1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/tso.h>
42 #include <linux/tcp.h>
43 #include <linux/udp.h>
44 #include <linux/icmp.h>
45 #include <linux/spinlock.h>
46 #include <linux/workqueue.h>
47 #include <linux/bitops.h>
48 #include <linux/io.h>
49 #include <linux/irq.h>
50 #include <linux/clk.h>
51 #include <linux/crc32.h>
52 #include <linux/platform_device.h>
53 #include <linux/mdio.h>
54 #include <linux/phy.h>
55 #include <linux/fec.h>
56 #include <linux/of.h>
57 #include <linux/of_device.h>
58 #include <linux/of_gpio.h>
59 #include <linux/of_mdio.h>
60 #include <linux/of_net.h>
61 #include <linux/regulator/consumer.h>
62 #include <linux/if_vlan.h>
63 #include <linux/pinctrl/consumer.h>
64 #include <linux/prefetch.h>
65 #include <linux/mfd/syscon.h>
66 #include <linux/regmap.h>
67 #include <soc/imx/cpuidle.h>
68 
69 #include <asm/cacheflush.h>
70 
71 #include "fec.h"
72 
73 static void set_multicast_list(struct net_device *ndev);
74 static void fec_enet_itr_coal_init(struct net_device *ndev);
75 
76 #define DRIVER_NAME	"fec"
77 
78 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
79 
80 /* Pause frame feild and FIFO threshold */
81 #define FEC_ENET_FCE	(1 << 5)
82 #define FEC_ENET_RSEM_V	0x84
83 #define FEC_ENET_RSFL_V	16
84 #define FEC_ENET_RAEM_V	0x8
85 #define FEC_ENET_RAFL_V	0x8
86 #define FEC_ENET_OPD_V	0xFFF0
87 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
88 
89 struct fec_devinfo {
90 	u32 quirks;
91 };
92 
93 static const struct fec_devinfo fec_imx25_info = {
94 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
95 		  FEC_QUIRK_HAS_FRREG,
96 };
97 
98 static const struct fec_devinfo fec_imx27_info = {
99 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
100 };
101 
102 static const struct fec_devinfo fec_imx28_info = {
103 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
104 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
105 		  FEC_QUIRK_HAS_FRREG,
106 };
107 
108 static const struct fec_devinfo fec_imx6q_info = {
109 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
110 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
111 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
112 		  FEC_QUIRK_HAS_RACC,
113 };
114 
115 static const struct fec_devinfo fec_mvf600_info = {
116 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
117 };
118 
119 static const struct fec_devinfo fec_imx6x_info = {
120 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
121 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
122 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
123 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
124 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE,
125 };
126 
127 static const struct fec_devinfo fec_imx6ul_info = {
128 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
129 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
130 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
131 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
132 		  FEC_QUIRK_HAS_COALESCE,
133 };
134 
135 static struct platform_device_id fec_devtype[] = {
136 	{
137 		/* keep it for coldfire */
138 		.name = DRIVER_NAME,
139 		.driver_data = 0,
140 	}, {
141 		.name = "imx25-fec",
142 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
143 	}, {
144 		.name = "imx27-fec",
145 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
146 	}, {
147 		.name = "imx28-fec",
148 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
149 	}, {
150 		.name = "imx6q-fec",
151 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
152 	}, {
153 		.name = "mvf600-fec",
154 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
155 	}, {
156 		.name = "imx6sx-fec",
157 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
158 	}, {
159 		.name = "imx6ul-fec",
160 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
161 	}, {
162 		/* sentinel */
163 	}
164 };
165 MODULE_DEVICE_TABLE(platform, fec_devtype);
166 
167 enum imx_fec_type {
168 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
169 	IMX27_FEC,	/* runs on i.mx27/35/51 */
170 	IMX28_FEC,
171 	IMX6Q_FEC,
172 	MVF600_FEC,
173 	IMX6SX_FEC,
174 	IMX6UL_FEC,
175 };
176 
177 static const struct of_device_id fec_dt_ids[] = {
178 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
179 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
180 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
181 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
182 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
183 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
184 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
185 	{ /* sentinel */ }
186 };
187 MODULE_DEVICE_TABLE(of, fec_dt_ids);
188 
189 static unsigned char macaddr[ETH_ALEN];
190 module_param_array(macaddr, byte, NULL, 0);
191 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
192 
193 #if defined(CONFIG_M5272)
194 /*
195  * Some hardware gets it MAC address out of local flash memory.
196  * if this is non-zero then assume it is the address to get MAC from.
197  */
198 #if defined(CONFIG_NETtel)
199 #define	FEC_FLASHMAC	0xf0006006
200 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
201 #define	FEC_FLASHMAC	0xf0006000
202 #elif defined(CONFIG_CANCam)
203 #define	FEC_FLASHMAC	0xf0020000
204 #elif defined (CONFIG_M5272C3)
205 #define	FEC_FLASHMAC	(0xffe04000 + 4)
206 #elif defined(CONFIG_MOD5272)
207 #define FEC_FLASHMAC	0xffc0406b
208 #else
209 #define	FEC_FLASHMAC	0
210 #endif
211 #endif /* CONFIG_M5272 */
212 
213 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
214  *
215  * 2048 byte skbufs are allocated. However, alignment requirements
216  * varies between FEC variants. Worst case is 64, so round down by 64.
217  */
218 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
219 #define PKT_MINBUF_SIZE		64
220 
221 /* FEC receive acceleration */
222 #define FEC_RACC_IPDIS		(1 << 1)
223 #define FEC_RACC_PRODIS		(1 << 2)
224 #define FEC_RACC_SHIFT16	BIT(7)
225 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
226 
227 /* MIB Control Register */
228 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
229 
230 /*
231  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
232  * size bits. Other FEC hardware does not, so we need to take that into
233  * account when setting it.
234  */
235 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
236     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
237     defined(CONFIG_ARM64)
238 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
239 #else
240 #define	OPT_FRAME_SIZE	0
241 #endif
242 
243 /* FEC MII MMFR bits definition */
244 #define FEC_MMFR_ST		(1 << 30)
245 #define FEC_MMFR_ST_C45		(0)
246 #define FEC_MMFR_OP_READ	(2 << 28)
247 #define FEC_MMFR_OP_READ_C45	(3 << 28)
248 #define FEC_MMFR_OP_WRITE	(1 << 28)
249 #define FEC_MMFR_OP_ADDR_WRITE	(0)
250 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
251 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
252 #define FEC_MMFR_TA		(2 << 16)
253 #define FEC_MMFR_DATA(v)	(v & 0xffff)
254 /* FEC ECR bits definition */
255 #define FEC_ECR_MAGICEN		(1 << 2)
256 #define FEC_ECR_SLEEP		(1 << 3)
257 
258 #define FEC_MII_TIMEOUT		30000 /* us */
259 
260 /* Transmitter timeout */
261 #define TX_TIMEOUT (2 * HZ)
262 
263 #define FEC_PAUSE_FLAG_AUTONEG	0x1
264 #define FEC_PAUSE_FLAG_ENABLE	0x2
265 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
266 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
267 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
268 
269 #define COPYBREAK_DEFAULT	256
270 
271 /* Max number of allowed TCP segments for software TSO */
272 #define FEC_MAX_TSO_SEGS	100
273 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
274 
275 #define IS_TSO_HEADER(txq, addr) \
276 	((addr >= txq->tso_hdrs_dma) && \
277 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
278 
279 static int mii_cnt;
280 
281 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
282 					     struct bufdesc_prop *bd)
283 {
284 	return (bdp >= bd->last) ? bd->base
285 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
286 }
287 
288 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
289 					     struct bufdesc_prop *bd)
290 {
291 	return (bdp <= bd->base) ? bd->last
292 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
293 }
294 
295 static int fec_enet_get_bd_index(struct bufdesc *bdp,
296 				 struct bufdesc_prop *bd)
297 {
298 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
299 }
300 
301 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
302 {
303 	int entries;
304 
305 	entries = (((const char *)txq->dirty_tx -
306 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
307 
308 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
309 }
310 
311 static void swap_buffer(void *bufaddr, int len)
312 {
313 	int i;
314 	unsigned int *buf = bufaddr;
315 
316 	for (i = 0; i < len; i += 4, buf++)
317 		swab32s(buf);
318 }
319 
320 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
321 {
322 	int i;
323 	unsigned int *src = src_buf;
324 	unsigned int *dst = dst_buf;
325 
326 	for (i = 0; i < len; i += 4, src++, dst++)
327 		*dst = swab32p(src);
328 }
329 
330 static void fec_dump(struct net_device *ndev)
331 {
332 	struct fec_enet_private *fep = netdev_priv(ndev);
333 	struct bufdesc *bdp;
334 	struct fec_enet_priv_tx_q *txq;
335 	int index = 0;
336 
337 	netdev_info(ndev, "TX ring dump\n");
338 	pr_info("Nr     SC     addr       len  SKB\n");
339 
340 	txq = fep->tx_queue[0];
341 	bdp = txq->bd.base;
342 
343 	do {
344 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
345 			index,
346 			bdp == txq->bd.cur ? 'S' : ' ',
347 			bdp == txq->dirty_tx ? 'H' : ' ',
348 			fec16_to_cpu(bdp->cbd_sc),
349 			fec32_to_cpu(bdp->cbd_bufaddr),
350 			fec16_to_cpu(bdp->cbd_datlen),
351 			txq->tx_skbuff[index]);
352 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
353 		index++;
354 	} while (bdp != txq->bd.base);
355 }
356 
357 static inline bool is_ipv4_pkt(struct sk_buff *skb)
358 {
359 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
360 }
361 
362 static int
363 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
364 {
365 	/* Only run for packets requiring a checksum. */
366 	if (skb->ip_summed != CHECKSUM_PARTIAL)
367 		return 0;
368 
369 	if (unlikely(skb_cow_head(skb, 0)))
370 		return -1;
371 
372 	if (is_ipv4_pkt(skb))
373 		ip_hdr(skb)->check = 0;
374 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
375 
376 	return 0;
377 }
378 
379 static struct bufdesc *
380 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
381 			     struct sk_buff *skb,
382 			     struct net_device *ndev)
383 {
384 	struct fec_enet_private *fep = netdev_priv(ndev);
385 	struct bufdesc *bdp = txq->bd.cur;
386 	struct bufdesc_ex *ebdp;
387 	int nr_frags = skb_shinfo(skb)->nr_frags;
388 	int frag, frag_len;
389 	unsigned short status;
390 	unsigned int estatus = 0;
391 	skb_frag_t *this_frag;
392 	unsigned int index;
393 	void *bufaddr;
394 	dma_addr_t addr;
395 	int i;
396 
397 	for (frag = 0; frag < nr_frags; frag++) {
398 		this_frag = &skb_shinfo(skb)->frags[frag];
399 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
400 		ebdp = (struct bufdesc_ex *)bdp;
401 
402 		status = fec16_to_cpu(bdp->cbd_sc);
403 		status &= ~BD_ENET_TX_STATS;
404 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
405 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
406 
407 		/* Handle the last BD specially */
408 		if (frag == nr_frags - 1) {
409 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
410 			if (fep->bufdesc_ex) {
411 				estatus |= BD_ENET_TX_INT;
412 				if (unlikely(skb_shinfo(skb)->tx_flags &
413 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
414 					estatus |= BD_ENET_TX_TS;
415 			}
416 		}
417 
418 		if (fep->bufdesc_ex) {
419 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
420 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
421 			if (skb->ip_summed == CHECKSUM_PARTIAL)
422 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
423 			ebdp->cbd_bdu = 0;
424 			ebdp->cbd_esc = cpu_to_fec32(estatus);
425 		}
426 
427 		bufaddr = skb_frag_address(this_frag);
428 
429 		index = fec_enet_get_bd_index(bdp, &txq->bd);
430 		if (((unsigned long) bufaddr) & fep->tx_align ||
431 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
432 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
433 			bufaddr = txq->tx_bounce[index];
434 
435 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
436 				swap_buffer(bufaddr, frag_len);
437 		}
438 
439 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
440 				      DMA_TO_DEVICE);
441 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
442 			if (net_ratelimit())
443 				netdev_err(ndev, "Tx DMA memory map failed\n");
444 			goto dma_mapping_error;
445 		}
446 
447 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
448 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
449 		/* Make sure the updates to rest of the descriptor are
450 		 * performed before transferring ownership.
451 		 */
452 		wmb();
453 		bdp->cbd_sc = cpu_to_fec16(status);
454 	}
455 
456 	return bdp;
457 dma_mapping_error:
458 	bdp = txq->bd.cur;
459 	for (i = 0; i < frag; i++) {
460 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
461 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
462 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
463 	}
464 	return ERR_PTR(-ENOMEM);
465 }
466 
467 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
468 				   struct sk_buff *skb, struct net_device *ndev)
469 {
470 	struct fec_enet_private *fep = netdev_priv(ndev);
471 	int nr_frags = skb_shinfo(skb)->nr_frags;
472 	struct bufdesc *bdp, *last_bdp;
473 	void *bufaddr;
474 	dma_addr_t addr;
475 	unsigned short status;
476 	unsigned short buflen;
477 	unsigned int estatus = 0;
478 	unsigned int index;
479 	int entries_free;
480 
481 	entries_free = fec_enet_get_free_txdesc_num(txq);
482 	if (entries_free < MAX_SKB_FRAGS + 1) {
483 		dev_kfree_skb_any(skb);
484 		if (net_ratelimit())
485 			netdev_err(ndev, "NOT enough BD for SG!\n");
486 		return NETDEV_TX_OK;
487 	}
488 
489 	/* Protocol checksum off-load for TCP and UDP. */
490 	if (fec_enet_clear_csum(skb, ndev)) {
491 		dev_kfree_skb_any(skb);
492 		return NETDEV_TX_OK;
493 	}
494 
495 	/* Fill in a Tx ring entry */
496 	bdp = txq->bd.cur;
497 	last_bdp = bdp;
498 	status = fec16_to_cpu(bdp->cbd_sc);
499 	status &= ~BD_ENET_TX_STATS;
500 
501 	/* Set buffer length and buffer pointer */
502 	bufaddr = skb->data;
503 	buflen = skb_headlen(skb);
504 
505 	index = fec_enet_get_bd_index(bdp, &txq->bd);
506 	if (((unsigned long) bufaddr) & fep->tx_align ||
507 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
508 		memcpy(txq->tx_bounce[index], skb->data, buflen);
509 		bufaddr = txq->tx_bounce[index];
510 
511 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
512 			swap_buffer(bufaddr, buflen);
513 	}
514 
515 	/* Push the data cache so the CPM does not get stale memory data. */
516 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
517 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
518 		dev_kfree_skb_any(skb);
519 		if (net_ratelimit())
520 			netdev_err(ndev, "Tx DMA memory map failed\n");
521 		return NETDEV_TX_OK;
522 	}
523 
524 	if (nr_frags) {
525 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
526 		if (IS_ERR(last_bdp)) {
527 			dma_unmap_single(&fep->pdev->dev, addr,
528 					 buflen, DMA_TO_DEVICE);
529 			dev_kfree_skb_any(skb);
530 			return NETDEV_TX_OK;
531 		}
532 	} else {
533 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
534 		if (fep->bufdesc_ex) {
535 			estatus = BD_ENET_TX_INT;
536 			if (unlikely(skb_shinfo(skb)->tx_flags &
537 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
538 				estatus |= BD_ENET_TX_TS;
539 		}
540 	}
541 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
542 	bdp->cbd_datlen = cpu_to_fec16(buflen);
543 
544 	if (fep->bufdesc_ex) {
545 
546 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
547 
548 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
549 			fep->hwts_tx_en))
550 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
551 
552 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
553 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
554 
555 		if (skb->ip_summed == CHECKSUM_PARTIAL)
556 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
557 
558 		ebdp->cbd_bdu = 0;
559 		ebdp->cbd_esc = cpu_to_fec32(estatus);
560 	}
561 
562 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
563 	/* Save skb pointer */
564 	txq->tx_skbuff[index] = skb;
565 
566 	/* Make sure the updates to rest of the descriptor are performed before
567 	 * transferring ownership.
568 	 */
569 	wmb();
570 
571 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
572 	 * it's the last BD of the frame, and to put the CRC on the end.
573 	 */
574 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
575 	bdp->cbd_sc = cpu_to_fec16(status);
576 
577 	/* If this was the last BD in the ring, start at the beginning again. */
578 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
579 
580 	skb_tx_timestamp(skb);
581 
582 	/* Make sure the update to bdp and tx_skbuff are performed before
583 	 * txq->bd.cur.
584 	 */
585 	wmb();
586 	txq->bd.cur = bdp;
587 
588 	/* Trigger transmission start */
589 	writel(0, txq->bd.reg_desc_active);
590 
591 	return 0;
592 }
593 
594 static int
595 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
596 			  struct net_device *ndev,
597 			  struct bufdesc *bdp, int index, char *data,
598 			  int size, bool last_tcp, bool is_last)
599 {
600 	struct fec_enet_private *fep = netdev_priv(ndev);
601 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
602 	unsigned short status;
603 	unsigned int estatus = 0;
604 	dma_addr_t addr;
605 
606 	status = fec16_to_cpu(bdp->cbd_sc);
607 	status &= ~BD_ENET_TX_STATS;
608 
609 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
610 
611 	if (((unsigned long) data) & fep->tx_align ||
612 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
613 		memcpy(txq->tx_bounce[index], data, size);
614 		data = txq->tx_bounce[index];
615 
616 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
617 			swap_buffer(data, size);
618 	}
619 
620 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
621 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
622 		dev_kfree_skb_any(skb);
623 		if (net_ratelimit())
624 			netdev_err(ndev, "Tx DMA memory map failed\n");
625 		return NETDEV_TX_BUSY;
626 	}
627 
628 	bdp->cbd_datlen = cpu_to_fec16(size);
629 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
630 
631 	if (fep->bufdesc_ex) {
632 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
633 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
634 		if (skb->ip_summed == CHECKSUM_PARTIAL)
635 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
636 		ebdp->cbd_bdu = 0;
637 		ebdp->cbd_esc = cpu_to_fec32(estatus);
638 	}
639 
640 	/* Handle the last BD specially */
641 	if (last_tcp)
642 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
643 	if (is_last) {
644 		status |= BD_ENET_TX_INTR;
645 		if (fep->bufdesc_ex)
646 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
647 	}
648 
649 	bdp->cbd_sc = cpu_to_fec16(status);
650 
651 	return 0;
652 }
653 
654 static int
655 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
656 			 struct sk_buff *skb, struct net_device *ndev,
657 			 struct bufdesc *bdp, int index)
658 {
659 	struct fec_enet_private *fep = netdev_priv(ndev);
660 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
661 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
662 	void *bufaddr;
663 	unsigned long dmabuf;
664 	unsigned short status;
665 	unsigned int estatus = 0;
666 
667 	status = fec16_to_cpu(bdp->cbd_sc);
668 	status &= ~BD_ENET_TX_STATS;
669 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
670 
671 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
672 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
673 	if (((unsigned long)bufaddr) & fep->tx_align ||
674 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
675 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
676 		bufaddr = txq->tx_bounce[index];
677 
678 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
679 			swap_buffer(bufaddr, hdr_len);
680 
681 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
682 					hdr_len, DMA_TO_DEVICE);
683 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
684 			dev_kfree_skb_any(skb);
685 			if (net_ratelimit())
686 				netdev_err(ndev, "Tx DMA memory map failed\n");
687 			return NETDEV_TX_BUSY;
688 		}
689 	}
690 
691 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
692 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
693 
694 	if (fep->bufdesc_ex) {
695 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
696 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
697 		if (skb->ip_summed == CHECKSUM_PARTIAL)
698 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
699 		ebdp->cbd_bdu = 0;
700 		ebdp->cbd_esc = cpu_to_fec32(estatus);
701 	}
702 
703 	bdp->cbd_sc = cpu_to_fec16(status);
704 
705 	return 0;
706 }
707 
708 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
709 				   struct sk_buff *skb,
710 				   struct net_device *ndev)
711 {
712 	struct fec_enet_private *fep = netdev_priv(ndev);
713 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
714 	int total_len, data_left;
715 	struct bufdesc *bdp = txq->bd.cur;
716 	struct tso_t tso;
717 	unsigned int index = 0;
718 	int ret;
719 
720 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
721 		dev_kfree_skb_any(skb);
722 		if (net_ratelimit())
723 			netdev_err(ndev, "NOT enough BD for TSO!\n");
724 		return NETDEV_TX_OK;
725 	}
726 
727 	/* Protocol checksum off-load for TCP and UDP. */
728 	if (fec_enet_clear_csum(skb, ndev)) {
729 		dev_kfree_skb_any(skb);
730 		return NETDEV_TX_OK;
731 	}
732 
733 	/* Initialize the TSO handler, and prepare the first payload */
734 	tso_start(skb, &tso);
735 
736 	total_len = skb->len - hdr_len;
737 	while (total_len > 0) {
738 		char *hdr;
739 
740 		index = fec_enet_get_bd_index(bdp, &txq->bd);
741 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
742 		total_len -= data_left;
743 
744 		/* prepare packet headers: MAC + IP + TCP */
745 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
746 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
747 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
748 		if (ret)
749 			goto err_release;
750 
751 		while (data_left > 0) {
752 			int size;
753 
754 			size = min_t(int, tso.size, data_left);
755 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
756 			index = fec_enet_get_bd_index(bdp, &txq->bd);
757 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
758 							bdp, index,
759 							tso.data, size,
760 							size == data_left,
761 							total_len == 0);
762 			if (ret)
763 				goto err_release;
764 
765 			data_left -= size;
766 			tso_build_data(skb, &tso, size);
767 		}
768 
769 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
770 	}
771 
772 	/* Save skb pointer */
773 	txq->tx_skbuff[index] = skb;
774 
775 	skb_tx_timestamp(skb);
776 	txq->bd.cur = bdp;
777 
778 	/* Trigger transmission start */
779 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
780 	    !readl(txq->bd.reg_desc_active) ||
781 	    !readl(txq->bd.reg_desc_active) ||
782 	    !readl(txq->bd.reg_desc_active) ||
783 	    !readl(txq->bd.reg_desc_active))
784 		writel(0, txq->bd.reg_desc_active);
785 
786 	return 0;
787 
788 err_release:
789 	/* TODO: Release all used data descriptors for TSO */
790 	return ret;
791 }
792 
793 static netdev_tx_t
794 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
795 {
796 	struct fec_enet_private *fep = netdev_priv(ndev);
797 	int entries_free;
798 	unsigned short queue;
799 	struct fec_enet_priv_tx_q *txq;
800 	struct netdev_queue *nq;
801 	int ret;
802 
803 	queue = skb_get_queue_mapping(skb);
804 	txq = fep->tx_queue[queue];
805 	nq = netdev_get_tx_queue(ndev, queue);
806 
807 	if (skb_is_gso(skb))
808 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
809 	else
810 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
811 	if (ret)
812 		return ret;
813 
814 	entries_free = fec_enet_get_free_txdesc_num(txq);
815 	if (entries_free <= txq->tx_stop_threshold)
816 		netif_tx_stop_queue(nq);
817 
818 	return NETDEV_TX_OK;
819 }
820 
821 /* Init RX & TX buffer descriptors
822  */
823 static void fec_enet_bd_init(struct net_device *dev)
824 {
825 	struct fec_enet_private *fep = netdev_priv(dev);
826 	struct fec_enet_priv_tx_q *txq;
827 	struct fec_enet_priv_rx_q *rxq;
828 	struct bufdesc *bdp;
829 	unsigned int i;
830 	unsigned int q;
831 
832 	for (q = 0; q < fep->num_rx_queues; q++) {
833 		/* Initialize the receive buffer descriptors. */
834 		rxq = fep->rx_queue[q];
835 		bdp = rxq->bd.base;
836 
837 		for (i = 0; i < rxq->bd.ring_size; i++) {
838 
839 			/* Initialize the BD for every fragment in the page. */
840 			if (bdp->cbd_bufaddr)
841 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
842 			else
843 				bdp->cbd_sc = cpu_to_fec16(0);
844 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
845 		}
846 
847 		/* Set the last buffer to wrap */
848 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
849 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
850 
851 		rxq->bd.cur = rxq->bd.base;
852 	}
853 
854 	for (q = 0; q < fep->num_tx_queues; q++) {
855 		/* ...and the same for transmit */
856 		txq = fep->tx_queue[q];
857 		bdp = txq->bd.base;
858 		txq->bd.cur = bdp;
859 
860 		for (i = 0; i < txq->bd.ring_size; i++) {
861 			/* Initialize the BD for every fragment in the page. */
862 			bdp->cbd_sc = cpu_to_fec16(0);
863 			if (bdp->cbd_bufaddr &&
864 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
865 				dma_unmap_single(&fep->pdev->dev,
866 						 fec32_to_cpu(bdp->cbd_bufaddr),
867 						 fec16_to_cpu(bdp->cbd_datlen),
868 						 DMA_TO_DEVICE);
869 			if (txq->tx_skbuff[i]) {
870 				dev_kfree_skb_any(txq->tx_skbuff[i]);
871 				txq->tx_skbuff[i] = NULL;
872 			}
873 			bdp->cbd_bufaddr = cpu_to_fec32(0);
874 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
875 		}
876 
877 		/* Set the last buffer to wrap */
878 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
879 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
880 		txq->dirty_tx = bdp;
881 	}
882 }
883 
884 static void fec_enet_active_rxring(struct net_device *ndev)
885 {
886 	struct fec_enet_private *fep = netdev_priv(ndev);
887 	int i;
888 
889 	for (i = 0; i < fep->num_rx_queues; i++)
890 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
891 }
892 
893 static void fec_enet_enable_ring(struct net_device *ndev)
894 {
895 	struct fec_enet_private *fep = netdev_priv(ndev);
896 	struct fec_enet_priv_tx_q *txq;
897 	struct fec_enet_priv_rx_q *rxq;
898 	int i;
899 
900 	for (i = 0; i < fep->num_rx_queues; i++) {
901 		rxq = fep->rx_queue[i];
902 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
903 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
904 
905 		/* enable DMA1/2 */
906 		if (i)
907 			writel(RCMR_MATCHEN | RCMR_CMP(i),
908 			       fep->hwp + FEC_RCMR(i));
909 	}
910 
911 	for (i = 0; i < fep->num_tx_queues; i++) {
912 		txq = fep->tx_queue[i];
913 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
914 
915 		/* enable DMA1/2 */
916 		if (i)
917 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
918 			       fep->hwp + FEC_DMA_CFG(i));
919 	}
920 }
921 
922 static void fec_enet_reset_skb(struct net_device *ndev)
923 {
924 	struct fec_enet_private *fep = netdev_priv(ndev);
925 	struct fec_enet_priv_tx_q *txq;
926 	int i, j;
927 
928 	for (i = 0; i < fep->num_tx_queues; i++) {
929 		txq = fep->tx_queue[i];
930 
931 		for (j = 0; j < txq->bd.ring_size; j++) {
932 			if (txq->tx_skbuff[j]) {
933 				dev_kfree_skb_any(txq->tx_skbuff[j]);
934 				txq->tx_skbuff[j] = NULL;
935 			}
936 		}
937 	}
938 }
939 
940 /*
941  * This function is called to start or restart the FEC during a link
942  * change, transmit timeout, or to reconfigure the FEC.  The network
943  * packet processing for this device must be stopped before this call.
944  */
945 static void
946 fec_restart(struct net_device *ndev)
947 {
948 	struct fec_enet_private *fep = netdev_priv(ndev);
949 	u32 val;
950 	u32 temp_mac[2];
951 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
952 	u32 ecntl = 0x2; /* ETHEREN */
953 
954 	/* Whack a reset.  We should wait for this.
955 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
956 	 * instead of reset MAC itself.
957 	 */
958 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
959 		writel(0, fep->hwp + FEC_ECNTRL);
960 	} else {
961 		writel(1, fep->hwp + FEC_ECNTRL);
962 		udelay(10);
963 	}
964 
965 	/*
966 	 * enet-mac reset will reset mac address registers too,
967 	 * so need to reconfigure it.
968 	 */
969 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
970 	writel((__force u32)cpu_to_be32(temp_mac[0]),
971 	       fep->hwp + FEC_ADDR_LOW);
972 	writel((__force u32)cpu_to_be32(temp_mac[1]),
973 	       fep->hwp + FEC_ADDR_HIGH);
974 
975 	/* Clear any outstanding interrupt, except MDIO. */
976 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
977 
978 	fec_enet_bd_init(ndev);
979 
980 	fec_enet_enable_ring(ndev);
981 
982 	/* Reset tx SKB buffers. */
983 	fec_enet_reset_skb(ndev);
984 
985 	/* Enable MII mode */
986 	if (fep->full_duplex == DUPLEX_FULL) {
987 		/* FD enable */
988 		writel(0x04, fep->hwp + FEC_X_CNTRL);
989 	} else {
990 		/* No Rcv on Xmit */
991 		rcntl |= 0x02;
992 		writel(0x0, fep->hwp + FEC_X_CNTRL);
993 	}
994 
995 	/* Set MII speed */
996 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
997 
998 #if !defined(CONFIG_M5272)
999 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1000 		val = readl(fep->hwp + FEC_RACC);
1001 		/* align IP header */
1002 		val |= FEC_RACC_SHIFT16;
1003 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1004 			/* set RX checksum */
1005 			val |= FEC_RACC_OPTIONS;
1006 		else
1007 			val &= ~FEC_RACC_OPTIONS;
1008 		writel(val, fep->hwp + FEC_RACC);
1009 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1010 	}
1011 #endif
1012 
1013 	/*
1014 	 * The phy interface and speed need to get configured
1015 	 * differently on enet-mac.
1016 	 */
1017 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1018 		/* Enable flow control and length check */
1019 		rcntl |= 0x40000000 | 0x00000020;
1020 
1021 		/* RGMII, RMII or MII */
1022 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1023 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1024 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1025 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1026 			rcntl |= (1 << 6);
1027 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1028 			rcntl |= (1 << 8);
1029 		else
1030 			rcntl &= ~(1 << 8);
1031 
1032 		/* 1G, 100M or 10M */
1033 		if (ndev->phydev) {
1034 			if (ndev->phydev->speed == SPEED_1000)
1035 				ecntl |= (1 << 5);
1036 			else if (ndev->phydev->speed == SPEED_100)
1037 				rcntl &= ~(1 << 9);
1038 			else
1039 				rcntl |= (1 << 9);
1040 		}
1041 	} else {
1042 #ifdef FEC_MIIGSK_ENR
1043 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1044 			u32 cfgr;
1045 			/* disable the gasket and wait */
1046 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1047 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1048 				udelay(1);
1049 
1050 			/*
1051 			 * configure the gasket:
1052 			 *   RMII, 50 MHz, no loopback, no echo
1053 			 *   MII, 25 MHz, no loopback, no echo
1054 			 */
1055 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1056 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1057 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1058 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1059 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1060 
1061 			/* re-enable the gasket */
1062 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1063 		}
1064 #endif
1065 	}
1066 
1067 #if !defined(CONFIG_M5272)
1068 	/* enable pause frame*/
1069 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1070 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1071 	     ndev->phydev && ndev->phydev->pause)) {
1072 		rcntl |= FEC_ENET_FCE;
1073 
1074 		/* set FIFO threshold parameter to reduce overrun */
1075 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1076 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1077 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1078 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1079 
1080 		/* OPD */
1081 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1082 	} else {
1083 		rcntl &= ~FEC_ENET_FCE;
1084 	}
1085 #endif /* !defined(CONFIG_M5272) */
1086 
1087 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1088 
1089 	/* Setup multicast filter. */
1090 	set_multicast_list(ndev);
1091 #ifndef CONFIG_M5272
1092 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1093 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1094 #endif
1095 
1096 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1097 		/* enable ENET endian swap */
1098 		ecntl |= (1 << 8);
1099 		/* enable ENET store and forward mode */
1100 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1101 	}
1102 
1103 	if (fep->bufdesc_ex)
1104 		ecntl |= (1 << 4);
1105 
1106 #ifndef CONFIG_M5272
1107 	/* Enable the MIB statistic event counters */
1108 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1109 #endif
1110 
1111 	/* And last, enable the transmit and receive processing */
1112 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1113 	fec_enet_active_rxring(ndev);
1114 
1115 	if (fep->bufdesc_ex)
1116 		fec_ptp_start_cyclecounter(ndev);
1117 
1118 	/* Enable interrupts we wish to service */
1119 	if (fep->link)
1120 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1121 	else
1122 		writel(0, fep->hwp + FEC_IMASK);
1123 
1124 	/* Init the interrupt coalescing */
1125 	fec_enet_itr_coal_init(ndev);
1126 
1127 }
1128 
1129 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1130 {
1131 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1132 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1133 
1134 	if (stop_gpr->gpr) {
1135 		if (enabled)
1136 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1137 					   BIT(stop_gpr->bit),
1138 					   BIT(stop_gpr->bit));
1139 		else
1140 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1141 					   BIT(stop_gpr->bit), 0);
1142 	} else if (pdata && pdata->sleep_mode_enable) {
1143 		pdata->sleep_mode_enable(enabled);
1144 	}
1145 }
1146 
1147 static void
1148 fec_stop(struct net_device *ndev)
1149 {
1150 	struct fec_enet_private *fep = netdev_priv(ndev);
1151 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1152 	u32 val;
1153 
1154 	/* We cannot expect a graceful transmit stop without link !!! */
1155 	if (fep->link) {
1156 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1157 		udelay(10);
1158 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1159 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1160 	}
1161 
1162 	/* Whack a reset.  We should wait for this.
1163 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1164 	 * instead of reset MAC itself.
1165 	 */
1166 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1167 		if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1168 			writel(0, fep->hwp + FEC_ECNTRL);
1169 		} else {
1170 			writel(1, fep->hwp + FEC_ECNTRL);
1171 			udelay(10);
1172 		}
1173 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1174 	} else {
1175 		writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1176 		val = readl(fep->hwp + FEC_ECNTRL);
1177 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1178 		writel(val, fep->hwp + FEC_ECNTRL);
1179 		fec_enet_stop_mode(fep, true);
1180 	}
1181 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1182 
1183 	/* We have to keep ENET enabled to have MII interrupt stay working */
1184 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1185 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1186 		writel(2, fep->hwp + FEC_ECNTRL);
1187 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1188 	}
1189 }
1190 
1191 
1192 static void
1193 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1194 {
1195 	struct fec_enet_private *fep = netdev_priv(ndev);
1196 
1197 	fec_dump(ndev);
1198 
1199 	ndev->stats.tx_errors++;
1200 
1201 	schedule_work(&fep->tx_timeout_work);
1202 }
1203 
1204 static void fec_enet_timeout_work(struct work_struct *work)
1205 {
1206 	struct fec_enet_private *fep =
1207 		container_of(work, struct fec_enet_private, tx_timeout_work);
1208 	struct net_device *ndev = fep->netdev;
1209 
1210 	rtnl_lock();
1211 	if (netif_device_present(ndev) || netif_running(ndev)) {
1212 		napi_disable(&fep->napi);
1213 		netif_tx_lock_bh(ndev);
1214 		fec_restart(ndev);
1215 		netif_tx_wake_all_queues(ndev);
1216 		netif_tx_unlock_bh(ndev);
1217 		napi_enable(&fep->napi);
1218 	}
1219 	rtnl_unlock();
1220 }
1221 
1222 static void
1223 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1224 	struct skb_shared_hwtstamps *hwtstamps)
1225 {
1226 	unsigned long flags;
1227 	u64 ns;
1228 
1229 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1230 	ns = timecounter_cyc2time(&fep->tc, ts);
1231 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1232 
1233 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1234 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1235 }
1236 
1237 static void
1238 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1239 {
1240 	struct	fec_enet_private *fep;
1241 	struct bufdesc *bdp;
1242 	unsigned short status;
1243 	struct	sk_buff	*skb;
1244 	struct fec_enet_priv_tx_q *txq;
1245 	struct netdev_queue *nq;
1246 	int	index = 0;
1247 	int	entries_free;
1248 
1249 	fep = netdev_priv(ndev);
1250 
1251 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1252 
1253 	txq = fep->tx_queue[queue_id];
1254 	/* get next bdp of dirty_tx */
1255 	nq = netdev_get_tx_queue(ndev, queue_id);
1256 	bdp = txq->dirty_tx;
1257 
1258 	/* get next bdp of dirty_tx */
1259 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1260 
1261 	while (bdp != READ_ONCE(txq->bd.cur)) {
1262 		/* Order the load of bd.cur and cbd_sc */
1263 		rmb();
1264 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1265 		if (status & BD_ENET_TX_READY)
1266 			break;
1267 
1268 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1269 
1270 		skb = txq->tx_skbuff[index];
1271 		txq->tx_skbuff[index] = NULL;
1272 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1273 			dma_unmap_single(&fep->pdev->dev,
1274 					 fec32_to_cpu(bdp->cbd_bufaddr),
1275 					 fec16_to_cpu(bdp->cbd_datlen),
1276 					 DMA_TO_DEVICE);
1277 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1278 		if (!skb)
1279 			goto skb_done;
1280 
1281 		/* Check for errors. */
1282 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1283 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1284 				   BD_ENET_TX_CSL)) {
1285 			ndev->stats.tx_errors++;
1286 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1287 				ndev->stats.tx_heartbeat_errors++;
1288 			if (status & BD_ENET_TX_LC)  /* Late collision */
1289 				ndev->stats.tx_window_errors++;
1290 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1291 				ndev->stats.tx_aborted_errors++;
1292 			if (status & BD_ENET_TX_UN)  /* Underrun */
1293 				ndev->stats.tx_fifo_errors++;
1294 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1295 				ndev->stats.tx_carrier_errors++;
1296 		} else {
1297 			ndev->stats.tx_packets++;
1298 			ndev->stats.tx_bytes += skb->len;
1299 		}
1300 
1301 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1302 			fep->bufdesc_ex) {
1303 			struct skb_shared_hwtstamps shhwtstamps;
1304 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1305 
1306 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1307 			skb_tstamp_tx(skb, &shhwtstamps);
1308 		}
1309 
1310 		/* Deferred means some collisions occurred during transmit,
1311 		 * but we eventually sent the packet OK.
1312 		 */
1313 		if (status & BD_ENET_TX_DEF)
1314 			ndev->stats.collisions++;
1315 
1316 		/* Free the sk buffer associated with this last transmit */
1317 		dev_kfree_skb_any(skb);
1318 skb_done:
1319 		/* Make sure the update to bdp and tx_skbuff are performed
1320 		 * before dirty_tx
1321 		 */
1322 		wmb();
1323 		txq->dirty_tx = bdp;
1324 
1325 		/* Update pointer to next buffer descriptor to be transmitted */
1326 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1327 
1328 		/* Since we have freed up a buffer, the ring is no longer full
1329 		 */
1330 		if (netif_tx_queue_stopped(nq)) {
1331 			entries_free = fec_enet_get_free_txdesc_num(txq);
1332 			if (entries_free >= txq->tx_wake_threshold)
1333 				netif_tx_wake_queue(nq);
1334 		}
1335 	}
1336 
1337 	/* ERR006358: Keep the transmitter going */
1338 	if (bdp != txq->bd.cur &&
1339 	    readl(txq->bd.reg_desc_active) == 0)
1340 		writel(0, txq->bd.reg_desc_active);
1341 }
1342 
1343 static void
1344 fec_enet_tx(struct net_device *ndev)
1345 {
1346 	struct fec_enet_private *fep = netdev_priv(ndev);
1347 	u16 queue_id;
1348 	/* First process class A queue, then Class B and Best Effort queue */
1349 	for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1350 		clear_bit(queue_id, &fep->work_tx);
1351 		fec_enet_tx_queue(ndev, queue_id);
1352 	}
1353 	return;
1354 }
1355 
1356 static int
1357 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1358 {
1359 	struct  fec_enet_private *fep = netdev_priv(ndev);
1360 	int off;
1361 
1362 	off = ((unsigned long)skb->data) & fep->rx_align;
1363 	if (off)
1364 		skb_reserve(skb, fep->rx_align + 1 - off);
1365 
1366 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1367 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1368 		if (net_ratelimit())
1369 			netdev_err(ndev, "Rx DMA memory map failed\n");
1370 		return -ENOMEM;
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1377 			       struct bufdesc *bdp, u32 length, bool swap)
1378 {
1379 	struct  fec_enet_private *fep = netdev_priv(ndev);
1380 	struct sk_buff *new_skb;
1381 
1382 	if (length > fep->rx_copybreak)
1383 		return false;
1384 
1385 	new_skb = netdev_alloc_skb(ndev, length);
1386 	if (!new_skb)
1387 		return false;
1388 
1389 	dma_sync_single_for_cpu(&fep->pdev->dev,
1390 				fec32_to_cpu(bdp->cbd_bufaddr),
1391 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1392 				DMA_FROM_DEVICE);
1393 	if (!swap)
1394 		memcpy(new_skb->data, (*skb)->data, length);
1395 	else
1396 		swap_buffer2(new_skb->data, (*skb)->data, length);
1397 	*skb = new_skb;
1398 
1399 	return true;
1400 }
1401 
1402 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1403  * When we update through the ring, if the next incoming buffer has
1404  * not been given to the system, we just set the empty indicator,
1405  * effectively tossing the packet.
1406  */
1407 static int
1408 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1409 {
1410 	struct fec_enet_private *fep = netdev_priv(ndev);
1411 	struct fec_enet_priv_rx_q *rxq;
1412 	struct bufdesc *bdp;
1413 	unsigned short status;
1414 	struct  sk_buff *skb_new = NULL;
1415 	struct  sk_buff *skb;
1416 	ushort	pkt_len;
1417 	__u8 *data;
1418 	int	pkt_received = 0;
1419 	struct	bufdesc_ex *ebdp = NULL;
1420 	bool	vlan_packet_rcvd = false;
1421 	u16	vlan_tag;
1422 	int	index = 0;
1423 	bool	is_copybreak;
1424 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1425 
1426 #ifdef CONFIG_M532x
1427 	flush_cache_all();
1428 #endif
1429 	queue_id = FEC_ENET_GET_QUQUE(queue_id);
1430 	rxq = fep->rx_queue[queue_id];
1431 
1432 	/* First, grab all of the stats for the incoming packet.
1433 	 * These get messed up if we get called due to a busy condition.
1434 	 */
1435 	bdp = rxq->bd.cur;
1436 
1437 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1438 
1439 		if (pkt_received >= budget)
1440 			break;
1441 		pkt_received++;
1442 
1443 		writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1444 
1445 		/* Check for errors. */
1446 		status ^= BD_ENET_RX_LAST;
1447 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1448 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1449 			   BD_ENET_RX_CL)) {
1450 			ndev->stats.rx_errors++;
1451 			if (status & BD_ENET_RX_OV) {
1452 				/* FIFO overrun */
1453 				ndev->stats.rx_fifo_errors++;
1454 				goto rx_processing_done;
1455 			}
1456 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1457 						| BD_ENET_RX_LAST)) {
1458 				/* Frame too long or too short. */
1459 				ndev->stats.rx_length_errors++;
1460 				if (status & BD_ENET_RX_LAST)
1461 					netdev_err(ndev, "rcv is not +last\n");
1462 			}
1463 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1464 				ndev->stats.rx_crc_errors++;
1465 			/* Report late collisions as a frame error. */
1466 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1467 				ndev->stats.rx_frame_errors++;
1468 			goto rx_processing_done;
1469 		}
1470 
1471 		/* Process the incoming frame. */
1472 		ndev->stats.rx_packets++;
1473 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1474 		ndev->stats.rx_bytes += pkt_len;
1475 
1476 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1477 		skb = rxq->rx_skbuff[index];
1478 
1479 		/* The packet length includes FCS, but we don't want to
1480 		 * include that when passing upstream as it messes up
1481 		 * bridging applications.
1482 		 */
1483 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1484 						  need_swap);
1485 		if (!is_copybreak) {
1486 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1487 			if (unlikely(!skb_new)) {
1488 				ndev->stats.rx_dropped++;
1489 				goto rx_processing_done;
1490 			}
1491 			dma_unmap_single(&fep->pdev->dev,
1492 					 fec32_to_cpu(bdp->cbd_bufaddr),
1493 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1494 					 DMA_FROM_DEVICE);
1495 		}
1496 
1497 		prefetch(skb->data - NET_IP_ALIGN);
1498 		skb_put(skb, pkt_len - 4);
1499 		data = skb->data;
1500 
1501 		if (!is_copybreak && need_swap)
1502 			swap_buffer(data, pkt_len);
1503 
1504 #if !defined(CONFIG_M5272)
1505 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1506 			data = skb_pull_inline(skb, 2);
1507 #endif
1508 
1509 		/* Extract the enhanced buffer descriptor */
1510 		ebdp = NULL;
1511 		if (fep->bufdesc_ex)
1512 			ebdp = (struct bufdesc_ex *)bdp;
1513 
1514 		/* If this is a VLAN packet remove the VLAN Tag */
1515 		vlan_packet_rcvd = false;
1516 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1517 		    fep->bufdesc_ex &&
1518 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1519 			/* Push and remove the vlan tag */
1520 			struct vlan_hdr *vlan_header =
1521 					(struct vlan_hdr *) (data + ETH_HLEN);
1522 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1523 
1524 			vlan_packet_rcvd = true;
1525 
1526 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1527 			skb_pull(skb, VLAN_HLEN);
1528 		}
1529 
1530 		skb->protocol = eth_type_trans(skb, ndev);
1531 
1532 		/* Get receive timestamp from the skb */
1533 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1534 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1535 					  skb_hwtstamps(skb));
1536 
1537 		if (fep->bufdesc_ex &&
1538 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1539 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1540 				/* don't check it */
1541 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1542 			} else {
1543 				skb_checksum_none_assert(skb);
1544 			}
1545 		}
1546 
1547 		/* Handle received VLAN packets */
1548 		if (vlan_packet_rcvd)
1549 			__vlan_hwaccel_put_tag(skb,
1550 					       htons(ETH_P_8021Q),
1551 					       vlan_tag);
1552 
1553 		napi_gro_receive(&fep->napi, skb);
1554 
1555 		if (is_copybreak) {
1556 			dma_sync_single_for_device(&fep->pdev->dev,
1557 						   fec32_to_cpu(bdp->cbd_bufaddr),
1558 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1559 						   DMA_FROM_DEVICE);
1560 		} else {
1561 			rxq->rx_skbuff[index] = skb_new;
1562 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1563 		}
1564 
1565 rx_processing_done:
1566 		/* Clear the status flags for this buffer */
1567 		status &= ~BD_ENET_RX_STATS;
1568 
1569 		/* Mark the buffer empty */
1570 		status |= BD_ENET_RX_EMPTY;
1571 
1572 		if (fep->bufdesc_ex) {
1573 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1574 
1575 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1576 			ebdp->cbd_prot = 0;
1577 			ebdp->cbd_bdu = 0;
1578 		}
1579 		/* Make sure the updates to rest of the descriptor are
1580 		 * performed before transferring ownership.
1581 		 */
1582 		wmb();
1583 		bdp->cbd_sc = cpu_to_fec16(status);
1584 
1585 		/* Update BD pointer to next entry */
1586 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1587 
1588 		/* Doing this here will keep the FEC running while we process
1589 		 * incoming frames.  On a heavily loaded network, we should be
1590 		 * able to keep up at the expense of system resources.
1591 		 */
1592 		writel(0, rxq->bd.reg_desc_active);
1593 	}
1594 	rxq->bd.cur = bdp;
1595 	return pkt_received;
1596 }
1597 
1598 static int
1599 fec_enet_rx(struct net_device *ndev, int budget)
1600 {
1601 	int     pkt_received = 0;
1602 	u16	queue_id;
1603 	struct fec_enet_private *fep = netdev_priv(ndev);
1604 
1605 	for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1606 		int ret;
1607 
1608 		ret = fec_enet_rx_queue(ndev,
1609 					budget - pkt_received, queue_id);
1610 
1611 		if (ret < budget - pkt_received)
1612 			clear_bit(queue_id, &fep->work_rx);
1613 
1614 		pkt_received += ret;
1615 	}
1616 	return pkt_received;
1617 }
1618 
1619 static bool
1620 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1621 {
1622 	if (int_events == 0)
1623 		return false;
1624 
1625 	if (int_events & FEC_ENET_RXF_0)
1626 		fep->work_rx |= (1 << 2);
1627 	if (int_events & FEC_ENET_RXF_1)
1628 		fep->work_rx |= (1 << 0);
1629 	if (int_events & FEC_ENET_RXF_2)
1630 		fep->work_rx |= (1 << 1);
1631 
1632 	if (int_events & FEC_ENET_TXF_0)
1633 		fep->work_tx |= (1 << 2);
1634 	if (int_events & FEC_ENET_TXF_1)
1635 		fep->work_tx |= (1 << 0);
1636 	if (int_events & FEC_ENET_TXF_2)
1637 		fep->work_tx |= (1 << 1);
1638 
1639 	return true;
1640 }
1641 
1642 static irqreturn_t
1643 fec_enet_interrupt(int irq, void *dev_id)
1644 {
1645 	struct net_device *ndev = dev_id;
1646 	struct fec_enet_private *fep = netdev_priv(ndev);
1647 	uint int_events;
1648 	irqreturn_t ret = IRQ_NONE;
1649 
1650 	int_events = readl(fep->hwp + FEC_IEVENT);
1651 
1652 	/* Don't clear MDIO events, we poll for those */
1653 	int_events &= ~FEC_ENET_MII;
1654 
1655 	writel(int_events, fep->hwp + FEC_IEVENT);
1656 	fec_enet_collect_events(fep, int_events);
1657 
1658 	if ((fep->work_tx || fep->work_rx) && fep->link) {
1659 		ret = IRQ_HANDLED;
1660 
1661 		if (napi_schedule_prep(&fep->napi)) {
1662 			/* Disable interrupts */
1663 			writel(0, fep->hwp + FEC_IMASK);
1664 			__napi_schedule(&fep->napi);
1665 		}
1666 	}
1667 
1668 	return ret;
1669 }
1670 
1671 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1672 {
1673 	struct net_device *ndev = napi->dev;
1674 	struct fec_enet_private *fep = netdev_priv(ndev);
1675 	int pkts;
1676 
1677 	pkts = fec_enet_rx(ndev, budget);
1678 
1679 	fec_enet_tx(ndev);
1680 
1681 	if (pkts < budget) {
1682 		napi_complete_done(napi, pkts);
1683 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1684 	}
1685 	return pkts;
1686 }
1687 
1688 /* ------------------------------------------------------------------------- */
1689 static void fec_get_mac(struct net_device *ndev)
1690 {
1691 	struct fec_enet_private *fep = netdev_priv(ndev);
1692 	struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1693 	unsigned char *iap, tmpaddr[ETH_ALEN];
1694 
1695 	/*
1696 	 * try to get mac address in following order:
1697 	 *
1698 	 * 1) module parameter via kernel command line in form
1699 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1700 	 */
1701 	iap = macaddr;
1702 
1703 	/*
1704 	 * 2) from device tree data
1705 	 */
1706 	if (!is_valid_ether_addr(iap)) {
1707 		struct device_node *np = fep->pdev->dev.of_node;
1708 		if (np) {
1709 			const char *mac = of_get_mac_address(np);
1710 			if (!IS_ERR(mac))
1711 				iap = (unsigned char *) mac;
1712 		}
1713 	}
1714 
1715 	/*
1716 	 * 3) from flash or fuse (via platform data)
1717 	 */
1718 	if (!is_valid_ether_addr(iap)) {
1719 #ifdef CONFIG_M5272
1720 		if (FEC_FLASHMAC)
1721 			iap = (unsigned char *)FEC_FLASHMAC;
1722 #else
1723 		if (pdata)
1724 			iap = (unsigned char *)&pdata->mac;
1725 #endif
1726 	}
1727 
1728 	/*
1729 	 * 4) FEC mac registers set by bootloader
1730 	 */
1731 	if (!is_valid_ether_addr(iap)) {
1732 		*((__be32 *) &tmpaddr[0]) =
1733 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1734 		*((__be16 *) &tmpaddr[4]) =
1735 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1736 		iap = &tmpaddr[0];
1737 	}
1738 
1739 	/*
1740 	 * 5) random mac address
1741 	 */
1742 	if (!is_valid_ether_addr(iap)) {
1743 		/* Report it and use a random ethernet address instead */
1744 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1745 		eth_hw_addr_random(ndev);
1746 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1747 			 ndev->dev_addr);
1748 		return;
1749 	}
1750 
1751 	memcpy(ndev->dev_addr, iap, ETH_ALEN);
1752 
1753 	/* Adjust MAC if using macaddr */
1754 	if (iap == macaddr)
1755 		 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1756 }
1757 
1758 /* ------------------------------------------------------------------------- */
1759 
1760 /*
1761  * Phy section
1762  */
1763 static void fec_enet_adjust_link(struct net_device *ndev)
1764 {
1765 	struct fec_enet_private *fep = netdev_priv(ndev);
1766 	struct phy_device *phy_dev = ndev->phydev;
1767 	int status_change = 0;
1768 
1769 	/*
1770 	 * If the netdev is down, or is going down, we're not interested
1771 	 * in link state events, so just mark our idea of the link as down
1772 	 * and ignore the event.
1773 	 */
1774 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1775 		fep->link = 0;
1776 	} else if (phy_dev->link) {
1777 		if (!fep->link) {
1778 			fep->link = phy_dev->link;
1779 			status_change = 1;
1780 		}
1781 
1782 		if (fep->full_duplex != phy_dev->duplex) {
1783 			fep->full_duplex = phy_dev->duplex;
1784 			status_change = 1;
1785 		}
1786 
1787 		if (phy_dev->speed != fep->speed) {
1788 			fep->speed = phy_dev->speed;
1789 			status_change = 1;
1790 		}
1791 
1792 		/* if any of the above changed restart the FEC */
1793 		if (status_change) {
1794 			napi_disable(&fep->napi);
1795 			netif_tx_lock_bh(ndev);
1796 			fec_restart(ndev);
1797 			netif_tx_wake_all_queues(ndev);
1798 			netif_tx_unlock_bh(ndev);
1799 			napi_enable(&fep->napi);
1800 		}
1801 	} else {
1802 		if (fep->link) {
1803 			napi_disable(&fep->napi);
1804 			netif_tx_lock_bh(ndev);
1805 			fec_stop(ndev);
1806 			netif_tx_unlock_bh(ndev);
1807 			napi_enable(&fep->napi);
1808 			fep->link = phy_dev->link;
1809 			status_change = 1;
1810 		}
1811 	}
1812 
1813 	if (status_change)
1814 		phy_print_status(phy_dev);
1815 }
1816 
1817 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1818 {
1819 	uint ievent;
1820 	int ret;
1821 
1822 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1823 					ievent & FEC_ENET_MII, 2, 30000);
1824 
1825 	if (!ret)
1826 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1827 
1828 	return ret;
1829 }
1830 
1831 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1832 {
1833 	struct fec_enet_private *fep = bus->priv;
1834 	struct device *dev = &fep->pdev->dev;
1835 	int ret = 0, frame_start, frame_addr, frame_op;
1836 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1837 
1838 	ret = pm_runtime_get_sync(dev);
1839 	if (ret < 0)
1840 		return ret;
1841 
1842 	if (is_c45) {
1843 		frame_start = FEC_MMFR_ST_C45;
1844 
1845 		/* write address */
1846 		frame_addr = (regnum >> 16);
1847 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1848 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1849 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1850 		       fep->hwp + FEC_MII_DATA);
1851 
1852 		/* wait for end of transfer */
1853 		ret = fec_enet_mdio_wait(fep);
1854 		if (ret) {
1855 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1856 			goto out;
1857 		}
1858 
1859 		frame_op = FEC_MMFR_OP_READ_C45;
1860 
1861 	} else {
1862 		/* C22 read */
1863 		frame_op = FEC_MMFR_OP_READ;
1864 		frame_start = FEC_MMFR_ST;
1865 		frame_addr = regnum;
1866 	}
1867 
1868 	/* start a read op */
1869 	writel(frame_start | frame_op |
1870 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1871 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1872 
1873 	/* wait for end of transfer */
1874 	ret = fec_enet_mdio_wait(fep);
1875 	if (ret) {
1876 		netdev_err(fep->netdev, "MDIO read timeout\n");
1877 		goto out;
1878 	}
1879 
1880 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1881 
1882 out:
1883 	pm_runtime_mark_last_busy(dev);
1884 	pm_runtime_put_autosuspend(dev);
1885 
1886 	return ret;
1887 }
1888 
1889 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1890 			   u16 value)
1891 {
1892 	struct fec_enet_private *fep = bus->priv;
1893 	struct device *dev = &fep->pdev->dev;
1894 	int ret, frame_start, frame_addr;
1895 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1896 
1897 	ret = pm_runtime_get_sync(dev);
1898 	if (ret < 0)
1899 		return ret;
1900 	else
1901 		ret = 0;
1902 
1903 	if (is_c45) {
1904 		frame_start = FEC_MMFR_ST_C45;
1905 
1906 		/* write address */
1907 		frame_addr = (regnum >> 16);
1908 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1909 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1910 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1911 		       fep->hwp + FEC_MII_DATA);
1912 
1913 		/* wait for end of transfer */
1914 		ret = fec_enet_mdio_wait(fep);
1915 		if (ret) {
1916 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1917 			goto out;
1918 		}
1919 	} else {
1920 		/* C22 write */
1921 		frame_start = FEC_MMFR_ST;
1922 		frame_addr = regnum;
1923 	}
1924 
1925 	/* start a write op */
1926 	writel(frame_start | FEC_MMFR_OP_WRITE |
1927 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1928 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1929 		fep->hwp + FEC_MII_DATA);
1930 
1931 	/* wait for end of transfer */
1932 	ret = fec_enet_mdio_wait(fep);
1933 	if (ret)
1934 		netdev_err(fep->netdev, "MDIO write timeout\n");
1935 
1936 out:
1937 	pm_runtime_mark_last_busy(dev);
1938 	pm_runtime_put_autosuspend(dev);
1939 
1940 	return ret;
1941 }
1942 
1943 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1944 {
1945 	struct fec_enet_private *fep = netdev_priv(ndev);
1946 	int ret;
1947 
1948 	if (enable) {
1949 		ret = clk_prepare_enable(fep->clk_enet_out);
1950 		if (ret)
1951 			return ret;
1952 
1953 		if (fep->clk_ptp) {
1954 			mutex_lock(&fep->ptp_clk_mutex);
1955 			ret = clk_prepare_enable(fep->clk_ptp);
1956 			if (ret) {
1957 				mutex_unlock(&fep->ptp_clk_mutex);
1958 				goto failed_clk_ptp;
1959 			} else {
1960 				fep->ptp_clk_on = true;
1961 			}
1962 			mutex_unlock(&fep->ptp_clk_mutex);
1963 		}
1964 
1965 		ret = clk_prepare_enable(fep->clk_ref);
1966 		if (ret)
1967 			goto failed_clk_ref;
1968 
1969 		phy_reset_after_clk_enable(ndev->phydev);
1970 	} else {
1971 		clk_disable_unprepare(fep->clk_enet_out);
1972 		if (fep->clk_ptp) {
1973 			mutex_lock(&fep->ptp_clk_mutex);
1974 			clk_disable_unprepare(fep->clk_ptp);
1975 			fep->ptp_clk_on = false;
1976 			mutex_unlock(&fep->ptp_clk_mutex);
1977 		}
1978 		clk_disable_unprepare(fep->clk_ref);
1979 	}
1980 
1981 	return 0;
1982 
1983 failed_clk_ref:
1984 	if (fep->clk_ptp) {
1985 		mutex_lock(&fep->ptp_clk_mutex);
1986 		clk_disable_unprepare(fep->clk_ptp);
1987 		fep->ptp_clk_on = false;
1988 		mutex_unlock(&fep->ptp_clk_mutex);
1989 	}
1990 failed_clk_ptp:
1991 	if (fep->clk_enet_out)
1992 		clk_disable_unprepare(fep->clk_enet_out);
1993 
1994 	return ret;
1995 }
1996 
1997 static int fec_enet_mii_probe(struct net_device *ndev)
1998 {
1999 	struct fec_enet_private *fep = netdev_priv(ndev);
2000 	struct phy_device *phy_dev = NULL;
2001 	char mdio_bus_id[MII_BUS_ID_SIZE];
2002 	char phy_name[MII_BUS_ID_SIZE + 3];
2003 	int phy_id;
2004 	int dev_id = fep->dev_id;
2005 
2006 	if (fep->phy_node) {
2007 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2008 					 &fec_enet_adjust_link, 0,
2009 					 fep->phy_interface);
2010 		if (!phy_dev) {
2011 			netdev_err(ndev, "Unable to connect to phy\n");
2012 			return -ENODEV;
2013 		}
2014 	} else {
2015 		/* check for attached phy */
2016 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2017 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2018 				continue;
2019 			if (dev_id--)
2020 				continue;
2021 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2022 			break;
2023 		}
2024 
2025 		if (phy_id >= PHY_MAX_ADDR) {
2026 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2027 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2028 			phy_id = 0;
2029 		}
2030 
2031 		snprintf(phy_name, sizeof(phy_name),
2032 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2033 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2034 				      fep->phy_interface);
2035 	}
2036 
2037 	if (IS_ERR(phy_dev)) {
2038 		netdev_err(ndev, "could not attach to PHY\n");
2039 		return PTR_ERR(phy_dev);
2040 	}
2041 
2042 	/* mask with MAC supported features */
2043 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2044 		phy_set_max_speed(phy_dev, 1000);
2045 		phy_remove_link_mode(phy_dev,
2046 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2047 #if !defined(CONFIG_M5272)
2048 		phy_support_sym_pause(phy_dev);
2049 #endif
2050 	}
2051 	else
2052 		phy_set_max_speed(phy_dev, 100);
2053 
2054 	fep->link = 0;
2055 	fep->full_duplex = 0;
2056 
2057 	phy_attached_info(phy_dev);
2058 
2059 	return 0;
2060 }
2061 
2062 static int fec_enet_mii_init(struct platform_device *pdev)
2063 {
2064 	static struct mii_bus *fec0_mii_bus;
2065 	struct net_device *ndev = platform_get_drvdata(pdev);
2066 	struct fec_enet_private *fep = netdev_priv(ndev);
2067 	bool suppress_preamble = false;
2068 	struct device_node *node;
2069 	int err = -ENXIO;
2070 	u32 mii_speed, holdtime;
2071 	u32 bus_freq;
2072 
2073 	/*
2074 	 * The i.MX28 dual fec interfaces are not equal.
2075 	 * Here are the differences:
2076 	 *
2077 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2078 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2079 	 *  - external phys can only be configured by fec0
2080 	 *
2081 	 * That is to say fec1 can not work independently. It only works
2082 	 * when fec0 is working. The reason behind this design is that the
2083 	 * second interface is added primarily for Switch mode.
2084 	 *
2085 	 * Because of the last point above, both phys are attached on fec0
2086 	 * mdio interface in board design, and need to be configured by
2087 	 * fec0 mii_bus.
2088 	 */
2089 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2090 		/* fec1 uses fec0 mii_bus */
2091 		if (mii_cnt && fec0_mii_bus) {
2092 			fep->mii_bus = fec0_mii_bus;
2093 			mii_cnt++;
2094 			return 0;
2095 		}
2096 		return -ENOENT;
2097 	}
2098 
2099 	bus_freq = 2500000; /* 2.5MHz by default */
2100 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2101 	if (node) {
2102 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2103 		suppress_preamble = of_property_read_bool(node,
2104 							  "suppress-preamble");
2105 	}
2106 
2107 	/*
2108 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2109 	 *
2110 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2111 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2112 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2113 	 * document.
2114 	 */
2115 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2116 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2117 		mii_speed--;
2118 	if (mii_speed > 63) {
2119 		dev_err(&pdev->dev,
2120 			"fec clock (%lu) too fast to get right mii speed\n",
2121 			clk_get_rate(fep->clk_ipg));
2122 		err = -EINVAL;
2123 		goto err_out;
2124 	}
2125 
2126 	/*
2127 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2128 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2129 	 * versions are RAZ there, so just ignore the difference and write the
2130 	 * register always.
2131 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2132 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2133 	 * output.
2134 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2135 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2136 	 * holdtime cannot result in a value greater than 3.
2137 	 */
2138 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2139 
2140 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2141 
2142 	if (suppress_preamble)
2143 		fep->phy_speed |= BIT(7);
2144 
2145 	/* Clear MMFR to avoid to generate MII event by writing MSCR.
2146 	 * MII event generation condition:
2147 	 * - writing MSCR:
2148 	 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2149 	 *	  mscr_reg_data_in[7:0] != 0
2150 	 * - writing MMFR:
2151 	 *	- mscr[7:0]_not_zero
2152 	 */
2153 	writel(0, fep->hwp + FEC_MII_DATA);
2154 
2155 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2156 
2157 	/* Clear any pending transaction complete indication */
2158 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2159 
2160 	fep->mii_bus = mdiobus_alloc();
2161 	if (fep->mii_bus == NULL) {
2162 		err = -ENOMEM;
2163 		goto err_out;
2164 	}
2165 
2166 	fep->mii_bus->name = "fec_enet_mii_bus";
2167 	fep->mii_bus->read = fec_enet_mdio_read;
2168 	fep->mii_bus->write = fec_enet_mdio_write;
2169 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2170 		pdev->name, fep->dev_id + 1);
2171 	fep->mii_bus->priv = fep;
2172 	fep->mii_bus->parent = &pdev->dev;
2173 
2174 	err = of_mdiobus_register(fep->mii_bus, node);
2175 	of_node_put(node);
2176 	if (err)
2177 		goto err_out_free_mdiobus;
2178 
2179 	mii_cnt++;
2180 
2181 	/* save fec0 mii_bus */
2182 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2183 		fec0_mii_bus = fep->mii_bus;
2184 
2185 	return 0;
2186 
2187 err_out_free_mdiobus:
2188 	mdiobus_free(fep->mii_bus);
2189 err_out:
2190 	return err;
2191 }
2192 
2193 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2194 {
2195 	if (--mii_cnt == 0) {
2196 		mdiobus_unregister(fep->mii_bus);
2197 		mdiobus_free(fep->mii_bus);
2198 	}
2199 }
2200 
2201 static void fec_enet_get_drvinfo(struct net_device *ndev,
2202 				 struct ethtool_drvinfo *info)
2203 {
2204 	struct fec_enet_private *fep = netdev_priv(ndev);
2205 
2206 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2207 		sizeof(info->driver));
2208 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2209 }
2210 
2211 static int fec_enet_get_regs_len(struct net_device *ndev)
2212 {
2213 	struct fec_enet_private *fep = netdev_priv(ndev);
2214 	struct resource *r;
2215 	int s = 0;
2216 
2217 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2218 	if (r)
2219 		s = resource_size(r);
2220 
2221 	return s;
2222 }
2223 
2224 /* List of registers that can be safety be read to dump them with ethtool */
2225 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2226 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2227 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2228 static __u32 fec_enet_register_version = 2;
2229 static u32 fec_enet_register_offset[] = {
2230 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2231 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2232 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2233 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2234 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2235 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2236 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2237 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2238 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2239 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2240 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2241 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2242 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2243 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2244 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2245 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2246 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2247 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2248 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2249 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2250 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2251 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2252 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2253 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2254 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2255 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2256 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2257 };
2258 #else
2259 static __u32 fec_enet_register_version = 1;
2260 static u32 fec_enet_register_offset[] = {
2261 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2262 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2263 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2264 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2265 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2266 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2267 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2268 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2269 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2270 };
2271 #endif
2272 
2273 static void fec_enet_get_regs(struct net_device *ndev,
2274 			      struct ethtool_regs *regs, void *regbuf)
2275 {
2276 	struct fec_enet_private *fep = netdev_priv(ndev);
2277 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2278 	struct device *dev = &fep->pdev->dev;
2279 	u32 *buf = (u32 *)regbuf;
2280 	u32 i, off;
2281 	int ret;
2282 
2283 	ret = pm_runtime_get_sync(dev);
2284 	if (ret < 0)
2285 		return;
2286 
2287 	regs->version = fec_enet_register_version;
2288 
2289 	memset(buf, 0, regs->len);
2290 
2291 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2292 		off = fec_enet_register_offset[i];
2293 
2294 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2295 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2296 			continue;
2297 
2298 		off >>= 2;
2299 		buf[off] = readl(&theregs[off]);
2300 	}
2301 
2302 	pm_runtime_mark_last_busy(dev);
2303 	pm_runtime_put_autosuspend(dev);
2304 }
2305 
2306 static int fec_enet_get_ts_info(struct net_device *ndev,
2307 				struct ethtool_ts_info *info)
2308 {
2309 	struct fec_enet_private *fep = netdev_priv(ndev);
2310 
2311 	if (fep->bufdesc_ex) {
2312 
2313 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2314 					SOF_TIMESTAMPING_RX_SOFTWARE |
2315 					SOF_TIMESTAMPING_SOFTWARE |
2316 					SOF_TIMESTAMPING_TX_HARDWARE |
2317 					SOF_TIMESTAMPING_RX_HARDWARE |
2318 					SOF_TIMESTAMPING_RAW_HARDWARE;
2319 		if (fep->ptp_clock)
2320 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2321 		else
2322 			info->phc_index = -1;
2323 
2324 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2325 				 (1 << HWTSTAMP_TX_ON);
2326 
2327 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2328 				   (1 << HWTSTAMP_FILTER_ALL);
2329 		return 0;
2330 	} else {
2331 		return ethtool_op_get_ts_info(ndev, info);
2332 	}
2333 }
2334 
2335 #if !defined(CONFIG_M5272)
2336 
2337 static void fec_enet_get_pauseparam(struct net_device *ndev,
2338 				    struct ethtool_pauseparam *pause)
2339 {
2340 	struct fec_enet_private *fep = netdev_priv(ndev);
2341 
2342 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2343 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2344 	pause->rx_pause = pause->tx_pause;
2345 }
2346 
2347 static int fec_enet_set_pauseparam(struct net_device *ndev,
2348 				   struct ethtool_pauseparam *pause)
2349 {
2350 	struct fec_enet_private *fep = netdev_priv(ndev);
2351 
2352 	if (!ndev->phydev)
2353 		return -ENODEV;
2354 
2355 	if (pause->tx_pause != pause->rx_pause) {
2356 		netdev_info(ndev,
2357 			"hardware only support enable/disable both tx and rx");
2358 		return -EINVAL;
2359 	}
2360 
2361 	fep->pause_flag = 0;
2362 
2363 	/* tx pause must be same as rx pause */
2364 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2365 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2366 
2367 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2368 			  pause->autoneg);
2369 
2370 	if (pause->autoneg) {
2371 		if (netif_running(ndev))
2372 			fec_stop(ndev);
2373 		phy_start_aneg(ndev->phydev);
2374 	}
2375 	if (netif_running(ndev)) {
2376 		napi_disable(&fep->napi);
2377 		netif_tx_lock_bh(ndev);
2378 		fec_restart(ndev);
2379 		netif_tx_wake_all_queues(ndev);
2380 		netif_tx_unlock_bh(ndev);
2381 		napi_enable(&fep->napi);
2382 	}
2383 
2384 	return 0;
2385 }
2386 
2387 static const struct fec_stat {
2388 	char name[ETH_GSTRING_LEN];
2389 	u16 offset;
2390 } fec_stats[] = {
2391 	/* RMON TX */
2392 	{ "tx_dropped", RMON_T_DROP },
2393 	{ "tx_packets", RMON_T_PACKETS },
2394 	{ "tx_broadcast", RMON_T_BC_PKT },
2395 	{ "tx_multicast", RMON_T_MC_PKT },
2396 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2397 	{ "tx_undersize", RMON_T_UNDERSIZE },
2398 	{ "tx_oversize", RMON_T_OVERSIZE },
2399 	{ "tx_fragment", RMON_T_FRAG },
2400 	{ "tx_jabber", RMON_T_JAB },
2401 	{ "tx_collision", RMON_T_COL },
2402 	{ "tx_64byte", RMON_T_P64 },
2403 	{ "tx_65to127byte", RMON_T_P65TO127 },
2404 	{ "tx_128to255byte", RMON_T_P128TO255 },
2405 	{ "tx_256to511byte", RMON_T_P256TO511 },
2406 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2407 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2408 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2409 	{ "tx_octets", RMON_T_OCTETS },
2410 
2411 	/* IEEE TX */
2412 	{ "IEEE_tx_drop", IEEE_T_DROP },
2413 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2414 	{ "IEEE_tx_1col", IEEE_T_1COL },
2415 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2416 	{ "IEEE_tx_def", IEEE_T_DEF },
2417 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2418 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2419 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2420 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2421 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2422 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2423 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2424 
2425 	/* RMON RX */
2426 	{ "rx_packets", RMON_R_PACKETS },
2427 	{ "rx_broadcast", RMON_R_BC_PKT },
2428 	{ "rx_multicast", RMON_R_MC_PKT },
2429 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2430 	{ "rx_undersize", RMON_R_UNDERSIZE },
2431 	{ "rx_oversize", RMON_R_OVERSIZE },
2432 	{ "rx_fragment", RMON_R_FRAG },
2433 	{ "rx_jabber", RMON_R_JAB },
2434 	{ "rx_64byte", RMON_R_P64 },
2435 	{ "rx_65to127byte", RMON_R_P65TO127 },
2436 	{ "rx_128to255byte", RMON_R_P128TO255 },
2437 	{ "rx_256to511byte", RMON_R_P256TO511 },
2438 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2439 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2440 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2441 	{ "rx_octets", RMON_R_OCTETS },
2442 
2443 	/* IEEE RX */
2444 	{ "IEEE_rx_drop", IEEE_R_DROP },
2445 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2446 	{ "IEEE_rx_crc", IEEE_R_CRC },
2447 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2448 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2449 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2450 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2451 };
2452 
2453 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2454 
2455 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2456 {
2457 	struct fec_enet_private *fep = netdev_priv(dev);
2458 	int i;
2459 
2460 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2461 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2462 }
2463 
2464 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2465 				       struct ethtool_stats *stats, u64 *data)
2466 {
2467 	struct fec_enet_private *fep = netdev_priv(dev);
2468 
2469 	if (netif_running(dev))
2470 		fec_enet_update_ethtool_stats(dev);
2471 
2472 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2473 }
2474 
2475 static void fec_enet_get_strings(struct net_device *netdev,
2476 	u32 stringset, u8 *data)
2477 {
2478 	int i;
2479 	switch (stringset) {
2480 	case ETH_SS_STATS:
2481 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2482 			memcpy(data + i * ETH_GSTRING_LEN,
2483 				fec_stats[i].name, ETH_GSTRING_LEN);
2484 		break;
2485 	}
2486 }
2487 
2488 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2489 {
2490 	switch (sset) {
2491 	case ETH_SS_STATS:
2492 		return ARRAY_SIZE(fec_stats);
2493 	default:
2494 		return -EOPNOTSUPP;
2495 	}
2496 }
2497 
2498 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2499 {
2500 	struct fec_enet_private *fep = netdev_priv(dev);
2501 	int i;
2502 
2503 	/* Disable MIB statistics counters */
2504 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2505 
2506 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2507 		writel(0, fep->hwp + fec_stats[i].offset);
2508 
2509 	/* Don't disable MIB statistics counters */
2510 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2511 }
2512 
2513 #else	/* !defined(CONFIG_M5272) */
2514 #define FEC_STATS_SIZE	0
2515 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2516 {
2517 }
2518 
2519 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2520 {
2521 }
2522 #endif /* !defined(CONFIG_M5272) */
2523 
2524 /* ITR clock source is enet system clock (clk_ahb).
2525  * TCTT unit is cycle_ns * 64 cycle
2526  * So, the ICTT value = X us / (cycle_ns * 64)
2527  */
2528 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2529 {
2530 	struct fec_enet_private *fep = netdev_priv(ndev);
2531 
2532 	return us * (fep->itr_clk_rate / 64000) / 1000;
2533 }
2534 
2535 /* Set threshold for interrupt coalescing */
2536 static void fec_enet_itr_coal_set(struct net_device *ndev)
2537 {
2538 	struct fec_enet_private *fep = netdev_priv(ndev);
2539 	int rx_itr, tx_itr;
2540 
2541 	/* Must be greater than zero to avoid unpredictable behavior */
2542 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2543 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2544 		return;
2545 
2546 	/* Select enet system clock as Interrupt Coalescing
2547 	 * timer Clock Source
2548 	 */
2549 	rx_itr = FEC_ITR_CLK_SEL;
2550 	tx_itr = FEC_ITR_CLK_SEL;
2551 
2552 	/* set ICFT and ICTT */
2553 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2554 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2555 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2556 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2557 
2558 	rx_itr |= FEC_ITR_EN;
2559 	tx_itr |= FEC_ITR_EN;
2560 
2561 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2562 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2563 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
2564 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2565 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2566 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2567 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2568 	}
2569 }
2570 
2571 static int
2572 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2573 {
2574 	struct fec_enet_private *fep = netdev_priv(ndev);
2575 
2576 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2577 		return -EOPNOTSUPP;
2578 
2579 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2580 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2581 
2582 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2583 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2584 
2585 	return 0;
2586 }
2587 
2588 static int
2589 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2590 {
2591 	struct fec_enet_private *fep = netdev_priv(ndev);
2592 	struct device *dev = &fep->pdev->dev;
2593 	unsigned int cycle;
2594 
2595 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2596 		return -EOPNOTSUPP;
2597 
2598 	if (ec->rx_max_coalesced_frames > 255) {
2599 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2600 		return -EINVAL;
2601 	}
2602 
2603 	if (ec->tx_max_coalesced_frames > 255) {
2604 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2605 		return -EINVAL;
2606 	}
2607 
2608 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2609 	if (cycle > 0xFFFF) {
2610 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2611 		return -EINVAL;
2612 	}
2613 
2614 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2615 	if (cycle > 0xFFFF) {
2616 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2617 		return -EINVAL;
2618 	}
2619 
2620 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2621 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2622 
2623 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2624 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2625 
2626 	fec_enet_itr_coal_set(ndev);
2627 
2628 	return 0;
2629 }
2630 
2631 static void fec_enet_itr_coal_init(struct net_device *ndev)
2632 {
2633 	struct ethtool_coalesce ec;
2634 
2635 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2636 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2637 
2638 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2639 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2640 
2641 	fec_enet_set_coalesce(ndev, &ec);
2642 }
2643 
2644 static int fec_enet_get_tunable(struct net_device *netdev,
2645 				const struct ethtool_tunable *tuna,
2646 				void *data)
2647 {
2648 	struct fec_enet_private *fep = netdev_priv(netdev);
2649 	int ret = 0;
2650 
2651 	switch (tuna->id) {
2652 	case ETHTOOL_RX_COPYBREAK:
2653 		*(u32 *)data = fep->rx_copybreak;
2654 		break;
2655 	default:
2656 		ret = -EINVAL;
2657 		break;
2658 	}
2659 
2660 	return ret;
2661 }
2662 
2663 static int fec_enet_set_tunable(struct net_device *netdev,
2664 				const struct ethtool_tunable *tuna,
2665 				const void *data)
2666 {
2667 	struct fec_enet_private *fep = netdev_priv(netdev);
2668 	int ret = 0;
2669 
2670 	switch (tuna->id) {
2671 	case ETHTOOL_RX_COPYBREAK:
2672 		fep->rx_copybreak = *(u32 *)data;
2673 		break;
2674 	default:
2675 		ret = -EINVAL;
2676 		break;
2677 	}
2678 
2679 	return ret;
2680 }
2681 
2682 static void
2683 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2684 {
2685 	struct fec_enet_private *fep = netdev_priv(ndev);
2686 
2687 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2688 		wol->supported = WAKE_MAGIC;
2689 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2690 	} else {
2691 		wol->supported = wol->wolopts = 0;
2692 	}
2693 }
2694 
2695 static int
2696 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2697 {
2698 	struct fec_enet_private *fep = netdev_priv(ndev);
2699 
2700 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2701 		return -EINVAL;
2702 
2703 	if (wol->wolopts & ~WAKE_MAGIC)
2704 		return -EINVAL;
2705 
2706 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2707 	if (device_may_wakeup(&ndev->dev)) {
2708 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2709 		if (fep->irq[0] > 0)
2710 			enable_irq_wake(fep->irq[0]);
2711 	} else {
2712 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2713 		if (fep->irq[0] > 0)
2714 			disable_irq_wake(fep->irq[0]);
2715 	}
2716 
2717 	return 0;
2718 }
2719 
2720 static const struct ethtool_ops fec_enet_ethtool_ops = {
2721 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2722 				     ETHTOOL_COALESCE_MAX_FRAMES,
2723 	.get_drvinfo		= fec_enet_get_drvinfo,
2724 	.get_regs_len		= fec_enet_get_regs_len,
2725 	.get_regs		= fec_enet_get_regs,
2726 	.nway_reset		= phy_ethtool_nway_reset,
2727 	.get_link		= ethtool_op_get_link,
2728 	.get_coalesce		= fec_enet_get_coalesce,
2729 	.set_coalesce		= fec_enet_set_coalesce,
2730 #ifndef CONFIG_M5272
2731 	.get_pauseparam		= fec_enet_get_pauseparam,
2732 	.set_pauseparam		= fec_enet_set_pauseparam,
2733 	.get_strings		= fec_enet_get_strings,
2734 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2735 	.get_sset_count		= fec_enet_get_sset_count,
2736 #endif
2737 	.get_ts_info		= fec_enet_get_ts_info,
2738 	.get_tunable		= fec_enet_get_tunable,
2739 	.set_tunable		= fec_enet_set_tunable,
2740 	.get_wol		= fec_enet_get_wol,
2741 	.set_wol		= fec_enet_set_wol,
2742 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2743 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2744 };
2745 
2746 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2747 {
2748 	struct fec_enet_private *fep = netdev_priv(ndev);
2749 	struct phy_device *phydev = ndev->phydev;
2750 
2751 	if (!netif_running(ndev))
2752 		return -EINVAL;
2753 
2754 	if (!phydev)
2755 		return -ENODEV;
2756 
2757 	if (fep->bufdesc_ex) {
2758 		if (cmd == SIOCSHWTSTAMP)
2759 			return fec_ptp_set(ndev, rq);
2760 		if (cmd == SIOCGHWTSTAMP)
2761 			return fec_ptp_get(ndev, rq);
2762 	}
2763 
2764 	return phy_mii_ioctl(phydev, rq, cmd);
2765 }
2766 
2767 static void fec_enet_free_buffers(struct net_device *ndev)
2768 {
2769 	struct fec_enet_private *fep = netdev_priv(ndev);
2770 	unsigned int i;
2771 	struct sk_buff *skb;
2772 	struct bufdesc	*bdp;
2773 	struct fec_enet_priv_tx_q *txq;
2774 	struct fec_enet_priv_rx_q *rxq;
2775 	unsigned int q;
2776 
2777 	for (q = 0; q < fep->num_rx_queues; q++) {
2778 		rxq = fep->rx_queue[q];
2779 		bdp = rxq->bd.base;
2780 		for (i = 0; i < rxq->bd.ring_size; i++) {
2781 			skb = rxq->rx_skbuff[i];
2782 			rxq->rx_skbuff[i] = NULL;
2783 			if (skb) {
2784 				dma_unmap_single(&fep->pdev->dev,
2785 						 fec32_to_cpu(bdp->cbd_bufaddr),
2786 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2787 						 DMA_FROM_DEVICE);
2788 				dev_kfree_skb(skb);
2789 			}
2790 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2791 		}
2792 	}
2793 
2794 	for (q = 0; q < fep->num_tx_queues; q++) {
2795 		txq = fep->tx_queue[q];
2796 		for (i = 0; i < txq->bd.ring_size; i++) {
2797 			kfree(txq->tx_bounce[i]);
2798 			txq->tx_bounce[i] = NULL;
2799 			skb = txq->tx_skbuff[i];
2800 			txq->tx_skbuff[i] = NULL;
2801 			dev_kfree_skb(skb);
2802 		}
2803 	}
2804 }
2805 
2806 static void fec_enet_free_queue(struct net_device *ndev)
2807 {
2808 	struct fec_enet_private *fep = netdev_priv(ndev);
2809 	int i;
2810 	struct fec_enet_priv_tx_q *txq;
2811 
2812 	for (i = 0; i < fep->num_tx_queues; i++)
2813 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2814 			txq = fep->tx_queue[i];
2815 			dma_free_coherent(&fep->pdev->dev,
2816 					  txq->bd.ring_size * TSO_HEADER_SIZE,
2817 					  txq->tso_hdrs,
2818 					  txq->tso_hdrs_dma);
2819 		}
2820 
2821 	for (i = 0; i < fep->num_rx_queues; i++)
2822 		kfree(fep->rx_queue[i]);
2823 	for (i = 0; i < fep->num_tx_queues; i++)
2824 		kfree(fep->tx_queue[i]);
2825 }
2826 
2827 static int fec_enet_alloc_queue(struct net_device *ndev)
2828 {
2829 	struct fec_enet_private *fep = netdev_priv(ndev);
2830 	int i;
2831 	int ret = 0;
2832 	struct fec_enet_priv_tx_q *txq;
2833 
2834 	for (i = 0; i < fep->num_tx_queues; i++) {
2835 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2836 		if (!txq) {
2837 			ret = -ENOMEM;
2838 			goto alloc_failed;
2839 		}
2840 
2841 		fep->tx_queue[i] = txq;
2842 		txq->bd.ring_size = TX_RING_SIZE;
2843 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2844 
2845 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2846 		txq->tx_wake_threshold =
2847 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2848 
2849 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
2850 					txq->bd.ring_size * TSO_HEADER_SIZE,
2851 					&txq->tso_hdrs_dma,
2852 					GFP_KERNEL);
2853 		if (!txq->tso_hdrs) {
2854 			ret = -ENOMEM;
2855 			goto alloc_failed;
2856 		}
2857 	}
2858 
2859 	for (i = 0; i < fep->num_rx_queues; i++) {
2860 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2861 					   GFP_KERNEL);
2862 		if (!fep->rx_queue[i]) {
2863 			ret = -ENOMEM;
2864 			goto alloc_failed;
2865 		}
2866 
2867 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2868 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2869 	}
2870 	return ret;
2871 
2872 alloc_failed:
2873 	fec_enet_free_queue(ndev);
2874 	return ret;
2875 }
2876 
2877 static int
2878 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2879 {
2880 	struct fec_enet_private *fep = netdev_priv(ndev);
2881 	unsigned int i;
2882 	struct sk_buff *skb;
2883 	struct bufdesc	*bdp;
2884 	struct fec_enet_priv_rx_q *rxq;
2885 
2886 	rxq = fep->rx_queue[queue];
2887 	bdp = rxq->bd.base;
2888 	for (i = 0; i < rxq->bd.ring_size; i++) {
2889 		skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2890 		if (!skb)
2891 			goto err_alloc;
2892 
2893 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2894 			dev_kfree_skb(skb);
2895 			goto err_alloc;
2896 		}
2897 
2898 		rxq->rx_skbuff[i] = skb;
2899 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2900 
2901 		if (fep->bufdesc_ex) {
2902 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2903 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2904 		}
2905 
2906 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2907 	}
2908 
2909 	/* Set the last buffer to wrap. */
2910 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2911 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2912 	return 0;
2913 
2914  err_alloc:
2915 	fec_enet_free_buffers(ndev);
2916 	return -ENOMEM;
2917 }
2918 
2919 static int
2920 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2921 {
2922 	struct fec_enet_private *fep = netdev_priv(ndev);
2923 	unsigned int i;
2924 	struct bufdesc  *bdp;
2925 	struct fec_enet_priv_tx_q *txq;
2926 
2927 	txq = fep->tx_queue[queue];
2928 	bdp = txq->bd.base;
2929 	for (i = 0; i < txq->bd.ring_size; i++) {
2930 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2931 		if (!txq->tx_bounce[i])
2932 			goto err_alloc;
2933 
2934 		bdp->cbd_sc = cpu_to_fec16(0);
2935 		bdp->cbd_bufaddr = cpu_to_fec32(0);
2936 
2937 		if (fep->bufdesc_ex) {
2938 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2939 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2940 		}
2941 
2942 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2943 	}
2944 
2945 	/* Set the last buffer to wrap. */
2946 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2947 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2948 
2949 	return 0;
2950 
2951  err_alloc:
2952 	fec_enet_free_buffers(ndev);
2953 	return -ENOMEM;
2954 }
2955 
2956 static int fec_enet_alloc_buffers(struct net_device *ndev)
2957 {
2958 	struct fec_enet_private *fep = netdev_priv(ndev);
2959 	unsigned int i;
2960 
2961 	for (i = 0; i < fep->num_rx_queues; i++)
2962 		if (fec_enet_alloc_rxq_buffers(ndev, i))
2963 			return -ENOMEM;
2964 
2965 	for (i = 0; i < fep->num_tx_queues; i++)
2966 		if (fec_enet_alloc_txq_buffers(ndev, i))
2967 			return -ENOMEM;
2968 	return 0;
2969 }
2970 
2971 static int
2972 fec_enet_open(struct net_device *ndev)
2973 {
2974 	struct fec_enet_private *fep = netdev_priv(ndev);
2975 	int ret;
2976 	bool reset_again;
2977 
2978 	ret = pm_runtime_get_sync(&fep->pdev->dev);
2979 	if (ret < 0)
2980 		return ret;
2981 
2982 	pinctrl_pm_select_default_state(&fep->pdev->dev);
2983 	ret = fec_enet_clk_enable(ndev, true);
2984 	if (ret)
2985 		goto clk_enable;
2986 
2987 	/* During the first fec_enet_open call the PHY isn't probed at this
2988 	 * point. Therefore the phy_reset_after_clk_enable() call within
2989 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
2990 	 * sure the PHY is working correctly we check if we need to reset again
2991 	 * later when the PHY is probed
2992 	 */
2993 	if (ndev->phydev && ndev->phydev->drv)
2994 		reset_again = false;
2995 	else
2996 		reset_again = true;
2997 
2998 	/* I should reset the ring buffers here, but I don't yet know
2999 	 * a simple way to do that.
3000 	 */
3001 
3002 	ret = fec_enet_alloc_buffers(ndev);
3003 	if (ret)
3004 		goto err_enet_alloc;
3005 
3006 	/* Init MAC prior to mii bus probe */
3007 	fec_restart(ndev);
3008 
3009 	/* Probe and connect to PHY when open the interface */
3010 	ret = fec_enet_mii_probe(ndev);
3011 	if (ret)
3012 		goto err_enet_mii_probe;
3013 
3014 	/* Call phy_reset_after_clk_enable() again if it failed during
3015 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3016 	 */
3017 	if (reset_again)
3018 		phy_reset_after_clk_enable(ndev->phydev);
3019 
3020 	if (fep->quirks & FEC_QUIRK_ERR006687)
3021 		imx6q_cpuidle_fec_irqs_used();
3022 
3023 	napi_enable(&fep->napi);
3024 	phy_start(ndev->phydev);
3025 	netif_tx_start_all_queues(ndev);
3026 
3027 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3028 				 FEC_WOL_FLAG_ENABLE);
3029 
3030 	return 0;
3031 
3032 err_enet_mii_probe:
3033 	fec_enet_free_buffers(ndev);
3034 err_enet_alloc:
3035 	fec_enet_clk_enable(ndev, false);
3036 clk_enable:
3037 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3038 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3039 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3040 	return ret;
3041 }
3042 
3043 static int
3044 fec_enet_close(struct net_device *ndev)
3045 {
3046 	struct fec_enet_private *fep = netdev_priv(ndev);
3047 
3048 	phy_stop(ndev->phydev);
3049 
3050 	if (netif_device_present(ndev)) {
3051 		napi_disable(&fep->napi);
3052 		netif_tx_disable(ndev);
3053 		fec_stop(ndev);
3054 	}
3055 
3056 	phy_disconnect(ndev->phydev);
3057 
3058 	if (fep->quirks & FEC_QUIRK_ERR006687)
3059 		imx6q_cpuidle_fec_irqs_unused();
3060 
3061 	fec_enet_update_ethtool_stats(ndev);
3062 
3063 	fec_enet_clk_enable(ndev, false);
3064 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3065 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3066 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3067 
3068 	fec_enet_free_buffers(ndev);
3069 
3070 	return 0;
3071 }
3072 
3073 /* Set or clear the multicast filter for this adaptor.
3074  * Skeleton taken from sunlance driver.
3075  * The CPM Ethernet implementation allows Multicast as well as individual
3076  * MAC address filtering.  Some of the drivers check to make sure it is
3077  * a group multicast address, and discard those that are not.  I guess I
3078  * will do the same for now, but just remove the test if you want
3079  * individual filtering as well (do the upper net layers want or support
3080  * this kind of feature?).
3081  */
3082 
3083 #define FEC_HASH_BITS	6		/* #bits in hash */
3084 
3085 static void set_multicast_list(struct net_device *ndev)
3086 {
3087 	struct fec_enet_private *fep = netdev_priv(ndev);
3088 	struct netdev_hw_addr *ha;
3089 	unsigned int crc, tmp;
3090 	unsigned char hash;
3091 	unsigned int hash_high = 0, hash_low = 0;
3092 
3093 	if (ndev->flags & IFF_PROMISC) {
3094 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3095 		tmp |= 0x8;
3096 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3097 		return;
3098 	}
3099 
3100 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3101 	tmp &= ~0x8;
3102 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3103 
3104 	if (ndev->flags & IFF_ALLMULTI) {
3105 		/* Catch all multicast addresses, so set the
3106 		 * filter to all 1's
3107 		 */
3108 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3109 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3110 
3111 		return;
3112 	}
3113 
3114 	/* Add the addresses in hash register */
3115 	netdev_for_each_mc_addr(ha, ndev) {
3116 		/* calculate crc32 value of mac address */
3117 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3118 
3119 		/* only upper 6 bits (FEC_HASH_BITS) are used
3120 		 * which point to specific bit in the hash registers
3121 		 */
3122 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3123 
3124 		if (hash > 31)
3125 			hash_high |= 1 << (hash - 32);
3126 		else
3127 			hash_low |= 1 << hash;
3128 	}
3129 
3130 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3131 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3132 }
3133 
3134 /* Set a MAC change in hardware. */
3135 static int
3136 fec_set_mac_address(struct net_device *ndev, void *p)
3137 {
3138 	struct fec_enet_private *fep = netdev_priv(ndev);
3139 	struct sockaddr *addr = p;
3140 
3141 	if (addr) {
3142 		if (!is_valid_ether_addr(addr->sa_data))
3143 			return -EADDRNOTAVAIL;
3144 		memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3145 	}
3146 
3147 	/* Add netif status check here to avoid system hang in below case:
3148 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3149 	 * After ethx down, fec all clocks are gated off and then register
3150 	 * access causes system hang.
3151 	 */
3152 	if (!netif_running(ndev))
3153 		return 0;
3154 
3155 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3156 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3157 		fep->hwp + FEC_ADDR_LOW);
3158 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3159 		fep->hwp + FEC_ADDR_HIGH);
3160 	return 0;
3161 }
3162 
3163 #ifdef CONFIG_NET_POLL_CONTROLLER
3164 /**
3165  * fec_poll_controller - FEC Poll controller function
3166  * @dev: The FEC network adapter
3167  *
3168  * Polled functionality used by netconsole and others in non interrupt mode
3169  *
3170  */
3171 static void fec_poll_controller(struct net_device *dev)
3172 {
3173 	int i;
3174 	struct fec_enet_private *fep = netdev_priv(dev);
3175 
3176 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3177 		if (fep->irq[i] > 0) {
3178 			disable_irq(fep->irq[i]);
3179 			fec_enet_interrupt(fep->irq[i], dev);
3180 			enable_irq(fep->irq[i]);
3181 		}
3182 	}
3183 }
3184 #endif
3185 
3186 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3187 	netdev_features_t features)
3188 {
3189 	struct fec_enet_private *fep = netdev_priv(netdev);
3190 	netdev_features_t changed = features ^ netdev->features;
3191 
3192 	netdev->features = features;
3193 
3194 	/* Receive checksum has been changed */
3195 	if (changed & NETIF_F_RXCSUM) {
3196 		if (features & NETIF_F_RXCSUM)
3197 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3198 		else
3199 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3200 	}
3201 }
3202 
3203 static int fec_set_features(struct net_device *netdev,
3204 	netdev_features_t features)
3205 {
3206 	struct fec_enet_private *fep = netdev_priv(netdev);
3207 	netdev_features_t changed = features ^ netdev->features;
3208 
3209 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3210 		napi_disable(&fep->napi);
3211 		netif_tx_lock_bh(netdev);
3212 		fec_stop(netdev);
3213 		fec_enet_set_netdev_features(netdev, features);
3214 		fec_restart(netdev);
3215 		netif_tx_wake_all_queues(netdev);
3216 		netif_tx_unlock_bh(netdev);
3217 		napi_enable(&fep->napi);
3218 	} else {
3219 		fec_enet_set_netdev_features(netdev, features);
3220 	}
3221 
3222 	return 0;
3223 }
3224 
3225 static const struct net_device_ops fec_netdev_ops = {
3226 	.ndo_open		= fec_enet_open,
3227 	.ndo_stop		= fec_enet_close,
3228 	.ndo_start_xmit		= fec_enet_start_xmit,
3229 	.ndo_set_rx_mode	= set_multicast_list,
3230 	.ndo_validate_addr	= eth_validate_addr,
3231 	.ndo_tx_timeout		= fec_timeout,
3232 	.ndo_set_mac_address	= fec_set_mac_address,
3233 	.ndo_do_ioctl		= fec_enet_ioctl,
3234 #ifdef CONFIG_NET_POLL_CONTROLLER
3235 	.ndo_poll_controller	= fec_poll_controller,
3236 #endif
3237 	.ndo_set_features	= fec_set_features,
3238 };
3239 
3240 static const unsigned short offset_des_active_rxq[] = {
3241 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3242 };
3243 
3244 static const unsigned short offset_des_active_txq[] = {
3245 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3246 };
3247 
3248  /*
3249   * XXX:  We need to clean up on failure exits here.
3250   *
3251   */
3252 static int fec_enet_init(struct net_device *ndev)
3253 {
3254 	struct fec_enet_private *fep = netdev_priv(ndev);
3255 	struct bufdesc *cbd_base;
3256 	dma_addr_t bd_dma;
3257 	int bd_size;
3258 	unsigned int i;
3259 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3260 			sizeof(struct bufdesc);
3261 	unsigned dsize_log2 = __fls(dsize);
3262 	int ret;
3263 
3264 	WARN_ON(dsize != (1 << dsize_log2));
3265 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3266 	fep->rx_align = 0xf;
3267 	fep->tx_align = 0xf;
3268 #else
3269 	fep->rx_align = 0x3;
3270 	fep->tx_align = 0x3;
3271 #endif
3272 
3273 	/* Check mask of the streaming and coherent API */
3274 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3275 	if (ret < 0) {
3276 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3277 		return ret;
3278 	}
3279 
3280 	fec_enet_alloc_queue(ndev);
3281 
3282 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3283 
3284 	/* Allocate memory for buffer descriptors. */
3285 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3286 				       GFP_KERNEL);
3287 	if (!cbd_base) {
3288 		return -ENOMEM;
3289 	}
3290 
3291 	/* Get the Ethernet address */
3292 	fec_get_mac(ndev);
3293 	/* make sure MAC we just acquired is programmed into the hw */
3294 	fec_set_mac_address(ndev, NULL);
3295 
3296 	/* Set receive and transmit descriptor base. */
3297 	for (i = 0; i < fep->num_rx_queues; i++) {
3298 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3299 		unsigned size = dsize * rxq->bd.ring_size;
3300 
3301 		rxq->bd.qid = i;
3302 		rxq->bd.base = cbd_base;
3303 		rxq->bd.cur = cbd_base;
3304 		rxq->bd.dma = bd_dma;
3305 		rxq->bd.dsize = dsize;
3306 		rxq->bd.dsize_log2 = dsize_log2;
3307 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3308 		bd_dma += size;
3309 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3310 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3311 	}
3312 
3313 	for (i = 0; i < fep->num_tx_queues; i++) {
3314 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3315 		unsigned size = dsize * txq->bd.ring_size;
3316 
3317 		txq->bd.qid = i;
3318 		txq->bd.base = cbd_base;
3319 		txq->bd.cur = cbd_base;
3320 		txq->bd.dma = bd_dma;
3321 		txq->bd.dsize = dsize;
3322 		txq->bd.dsize_log2 = dsize_log2;
3323 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3324 		bd_dma += size;
3325 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3326 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3327 	}
3328 
3329 
3330 	/* The FEC Ethernet specific entries in the device structure */
3331 	ndev->watchdog_timeo = TX_TIMEOUT;
3332 	ndev->netdev_ops = &fec_netdev_ops;
3333 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3334 
3335 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3336 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3337 
3338 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3339 		/* enable hw VLAN support */
3340 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3341 
3342 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3343 		ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3344 
3345 		/* enable hw accelerator */
3346 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3347 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3348 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3349 	}
3350 
3351 	if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3352 		fep->tx_align = 0;
3353 		fep->rx_align = 0x3f;
3354 	}
3355 
3356 	ndev->hw_features = ndev->features;
3357 
3358 	fec_restart(ndev);
3359 
3360 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3361 		fec_enet_clear_ethtool_stats(ndev);
3362 	else
3363 		fec_enet_update_ethtool_stats(ndev);
3364 
3365 	return 0;
3366 }
3367 
3368 #ifdef CONFIG_OF
3369 static int fec_reset_phy(struct platform_device *pdev)
3370 {
3371 	int err, phy_reset;
3372 	bool active_high = false;
3373 	int msec = 1, phy_post_delay = 0;
3374 	struct device_node *np = pdev->dev.of_node;
3375 
3376 	if (!np)
3377 		return 0;
3378 
3379 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3380 	/* A sane reset duration should not be longer than 1s */
3381 	if (!err && msec > 1000)
3382 		msec = 1;
3383 
3384 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3385 	if (phy_reset == -EPROBE_DEFER)
3386 		return phy_reset;
3387 	else if (!gpio_is_valid(phy_reset))
3388 		return 0;
3389 
3390 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3391 	/* valid reset duration should be less than 1s */
3392 	if (!err && phy_post_delay > 1000)
3393 		return -EINVAL;
3394 
3395 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3396 
3397 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3398 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3399 			"phy-reset");
3400 	if (err) {
3401 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3402 		return err;
3403 	}
3404 
3405 	if (msec > 20)
3406 		msleep(msec);
3407 	else
3408 		usleep_range(msec * 1000, msec * 1000 + 1000);
3409 
3410 	gpio_set_value_cansleep(phy_reset, !active_high);
3411 
3412 	if (!phy_post_delay)
3413 		return 0;
3414 
3415 	if (phy_post_delay > 20)
3416 		msleep(phy_post_delay);
3417 	else
3418 		usleep_range(phy_post_delay * 1000,
3419 			     phy_post_delay * 1000 + 1000);
3420 
3421 	return 0;
3422 }
3423 #else /* CONFIG_OF */
3424 static int fec_reset_phy(struct platform_device *pdev)
3425 {
3426 	/*
3427 	 * In case of platform probe, the reset has been done
3428 	 * by machine code.
3429 	 */
3430 	return 0;
3431 }
3432 #endif /* CONFIG_OF */
3433 
3434 static void
3435 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3436 {
3437 	struct device_node *np = pdev->dev.of_node;
3438 
3439 	*num_tx = *num_rx = 1;
3440 
3441 	if (!np || !of_device_is_available(np))
3442 		return;
3443 
3444 	/* parse the num of tx and rx queues */
3445 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3446 
3447 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3448 
3449 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3450 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3451 			 *num_tx);
3452 		*num_tx = 1;
3453 		return;
3454 	}
3455 
3456 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3457 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3458 			 *num_rx);
3459 		*num_rx = 1;
3460 		return;
3461 	}
3462 
3463 }
3464 
3465 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3466 {
3467 	int irq_cnt = platform_irq_count(pdev);
3468 
3469 	if (irq_cnt > FEC_IRQ_NUM)
3470 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3471 	else if (irq_cnt == 2)
3472 		irq_cnt = 1;	/* last for pps */
3473 	else if (irq_cnt <= 0)
3474 		irq_cnt = 1;	/* At least 1 irq is needed */
3475 	return irq_cnt;
3476 }
3477 
3478 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3479 				   struct device_node *np)
3480 {
3481 	struct device_node *gpr_np;
3482 	u32 out_val[3];
3483 	int ret = 0;
3484 
3485 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3486 	if (!gpr_np)
3487 		return 0;
3488 
3489 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3490 					 ARRAY_SIZE(out_val));
3491 	if (ret) {
3492 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3493 		return ret;
3494 	}
3495 
3496 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3497 	if (IS_ERR(fep->stop_gpr.gpr)) {
3498 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3499 		ret = PTR_ERR(fep->stop_gpr.gpr);
3500 		fep->stop_gpr.gpr = NULL;
3501 		goto out;
3502 	}
3503 
3504 	fep->stop_gpr.reg = out_val[1];
3505 	fep->stop_gpr.bit = out_val[2];
3506 
3507 out:
3508 	of_node_put(gpr_np);
3509 
3510 	return ret;
3511 }
3512 
3513 static int
3514 fec_probe(struct platform_device *pdev)
3515 {
3516 	struct fec_enet_private *fep;
3517 	struct fec_platform_data *pdata;
3518 	phy_interface_t interface;
3519 	struct net_device *ndev;
3520 	int i, irq, ret = 0;
3521 	const struct of_device_id *of_id;
3522 	static int dev_id;
3523 	struct device_node *np = pdev->dev.of_node, *phy_node;
3524 	int num_tx_qs;
3525 	int num_rx_qs;
3526 	char irq_name[8];
3527 	int irq_cnt;
3528 	struct fec_devinfo *dev_info;
3529 
3530 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3531 
3532 	/* Init network device */
3533 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3534 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3535 	if (!ndev)
3536 		return -ENOMEM;
3537 
3538 	SET_NETDEV_DEV(ndev, &pdev->dev);
3539 
3540 	/* setup board info structure */
3541 	fep = netdev_priv(ndev);
3542 
3543 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3544 	if (of_id)
3545 		pdev->id_entry = of_id->data;
3546 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3547 	if (dev_info)
3548 		fep->quirks = dev_info->quirks;
3549 
3550 	fep->netdev = ndev;
3551 	fep->num_rx_queues = num_rx_qs;
3552 	fep->num_tx_queues = num_tx_qs;
3553 
3554 #if !defined(CONFIG_M5272)
3555 	/* default enable pause frame auto negotiation */
3556 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3557 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3558 #endif
3559 
3560 	/* Select default pin state */
3561 	pinctrl_pm_select_default_state(&pdev->dev);
3562 
3563 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3564 	if (IS_ERR(fep->hwp)) {
3565 		ret = PTR_ERR(fep->hwp);
3566 		goto failed_ioremap;
3567 	}
3568 
3569 	fep->pdev = pdev;
3570 	fep->dev_id = dev_id++;
3571 
3572 	platform_set_drvdata(pdev, ndev);
3573 
3574 	if ((of_machine_is_compatible("fsl,imx6q") ||
3575 	     of_machine_is_compatible("fsl,imx6dl")) &&
3576 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3577 		fep->quirks |= FEC_QUIRK_ERR006687;
3578 
3579 	if (of_get_property(np, "fsl,magic-packet", NULL))
3580 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3581 
3582 	ret = fec_enet_init_stop_mode(fep, np);
3583 	if (ret)
3584 		goto failed_stop_mode;
3585 
3586 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3587 	if (!phy_node && of_phy_is_fixed_link(np)) {
3588 		ret = of_phy_register_fixed_link(np);
3589 		if (ret < 0) {
3590 			dev_err(&pdev->dev,
3591 				"broken fixed-link specification\n");
3592 			goto failed_phy;
3593 		}
3594 		phy_node = of_node_get(np);
3595 	}
3596 	fep->phy_node = phy_node;
3597 
3598 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3599 	if (ret) {
3600 		pdata = dev_get_platdata(&pdev->dev);
3601 		if (pdata)
3602 			fep->phy_interface = pdata->phy;
3603 		else
3604 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3605 	} else {
3606 		fep->phy_interface = interface;
3607 	}
3608 
3609 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3610 	if (IS_ERR(fep->clk_ipg)) {
3611 		ret = PTR_ERR(fep->clk_ipg);
3612 		goto failed_clk;
3613 	}
3614 
3615 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3616 	if (IS_ERR(fep->clk_ahb)) {
3617 		ret = PTR_ERR(fep->clk_ahb);
3618 		goto failed_clk;
3619 	}
3620 
3621 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3622 
3623 	/* enet_out is optional, depends on board */
3624 	fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3625 	if (IS_ERR(fep->clk_enet_out))
3626 		fep->clk_enet_out = NULL;
3627 
3628 	fep->ptp_clk_on = false;
3629 	mutex_init(&fep->ptp_clk_mutex);
3630 
3631 	/* clk_ref is optional, depends on board */
3632 	fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3633 	if (IS_ERR(fep->clk_ref))
3634 		fep->clk_ref = NULL;
3635 
3636 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3637 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3638 	if (IS_ERR(fep->clk_ptp)) {
3639 		fep->clk_ptp = NULL;
3640 		fep->bufdesc_ex = false;
3641 	}
3642 
3643 	ret = fec_enet_clk_enable(ndev, true);
3644 	if (ret)
3645 		goto failed_clk;
3646 
3647 	ret = clk_prepare_enable(fep->clk_ipg);
3648 	if (ret)
3649 		goto failed_clk_ipg;
3650 	ret = clk_prepare_enable(fep->clk_ahb);
3651 	if (ret)
3652 		goto failed_clk_ahb;
3653 
3654 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3655 	if (!IS_ERR(fep->reg_phy)) {
3656 		ret = regulator_enable(fep->reg_phy);
3657 		if (ret) {
3658 			dev_err(&pdev->dev,
3659 				"Failed to enable phy regulator: %d\n", ret);
3660 			goto failed_regulator;
3661 		}
3662 	} else {
3663 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3664 			ret = -EPROBE_DEFER;
3665 			goto failed_regulator;
3666 		}
3667 		fep->reg_phy = NULL;
3668 	}
3669 
3670 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3671 	pm_runtime_use_autosuspend(&pdev->dev);
3672 	pm_runtime_get_noresume(&pdev->dev);
3673 	pm_runtime_set_active(&pdev->dev);
3674 	pm_runtime_enable(&pdev->dev);
3675 
3676 	ret = fec_reset_phy(pdev);
3677 	if (ret)
3678 		goto failed_reset;
3679 
3680 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3681 	if (fep->bufdesc_ex)
3682 		fec_ptp_init(pdev, irq_cnt);
3683 
3684 	ret = fec_enet_init(ndev);
3685 	if (ret)
3686 		goto failed_init;
3687 
3688 	for (i = 0; i < irq_cnt; i++) {
3689 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3690 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3691 		if (irq < 0)
3692 			irq = platform_get_irq(pdev, i);
3693 		if (irq < 0) {
3694 			ret = irq;
3695 			goto failed_irq;
3696 		}
3697 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3698 				       0, pdev->name, ndev);
3699 		if (ret)
3700 			goto failed_irq;
3701 
3702 		fep->irq[i] = irq;
3703 	}
3704 
3705 	ret = fec_enet_mii_init(pdev);
3706 	if (ret)
3707 		goto failed_mii_init;
3708 
3709 	/* Carrier starts down, phylib will bring it up */
3710 	netif_carrier_off(ndev);
3711 	fec_enet_clk_enable(ndev, false);
3712 	pinctrl_pm_select_sleep_state(&pdev->dev);
3713 
3714 	ret = register_netdev(ndev);
3715 	if (ret)
3716 		goto failed_register;
3717 
3718 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3719 			   FEC_WOL_HAS_MAGIC_PACKET);
3720 
3721 	if (fep->bufdesc_ex && fep->ptp_clock)
3722 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3723 
3724 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3725 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3726 
3727 	pm_runtime_mark_last_busy(&pdev->dev);
3728 	pm_runtime_put_autosuspend(&pdev->dev);
3729 
3730 	return 0;
3731 
3732 failed_register:
3733 	fec_enet_mii_remove(fep);
3734 failed_mii_init:
3735 failed_irq:
3736 failed_init:
3737 	fec_ptp_stop(pdev);
3738 	if (fep->reg_phy)
3739 		regulator_disable(fep->reg_phy);
3740 failed_reset:
3741 	pm_runtime_put_noidle(&pdev->dev);
3742 	pm_runtime_disable(&pdev->dev);
3743 failed_regulator:
3744 	clk_disable_unprepare(fep->clk_ahb);
3745 failed_clk_ahb:
3746 	clk_disable_unprepare(fep->clk_ipg);
3747 failed_clk_ipg:
3748 	fec_enet_clk_enable(ndev, false);
3749 failed_clk:
3750 	if (of_phy_is_fixed_link(np))
3751 		of_phy_deregister_fixed_link(np);
3752 	of_node_put(phy_node);
3753 failed_stop_mode:
3754 failed_phy:
3755 	dev_id--;
3756 failed_ioremap:
3757 	free_netdev(ndev);
3758 
3759 	return ret;
3760 }
3761 
3762 static int
3763 fec_drv_remove(struct platform_device *pdev)
3764 {
3765 	struct net_device *ndev = platform_get_drvdata(pdev);
3766 	struct fec_enet_private *fep = netdev_priv(ndev);
3767 	struct device_node *np = pdev->dev.of_node;
3768 	int ret;
3769 
3770 	ret = pm_runtime_get_sync(&pdev->dev);
3771 	if (ret < 0)
3772 		return ret;
3773 
3774 	cancel_work_sync(&fep->tx_timeout_work);
3775 	fec_ptp_stop(pdev);
3776 	unregister_netdev(ndev);
3777 	fec_enet_mii_remove(fep);
3778 	if (fep->reg_phy)
3779 		regulator_disable(fep->reg_phy);
3780 
3781 	if (of_phy_is_fixed_link(np))
3782 		of_phy_deregister_fixed_link(np);
3783 	of_node_put(fep->phy_node);
3784 	free_netdev(ndev);
3785 
3786 	clk_disable_unprepare(fep->clk_ahb);
3787 	clk_disable_unprepare(fep->clk_ipg);
3788 	pm_runtime_put_noidle(&pdev->dev);
3789 	pm_runtime_disable(&pdev->dev);
3790 
3791 	return 0;
3792 }
3793 
3794 static int __maybe_unused fec_suspend(struct device *dev)
3795 {
3796 	struct net_device *ndev = dev_get_drvdata(dev);
3797 	struct fec_enet_private *fep = netdev_priv(ndev);
3798 
3799 	rtnl_lock();
3800 	if (netif_running(ndev)) {
3801 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3802 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3803 		phy_stop(ndev->phydev);
3804 		napi_disable(&fep->napi);
3805 		netif_tx_lock_bh(ndev);
3806 		netif_device_detach(ndev);
3807 		netif_tx_unlock_bh(ndev);
3808 		fec_stop(ndev);
3809 		fec_enet_clk_enable(ndev, false);
3810 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3811 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3812 	}
3813 	rtnl_unlock();
3814 
3815 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3816 		regulator_disable(fep->reg_phy);
3817 
3818 	/* SOC supply clock to phy, when clock is disabled, phy link down
3819 	 * SOC control phy regulator, when regulator is disabled, phy link down
3820 	 */
3821 	if (fep->clk_enet_out || fep->reg_phy)
3822 		fep->link = 0;
3823 
3824 	return 0;
3825 }
3826 
3827 static int __maybe_unused fec_resume(struct device *dev)
3828 {
3829 	struct net_device *ndev = dev_get_drvdata(dev);
3830 	struct fec_enet_private *fep = netdev_priv(ndev);
3831 	int ret;
3832 	int val;
3833 
3834 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3835 		ret = regulator_enable(fep->reg_phy);
3836 		if (ret)
3837 			return ret;
3838 	}
3839 
3840 	rtnl_lock();
3841 	if (netif_running(ndev)) {
3842 		ret = fec_enet_clk_enable(ndev, true);
3843 		if (ret) {
3844 			rtnl_unlock();
3845 			goto failed_clk;
3846 		}
3847 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3848 			fec_enet_stop_mode(fep, false);
3849 
3850 			val = readl(fep->hwp + FEC_ECNTRL);
3851 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3852 			writel(val, fep->hwp + FEC_ECNTRL);
3853 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3854 		} else {
3855 			pinctrl_pm_select_default_state(&fep->pdev->dev);
3856 		}
3857 		fec_restart(ndev);
3858 		netif_tx_lock_bh(ndev);
3859 		netif_device_attach(ndev);
3860 		netif_tx_unlock_bh(ndev);
3861 		napi_enable(&fep->napi);
3862 		phy_start(ndev->phydev);
3863 	}
3864 	rtnl_unlock();
3865 
3866 	return 0;
3867 
3868 failed_clk:
3869 	if (fep->reg_phy)
3870 		regulator_disable(fep->reg_phy);
3871 	return ret;
3872 }
3873 
3874 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3875 {
3876 	struct net_device *ndev = dev_get_drvdata(dev);
3877 	struct fec_enet_private *fep = netdev_priv(ndev);
3878 
3879 	clk_disable_unprepare(fep->clk_ahb);
3880 	clk_disable_unprepare(fep->clk_ipg);
3881 
3882 	return 0;
3883 }
3884 
3885 static int __maybe_unused fec_runtime_resume(struct device *dev)
3886 {
3887 	struct net_device *ndev = dev_get_drvdata(dev);
3888 	struct fec_enet_private *fep = netdev_priv(ndev);
3889 	int ret;
3890 
3891 	ret = clk_prepare_enable(fep->clk_ahb);
3892 	if (ret)
3893 		return ret;
3894 	ret = clk_prepare_enable(fep->clk_ipg);
3895 	if (ret)
3896 		goto failed_clk_ipg;
3897 
3898 	return 0;
3899 
3900 failed_clk_ipg:
3901 	clk_disable_unprepare(fep->clk_ahb);
3902 	return ret;
3903 }
3904 
3905 static const struct dev_pm_ops fec_pm_ops = {
3906 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3907 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3908 };
3909 
3910 static struct platform_driver fec_driver = {
3911 	.driver	= {
3912 		.name	= DRIVER_NAME,
3913 		.pm	= &fec_pm_ops,
3914 		.of_match_table = fec_dt_ids,
3915 		.suppress_bind_attrs = true,
3916 	},
3917 	.id_table = fec_devtype,
3918 	.probe	= fec_probe,
3919 	.remove	= fec_drv_remove,
3920 };
3921 
3922 module_platform_driver(fec_driver);
3923 
3924 MODULE_ALIAS("platform:"DRIVER_NAME);
3925 MODULE_LICENSE("GPL");
3926