(ndev);
3392 	return ret;
3393 }
3394 
3395 #ifdef CONFIG_OF
3396 static int fec_reset_phy(struct platform_device *pdev)
3397 {
3398 	int err, phy_reset;
3399 	bool active_high = false;
3400 	int msec = 1, phy_post_delay = 0;
3401 	struct device_node *np = pdev->dev.of_node;
3402 
3403 	if (!np)
3404 		return 0;
3405 
3406 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3407 	/* A sane reset duration should not be longer than 1s */
3408 	if (!err && msec > 1000)
3409 		msec = 1;
3410 
3411 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3412 	if (phy_reset == -EPROBE_DEFER)
3413 		return phy_reset;
3414 	else if (!gpio_is_valid(phy_reset))
3415 		return 0;
3416 
3417 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3418 	/* valid reset duration should be less than 1s */
3419 	if (!err && phy_post_delay > 1000)
3420 		return -EINVAL;
3421 
3422 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3423 
3424 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3425 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3426 			"phy-reset");
3427 	if (err) {
3428 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3429 		return err;
3430 	}
3431 
3432 	if (msec > 20)
3433 		msleep(msec);
3434 	else
3435 		usleep_range(msec * 1000, msec * 1000 + 1000);
3436 
3437 	gpio_set_value_cansleep(phy_reset, !active_high);
3438 
3439 	if (!phy_post_delay)
3440 		return 0;
3441 
3442 	if (phy_post_delay > 20)
3443 		msleep(phy_post_delay);
3444 	else
3445 		usleep_range(phy_post_delay * 1000,
3446 			     phy_post_delay * 1000 + 1000);
3447 
3448 	return 0;
3449 }
3450 #else /* CONFIG_OF */
3451 static int fec_reset_phy(struct platform_device *pdev)
3452 {
3453 	/*
3454 	 * In case of platform probe, the reset has been done
3455 	 * by machine code.
3456 	 */
3457 	return 0;
3458 }
3459 #endif /* CONFIG_OF */
3460 
3461 static void
3462 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3463 {
3464 	struct device_node *np = pdev->dev.of_node;
3465 
3466 	*num_tx = *num_rx = 1;
3467 
3468 	if (!np || !of_device_is_available(np))
3469 		return;
3470 
3471 	/* parse the num of tx and rx queues */
3472 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3473 
3474 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3475 
3476 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3477 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3478 			 *num_tx);
3479 		*num_tx = 1;
3480 		return;
3481 	}
3482 
3483 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3484 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3485 			 *num_rx);
3486 		*num_rx = 1;
3487 		return;
3488 	}
3489 
3490 }
3491 
3492 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3493 {
3494 	int irq_cnt = platform_irq_count(pdev);
3495 
3496 	if (irq_cnt > FEC_IRQ_NUM)
3497 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3498 	else if (irq_cnt == 2)
3499 		irq_cnt = 1;	/* last for pps */
3500 	else if (irq_cnt <= 0)
3501 		irq_cnt = 1;	/* At least 1 irq is needed */
3502 	return irq_cnt;
3503 }
3504 
3505 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3506 				   struct device_node *np)
3507 {
3508 	struct device_node *gpr_np;
3509 	u32 out_val[3];
3510 	int ret = 0;
3511 
3512 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3513 	if (!gpr_np)
3514 		return 0;
3515 
3516 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3517 					 ARRAY_SIZE(out_val));
3518 	if (ret) {
3519 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3520 		return ret;
3521 	}
3522 
3523 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3524 	if (IS_ERR(fep->stop_gpr.gpr)) {
3525 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3526 		ret = PTR_ERR(fep->stop_gpr.gpr);
3527 		fep->stop_gpr.gpr = NULL;
3528 		goto out;
3529 	}
3530 
3531 	fep->stop_gpr.reg = out_val[1];
3532 	fep->stop_gpr.bit = out_val[2];
3533 
3534 out:
3535 	of_node_put(gpr_np);
3536 
3537 	return ret;
3538 }
3539 
3540 static int
3541 fec_probe(struct platform_device *pdev)
3542 {
3543 	struct fec_enet_private *fep;
3544 	struct fec_platform_data *pdata;
3545 	phy_interface_t interface;
3546 	struct net_device *ndev;
3547 	int i, irq, ret = 0;
3548 	const struct of_device_id *of_id;
3549 	static int dev_id;
3550 	struct device_node *np = pdev->dev.of_node, *phy_node;
3551 	int num_tx_qs;
3552 	int num_rx_qs;
3553 	char irq_name[8];
3554 	int irq_cnt;
3555 	struct fec_devinfo *dev_info;
3556 
3557 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3558 
3559 	/* Init network device */
3560 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3561 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3562 	if (!ndev)
3563 		return -ENOMEM;
3564 
3565 	SET_NETDEV_DEV(ndev, &pdev->dev);
3566 
3567 	/* setup board info structure */
3568 	fep = netdev_priv(ndev);
3569 
3570 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3571 	if (of_id)
3572 		pdev->id_entry = of_id->data;
3573 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3574 	if (dev_info)
3575 		fep->quirks = dev_info->quirks;
3576 
3577 	fep->netdev = ndev;
3578 	fep->num_rx_queues = num_rx_qs;
3579 	fep->num_tx_queues = num_tx_qs;
3580 
3581 #if !defined(CONFIG_M5272)
3582 	/* default enable pause frame auto negotiation */
3583 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3584 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3585 #endif
3586 
3587 	/* Select default pin state */
3588 	pinctrl_pm_select_default_state(&pdev->dev);
3589 
3590 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3591 	if (IS_ERR(fep->hwp)) {
3592 		ret = PTR_ERR(fep->hwp);
3593 		goto failed_ioremap;
3594 	}
3595 
3596 	fep->pdev = pdev;
3597 	fep->dev_id = dev_id++;
3598 
3599 	platform_set_drvdata(pdev, ndev);
3600 
3601 	if ((of_machine_is_compatible("fsl,imx6q") ||
3602 	     of_machine_is_compatible("fsl,imx6dl")) &&
3603 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3604 		fep->quirks |= FEC_QUIRK_ERR006687;
3605 
3606 	if (of_get_property(np, "fsl,magic-packet", NULL))
3607 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3608 
3609 	ret = fec_enet_init_stop_mode(fep, np);
3610 	if (ret)
3611 		goto failed_stop_mode;
3612 
3613 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3614 	if (!phy_node && of_phy_is_fixed_link(np)) {
3615 		ret = of_phy_register_fixed_link(np);
3616 		if (ret < 0) {
3617 			dev_err(&pdev->dev,
3618 				"broken fixed-link specification\n");
3619 			goto failed_phy;
3620 		}
3621 		phy_node = of_node_get(np);
3622 	}
3623 	fep->phy_node = phy_node;
3624 
3625 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3626 	if (ret) {
3627 		pdata = dev_get_platdata(&pdev->dev);
3628 		if (pdata)
3629 			fep->phy_interface = pdata->phy;
3630 		else
3631 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3632 	} else {
3633 		fep->phy_interface = interface;
3634 	}
3635 
3636 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3637 	if (IS_ERR(fep->clk_ipg)) {
3638 		ret = PTR_ERR(fep->clk_ipg);
3639 		goto failed_clk;
3640 	}
3641 
3642 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3643 	if (IS_ERR(fep->clk_ahb)) {
3644 		ret = PTR_ERR(fep->clk_ahb);
3645 		goto failed_clk;
3646 	}
3647 
3648 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3649 
3650 	/* enet_out is optional, depends on board */
3651 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3652 	if (IS_ERR(fep->clk_enet_out))
3653 		fep->clk_enet_out = NULL;
3654 
3655 	fep->ptp_clk_on = false;
3656 	mutex_init(&fep->ptp_clk_mutex);
3657 
3658 	/* clk_ref is optional, depends on board */
3659 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3660 	if (IS_ERR(fep->clk_ref))
3661 		fep->clk_ref = NULL;
3662 
3663 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3664 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3665 	if (IS_ERR(fep->clk_ptp)) {
3666 		fep->clk_ptp = NULL;
3667 		fep->bufdesc_ex = false;
3668 	}
3669 
3670 	ret = fec_enet_clk_enable(ndev, true);
3671 	if (ret)
3672 		goto failed_clk;
3673 
3674 	ret = clk_prepare_enable(fep->clk_ipg);
3675 	if (ret)
3676 		goto failed_clk_ipg;
3677 	ret = clk_prepare_enable(fep->clk_ahb);
3678 	if (ret)
3679 		goto failed_clk_ahb;
3680 
3681 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3682 	if (!IS_ERR(fep->reg_phy)) {
3683 		ret = regulator_enable(fep->reg_phy);
3684 		if (ret) {
3685 			dev_err(&pdev->dev,
3686 				"Failed to enable phy regulator: %d\n", ret);
3687 			goto failed_regulator;
3688 		}
3689 	} else {
3690 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3691 			ret = -EPROBE_DEFER;
3692 			goto failed_regulator;
3693 		}
3694 		fep->reg_phy = NULL;
3695 	}
3696 
3697 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3698 	pm_runtime_use_autosuspend(&pdev->dev);
3699 	pm_runtime_get_noresume(&pdev->dev);
3700 	pm_runtime_set_active(&pdev->dev);
3701 	pm_runtime_enable(&pdev->dev);
3702 
3703 	ret = fec_reset_phy(pdev);
3704 	if (ret)
3705 		goto failed_reset;
3706 
3707 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3708 	if (fep->bufdesc_ex)
3709 		fec_ptp_init(pdev, irq_cnt);
3710 
3711 	ret = fec_enet_init(ndev);
3712 	if (ret)
3713 		goto failed_init;
3714 
3715 	for (i = 0; i < irq_cnt; i++) {
3716 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3717 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3718 		if (irq < 0)
3719 			irq = platform_get_irq(pdev, i);
3720 		if (irq < 0) {
3721 			ret = irq;
3722 			goto failed_irq;
3723 		}
3724 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3725 				       0, pdev->name, ndev);
3726 		if (ret)
3727 			goto failed_irq;
3728 
3729 		fep->irq[i] = irq;
3730 	}
3731 
3732 	ret = fec_enet_mii_init(pdev);
3733 	if (ret)
3734 		goto failed_mii_init;
3735 
3736 	/* Carrier starts down, phylib will bring it up */
3737 	netif_carrier_off(ndev);
3738 	fec_enet_clk_enable(ndev, false);
3739 	pinctrl_pm_select_sleep_state(&pdev->dev);
3740 
3741 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3742 
3743 	ret = register_netdev(ndev);
3744 	if (ret)
3745 		goto failed_register;
3746 
3747 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3748 			   FEC_WOL_HAS_MAGIC_PACKET);
3749 
3750 	if (fep->bufdesc_ex && fep->ptp_clock)
3751 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3752 
3753 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3754 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3755 
3756 	pm_runtime_mark_last_busy(&pdev->dev);
3757 	pm_runtime_put_autosuspend(&pdev->dev);
3758 
3759 	return 0;
3760 
3761 failed_register:
3762 	fec_enet_mii_remove(fep);
3763 failed_mii_init:
3764 failed_irq:
3765 failed_init:
3766 	fec_ptp_stop(pdev);
3767 failed_reset:
3768 	pm_runtime_put_noidle(&pdev->dev);
3769 	pm_runtime_disable(&pdev->dev);
3770 	if (fep->reg_phy)
3771 		regulator_disable(fep->reg_phy);
3772 failed_regulator:
3773 	clk_disable_unprepare(fep->clk_ahb);
3774 failed_clk_ahb:
3775 	clk_disable_unprepare(fep->clk_ipg);
3776 failed_clk_ipg:
3777 	fec_enet_clk_enable(ndev, false);
3778 failed_clk:
3779 	if (of_phy_is_fixed_link(np))
3780 		of_phy_deregister_fixed_link(np);
3781 	of_node_put(phy_node);
3782 failed_stop_mode:
3783 failed_phy:
3784 	dev_id--;
3785 failed_ioremap:
3786 	free_netdev(ndev);
3787 
3788 	return ret;
3789 }
3790 
3791 static int
3792 fec_drv_remove(struct platform_device *pdev)
3793 {
3794 	struct net_device *ndev = platform_get_drvdata(pdev);
3795 	struct fec_enet_private *fep = netdev_priv(ndev);
3796 	struct device_node *np = pdev->dev.of_node;
3797 	int ret;
3798 
3799 	ret = pm_runtime_resume_and_get(&pdev->dev);
3800 	if (ret < 0)
3801 		return ret;
3802 
3803 	cancel_work_sync(&fep->tx_timeout_work);
3804 	fec_ptp_stop(pdev);
3805 	unregister_netdev(ndev);
3806 	fec_enet_mii_remove(fep);
3807 	if (fep->reg_phy)
3808 		regulator_disable(fep->reg_phy);
3809 
3810 	if (of_phy_is_fixed_link(np))
3811 		of_phy_deregister_fixed_link(np);
3812 	of_node_put(fep->phy_node);
3813 	free_netdev(ndev);
3814 
3815 	clk_disable_unprepare(fep->clk_ahb);
3816 	clk_disable_unprepare(fep->clk_ipg);
3817 	pm_runtime_put_noidle(&pdev->dev);
3818 	pm_runtime_disable(&pdev->dev);
3819 
3820 	return 0;
3821 }
3822 
3823 static int __maybe_unused fec_suspend(struct device *dev)
3824 {
3825 	struct net_device *ndev = dev_get_drvdata(dev);
3826 	struct fec_enet_private *fep = netdev_priv(ndev);
3827 
3828 	rtnl_lock();
3829 	if (netif_running(ndev)) {
3830 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3831 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3832 		phy_stop(ndev->phydev);
3833 		napi_disable(&fep->napi);
3834 		netif_tx_lock_bh(ndev);
3835 		netif_device_detach(ndev);
3836 		netif_tx_unlock_bh(ndev);
3837 		fec_stop(ndev);
3838 		fec_enet_clk_enable(ndev, false);
3839 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3840 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3841 	}
3842 	rtnl_unlock();
3843 
3844 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3845 		regulator_disable(fep->reg_phy);
3846 
3847 	/* SOC supply clock to phy, when clock is disabled, phy link down
3848 	 * SOC control phy regulator, when regulator is disabled, phy link down
3849 	 */
3850 	if (fep->clk_enet_out || fep->reg_phy)
3851 		fep->link = 0;
3852 
3853 	return 0;
3854 }
3855 
3856 static int __maybe_unused fec_resume(struct device *dev)
3857 {
3858 	struct net_device *ndev = dev_get_drvdata(dev);
3859 	struct fec_enet_private *fep = netdev_priv(ndev);
3860 	int ret;
3861 	int val;
3862 
3863 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3864 		ret = regulator_enable(fep->reg_phy);
3865 		if (ret)
3866 			return ret;
3867 	}
3868 
3869 	rtnl_lock();
3870 	if (netif_running(ndev)) {
3871 		ret = fec_enet_clk_enable(ndev, true);
3872 		if (ret) {
3873 			rtnl_unlock();
3874 			goto failed_clk;
3875 		}
3876 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3877 			fec_enet_stop_mode(fep, false);
3878 
3879 			val = readl(fep->hwp + FEC_ECNTRL);
3880 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3881 			writel(val, fep->hwp + FEC_ECNTRL);
3882 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3883 		} else {
3884 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3885 		}
3886 		fec_restart(ndev);
3887 		netif_tx_lock_bh(ndev);
3888 		netif_device_attach(ndev);
3889 		netif_tx_unlock_bh(ndev);
3890 		napi_enable(&fep->napi);
3891 		phy_init_hw(ndev->phydev);
3892 		phy_start(ndev->phydev);
3893 	}
3894 	rtnl_unlock();
3895 
3896 	return 0;
3897 
3898 failed_clk:
3899 	if (fep->reg_phy)
3900 		regulator_disable(fep->reg_phy);
3901 	return ret;
3902 }
3903 
3904 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3905 {
3906 	struct net_device *ndev = dev_get_drvdata(dev);
3907 	struct fec_enet_private *fep = netdev_priv(ndev);
3908 
3909 	clk_disable_unprepare(fep->clk_ahb);
3910 	clk_disable_unprepare(fep->clk_ipg);
3911 
3912 	return 0;
3913 }
3914 
3915 static int __maybe_unused fec_runtime_resume(struct device *dev)
3916 {
3917 	struct net_device *ndev = dev_get_drvdata(dev);
3918 	struct fec_enet_private *fep = netdev_priv(ndev);
3919 	int ret;
3920 
3921 	ret = clk_prepare_enable(fep->clk_ahb);
3922 	if (ret)
3923 		return ret;
3924 	ret = clk_prepare_enable(fep->clk_ipg);
3925 	if (ret)
3926 		goto failed_clk_ipg;
3927 
3928 	return 0;
3929 
3930 failed_clk_ipg:
3931 	clk_disable_unprepare(fep->clk_ahb);
3932 	return ret;
3933 }
3934 
3935 static const struct dev_pm_ops fec_pm_ops = {
3936 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3937 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3938 };
3939 
3940 static struct platform_driver fec_driver = {
3941 	.driver	= {
3942 		.name	= DRIVER_NAME,
3943 		.pm	= &fec_pm_ops,
3944 		.of_match_table = fec_dt_ids,
3945 		.suppress_bind_attrs = true,
3946 	},
3947 	.id_table = fec_devtype,
3948 	.probe	= fec_probe,
3949 	.remove	= fec_drv_remove,
3950 };
3951 
3952 module_platform_driver(fec_driver);
3953 
3954 MODULE_ALIAS("platform:"DRIVER_NAME);
3955 MODULE_LICENSE("GPL");
3956