1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 4 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 5 * 6 * Right now, I am very wasteful with the buffers. I allocate memory 7 * pages and then divide them into 2K frame buffers. This way I know I 8 * have buffers large enough to hold one frame within one buffer descriptor. 9 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 10 * will be much more memory efficient and will easily handle lots of 11 * small packets. 12 * 13 * Much better multiple PHY support by Magnus Damm. 14 * Copyright (c) 2000 Ericsson Radio Systems AB. 15 * 16 * Support for FEC controller of ColdFire processors. 17 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 18 * 19 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 20 * Copyright (c) 2004-2006 Macq Electronique SA. 21 * 22 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/string.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/ptrace.h> 30 #include <linux/errno.h> 31 #include <linux/ioport.h> 32 #include <linux/slab.h> 33 #include <linux/interrupt.h> 34 #include <linux/delay.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/skbuff.h> 38 #include <linux/in.h> 39 #include <linux/ip.h> 40 #include <net/ip.h> 41 #include <net/selftests.h> 42 #include <net/tso.h> 43 #include <linux/tcp.h> 44 #include <linux/udp.h> 45 #include <linux/icmp.h> 46 #include <linux/spinlock.h> 47 #include <linux/workqueue.h> 48 #include <linux/bitops.h> 49 #include <linux/io.h> 50 #include <linux/irq.h> 51 #include <linux/clk.h> 52 #include <linux/crc32.h> 53 #include <linux/platform_device.h> 54 #include <linux/mdio.h> 55 #include <linux/phy.h> 56 #include <linux/fec.h> 57 #include <linux/of.h> 58 #include <linux/of_device.h> 59 #include <linux/of_gpio.h> 60 #include <linux/of_mdio.h> 61 #include <linux/of_net.h> 62 #include <linux/regulator/consumer.h> 63 #include <linux/if_vlan.h> 64 #include <linux/pinctrl/consumer.h> 65 #include <linux/prefetch.h> 66 #include <linux/mfd/syscon.h> 67 #include <linux/regmap.h> 68 #include <soc/imx/cpuidle.h> 69 #include <linux/filter.h> 70 #include <linux/bpf.h> 71 72 #include <asm/cacheflush.h> 73 74 #include "fec.h" 75 76 static void set_multicast_list(struct net_device *ndev); 77 static void fec_enet_itr_coal_init(struct net_device *ndev); 78 79 #define DRIVER_NAME "fec" 80 81 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2}; 82 83 /* Pause frame feild and FIFO threshold */ 84 #define FEC_ENET_FCE (1 << 5) 85 #define FEC_ENET_RSEM_V 0x84 86 #define FEC_ENET_RSFL_V 16 87 #define FEC_ENET_RAEM_V 0x8 88 #define FEC_ENET_RAFL_V 0x8 89 #define FEC_ENET_OPD_V 0xFFF0 90 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */ 91 92 struct fec_devinfo { 93 u32 quirks; 94 }; 95 96 static const struct fec_devinfo fec_imx25_info = { 97 .quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR | 98 FEC_QUIRK_HAS_FRREG, 99 }; 100 101 static const struct fec_devinfo fec_imx27_info = { 102 .quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG, 103 }; 104 105 static const struct fec_devinfo fec_imx28_info = { 106 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | 107 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC | 108 FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII | 109 FEC_QUIRK_NO_HARD_RESET, 110 }; 111 112 static const struct fec_devinfo fec_imx6q_info = { 113 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 114 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 115 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 | 116 FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII | 117 FEC_QUIRK_HAS_PMQOS, 118 }; 119 120 static const struct fec_devinfo fec_mvf600_info = { 121 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC, 122 }; 123 124 static const struct fec_devinfo fec_imx6x_info = { 125 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 126 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 127 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 128 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 129 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 130 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES, 131 }; 132 133 static const struct fec_devinfo fec_imx6ul_info = { 134 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 135 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 136 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 | 137 FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC | 138 FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII, 139 }; 140 141 static const struct fec_devinfo fec_imx8mq_info = { 142 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 143 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 144 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 145 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 146 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 147 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 148 FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2, 149 }; 150 151 static const struct fec_devinfo fec_imx8qm_info = { 152 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 153 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 154 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 155 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE | 156 FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE | 157 FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES | 158 FEC_QUIRK_DELAYED_CLKS_SUPPORT, 159 }; 160 161 static const struct fec_devinfo fec_s32v234_info = { 162 .quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | 163 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | 164 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | 165 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE, 166 }; 167 168 static struct platform_device_id fec_devtype[] = { 169 { 170 /* keep it for coldfire */ 171 .name = DRIVER_NAME, 172 .driver_data = 0, 173 }, { 174 .name = "imx25-fec", 175 .driver_data = (kernel_ulong_t)&fec_imx25_info, 176 }, { 177 .name = "imx27-fec", 178 .driver_data = (kernel_ulong_t)&fec_imx27_info, 179 }, { 180 .name = "imx28-fec", 181 .driver_data = (kernel_ulong_t)&fec_imx28_info, 182 }, { 183 .name = "imx6q-fec", 184 .driver_data = (kernel_ulong_t)&fec_imx6q_info, 185 }, { 186 .name = "mvf600-fec", 187 .driver_data = (kernel_ulong_t)&fec_mvf600_info, 188 }, { 189 .name = "imx6sx-fec", 190 .driver_data = (kernel_ulong_t)&fec_imx6x_info, 191 }, { 192 .name = "imx6ul-fec", 193 .driver_data = (kernel_ulong_t)&fec_imx6ul_info, 194 }, { 195 .name = "imx8mq-fec", 196 .driver_data = (kernel_ulong_t)&fec_imx8mq_info, 197 }, { 198 .name = "imx8qm-fec", 199 .driver_data = (kernel_ulong_t)&fec_imx8qm_info, 200 }, { 201 .name = "s32v234-fec", 202 .driver_data = (kernel_ulong_t)&fec_s32v234_info, 203 }, { 204 /* sentinel */ 205 } 206 }; 207 MODULE_DEVICE_TABLE(platform, fec_devtype); 208 209 enum imx_fec_type { 210 IMX25_FEC = 1, /* runs on i.mx25/50/53 */ 211 IMX27_FEC, /* runs on i.mx27/35/51 */ 212 IMX28_FEC, 213 IMX6Q_FEC, 214 MVF600_FEC, 215 IMX6SX_FEC, 216 IMX6UL_FEC, 217 IMX8MQ_FEC, 218 IMX8QM_FEC, 219 S32V234_FEC, 220 }; 221 222 static const struct of_device_id fec_dt_ids[] = { 223 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, 224 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, 225 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, 226 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, 227 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, 228 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, 229 { .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], }, 230 { .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], }, 231 { .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], }, 232 { .compatible = "fsl,s32v234-fec", .data = &fec_devtype[S32V234_FEC], }, 233 { /* sentinel */ } 234 }; 235 MODULE_DEVICE_TABLE(of, fec_dt_ids); 236 237 static unsigned char macaddr[ETH_ALEN]; 238 module_param_array(macaddr, byte, NULL, 0); 239 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); 240 241 #if defined(CONFIG_M5272) 242 /* 243 * Some hardware gets it MAC address out of local flash memory. 244 * if this is non-zero then assume it is the address to get MAC from. 245 */ 246 #if defined(CONFIG_NETtel) 247 #define FEC_FLASHMAC 0xf0006006 248 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 249 #define FEC_FLASHMAC 0xf0006000 250 #elif defined(CONFIG_CANCam) 251 #define FEC_FLASHMAC 0xf0020000 252 #elif defined (CONFIG_M5272C3) 253 #define FEC_FLASHMAC (0xffe04000 + 4) 254 #elif defined(CONFIG_MOD5272) 255 #define FEC_FLASHMAC 0xffc0406b 256 #else 257 #define FEC_FLASHMAC 0 258 #endif 259 #endif /* CONFIG_M5272 */ 260 261 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. 262 * 263 * 2048 byte skbufs are allocated. However, alignment requirements 264 * varies between FEC variants. Worst case is 64, so round down by 64. 265 */ 266 #define PKT_MAXBUF_SIZE (round_down(2048 - 64, 64)) 267 #define PKT_MINBUF_SIZE 64 268 269 /* FEC receive acceleration */ 270 #define FEC_RACC_IPDIS (1 << 1) 271 #define FEC_RACC_PRODIS (1 << 2) 272 #define FEC_RACC_SHIFT16 BIT(7) 273 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) 274 275 /* MIB Control Register */ 276 #define FEC_MIB_CTRLSTAT_DISABLE BIT(31) 277 278 /* 279 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame 280 * size bits. Other FEC hardware does not, so we need to take that into 281 * account when setting it. 282 */ 283 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 284 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 285 defined(CONFIG_ARM64) 286 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 287 #else 288 #define OPT_FRAME_SIZE 0 289 #endif 290 291 /* FEC MII MMFR bits definition */ 292 #define FEC_MMFR_ST (1 << 30) 293 #define FEC_MMFR_ST_C45 (0) 294 #define FEC_MMFR_OP_READ (2 << 28) 295 #define FEC_MMFR_OP_READ_C45 (3 << 28) 296 #define FEC_MMFR_OP_WRITE (1 << 28) 297 #define FEC_MMFR_OP_ADDR_WRITE (0) 298 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23) 299 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18) 300 #define FEC_MMFR_TA (2 << 16) 301 #define FEC_MMFR_DATA(v) (v & 0xffff) 302 /* FEC ECR bits definition */ 303 #define FEC_ECR_MAGICEN (1 << 2) 304 #define FEC_ECR_SLEEP (1 << 3) 305 306 #define FEC_MII_TIMEOUT 30000 /* us */ 307 308 /* Transmitter timeout */ 309 #define TX_TIMEOUT (2 * HZ) 310 311 #define FEC_PAUSE_FLAG_AUTONEG 0x1 312 #define FEC_PAUSE_FLAG_ENABLE 0x2 313 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) 314 #define FEC_WOL_FLAG_ENABLE (0x1 << 1) 315 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) 316 317 #define COPYBREAK_DEFAULT 256 318 319 /* Max number of allowed TCP segments for software TSO */ 320 #define FEC_MAX_TSO_SEGS 100 321 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 322 323 #define IS_TSO_HEADER(txq, addr) \ 324 ((addr >= txq->tso_hdrs_dma) && \ 325 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE)) 326 327 static int mii_cnt; 328 329 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, 330 struct bufdesc_prop *bd) 331 { 332 return (bdp >= bd->last) ? bd->base 333 : (struct bufdesc *)(((void *)bdp) + bd->dsize); 334 } 335 336 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, 337 struct bufdesc_prop *bd) 338 { 339 return (bdp <= bd->base) ? bd->last 340 : (struct bufdesc *)(((void *)bdp) - bd->dsize); 341 } 342 343 static int fec_enet_get_bd_index(struct bufdesc *bdp, 344 struct bufdesc_prop *bd) 345 { 346 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2; 347 } 348 349 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq) 350 { 351 int entries; 352 353 entries = (((const char *)txq->dirty_tx - 354 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1; 355 356 return entries >= 0 ? entries : entries + txq->bd.ring_size; 357 } 358 359 static void swap_buffer(void *bufaddr, int len) 360 { 361 int i; 362 unsigned int *buf = bufaddr; 363 364 for (i = 0; i < len; i += 4, buf++) 365 swab32s(buf); 366 } 367 368 static void fec_dump(struct net_device *ndev) 369 { 370 struct fec_enet_private *fep = netdev_priv(ndev); 371 struct bufdesc *bdp; 372 struct fec_enet_priv_tx_q *txq; 373 int index = 0; 374 375 netdev_info(ndev, "TX ring dump\n"); 376 pr_info("Nr SC addr len SKB\n"); 377 378 txq = fep->tx_queue[0]; 379 bdp = txq->bd.base; 380 381 do { 382 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n", 383 index, 384 bdp == txq->bd.cur ? 'S' : ' ', 385 bdp == txq->dirty_tx ? 'H' : ' ', 386 fec16_to_cpu(bdp->cbd_sc), 387 fec32_to_cpu(bdp->cbd_bufaddr), 388 fec16_to_cpu(bdp->cbd_datlen), 389 txq->tx_skbuff[index]); 390 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 391 index++; 392 } while (bdp != txq->bd.base); 393 } 394 395 static inline bool is_ipv4_pkt(struct sk_buff *skb) 396 { 397 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; 398 } 399 400 static int 401 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) 402 { 403 /* Only run for packets requiring a checksum. */ 404 if (skb->ip_summed != CHECKSUM_PARTIAL) 405 return 0; 406 407 if (unlikely(skb_cow_head(skb, 0))) 408 return -1; 409 410 if (is_ipv4_pkt(skb)) 411 ip_hdr(skb)->check = 0; 412 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; 413 414 return 0; 415 } 416 417 static int 418 fec_enet_create_page_pool(struct fec_enet_private *fep, 419 struct fec_enet_priv_rx_q *rxq, int size) 420 { 421 struct page_pool_params pp_params = { 422 .order = 0, 423 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 424 .pool_size = size, 425 .nid = dev_to_node(&fep->pdev->dev), 426 .dev = &fep->pdev->dev, 427 .dma_dir = DMA_FROM_DEVICE, 428 .offset = FEC_ENET_XDP_HEADROOM, 429 .max_len = FEC_ENET_RX_FRSIZE, 430 }; 431 int err; 432 433 rxq->page_pool = page_pool_create(&pp_params); 434 if (IS_ERR(rxq->page_pool)) { 435 err = PTR_ERR(rxq->page_pool); 436 rxq->page_pool = NULL; 437 return err; 438 } 439 440 err = xdp_rxq_info_reg(&rxq->xdp_rxq, fep->netdev, rxq->id, 0); 441 if (err < 0) 442 goto err_free_pp; 443 444 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 445 rxq->page_pool); 446 if (err) 447 goto err_unregister_rxq; 448 449 return 0; 450 451 err_unregister_rxq: 452 xdp_rxq_info_unreg(&rxq->xdp_rxq); 453 err_free_pp: 454 page_pool_destroy(rxq->page_pool); 455 rxq->page_pool = NULL; 456 return err; 457 } 458 459 static struct bufdesc * 460 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, 461 struct sk_buff *skb, 462 struct net_device *ndev) 463 { 464 struct fec_enet_private *fep = netdev_priv(ndev); 465 struct bufdesc *bdp = txq->bd.cur; 466 struct bufdesc_ex *ebdp; 467 int nr_frags = skb_shinfo(skb)->nr_frags; 468 int frag, frag_len; 469 unsigned short status; 470 unsigned int estatus = 0; 471 skb_frag_t *this_frag; 472 unsigned int index; 473 void *bufaddr; 474 dma_addr_t addr; 475 int i; 476 477 for (frag = 0; frag < nr_frags; frag++) { 478 this_frag = &skb_shinfo(skb)->frags[frag]; 479 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 480 ebdp = (struct bufdesc_ex *)bdp; 481 482 status = fec16_to_cpu(bdp->cbd_sc); 483 status &= ~BD_ENET_TX_STATS; 484 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 485 frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]); 486 487 /* Handle the last BD specially */ 488 if (frag == nr_frags - 1) { 489 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 490 if (fep->bufdesc_ex) { 491 estatus |= BD_ENET_TX_INT; 492 if (unlikely(skb_shinfo(skb)->tx_flags & 493 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 494 estatus |= BD_ENET_TX_TS; 495 } 496 } 497 498 if (fep->bufdesc_ex) { 499 if (fep->quirks & FEC_QUIRK_HAS_AVB) 500 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 501 if (skb->ip_summed == CHECKSUM_PARTIAL) 502 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 503 504 ebdp->cbd_bdu = 0; 505 ebdp->cbd_esc = cpu_to_fec32(estatus); 506 } 507 508 bufaddr = skb_frag_address(this_frag); 509 510 index = fec_enet_get_bd_index(bdp, &txq->bd); 511 if (((unsigned long) bufaddr) & fep->tx_align || 512 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 513 memcpy(txq->tx_bounce[index], bufaddr, frag_len); 514 bufaddr = txq->tx_bounce[index]; 515 516 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 517 swap_buffer(bufaddr, frag_len); 518 } 519 520 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, 521 DMA_TO_DEVICE); 522 if (dma_mapping_error(&fep->pdev->dev, addr)) { 523 if (net_ratelimit()) 524 netdev_err(ndev, "Tx DMA memory map failed\n"); 525 goto dma_mapping_error; 526 } 527 528 bdp->cbd_bufaddr = cpu_to_fec32(addr); 529 bdp->cbd_datlen = cpu_to_fec16(frag_len); 530 /* Make sure the updates to rest of the descriptor are 531 * performed before transferring ownership. 532 */ 533 wmb(); 534 bdp->cbd_sc = cpu_to_fec16(status); 535 } 536 537 return bdp; 538 dma_mapping_error: 539 bdp = txq->bd.cur; 540 for (i = 0; i < frag; i++) { 541 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 542 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr), 543 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE); 544 } 545 return ERR_PTR(-ENOMEM); 546 } 547 548 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, 549 struct sk_buff *skb, struct net_device *ndev) 550 { 551 struct fec_enet_private *fep = netdev_priv(ndev); 552 int nr_frags = skb_shinfo(skb)->nr_frags; 553 struct bufdesc *bdp, *last_bdp; 554 void *bufaddr; 555 dma_addr_t addr; 556 unsigned short status; 557 unsigned short buflen; 558 unsigned int estatus = 0; 559 unsigned int index; 560 int entries_free; 561 562 entries_free = fec_enet_get_free_txdesc_num(txq); 563 if (entries_free < MAX_SKB_FRAGS + 1) { 564 dev_kfree_skb_any(skb); 565 if (net_ratelimit()) 566 netdev_err(ndev, "NOT enough BD for SG!\n"); 567 return NETDEV_TX_OK; 568 } 569 570 /* Protocol checksum off-load for TCP and UDP. */ 571 if (fec_enet_clear_csum(skb, ndev)) { 572 dev_kfree_skb_any(skb); 573 return NETDEV_TX_OK; 574 } 575 576 /* Fill in a Tx ring entry */ 577 bdp = txq->bd.cur; 578 last_bdp = bdp; 579 status = fec16_to_cpu(bdp->cbd_sc); 580 status &= ~BD_ENET_TX_STATS; 581 582 /* Set buffer length and buffer pointer */ 583 bufaddr = skb->data; 584 buflen = skb_headlen(skb); 585 586 index = fec_enet_get_bd_index(bdp, &txq->bd); 587 if (((unsigned long) bufaddr) & fep->tx_align || 588 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 589 memcpy(txq->tx_bounce[index], skb->data, buflen); 590 bufaddr = txq->tx_bounce[index]; 591 592 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 593 swap_buffer(bufaddr, buflen); 594 } 595 596 /* Push the data cache so the CPM does not get stale memory data. */ 597 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); 598 if (dma_mapping_error(&fep->pdev->dev, addr)) { 599 dev_kfree_skb_any(skb); 600 if (net_ratelimit()) 601 netdev_err(ndev, "Tx DMA memory map failed\n"); 602 return NETDEV_TX_OK; 603 } 604 605 if (nr_frags) { 606 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev); 607 if (IS_ERR(last_bdp)) { 608 dma_unmap_single(&fep->pdev->dev, addr, 609 buflen, DMA_TO_DEVICE); 610 dev_kfree_skb_any(skb); 611 return NETDEV_TX_OK; 612 } 613 } else { 614 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); 615 if (fep->bufdesc_ex) { 616 estatus = BD_ENET_TX_INT; 617 if (unlikely(skb_shinfo(skb)->tx_flags & 618 SKBTX_HW_TSTAMP && fep->hwts_tx_en)) 619 estatus |= BD_ENET_TX_TS; 620 } 621 } 622 bdp->cbd_bufaddr = cpu_to_fec32(addr); 623 bdp->cbd_datlen = cpu_to_fec16(buflen); 624 625 if (fep->bufdesc_ex) { 626 627 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 628 629 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && 630 fep->hwts_tx_en)) 631 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 632 633 if (fep->quirks & FEC_QUIRK_HAS_AVB) 634 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 635 636 if (skb->ip_summed == CHECKSUM_PARTIAL) 637 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 638 639 ebdp->cbd_bdu = 0; 640 ebdp->cbd_esc = cpu_to_fec32(estatus); 641 } 642 643 index = fec_enet_get_bd_index(last_bdp, &txq->bd); 644 /* Save skb pointer */ 645 txq->tx_skbuff[index] = skb; 646 647 /* Make sure the updates to rest of the descriptor are performed before 648 * transferring ownership. 649 */ 650 wmb(); 651 652 /* Send it on its way. Tell FEC it's ready, interrupt when done, 653 * it's the last BD of the frame, and to put the CRC on the end. 654 */ 655 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); 656 bdp->cbd_sc = cpu_to_fec16(status); 657 658 /* If this was the last BD in the ring, start at the beginning again. */ 659 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd); 660 661 skb_tx_timestamp(skb); 662 663 /* Make sure the update to bdp and tx_skbuff are performed before 664 * txq->bd.cur. 665 */ 666 wmb(); 667 txq->bd.cur = bdp; 668 669 /* Trigger transmission start */ 670 writel(0, txq->bd.reg_desc_active); 671 672 return 0; 673 } 674 675 static int 676 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, 677 struct net_device *ndev, 678 struct bufdesc *bdp, int index, char *data, 679 int size, bool last_tcp, bool is_last) 680 { 681 struct fec_enet_private *fep = netdev_priv(ndev); 682 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 683 unsigned short status; 684 unsigned int estatus = 0; 685 dma_addr_t addr; 686 687 status = fec16_to_cpu(bdp->cbd_sc); 688 status &= ~BD_ENET_TX_STATS; 689 690 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 691 692 if (((unsigned long) data) & fep->tx_align || 693 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 694 memcpy(txq->tx_bounce[index], data, size); 695 data = txq->tx_bounce[index]; 696 697 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 698 swap_buffer(data, size); 699 } 700 701 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); 702 if (dma_mapping_error(&fep->pdev->dev, addr)) { 703 dev_kfree_skb_any(skb); 704 if (net_ratelimit()) 705 netdev_err(ndev, "Tx DMA memory map failed\n"); 706 return NETDEV_TX_BUSY; 707 } 708 709 bdp->cbd_datlen = cpu_to_fec16(size); 710 bdp->cbd_bufaddr = cpu_to_fec32(addr); 711 712 if (fep->bufdesc_ex) { 713 if (fep->quirks & FEC_QUIRK_HAS_AVB) 714 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 715 if (skb->ip_summed == CHECKSUM_PARTIAL) 716 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 717 ebdp->cbd_bdu = 0; 718 ebdp->cbd_esc = cpu_to_fec32(estatus); 719 } 720 721 /* Handle the last BD specially */ 722 if (last_tcp) 723 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); 724 if (is_last) { 725 status |= BD_ENET_TX_INTR; 726 if (fep->bufdesc_ex) 727 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT); 728 } 729 730 bdp->cbd_sc = cpu_to_fec16(status); 731 732 return 0; 733 } 734 735 static int 736 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, 737 struct sk_buff *skb, struct net_device *ndev, 738 struct bufdesc *bdp, int index) 739 { 740 struct fec_enet_private *fep = netdev_priv(ndev); 741 int hdr_len = skb_tcp_all_headers(skb); 742 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); 743 void *bufaddr; 744 unsigned long dmabuf; 745 unsigned short status; 746 unsigned int estatus = 0; 747 748 status = fec16_to_cpu(bdp->cbd_sc); 749 status &= ~BD_ENET_TX_STATS; 750 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); 751 752 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 753 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; 754 if (((unsigned long)bufaddr) & fep->tx_align || 755 fep->quirks & FEC_QUIRK_SWAP_FRAME) { 756 memcpy(txq->tx_bounce[index], skb->data, hdr_len); 757 bufaddr = txq->tx_bounce[index]; 758 759 if (fep->quirks & FEC_QUIRK_SWAP_FRAME) 760 swap_buffer(bufaddr, hdr_len); 761 762 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, 763 hdr_len, DMA_TO_DEVICE); 764 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { 765 dev_kfree_skb_any(skb); 766 if (net_ratelimit()) 767 netdev_err(ndev, "Tx DMA memory map failed\n"); 768 return NETDEV_TX_BUSY; 769 } 770 } 771 772 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf); 773 bdp->cbd_datlen = cpu_to_fec16(hdr_len); 774 775 if (fep->bufdesc_ex) { 776 if (fep->quirks & FEC_QUIRK_HAS_AVB) 777 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid); 778 if (skb->ip_summed == CHECKSUM_PARTIAL) 779 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; 780 ebdp->cbd_bdu = 0; 781 ebdp->cbd_esc = cpu_to_fec32(estatus); 782 } 783 784 bdp->cbd_sc = cpu_to_fec16(status); 785 786 return 0; 787 } 788 789 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, 790 struct sk_buff *skb, 791 struct net_device *ndev) 792 { 793 struct fec_enet_private *fep = netdev_priv(ndev); 794 int hdr_len, total_len, data_left; 795 struct bufdesc *bdp = txq->bd.cur; 796 struct tso_t tso; 797 unsigned int index = 0; 798 int ret; 799 800 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) { 801 dev_kfree_skb_any(skb); 802 if (net_ratelimit()) 803 netdev_err(ndev, "NOT enough BD for TSO!\n"); 804 return NETDEV_TX_OK; 805 } 806 807 /* Protocol checksum off-load for TCP and UDP. */ 808 if (fec_enet_clear_csum(skb, ndev)) { 809 dev_kfree_skb_any(skb); 810 return NETDEV_TX_OK; 811 } 812 813 /* Initialize the TSO handler, and prepare the first payload */ 814 hdr_len = tso_start(skb, &tso); 815 816 total_len = skb->len - hdr_len; 817 while (total_len > 0) { 818 char *hdr; 819 820 index = fec_enet_get_bd_index(bdp, &txq->bd); 821 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 822 total_len -= data_left; 823 824 /* prepare packet headers: MAC + IP + TCP */ 825 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; 826 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 827 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); 828 if (ret) 829 goto err_release; 830 831 while (data_left > 0) { 832 int size; 833 834 size = min_t(int, tso.size, data_left); 835 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 836 index = fec_enet_get_bd_index(bdp, &txq->bd); 837 ret = fec_enet_txq_put_data_tso(txq, skb, ndev, 838 bdp, index, 839 tso.data, size, 840 size == data_left, 841 total_len == 0); 842 if (ret) 843 goto err_release; 844 845 data_left -= size; 846 tso_build_data(skb, &tso, size); 847 } 848 849 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 850 } 851 852 /* Save skb pointer */ 853 txq->tx_skbuff[index] = skb; 854 855 skb_tx_timestamp(skb); 856 txq->bd.cur = bdp; 857 858 /* Trigger transmission start */ 859 if (!(fep->quirks & FEC_QUIRK_ERR007885) || 860 !readl(txq->bd.reg_desc_active) || 861 !readl(txq->bd.reg_desc_active) || 862 !readl(txq->bd.reg_desc_active) || 863 !readl(txq->bd.reg_desc_active)) 864 writel(0, txq->bd.reg_desc_active); 865 866 return 0; 867 868 err_release: 869 /* TODO: Release all used data descriptors for TSO */ 870 return ret; 871 } 872 873 static netdev_tx_t 874 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) 875 { 876 struct fec_enet_private *fep = netdev_priv(ndev); 877 int entries_free; 878 unsigned short queue; 879 struct fec_enet_priv_tx_q *txq; 880 struct netdev_queue *nq; 881 int ret; 882 883 queue = skb_get_queue_mapping(skb); 884 txq = fep->tx_queue[queue]; 885 nq = netdev_get_tx_queue(ndev, queue); 886 887 if (skb_is_gso(skb)) 888 ret = fec_enet_txq_submit_tso(txq, skb, ndev); 889 else 890 ret = fec_enet_txq_submit_skb(txq, skb, ndev); 891 if (ret) 892 return ret; 893 894 entries_free = fec_enet_get_free_txdesc_num(txq); 895 if (entries_free <= txq->tx_stop_threshold) 896 netif_tx_stop_queue(nq); 897 898 return NETDEV_TX_OK; 899 } 900 901 /* Init RX & TX buffer descriptors 902 */ 903 static void fec_enet_bd_init(struct net_device *dev) 904 { 905 struct fec_enet_private *fep = netdev_priv(dev); 906 struct fec_enet_priv_tx_q *txq; 907 struct fec_enet_priv_rx_q *rxq; 908 struct bufdesc *bdp; 909 unsigned int i; 910 unsigned int q; 911 912 for (q = 0; q < fep->num_rx_queues; q++) { 913 /* Initialize the receive buffer descriptors. */ 914 rxq = fep->rx_queue[q]; 915 bdp = rxq->bd.base; 916 917 for (i = 0; i < rxq->bd.ring_size; i++) { 918 919 /* Initialize the BD for every fragment in the page. */ 920 if (bdp->cbd_bufaddr) 921 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 922 else 923 bdp->cbd_sc = cpu_to_fec16(0); 924 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 925 } 926 927 /* Set the last buffer to wrap */ 928 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 929 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 930 931 rxq->bd.cur = rxq->bd.base; 932 } 933 934 for (q = 0; q < fep->num_tx_queues; q++) { 935 /* ...and the same for transmit */ 936 txq = fep->tx_queue[q]; 937 bdp = txq->bd.base; 938 txq->bd.cur = bdp; 939 940 for (i = 0; i < txq->bd.ring_size; i++) { 941 /* Initialize the BD for every fragment in the page. */ 942 bdp->cbd_sc = cpu_to_fec16(0); 943 if (bdp->cbd_bufaddr && 944 !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 945 dma_unmap_single(&fep->pdev->dev, 946 fec32_to_cpu(bdp->cbd_bufaddr), 947 fec16_to_cpu(bdp->cbd_datlen), 948 DMA_TO_DEVICE); 949 if (txq->tx_skbuff[i]) { 950 dev_kfree_skb_any(txq->tx_skbuff[i]); 951 txq->tx_skbuff[i] = NULL; 952 } 953 bdp->cbd_bufaddr = cpu_to_fec32(0); 954 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 955 } 956 957 /* Set the last buffer to wrap */ 958 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 959 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 960 txq->dirty_tx = bdp; 961 } 962 } 963 964 static void fec_enet_active_rxring(struct net_device *ndev) 965 { 966 struct fec_enet_private *fep = netdev_priv(ndev); 967 int i; 968 969 for (i = 0; i < fep->num_rx_queues; i++) 970 writel(0, fep->rx_queue[i]->bd.reg_desc_active); 971 } 972 973 static void fec_enet_enable_ring(struct net_device *ndev) 974 { 975 struct fec_enet_private *fep = netdev_priv(ndev); 976 struct fec_enet_priv_tx_q *txq; 977 struct fec_enet_priv_rx_q *rxq; 978 int i; 979 980 for (i = 0; i < fep->num_rx_queues; i++) { 981 rxq = fep->rx_queue[i]; 982 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i)); 983 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); 984 985 /* enable DMA1/2 */ 986 if (i) 987 writel(RCMR_MATCHEN | RCMR_CMP(i), 988 fep->hwp + FEC_RCMR(i)); 989 } 990 991 for (i = 0; i < fep->num_tx_queues; i++) { 992 txq = fep->tx_queue[i]; 993 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i)); 994 995 /* enable DMA1/2 */ 996 if (i) 997 writel(DMA_CLASS_EN | IDLE_SLOPE(i), 998 fep->hwp + FEC_DMA_CFG(i)); 999 } 1000 } 1001 1002 static void fec_enet_reset_skb(struct net_device *ndev) 1003 { 1004 struct fec_enet_private *fep = netdev_priv(ndev); 1005 struct fec_enet_priv_tx_q *txq; 1006 int i, j; 1007 1008 for (i = 0; i < fep->num_tx_queues; i++) { 1009 txq = fep->tx_queue[i]; 1010 1011 for (j = 0; j < txq->bd.ring_size; j++) { 1012 if (txq->tx_skbuff[j]) { 1013 dev_kfree_skb_any(txq->tx_skbuff[j]); 1014 txq->tx_skbuff[j] = NULL; 1015 } 1016 } 1017 } 1018 } 1019 1020 /* 1021 * This function is called to start or restart the FEC during a link 1022 * change, transmit timeout, or to reconfigure the FEC. The network 1023 * packet processing for this device must be stopped before this call. 1024 */ 1025 static void 1026 fec_restart(struct net_device *ndev) 1027 { 1028 struct fec_enet_private *fep = netdev_priv(ndev); 1029 u32 temp_mac[2]; 1030 u32 rcntl = OPT_FRAME_SIZE | 0x04; 1031 u32 ecntl = 0x2; /* ETHEREN */ 1032 1033 /* Whack a reset. We should wait for this. 1034 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1035 * instead of reset MAC itself. 1036 */ 1037 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES || 1038 ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) { 1039 writel(0, fep->hwp + FEC_ECNTRL); 1040 } else { 1041 writel(1, fep->hwp + FEC_ECNTRL); 1042 udelay(10); 1043 } 1044 1045 /* 1046 * enet-mac reset will reset mac address registers too, 1047 * so need to reconfigure it. 1048 */ 1049 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); 1050 writel((__force u32)cpu_to_be32(temp_mac[0]), 1051 fep->hwp + FEC_ADDR_LOW); 1052 writel((__force u32)cpu_to_be32(temp_mac[1]), 1053 fep->hwp + FEC_ADDR_HIGH); 1054 1055 /* Clear any outstanding interrupt, except MDIO. */ 1056 writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT); 1057 1058 fec_enet_bd_init(ndev); 1059 1060 fec_enet_enable_ring(ndev); 1061 1062 /* Reset tx SKB buffers. */ 1063 fec_enet_reset_skb(ndev); 1064 1065 /* Enable MII mode */ 1066 if (fep->full_duplex == DUPLEX_FULL) { 1067 /* FD enable */ 1068 writel(0x04, fep->hwp + FEC_X_CNTRL); 1069 } else { 1070 /* No Rcv on Xmit */ 1071 rcntl |= 0x02; 1072 writel(0x0, fep->hwp + FEC_X_CNTRL); 1073 } 1074 1075 /* Set MII speed */ 1076 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1077 1078 #if !defined(CONFIG_M5272) 1079 if (fep->quirks & FEC_QUIRK_HAS_RACC) { 1080 u32 val = readl(fep->hwp + FEC_RACC); 1081 1082 /* align IP header */ 1083 val |= FEC_RACC_SHIFT16; 1084 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) 1085 /* set RX checksum */ 1086 val |= FEC_RACC_OPTIONS; 1087 else 1088 val &= ~FEC_RACC_OPTIONS; 1089 writel(val, fep->hwp + FEC_RACC); 1090 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL); 1091 } 1092 #endif 1093 1094 /* 1095 * The phy interface and speed need to get configured 1096 * differently on enet-mac. 1097 */ 1098 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1099 /* Enable flow control and length check */ 1100 rcntl |= 0x40000000 | 0x00000020; 1101 1102 /* RGMII, RMII or MII */ 1103 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || 1104 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || 1105 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || 1106 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) 1107 rcntl |= (1 << 6); 1108 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1109 rcntl |= (1 << 8); 1110 else 1111 rcntl &= ~(1 << 8); 1112 1113 /* 1G, 100M or 10M */ 1114 if (ndev->phydev) { 1115 if (ndev->phydev->speed == SPEED_1000) 1116 ecntl |= (1 << 5); 1117 else if (ndev->phydev->speed == SPEED_100) 1118 rcntl &= ~(1 << 9); 1119 else 1120 rcntl |= (1 << 9); 1121 } 1122 } else { 1123 #ifdef FEC_MIIGSK_ENR 1124 if (fep->quirks & FEC_QUIRK_USE_GASKET) { 1125 u32 cfgr; 1126 /* disable the gasket and wait */ 1127 writel(0, fep->hwp + FEC_MIIGSK_ENR); 1128 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) 1129 udelay(1); 1130 1131 /* 1132 * configure the gasket: 1133 * RMII, 50 MHz, no loopback, no echo 1134 * MII, 25 MHz, no loopback, no echo 1135 */ 1136 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) 1137 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; 1138 if (ndev->phydev && ndev->phydev->speed == SPEED_10) 1139 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; 1140 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); 1141 1142 /* re-enable the gasket */ 1143 writel(2, fep->hwp + FEC_MIIGSK_ENR); 1144 } 1145 #endif 1146 } 1147 1148 #if !defined(CONFIG_M5272) 1149 /* enable pause frame*/ 1150 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || 1151 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && 1152 ndev->phydev && ndev->phydev->pause)) { 1153 rcntl |= FEC_ENET_FCE; 1154 1155 /* set FIFO threshold parameter to reduce overrun */ 1156 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); 1157 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); 1158 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); 1159 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); 1160 1161 /* OPD */ 1162 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); 1163 } else { 1164 rcntl &= ~FEC_ENET_FCE; 1165 } 1166 #endif /* !defined(CONFIG_M5272) */ 1167 1168 writel(rcntl, fep->hwp + FEC_R_CNTRL); 1169 1170 /* Setup multicast filter. */ 1171 set_multicast_list(ndev); 1172 #ifndef CONFIG_M5272 1173 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); 1174 writel(0, fep->hwp + FEC_HASH_TABLE_LOW); 1175 #endif 1176 1177 if (fep->quirks & FEC_QUIRK_ENET_MAC) { 1178 /* enable ENET endian swap */ 1179 ecntl |= (1 << 8); 1180 /* enable ENET store and forward mode */ 1181 writel(1 << 8, fep->hwp + FEC_X_WMRK); 1182 } 1183 1184 if (fep->bufdesc_ex) 1185 ecntl |= (1 << 4); 1186 1187 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1188 fep->rgmii_txc_dly) 1189 ecntl |= FEC_ENET_TXC_DLY; 1190 if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT && 1191 fep->rgmii_rxc_dly) 1192 ecntl |= FEC_ENET_RXC_DLY; 1193 1194 #ifndef CONFIG_M5272 1195 /* Enable the MIB statistic event counters */ 1196 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); 1197 #endif 1198 1199 /* And last, enable the transmit and receive processing */ 1200 writel(ecntl, fep->hwp + FEC_ECNTRL); 1201 fec_enet_active_rxring(ndev); 1202 1203 if (fep->bufdesc_ex) 1204 fec_ptp_start_cyclecounter(ndev); 1205 1206 /* Enable interrupts we wish to service */ 1207 if (fep->link) 1208 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1209 else 1210 writel(0, fep->hwp + FEC_IMASK); 1211 1212 /* Init the interrupt coalescing */ 1213 fec_enet_itr_coal_init(ndev); 1214 1215 } 1216 1217 static int fec_enet_ipc_handle_init(struct fec_enet_private *fep) 1218 { 1219 if (!(of_machine_is_compatible("fsl,imx8qm") || 1220 of_machine_is_compatible("fsl,imx8qxp") || 1221 of_machine_is_compatible("fsl,imx8dxl"))) 1222 return 0; 1223 1224 return imx_scu_get_handle(&fep->ipc_handle); 1225 } 1226 1227 static void fec_enet_ipg_stop_set(struct fec_enet_private *fep, bool enabled) 1228 { 1229 struct device_node *np = fep->pdev->dev.of_node; 1230 u32 rsrc_id, val; 1231 int idx; 1232 1233 if (!np || !fep->ipc_handle) 1234 return; 1235 1236 idx = of_alias_get_id(np, "ethernet"); 1237 if (idx < 0) 1238 idx = 0; 1239 rsrc_id = idx ? IMX_SC_R_ENET_1 : IMX_SC_R_ENET_0; 1240 1241 val = enabled ? 1 : 0; 1242 imx_sc_misc_set_control(fep->ipc_handle, rsrc_id, IMX_SC_C_IPG_STOP, val); 1243 } 1244 1245 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled) 1246 { 1247 struct fec_platform_data *pdata = fep->pdev->dev.platform_data; 1248 struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr; 1249 1250 if (stop_gpr->gpr) { 1251 if (enabled) 1252 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1253 BIT(stop_gpr->bit), 1254 BIT(stop_gpr->bit)); 1255 else 1256 regmap_update_bits(stop_gpr->gpr, stop_gpr->reg, 1257 BIT(stop_gpr->bit), 0); 1258 } else if (pdata && pdata->sleep_mode_enable) { 1259 pdata->sleep_mode_enable(enabled); 1260 } else { 1261 fec_enet_ipg_stop_set(fep, enabled); 1262 } 1263 } 1264 1265 static void fec_irqs_disable(struct net_device *ndev) 1266 { 1267 struct fec_enet_private *fep = netdev_priv(ndev); 1268 1269 writel(0, fep->hwp + FEC_IMASK); 1270 } 1271 1272 static void fec_irqs_disable_except_wakeup(struct net_device *ndev) 1273 { 1274 struct fec_enet_private *fep = netdev_priv(ndev); 1275 1276 writel(0, fep->hwp + FEC_IMASK); 1277 writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); 1278 } 1279 1280 static void 1281 fec_stop(struct net_device *ndev) 1282 { 1283 struct fec_enet_private *fep = netdev_priv(ndev); 1284 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); 1285 u32 val; 1286 1287 /* We cannot expect a graceful transmit stop without link !!! */ 1288 if (fep->link) { 1289 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ 1290 udelay(10); 1291 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) 1292 netdev_err(ndev, "Graceful transmit stop did not complete!\n"); 1293 } 1294 1295 /* Whack a reset. We should wait for this. 1296 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC 1297 * instead of reset MAC itself. 1298 */ 1299 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1300 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 1301 writel(0, fep->hwp + FEC_ECNTRL); 1302 } else { 1303 writel(1, fep->hwp + FEC_ECNTRL); 1304 udelay(10); 1305 } 1306 } else { 1307 val = readl(fep->hwp + FEC_ECNTRL); 1308 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 1309 writel(val, fep->hwp + FEC_ECNTRL); 1310 } 1311 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 1312 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1313 1314 /* We have to keep ENET enabled to have MII interrupt stay working */ 1315 if (fep->quirks & FEC_QUIRK_ENET_MAC && 1316 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { 1317 writel(2, fep->hwp + FEC_ECNTRL); 1318 writel(rmii_mode, fep->hwp + FEC_R_CNTRL); 1319 } 1320 } 1321 1322 1323 static void 1324 fec_timeout(struct net_device *ndev, unsigned int txqueue) 1325 { 1326 struct fec_enet_private *fep = netdev_priv(ndev); 1327 1328 fec_dump(ndev); 1329 1330 ndev->stats.tx_errors++; 1331 1332 schedule_work(&fep->tx_timeout_work); 1333 } 1334 1335 static void fec_enet_timeout_work(struct work_struct *work) 1336 { 1337 struct fec_enet_private *fep = 1338 container_of(work, struct fec_enet_private, tx_timeout_work); 1339 struct net_device *ndev = fep->netdev; 1340 1341 rtnl_lock(); 1342 if (netif_device_present(ndev) || netif_running(ndev)) { 1343 napi_disable(&fep->napi); 1344 netif_tx_lock_bh(ndev); 1345 fec_restart(ndev); 1346 netif_tx_wake_all_queues(ndev); 1347 netif_tx_unlock_bh(ndev); 1348 napi_enable(&fep->napi); 1349 } 1350 rtnl_unlock(); 1351 } 1352 1353 static void 1354 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, 1355 struct skb_shared_hwtstamps *hwtstamps) 1356 { 1357 unsigned long flags; 1358 u64 ns; 1359 1360 spin_lock_irqsave(&fep->tmreg_lock, flags); 1361 ns = timecounter_cyc2time(&fep->tc, ts); 1362 spin_unlock_irqrestore(&fep->tmreg_lock, flags); 1363 1364 memset(hwtstamps, 0, sizeof(*hwtstamps)); 1365 hwtstamps->hwtstamp = ns_to_ktime(ns); 1366 } 1367 1368 static void 1369 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) 1370 { 1371 struct fec_enet_private *fep; 1372 struct bufdesc *bdp; 1373 unsigned short status; 1374 struct sk_buff *skb; 1375 struct fec_enet_priv_tx_q *txq; 1376 struct netdev_queue *nq; 1377 int index = 0; 1378 int entries_free; 1379 1380 fep = netdev_priv(ndev); 1381 1382 txq = fep->tx_queue[queue_id]; 1383 /* get next bdp of dirty_tx */ 1384 nq = netdev_get_tx_queue(ndev, queue_id); 1385 bdp = txq->dirty_tx; 1386 1387 /* get next bdp of dirty_tx */ 1388 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1389 1390 while (bdp != READ_ONCE(txq->bd.cur)) { 1391 /* Order the load of bd.cur and cbd_sc */ 1392 rmb(); 1393 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc)); 1394 if (status & BD_ENET_TX_READY) 1395 break; 1396 1397 index = fec_enet_get_bd_index(bdp, &txq->bd); 1398 1399 skb = txq->tx_skbuff[index]; 1400 txq->tx_skbuff[index] = NULL; 1401 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr))) 1402 dma_unmap_single(&fep->pdev->dev, 1403 fec32_to_cpu(bdp->cbd_bufaddr), 1404 fec16_to_cpu(bdp->cbd_datlen), 1405 DMA_TO_DEVICE); 1406 bdp->cbd_bufaddr = cpu_to_fec32(0); 1407 if (!skb) 1408 goto skb_done; 1409 1410 /* Check for errors. */ 1411 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | 1412 BD_ENET_TX_RL | BD_ENET_TX_UN | 1413 BD_ENET_TX_CSL)) { 1414 ndev->stats.tx_errors++; 1415 if (status & BD_ENET_TX_HB) /* No heartbeat */ 1416 ndev->stats.tx_heartbeat_errors++; 1417 if (status & BD_ENET_TX_LC) /* Late collision */ 1418 ndev->stats.tx_window_errors++; 1419 if (status & BD_ENET_TX_RL) /* Retrans limit */ 1420 ndev->stats.tx_aborted_errors++; 1421 if (status & BD_ENET_TX_UN) /* Underrun */ 1422 ndev->stats.tx_fifo_errors++; 1423 if (status & BD_ENET_TX_CSL) /* Carrier lost */ 1424 ndev->stats.tx_carrier_errors++; 1425 } else { 1426 ndev->stats.tx_packets++; 1427 ndev->stats.tx_bytes += skb->len; 1428 } 1429 1430 /* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who 1431 * are to time stamp the packet, so we still need to check time 1432 * stamping enabled flag. 1433 */ 1434 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS && 1435 fep->hwts_tx_en) && 1436 fep->bufdesc_ex) { 1437 struct skb_shared_hwtstamps shhwtstamps; 1438 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1439 1440 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps); 1441 skb_tstamp_tx(skb, &shhwtstamps); 1442 } 1443 1444 /* Deferred means some collisions occurred during transmit, 1445 * but we eventually sent the packet OK. 1446 */ 1447 if (status & BD_ENET_TX_DEF) 1448 ndev->stats.collisions++; 1449 1450 /* Free the sk buffer associated with this last transmit */ 1451 dev_kfree_skb_any(skb); 1452 skb_done: 1453 /* Make sure the update to bdp and tx_skbuff are performed 1454 * before dirty_tx 1455 */ 1456 wmb(); 1457 txq->dirty_tx = bdp; 1458 1459 /* Update pointer to next buffer descriptor to be transmitted */ 1460 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 1461 1462 /* Since we have freed up a buffer, the ring is no longer full 1463 */ 1464 if (netif_tx_queue_stopped(nq)) { 1465 entries_free = fec_enet_get_free_txdesc_num(txq); 1466 if (entries_free >= txq->tx_wake_threshold) 1467 netif_tx_wake_queue(nq); 1468 } 1469 } 1470 1471 /* ERR006358: Keep the transmitter going */ 1472 if (bdp != txq->bd.cur && 1473 readl(txq->bd.reg_desc_active) == 0) 1474 writel(0, txq->bd.reg_desc_active); 1475 } 1476 1477 static void fec_enet_tx(struct net_device *ndev) 1478 { 1479 struct fec_enet_private *fep = netdev_priv(ndev); 1480 int i; 1481 1482 /* Make sure that AVB queues are processed first. */ 1483 for (i = fep->num_tx_queues - 1; i >= 0; i--) 1484 fec_enet_tx_queue(ndev, i); 1485 } 1486 1487 static void fec_enet_update_cbd(struct fec_enet_priv_rx_q *rxq, 1488 struct bufdesc *bdp, int index) 1489 { 1490 struct page *new_page; 1491 dma_addr_t phys_addr; 1492 1493 new_page = page_pool_dev_alloc_pages(rxq->page_pool); 1494 WARN_ON(!new_page); 1495 rxq->rx_skb_info[index].page = new_page; 1496 1497 rxq->rx_skb_info[index].offset = FEC_ENET_XDP_HEADROOM; 1498 phys_addr = page_pool_get_dma_addr(new_page) + FEC_ENET_XDP_HEADROOM; 1499 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 1500 } 1501 1502 /* During a receive, the bd_rx.cur points to the current incoming buffer. 1503 * When we update through the ring, if the next incoming buffer has 1504 * not been given to the system, we just set the empty indicator, 1505 * effectively tossing the packet. 1506 */ 1507 static int 1508 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) 1509 { 1510 struct fec_enet_private *fep = netdev_priv(ndev); 1511 struct fec_enet_priv_rx_q *rxq; 1512 struct bufdesc *bdp; 1513 unsigned short status; 1514 struct sk_buff *skb; 1515 ushort pkt_len; 1516 __u8 *data; 1517 int pkt_received = 0; 1518 struct bufdesc_ex *ebdp = NULL; 1519 bool vlan_packet_rcvd = false; 1520 u16 vlan_tag; 1521 int index = 0; 1522 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; 1523 struct page *page; 1524 1525 #ifdef CONFIG_M532x 1526 flush_cache_all(); 1527 #endif 1528 rxq = fep->rx_queue[queue_id]; 1529 1530 /* First, grab all of the stats for the incoming packet. 1531 * These get messed up if we get called due to a busy condition. 1532 */ 1533 bdp = rxq->bd.cur; 1534 1535 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) { 1536 1537 if (pkt_received >= budget) 1538 break; 1539 pkt_received++; 1540 1541 writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT); 1542 1543 /* Check for errors. */ 1544 status ^= BD_ENET_RX_LAST; 1545 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 1546 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST | 1547 BD_ENET_RX_CL)) { 1548 ndev->stats.rx_errors++; 1549 if (status & BD_ENET_RX_OV) { 1550 /* FIFO overrun */ 1551 ndev->stats.rx_fifo_errors++; 1552 goto rx_processing_done; 1553 } 1554 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH 1555 | BD_ENET_RX_LAST)) { 1556 /* Frame too long or too short. */ 1557 ndev->stats.rx_length_errors++; 1558 if (status & BD_ENET_RX_LAST) 1559 netdev_err(ndev, "rcv is not +last\n"); 1560 } 1561 if (status & BD_ENET_RX_CR) /* CRC Error */ 1562 ndev->stats.rx_crc_errors++; 1563 /* Report late collisions as a frame error. */ 1564 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL)) 1565 ndev->stats.rx_frame_errors++; 1566 goto rx_processing_done; 1567 } 1568 1569 /* Process the incoming frame. */ 1570 ndev->stats.rx_packets++; 1571 pkt_len = fec16_to_cpu(bdp->cbd_datlen); 1572 ndev->stats.rx_bytes += pkt_len; 1573 1574 index = fec_enet_get_bd_index(bdp, &rxq->bd); 1575 page = rxq->rx_skb_info[index].page; 1576 dma_sync_single_for_cpu(&fep->pdev->dev, 1577 fec32_to_cpu(bdp->cbd_bufaddr), 1578 pkt_len, 1579 DMA_FROM_DEVICE); 1580 prefetch(page_address(page)); 1581 fec_enet_update_cbd(rxq, bdp, index); 1582 1583 /* The packet length includes FCS, but we don't want to 1584 * include that when passing upstream as it messes up 1585 * bridging applications. 1586 */ 1587 skb = build_skb(page_address(page), PAGE_SIZE); 1588 skb_reserve(skb, FEC_ENET_XDP_HEADROOM); 1589 skb_put(skb, pkt_len - 4); 1590 skb_mark_for_recycle(skb); 1591 data = skb->data; 1592 1593 if (need_swap) 1594 swap_buffer(data, pkt_len); 1595 1596 #if !defined(CONFIG_M5272) 1597 if (fep->quirks & FEC_QUIRK_HAS_RACC) 1598 data = skb_pull_inline(skb, 2); 1599 #endif 1600 1601 /* Extract the enhanced buffer descriptor */ 1602 ebdp = NULL; 1603 if (fep->bufdesc_ex) 1604 ebdp = (struct bufdesc_ex *)bdp; 1605 1606 /* If this is a VLAN packet remove the VLAN Tag */ 1607 vlan_packet_rcvd = false; 1608 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && 1609 fep->bufdesc_ex && 1610 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) { 1611 /* Push and remove the vlan tag */ 1612 struct vlan_hdr *vlan_header = 1613 (struct vlan_hdr *) (data + ETH_HLEN); 1614 vlan_tag = ntohs(vlan_header->h_vlan_TCI); 1615 1616 vlan_packet_rcvd = true; 1617 1618 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); 1619 skb_pull(skb, VLAN_HLEN); 1620 } 1621 1622 skb->protocol = eth_type_trans(skb, ndev); 1623 1624 /* Get receive timestamp from the skb */ 1625 if (fep->hwts_rx_en && fep->bufdesc_ex) 1626 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), 1627 skb_hwtstamps(skb)); 1628 1629 if (fep->bufdesc_ex && 1630 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { 1631 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) { 1632 /* don't check it */ 1633 skb->ip_summed = CHECKSUM_UNNECESSARY; 1634 } else { 1635 skb_checksum_none_assert(skb); 1636 } 1637 } 1638 1639 /* Handle received VLAN packets */ 1640 if (vlan_packet_rcvd) 1641 __vlan_hwaccel_put_tag(skb, 1642 htons(ETH_P_8021Q), 1643 vlan_tag); 1644 1645 skb_record_rx_queue(skb, queue_id); 1646 napi_gro_receive(&fep->napi, skb); 1647 1648 rx_processing_done: 1649 /* Clear the status flags for this buffer */ 1650 status &= ~BD_ENET_RX_STATS; 1651 1652 /* Mark the buffer empty */ 1653 status |= BD_ENET_RX_EMPTY; 1654 1655 if (fep->bufdesc_ex) { 1656 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 1657 1658 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 1659 ebdp->cbd_prot = 0; 1660 ebdp->cbd_bdu = 0; 1661 } 1662 /* Make sure the updates to rest of the descriptor are 1663 * performed before transferring ownership. 1664 */ 1665 wmb(); 1666 bdp->cbd_sc = cpu_to_fec16(status); 1667 1668 /* Update BD pointer to next entry */ 1669 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 1670 1671 /* Doing this here will keep the FEC running while we process 1672 * incoming frames. On a heavily loaded network, we should be 1673 * able to keep up at the expense of system resources. 1674 */ 1675 writel(0, rxq->bd.reg_desc_active); 1676 } 1677 rxq->bd.cur = bdp; 1678 return pkt_received; 1679 } 1680 1681 static int fec_enet_rx(struct net_device *ndev, int budget) 1682 { 1683 struct fec_enet_private *fep = netdev_priv(ndev); 1684 int i, done = 0; 1685 1686 /* Make sure that AVB queues are processed first. */ 1687 for (i = fep->num_rx_queues - 1; i >= 0; i--) 1688 done += fec_enet_rx_queue(ndev, budget - done, i); 1689 1690 return done; 1691 } 1692 1693 static bool fec_enet_collect_events(struct fec_enet_private *fep) 1694 { 1695 uint int_events; 1696 1697 int_events = readl(fep->hwp + FEC_IEVENT); 1698 1699 /* Don't clear MDIO events, we poll for those */ 1700 int_events &= ~FEC_ENET_MII; 1701 1702 writel(int_events, fep->hwp + FEC_IEVENT); 1703 1704 return int_events != 0; 1705 } 1706 1707 static irqreturn_t 1708 fec_enet_interrupt(int irq, void *dev_id) 1709 { 1710 struct net_device *ndev = dev_id; 1711 struct fec_enet_private *fep = netdev_priv(ndev); 1712 irqreturn_t ret = IRQ_NONE; 1713 1714 if (fec_enet_collect_events(fep) && fep->link) { 1715 ret = IRQ_HANDLED; 1716 1717 if (napi_schedule_prep(&fep->napi)) { 1718 /* Disable interrupts */ 1719 writel(0, fep->hwp + FEC_IMASK); 1720 __napi_schedule(&fep->napi); 1721 } 1722 } 1723 1724 return ret; 1725 } 1726 1727 static int fec_enet_rx_napi(struct napi_struct *napi, int budget) 1728 { 1729 struct net_device *ndev = napi->dev; 1730 struct fec_enet_private *fep = netdev_priv(ndev); 1731 int done = 0; 1732 1733 do { 1734 done += fec_enet_rx(ndev, budget - done); 1735 fec_enet_tx(ndev); 1736 } while ((done < budget) && fec_enet_collect_events(fep)); 1737 1738 if (done < budget) { 1739 napi_complete_done(napi, done); 1740 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); 1741 } 1742 1743 return done; 1744 } 1745 1746 /* ------------------------------------------------------------------------- */ 1747 static int fec_get_mac(struct net_device *ndev) 1748 { 1749 struct fec_enet_private *fep = netdev_priv(ndev); 1750 unsigned char *iap, tmpaddr[ETH_ALEN]; 1751 int ret; 1752 1753 /* 1754 * try to get mac address in following order: 1755 * 1756 * 1) module parameter via kernel command line in form 1757 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 1758 */ 1759 iap = macaddr; 1760 1761 /* 1762 * 2) from device tree data 1763 */ 1764 if (!is_valid_ether_addr(iap)) { 1765 struct device_node *np = fep->pdev->dev.of_node; 1766 if (np) { 1767 ret = of_get_mac_address(np, tmpaddr); 1768 if (!ret) 1769 iap = tmpaddr; 1770 else if (ret == -EPROBE_DEFER) 1771 return ret; 1772 } 1773 } 1774 1775 /* 1776 * 3) from flash or fuse (via platform data) 1777 */ 1778 if (!is_valid_ether_addr(iap)) { 1779 #ifdef CONFIG_M5272 1780 if (FEC_FLASHMAC) 1781 iap = (unsigned char *)FEC_FLASHMAC; 1782 #else 1783 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); 1784 1785 if (pdata) 1786 iap = (unsigned char *)&pdata->mac; 1787 #endif 1788 } 1789 1790 /* 1791 * 4) FEC mac registers set by bootloader 1792 */ 1793 if (!is_valid_ether_addr(iap)) { 1794 *((__be32 *) &tmpaddr[0]) = 1795 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); 1796 *((__be16 *) &tmpaddr[4]) = 1797 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); 1798 iap = &tmpaddr[0]; 1799 } 1800 1801 /* 1802 * 5) random mac address 1803 */ 1804 if (!is_valid_ether_addr(iap)) { 1805 /* Report it and use a random ethernet address instead */ 1806 dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap); 1807 eth_hw_addr_random(ndev); 1808 dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n", 1809 ndev->dev_addr); 1810 return 0; 1811 } 1812 1813 /* Adjust MAC if using macaddr */ 1814 eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0); 1815 1816 return 0; 1817 } 1818 1819 /* ------------------------------------------------------------------------- */ 1820 1821 /* 1822 * Phy section 1823 */ 1824 static void fec_enet_adjust_link(struct net_device *ndev) 1825 { 1826 struct fec_enet_private *fep = netdev_priv(ndev); 1827 struct phy_device *phy_dev = ndev->phydev; 1828 int status_change = 0; 1829 1830 /* 1831 * If the netdev is down, or is going down, we're not interested 1832 * in link state events, so just mark our idea of the link as down 1833 * and ignore the event. 1834 */ 1835 if (!netif_running(ndev) || !netif_device_present(ndev)) { 1836 fep->link = 0; 1837 } else if (phy_dev->link) { 1838 if (!fep->link) { 1839 fep->link = phy_dev->link; 1840 status_change = 1; 1841 } 1842 1843 if (fep->full_duplex != phy_dev->duplex) { 1844 fep->full_duplex = phy_dev->duplex; 1845 status_change = 1; 1846 } 1847 1848 if (phy_dev->speed != fep->speed) { 1849 fep->speed = phy_dev->speed; 1850 status_change = 1; 1851 } 1852 1853 /* if any of the above changed restart the FEC */ 1854 if (status_change) { 1855 napi_disable(&fep->napi); 1856 netif_tx_lock_bh(ndev); 1857 fec_restart(ndev); 1858 netif_tx_wake_all_queues(ndev); 1859 netif_tx_unlock_bh(ndev); 1860 napi_enable(&fep->napi); 1861 } 1862 } else { 1863 if (fep->link) { 1864 napi_disable(&fep->napi); 1865 netif_tx_lock_bh(ndev); 1866 fec_stop(ndev); 1867 netif_tx_unlock_bh(ndev); 1868 napi_enable(&fep->napi); 1869 fep->link = phy_dev->link; 1870 status_change = 1; 1871 } 1872 } 1873 1874 if (status_change) 1875 phy_print_status(phy_dev); 1876 } 1877 1878 static int fec_enet_mdio_wait(struct fec_enet_private *fep) 1879 { 1880 uint ievent; 1881 int ret; 1882 1883 ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent, 1884 ievent & FEC_ENET_MII, 2, 30000); 1885 1886 if (!ret) 1887 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 1888 1889 return ret; 1890 } 1891 1892 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) 1893 { 1894 struct fec_enet_private *fep = bus->priv; 1895 struct device *dev = &fep->pdev->dev; 1896 int ret = 0, frame_start, frame_addr, frame_op; 1897 bool is_c45 = !!(regnum & MII_ADDR_C45); 1898 1899 ret = pm_runtime_resume_and_get(dev); 1900 if (ret < 0) 1901 return ret; 1902 1903 if (is_c45) { 1904 frame_start = FEC_MMFR_ST_C45; 1905 1906 /* write address */ 1907 frame_addr = (regnum >> 16); 1908 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1909 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1910 FEC_MMFR_TA | (regnum & 0xFFFF), 1911 fep->hwp + FEC_MII_DATA); 1912 1913 /* wait for end of transfer */ 1914 ret = fec_enet_mdio_wait(fep); 1915 if (ret) { 1916 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1917 goto out; 1918 } 1919 1920 frame_op = FEC_MMFR_OP_READ_C45; 1921 1922 } else { 1923 /* C22 read */ 1924 frame_op = FEC_MMFR_OP_READ; 1925 frame_start = FEC_MMFR_ST; 1926 frame_addr = regnum; 1927 } 1928 1929 /* start a read op */ 1930 writel(frame_start | frame_op | 1931 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1932 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); 1933 1934 /* wait for end of transfer */ 1935 ret = fec_enet_mdio_wait(fep); 1936 if (ret) { 1937 netdev_err(fep->netdev, "MDIO read timeout\n"); 1938 goto out; 1939 } 1940 1941 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); 1942 1943 out: 1944 pm_runtime_mark_last_busy(dev); 1945 pm_runtime_put_autosuspend(dev); 1946 1947 return ret; 1948 } 1949 1950 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, 1951 u16 value) 1952 { 1953 struct fec_enet_private *fep = bus->priv; 1954 struct device *dev = &fep->pdev->dev; 1955 int ret, frame_start, frame_addr; 1956 bool is_c45 = !!(regnum & MII_ADDR_C45); 1957 1958 ret = pm_runtime_resume_and_get(dev); 1959 if (ret < 0) 1960 return ret; 1961 1962 if (is_c45) { 1963 frame_start = FEC_MMFR_ST_C45; 1964 1965 /* write address */ 1966 frame_addr = (regnum >> 16); 1967 writel(frame_start | FEC_MMFR_OP_ADDR_WRITE | 1968 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1969 FEC_MMFR_TA | (regnum & 0xFFFF), 1970 fep->hwp + FEC_MII_DATA); 1971 1972 /* wait for end of transfer */ 1973 ret = fec_enet_mdio_wait(fep); 1974 if (ret) { 1975 netdev_err(fep->netdev, "MDIO address write timeout\n"); 1976 goto out; 1977 } 1978 } else { 1979 /* C22 write */ 1980 frame_start = FEC_MMFR_ST; 1981 frame_addr = regnum; 1982 } 1983 1984 /* start a write op */ 1985 writel(frame_start | FEC_MMFR_OP_WRITE | 1986 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) | 1987 FEC_MMFR_TA | FEC_MMFR_DATA(value), 1988 fep->hwp + FEC_MII_DATA); 1989 1990 /* wait for end of transfer */ 1991 ret = fec_enet_mdio_wait(fep); 1992 if (ret) 1993 netdev_err(fep->netdev, "MDIO write timeout\n"); 1994 1995 out: 1996 pm_runtime_mark_last_busy(dev); 1997 pm_runtime_put_autosuspend(dev); 1998 1999 return ret; 2000 } 2001 2002 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev) 2003 { 2004 struct fec_enet_private *fep = netdev_priv(ndev); 2005 struct phy_device *phy_dev = ndev->phydev; 2006 2007 if (phy_dev) { 2008 phy_reset_after_clk_enable(phy_dev); 2009 } else if (fep->phy_node) { 2010 /* 2011 * If the PHY still is not bound to the MAC, but there is 2012 * OF PHY node and a matching PHY device instance already, 2013 * use the OF PHY node to obtain the PHY device instance, 2014 * and then use that PHY device instance when triggering 2015 * the PHY reset. 2016 */ 2017 phy_dev = of_phy_find_device(fep->phy_node); 2018 phy_reset_after_clk_enable(phy_dev); 2019 put_device(&phy_dev->mdio.dev); 2020 } 2021 } 2022 2023 static int fec_enet_clk_enable(struct net_device *ndev, bool enable) 2024 { 2025 struct fec_enet_private *fep = netdev_priv(ndev); 2026 int ret; 2027 2028 if (enable) { 2029 ret = clk_prepare_enable(fep->clk_enet_out); 2030 if (ret) 2031 return ret; 2032 2033 if (fep->clk_ptp) { 2034 mutex_lock(&fep->ptp_clk_mutex); 2035 ret = clk_prepare_enable(fep->clk_ptp); 2036 if (ret) { 2037 mutex_unlock(&fep->ptp_clk_mutex); 2038 goto failed_clk_ptp; 2039 } else { 2040 fep->ptp_clk_on = true; 2041 } 2042 mutex_unlock(&fep->ptp_clk_mutex); 2043 } 2044 2045 ret = clk_prepare_enable(fep->clk_ref); 2046 if (ret) 2047 goto failed_clk_ref; 2048 2049 ret = clk_prepare_enable(fep->clk_2x_txclk); 2050 if (ret) 2051 goto failed_clk_2x_txclk; 2052 2053 fec_enet_phy_reset_after_clk_enable(ndev); 2054 } else { 2055 clk_disable_unprepare(fep->clk_enet_out); 2056 if (fep->clk_ptp) { 2057 mutex_lock(&fep->ptp_clk_mutex); 2058 clk_disable_unprepare(fep->clk_ptp); 2059 fep->ptp_clk_on = false; 2060 mutex_unlock(&fep->ptp_clk_mutex); 2061 } 2062 clk_disable_unprepare(fep->clk_ref); 2063 clk_disable_unprepare(fep->clk_2x_txclk); 2064 } 2065 2066 return 0; 2067 2068 failed_clk_2x_txclk: 2069 if (fep->clk_ref) 2070 clk_disable_unprepare(fep->clk_ref); 2071 failed_clk_ref: 2072 if (fep->clk_ptp) { 2073 mutex_lock(&fep->ptp_clk_mutex); 2074 clk_disable_unprepare(fep->clk_ptp); 2075 fep->ptp_clk_on = false; 2076 mutex_unlock(&fep->ptp_clk_mutex); 2077 } 2078 failed_clk_ptp: 2079 clk_disable_unprepare(fep->clk_enet_out); 2080 2081 return ret; 2082 } 2083 2084 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep, 2085 struct device_node *np) 2086 { 2087 u32 rgmii_tx_delay, rgmii_rx_delay; 2088 2089 /* For rgmii tx internal delay, valid values are 0ps and 2000ps */ 2090 if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) { 2091 if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) { 2092 dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps"); 2093 return -EINVAL; 2094 } else if (rgmii_tx_delay == 2000) { 2095 fep->rgmii_txc_dly = true; 2096 } 2097 } 2098 2099 /* For rgmii rx internal delay, valid values are 0ps and 2000ps */ 2100 if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) { 2101 if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) { 2102 dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps"); 2103 return -EINVAL; 2104 } else if (rgmii_rx_delay == 2000) { 2105 fep->rgmii_rxc_dly = true; 2106 } 2107 } 2108 2109 return 0; 2110 } 2111 2112 static int fec_enet_mii_probe(struct net_device *ndev) 2113 { 2114 struct fec_enet_private *fep = netdev_priv(ndev); 2115 struct phy_device *phy_dev = NULL; 2116 char mdio_bus_id[MII_BUS_ID_SIZE]; 2117 char phy_name[MII_BUS_ID_SIZE + 3]; 2118 int phy_id; 2119 int dev_id = fep->dev_id; 2120 2121 if (fep->phy_node) { 2122 phy_dev = of_phy_connect(ndev, fep->phy_node, 2123 &fec_enet_adjust_link, 0, 2124 fep->phy_interface); 2125 if (!phy_dev) { 2126 netdev_err(ndev, "Unable to connect to phy\n"); 2127 return -ENODEV; 2128 } 2129 } else { 2130 /* check for attached phy */ 2131 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { 2132 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id)) 2133 continue; 2134 if (dev_id--) 2135 continue; 2136 strscpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); 2137 break; 2138 } 2139 2140 if (phy_id >= PHY_MAX_ADDR) { 2141 netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); 2142 strscpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); 2143 phy_id = 0; 2144 } 2145 2146 snprintf(phy_name, sizeof(phy_name), 2147 PHY_ID_FMT, mdio_bus_id, phy_id); 2148 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 2149 fep->phy_interface); 2150 } 2151 2152 if (IS_ERR(phy_dev)) { 2153 netdev_err(ndev, "could not attach to PHY\n"); 2154 return PTR_ERR(phy_dev); 2155 } 2156 2157 /* mask with MAC supported features */ 2158 if (fep->quirks & FEC_QUIRK_HAS_GBIT) { 2159 phy_set_max_speed(phy_dev, 1000); 2160 phy_remove_link_mode(phy_dev, 2161 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 2162 #if !defined(CONFIG_M5272) 2163 phy_support_sym_pause(phy_dev); 2164 #endif 2165 } 2166 else 2167 phy_set_max_speed(phy_dev, 100); 2168 2169 fep->link = 0; 2170 fep->full_duplex = 0; 2171 2172 phy_dev->mac_managed_pm = 1; 2173 2174 phy_attached_info(phy_dev); 2175 2176 return 0; 2177 } 2178 2179 static int fec_enet_mii_init(struct platform_device *pdev) 2180 { 2181 static struct mii_bus *fec0_mii_bus; 2182 struct net_device *ndev = platform_get_drvdata(pdev); 2183 struct fec_enet_private *fep = netdev_priv(ndev); 2184 bool suppress_preamble = false; 2185 struct device_node *node; 2186 int err = -ENXIO; 2187 u32 mii_speed, holdtime; 2188 u32 bus_freq; 2189 2190 /* 2191 * The i.MX28 dual fec interfaces are not equal. 2192 * Here are the differences: 2193 * 2194 * - fec0 supports MII & RMII modes while fec1 only supports RMII 2195 * - fec0 acts as the 1588 time master while fec1 is slave 2196 * - external phys can only be configured by fec0 2197 * 2198 * That is to say fec1 can not work independently. It only works 2199 * when fec0 is working. The reason behind this design is that the 2200 * second interface is added primarily for Switch mode. 2201 * 2202 * Because of the last point above, both phys are attached on fec0 2203 * mdio interface in board design, and need to be configured by 2204 * fec0 mii_bus. 2205 */ 2206 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { 2207 /* fec1 uses fec0 mii_bus */ 2208 if (mii_cnt && fec0_mii_bus) { 2209 fep->mii_bus = fec0_mii_bus; 2210 mii_cnt++; 2211 return 0; 2212 } 2213 return -ENOENT; 2214 } 2215 2216 bus_freq = 2500000; /* 2.5MHz by default */ 2217 node = of_get_child_by_name(pdev->dev.of_node, "mdio"); 2218 if (node) { 2219 of_property_read_u32(node, "clock-frequency", &bus_freq); 2220 suppress_preamble = of_property_read_bool(node, 2221 "suppress-preamble"); 2222 } 2223 2224 /* 2225 * Set MII speed (= clk_get_rate() / 2 * phy_speed) 2226 * 2227 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while 2228 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 2229 * Reference Manual has an error on this, and gets fixed on i.MX6Q 2230 * document. 2231 */ 2232 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2); 2233 if (fep->quirks & FEC_QUIRK_ENET_MAC) 2234 mii_speed--; 2235 if (mii_speed > 63) { 2236 dev_err(&pdev->dev, 2237 "fec clock (%lu) too fast to get right mii speed\n", 2238 clk_get_rate(fep->clk_ipg)); 2239 err = -EINVAL; 2240 goto err_out; 2241 } 2242 2243 /* 2244 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka 2245 * MII_SPEED) register that defines the MDIO output hold time. Earlier 2246 * versions are RAZ there, so just ignore the difference and write the 2247 * register always. 2248 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. 2249 * HOLDTIME + 1 is the number of clk cycles the fec is holding the 2250 * output. 2251 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). 2252 * Given that ceil(clkrate / 5000000) <= 64, the calculation for 2253 * holdtime cannot result in a value greater than 3. 2254 */ 2255 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; 2256 2257 fep->phy_speed = mii_speed << 1 | holdtime << 8; 2258 2259 if (suppress_preamble) 2260 fep->phy_speed |= BIT(7); 2261 2262 if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) { 2263 /* Clear MMFR to avoid to generate MII event by writing MSCR. 2264 * MII event generation condition: 2265 * - writing MSCR: 2266 * - mmfr[31:0]_not_zero & mscr[7:0]_is_zero & 2267 * mscr_reg_data_in[7:0] != 0 2268 * - writing MMFR: 2269 * - mscr[7:0]_not_zero 2270 */ 2271 writel(0, fep->hwp + FEC_MII_DATA); 2272 } 2273 2274 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); 2275 2276 /* Clear any pending transaction complete indication */ 2277 writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT); 2278 2279 fep->mii_bus = mdiobus_alloc(); 2280 if (fep->mii_bus == NULL) { 2281 err = -ENOMEM; 2282 goto err_out; 2283 } 2284 2285 fep->mii_bus->name = "fec_enet_mii_bus"; 2286 fep->mii_bus->read = fec_enet_mdio_read; 2287 fep->mii_bus->write = fec_enet_mdio_write; 2288 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", 2289 pdev->name, fep->dev_id + 1); 2290 fep->mii_bus->priv = fep; 2291 fep->mii_bus->parent = &pdev->dev; 2292 2293 err = of_mdiobus_register(fep->mii_bus, node); 2294 if (err) 2295 goto err_out_free_mdiobus; 2296 of_node_put(node); 2297 2298 mii_cnt++; 2299 2300 /* save fec0 mii_bus */ 2301 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) 2302 fec0_mii_bus = fep->mii_bus; 2303 2304 return 0; 2305 2306 err_out_free_mdiobus: 2307 mdiobus_free(fep->mii_bus); 2308 err_out: 2309 of_node_put(node); 2310 return err; 2311 } 2312 2313 static void fec_enet_mii_remove(struct fec_enet_private *fep) 2314 { 2315 if (--mii_cnt == 0) { 2316 mdiobus_unregister(fep->mii_bus); 2317 mdiobus_free(fep->mii_bus); 2318 } 2319 } 2320 2321 static void fec_enet_get_drvinfo(struct net_device *ndev, 2322 struct ethtool_drvinfo *info) 2323 { 2324 struct fec_enet_private *fep = netdev_priv(ndev); 2325 2326 strscpy(info->driver, fep->pdev->dev.driver->name, 2327 sizeof(info->driver)); 2328 strscpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); 2329 } 2330 2331 static int fec_enet_get_regs_len(struct net_device *ndev) 2332 { 2333 struct fec_enet_private *fep = netdev_priv(ndev); 2334 struct resource *r; 2335 int s = 0; 2336 2337 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0); 2338 if (r) 2339 s = resource_size(r); 2340 2341 return s; 2342 } 2343 2344 /* List of registers that can be safety be read to dump them with ethtool */ 2345 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 2346 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \ 2347 defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST) 2348 static __u32 fec_enet_register_version = 2; 2349 static u32 fec_enet_register_offset[] = { 2350 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0, 2351 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL, 2352 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1, 2353 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH, 2354 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, 2355 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1, 2356 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2, 2357 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0, 2358 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM, 2359 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2, 2360 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1, 2361 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME, 2362 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT, 2363 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG, 2364 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255, 2365 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047, 2366 RMON_T_P_GTE2048, RMON_T_OCTETS, 2367 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF, 2368 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE, 2369 IEEE_T_FDXFC, IEEE_T_OCTETS_OK, 2370 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN, 2371 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB, 2372 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255, 2373 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047, 2374 RMON_R_P_GTE2048, RMON_R_OCTETS, 2375 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR, 2376 IEEE_R_FDXFC, IEEE_R_OCTETS_OK 2377 }; 2378 #else 2379 static __u32 fec_enet_register_version = 1; 2380 static u32 fec_enet_register_offset[] = { 2381 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0, 2382 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0, 2383 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED, 2384 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL, 2385 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, 2386 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0, 2387 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0, 2388 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0, 2389 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2 2390 }; 2391 #endif 2392 2393 static void fec_enet_get_regs(struct net_device *ndev, 2394 struct ethtool_regs *regs, void *regbuf) 2395 { 2396 struct fec_enet_private *fep = netdev_priv(ndev); 2397 u32 __iomem *theregs = (u32 __iomem *)fep->hwp; 2398 struct device *dev = &fep->pdev->dev; 2399 u32 *buf = (u32 *)regbuf; 2400 u32 i, off; 2401 int ret; 2402 2403 ret = pm_runtime_resume_and_get(dev); 2404 if (ret < 0) 2405 return; 2406 2407 regs->version = fec_enet_register_version; 2408 2409 memset(buf, 0, regs->len); 2410 2411 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) { 2412 off = fec_enet_register_offset[i]; 2413 2414 if ((off == FEC_R_BOUND || off == FEC_R_FSTART) && 2415 !(fep->quirks & FEC_QUIRK_HAS_FRREG)) 2416 continue; 2417 2418 off >>= 2; 2419 buf[off] = readl(&theregs[off]); 2420 } 2421 2422 pm_runtime_mark_last_busy(dev); 2423 pm_runtime_put_autosuspend(dev); 2424 } 2425 2426 static int fec_enet_get_ts_info(struct net_device *ndev, 2427 struct ethtool_ts_info *info) 2428 { 2429 struct fec_enet_private *fep = netdev_priv(ndev); 2430 2431 if (fep->bufdesc_ex) { 2432 2433 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | 2434 SOF_TIMESTAMPING_RX_SOFTWARE | 2435 SOF_TIMESTAMPING_SOFTWARE | 2436 SOF_TIMESTAMPING_TX_HARDWARE | 2437 SOF_TIMESTAMPING_RX_HARDWARE | 2438 SOF_TIMESTAMPING_RAW_HARDWARE; 2439 if (fep->ptp_clock) 2440 info->phc_index = ptp_clock_index(fep->ptp_clock); 2441 else 2442 info->phc_index = -1; 2443 2444 info->tx_types = (1 << HWTSTAMP_TX_OFF) | 2445 (1 << HWTSTAMP_TX_ON); 2446 2447 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | 2448 (1 << HWTSTAMP_FILTER_ALL); 2449 return 0; 2450 } else { 2451 return ethtool_op_get_ts_info(ndev, info); 2452 } 2453 } 2454 2455 #if !defined(CONFIG_M5272) 2456 2457 static void fec_enet_get_pauseparam(struct net_device *ndev, 2458 struct ethtool_pauseparam *pause) 2459 { 2460 struct fec_enet_private *fep = netdev_priv(ndev); 2461 2462 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; 2463 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; 2464 pause->rx_pause = pause->tx_pause; 2465 } 2466 2467 static int fec_enet_set_pauseparam(struct net_device *ndev, 2468 struct ethtool_pauseparam *pause) 2469 { 2470 struct fec_enet_private *fep = netdev_priv(ndev); 2471 2472 if (!ndev->phydev) 2473 return -ENODEV; 2474 2475 if (pause->tx_pause != pause->rx_pause) { 2476 netdev_info(ndev, 2477 "hardware only support enable/disable both tx and rx"); 2478 return -EINVAL; 2479 } 2480 2481 fep->pause_flag = 0; 2482 2483 /* tx pause must be same as rx pause */ 2484 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; 2485 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; 2486 2487 phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause, 2488 pause->autoneg); 2489 2490 if (pause->autoneg) { 2491 if (netif_running(ndev)) 2492 fec_stop(ndev); 2493 phy_start_aneg(ndev->phydev); 2494 } 2495 if (netif_running(ndev)) { 2496 napi_disable(&fep->napi); 2497 netif_tx_lock_bh(ndev); 2498 fec_restart(ndev); 2499 netif_tx_wake_all_queues(ndev); 2500 netif_tx_unlock_bh(ndev); 2501 napi_enable(&fep->napi); 2502 } 2503 2504 return 0; 2505 } 2506 2507 static const struct fec_stat { 2508 char name[ETH_GSTRING_LEN]; 2509 u16 offset; 2510 } fec_stats[] = { 2511 /* RMON TX */ 2512 { "tx_dropped", RMON_T_DROP }, 2513 { "tx_packets", RMON_T_PACKETS }, 2514 { "tx_broadcast", RMON_T_BC_PKT }, 2515 { "tx_multicast", RMON_T_MC_PKT }, 2516 { "tx_crc_errors", RMON_T_CRC_ALIGN }, 2517 { "tx_undersize", RMON_T_UNDERSIZE }, 2518 { "tx_oversize", RMON_T_OVERSIZE }, 2519 { "tx_fragment", RMON_T_FRAG }, 2520 { "tx_jabber", RMON_T_JAB }, 2521 { "tx_collision", RMON_T_COL }, 2522 { "tx_64byte", RMON_T_P64 }, 2523 { "tx_65to127byte", RMON_T_P65TO127 }, 2524 { "tx_128to255byte", RMON_T_P128TO255 }, 2525 { "tx_256to511byte", RMON_T_P256TO511 }, 2526 { "tx_512to1023byte", RMON_T_P512TO1023 }, 2527 { "tx_1024to2047byte", RMON_T_P1024TO2047 }, 2528 { "tx_GTE2048byte", RMON_T_P_GTE2048 }, 2529 { "tx_octets", RMON_T_OCTETS }, 2530 2531 /* IEEE TX */ 2532 { "IEEE_tx_drop", IEEE_T_DROP }, 2533 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, 2534 { "IEEE_tx_1col", IEEE_T_1COL }, 2535 { "IEEE_tx_mcol", IEEE_T_MCOL }, 2536 { "IEEE_tx_def", IEEE_T_DEF }, 2537 { "IEEE_tx_lcol", IEEE_T_LCOL }, 2538 { "IEEE_tx_excol", IEEE_T_EXCOL }, 2539 { "IEEE_tx_macerr", IEEE_T_MACERR }, 2540 { "IEEE_tx_cserr", IEEE_T_CSERR }, 2541 { "IEEE_tx_sqe", IEEE_T_SQE }, 2542 { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, 2543 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, 2544 2545 /* RMON RX */ 2546 { "rx_packets", RMON_R_PACKETS }, 2547 { "rx_broadcast", RMON_R_BC_PKT }, 2548 { "rx_multicast", RMON_R_MC_PKT }, 2549 { "rx_crc_errors", RMON_R_CRC_ALIGN }, 2550 { "rx_undersize", RMON_R_UNDERSIZE }, 2551 { "rx_oversize", RMON_R_OVERSIZE }, 2552 { "rx_fragment", RMON_R_FRAG }, 2553 { "rx_jabber", RMON_R_JAB }, 2554 { "rx_64byte", RMON_R_P64 }, 2555 { "rx_65to127byte", RMON_R_P65TO127 }, 2556 { "rx_128to255byte", RMON_R_P128TO255 }, 2557 { "rx_256to511byte", RMON_R_P256TO511 }, 2558 { "rx_512to1023byte", RMON_R_P512TO1023 }, 2559 { "rx_1024to2047byte", RMON_R_P1024TO2047 }, 2560 { "rx_GTE2048byte", RMON_R_P_GTE2048 }, 2561 { "rx_octets", RMON_R_OCTETS }, 2562 2563 /* IEEE RX */ 2564 { "IEEE_rx_drop", IEEE_R_DROP }, 2565 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, 2566 { "IEEE_rx_crc", IEEE_R_CRC }, 2567 { "IEEE_rx_align", IEEE_R_ALIGN }, 2568 { "IEEE_rx_macerr", IEEE_R_MACERR }, 2569 { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, 2570 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, 2571 }; 2572 2573 #define FEC_STATS_SIZE (ARRAY_SIZE(fec_stats) * sizeof(u64)) 2574 2575 static void fec_enet_update_ethtool_stats(struct net_device *dev) 2576 { 2577 struct fec_enet_private *fep = netdev_priv(dev); 2578 int i; 2579 2580 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2581 fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset); 2582 } 2583 2584 static void fec_enet_get_ethtool_stats(struct net_device *dev, 2585 struct ethtool_stats *stats, u64 *data) 2586 { 2587 struct fec_enet_private *fep = netdev_priv(dev); 2588 2589 if (netif_running(dev)) 2590 fec_enet_update_ethtool_stats(dev); 2591 2592 memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE); 2593 } 2594 2595 static void fec_enet_get_strings(struct net_device *netdev, 2596 u32 stringset, u8 *data) 2597 { 2598 int i; 2599 switch (stringset) { 2600 case ETH_SS_STATS: 2601 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2602 memcpy(data + i * ETH_GSTRING_LEN, 2603 fec_stats[i].name, ETH_GSTRING_LEN); 2604 break; 2605 case ETH_SS_TEST: 2606 net_selftest_get_strings(data); 2607 break; 2608 } 2609 } 2610 2611 static int fec_enet_get_sset_count(struct net_device *dev, int sset) 2612 { 2613 switch (sset) { 2614 case ETH_SS_STATS: 2615 return ARRAY_SIZE(fec_stats); 2616 case ETH_SS_TEST: 2617 return net_selftest_get_count(); 2618 default: 2619 return -EOPNOTSUPP; 2620 } 2621 } 2622 2623 static void fec_enet_clear_ethtool_stats(struct net_device *dev) 2624 { 2625 struct fec_enet_private *fep = netdev_priv(dev); 2626 int i; 2627 2628 /* Disable MIB statistics counters */ 2629 writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT); 2630 2631 for (i = 0; i < ARRAY_SIZE(fec_stats); i++) 2632 writel(0, fep->hwp + fec_stats[i].offset); 2633 2634 /* Don't disable MIB statistics counters */ 2635 writel(0, fep->hwp + FEC_MIB_CTRLSTAT); 2636 } 2637 2638 #else /* !defined(CONFIG_M5272) */ 2639 #define FEC_STATS_SIZE 0 2640 static inline void fec_enet_update_ethtool_stats(struct net_device *dev) 2641 { 2642 } 2643 2644 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev) 2645 { 2646 } 2647 #endif /* !defined(CONFIG_M5272) */ 2648 2649 /* ITR clock source is enet system clock (clk_ahb). 2650 * TCTT unit is cycle_ns * 64 cycle 2651 * So, the ICTT value = X us / (cycle_ns * 64) 2652 */ 2653 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) 2654 { 2655 struct fec_enet_private *fep = netdev_priv(ndev); 2656 2657 return us * (fep->itr_clk_rate / 64000) / 1000; 2658 } 2659 2660 /* Set threshold for interrupt coalescing */ 2661 static void fec_enet_itr_coal_set(struct net_device *ndev) 2662 { 2663 struct fec_enet_private *fep = netdev_priv(ndev); 2664 int rx_itr, tx_itr; 2665 2666 /* Must be greater than zero to avoid unpredictable behavior */ 2667 if (!fep->rx_time_itr || !fep->rx_pkts_itr || 2668 !fep->tx_time_itr || !fep->tx_pkts_itr) 2669 return; 2670 2671 /* Select enet system clock as Interrupt Coalescing 2672 * timer Clock Source 2673 */ 2674 rx_itr = FEC_ITR_CLK_SEL; 2675 tx_itr = FEC_ITR_CLK_SEL; 2676 2677 /* set ICFT and ICTT */ 2678 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); 2679 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); 2680 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); 2681 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); 2682 2683 rx_itr |= FEC_ITR_EN; 2684 tx_itr |= FEC_ITR_EN; 2685 2686 writel(tx_itr, fep->hwp + FEC_TXIC0); 2687 writel(rx_itr, fep->hwp + FEC_RXIC0); 2688 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 2689 writel(tx_itr, fep->hwp + FEC_TXIC1); 2690 writel(rx_itr, fep->hwp + FEC_RXIC1); 2691 writel(tx_itr, fep->hwp + FEC_TXIC2); 2692 writel(rx_itr, fep->hwp + FEC_RXIC2); 2693 } 2694 } 2695 2696 static int fec_enet_get_coalesce(struct net_device *ndev, 2697 struct ethtool_coalesce *ec, 2698 struct kernel_ethtool_coalesce *kernel_coal, 2699 struct netlink_ext_ack *extack) 2700 { 2701 struct fec_enet_private *fep = netdev_priv(ndev); 2702 2703 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2704 return -EOPNOTSUPP; 2705 2706 ec->rx_coalesce_usecs = fep->rx_time_itr; 2707 ec->rx_max_coalesced_frames = fep->rx_pkts_itr; 2708 2709 ec->tx_coalesce_usecs = fep->tx_time_itr; 2710 ec->tx_max_coalesced_frames = fep->tx_pkts_itr; 2711 2712 return 0; 2713 } 2714 2715 static int fec_enet_set_coalesce(struct net_device *ndev, 2716 struct ethtool_coalesce *ec, 2717 struct kernel_ethtool_coalesce *kernel_coal, 2718 struct netlink_ext_ack *extack) 2719 { 2720 struct fec_enet_private *fep = netdev_priv(ndev); 2721 struct device *dev = &fep->pdev->dev; 2722 unsigned int cycle; 2723 2724 if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE)) 2725 return -EOPNOTSUPP; 2726 2727 if (ec->rx_max_coalesced_frames > 255) { 2728 dev_err(dev, "Rx coalesced frames exceed hardware limitation\n"); 2729 return -EINVAL; 2730 } 2731 2732 if (ec->tx_max_coalesced_frames > 255) { 2733 dev_err(dev, "Tx coalesced frame exceed hardware limitation\n"); 2734 return -EINVAL; 2735 } 2736 2737 cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs); 2738 if (cycle > 0xFFFF) { 2739 dev_err(dev, "Rx coalesced usec exceed hardware limitation\n"); 2740 return -EINVAL; 2741 } 2742 2743 cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs); 2744 if (cycle > 0xFFFF) { 2745 dev_err(dev, "Tx coalesced usec exceed hardware limitation\n"); 2746 return -EINVAL; 2747 } 2748 2749 fep->rx_time_itr = ec->rx_coalesce_usecs; 2750 fep->rx_pkts_itr = ec->rx_max_coalesced_frames; 2751 2752 fep->tx_time_itr = ec->tx_coalesce_usecs; 2753 fep->tx_pkts_itr = ec->tx_max_coalesced_frames; 2754 2755 fec_enet_itr_coal_set(ndev); 2756 2757 return 0; 2758 } 2759 2760 static void fec_enet_itr_coal_init(struct net_device *ndev) 2761 { 2762 struct ethtool_coalesce ec; 2763 2764 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2765 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2766 2767 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; 2768 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; 2769 2770 fec_enet_set_coalesce(ndev, &ec, NULL, NULL); 2771 } 2772 2773 static int fec_enet_get_tunable(struct net_device *netdev, 2774 const struct ethtool_tunable *tuna, 2775 void *data) 2776 { 2777 struct fec_enet_private *fep = netdev_priv(netdev); 2778 int ret = 0; 2779 2780 switch (tuna->id) { 2781 case ETHTOOL_RX_COPYBREAK: 2782 *(u32 *)data = fep->rx_copybreak; 2783 break; 2784 default: 2785 ret = -EINVAL; 2786 break; 2787 } 2788 2789 return ret; 2790 } 2791 2792 static int fec_enet_set_tunable(struct net_device *netdev, 2793 const struct ethtool_tunable *tuna, 2794 const void *data) 2795 { 2796 struct fec_enet_private *fep = netdev_priv(netdev); 2797 int ret = 0; 2798 2799 switch (tuna->id) { 2800 case ETHTOOL_RX_COPYBREAK: 2801 fep->rx_copybreak = *(u32 *)data; 2802 break; 2803 default: 2804 ret = -EINVAL; 2805 break; 2806 } 2807 2808 return ret; 2809 } 2810 2811 /* LPI Sleep Ts count base on tx clk (clk_ref). 2812 * The lpi sleep cnt value = X us / (cycle_ns). 2813 */ 2814 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us) 2815 { 2816 struct fec_enet_private *fep = netdev_priv(ndev); 2817 2818 return us * (fep->clk_ref_rate / 1000) / 1000; 2819 } 2820 2821 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable) 2822 { 2823 struct fec_enet_private *fep = netdev_priv(ndev); 2824 struct ethtool_eee *p = &fep->eee; 2825 unsigned int sleep_cycle, wake_cycle; 2826 int ret = 0; 2827 2828 if (enable) { 2829 ret = phy_init_eee(ndev->phydev, false); 2830 if (ret) 2831 return ret; 2832 2833 sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer); 2834 wake_cycle = sleep_cycle; 2835 } else { 2836 sleep_cycle = 0; 2837 wake_cycle = 0; 2838 } 2839 2840 p->tx_lpi_enabled = enable; 2841 p->eee_enabled = enable; 2842 p->eee_active = enable; 2843 2844 writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP); 2845 writel(wake_cycle, fep->hwp + FEC_LPI_WAKE); 2846 2847 return 0; 2848 } 2849 2850 static int 2851 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata) 2852 { 2853 struct fec_enet_private *fep = netdev_priv(ndev); 2854 struct ethtool_eee *p = &fep->eee; 2855 2856 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 2857 return -EOPNOTSUPP; 2858 2859 if (!netif_running(ndev)) 2860 return -ENETDOWN; 2861 2862 edata->eee_enabled = p->eee_enabled; 2863 edata->eee_active = p->eee_active; 2864 edata->tx_lpi_timer = p->tx_lpi_timer; 2865 edata->tx_lpi_enabled = p->tx_lpi_enabled; 2866 2867 return phy_ethtool_get_eee(ndev->phydev, edata); 2868 } 2869 2870 static int 2871 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata) 2872 { 2873 struct fec_enet_private *fep = netdev_priv(ndev); 2874 struct ethtool_eee *p = &fep->eee; 2875 int ret = 0; 2876 2877 if (!(fep->quirks & FEC_QUIRK_HAS_EEE)) 2878 return -EOPNOTSUPP; 2879 2880 if (!netif_running(ndev)) 2881 return -ENETDOWN; 2882 2883 p->tx_lpi_timer = edata->tx_lpi_timer; 2884 2885 if (!edata->eee_enabled || !edata->tx_lpi_enabled || 2886 !edata->tx_lpi_timer) 2887 ret = fec_enet_eee_mode_set(ndev, false); 2888 else 2889 ret = fec_enet_eee_mode_set(ndev, true); 2890 2891 if (ret) 2892 return ret; 2893 2894 return phy_ethtool_set_eee(ndev->phydev, edata); 2895 } 2896 2897 static void 2898 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2899 { 2900 struct fec_enet_private *fep = netdev_priv(ndev); 2901 2902 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { 2903 wol->supported = WAKE_MAGIC; 2904 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; 2905 } else { 2906 wol->supported = wol->wolopts = 0; 2907 } 2908 } 2909 2910 static int 2911 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) 2912 { 2913 struct fec_enet_private *fep = netdev_priv(ndev); 2914 2915 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) 2916 return -EINVAL; 2917 2918 if (wol->wolopts & ~WAKE_MAGIC) 2919 return -EINVAL; 2920 2921 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); 2922 if (device_may_wakeup(&ndev->dev)) 2923 fep->wol_flag |= FEC_WOL_FLAG_ENABLE; 2924 else 2925 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); 2926 2927 return 0; 2928 } 2929 2930 static const struct ethtool_ops fec_enet_ethtool_ops = { 2931 .supported_coalesce_params = ETHTOOL_COALESCE_USECS | 2932 ETHTOOL_COALESCE_MAX_FRAMES, 2933 .get_drvinfo = fec_enet_get_drvinfo, 2934 .get_regs_len = fec_enet_get_regs_len, 2935 .get_regs = fec_enet_get_regs, 2936 .nway_reset = phy_ethtool_nway_reset, 2937 .get_link = ethtool_op_get_link, 2938 .get_coalesce = fec_enet_get_coalesce, 2939 .set_coalesce = fec_enet_set_coalesce, 2940 #ifndef CONFIG_M5272 2941 .get_pauseparam = fec_enet_get_pauseparam, 2942 .set_pauseparam = fec_enet_set_pauseparam, 2943 .get_strings = fec_enet_get_strings, 2944 .get_ethtool_stats = fec_enet_get_ethtool_stats, 2945 .get_sset_count = fec_enet_get_sset_count, 2946 #endif 2947 .get_ts_info = fec_enet_get_ts_info, 2948 .get_tunable = fec_enet_get_tunable, 2949 .set_tunable = fec_enet_set_tunable, 2950 .get_wol = fec_enet_get_wol, 2951 .set_wol = fec_enet_set_wol, 2952 .get_eee = fec_enet_get_eee, 2953 .set_eee = fec_enet_set_eee, 2954 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2955 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2956 .self_test = net_selftest, 2957 }; 2958 2959 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2960 { 2961 struct fec_enet_private *fep = netdev_priv(ndev); 2962 struct phy_device *phydev = ndev->phydev; 2963 2964 if (!netif_running(ndev)) 2965 return -EINVAL; 2966 2967 if (!phydev) 2968 return -ENODEV; 2969 2970 if (fep->bufdesc_ex) { 2971 bool use_fec_hwts = !phy_has_hwtstamp(phydev); 2972 2973 if (cmd == SIOCSHWTSTAMP) { 2974 if (use_fec_hwts) 2975 return fec_ptp_set(ndev, rq); 2976 fec_ptp_disable_hwts(ndev); 2977 } else if (cmd == SIOCGHWTSTAMP) { 2978 if (use_fec_hwts) 2979 return fec_ptp_get(ndev, rq); 2980 } 2981 } 2982 2983 return phy_mii_ioctl(phydev, rq, cmd); 2984 } 2985 2986 static void fec_enet_free_buffers(struct net_device *ndev) 2987 { 2988 struct fec_enet_private *fep = netdev_priv(ndev); 2989 unsigned int i; 2990 struct sk_buff *skb; 2991 struct fec_enet_priv_tx_q *txq; 2992 struct fec_enet_priv_rx_q *rxq; 2993 unsigned int q; 2994 2995 for (q = 0; q < fep->num_rx_queues; q++) { 2996 rxq = fep->rx_queue[q]; 2997 for (i = 0; i < rxq->bd.ring_size; i++) 2998 page_pool_release_page(rxq->page_pool, rxq->rx_skb_info[i].page); 2999 3000 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 3001 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3002 page_pool_destroy(rxq->page_pool); 3003 rxq->page_pool = NULL; 3004 } 3005 3006 for (q = 0; q < fep->num_tx_queues; q++) { 3007 txq = fep->tx_queue[q]; 3008 for (i = 0; i < txq->bd.ring_size; i++) { 3009 kfree(txq->tx_bounce[i]); 3010 txq->tx_bounce[i] = NULL; 3011 skb = txq->tx_skbuff[i]; 3012 txq->tx_skbuff[i] = NULL; 3013 dev_kfree_skb(skb); 3014 } 3015 } 3016 } 3017 3018 static void fec_enet_free_queue(struct net_device *ndev) 3019 { 3020 struct fec_enet_private *fep = netdev_priv(ndev); 3021 int i; 3022 struct fec_enet_priv_tx_q *txq; 3023 3024 for (i = 0; i < fep->num_tx_queues; i++) 3025 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { 3026 txq = fep->tx_queue[i]; 3027 dma_free_coherent(&fep->pdev->dev, 3028 txq->bd.ring_size * TSO_HEADER_SIZE, 3029 txq->tso_hdrs, 3030 txq->tso_hdrs_dma); 3031 } 3032 3033 for (i = 0; i < fep->num_rx_queues; i++) 3034 kfree(fep->rx_queue[i]); 3035 for (i = 0; i < fep->num_tx_queues; i++) 3036 kfree(fep->tx_queue[i]); 3037 } 3038 3039 static int fec_enet_alloc_queue(struct net_device *ndev) 3040 { 3041 struct fec_enet_private *fep = netdev_priv(ndev); 3042 int i; 3043 int ret = 0; 3044 struct fec_enet_priv_tx_q *txq; 3045 3046 for (i = 0; i < fep->num_tx_queues; i++) { 3047 txq = kzalloc(sizeof(*txq), GFP_KERNEL); 3048 if (!txq) { 3049 ret = -ENOMEM; 3050 goto alloc_failed; 3051 } 3052 3053 fep->tx_queue[i] = txq; 3054 txq->bd.ring_size = TX_RING_SIZE; 3055 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size; 3056 3057 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; 3058 txq->tx_wake_threshold = 3059 (txq->bd.ring_size - txq->tx_stop_threshold) / 2; 3060 3061 txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev, 3062 txq->bd.ring_size * TSO_HEADER_SIZE, 3063 &txq->tso_hdrs_dma, 3064 GFP_KERNEL); 3065 if (!txq->tso_hdrs) { 3066 ret = -ENOMEM; 3067 goto alloc_failed; 3068 } 3069 } 3070 3071 for (i = 0; i < fep->num_rx_queues; i++) { 3072 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), 3073 GFP_KERNEL); 3074 if (!fep->rx_queue[i]) { 3075 ret = -ENOMEM; 3076 goto alloc_failed; 3077 } 3078 3079 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE; 3080 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size; 3081 } 3082 return ret; 3083 3084 alloc_failed: 3085 fec_enet_free_queue(ndev); 3086 return ret; 3087 } 3088 3089 static int 3090 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) 3091 { 3092 struct fec_enet_private *fep = netdev_priv(ndev); 3093 struct fec_enet_priv_rx_q *rxq; 3094 dma_addr_t phys_addr; 3095 struct bufdesc *bdp; 3096 struct page *page; 3097 int i, err; 3098 3099 rxq = fep->rx_queue[queue]; 3100 bdp = rxq->bd.base; 3101 3102 err = fec_enet_create_page_pool(fep, rxq, rxq->bd.ring_size); 3103 if (err < 0) { 3104 netdev_err(ndev, "%s failed queue %d (%d)\n", __func__, queue, err); 3105 return err; 3106 } 3107 3108 for (i = 0; i < rxq->bd.ring_size; i++) { 3109 page = page_pool_dev_alloc_pages(rxq->page_pool); 3110 if (!page) 3111 goto err_alloc; 3112 3113 phys_addr = page_pool_get_dma_addr(page) + FEC_ENET_XDP_HEADROOM; 3114 bdp->cbd_bufaddr = cpu_to_fec32(phys_addr); 3115 3116 rxq->rx_skb_info[i].page = page; 3117 rxq->rx_skb_info[i].offset = FEC_ENET_XDP_HEADROOM; 3118 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY); 3119 3120 if (fep->bufdesc_ex) { 3121 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3122 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT); 3123 } 3124 3125 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd); 3126 } 3127 3128 /* Set the last buffer to wrap. */ 3129 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd); 3130 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3131 return 0; 3132 3133 err_alloc: 3134 fec_enet_free_buffers(ndev); 3135 return -ENOMEM; 3136 } 3137 3138 static int 3139 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) 3140 { 3141 struct fec_enet_private *fep = netdev_priv(ndev); 3142 unsigned int i; 3143 struct bufdesc *bdp; 3144 struct fec_enet_priv_tx_q *txq; 3145 3146 txq = fep->tx_queue[queue]; 3147 bdp = txq->bd.base; 3148 for (i = 0; i < txq->bd.ring_size; i++) { 3149 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); 3150 if (!txq->tx_bounce[i]) 3151 goto err_alloc; 3152 3153 bdp->cbd_sc = cpu_to_fec16(0); 3154 bdp->cbd_bufaddr = cpu_to_fec32(0); 3155 3156 if (fep->bufdesc_ex) { 3157 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; 3158 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT); 3159 } 3160 3161 bdp = fec_enet_get_nextdesc(bdp, &txq->bd); 3162 } 3163 3164 /* Set the last buffer to wrap. */ 3165 bdp = fec_enet_get_prevdesc(bdp, &txq->bd); 3166 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP); 3167 3168 return 0; 3169 3170 err_alloc: 3171 fec_enet_free_buffers(ndev); 3172 return -ENOMEM; 3173 } 3174 3175 static int fec_enet_alloc_buffers(struct net_device *ndev) 3176 { 3177 struct fec_enet_private *fep = netdev_priv(ndev); 3178 unsigned int i; 3179 3180 for (i = 0; i < fep->num_rx_queues; i++) 3181 if (fec_enet_alloc_rxq_buffers(ndev, i)) 3182 return -ENOMEM; 3183 3184 for (i = 0; i < fep->num_tx_queues; i++) 3185 if (fec_enet_alloc_txq_buffers(ndev, i)) 3186 return -ENOMEM; 3187 return 0; 3188 } 3189 3190 static int 3191 fec_enet_open(struct net_device *ndev) 3192 { 3193 struct fec_enet_private *fep = netdev_priv(ndev); 3194 int ret; 3195 bool reset_again; 3196 3197 ret = pm_runtime_resume_and_get(&fep->pdev->dev); 3198 if (ret < 0) 3199 return ret; 3200 3201 pinctrl_pm_select_default_state(&fep->pdev->dev); 3202 ret = fec_enet_clk_enable(ndev, true); 3203 if (ret) 3204 goto clk_enable; 3205 3206 /* During the first fec_enet_open call the PHY isn't probed at this 3207 * point. Therefore the phy_reset_after_clk_enable() call within 3208 * fec_enet_clk_enable() fails. As we need this reset in order to be 3209 * sure the PHY is working correctly we check if we need to reset again 3210 * later when the PHY is probed 3211 */ 3212 if (ndev->phydev && ndev->phydev->drv) 3213 reset_again = false; 3214 else 3215 reset_again = true; 3216 3217 /* I should reset the ring buffers here, but I don't yet know 3218 * a simple way to do that. 3219 */ 3220 3221 ret = fec_enet_alloc_buffers(ndev); 3222 if (ret) 3223 goto err_enet_alloc; 3224 3225 /* Init MAC prior to mii bus probe */ 3226 fec_restart(ndev); 3227 3228 /* Call phy_reset_after_clk_enable() again if it failed during 3229 * phy_reset_after_clk_enable() before because the PHY wasn't probed. 3230 */ 3231 if (reset_again) 3232 fec_enet_phy_reset_after_clk_enable(ndev); 3233 3234 /* Probe and connect to PHY when open the interface */ 3235 ret = fec_enet_mii_probe(ndev); 3236 if (ret) 3237 goto err_enet_mii_probe; 3238 3239 if (fep->quirks & FEC_QUIRK_ERR006687) 3240 imx6q_cpuidle_fec_irqs_used(); 3241 3242 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3243 cpu_latency_qos_add_request(&fep->pm_qos_req, 0); 3244 3245 napi_enable(&fep->napi); 3246 phy_start(ndev->phydev); 3247 netif_tx_start_all_queues(ndev); 3248 3249 device_set_wakeup_enable(&ndev->dev, fep->wol_flag & 3250 FEC_WOL_FLAG_ENABLE); 3251 3252 return 0; 3253 3254 err_enet_mii_probe: 3255 fec_enet_free_buffers(ndev); 3256 err_enet_alloc: 3257 fec_enet_clk_enable(ndev, false); 3258 clk_enable: 3259 pm_runtime_mark_last_busy(&fep->pdev->dev); 3260 pm_runtime_put_autosuspend(&fep->pdev->dev); 3261 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3262 return ret; 3263 } 3264 3265 static int 3266 fec_enet_close(struct net_device *ndev) 3267 { 3268 struct fec_enet_private *fep = netdev_priv(ndev); 3269 3270 phy_stop(ndev->phydev); 3271 3272 if (netif_device_present(ndev)) { 3273 napi_disable(&fep->napi); 3274 netif_tx_disable(ndev); 3275 fec_stop(ndev); 3276 } 3277 3278 phy_disconnect(ndev->phydev); 3279 3280 if (fep->quirks & FEC_QUIRK_ERR006687) 3281 imx6q_cpuidle_fec_irqs_unused(); 3282 3283 fec_enet_update_ethtool_stats(ndev); 3284 3285 fec_enet_clk_enable(ndev, false); 3286 if (fep->quirks & FEC_QUIRK_HAS_PMQOS) 3287 cpu_latency_qos_remove_request(&fep->pm_qos_req); 3288 3289 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 3290 pm_runtime_mark_last_busy(&fep->pdev->dev); 3291 pm_runtime_put_autosuspend(&fep->pdev->dev); 3292 3293 fec_enet_free_buffers(ndev); 3294 3295 return 0; 3296 } 3297 3298 /* Set or clear the multicast filter for this adaptor. 3299 * Skeleton taken from sunlance driver. 3300 * The CPM Ethernet implementation allows Multicast as well as individual 3301 * MAC address filtering. Some of the drivers check to make sure it is 3302 * a group multicast address, and discard those that are not. I guess I 3303 * will do the same for now, but just remove the test if you want 3304 * individual filtering as well (do the upper net layers want or support 3305 * this kind of feature?). 3306 */ 3307 3308 #define FEC_HASH_BITS 6 /* #bits in hash */ 3309 3310 static void set_multicast_list(struct net_device *ndev) 3311 { 3312 struct fec_enet_private *fep = netdev_priv(ndev); 3313 struct netdev_hw_addr *ha; 3314 unsigned int crc, tmp; 3315 unsigned char hash; 3316 unsigned int hash_high = 0, hash_low = 0; 3317 3318 if (ndev->flags & IFF_PROMISC) { 3319 tmp = readl(fep->hwp + FEC_R_CNTRL); 3320 tmp |= 0x8; 3321 writel(tmp, fep->hwp + FEC_R_CNTRL); 3322 return; 3323 } 3324 3325 tmp = readl(fep->hwp + FEC_R_CNTRL); 3326 tmp &= ~0x8; 3327 writel(tmp, fep->hwp + FEC_R_CNTRL); 3328 3329 if (ndev->flags & IFF_ALLMULTI) { 3330 /* Catch all multicast addresses, so set the 3331 * filter to all 1's 3332 */ 3333 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3334 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3335 3336 return; 3337 } 3338 3339 /* Add the addresses in hash register */ 3340 netdev_for_each_mc_addr(ha, ndev) { 3341 /* calculate crc32 value of mac address */ 3342 crc = ether_crc_le(ndev->addr_len, ha->addr); 3343 3344 /* only upper 6 bits (FEC_HASH_BITS) are used 3345 * which point to specific bit in the hash registers 3346 */ 3347 hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f; 3348 3349 if (hash > 31) 3350 hash_high |= 1 << (hash - 32); 3351 else 3352 hash_low |= 1 << hash; 3353 } 3354 3355 writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); 3356 writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW); 3357 } 3358 3359 /* Set a MAC change in hardware. */ 3360 static int 3361 fec_set_mac_address(struct net_device *ndev, void *p) 3362 { 3363 struct fec_enet_private *fep = netdev_priv(ndev); 3364 struct sockaddr *addr = p; 3365 3366 if (addr) { 3367 if (!is_valid_ether_addr(addr->sa_data)) 3368 return -EADDRNOTAVAIL; 3369 eth_hw_addr_set(ndev, addr->sa_data); 3370 } 3371 3372 /* Add netif status check here to avoid system hang in below case: 3373 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx; 3374 * After ethx down, fec all clocks are gated off and then register 3375 * access causes system hang. 3376 */ 3377 if (!netif_running(ndev)) 3378 return 0; 3379 3380 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | 3381 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), 3382 fep->hwp + FEC_ADDR_LOW); 3383 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), 3384 fep->hwp + FEC_ADDR_HIGH); 3385 return 0; 3386 } 3387 3388 #ifdef CONFIG_NET_POLL_CONTROLLER 3389 /** 3390 * fec_poll_controller - FEC Poll controller function 3391 * @dev: The FEC network adapter 3392 * 3393 * Polled functionality used by netconsole and others in non interrupt mode 3394 * 3395 */ 3396 static void fec_poll_controller(struct net_device *dev) 3397 { 3398 int i; 3399 struct fec_enet_private *fep = netdev_priv(dev); 3400 3401 for (i = 0; i < FEC_IRQ_NUM; i++) { 3402 if (fep->irq[i] > 0) { 3403 disable_irq(fep->irq[i]); 3404 fec_enet_interrupt(fep->irq[i], dev); 3405 enable_irq(fep->irq[i]); 3406 } 3407 } 3408 } 3409 #endif 3410 3411 static inline void fec_enet_set_netdev_features(struct net_device *netdev, 3412 netdev_features_t features) 3413 { 3414 struct fec_enet_private *fep = netdev_priv(netdev); 3415 netdev_features_t changed = features ^ netdev->features; 3416 3417 netdev->features = features; 3418 3419 /* Receive checksum has been changed */ 3420 if (changed & NETIF_F_RXCSUM) { 3421 if (features & NETIF_F_RXCSUM) 3422 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3423 else 3424 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; 3425 } 3426 } 3427 3428 static int fec_set_features(struct net_device *netdev, 3429 netdev_features_t features) 3430 { 3431 struct fec_enet_private *fep = netdev_priv(netdev); 3432 netdev_features_t changed = features ^ netdev->features; 3433 3434 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) { 3435 napi_disable(&fep->napi); 3436 netif_tx_lock_bh(netdev); 3437 fec_stop(netdev); 3438 fec_enet_set_netdev_features(netdev, features); 3439 fec_restart(netdev); 3440 netif_tx_wake_all_queues(netdev); 3441 netif_tx_unlock_bh(netdev); 3442 napi_enable(&fep->napi); 3443 } else { 3444 fec_enet_set_netdev_features(netdev, features); 3445 } 3446 3447 return 0; 3448 } 3449 3450 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb) 3451 { 3452 struct vlan_ethhdr *vhdr; 3453 unsigned short vlan_TCI = 0; 3454 3455 if (skb->protocol == htons(ETH_P_ALL)) { 3456 vhdr = (struct vlan_ethhdr *)(skb->data); 3457 vlan_TCI = ntohs(vhdr->h_vlan_TCI); 3458 } 3459 3460 return vlan_TCI; 3461 } 3462 3463 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb, 3464 struct net_device *sb_dev) 3465 { 3466 struct fec_enet_private *fep = netdev_priv(ndev); 3467 u16 vlan_tag; 3468 3469 if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) 3470 return netdev_pick_tx(ndev, skb, NULL); 3471 3472 vlan_tag = fec_enet_get_raw_vlan_tci(skb); 3473 if (!vlan_tag) 3474 return vlan_tag; 3475 3476 return fec_enet_vlan_pri_to_queue[vlan_tag >> 13]; 3477 } 3478 3479 static const struct net_device_ops fec_netdev_ops = { 3480 .ndo_open = fec_enet_open, 3481 .ndo_stop = fec_enet_close, 3482 .ndo_start_xmit = fec_enet_start_xmit, 3483 .ndo_select_queue = fec_enet_select_queue, 3484 .ndo_set_rx_mode = set_multicast_list, 3485 .ndo_validate_addr = eth_validate_addr, 3486 .ndo_tx_timeout = fec_timeout, 3487 .ndo_set_mac_address = fec_set_mac_address, 3488 .ndo_eth_ioctl = fec_enet_ioctl, 3489 #ifdef CONFIG_NET_POLL_CONTROLLER 3490 .ndo_poll_controller = fec_poll_controller, 3491 #endif 3492 .ndo_set_features = fec_set_features, 3493 }; 3494 3495 static const unsigned short offset_des_active_rxq[] = { 3496 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2 3497 }; 3498 3499 static const unsigned short offset_des_active_txq[] = { 3500 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2 3501 }; 3502 3503 /* 3504 * XXX: We need to clean up on failure exits here. 3505 * 3506 */ 3507 static int fec_enet_init(struct net_device *ndev) 3508 { 3509 struct fec_enet_private *fep = netdev_priv(ndev); 3510 struct bufdesc *cbd_base; 3511 dma_addr_t bd_dma; 3512 int bd_size; 3513 unsigned int i; 3514 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) : 3515 sizeof(struct bufdesc); 3516 unsigned dsize_log2 = __fls(dsize); 3517 int ret; 3518 3519 WARN_ON(dsize != (1 << dsize_log2)); 3520 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64) 3521 fep->rx_align = 0xf; 3522 fep->tx_align = 0xf; 3523 #else 3524 fep->rx_align = 0x3; 3525 fep->tx_align = 0x3; 3526 #endif 3527 3528 /* Check mask of the streaming and coherent API */ 3529 ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32)); 3530 if (ret < 0) { 3531 dev_warn(&fep->pdev->dev, "No suitable DMA available\n"); 3532 return ret; 3533 } 3534 3535 ret = fec_enet_alloc_queue(ndev); 3536 if (ret) 3537 return ret; 3538 3539 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize; 3540 3541 /* Allocate memory for buffer descriptors. */ 3542 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma, 3543 GFP_KERNEL); 3544 if (!cbd_base) { 3545 ret = -ENOMEM; 3546 goto free_queue_mem; 3547 } 3548 3549 /* Get the Ethernet address */ 3550 ret = fec_get_mac(ndev); 3551 if (ret) 3552 goto free_queue_mem; 3553 3554 /* make sure MAC we just acquired is programmed into the hw */ 3555 fec_set_mac_address(ndev, NULL); 3556 3557 /* Set receive and transmit descriptor base. */ 3558 for (i = 0; i < fep->num_rx_queues; i++) { 3559 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i]; 3560 unsigned size = dsize * rxq->bd.ring_size; 3561 3562 rxq->bd.qid = i; 3563 rxq->bd.base = cbd_base; 3564 rxq->bd.cur = cbd_base; 3565 rxq->bd.dma = bd_dma; 3566 rxq->bd.dsize = dsize; 3567 rxq->bd.dsize_log2 = dsize_log2; 3568 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i]; 3569 bd_dma += size; 3570 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3571 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3572 } 3573 3574 for (i = 0; i < fep->num_tx_queues; i++) { 3575 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i]; 3576 unsigned size = dsize * txq->bd.ring_size; 3577 3578 txq->bd.qid = i; 3579 txq->bd.base = cbd_base; 3580 txq->bd.cur = cbd_base; 3581 txq->bd.dma = bd_dma; 3582 txq->bd.dsize = dsize; 3583 txq->bd.dsize_log2 = dsize_log2; 3584 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i]; 3585 bd_dma += size; 3586 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size); 3587 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize); 3588 } 3589 3590 3591 /* The FEC Ethernet specific entries in the device structure */ 3592 ndev->watchdog_timeo = TX_TIMEOUT; 3593 ndev->netdev_ops = &fec_netdev_ops; 3594 ndev->ethtool_ops = &fec_enet_ethtool_ops; 3595 3596 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); 3597 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi); 3598 3599 if (fep->quirks & FEC_QUIRK_HAS_VLAN) 3600 /* enable hw VLAN support */ 3601 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3602 3603 if (fep->quirks & FEC_QUIRK_HAS_CSUM) { 3604 netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS); 3605 3606 /* enable hw accelerator */ 3607 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM 3608 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); 3609 fep->csum_flags |= FLAG_RX_CSUM_ENABLED; 3610 } 3611 3612 if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) { 3613 fep->tx_align = 0; 3614 fep->rx_align = 0x3f; 3615 } 3616 3617 ndev->hw_features = ndev->features; 3618 3619 fec_restart(ndev); 3620 3621 if (fep->quirks & FEC_QUIRK_MIB_CLEAR) 3622 fec_enet_clear_ethtool_stats(ndev); 3623 else 3624 fec_enet_update_ethtool_stats(ndev); 3625 3626 return 0; 3627 3628 free_queue_mem: 3629 fec_enet_free_queue(ndev); 3630 return ret; 3631 } 3632 3633 #ifdef CONFIG_OF 3634 static int fec_reset_phy(struct platform_device *pdev) 3635 { 3636 int err, phy_reset; 3637 bool active_high = false; 3638 int msec = 1, phy_post_delay = 0; 3639 struct device_node *np = pdev->dev.of_node; 3640 3641 if (!np) 3642 return 0; 3643 3644 err = of_property_read_u32(np, "phy-reset-duration", &msec); 3645 /* A sane reset duration should not be longer than 1s */ 3646 if (!err && msec > 1000) 3647 msec = 1; 3648 3649 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); 3650 if (phy_reset == -EPROBE_DEFER) 3651 return phy_reset; 3652 else if (!gpio_is_valid(phy_reset)) 3653 return 0; 3654 3655 err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay); 3656 /* valid reset duration should be less than 1s */ 3657 if (!err && phy_post_delay > 1000) 3658 return -EINVAL; 3659 3660 active_high = of_property_read_bool(np, "phy-reset-active-high"); 3661 3662 err = devm_gpio_request_one(&pdev->dev, phy_reset, 3663 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW, 3664 "phy-reset"); 3665 if (err) { 3666 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); 3667 return err; 3668 } 3669 3670 if (msec > 20) 3671 msleep(msec); 3672 else 3673 usleep_range(msec * 1000, msec * 1000 + 1000); 3674 3675 gpio_set_value_cansleep(phy_reset, !active_high); 3676 3677 if (!phy_post_delay) 3678 return 0; 3679 3680 if (phy_post_delay > 20) 3681 msleep(phy_post_delay); 3682 else 3683 usleep_range(phy_post_delay * 1000, 3684 phy_post_delay * 1000 + 1000); 3685 3686 return 0; 3687 } 3688 #else /* CONFIG_OF */ 3689 static int fec_reset_phy(struct platform_device *pdev) 3690 { 3691 /* 3692 * In case of platform probe, the reset has been done 3693 * by machine code. 3694 */ 3695 return 0; 3696 } 3697 #endif /* CONFIG_OF */ 3698 3699 static void 3700 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) 3701 { 3702 struct device_node *np = pdev->dev.of_node; 3703 3704 *num_tx = *num_rx = 1; 3705 3706 if (!np || !of_device_is_available(np)) 3707 return; 3708 3709 /* parse the num of tx and rx queues */ 3710 of_property_read_u32(np, "fsl,num-tx-queues", num_tx); 3711 3712 of_property_read_u32(np, "fsl,num-rx-queues", num_rx); 3713 3714 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { 3715 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", 3716 *num_tx); 3717 *num_tx = 1; 3718 return; 3719 } 3720 3721 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { 3722 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", 3723 *num_rx); 3724 *num_rx = 1; 3725 return; 3726 } 3727 3728 } 3729 3730 static int fec_enet_get_irq_cnt(struct platform_device *pdev) 3731 { 3732 int irq_cnt = platform_irq_count(pdev); 3733 3734 if (irq_cnt > FEC_IRQ_NUM) 3735 irq_cnt = FEC_IRQ_NUM; /* last for pps */ 3736 else if (irq_cnt == 2) 3737 irq_cnt = 1; /* last for pps */ 3738 else if (irq_cnt <= 0) 3739 irq_cnt = 1; /* At least 1 irq is needed */ 3740 return irq_cnt; 3741 } 3742 3743 static void fec_enet_get_wakeup_irq(struct platform_device *pdev) 3744 { 3745 struct net_device *ndev = platform_get_drvdata(pdev); 3746 struct fec_enet_private *fep = netdev_priv(ndev); 3747 3748 if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2) 3749 fep->wake_irq = fep->irq[2]; 3750 else 3751 fep->wake_irq = fep->irq[0]; 3752 } 3753 3754 static int fec_enet_init_stop_mode(struct fec_enet_private *fep, 3755 struct device_node *np) 3756 { 3757 struct device_node *gpr_np; 3758 u32 out_val[3]; 3759 int ret = 0; 3760 3761 gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0); 3762 if (!gpr_np) 3763 return 0; 3764 3765 ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val, 3766 ARRAY_SIZE(out_val)); 3767 if (ret) { 3768 dev_dbg(&fep->pdev->dev, "no stop mode property\n"); 3769 goto out; 3770 } 3771 3772 fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np); 3773 if (IS_ERR(fep->stop_gpr.gpr)) { 3774 dev_err(&fep->pdev->dev, "could not find gpr regmap\n"); 3775 ret = PTR_ERR(fep->stop_gpr.gpr); 3776 fep->stop_gpr.gpr = NULL; 3777 goto out; 3778 } 3779 3780 fep->stop_gpr.reg = out_val[1]; 3781 fep->stop_gpr.bit = out_val[2]; 3782 3783 out: 3784 of_node_put(gpr_np); 3785 3786 return ret; 3787 } 3788 3789 static int 3790 fec_probe(struct platform_device *pdev) 3791 { 3792 struct fec_enet_private *fep; 3793 struct fec_platform_data *pdata; 3794 phy_interface_t interface; 3795 struct net_device *ndev; 3796 int i, irq, ret = 0; 3797 const struct of_device_id *of_id; 3798 static int dev_id; 3799 struct device_node *np = pdev->dev.of_node, *phy_node; 3800 int num_tx_qs; 3801 int num_rx_qs; 3802 char irq_name[8]; 3803 int irq_cnt; 3804 struct fec_devinfo *dev_info; 3805 3806 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); 3807 3808 /* Init network device */ 3809 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) + 3810 FEC_STATS_SIZE, num_tx_qs, num_rx_qs); 3811 if (!ndev) 3812 return -ENOMEM; 3813 3814 SET_NETDEV_DEV(ndev, &pdev->dev); 3815 3816 /* setup board info structure */ 3817 fep = netdev_priv(ndev); 3818 3819 of_id = of_match_device(fec_dt_ids, &pdev->dev); 3820 if (of_id) 3821 pdev->id_entry = of_id->data; 3822 dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data; 3823 if (dev_info) 3824 fep->quirks = dev_info->quirks; 3825 3826 fep->netdev = ndev; 3827 fep->num_rx_queues = num_rx_qs; 3828 fep->num_tx_queues = num_tx_qs; 3829 3830 #if !defined(CONFIG_M5272) 3831 /* default enable pause frame auto negotiation */ 3832 if (fep->quirks & FEC_QUIRK_HAS_GBIT) 3833 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; 3834 #endif 3835 3836 /* Select default pin state */ 3837 pinctrl_pm_select_default_state(&pdev->dev); 3838 3839 fep->hwp = devm_platform_ioremap_resource(pdev, 0); 3840 if (IS_ERR(fep->hwp)) { 3841 ret = PTR_ERR(fep->hwp); 3842 goto failed_ioremap; 3843 } 3844 3845 fep->pdev = pdev; 3846 fep->dev_id = dev_id++; 3847 3848 platform_set_drvdata(pdev, ndev); 3849 3850 if ((of_machine_is_compatible("fsl,imx6q") || 3851 of_machine_is_compatible("fsl,imx6dl")) && 3852 !of_property_read_bool(np, "fsl,err006687-workaround-present")) 3853 fep->quirks |= FEC_QUIRK_ERR006687; 3854 3855 ret = fec_enet_ipc_handle_init(fep); 3856 if (ret) 3857 goto failed_ipc_init; 3858 3859 if (of_get_property(np, "fsl,magic-packet", NULL)) 3860 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; 3861 3862 ret = fec_enet_init_stop_mode(fep, np); 3863 if (ret) 3864 goto failed_stop_mode; 3865 3866 phy_node = of_parse_phandle(np, "phy-handle", 0); 3867 if (!phy_node && of_phy_is_fixed_link(np)) { 3868 ret = of_phy_register_fixed_link(np); 3869 if (ret < 0) { 3870 dev_err(&pdev->dev, 3871 "broken fixed-link specification\n"); 3872 goto failed_phy; 3873 } 3874 phy_node = of_node_get(np); 3875 } 3876 fep->phy_node = phy_node; 3877 3878 ret = of_get_phy_mode(pdev->dev.of_node, &interface); 3879 if (ret) { 3880 pdata = dev_get_platdata(&pdev->dev); 3881 if (pdata) 3882 fep->phy_interface = pdata->phy; 3883 else 3884 fep->phy_interface = PHY_INTERFACE_MODE_MII; 3885 } else { 3886 fep->phy_interface = interface; 3887 } 3888 3889 ret = fec_enet_parse_rgmii_delay(fep, np); 3890 if (ret) 3891 goto failed_rgmii_delay; 3892 3893 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); 3894 if (IS_ERR(fep->clk_ipg)) { 3895 ret = PTR_ERR(fep->clk_ipg); 3896 goto failed_clk; 3897 } 3898 3899 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); 3900 if (IS_ERR(fep->clk_ahb)) { 3901 ret = PTR_ERR(fep->clk_ahb); 3902 goto failed_clk; 3903 } 3904 3905 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); 3906 3907 /* enet_out is optional, depends on board */ 3908 fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out"); 3909 if (IS_ERR(fep->clk_enet_out)) { 3910 ret = PTR_ERR(fep->clk_enet_out); 3911 goto failed_clk; 3912 } 3913 3914 fep->ptp_clk_on = false; 3915 mutex_init(&fep->ptp_clk_mutex); 3916 3917 /* clk_ref is optional, depends on board */ 3918 fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref"); 3919 if (IS_ERR(fep->clk_ref)) { 3920 ret = PTR_ERR(fep->clk_ref); 3921 goto failed_clk; 3922 } 3923 fep->clk_ref_rate = clk_get_rate(fep->clk_ref); 3924 3925 /* clk_2x_txclk is optional, depends on board */ 3926 if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) { 3927 fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk"); 3928 if (IS_ERR(fep->clk_2x_txclk)) 3929 fep->clk_2x_txclk = NULL; 3930 } 3931 3932 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; 3933 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); 3934 if (IS_ERR(fep->clk_ptp)) { 3935 fep->clk_ptp = NULL; 3936 fep->bufdesc_ex = false; 3937 } 3938 3939 ret = fec_enet_clk_enable(ndev, true); 3940 if (ret) 3941 goto failed_clk; 3942 3943 ret = clk_prepare_enable(fep->clk_ipg); 3944 if (ret) 3945 goto failed_clk_ipg; 3946 ret = clk_prepare_enable(fep->clk_ahb); 3947 if (ret) 3948 goto failed_clk_ahb; 3949 3950 fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy"); 3951 if (!IS_ERR(fep->reg_phy)) { 3952 ret = regulator_enable(fep->reg_phy); 3953 if (ret) { 3954 dev_err(&pdev->dev, 3955 "Failed to enable phy regulator: %d\n", ret); 3956 goto failed_regulator; 3957 } 3958 } else { 3959 if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) { 3960 ret = -EPROBE_DEFER; 3961 goto failed_regulator; 3962 } 3963 fep->reg_phy = NULL; 3964 } 3965 3966 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT); 3967 pm_runtime_use_autosuspend(&pdev->dev); 3968 pm_runtime_get_noresume(&pdev->dev); 3969 pm_runtime_set_active(&pdev->dev); 3970 pm_runtime_enable(&pdev->dev); 3971 3972 ret = fec_reset_phy(pdev); 3973 if (ret) 3974 goto failed_reset; 3975 3976 irq_cnt = fec_enet_get_irq_cnt(pdev); 3977 if (fep->bufdesc_ex) 3978 fec_ptp_init(pdev, irq_cnt); 3979 3980 ret = fec_enet_init(ndev); 3981 if (ret) 3982 goto failed_init; 3983 3984 for (i = 0; i < irq_cnt; i++) { 3985 snprintf(irq_name, sizeof(irq_name), "int%d", i); 3986 irq = platform_get_irq_byname_optional(pdev, irq_name); 3987 if (irq < 0) 3988 irq = platform_get_irq(pdev, i); 3989 if (irq < 0) { 3990 ret = irq; 3991 goto failed_irq; 3992 } 3993 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, 3994 0, pdev->name, ndev); 3995 if (ret) 3996 goto failed_irq; 3997 3998 fep->irq[i] = irq; 3999 } 4000 4001 /* Decide which interrupt line is wakeup capable */ 4002 fec_enet_get_wakeup_irq(pdev); 4003 4004 ret = fec_enet_mii_init(pdev); 4005 if (ret) 4006 goto failed_mii_init; 4007 4008 /* Carrier starts down, phylib will bring it up */ 4009 netif_carrier_off(ndev); 4010 fec_enet_clk_enable(ndev, false); 4011 pinctrl_pm_select_sleep_state(&pdev->dev); 4012 4013 ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN; 4014 4015 ret = register_netdev(ndev); 4016 if (ret) 4017 goto failed_register; 4018 4019 device_init_wakeup(&ndev->dev, fep->wol_flag & 4020 FEC_WOL_HAS_MAGIC_PACKET); 4021 4022 if (fep->bufdesc_ex && fep->ptp_clock) 4023 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); 4024 4025 fep->rx_copybreak = COPYBREAK_DEFAULT; 4026 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); 4027 4028 pm_runtime_mark_last_busy(&pdev->dev); 4029 pm_runtime_put_autosuspend(&pdev->dev); 4030 4031 return 0; 4032 4033 failed_register: 4034 fec_enet_mii_remove(fep); 4035 failed_mii_init: 4036 failed_irq: 4037 failed_init: 4038 fec_ptp_stop(pdev); 4039 failed_reset: 4040 pm_runtime_put_noidle(&pdev->dev); 4041 pm_runtime_disable(&pdev->dev); 4042 if (fep->reg_phy) 4043 regulator_disable(fep->reg_phy); 4044 failed_regulator: 4045 clk_disable_unprepare(fep->clk_ahb); 4046 failed_clk_ahb: 4047 clk_disable_unprepare(fep->clk_ipg); 4048 failed_clk_ipg: 4049 fec_enet_clk_enable(ndev, false); 4050 failed_clk: 4051 failed_rgmii_delay: 4052 if (of_phy_is_fixed_link(np)) 4053 of_phy_deregister_fixed_link(np); 4054 of_node_put(phy_node); 4055 failed_stop_mode: 4056 failed_ipc_init: 4057 failed_phy: 4058 dev_id--; 4059 failed_ioremap: 4060 free_netdev(ndev); 4061 4062 return ret; 4063 } 4064 4065 static int 4066 fec_drv_remove(struct platform_device *pdev) 4067 { 4068 struct net_device *ndev = platform_get_drvdata(pdev); 4069 struct fec_enet_private *fep = netdev_priv(ndev); 4070 struct device_node *np = pdev->dev.of_node; 4071 int ret; 4072 4073 ret = pm_runtime_resume_and_get(&pdev->dev); 4074 if (ret < 0) 4075 return ret; 4076 4077 cancel_work_sync(&fep->tx_timeout_work); 4078 fec_ptp_stop(pdev); 4079 unregister_netdev(ndev); 4080 fec_enet_mii_remove(fep); 4081 if (fep->reg_phy) 4082 regulator_disable(fep->reg_phy); 4083 4084 if (of_phy_is_fixed_link(np)) 4085 of_phy_deregister_fixed_link(np); 4086 of_node_put(fep->phy_node); 4087 4088 clk_disable_unprepare(fep->clk_ahb); 4089 clk_disable_unprepare(fep->clk_ipg); 4090 pm_runtime_put_noidle(&pdev->dev); 4091 pm_runtime_disable(&pdev->dev); 4092 4093 free_netdev(ndev); 4094 return 0; 4095 } 4096 4097 static int __maybe_unused fec_suspend(struct device *dev) 4098 { 4099 struct net_device *ndev = dev_get_drvdata(dev); 4100 struct fec_enet_private *fep = netdev_priv(ndev); 4101 int ret; 4102 4103 rtnl_lock(); 4104 if (netif_running(ndev)) { 4105 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) 4106 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; 4107 phy_stop(ndev->phydev); 4108 napi_disable(&fep->napi); 4109 netif_tx_lock_bh(ndev); 4110 netif_device_detach(ndev); 4111 netif_tx_unlock_bh(ndev); 4112 fec_stop(ndev); 4113 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4114 fec_irqs_disable(ndev); 4115 pinctrl_pm_select_sleep_state(&fep->pdev->dev); 4116 } else { 4117 fec_irqs_disable_except_wakeup(ndev); 4118 if (fep->wake_irq > 0) { 4119 disable_irq(fep->wake_irq); 4120 enable_irq_wake(fep->wake_irq); 4121 } 4122 fec_enet_stop_mode(fep, true); 4123 } 4124 /* It's safe to disable clocks since interrupts are masked */ 4125 fec_enet_clk_enable(ndev, false); 4126 4127 fep->rpm_active = !pm_runtime_status_suspended(dev); 4128 if (fep->rpm_active) { 4129 ret = pm_runtime_force_suspend(dev); 4130 if (ret < 0) { 4131 rtnl_unlock(); 4132 return ret; 4133 } 4134 } 4135 } 4136 rtnl_unlock(); 4137 4138 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) 4139 regulator_disable(fep->reg_phy); 4140 4141 /* SOC supply clock to phy, when clock is disabled, phy link down 4142 * SOC control phy regulator, when regulator is disabled, phy link down 4143 */ 4144 if (fep->clk_enet_out || fep->reg_phy) 4145 fep->link = 0; 4146 4147 return 0; 4148 } 4149 4150 static int __maybe_unused fec_resume(struct device *dev) 4151 { 4152 struct net_device *ndev = dev_get_drvdata(dev); 4153 struct fec_enet_private *fep = netdev_priv(ndev); 4154 int ret; 4155 int val; 4156 4157 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { 4158 ret = regulator_enable(fep->reg_phy); 4159 if (ret) 4160 return ret; 4161 } 4162 4163 rtnl_lock(); 4164 if (netif_running(ndev)) { 4165 if (fep->rpm_active) 4166 pm_runtime_force_resume(dev); 4167 4168 ret = fec_enet_clk_enable(ndev, true); 4169 if (ret) { 4170 rtnl_unlock(); 4171 goto failed_clk; 4172 } 4173 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { 4174 fec_enet_stop_mode(fep, false); 4175 if (fep->wake_irq) { 4176 disable_irq_wake(fep->wake_irq); 4177 enable_irq(fep->wake_irq); 4178 } 4179 4180 val = readl(fep->hwp + FEC_ECNTRL); 4181 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); 4182 writel(val, fep->hwp + FEC_ECNTRL); 4183 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; 4184 } else { 4185 pinctrl_pm_select_default_state(&fep->pdev->dev); 4186 } 4187 fec_restart(ndev); 4188 netif_tx_lock_bh(ndev); 4189 netif_device_attach(ndev); 4190 netif_tx_unlock_bh(ndev); 4191 napi_enable(&fep->napi); 4192 phy_init_hw(ndev->phydev); 4193 phy_start(ndev->phydev); 4194 } 4195 rtnl_unlock(); 4196 4197 return 0; 4198 4199 failed_clk: 4200 if (fep->reg_phy) 4201 regulator_disable(fep->reg_phy); 4202 return ret; 4203 } 4204 4205 static int __maybe_unused fec_runtime_suspend(struct device *dev) 4206 { 4207 struct net_device *ndev = dev_get_drvdata(dev); 4208 struct fec_enet_private *fep = netdev_priv(ndev); 4209 4210 clk_disable_unprepare(fep->clk_ahb); 4211 clk_disable_unprepare(fep->clk_ipg); 4212 4213 return 0; 4214 } 4215 4216 static int __maybe_unused fec_runtime_resume(struct device *dev) 4217 { 4218 struct net_device *ndev = dev_get_drvdata(dev); 4219 struct fec_enet_private *fep = netdev_priv(ndev); 4220 int ret; 4221 4222 ret = clk_prepare_enable(fep->clk_ahb); 4223 if (ret) 4224 return ret; 4225 ret = clk_prepare_enable(fep->clk_ipg); 4226 if (ret) 4227 goto failed_clk_ipg; 4228 4229 return 0; 4230 4231 failed_clk_ipg: 4232 clk_disable_unprepare(fep->clk_ahb); 4233 return ret; 4234 } 4235 4236 static const struct dev_pm_ops fec_pm_ops = { 4237 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume) 4238 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL) 4239 }; 4240 4241 static struct platform_driver fec_driver = { 4242 .driver = { 4243 .name = DRIVER_NAME, 4244 .pm = &fec_pm_ops, 4245 .of_match_table = fec_dt_ids, 4246 .suppress_bind_attrs = true, 4247 }, 4248 .id_table = fec_devtype, 4249 .probe = fec_probe, 4250 .remove = fec_drv_remove, 4251 }; 4252 4253 module_platform_driver(fec_driver); 4254 4255 MODULE_LICENSE("GPL"); 4256