1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
4  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5  *
6  * Right now, I am very wasteful with the buffers.  I allocate memory
7  * pages and then divide them into 2K frame buffers.  This way I know I
8  * have buffers large enough to hold one frame within one buffer descriptor.
9  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
10  * will be much more memory efficient and will easily handle lots of
11  * small packets.
12  *
13  * Much better multiple PHY support by Magnus Damm.
14  * Copyright (c) 2000 Ericsson Radio Systems AB.
15  *
16  * Support for FEC controller of ColdFire processors.
17  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18  *
19  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
20  * Copyright (c) 2004-2006 Macq Electronique SA.
21  *
22  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/ptrace.h>
30 #include <linux/errno.h>
31 #include <linux/ioport.h>
32 #include <linux/slab.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <net/ip.h>
41 #include <net/selftests.h>
42 #include <net/tso.h>
43 #include <linux/tcp.h>
44 #include <linux/udp.h>
45 #include <linux/icmp.h>
46 #include <linux/spinlock.h>
47 #include <linux/workqueue.h>
48 #include <linux/bitops.h>
49 #include <linux/io.h>
50 #include <linux/irq.h>
51 #include <linux/clk.h>
52 #include <linux/crc32.h>
53 #include <linux/platform_device.h>
54 #include <linux/mdio.h>
55 #include <linux/phy.h>
56 #include <linux/fec.h>
57 #include <linux/of.h>
58 #include <linux/of_device.h>
59 #include <linux/of_gpio.h>
60 #include <linux/of_mdio.h>
61 #include <linux/of_net.h>
62 #include <linux/regulator/consumer.h>
63 #include <linux/if_vlan.h>
64 #include <linux/pinctrl/consumer.h>
65 #include <linux/prefetch.h>
66 #include <linux/mfd/syscon.h>
67 #include <linux/regmap.h>
68 #include <soc/imx/cpuidle.h>
69 
70 #include <asm/cacheflush.h>
71 
72 #include "fec.h"
73 
74 static void set_multicast_list(struct net_device *ndev);
75 static void fec_enet_itr_coal_init(struct net_device *ndev);
76 
77 #define DRIVER_NAME	"fec"
78 
79 static const u16 fec_enet_vlan_pri_to_queue[8] = {0, 0, 1, 1, 1, 2, 2, 2};
80 
81 /* Pause frame feild and FIFO threshold */
82 #define FEC_ENET_FCE	(1 << 5)
83 #define FEC_ENET_RSEM_V	0x84
84 #define FEC_ENET_RSFL_V	16
85 #define FEC_ENET_RAEM_V	0x8
86 #define FEC_ENET_RAFL_V	0x8
87 #define FEC_ENET_OPD_V	0xFFF0
88 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
89 
90 struct fec_devinfo {
91 	u32 quirks;
92 };
93 
94 static const struct fec_devinfo fec_imx25_info = {
95 	.quirks = FEC_QUIRK_USE_GASKET | FEC_QUIRK_MIB_CLEAR |
96 		  FEC_QUIRK_HAS_FRREG,
97 };
98 
99 static const struct fec_devinfo fec_imx27_info = {
100 	.quirks = FEC_QUIRK_MIB_CLEAR | FEC_QUIRK_HAS_FRREG,
101 };
102 
103 static const struct fec_devinfo fec_imx28_info = {
104 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
105 		  FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC |
106 		  FEC_QUIRK_HAS_FRREG | FEC_QUIRK_CLEAR_SETUP_MII |
107 		  FEC_QUIRK_NO_HARD_RESET,
108 };
109 
110 static const struct fec_devinfo fec_imx6q_info = {
111 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
112 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
113 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
114 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_CLEAR_SETUP_MII |
115 		  FEC_QUIRK_HAS_PMQOS,
116 };
117 
118 static const struct fec_devinfo fec_mvf600_info = {
119 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
120 };
121 
122 static const struct fec_devinfo fec_imx6x_info = {
123 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
124 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
125 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
126 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
127 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
128 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES,
129 };
130 
131 static const struct fec_devinfo fec_imx6ul_info = {
132 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
133 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
134 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR007885 |
135 		  FEC_QUIRK_BUG_CAPTURE | FEC_QUIRK_HAS_RACC |
136 		  FEC_QUIRK_HAS_COALESCE | FEC_QUIRK_CLEAR_SETUP_MII,
137 };
138 
139 static const struct fec_devinfo fec_imx8mq_info = {
140 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
141 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
142 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
143 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
144 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
145 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
146 		  FEC_QUIRK_HAS_EEE | FEC_QUIRK_WAKEUP_FROM_INT2,
147 };
148 
149 static const struct fec_devinfo fec_imx8qm_info = {
150 	.quirks = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
151 		  FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
152 		  FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
153 		  FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
154 		  FEC_QUIRK_HAS_RACC | FEC_QUIRK_HAS_COALESCE |
155 		  FEC_QUIRK_CLEAR_SETUP_MII | FEC_QUIRK_HAS_MULTI_QUEUES |
156 		  FEC_QUIRK_DELAYED_CLKS_SUPPORT,
157 };
158 
159 static struct platform_device_id fec_devtype[] = {
160 	{
161 		/* keep it for coldfire */
162 		.name = DRIVER_NAME,
163 		.driver_data = 0,
164 	}, {
165 		.name = "imx25-fec",
166 		.driver_data = (kernel_ulong_t)&fec_imx25_info,
167 	}, {
168 		.name = "imx27-fec",
169 		.driver_data = (kernel_ulong_t)&fec_imx27_info,
170 	}, {
171 		.name = "imx28-fec",
172 		.driver_data = (kernel_ulong_t)&fec_imx28_info,
173 	}, {
174 		.name = "imx6q-fec",
175 		.driver_data = (kernel_ulong_t)&fec_imx6q_info,
176 	}, {
177 		.name = "mvf600-fec",
178 		.driver_data = (kernel_ulong_t)&fec_mvf600_info,
179 	}, {
180 		.name = "imx6sx-fec",
181 		.driver_data = (kernel_ulong_t)&fec_imx6x_info,
182 	}, {
183 		.name = "imx6ul-fec",
184 		.driver_data = (kernel_ulong_t)&fec_imx6ul_info,
185 	}, {
186 		.name = "imx8mq-fec",
187 		.driver_data = (kernel_ulong_t)&fec_imx8mq_info,
188 	}, {
189 		.name = "imx8qm-fec",
190 		.driver_data = (kernel_ulong_t)&fec_imx8qm_info,
191 	}, {
192 		/* sentinel */
193 	}
194 };
195 MODULE_DEVICE_TABLE(platform, fec_devtype);
196 
197 enum imx_fec_type {
198 	IMX25_FEC = 1,	/* runs on i.mx25/50/53 */
199 	IMX27_FEC,	/* runs on i.mx27/35/51 */
200 	IMX28_FEC,
201 	IMX6Q_FEC,
202 	MVF600_FEC,
203 	IMX6SX_FEC,
204 	IMX6UL_FEC,
205 	IMX8MQ_FEC,
206 	IMX8QM_FEC,
207 };
208 
209 static const struct of_device_id fec_dt_ids[] = {
210 	{ .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
211 	{ .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
212 	{ .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
213 	{ .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
214 	{ .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
215 	{ .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
216 	{ .compatible = "fsl,imx6ul-fec", .data = &fec_devtype[IMX6UL_FEC], },
217 	{ .compatible = "fsl,imx8mq-fec", .data = &fec_devtype[IMX8MQ_FEC], },
218 	{ .compatible = "fsl,imx8qm-fec", .data = &fec_devtype[IMX8QM_FEC], },
219 	{ /* sentinel */ }
220 };
221 MODULE_DEVICE_TABLE(of, fec_dt_ids);
222 
223 static unsigned char macaddr[ETH_ALEN];
224 module_param_array(macaddr, byte, NULL, 0);
225 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
226 
227 #if defined(CONFIG_M5272)
228 /*
229  * Some hardware gets it MAC address out of local flash memory.
230  * if this is non-zero then assume it is the address to get MAC from.
231  */
232 #if defined(CONFIG_NETtel)
233 #define	FEC_FLASHMAC	0xf0006006
234 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
235 #define	FEC_FLASHMAC	0xf0006000
236 #elif defined(CONFIG_CANCam)
237 #define	FEC_FLASHMAC	0xf0020000
238 #elif defined (CONFIG_M5272C3)
239 #define	FEC_FLASHMAC	(0xffe04000 + 4)
240 #elif defined(CONFIG_MOD5272)
241 #define FEC_FLASHMAC	0xffc0406b
242 #else
243 #define	FEC_FLASHMAC	0
244 #endif
245 #endif /* CONFIG_M5272 */
246 
247 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
248  *
249  * 2048 byte skbufs are allocated. However, alignment requirements
250  * varies between FEC variants. Worst case is 64, so round down by 64.
251  */
252 #define PKT_MAXBUF_SIZE		(round_down(2048 - 64, 64))
253 #define PKT_MINBUF_SIZE		64
254 
255 /* FEC receive acceleration */
256 #define FEC_RACC_IPDIS		(1 << 1)
257 #define FEC_RACC_PRODIS		(1 << 2)
258 #define FEC_RACC_SHIFT16	BIT(7)
259 #define FEC_RACC_OPTIONS	(FEC_RACC_IPDIS | FEC_RACC_PRODIS)
260 
261 /* MIB Control Register */
262 #define FEC_MIB_CTRLSTAT_DISABLE	BIT(31)
263 
264 /*
265  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
266  * size bits. Other FEC hardware does not, so we need to take that into
267  * account when setting it.
268  */
269 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
270     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
271     defined(CONFIG_ARM64)
272 #define	OPT_FRAME_SIZE	(PKT_MAXBUF_SIZE << 16)
273 #else
274 #define	OPT_FRAME_SIZE	0
275 #endif
276 
277 /* FEC MII MMFR bits definition */
278 #define FEC_MMFR_ST		(1 << 30)
279 #define FEC_MMFR_ST_C45		(0)
280 #define FEC_MMFR_OP_READ	(2 << 28)
281 #define FEC_MMFR_OP_READ_C45	(3 << 28)
282 #define FEC_MMFR_OP_WRITE	(1 << 28)
283 #define FEC_MMFR_OP_ADDR_WRITE	(0)
284 #define FEC_MMFR_PA(v)		((v & 0x1f) << 23)
285 #define FEC_MMFR_RA(v)		((v & 0x1f) << 18)
286 #define FEC_MMFR_TA		(2 << 16)
287 #define FEC_MMFR_DATA(v)	(v & 0xffff)
288 /* FEC ECR bits definition */
289 #define FEC_ECR_MAGICEN		(1 << 2)
290 #define FEC_ECR_SLEEP		(1 << 3)
291 
292 #define FEC_MII_TIMEOUT		30000 /* us */
293 
294 /* Transmitter timeout */
295 #define TX_TIMEOUT (2 * HZ)
296 
297 #define FEC_PAUSE_FLAG_AUTONEG	0x1
298 #define FEC_PAUSE_FLAG_ENABLE	0x2
299 #define FEC_WOL_HAS_MAGIC_PACKET	(0x1 << 0)
300 #define FEC_WOL_FLAG_ENABLE		(0x1 << 1)
301 #define FEC_WOL_FLAG_SLEEP_ON		(0x1 << 2)
302 
303 #define COPYBREAK_DEFAULT	256
304 
305 /* Max number of allowed TCP segments for software TSO */
306 #define FEC_MAX_TSO_SEGS	100
307 #define FEC_MAX_SKB_DESCS	(FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
308 
309 #define IS_TSO_HEADER(txq, addr) \
310 	((addr >= txq->tso_hdrs_dma) && \
311 	(addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
312 
313 static int mii_cnt;
314 
315 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
316 					     struct bufdesc_prop *bd)
317 {
318 	return (bdp >= bd->last) ? bd->base
319 			: (struct bufdesc *)(((void *)bdp) + bd->dsize);
320 }
321 
322 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
323 					     struct bufdesc_prop *bd)
324 {
325 	return (bdp <= bd->base) ? bd->last
326 			: (struct bufdesc *)(((void *)bdp) - bd->dsize);
327 }
328 
329 static int fec_enet_get_bd_index(struct bufdesc *bdp,
330 				 struct bufdesc_prop *bd)
331 {
332 	return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
333 }
334 
335 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
336 {
337 	int entries;
338 
339 	entries = (((const char *)txq->dirty_tx -
340 			(const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
341 
342 	return entries >= 0 ? entries : entries + txq->bd.ring_size;
343 }
344 
345 static void swap_buffer(void *bufaddr, int len)
346 {
347 	int i;
348 	unsigned int *buf = bufaddr;
349 
350 	for (i = 0; i < len; i += 4, buf++)
351 		swab32s(buf);
352 }
353 
354 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
355 {
356 	int i;
357 	unsigned int *src = src_buf;
358 	unsigned int *dst = dst_buf;
359 
360 	for (i = 0; i < len; i += 4, src++, dst++)
361 		*dst = swab32p(src);
362 }
363 
364 static void fec_dump(struct net_device *ndev)
365 {
366 	struct fec_enet_private *fep = netdev_priv(ndev);
367 	struct bufdesc *bdp;
368 	struct fec_enet_priv_tx_q *txq;
369 	int index = 0;
370 
371 	netdev_info(ndev, "TX ring dump\n");
372 	pr_info("Nr     SC     addr       len  SKB\n");
373 
374 	txq = fep->tx_queue[0];
375 	bdp = txq->bd.base;
376 
377 	do {
378 		pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
379 			index,
380 			bdp == txq->bd.cur ? 'S' : ' ',
381 			bdp == txq->dirty_tx ? 'H' : ' ',
382 			fec16_to_cpu(bdp->cbd_sc),
383 			fec32_to_cpu(bdp->cbd_bufaddr),
384 			fec16_to_cpu(bdp->cbd_datlen),
385 			txq->tx_skbuff[index]);
386 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
387 		index++;
388 	} while (bdp != txq->bd.base);
389 }
390 
391 static inline bool is_ipv4_pkt(struct sk_buff *skb)
392 {
393 	return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
394 }
395 
396 static int
397 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
398 {
399 	/* Only run for packets requiring a checksum. */
400 	if (skb->ip_summed != CHECKSUM_PARTIAL)
401 		return 0;
402 
403 	if (unlikely(skb_cow_head(skb, 0)))
404 		return -1;
405 
406 	if (is_ipv4_pkt(skb))
407 		ip_hdr(skb)->check = 0;
408 	*(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
409 
410 	return 0;
411 }
412 
413 static struct bufdesc *
414 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
415 			     struct sk_buff *skb,
416 			     struct net_device *ndev)
417 {
418 	struct fec_enet_private *fep = netdev_priv(ndev);
419 	struct bufdesc *bdp = txq->bd.cur;
420 	struct bufdesc_ex *ebdp;
421 	int nr_frags = skb_shinfo(skb)->nr_frags;
422 	int frag, frag_len;
423 	unsigned short status;
424 	unsigned int estatus = 0;
425 	skb_frag_t *this_frag;
426 	unsigned int index;
427 	void *bufaddr;
428 	dma_addr_t addr;
429 	int i;
430 
431 	for (frag = 0; frag < nr_frags; frag++) {
432 		this_frag = &skb_shinfo(skb)->frags[frag];
433 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
434 		ebdp = (struct bufdesc_ex *)bdp;
435 
436 		status = fec16_to_cpu(bdp->cbd_sc);
437 		status &= ~BD_ENET_TX_STATS;
438 		status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
439 		frag_len = skb_frag_size(&skb_shinfo(skb)->frags[frag]);
440 
441 		/* Handle the last BD specially */
442 		if (frag == nr_frags - 1) {
443 			status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
444 			if (fep->bufdesc_ex) {
445 				estatus |= BD_ENET_TX_INT;
446 				if (unlikely(skb_shinfo(skb)->tx_flags &
447 					SKBTX_HW_TSTAMP && fep->hwts_tx_en))
448 					estatus |= BD_ENET_TX_TS;
449 			}
450 		}
451 
452 		if (fep->bufdesc_ex) {
453 			if (fep->quirks & FEC_QUIRK_HAS_AVB)
454 				estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
455 			if (skb->ip_summed == CHECKSUM_PARTIAL)
456 				estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
457 
458 			ebdp->cbd_bdu = 0;
459 			ebdp->cbd_esc = cpu_to_fec32(estatus);
460 		}
461 
462 		bufaddr = skb_frag_address(this_frag);
463 
464 		index = fec_enet_get_bd_index(bdp, &txq->bd);
465 		if (((unsigned long) bufaddr) & fep->tx_align ||
466 			fep->quirks & FEC_QUIRK_SWAP_FRAME) {
467 			memcpy(txq->tx_bounce[index], bufaddr, frag_len);
468 			bufaddr = txq->tx_bounce[index];
469 
470 			if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
471 				swap_buffer(bufaddr, frag_len);
472 		}
473 
474 		addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
475 				      DMA_TO_DEVICE);
476 		if (dma_mapping_error(&fep->pdev->dev, addr)) {
477 			if (net_ratelimit())
478 				netdev_err(ndev, "Tx DMA memory map failed\n");
479 			goto dma_mapping_error;
480 		}
481 
482 		bdp->cbd_bufaddr = cpu_to_fec32(addr);
483 		bdp->cbd_datlen = cpu_to_fec16(frag_len);
484 		/* Make sure the updates to rest of the descriptor are
485 		 * performed before transferring ownership.
486 		 */
487 		wmb();
488 		bdp->cbd_sc = cpu_to_fec16(status);
489 	}
490 
491 	return bdp;
492 dma_mapping_error:
493 	bdp = txq->bd.cur;
494 	for (i = 0; i < frag; i++) {
495 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
496 		dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
497 				 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
498 	}
499 	return ERR_PTR(-ENOMEM);
500 }
501 
502 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
503 				   struct sk_buff *skb, struct net_device *ndev)
504 {
505 	struct fec_enet_private *fep = netdev_priv(ndev);
506 	int nr_frags = skb_shinfo(skb)->nr_frags;
507 	struct bufdesc *bdp, *last_bdp;
508 	void *bufaddr;
509 	dma_addr_t addr;
510 	unsigned short status;
511 	unsigned short buflen;
512 	unsigned int estatus = 0;
513 	unsigned int index;
514 	int entries_free;
515 
516 	entries_free = fec_enet_get_free_txdesc_num(txq);
517 	if (entries_free < MAX_SKB_FRAGS + 1) {
518 		dev_kfree_skb_any(skb);
519 		if (net_ratelimit())
520 			netdev_err(ndev, "NOT enough BD for SG!\n");
521 		return NETDEV_TX_OK;
522 	}
523 
524 	/* Protocol checksum off-load for TCP and UDP. */
525 	if (fec_enet_clear_csum(skb, ndev)) {
526 		dev_kfree_skb_any(skb);
527 		return NETDEV_TX_OK;
528 	}
529 
530 	/* Fill in a Tx ring entry */
531 	bdp = txq->bd.cur;
532 	last_bdp = bdp;
533 	status = fec16_to_cpu(bdp->cbd_sc);
534 	status &= ~BD_ENET_TX_STATS;
535 
536 	/* Set buffer length and buffer pointer */
537 	bufaddr = skb->data;
538 	buflen = skb_headlen(skb);
539 
540 	index = fec_enet_get_bd_index(bdp, &txq->bd);
541 	if (((unsigned long) bufaddr) & fep->tx_align ||
542 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
543 		memcpy(txq->tx_bounce[index], skb->data, buflen);
544 		bufaddr = txq->tx_bounce[index];
545 
546 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
547 			swap_buffer(bufaddr, buflen);
548 	}
549 
550 	/* Push the data cache so the CPM does not get stale memory data. */
551 	addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
552 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
553 		dev_kfree_skb_any(skb);
554 		if (net_ratelimit())
555 			netdev_err(ndev, "Tx DMA memory map failed\n");
556 		return NETDEV_TX_OK;
557 	}
558 
559 	if (nr_frags) {
560 		last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
561 		if (IS_ERR(last_bdp)) {
562 			dma_unmap_single(&fep->pdev->dev, addr,
563 					 buflen, DMA_TO_DEVICE);
564 			dev_kfree_skb_any(skb);
565 			return NETDEV_TX_OK;
566 		}
567 	} else {
568 		status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
569 		if (fep->bufdesc_ex) {
570 			estatus = BD_ENET_TX_INT;
571 			if (unlikely(skb_shinfo(skb)->tx_flags &
572 				SKBTX_HW_TSTAMP && fep->hwts_tx_en))
573 				estatus |= BD_ENET_TX_TS;
574 		}
575 	}
576 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
577 	bdp->cbd_datlen = cpu_to_fec16(buflen);
578 
579 	if (fep->bufdesc_ex) {
580 
581 		struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
582 
583 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
584 			fep->hwts_tx_en))
585 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
586 
587 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
588 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
589 
590 		if (skb->ip_summed == CHECKSUM_PARTIAL)
591 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
592 
593 		ebdp->cbd_bdu = 0;
594 		ebdp->cbd_esc = cpu_to_fec32(estatus);
595 	}
596 
597 	index = fec_enet_get_bd_index(last_bdp, &txq->bd);
598 	/* Save skb pointer */
599 	txq->tx_skbuff[index] = skb;
600 
601 	/* Make sure the updates to rest of the descriptor are performed before
602 	 * transferring ownership.
603 	 */
604 	wmb();
605 
606 	/* Send it on its way.  Tell FEC it's ready, interrupt when done,
607 	 * it's the last BD of the frame, and to put the CRC on the end.
608 	 */
609 	status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
610 	bdp->cbd_sc = cpu_to_fec16(status);
611 
612 	/* If this was the last BD in the ring, start at the beginning again. */
613 	bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
614 
615 	skb_tx_timestamp(skb);
616 
617 	/* Make sure the update to bdp and tx_skbuff are performed before
618 	 * txq->bd.cur.
619 	 */
620 	wmb();
621 	txq->bd.cur = bdp;
622 
623 	/* Trigger transmission start */
624 	writel(0, txq->bd.reg_desc_active);
625 
626 	return 0;
627 }
628 
629 static int
630 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
631 			  struct net_device *ndev,
632 			  struct bufdesc *bdp, int index, char *data,
633 			  int size, bool last_tcp, bool is_last)
634 {
635 	struct fec_enet_private *fep = netdev_priv(ndev);
636 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
637 	unsigned short status;
638 	unsigned int estatus = 0;
639 	dma_addr_t addr;
640 
641 	status = fec16_to_cpu(bdp->cbd_sc);
642 	status &= ~BD_ENET_TX_STATS;
643 
644 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
645 
646 	if (((unsigned long) data) & fep->tx_align ||
647 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
648 		memcpy(txq->tx_bounce[index], data, size);
649 		data = txq->tx_bounce[index];
650 
651 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
652 			swap_buffer(data, size);
653 	}
654 
655 	addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
656 	if (dma_mapping_error(&fep->pdev->dev, addr)) {
657 		dev_kfree_skb_any(skb);
658 		if (net_ratelimit())
659 			netdev_err(ndev, "Tx DMA memory map failed\n");
660 		return NETDEV_TX_BUSY;
661 	}
662 
663 	bdp->cbd_datlen = cpu_to_fec16(size);
664 	bdp->cbd_bufaddr = cpu_to_fec32(addr);
665 
666 	if (fep->bufdesc_ex) {
667 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
668 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
669 		if (skb->ip_summed == CHECKSUM_PARTIAL)
670 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
671 		ebdp->cbd_bdu = 0;
672 		ebdp->cbd_esc = cpu_to_fec32(estatus);
673 	}
674 
675 	/* Handle the last BD specially */
676 	if (last_tcp)
677 		status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
678 	if (is_last) {
679 		status |= BD_ENET_TX_INTR;
680 		if (fep->bufdesc_ex)
681 			ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
682 	}
683 
684 	bdp->cbd_sc = cpu_to_fec16(status);
685 
686 	return 0;
687 }
688 
689 static int
690 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
691 			 struct sk_buff *skb, struct net_device *ndev,
692 			 struct bufdesc *bdp, int index)
693 {
694 	struct fec_enet_private *fep = netdev_priv(ndev);
695 	int hdr_len = skb_tcp_all_headers(skb);
696 	struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
697 	void *bufaddr;
698 	unsigned long dmabuf;
699 	unsigned short status;
700 	unsigned int estatus = 0;
701 
702 	status = fec16_to_cpu(bdp->cbd_sc);
703 	status &= ~BD_ENET_TX_STATS;
704 	status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
705 
706 	bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
707 	dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
708 	if (((unsigned long)bufaddr) & fep->tx_align ||
709 		fep->quirks & FEC_QUIRK_SWAP_FRAME) {
710 		memcpy(txq->tx_bounce[index], skb->data, hdr_len);
711 		bufaddr = txq->tx_bounce[index];
712 
713 		if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
714 			swap_buffer(bufaddr, hdr_len);
715 
716 		dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
717 					hdr_len, DMA_TO_DEVICE);
718 		if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
719 			dev_kfree_skb_any(skb);
720 			if (net_ratelimit())
721 				netdev_err(ndev, "Tx DMA memory map failed\n");
722 			return NETDEV_TX_BUSY;
723 		}
724 	}
725 
726 	bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
727 	bdp->cbd_datlen = cpu_to_fec16(hdr_len);
728 
729 	if (fep->bufdesc_ex) {
730 		if (fep->quirks & FEC_QUIRK_HAS_AVB)
731 			estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
732 		if (skb->ip_summed == CHECKSUM_PARTIAL)
733 			estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
734 		ebdp->cbd_bdu = 0;
735 		ebdp->cbd_esc = cpu_to_fec32(estatus);
736 	}
737 
738 	bdp->cbd_sc = cpu_to_fec16(status);
739 
740 	return 0;
741 }
742 
743 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
744 				   struct sk_buff *skb,
745 				   struct net_device *ndev)
746 {
747 	struct fec_enet_private *fep = netdev_priv(ndev);
748 	int hdr_len, total_len, data_left;
749 	struct bufdesc *bdp = txq->bd.cur;
750 	struct tso_t tso;
751 	unsigned int index = 0;
752 	int ret;
753 
754 	if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
755 		dev_kfree_skb_any(skb);
756 		if (net_ratelimit())
757 			netdev_err(ndev, "NOT enough BD for TSO!\n");
758 		return NETDEV_TX_OK;
759 	}
760 
761 	/* Protocol checksum off-load for TCP and UDP. */
762 	if (fec_enet_clear_csum(skb, ndev)) {
763 		dev_kfree_skb_any(skb);
764 		return NETDEV_TX_OK;
765 	}
766 
767 	/* Initialize the TSO handler, and prepare the first payload */
768 	hdr_len = tso_start(skb, &tso);
769 
770 	total_len = skb->len - hdr_len;
771 	while (total_len > 0) {
772 		char *hdr;
773 
774 		index = fec_enet_get_bd_index(bdp, &txq->bd);
775 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
776 		total_len -= data_left;
777 
778 		/* prepare packet headers: MAC + IP + TCP */
779 		hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
780 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
781 		ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
782 		if (ret)
783 			goto err_release;
784 
785 		while (data_left > 0) {
786 			int size;
787 
788 			size = min_t(int, tso.size, data_left);
789 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
790 			index = fec_enet_get_bd_index(bdp, &txq->bd);
791 			ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
792 							bdp, index,
793 							tso.data, size,
794 							size == data_left,
795 							total_len == 0);
796 			if (ret)
797 				goto err_release;
798 
799 			data_left -= size;
800 			tso_build_data(skb, &tso, size);
801 		}
802 
803 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
804 	}
805 
806 	/* Save skb pointer */
807 	txq->tx_skbuff[index] = skb;
808 
809 	skb_tx_timestamp(skb);
810 	txq->bd.cur = bdp;
811 
812 	/* Trigger transmission start */
813 	if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
814 	    !readl(txq->bd.reg_desc_active) ||
815 	    !readl(txq->bd.reg_desc_active) ||
816 	    !readl(txq->bd.reg_desc_active) ||
817 	    !readl(txq->bd.reg_desc_active))
818 		writel(0, txq->bd.reg_desc_active);
819 
820 	return 0;
821 
822 err_release:
823 	/* TODO: Release all used data descriptors for TSO */
824 	return ret;
825 }
826 
827 static netdev_tx_t
828 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
829 {
830 	struct fec_enet_private *fep = netdev_priv(ndev);
831 	int entries_free;
832 	unsigned short queue;
833 	struct fec_enet_priv_tx_q *txq;
834 	struct netdev_queue *nq;
835 	int ret;
836 
837 	queue = skb_get_queue_mapping(skb);
838 	txq = fep->tx_queue[queue];
839 	nq = netdev_get_tx_queue(ndev, queue);
840 
841 	if (skb_is_gso(skb))
842 		ret = fec_enet_txq_submit_tso(txq, skb, ndev);
843 	else
844 		ret = fec_enet_txq_submit_skb(txq, skb, ndev);
845 	if (ret)
846 		return ret;
847 
848 	entries_free = fec_enet_get_free_txdesc_num(txq);
849 	if (entries_free <= txq->tx_stop_threshold)
850 		netif_tx_stop_queue(nq);
851 
852 	return NETDEV_TX_OK;
853 }
854 
855 /* Init RX & TX buffer descriptors
856  */
857 static void fec_enet_bd_init(struct net_device *dev)
858 {
859 	struct fec_enet_private *fep = netdev_priv(dev);
860 	struct fec_enet_priv_tx_q *txq;
861 	struct fec_enet_priv_rx_q *rxq;
862 	struct bufdesc *bdp;
863 	unsigned int i;
864 	unsigned int q;
865 
866 	for (q = 0; q < fep->num_rx_queues; q++) {
867 		/* Initialize the receive buffer descriptors. */
868 		rxq = fep->rx_queue[q];
869 		bdp = rxq->bd.base;
870 
871 		for (i = 0; i < rxq->bd.ring_size; i++) {
872 
873 			/* Initialize the BD for every fragment in the page. */
874 			if (bdp->cbd_bufaddr)
875 				bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
876 			else
877 				bdp->cbd_sc = cpu_to_fec16(0);
878 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
879 		}
880 
881 		/* Set the last buffer to wrap */
882 		bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
883 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
884 
885 		rxq->bd.cur = rxq->bd.base;
886 	}
887 
888 	for (q = 0; q < fep->num_tx_queues; q++) {
889 		/* ...and the same for transmit */
890 		txq = fep->tx_queue[q];
891 		bdp = txq->bd.base;
892 		txq->bd.cur = bdp;
893 
894 		for (i = 0; i < txq->bd.ring_size; i++) {
895 			/* Initialize the BD for every fragment in the page. */
896 			bdp->cbd_sc = cpu_to_fec16(0);
897 			if (bdp->cbd_bufaddr &&
898 			    !IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
899 				dma_unmap_single(&fep->pdev->dev,
900 						 fec32_to_cpu(bdp->cbd_bufaddr),
901 						 fec16_to_cpu(bdp->cbd_datlen),
902 						 DMA_TO_DEVICE);
903 			if (txq->tx_skbuff[i]) {
904 				dev_kfree_skb_any(txq->tx_skbuff[i]);
905 				txq->tx_skbuff[i] = NULL;
906 			}
907 			bdp->cbd_bufaddr = cpu_to_fec32(0);
908 			bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
909 		}
910 
911 		/* Set the last buffer to wrap */
912 		bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
913 		bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
914 		txq->dirty_tx = bdp;
915 	}
916 }
917 
918 static void fec_enet_active_rxring(struct net_device *ndev)
919 {
920 	struct fec_enet_private *fep = netdev_priv(ndev);
921 	int i;
922 
923 	for (i = 0; i < fep->num_rx_queues; i++)
924 		writel(0, fep->rx_queue[i]->bd.reg_desc_active);
925 }
926 
927 static void fec_enet_enable_ring(struct net_device *ndev)
928 {
929 	struct fec_enet_private *fep = netdev_priv(ndev);
930 	struct fec_enet_priv_tx_q *txq;
931 	struct fec_enet_priv_rx_q *rxq;
932 	int i;
933 
934 	for (i = 0; i < fep->num_rx_queues; i++) {
935 		rxq = fep->rx_queue[i];
936 		writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
937 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
938 
939 		/* enable DMA1/2 */
940 		if (i)
941 			writel(RCMR_MATCHEN | RCMR_CMP(i),
942 			       fep->hwp + FEC_RCMR(i));
943 	}
944 
945 	for (i = 0; i < fep->num_tx_queues; i++) {
946 		txq = fep->tx_queue[i];
947 		writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
948 
949 		/* enable DMA1/2 */
950 		if (i)
951 			writel(DMA_CLASS_EN | IDLE_SLOPE(i),
952 			       fep->hwp + FEC_DMA_CFG(i));
953 	}
954 }
955 
956 static void fec_enet_reset_skb(struct net_device *ndev)
957 {
958 	struct fec_enet_private *fep = netdev_priv(ndev);
959 	struct fec_enet_priv_tx_q *txq;
960 	int i, j;
961 
962 	for (i = 0; i < fep->num_tx_queues; i++) {
963 		txq = fep->tx_queue[i];
964 
965 		for (j = 0; j < txq->bd.ring_size; j++) {
966 			if (txq->tx_skbuff[j]) {
967 				dev_kfree_skb_any(txq->tx_skbuff[j]);
968 				txq->tx_skbuff[j] = NULL;
969 			}
970 		}
971 	}
972 }
973 
974 /*
975  * This function is called to start or restart the FEC during a link
976  * change, transmit timeout, or to reconfigure the FEC.  The network
977  * packet processing for this device must be stopped before this call.
978  */
979 static void
980 fec_restart(struct net_device *ndev)
981 {
982 	struct fec_enet_private *fep = netdev_priv(ndev);
983 	u32 temp_mac[2];
984 	u32 rcntl = OPT_FRAME_SIZE | 0x04;
985 	u32 ecntl = 0x2; /* ETHEREN */
986 
987 	/* Whack a reset.  We should wait for this.
988 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
989 	 * instead of reset MAC itself.
990 	 */
991 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES ||
992 	    ((fep->quirks & FEC_QUIRK_NO_HARD_RESET) && fep->link)) {
993 		writel(0, fep->hwp + FEC_ECNTRL);
994 	} else {
995 		writel(1, fep->hwp + FEC_ECNTRL);
996 		udelay(10);
997 	}
998 
999 	/*
1000 	 * enet-mac reset will reset mac address registers too,
1001 	 * so need to reconfigure it.
1002 	 */
1003 	memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
1004 	writel((__force u32)cpu_to_be32(temp_mac[0]),
1005 	       fep->hwp + FEC_ADDR_LOW);
1006 	writel((__force u32)cpu_to_be32(temp_mac[1]),
1007 	       fep->hwp + FEC_ADDR_HIGH);
1008 
1009 	/* Clear any outstanding interrupt, except MDIO. */
1010 	writel((0xffffffff & ~FEC_ENET_MII), fep->hwp + FEC_IEVENT);
1011 
1012 	fec_enet_bd_init(ndev);
1013 
1014 	fec_enet_enable_ring(ndev);
1015 
1016 	/* Reset tx SKB buffers. */
1017 	fec_enet_reset_skb(ndev);
1018 
1019 	/* Enable MII mode */
1020 	if (fep->full_duplex == DUPLEX_FULL) {
1021 		/* FD enable */
1022 		writel(0x04, fep->hwp + FEC_X_CNTRL);
1023 	} else {
1024 		/* No Rcv on Xmit */
1025 		rcntl |= 0x02;
1026 		writel(0x0, fep->hwp + FEC_X_CNTRL);
1027 	}
1028 
1029 	/* Set MII speed */
1030 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1031 
1032 #if !defined(CONFIG_M5272)
1033 	if (fep->quirks & FEC_QUIRK_HAS_RACC) {
1034 		u32 val = readl(fep->hwp + FEC_RACC);
1035 
1036 		/* align IP header */
1037 		val |= FEC_RACC_SHIFT16;
1038 		if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
1039 			/* set RX checksum */
1040 			val |= FEC_RACC_OPTIONS;
1041 		else
1042 			val &= ~FEC_RACC_OPTIONS;
1043 		writel(val, fep->hwp + FEC_RACC);
1044 		writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
1045 	}
1046 #endif
1047 
1048 	/*
1049 	 * The phy interface and speed need to get configured
1050 	 * differently on enet-mac.
1051 	 */
1052 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1053 		/* Enable flow control and length check */
1054 		rcntl |= 0x40000000 | 0x00000020;
1055 
1056 		/* RGMII, RMII or MII */
1057 		if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
1058 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1059 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1060 		    fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1061 			rcntl |= (1 << 6);
1062 		else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1063 			rcntl |= (1 << 8);
1064 		else
1065 			rcntl &= ~(1 << 8);
1066 
1067 		/* 1G, 100M or 10M */
1068 		if (ndev->phydev) {
1069 			if (ndev->phydev->speed == SPEED_1000)
1070 				ecntl |= (1 << 5);
1071 			else if (ndev->phydev->speed == SPEED_100)
1072 				rcntl &= ~(1 << 9);
1073 			else
1074 				rcntl |= (1 << 9);
1075 		}
1076 	} else {
1077 #ifdef FEC_MIIGSK_ENR
1078 		if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1079 			u32 cfgr;
1080 			/* disable the gasket and wait */
1081 			writel(0, fep->hwp + FEC_MIIGSK_ENR);
1082 			while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1083 				udelay(1);
1084 
1085 			/*
1086 			 * configure the gasket:
1087 			 *   RMII, 50 MHz, no loopback, no echo
1088 			 *   MII, 25 MHz, no loopback, no echo
1089 			 */
1090 			cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1091 				? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1092 			if (ndev->phydev && ndev->phydev->speed == SPEED_10)
1093 				cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1094 			writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1095 
1096 			/* re-enable the gasket */
1097 			writel(2, fep->hwp + FEC_MIIGSK_ENR);
1098 		}
1099 #endif
1100 	}
1101 
1102 #if !defined(CONFIG_M5272)
1103 	/* enable pause frame*/
1104 	if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1105 	    ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1106 	     ndev->phydev && ndev->phydev->pause)) {
1107 		rcntl |= FEC_ENET_FCE;
1108 
1109 		/* set FIFO threshold parameter to reduce overrun */
1110 		writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1111 		writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1112 		writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1113 		writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1114 
1115 		/* OPD */
1116 		writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1117 	} else {
1118 		rcntl &= ~FEC_ENET_FCE;
1119 	}
1120 #endif /* !defined(CONFIG_M5272) */
1121 
1122 	writel(rcntl, fep->hwp + FEC_R_CNTRL);
1123 
1124 	/* Setup multicast filter. */
1125 	set_multicast_list(ndev);
1126 #ifndef CONFIG_M5272
1127 	writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1128 	writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1129 #endif
1130 
1131 	if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1132 		/* enable ENET endian swap */
1133 		ecntl |= (1 << 8);
1134 		/* enable ENET store and forward mode */
1135 		writel(1 << 8, fep->hwp + FEC_X_WMRK);
1136 	}
1137 
1138 	if (fep->bufdesc_ex)
1139 		ecntl |= (1 << 4);
1140 
1141 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1142 	    fep->rgmii_txc_dly)
1143 		ecntl |= FEC_ENET_TXC_DLY;
1144 	if (fep->quirks & FEC_QUIRK_DELAYED_CLKS_SUPPORT &&
1145 	    fep->rgmii_rxc_dly)
1146 		ecntl |= FEC_ENET_RXC_DLY;
1147 
1148 #ifndef CONFIG_M5272
1149 	/* Enable the MIB statistic event counters */
1150 	writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1151 #endif
1152 
1153 	/* And last, enable the transmit and receive processing */
1154 	writel(ecntl, fep->hwp + FEC_ECNTRL);
1155 	fec_enet_active_rxring(ndev);
1156 
1157 	if (fep->bufdesc_ex)
1158 		fec_ptp_start_cyclecounter(ndev);
1159 
1160 	/* Enable interrupts we wish to service */
1161 	if (fep->link)
1162 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1163 	else
1164 		writel(0, fep->hwp + FEC_IMASK);
1165 
1166 	/* Init the interrupt coalescing */
1167 	fec_enet_itr_coal_init(ndev);
1168 
1169 }
1170 
1171 static void fec_enet_stop_mode(struct fec_enet_private *fep, bool enabled)
1172 {
1173 	struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1174 	struct fec_stop_mode_gpr *stop_gpr = &fep->stop_gpr;
1175 
1176 	if (stop_gpr->gpr) {
1177 		if (enabled)
1178 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1179 					   BIT(stop_gpr->bit),
1180 					   BIT(stop_gpr->bit));
1181 		else
1182 			regmap_update_bits(stop_gpr->gpr, stop_gpr->reg,
1183 					   BIT(stop_gpr->bit), 0);
1184 	} else if (pdata && pdata->sleep_mode_enable) {
1185 		pdata->sleep_mode_enable(enabled);
1186 	}
1187 }
1188 
1189 static void fec_irqs_disable(struct net_device *ndev)
1190 {
1191 	struct fec_enet_private *fep = netdev_priv(ndev);
1192 
1193 	writel(0, fep->hwp + FEC_IMASK);
1194 }
1195 
1196 static void fec_irqs_disable_except_wakeup(struct net_device *ndev)
1197 {
1198 	struct fec_enet_private *fep = netdev_priv(ndev);
1199 
1200 	writel(0, fep->hwp + FEC_IMASK);
1201 	writel(FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1202 }
1203 
1204 static void
1205 fec_stop(struct net_device *ndev)
1206 {
1207 	struct fec_enet_private *fep = netdev_priv(ndev);
1208 	u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1209 	u32 val;
1210 
1211 	/* We cannot expect a graceful transmit stop without link !!! */
1212 	if (fep->link) {
1213 		writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1214 		udelay(10);
1215 		if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1216 			netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1217 	}
1218 
1219 	/* Whack a reset.  We should wait for this.
1220 	 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1221 	 * instead of reset MAC itself.
1222 	 */
1223 	if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1224 		if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
1225 			writel(0, fep->hwp + FEC_ECNTRL);
1226 		} else {
1227 			writel(1, fep->hwp + FEC_ECNTRL);
1228 			udelay(10);
1229 		}
1230 	} else {
1231 		val = readl(fep->hwp + FEC_ECNTRL);
1232 		val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1233 		writel(val, fep->hwp + FEC_ECNTRL);
1234 	}
1235 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1236 	writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1237 
1238 	/* We have to keep ENET enabled to have MII interrupt stay working */
1239 	if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1240 		!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1241 		writel(2, fep->hwp + FEC_ECNTRL);
1242 		writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1243 	}
1244 }
1245 
1246 
1247 static void
1248 fec_timeout(struct net_device *ndev, unsigned int txqueue)
1249 {
1250 	struct fec_enet_private *fep = netdev_priv(ndev);
1251 
1252 	fec_dump(ndev);
1253 
1254 	ndev->stats.tx_errors++;
1255 
1256 	schedule_work(&fep->tx_timeout_work);
1257 }
1258 
1259 static void fec_enet_timeout_work(struct work_struct *work)
1260 {
1261 	struct fec_enet_private *fep =
1262 		container_of(work, struct fec_enet_private, tx_timeout_work);
1263 	struct net_device *ndev = fep->netdev;
1264 
1265 	rtnl_lock();
1266 	if (netif_device_present(ndev) || netif_running(ndev)) {
1267 		napi_disable(&fep->napi);
1268 		netif_tx_lock_bh(ndev);
1269 		fec_restart(ndev);
1270 		netif_tx_wake_all_queues(ndev);
1271 		netif_tx_unlock_bh(ndev);
1272 		napi_enable(&fep->napi);
1273 	}
1274 	rtnl_unlock();
1275 }
1276 
1277 static void
1278 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1279 	struct skb_shared_hwtstamps *hwtstamps)
1280 {
1281 	unsigned long flags;
1282 	u64 ns;
1283 
1284 	spin_lock_irqsave(&fep->tmreg_lock, flags);
1285 	ns = timecounter_cyc2time(&fep->tc, ts);
1286 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1287 
1288 	memset(hwtstamps, 0, sizeof(*hwtstamps));
1289 	hwtstamps->hwtstamp = ns_to_ktime(ns);
1290 }
1291 
1292 static void
1293 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1294 {
1295 	struct	fec_enet_private *fep;
1296 	struct bufdesc *bdp;
1297 	unsigned short status;
1298 	struct	sk_buff	*skb;
1299 	struct fec_enet_priv_tx_q *txq;
1300 	struct netdev_queue *nq;
1301 	int	index = 0;
1302 	int	entries_free;
1303 
1304 	fep = netdev_priv(ndev);
1305 
1306 	txq = fep->tx_queue[queue_id];
1307 	/* get next bdp of dirty_tx */
1308 	nq = netdev_get_tx_queue(ndev, queue_id);
1309 	bdp = txq->dirty_tx;
1310 
1311 	/* get next bdp of dirty_tx */
1312 	bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1313 
1314 	while (bdp != READ_ONCE(txq->bd.cur)) {
1315 		/* Order the load of bd.cur and cbd_sc */
1316 		rmb();
1317 		status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1318 		if (status & BD_ENET_TX_READY)
1319 			break;
1320 
1321 		index = fec_enet_get_bd_index(bdp, &txq->bd);
1322 
1323 		skb = txq->tx_skbuff[index];
1324 		txq->tx_skbuff[index] = NULL;
1325 		if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1326 			dma_unmap_single(&fep->pdev->dev,
1327 					 fec32_to_cpu(bdp->cbd_bufaddr),
1328 					 fec16_to_cpu(bdp->cbd_datlen),
1329 					 DMA_TO_DEVICE);
1330 		bdp->cbd_bufaddr = cpu_to_fec32(0);
1331 		if (!skb)
1332 			goto skb_done;
1333 
1334 		/* Check for errors. */
1335 		if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1336 				   BD_ENET_TX_RL | BD_ENET_TX_UN |
1337 				   BD_ENET_TX_CSL)) {
1338 			ndev->stats.tx_errors++;
1339 			if (status & BD_ENET_TX_HB)  /* No heartbeat */
1340 				ndev->stats.tx_heartbeat_errors++;
1341 			if (status & BD_ENET_TX_LC)  /* Late collision */
1342 				ndev->stats.tx_window_errors++;
1343 			if (status & BD_ENET_TX_RL)  /* Retrans limit */
1344 				ndev->stats.tx_aborted_errors++;
1345 			if (status & BD_ENET_TX_UN)  /* Underrun */
1346 				ndev->stats.tx_fifo_errors++;
1347 			if (status & BD_ENET_TX_CSL) /* Carrier lost */
1348 				ndev->stats.tx_carrier_errors++;
1349 		} else {
1350 			ndev->stats.tx_packets++;
1351 			ndev->stats.tx_bytes += skb->len;
1352 		}
1353 
1354 		/* NOTE: SKBTX_IN_PROGRESS being set does not imply it's we who
1355 		 * are to time stamp the packet, so we still need to check time
1356 		 * stamping enabled flag.
1357 		 */
1358 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS &&
1359 			     fep->hwts_tx_en) &&
1360 		    fep->bufdesc_ex) {
1361 			struct skb_shared_hwtstamps shhwtstamps;
1362 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1363 
1364 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1365 			skb_tstamp_tx(skb, &shhwtstamps);
1366 		}
1367 
1368 		/* Deferred means some collisions occurred during transmit,
1369 		 * but we eventually sent the packet OK.
1370 		 */
1371 		if (status & BD_ENET_TX_DEF)
1372 			ndev->stats.collisions++;
1373 
1374 		/* Free the sk buffer associated with this last transmit */
1375 		dev_kfree_skb_any(skb);
1376 skb_done:
1377 		/* Make sure the update to bdp and tx_skbuff are performed
1378 		 * before dirty_tx
1379 		 */
1380 		wmb();
1381 		txq->dirty_tx = bdp;
1382 
1383 		/* Update pointer to next buffer descriptor to be transmitted */
1384 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1385 
1386 		/* Since we have freed up a buffer, the ring is no longer full
1387 		 */
1388 		if (netif_tx_queue_stopped(nq)) {
1389 			entries_free = fec_enet_get_free_txdesc_num(txq);
1390 			if (entries_free >= txq->tx_wake_threshold)
1391 				netif_tx_wake_queue(nq);
1392 		}
1393 	}
1394 
1395 	/* ERR006358: Keep the transmitter going */
1396 	if (bdp != txq->bd.cur &&
1397 	    readl(txq->bd.reg_desc_active) == 0)
1398 		writel(0, txq->bd.reg_desc_active);
1399 }
1400 
1401 static void fec_enet_tx(struct net_device *ndev)
1402 {
1403 	struct fec_enet_private *fep = netdev_priv(ndev);
1404 	int i;
1405 
1406 	/* Make sure that AVB queues are processed first. */
1407 	for (i = fep->num_tx_queues - 1; i >= 0; i--)
1408 		fec_enet_tx_queue(ndev, i);
1409 }
1410 
1411 static int
1412 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1413 {
1414 	struct  fec_enet_private *fep = netdev_priv(ndev);
1415 	int off;
1416 
1417 	off = ((unsigned long)skb->data) & fep->rx_align;
1418 	if (off)
1419 		skb_reserve(skb, fep->rx_align + 1 - off);
1420 
1421 	bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1422 	if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1423 		if (net_ratelimit())
1424 			netdev_err(ndev, "Rx DMA memory map failed\n");
1425 		return -ENOMEM;
1426 	}
1427 
1428 	return 0;
1429 }
1430 
1431 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1432 			       struct bufdesc *bdp, u32 length, bool swap)
1433 {
1434 	struct  fec_enet_private *fep = netdev_priv(ndev);
1435 	struct sk_buff *new_skb;
1436 
1437 	if (length > fep->rx_copybreak)
1438 		return false;
1439 
1440 	new_skb = netdev_alloc_skb(ndev, length);
1441 	if (!new_skb)
1442 		return false;
1443 
1444 	dma_sync_single_for_cpu(&fep->pdev->dev,
1445 				fec32_to_cpu(bdp->cbd_bufaddr),
1446 				FEC_ENET_RX_FRSIZE - fep->rx_align,
1447 				DMA_FROM_DEVICE);
1448 	if (!swap)
1449 		memcpy(new_skb->data, (*skb)->data, length);
1450 	else
1451 		swap_buffer2(new_skb->data, (*skb)->data, length);
1452 	*skb = new_skb;
1453 
1454 	return true;
1455 }
1456 
1457 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1458  * When we update through the ring, if the next incoming buffer has
1459  * not been given to the system, we just set the empty indicator,
1460  * effectively tossing the packet.
1461  */
1462 static int
1463 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1464 {
1465 	struct fec_enet_private *fep = netdev_priv(ndev);
1466 	struct fec_enet_priv_rx_q *rxq;
1467 	struct bufdesc *bdp;
1468 	unsigned short status;
1469 	struct  sk_buff *skb_new = NULL;
1470 	struct  sk_buff *skb;
1471 	ushort	pkt_len;
1472 	__u8 *data;
1473 	int	pkt_received = 0;
1474 	struct	bufdesc_ex *ebdp = NULL;
1475 	bool	vlan_packet_rcvd = false;
1476 	u16	vlan_tag;
1477 	int	index = 0;
1478 	bool	is_copybreak;
1479 	bool	need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1480 
1481 #ifdef CONFIG_M532x
1482 	flush_cache_all();
1483 #endif
1484 	rxq = fep->rx_queue[queue_id];
1485 
1486 	/* First, grab all of the stats for the incoming packet.
1487 	 * These get messed up if we get called due to a busy condition.
1488 	 */
1489 	bdp = rxq->bd.cur;
1490 
1491 	while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1492 
1493 		if (pkt_received >= budget)
1494 			break;
1495 		pkt_received++;
1496 
1497 		writel(FEC_ENET_RXF_GET(queue_id), fep->hwp + FEC_IEVENT);
1498 
1499 		/* Check for errors. */
1500 		status ^= BD_ENET_RX_LAST;
1501 		if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1502 			   BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1503 			   BD_ENET_RX_CL)) {
1504 			ndev->stats.rx_errors++;
1505 			if (status & BD_ENET_RX_OV) {
1506 				/* FIFO overrun */
1507 				ndev->stats.rx_fifo_errors++;
1508 				goto rx_processing_done;
1509 			}
1510 			if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1511 						| BD_ENET_RX_LAST)) {
1512 				/* Frame too long or too short. */
1513 				ndev->stats.rx_length_errors++;
1514 				if (status & BD_ENET_RX_LAST)
1515 					netdev_err(ndev, "rcv is not +last\n");
1516 			}
1517 			if (status & BD_ENET_RX_CR)	/* CRC Error */
1518 				ndev->stats.rx_crc_errors++;
1519 			/* Report late collisions as a frame error. */
1520 			if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1521 				ndev->stats.rx_frame_errors++;
1522 			goto rx_processing_done;
1523 		}
1524 
1525 		/* Process the incoming frame. */
1526 		ndev->stats.rx_packets++;
1527 		pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1528 		ndev->stats.rx_bytes += pkt_len;
1529 
1530 		index = fec_enet_get_bd_index(bdp, &rxq->bd);
1531 		skb = rxq->rx_skbuff[index];
1532 
1533 		/* The packet length includes FCS, but we don't want to
1534 		 * include that when passing upstream as it messes up
1535 		 * bridging applications.
1536 		 */
1537 		is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1538 						  need_swap);
1539 		if (!is_copybreak) {
1540 			skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1541 			if (unlikely(!skb_new)) {
1542 				ndev->stats.rx_dropped++;
1543 				goto rx_processing_done;
1544 			}
1545 			dma_unmap_single(&fep->pdev->dev,
1546 					 fec32_to_cpu(bdp->cbd_bufaddr),
1547 					 FEC_ENET_RX_FRSIZE - fep->rx_align,
1548 					 DMA_FROM_DEVICE);
1549 		}
1550 
1551 		prefetch(skb->data - NET_IP_ALIGN);
1552 		skb_put(skb, pkt_len - 4);
1553 		data = skb->data;
1554 
1555 		if (!is_copybreak && need_swap)
1556 			swap_buffer(data, pkt_len);
1557 
1558 #if !defined(CONFIG_M5272)
1559 		if (fep->quirks & FEC_QUIRK_HAS_RACC)
1560 			data = skb_pull_inline(skb, 2);
1561 #endif
1562 
1563 		/* Extract the enhanced buffer descriptor */
1564 		ebdp = NULL;
1565 		if (fep->bufdesc_ex)
1566 			ebdp = (struct bufdesc_ex *)bdp;
1567 
1568 		/* If this is a VLAN packet remove the VLAN Tag */
1569 		vlan_packet_rcvd = false;
1570 		if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1571 		    fep->bufdesc_ex &&
1572 		    (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1573 			/* Push and remove the vlan tag */
1574 			struct vlan_hdr *vlan_header =
1575 					(struct vlan_hdr *) (data + ETH_HLEN);
1576 			vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1577 
1578 			vlan_packet_rcvd = true;
1579 
1580 			memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1581 			skb_pull(skb, VLAN_HLEN);
1582 		}
1583 
1584 		skb->protocol = eth_type_trans(skb, ndev);
1585 
1586 		/* Get receive timestamp from the skb */
1587 		if (fep->hwts_rx_en && fep->bufdesc_ex)
1588 			fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1589 					  skb_hwtstamps(skb));
1590 
1591 		if (fep->bufdesc_ex &&
1592 		    (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1593 			if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1594 				/* don't check it */
1595 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1596 			} else {
1597 				skb_checksum_none_assert(skb);
1598 			}
1599 		}
1600 
1601 		/* Handle received VLAN packets */
1602 		if (vlan_packet_rcvd)
1603 			__vlan_hwaccel_put_tag(skb,
1604 					       htons(ETH_P_8021Q),
1605 					       vlan_tag);
1606 
1607 		skb_record_rx_queue(skb, queue_id);
1608 		napi_gro_receive(&fep->napi, skb);
1609 
1610 		if (is_copybreak) {
1611 			dma_sync_single_for_device(&fep->pdev->dev,
1612 						   fec32_to_cpu(bdp->cbd_bufaddr),
1613 						   FEC_ENET_RX_FRSIZE - fep->rx_align,
1614 						   DMA_FROM_DEVICE);
1615 		} else {
1616 			rxq->rx_skbuff[index] = skb_new;
1617 			fec_enet_new_rxbdp(ndev, bdp, skb_new);
1618 		}
1619 
1620 rx_processing_done:
1621 		/* Clear the status flags for this buffer */
1622 		status &= ~BD_ENET_RX_STATS;
1623 
1624 		/* Mark the buffer empty */
1625 		status |= BD_ENET_RX_EMPTY;
1626 
1627 		if (fep->bufdesc_ex) {
1628 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1629 
1630 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1631 			ebdp->cbd_prot = 0;
1632 			ebdp->cbd_bdu = 0;
1633 		}
1634 		/* Make sure the updates to rest of the descriptor are
1635 		 * performed before transferring ownership.
1636 		 */
1637 		wmb();
1638 		bdp->cbd_sc = cpu_to_fec16(status);
1639 
1640 		/* Update BD pointer to next entry */
1641 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1642 
1643 		/* Doing this here will keep the FEC running while we process
1644 		 * incoming frames.  On a heavily loaded network, we should be
1645 		 * able to keep up at the expense of system resources.
1646 		 */
1647 		writel(0, rxq->bd.reg_desc_active);
1648 	}
1649 	rxq->bd.cur = bdp;
1650 	return pkt_received;
1651 }
1652 
1653 static int fec_enet_rx(struct net_device *ndev, int budget)
1654 {
1655 	struct fec_enet_private *fep = netdev_priv(ndev);
1656 	int i, done = 0;
1657 
1658 	/* Make sure that AVB queues are processed first. */
1659 	for (i = fep->num_rx_queues - 1; i >= 0; i--)
1660 		done += fec_enet_rx_queue(ndev, budget - done, i);
1661 
1662 	return done;
1663 }
1664 
1665 static bool fec_enet_collect_events(struct fec_enet_private *fep)
1666 {
1667 	uint int_events;
1668 
1669 	int_events = readl(fep->hwp + FEC_IEVENT);
1670 
1671 	/* Don't clear MDIO events, we poll for those */
1672 	int_events &= ~FEC_ENET_MII;
1673 
1674 	writel(int_events, fep->hwp + FEC_IEVENT);
1675 
1676 	return int_events != 0;
1677 }
1678 
1679 static irqreturn_t
1680 fec_enet_interrupt(int irq, void *dev_id)
1681 {
1682 	struct net_device *ndev = dev_id;
1683 	struct fec_enet_private *fep = netdev_priv(ndev);
1684 	irqreturn_t ret = IRQ_NONE;
1685 
1686 	if (fec_enet_collect_events(fep) && fep->link) {
1687 		ret = IRQ_HANDLED;
1688 
1689 		if (napi_schedule_prep(&fep->napi)) {
1690 			/* Disable interrupts */
1691 			writel(0, fep->hwp + FEC_IMASK);
1692 			__napi_schedule(&fep->napi);
1693 		}
1694 	}
1695 
1696 	return ret;
1697 }
1698 
1699 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1700 {
1701 	struct net_device *ndev = napi->dev;
1702 	struct fec_enet_private *fep = netdev_priv(ndev);
1703 	int done = 0;
1704 
1705 	do {
1706 		done += fec_enet_rx(ndev, budget - done);
1707 		fec_enet_tx(ndev);
1708 	} while ((done < budget) && fec_enet_collect_events(fep));
1709 
1710 	if (done < budget) {
1711 		napi_complete_done(napi, done);
1712 		writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1713 	}
1714 
1715 	return done;
1716 }
1717 
1718 /* ------------------------------------------------------------------------- */
1719 static int fec_get_mac(struct net_device *ndev)
1720 {
1721 	struct fec_enet_private *fep = netdev_priv(ndev);
1722 	unsigned char *iap, tmpaddr[ETH_ALEN];
1723 	int ret;
1724 
1725 	/*
1726 	 * try to get mac address in following order:
1727 	 *
1728 	 * 1) module parameter via kernel command line in form
1729 	 *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1730 	 */
1731 	iap = macaddr;
1732 
1733 	/*
1734 	 * 2) from device tree data
1735 	 */
1736 	if (!is_valid_ether_addr(iap)) {
1737 		struct device_node *np = fep->pdev->dev.of_node;
1738 		if (np) {
1739 			ret = of_get_mac_address(np, tmpaddr);
1740 			if (!ret)
1741 				iap = tmpaddr;
1742 			else if (ret == -EPROBE_DEFER)
1743 				return ret;
1744 		}
1745 	}
1746 
1747 	/*
1748 	 * 3) from flash or fuse (via platform data)
1749 	 */
1750 	if (!is_valid_ether_addr(iap)) {
1751 #ifdef CONFIG_M5272
1752 		if (FEC_FLASHMAC)
1753 			iap = (unsigned char *)FEC_FLASHMAC;
1754 #else
1755 		struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1756 
1757 		if (pdata)
1758 			iap = (unsigned char *)&pdata->mac;
1759 #endif
1760 	}
1761 
1762 	/*
1763 	 * 4) FEC mac registers set by bootloader
1764 	 */
1765 	if (!is_valid_ether_addr(iap)) {
1766 		*((__be32 *) &tmpaddr[0]) =
1767 			cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1768 		*((__be16 *) &tmpaddr[4]) =
1769 			cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1770 		iap = &tmpaddr[0];
1771 	}
1772 
1773 	/*
1774 	 * 5) random mac address
1775 	 */
1776 	if (!is_valid_ether_addr(iap)) {
1777 		/* Report it and use a random ethernet address instead */
1778 		dev_err(&fep->pdev->dev, "Invalid MAC address: %pM\n", iap);
1779 		eth_hw_addr_random(ndev);
1780 		dev_info(&fep->pdev->dev, "Using random MAC address: %pM\n",
1781 			 ndev->dev_addr);
1782 		return 0;
1783 	}
1784 
1785 	/* Adjust MAC if using macaddr */
1786 	eth_hw_addr_gen(ndev, iap, iap == macaddr ? fep->dev_id : 0);
1787 
1788 	return 0;
1789 }
1790 
1791 /* ------------------------------------------------------------------------- */
1792 
1793 /*
1794  * Phy section
1795  */
1796 static void fec_enet_adjust_link(struct net_device *ndev)
1797 {
1798 	struct fec_enet_private *fep = netdev_priv(ndev);
1799 	struct phy_device *phy_dev = ndev->phydev;
1800 	int status_change = 0;
1801 
1802 	/*
1803 	 * If the netdev is down, or is going down, we're not interested
1804 	 * in link state events, so just mark our idea of the link as down
1805 	 * and ignore the event.
1806 	 */
1807 	if (!netif_running(ndev) || !netif_device_present(ndev)) {
1808 		fep->link = 0;
1809 	} else if (phy_dev->link) {
1810 		if (!fep->link) {
1811 			fep->link = phy_dev->link;
1812 			status_change = 1;
1813 		}
1814 
1815 		if (fep->full_duplex != phy_dev->duplex) {
1816 			fep->full_duplex = phy_dev->duplex;
1817 			status_change = 1;
1818 		}
1819 
1820 		if (phy_dev->speed != fep->speed) {
1821 			fep->speed = phy_dev->speed;
1822 			status_change = 1;
1823 		}
1824 
1825 		/* if any of the above changed restart the FEC */
1826 		if (status_change) {
1827 			napi_disable(&fep->napi);
1828 			netif_tx_lock_bh(ndev);
1829 			fec_restart(ndev);
1830 			netif_tx_wake_all_queues(ndev);
1831 			netif_tx_unlock_bh(ndev);
1832 			napi_enable(&fep->napi);
1833 		}
1834 	} else {
1835 		if (fep->link) {
1836 			napi_disable(&fep->napi);
1837 			netif_tx_lock_bh(ndev);
1838 			fec_stop(ndev);
1839 			netif_tx_unlock_bh(ndev);
1840 			napi_enable(&fep->napi);
1841 			fep->link = phy_dev->link;
1842 			status_change = 1;
1843 		}
1844 	}
1845 
1846 	if (status_change)
1847 		phy_print_status(phy_dev);
1848 }
1849 
1850 static int fec_enet_mdio_wait(struct fec_enet_private *fep)
1851 {
1852 	uint ievent;
1853 	int ret;
1854 
1855 	ret = readl_poll_timeout_atomic(fep->hwp + FEC_IEVENT, ievent,
1856 					ievent & FEC_ENET_MII, 2, 30000);
1857 
1858 	if (!ret)
1859 		writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
1860 
1861 	return ret;
1862 }
1863 
1864 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1865 {
1866 	struct fec_enet_private *fep = bus->priv;
1867 	struct device *dev = &fep->pdev->dev;
1868 	int ret = 0, frame_start, frame_addr, frame_op;
1869 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1870 
1871 	ret = pm_runtime_resume_and_get(dev);
1872 	if (ret < 0)
1873 		return ret;
1874 
1875 	if (is_c45) {
1876 		frame_start = FEC_MMFR_ST_C45;
1877 
1878 		/* write address */
1879 		frame_addr = (regnum >> 16);
1880 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1881 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1882 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1883 		       fep->hwp + FEC_MII_DATA);
1884 
1885 		/* wait for end of transfer */
1886 		ret = fec_enet_mdio_wait(fep);
1887 		if (ret) {
1888 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1889 			goto out;
1890 		}
1891 
1892 		frame_op = FEC_MMFR_OP_READ_C45;
1893 
1894 	} else {
1895 		/* C22 read */
1896 		frame_op = FEC_MMFR_OP_READ;
1897 		frame_start = FEC_MMFR_ST;
1898 		frame_addr = regnum;
1899 	}
1900 
1901 	/* start a read op */
1902 	writel(frame_start | frame_op |
1903 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1904 		FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1905 
1906 	/* wait for end of transfer */
1907 	ret = fec_enet_mdio_wait(fep);
1908 	if (ret) {
1909 		netdev_err(fep->netdev, "MDIO read timeout\n");
1910 		goto out;
1911 	}
1912 
1913 	ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1914 
1915 out:
1916 	pm_runtime_mark_last_busy(dev);
1917 	pm_runtime_put_autosuspend(dev);
1918 
1919 	return ret;
1920 }
1921 
1922 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1923 			   u16 value)
1924 {
1925 	struct fec_enet_private *fep = bus->priv;
1926 	struct device *dev = &fep->pdev->dev;
1927 	int ret, frame_start, frame_addr;
1928 	bool is_c45 = !!(regnum & MII_ADDR_C45);
1929 
1930 	ret = pm_runtime_resume_and_get(dev);
1931 	if (ret < 0)
1932 		return ret;
1933 
1934 	if (is_c45) {
1935 		frame_start = FEC_MMFR_ST_C45;
1936 
1937 		/* write address */
1938 		frame_addr = (regnum >> 16);
1939 		writel(frame_start | FEC_MMFR_OP_ADDR_WRITE |
1940 		       FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1941 		       FEC_MMFR_TA | (regnum & 0xFFFF),
1942 		       fep->hwp + FEC_MII_DATA);
1943 
1944 		/* wait for end of transfer */
1945 		ret = fec_enet_mdio_wait(fep);
1946 		if (ret) {
1947 			netdev_err(fep->netdev, "MDIO address write timeout\n");
1948 			goto out;
1949 		}
1950 	} else {
1951 		/* C22 write */
1952 		frame_start = FEC_MMFR_ST;
1953 		frame_addr = regnum;
1954 	}
1955 
1956 	/* start a write op */
1957 	writel(frame_start | FEC_MMFR_OP_WRITE |
1958 		FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(frame_addr) |
1959 		FEC_MMFR_TA | FEC_MMFR_DATA(value),
1960 		fep->hwp + FEC_MII_DATA);
1961 
1962 	/* wait for end of transfer */
1963 	ret = fec_enet_mdio_wait(fep);
1964 	if (ret)
1965 		netdev_err(fep->netdev, "MDIO write timeout\n");
1966 
1967 out:
1968 	pm_runtime_mark_last_busy(dev);
1969 	pm_runtime_put_autosuspend(dev);
1970 
1971 	return ret;
1972 }
1973 
1974 static void fec_enet_phy_reset_after_clk_enable(struct net_device *ndev)
1975 {
1976 	struct fec_enet_private *fep = netdev_priv(ndev);
1977 	struct phy_device *phy_dev = ndev->phydev;
1978 
1979 	if (phy_dev) {
1980 		phy_reset_after_clk_enable(phy_dev);
1981 	} else if (fep->phy_node) {
1982 		/*
1983 		 * If the PHY still is not bound to the MAC, but there is
1984 		 * OF PHY node and a matching PHY device instance already,
1985 		 * use the OF PHY node to obtain the PHY device instance,
1986 		 * and then use that PHY device instance when triggering
1987 		 * the PHY reset.
1988 		 */
1989 		phy_dev = of_phy_find_device(fep->phy_node);
1990 		phy_reset_after_clk_enable(phy_dev);
1991 		put_device(&phy_dev->mdio.dev);
1992 	}
1993 }
1994 
1995 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1996 {
1997 	struct fec_enet_private *fep = netdev_priv(ndev);
1998 	int ret;
1999 
2000 	if (enable) {
2001 		ret = clk_prepare_enable(fep->clk_enet_out);
2002 		if (ret)
2003 			return ret;
2004 
2005 		if (fep->clk_ptp) {
2006 			mutex_lock(&fep->ptp_clk_mutex);
2007 			ret = clk_prepare_enable(fep->clk_ptp);
2008 			if (ret) {
2009 				mutex_unlock(&fep->ptp_clk_mutex);
2010 				goto failed_clk_ptp;
2011 			} else {
2012 				fep->ptp_clk_on = true;
2013 			}
2014 			mutex_unlock(&fep->ptp_clk_mutex);
2015 		}
2016 
2017 		ret = clk_prepare_enable(fep->clk_ref);
2018 		if (ret)
2019 			goto failed_clk_ref;
2020 
2021 		ret = clk_prepare_enable(fep->clk_2x_txclk);
2022 		if (ret)
2023 			goto failed_clk_2x_txclk;
2024 
2025 		fec_enet_phy_reset_after_clk_enable(ndev);
2026 	} else {
2027 		clk_disable_unprepare(fep->clk_enet_out);
2028 		if (fep->clk_ptp) {
2029 			mutex_lock(&fep->ptp_clk_mutex);
2030 			clk_disable_unprepare(fep->clk_ptp);
2031 			fep->ptp_clk_on = false;
2032 			mutex_unlock(&fep->ptp_clk_mutex);
2033 		}
2034 		clk_disable_unprepare(fep->clk_ref);
2035 		clk_disable_unprepare(fep->clk_2x_txclk);
2036 	}
2037 
2038 	return 0;
2039 
2040 failed_clk_2x_txclk:
2041 	if (fep->clk_ref)
2042 		clk_disable_unprepare(fep->clk_ref);
2043 failed_clk_ref:
2044 	if (fep->clk_ptp) {
2045 		mutex_lock(&fep->ptp_clk_mutex);
2046 		clk_disable_unprepare(fep->clk_ptp);
2047 		fep->ptp_clk_on = false;
2048 		mutex_unlock(&fep->ptp_clk_mutex);
2049 	}
2050 failed_clk_ptp:
2051 	clk_disable_unprepare(fep->clk_enet_out);
2052 
2053 	return ret;
2054 }
2055 
2056 static int fec_enet_parse_rgmii_delay(struct fec_enet_private *fep,
2057 				      struct device_node *np)
2058 {
2059 	u32 rgmii_tx_delay, rgmii_rx_delay;
2060 
2061 	/* For rgmii tx internal delay, valid values are 0ps and 2000ps */
2062 	if (!of_property_read_u32(np, "tx-internal-delay-ps", &rgmii_tx_delay)) {
2063 		if (rgmii_tx_delay != 0 && rgmii_tx_delay != 2000) {
2064 			dev_err(&fep->pdev->dev, "The only allowed RGMII TX delay values are: 0ps, 2000ps");
2065 			return -EINVAL;
2066 		} else if (rgmii_tx_delay == 2000) {
2067 			fep->rgmii_txc_dly = true;
2068 		}
2069 	}
2070 
2071 	/* For rgmii rx internal delay, valid values are 0ps and 2000ps */
2072 	if (!of_property_read_u32(np, "rx-internal-delay-ps", &rgmii_rx_delay)) {
2073 		if (rgmii_rx_delay != 0 && rgmii_rx_delay != 2000) {
2074 			dev_err(&fep->pdev->dev, "The only allowed RGMII RX delay values are: 0ps, 2000ps");
2075 			return -EINVAL;
2076 		} else if (rgmii_rx_delay == 2000) {
2077 			fep->rgmii_rxc_dly = true;
2078 		}
2079 	}
2080 
2081 	return 0;
2082 }
2083 
2084 static int fec_enet_mii_probe(struct net_device *ndev)
2085 {
2086 	struct fec_enet_private *fep = netdev_priv(ndev);
2087 	struct phy_device *phy_dev = NULL;
2088 	char mdio_bus_id[MII_BUS_ID_SIZE];
2089 	char phy_name[MII_BUS_ID_SIZE + 3];
2090 	int phy_id;
2091 	int dev_id = fep->dev_id;
2092 
2093 	if (fep->phy_node) {
2094 		phy_dev = of_phy_connect(ndev, fep->phy_node,
2095 					 &fec_enet_adjust_link, 0,
2096 					 fep->phy_interface);
2097 		if (!phy_dev) {
2098 			netdev_err(ndev, "Unable to connect to phy\n");
2099 			return -ENODEV;
2100 		}
2101 	} else {
2102 		/* check for attached phy */
2103 		for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
2104 			if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
2105 				continue;
2106 			if (dev_id--)
2107 				continue;
2108 			strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
2109 			break;
2110 		}
2111 
2112 		if (phy_id >= PHY_MAX_ADDR) {
2113 			netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
2114 			strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
2115 			phy_id = 0;
2116 		}
2117 
2118 		snprintf(phy_name, sizeof(phy_name),
2119 			 PHY_ID_FMT, mdio_bus_id, phy_id);
2120 		phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
2121 				      fep->phy_interface);
2122 	}
2123 
2124 	if (IS_ERR(phy_dev)) {
2125 		netdev_err(ndev, "could not attach to PHY\n");
2126 		return PTR_ERR(phy_dev);
2127 	}
2128 
2129 	/* mask with MAC supported features */
2130 	if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
2131 		phy_set_max_speed(phy_dev, 1000);
2132 		phy_remove_link_mode(phy_dev,
2133 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
2134 #if !defined(CONFIG_M5272)
2135 		phy_support_sym_pause(phy_dev);
2136 #endif
2137 	}
2138 	else
2139 		phy_set_max_speed(phy_dev, 100);
2140 
2141 	fep->link = 0;
2142 	fep->full_duplex = 0;
2143 
2144 	phy_dev->mac_managed_pm = 1;
2145 
2146 	phy_attached_info(phy_dev);
2147 
2148 	return 0;
2149 }
2150 
2151 static int fec_enet_mii_init(struct platform_device *pdev)
2152 {
2153 	static struct mii_bus *fec0_mii_bus;
2154 	struct net_device *ndev = platform_get_drvdata(pdev);
2155 	struct fec_enet_private *fep = netdev_priv(ndev);
2156 	bool suppress_preamble = false;
2157 	struct device_node *node;
2158 	int err = -ENXIO;
2159 	u32 mii_speed, holdtime;
2160 	u32 bus_freq;
2161 
2162 	/*
2163 	 * The i.MX28 dual fec interfaces are not equal.
2164 	 * Here are the differences:
2165 	 *
2166 	 *  - fec0 supports MII & RMII modes while fec1 only supports RMII
2167 	 *  - fec0 acts as the 1588 time master while fec1 is slave
2168 	 *  - external phys can only be configured by fec0
2169 	 *
2170 	 * That is to say fec1 can not work independently. It only works
2171 	 * when fec0 is working. The reason behind this design is that the
2172 	 * second interface is added primarily for Switch mode.
2173 	 *
2174 	 * Because of the last point above, both phys are attached on fec0
2175 	 * mdio interface in board design, and need to be configured by
2176 	 * fec0 mii_bus.
2177 	 */
2178 	if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2179 		/* fec1 uses fec0 mii_bus */
2180 		if (mii_cnt && fec0_mii_bus) {
2181 			fep->mii_bus = fec0_mii_bus;
2182 			mii_cnt++;
2183 			return 0;
2184 		}
2185 		return -ENOENT;
2186 	}
2187 
2188 	bus_freq = 2500000; /* 2.5MHz by default */
2189 	node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2190 	if (node) {
2191 		of_property_read_u32(node, "clock-frequency", &bus_freq);
2192 		suppress_preamble = of_property_read_bool(node,
2193 							  "suppress-preamble");
2194 	}
2195 
2196 	/*
2197 	 * Set MII speed (= clk_get_rate() / 2 * phy_speed)
2198 	 *
2199 	 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2200 	 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2201 	 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2202 	 * document.
2203 	 */
2204 	mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), bus_freq * 2);
2205 	if (fep->quirks & FEC_QUIRK_ENET_MAC)
2206 		mii_speed--;
2207 	if (mii_speed > 63) {
2208 		dev_err(&pdev->dev,
2209 			"fec clock (%lu) too fast to get right mii speed\n",
2210 			clk_get_rate(fep->clk_ipg));
2211 		err = -EINVAL;
2212 		goto err_out;
2213 	}
2214 
2215 	/*
2216 	 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2217 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2218 	 * versions are RAZ there, so just ignore the difference and write the
2219 	 * register always.
2220 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2221 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2222 	 * output.
2223 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2224 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2225 	 * holdtime cannot result in a value greater than 3.
2226 	 */
2227 	holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2228 
2229 	fep->phy_speed = mii_speed << 1 | holdtime << 8;
2230 
2231 	if (suppress_preamble)
2232 		fep->phy_speed |= BIT(7);
2233 
2234 	if (fep->quirks & FEC_QUIRK_CLEAR_SETUP_MII) {
2235 		/* Clear MMFR to avoid to generate MII event by writing MSCR.
2236 		 * MII event generation condition:
2237 		 * - writing MSCR:
2238 		 *	- mmfr[31:0]_not_zero & mscr[7:0]_is_zero &
2239 		 *	  mscr_reg_data_in[7:0] != 0
2240 		 * - writing MMFR:
2241 		 *	- mscr[7:0]_not_zero
2242 		 */
2243 		writel(0, fep->hwp + FEC_MII_DATA);
2244 	}
2245 
2246 	writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2247 
2248 	/* Clear any pending transaction complete indication */
2249 	writel(FEC_ENET_MII, fep->hwp + FEC_IEVENT);
2250 
2251 	fep->mii_bus = mdiobus_alloc();
2252 	if (fep->mii_bus == NULL) {
2253 		err = -ENOMEM;
2254 		goto err_out;
2255 	}
2256 
2257 	fep->mii_bus->name = "fec_enet_mii_bus";
2258 	fep->mii_bus->read = fec_enet_mdio_read;
2259 	fep->mii_bus->write = fec_enet_mdio_write;
2260 	snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2261 		pdev->name, fep->dev_id + 1);
2262 	fep->mii_bus->priv = fep;
2263 	fep->mii_bus->parent = &pdev->dev;
2264 
2265 	err = of_mdiobus_register(fep->mii_bus, node);
2266 	if (err)
2267 		goto err_out_free_mdiobus;
2268 	of_node_put(node);
2269 
2270 	mii_cnt++;
2271 
2272 	/* save fec0 mii_bus */
2273 	if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2274 		fec0_mii_bus = fep->mii_bus;
2275 
2276 	return 0;
2277 
2278 err_out_free_mdiobus:
2279 	mdiobus_free(fep->mii_bus);
2280 err_out:
2281 	of_node_put(node);
2282 	return err;
2283 }
2284 
2285 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2286 {
2287 	if (--mii_cnt == 0) {
2288 		mdiobus_unregister(fep->mii_bus);
2289 		mdiobus_free(fep->mii_bus);
2290 	}
2291 }
2292 
2293 static void fec_enet_get_drvinfo(struct net_device *ndev,
2294 				 struct ethtool_drvinfo *info)
2295 {
2296 	struct fec_enet_private *fep = netdev_priv(ndev);
2297 
2298 	strlcpy(info->driver, fep->pdev->dev.driver->name,
2299 		sizeof(info->driver));
2300 	strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2301 }
2302 
2303 static int fec_enet_get_regs_len(struct net_device *ndev)
2304 {
2305 	struct fec_enet_private *fep = netdev_priv(ndev);
2306 	struct resource *r;
2307 	int s = 0;
2308 
2309 	r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2310 	if (r)
2311 		s = resource_size(r);
2312 
2313 	return s;
2314 }
2315 
2316 /* List of registers that can be safety be read to dump them with ethtool */
2317 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2318 	defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) || \
2319 	defined(CONFIG_ARM64) || defined(CONFIG_COMPILE_TEST)
2320 static __u32 fec_enet_register_version = 2;
2321 static u32 fec_enet_register_offset[] = {
2322 	FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2323 	FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2324 	FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2325 	FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2326 	FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2327 	FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2328 	FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2329 	FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2330 	FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2331 	FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2332 	FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2333 	FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2334 	RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2335 	RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2336 	RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2337 	RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2338 	RMON_T_P_GTE2048, RMON_T_OCTETS,
2339 	IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2340 	IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2341 	IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2342 	RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2343 	RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2344 	RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2345 	RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2346 	RMON_R_P_GTE2048, RMON_R_OCTETS,
2347 	IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2348 	IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2349 };
2350 #else
2351 static __u32 fec_enet_register_version = 1;
2352 static u32 fec_enet_register_offset[] = {
2353 	FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2354 	FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2355 	FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2356 	FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2357 	FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2358 	FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2359 	FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2360 	FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2361 	FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2362 };
2363 #endif
2364 
2365 static void fec_enet_get_regs(struct net_device *ndev,
2366 			      struct ethtool_regs *regs, void *regbuf)
2367 {
2368 	struct fec_enet_private *fep = netdev_priv(ndev);
2369 	u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2370 	struct device *dev = &fep->pdev->dev;
2371 	u32 *buf = (u32 *)regbuf;
2372 	u32 i, off;
2373 	int ret;
2374 
2375 	ret = pm_runtime_resume_and_get(dev);
2376 	if (ret < 0)
2377 		return;
2378 
2379 	regs->version = fec_enet_register_version;
2380 
2381 	memset(buf, 0, regs->len);
2382 
2383 	for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2384 		off = fec_enet_register_offset[i];
2385 
2386 		if ((off == FEC_R_BOUND || off == FEC_R_FSTART) &&
2387 		    !(fep->quirks & FEC_QUIRK_HAS_FRREG))
2388 			continue;
2389 
2390 		off >>= 2;
2391 		buf[off] = readl(&theregs[off]);
2392 	}
2393 
2394 	pm_runtime_mark_last_busy(dev);
2395 	pm_runtime_put_autosuspend(dev);
2396 }
2397 
2398 static int fec_enet_get_ts_info(struct net_device *ndev,
2399 				struct ethtool_ts_info *info)
2400 {
2401 	struct fec_enet_private *fep = netdev_priv(ndev);
2402 
2403 	if (fep->bufdesc_ex) {
2404 
2405 		info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2406 					SOF_TIMESTAMPING_RX_SOFTWARE |
2407 					SOF_TIMESTAMPING_SOFTWARE |
2408 					SOF_TIMESTAMPING_TX_HARDWARE |
2409 					SOF_TIMESTAMPING_RX_HARDWARE |
2410 					SOF_TIMESTAMPING_RAW_HARDWARE;
2411 		if (fep->ptp_clock)
2412 			info->phc_index = ptp_clock_index(fep->ptp_clock);
2413 		else
2414 			info->phc_index = -1;
2415 
2416 		info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2417 				 (1 << HWTSTAMP_TX_ON);
2418 
2419 		info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2420 				   (1 << HWTSTAMP_FILTER_ALL);
2421 		return 0;
2422 	} else {
2423 		return ethtool_op_get_ts_info(ndev, info);
2424 	}
2425 }
2426 
2427 #if !defined(CONFIG_M5272)
2428 
2429 static void fec_enet_get_pauseparam(struct net_device *ndev,
2430 				    struct ethtool_pauseparam *pause)
2431 {
2432 	struct fec_enet_private *fep = netdev_priv(ndev);
2433 
2434 	pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2435 	pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2436 	pause->rx_pause = pause->tx_pause;
2437 }
2438 
2439 static int fec_enet_set_pauseparam(struct net_device *ndev,
2440 				   struct ethtool_pauseparam *pause)
2441 {
2442 	struct fec_enet_private *fep = netdev_priv(ndev);
2443 
2444 	if (!ndev->phydev)
2445 		return -ENODEV;
2446 
2447 	if (pause->tx_pause != pause->rx_pause) {
2448 		netdev_info(ndev,
2449 			"hardware only support enable/disable both tx and rx");
2450 		return -EINVAL;
2451 	}
2452 
2453 	fep->pause_flag = 0;
2454 
2455 	/* tx pause must be same as rx pause */
2456 	fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2457 	fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2458 
2459 	phy_set_sym_pause(ndev->phydev, pause->rx_pause, pause->tx_pause,
2460 			  pause->autoneg);
2461 
2462 	if (pause->autoneg) {
2463 		if (netif_running(ndev))
2464 			fec_stop(ndev);
2465 		phy_start_aneg(ndev->phydev);
2466 	}
2467 	if (netif_running(ndev)) {
2468 		napi_disable(&fep->napi);
2469 		netif_tx_lock_bh(ndev);
2470 		fec_restart(ndev);
2471 		netif_tx_wake_all_queues(ndev);
2472 		netif_tx_unlock_bh(ndev);
2473 		napi_enable(&fep->napi);
2474 	}
2475 
2476 	return 0;
2477 }
2478 
2479 static const struct fec_stat {
2480 	char name[ETH_GSTRING_LEN];
2481 	u16 offset;
2482 } fec_stats[] = {
2483 	/* RMON TX */
2484 	{ "tx_dropped", RMON_T_DROP },
2485 	{ "tx_packets", RMON_T_PACKETS },
2486 	{ "tx_broadcast", RMON_T_BC_PKT },
2487 	{ "tx_multicast", RMON_T_MC_PKT },
2488 	{ "tx_crc_errors", RMON_T_CRC_ALIGN },
2489 	{ "tx_undersize", RMON_T_UNDERSIZE },
2490 	{ "tx_oversize", RMON_T_OVERSIZE },
2491 	{ "tx_fragment", RMON_T_FRAG },
2492 	{ "tx_jabber", RMON_T_JAB },
2493 	{ "tx_collision", RMON_T_COL },
2494 	{ "tx_64byte", RMON_T_P64 },
2495 	{ "tx_65to127byte", RMON_T_P65TO127 },
2496 	{ "tx_128to255byte", RMON_T_P128TO255 },
2497 	{ "tx_256to511byte", RMON_T_P256TO511 },
2498 	{ "tx_512to1023byte", RMON_T_P512TO1023 },
2499 	{ "tx_1024to2047byte", RMON_T_P1024TO2047 },
2500 	{ "tx_GTE2048byte", RMON_T_P_GTE2048 },
2501 	{ "tx_octets", RMON_T_OCTETS },
2502 
2503 	/* IEEE TX */
2504 	{ "IEEE_tx_drop", IEEE_T_DROP },
2505 	{ "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2506 	{ "IEEE_tx_1col", IEEE_T_1COL },
2507 	{ "IEEE_tx_mcol", IEEE_T_MCOL },
2508 	{ "IEEE_tx_def", IEEE_T_DEF },
2509 	{ "IEEE_tx_lcol", IEEE_T_LCOL },
2510 	{ "IEEE_tx_excol", IEEE_T_EXCOL },
2511 	{ "IEEE_tx_macerr", IEEE_T_MACERR },
2512 	{ "IEEE_tx_cserr", IEEE_T_CSERR },
2513 	{ "IEEE_tx_sqe", IEEE_T_SQE },
2514 	{ "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2515 	{ "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2516 
2517 	/* RMON RX */
2518 	{ "rx_packets", RMON_R_PACKETS },
2519 	{ "rx_broadcast", RMON_R_BC_PKT },
2520 	{ "rx_multicast", RMON_R_MC_PKT },
2521 	{ "rx_crc_errors", RMON_R_CRC_ALIGN },
2522 	{ "rx_undersize", RMON_R_UNDERSIZE },
2523 	{ "rx_oversize", RMON_R_OVERSIZE },
2524 	{ "rx_fragment", RMON_R_FRAG },
2525 	{ "rx_jabber", RMON_R_JAB },
2526 	{ "rx_64byte", RMON_R_P64 },
2527 	{ "rx_65to127byte", RMON_R_P65TO127 },
2528 	{ "rx_128to255byte", RMON_R_P128TO255 },
2529 	{ "rx_256to511byte", RMON_R_P256TO511 },
2530 	{ "rx_512to1023byte", RMON_R_P512TO1023 },
2531 	{ "rx_1024to2047byte", RMON_R_P1024TO2047 },
2532 	{ "rx_GTE2048byte", RMON_R_P_GTE2048 },
2533 	{ "rx_octets", RMON_R_OCTETS },
2534 
2535 	/* IEEE RX */
2536 	{ "IEEE_rx_drop", IEEE_R_DROP },
2537 	{ "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2538 	{ "IEEE_rx_crc", IEEE_R_CRC },
2539 	{ "IEEE_rx_align", IEEE_R_ALIGN },
2540 	{ "IEEE_rx_macerr", IEEE_R_MACERR },
2541 	{ "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2542 	{ "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2543 };
2544 
2545 #define FEC_STATS_SIZE		(ARRAY_SIZE(fec_stats) * sizeof(u64))
2546 
2547 static void fec_enet_update_ethtool_stats(struct net_device *dev)
2548 {
2549 	struct fec_enet_private *fep = netdev_priv(dev);
2550 	int i;
2551 
2552 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2553 		fep->ethtool_stats[i] = readl(fep->hwp + fec_stats[i].offset);
2554 }
2555 
2556 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2557 				       struct ethtool_stats *stats, u64 *data)
2558 {
2559 	struct fec_enet_private *fep = netdev_priv(dev);
2560 
2561 	if (netif_running(dev))
2562 		fec_enet_update_ethtool_stats(dev);
2563 
2564 	memcpy(data, fep->ethtool_stats, FEC_STATS_SIZE);
2565 }
2566 
2567 static void fec_enet_get_strings(struct net_device *netdev,
2568 	u32 stringset, u8 *data)
2569 {
2570 	int i;
2571 	switch (stringset) {
2572 	case ETH_SS_STATS:
2573 		for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2574 			memcpy(data + i * ETH_GSTRING_LEN,
2575 				fec_stats[i].name, ETH_GSTRING_LEN);
2576 		break;
2577 	case ETH_SS_TEST:
2578 		net_selftest_get_strings(data);
2579 		break;
2580 	}
2581 }
2582 
2583 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2584 {
2585 	switch (sset) {
2586 	case ETH_SS_STATS:
2587 		return ARRAY_SIZE(fec_stats);
2588 	case ETH_SS_TEST:
2589 		return net_selftest_get_count();
2590 	default:
2591 		return -EOPNOTSUPP;
2592 	}
2593 }
2594 
2595 static void fec_enet_clear_ethtool_stats(struct net_device *dev)
2596 {
2597 	struct fec_enet_private *fep = netdev_priv(dev);
2598 	int i;
2599 
2600 	/* Disable MIB statistics counters */
2601 	writel(FEC_MIB_CTRLSTAT_DISABLE, fep->hwp + FEC_MIB_CTRLSTAT);
2602 
2603 	for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2604 		writel(0, fep->hwp + fec_stats[i].offset);
2605 
2606 	/* Don't disable MIB statistics counters */
2607 	writel(0, fep->hwp + FEC_MIB_CTRLSTAT);
2608 }
2609 
2610 #else	/* !defined(CONFIG_M5272) */
2611 #define FEC_STATS_SIZE	0
2612 static inline void fec_enet_update_ethtool_stats(struct net_device *dev)
2613 {
2614 }
2615 
2616 static inline void fec_enet_clear_ethtool_stats(struct net_device *dev)
2617 {
2618 }
2619 #endif /* !defined(CONFIG_M5272) */
2620 
2621 /* ITR clock source is enet system clock (clk_ahb).
2622  * TCTT unit is cycle_ns * 64 cycle
2623  * So, the ICTT value = X us / (cycle_ns * 64)
2624  */
2625 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2626 {
2627 	struct fec_enet_private *fep = netdev_priv(ndev);
2628 
2629 	return us * (fep->itr_clk_rate / 64000) / 1000;
2630 }
2631 
2632 /* Set threshold for interrupt coalescing */
2633 static void fec_enet_itr_coal_set(struct net_device *ndev)
2634 {
2635 	struct fec_enet_private *fep = netdev_priv(ndev);
2636 	int rx_itr, tx_itr;
2637 
2638 	/* Must be greater than zero to avoid unpredictable behavior */
2639 	if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2640 	    !fep->tx_time_itr || !fep->tx_pkts_itr)
2641 		return;
2642 
2643 	/* Select enet system clock as Interrupt Coalescing
2644 	 * timer Clock Source
2645 	 */
2646 	rx_itr = FEC_ITR_CLK_SEL;
2647 	tx_itr = FEC_ITR_CLK_SEL;
2648 
2649 	/* set ICFT and ICTT */
2650 	rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2651 	rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2652 	tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2653 	tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2654 
2655 	rx_itr |= FEC_ITR_EN;
2656 	tx_itr |= FEC_ITR_EN;
2657 
2658 	writel(tx_itr, fep->hwp + FEC_TXIC0);
2659 	writel(rx_itr, fep->hwp + FEC_RXIC0);
2660 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
2661 		writel(tx_itr, fep->hwp + FEC_TXIC1);
2662 		writel(rx_itr, fep->hwp + FEC_RXIC1);
2663 		writel(tx_itr, fep->hwp + FEC_TXIC2);
2664 		writel(rx_itr, fep->hwp + FEC_RXIC2);
2665 	}
2666 }
2667 
2668 static int fec_enet_get_coalesce(struct net_device *ndev,
2669 				 struct ethtool_coalesce *ec,
2670 				 struct kernel_ethtool_coalesce *kernel_coal,
2671 				 struct netlink_ext_ack *extack)
2672 {
2673 	struct fec_enet_private *fep = netdev_priv(ndev);
2674 
2675 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2676 		return -EOPNOTSUPP;
2677 
2678 	ec->rx_coalesce_usecs = fep->rx_time_itr;
2679 	ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2680 
2681 	ec->tx_coalesce_usecs = fep->tx_time_itr;
2682 	ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2683 
2684 	return 0;
2685 }
2686 
2687 static int fec_enet_set_coalesce(struct net_device *ndev,
2688 				 struct ethtool_coalesce *ec,
2689 				 struct kernel_ethtool_coalesce *kernel_coal,
2690 				 struct netlink_ext_ack *extack)
2691 {
2692 	struct fec_enet_private *fep = netdev_priv(ndev);
2693 	struct device *dev = &fep->pdev->dev;
2694 	unsigned int cycle;
2695 
2696 	if (!(fep->quirks & FEC_QUIRK_HAS_COALESCE))
2697 		return -EOPNOTSUPP;
2698 
2699 	if (ec->rx_max_coalesced_frames > 255) {
2700 		dev_err(dev, "Rx coalesced frames exceed hardware limitation\n");
2701 		return -EINVAL;
2702 	}
2703 
2704 	if (ec->tx_max_coalesced_frames > 255) {
2705 		dev_err(dev, "Tx coalesced frame exceed hardware limitation\n");
2706 		return -EINVAL;
2707 	}
2708 
2709 	cycle = fec_enet_us_to_itr_clock(ndev, ec->rx_coalesce_usecs);
2710 	if (cycle > 0xFFFF) {
2711 		dev_err(dev, "Rx coalesced usec exceed hardware limitation\n");
2712 		return -EINVAL;
2713 	}
2714 
2715 	cycle = fec_enet_us_to_itr_clock(ndev, ec->tx_coalesce_usecs);
2716 	if (cycle > 0xFFFF) {
2717 		dev_err(dev, "Tx coalesced usec exceed hardware limitation\n");
2718 		return -EINVAL;
2719 	}
2720 
2721 	fep->rx_time_itr = ec->rx_coalesce_usecs;
2722 	fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2723 
2724 	fep->tx_time_itr = ec->tx_coalesce_usecs;
2725 	fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2726 
2727 	fec_enet_itr_coal_set(ndev);
2728 
2729 	return 0;
2730 }
2731 
2732 static void fec_enet_itr_coal_init(struct net_device *ndev)
2733 {
2734 	struct ethtool_coalesce ec;
2735 
2736 	ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2737 	ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2738 
2739 	ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2740 	ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2741 
2742 	fec_enet_set_coalesce(ndev, &ec, NULL, NULL);
2743 }
2744 
2745 static int fec_enet_get_tunable(struct net_device *netdev,
2746 				const struct ethtool_tunable *tuna,
2747 				void *data)
2748 {
2749 	struct fec_enet_private *fep = netdev_priv(netdev);
2750 	int ret = 0;
2751 
2752 	switch (tuna->id) {
2753 	case ETHTOOL_RX_COPYBREAK:
2754 		*(u32 *)data = fep->rx_copybreak;
2755 		break;
2756 	default:
2757 		ret = -EINVAL;
2758 		break;
2759 	}
2760 
2761 	return ret;
2762 }
2763 
2764 static int fec_enet_set_tunable(struct net_device *netdev,
2765 				const struct ethtool_tunable *tuna,
2766 				const void *data)
2767 {
2768 	struct fec_enet_private *fep = netdev_priv(netdev);
2769 	int ret = 0;
2770 
2771 	switch (tuna->id) {
2772 	case ETHTOOL_RX_COPYBREAK:
2773 		fep->rx_copybreak = *(u32 *)data;
2774 		break;
2775 	default:
2776 		ret = -EINVAL;
2777 		break;
2778 	}
2779 
2780 	return ret;
2781 }
2782 
2783 /* LPI Sleep Ts count base on tx clk (clk_ref).
2784  * The lpi sleep cnt value = X us / (cycle_ns).
2785  */
2786 static int fec_enet_us_to_tx_cycle(struct net_device *ndev, int us)
2787 {
2788 	struct fec_enet_private *fep = netdev_priv(ndev);
2789 
2790 	return us * (fep->clk_ref_rate / 1000) / 1000;
2791 }
2792 
2793 static int fec_enet_eee_mode_set(struct net_device *ndev, bool enable)
2794 {
2795 	struct fec_enet_private *fep = netdev_priv(ndev);
2796 	struct ethtool_eee *p = &fep->eee;
2797 	unsigned int sleep_cycle, wake_cycle;
2798 	int ret = 0;
2799 
2800 	if (enable) {
2801 		ret = phy_init_eee(ndev->phydev, false);
2802 		if (ret)
2803 			return ret;
2804 
2805 		sleep_cycle = fec_enet_us_to_tx_cycle(ndev, p->tx_lpi_timer);
2806 		wake_cycle = sleep_cycle;
2807 	} else {
2808 		sleep_cycle = 0;
2809 		wake_cycle = 0;
2810 	}
2811 
2812 	p->tx_lpi_enabled = enable;
2813 	p->eee_enabled = enable;
2814 	p->eee_active = enable;
2815 
2816 	writel(sleep_cycle, fep->hwp + FEC_LPI_SLEEP);
2817 	writel(wake_cycle, fep->hwp + FEC_LPI_WAKE);
2818 
2819 	return 0;
2820 }
2821 
2822 static int
2823 fec_enet_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
2824 {
2825 	struct fec_enet_private *fep = netdev_priv(ndev);
2826 	struct ethtool_eee *p = &fep->eee;
2827 
2828 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
2829 		return -EOPNOTSUPP;
2830 
2831 	if (!netif_running(ndev))
2832 		return -ENETDOWN;
2833 
2834 	edata->eee_enabled = p->eee_enabled;
2835 	edata->eee_active = p->eee_active;
2836 	edata->tx_lpi_timer = p->tx_lpi_timer;
2837 	edata->tx_lpi_enabled = p->tx_lpi_enabled;
2838 
2839 	return phy_ethtool_get_eee(ndev->phydev, edata);
2840 }
2841 
2842 static int
2843 fec_enet_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
2844 {
2845 	struct fec_enet_private *fep = netdev_priv(ndev);
2846 	struct ethtool_eee *p = &fep->eee;
2847 	int ret = 0;
2848 
2849 	if (!(fep->quirks & FEC_QUIRK_HAS_EEE))
2850 		return -EOPNOTSUPP;
2851 
2852 	if (!netif_running(ndev))
2853 		return -ENETDOWN;
2854 
2855 	p->tx_lpi_timer = edata->tx_lpi_timer;
2856 
2857 	if (!edata->eee_enabled || !edata->tx_lpi_enabled ||
2858 	    !edata->tx_lpi_timer)
2859 		ret = fec_enet_eee_mode_set(ndev, false);
2860 	else
2861 		ret = fec_enet_eee_mode_set(ndev, true);
2862 
2863 	if (ret)
2864 		return ret;
2865 
2866 	return phy_ethtool_set_eee(ndev->phydev, edata);
2867 }
2868 
2869 static void
2870 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2871 {
2872 	struct fec_enet_private *fep = netdev_priv(ndev);
2873 
2874 	if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2875 		wol->supported = WAKE_MAGIC;
2876 		wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2877 	} else {
2878 		wol->supported = wol->wolopts = 0;
2879 	}
2880 }
2881 
2882 static int
2883 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2884 {
2885 	struct fec_enet_private *fep = netdev_priv(ndev);
2886 
2887 	if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2888 		return -EINVAL;
2889 
2890 	if (wol->wolopts & ~WAKE_MAGIC)
2891 		return -EINVAL;
2892 
2893 	device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2894 	if (device_may_wakeup(&ndev->dev))
2895 		fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2896 	else
2897 		fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2898 
2899 	return 0;
2900 }
2901 
2902 static const struct ethtool_ops fec_enet_ethtool_ops = {
2903 	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
2904 				     ETHTOOL_COALESCE_MAX_FRAMES,
2905 	.get_drvinfo		= fec_enet_get_drvinfo,
2906 	.get_regs_len		= fec_enet_get_regs_len,
2907 	.get_regs		= fec_enet_get_regs,
2908 	.nway_reset		= phy_ethtool_nway_reset,
2909 	.get_link		= ethtool_op_get_link,
2910 	.get_coalesce		= fec_enet_get_coalesce,
2911 	.set_coalesce		= fec_enet_set_coalesce,
2912 #ifndef CONFIG_M5272
2913 	.get_pauseparam		= fec_enet_get_pauseparam,
2914 	.set_pauseparam		= fec_enet_set_pauseparam,
2915 	.get_strings		= fec_enet_get_strings,
2916 	.get_ethtool_stats	= fec_enet_get_ethtool_stats,
2917 	.get_sset_count		= fec_enet_get_sset_count,
2918 #endif
2919 	.get_ts_info		= fec_enet_get_ts_info,
2920 	.get_tunable		= fec_enet_get_tunable,
2921 	.set_tunable		= fec_enet_set_tunable,
2922 	.get_wol		= fec_enet_get_wol,
2923 	.set_wol		= fec_enet_set_wol,
2924 	.get_eee		= fec_enet_get_eee,
2925 	.set_eee		= fec_enet_set_eee,
2926 	.get_link_ksettings	= phy_ethtool_get_link_ksettings,
2927 	.set_link_ksettings	= phy_ethtool_set_link_ksettings,
2928 	.self_test		= net_selftest,
2929 };
2930 
2931 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2932 {
2933 	struct fec_enet_private *fep = netdev_priv(ndev);
2934 	struct phy_device *phydev = ndev->phydev;
2935 
2936 	if (!netif_running(ndev))
2937 		return -EINVAL;
2938 
2939 	if (!phydev)
2940 		return -ENODEV;
2941 
2942 	if (fep->bufdesc_ex) {
2943 		bool use_fec_hwts = !phy_has_hwtstamp(phydev);
2944 
2945 		if (cmd == SIOCSHWTSTAMP) {
2946 			if (use_fec_hwts)
2947 				return fec_ptp_set(ndev, rq);
2948 			fec_ptp_disable_hwts(ndev);
2949 		} else if (cmd == SIOCGHWTSTAMP) {
2950 			if (use_fec_hwts)
2951 				return fec_ptp_get(ndev, rq);
2952 		}
2953 	}
2954 
2955 	return phy_mii_ioctl(phydev, rq, cmd);
2956 }
2957 
2958 static void fec_enet_free_buffers(struct net_device *ndev)
2959 {
2960 	struct fec_enet_private *fep = netdev_priv(ndev);
2961 	unsigned int i;
2962 	struct sk_buff *skb;
2963 	struct bufdesc	*bdp;
2964 	struct fec_enet_priv_tx_q *txq;
2965 	struct fec_enet_priv_rx_q *rxq;
2966 	unsigned int q;
2967 
2968 	for (q = 0; q < fep->num_rx_queues; q++) {
2969 		rxq = fep->rx_queue[q];
2970 		bdp = rxq->bd.base;
2971 		for (i = 0; i < rxq->bd.ring_size; i++) {
2972 			skb = rxq->rx_skbuff[i];
2973 			rxq->rx_skbuff[i] = NULL;
2974 			if (skb) {
2975 				dma_unmap_single(&fep->pdev->dev,
2976 						 fec32_to_cpu(bdp->cbd_bufaddr),
2977 						 FEC_ENET_RX_FRSIZE - fep->rx_align,
2978 						 DMA_FROM_DEVICE);
2979 				dev_kfree_skb(skb);
2980 			}
2981 			bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2982 		}
2983 	}
2984 
2985 	for (q = 0; q < fep->num_tx_queues; q++) {
2986 		txq = fep->tx_queue[q];
2987 		for (i = 0; i < txq->bd.ring_size; i++) {
2988 			kfree(txq->tx_bounce[i]);
2989 			txq->tx_bounce[i] = NULL;
2990 			skb = txq->tx_skbuff[i];
2991 			txq->tx_skbuff[i] = NULL;
2992 			dev_kfree_skb(skb);
2993 		}
2994 	}
2995 }
2996 
2997 static void fec_enet_free_queue(struct net_device *ndev)
2998 {
2999 	struct fec_enet_private *fep = netdev_priv(ndev);
3000 	int i;
3001 	struct fec_enet_priv_tx_q *txq;
3002 
3003 	for (i = 0; i < fep->num_tx_queues; i++)
3004 		if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
3005 			txq = fep->tx_queue[i];
3006 			dma_free_coherent(&fep->pdev->dev,
3007 					  txq->bd.ring_size * TSO_HEADER_SIZE,
3008 					  txq->tso_hdrs,
3009 					  txq->tso_hdrs_dma);
3010 		}
3011 
3012 	for (i = 0; i < fep->num_rx_queues; i++)
3013 		kfree(fep->rx_queue[i]);
3014 	for (i = 0; i < fep->num_tx_queues; i++)
3015 		kfree(fep->tx_queue[i]);
3016 }
3017 
3018 static int fec_enet_alloc_queue(struct net_device *ndev)
3019 {
3020 	struct fec_enet_private *fep = netdev_priv(ndev);
3021 	int i;
3022 	int ret = 0;
3023 	struct fec_enet_priv_tx_q *txq;
3024 
3025 	for (i = 0; i < fep->num_tx_queues; i++) {
3026 		txq = kzalloc(sizeof(*txq), GFP_KERNEL);
3027 		if (!txq) {
3028 			ret = -ENOMEM;
3029 			goto alloc_failed;
3030 		}
3031 
3032 		fep->tx_queue[i] = txq;
3033 		txq->bd.ring_size = TX_RING_SIZE;
3034 		fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
3035 
3036 		txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
3037 		txq->tx_wake_threshold =
3038 			(txq->bd.ring_size - txq->tx_stop_threshold) / 2;
3039 
3040 		txq->tso_hdrs = dma_alloc_coherent(&fep->pdev->dev,
3041 					txq->bd.ring_size * TSO_HEADER_SIZE,
3042 					&txq->tso_hdrs_dma,
3043 					GFP_KERNEL);
3044 		if (!txq->tso_hdrs) {
3045 			ret = -ENOMEM;
3046 			goto alloc_failed;
3047 		}
3048 	}
3049 
3050 	for (i = 0; i < fep->num_rx_queues; i++) {
3051 		fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
3052 					   GFP_KERNEL);
3053 		if (!fep->rx_queue[i]) {
3054 			ret = -ENOMEM;
3055 			goto alloc_failed;
3056 		}
3057 
3058 		fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
3059 		fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
3060 	}
3061 	return ret;
3062 
3063 alloc_failed:
3064 	fec_enet_free_queue(ndev);
3065 	return ret;
3066 }
3067 
3068 static int
3069 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
3070 {
3071 	struct fec_enet_private *fep = netdev_priv(ndev);
3072 	unsigned int i;
3073 	struct sk_buff *skb;
3074 	struct bufdesc	*bdp;
3075 	struct fec_enet_priv_rx_q *rxq;
3076 
3077 	rxq = fep->rx_queue[queue];
3078 	bdp = rxq->bd.base;
3079 	for (i = 0; i < rxq->bd.ring_size; i++) {
3080 		skb = __netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE, GFP_KERNEL);
3081 		if (!skb)
3082 			goto err_alloc;
3083 
3084 		if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
3085 			dev_kfree_skb(skb);
3086 			goto err_alloc;
3087 		}
3088 
3089 		rxq->rx_skbuff[i] = skb;
3090 		bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
3091 
3092 		if (fep->bufdesc_ex) {
3093 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3094 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
3095 		}
3096 
3097 		bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
3098 	}
3099 
3100 	/* Set the last buffer to wrap. */
3101 	bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
3102 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3103 	return 0;
3104 
3105  err_alloc:
3106 	fec_enet_free_buffers(ndev);
3107 	return -ENOMEM;
3108 }
3109 
3110 static int
3111 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
3112 {
3113 	struct fec_enet_private *fep = netdev_priv(ndev);
3114 	unsigned int i;
3115 	struct bufdesc  *bdp;
3116 	struct fec_enet_priv_tx_q *txq;
3117 
3118 	txq = fep->tx_queue[queue];
3119 	bdp = txq->bd.base;
3120 	for (i = 0; i < txq->bd.ring_size; i++) {
3121 		txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
3122 		if (!txq->tx_bounce[i])
3123 			goto err_alloc;
3124 
3125 		bdp->cbd_sc = cpu_to_fec16(0);
3126 		bdp->cbd_bufaddr = cpu_to_fec32(0);
3127 
3128 		if (fep->bufdesc_ex) {
3129 			struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
3130 			ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
3131 		}
3132 
3133 		bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
3134 	}
3135 
3136 	/* Set the last buffer to wrap. */
3137 	bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
3138 	bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
3139 
3140 	return 0;
3141 
3142  err_alloc:
3143 	fec_enet_free_buffers(ndev);
3144 	return -ENOMEM;
3145 }
3146 
3147 static int fec_enet_alloc_buffers(struct net_device *ndev)
3148 {
3149 	struct fec_enet_private *fep = netdev_priv(ndev);
3150 	unsigned int i;
3151 
3152 	for (i = 0; i < fep->num_rx_queues; i++)
3153 		if (fec_enet_alloc_rxq_buffers(ndev, i))
3154 			return -ENOMEM;
3155 
3156 	for (i = 0; i < fep->num_tx_queues; i++)
3157 		if (fec_enet_alloc_txq_buffers(ndev, i))
3158 			return -ENOMEM;
3159 	return 0;
3160 }
3161 
3162 static int
3163 fec_enet_open(struct net_device *ndev)
3164 {
3165 	struct fec_enet_private *fep = netdev_priv(ndev);
3166 	int ret;
3167 	bool reset_again;
3168 
3169 	ret = pm_runtime_resume_and_get(&fep->pdev->dev);
3170 	if (ret < 0)
3171 		return ret;
3172 
3173 	pinctrl_pm_select_default_state(&fep->pdev->dev);
3174 	ret = fec_enet_clk_enable(ndev, true);
3175 	if (ret)
3176 		goto clk_enable;
3177 
3178 	/* During the first fec_enet_open call the PHY isn't probed at this
3179 	 * point. Therefore the phy_reset_after_clk_enable() call within
3180 	 * fec_enet_clk_enable() fails. As we need this reset in order to be
3181 	 * sure the PHY is working correctly we check if we need to reset again
3182 	 * later when the PHY is probed
3183 	 */
3184 	if (ndev->phydev && ndev->phydev->drv)
3185 		reset_again = false;
3186 	else
3187 		reset_again = true;
3188 
3189 	/* I should reset the ring buffers here, but I don't yet know
3190 	 * a simple way to do that.
3191 	 */
3192 
3193 	ret = fec_enet_alloc_buffers(ndev);
3194 	if (ret)
3195 		goto err_enet_alloc;
3196 
3197 	/* Init MAC prior to mii bus probe */
3198 	fec_restart(ndev);
3199 
3200 	/* Call phy_reset_after_clk_enable() again if it failed during
3201 	 * phy_reset_after_clk_enable() before because the PHY wasn't probed.
3202 	 */
3203 	if (reset_again)
3204 		fec_enet_phy_reset_after_clk_enable(ndev);
3205 
3206 	/* Probe and connect to PHY when open the interface */
3207 	ret = fec_enet_mii_probe(ndev);
3208 	if (ret)
3209 		goto err_enet_mii_probe;
3210 
3211 	if (fep->quirks & FEC_QUIRK_ERR006687)
3212 		imx6q_cpuidle_fec_irqs_used();
3213 
3214 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3215 		cpu_latency_qos_add_request(&fep->pm_qos_req, 0);
3216 
3217 	napi_enable(&fep->napi);
3218 	phy_start(ndev->phydev);
3219 	netif_tx_start_all_queues(ndev);
3220 
3221 	device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
3222 				 FEC_WOL_FLAG_ENABLE);
3223 
3224 	return 0;
3225 
3226 err_enet_mii_probe:
3227 	fec_enet_free_buffers(ndev);
3228 err_enet_alloc:
3229 	fec_enet_clk_enable(ndev, false);
3230 clk_enable:
3231 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3232 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3233 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3234 	return ret;
3235 }
3236 
3237 static int
3238 fec_enet_close(struct net_device *ndev)
3239 {
3240 	struct fec_enet_private *fep = netdev_priv(ndev);
3241 
3242 	phy_stop(ndev->phydev);
3243 
3244 	if (netif_device_present(ndev)) {
3245 		napi_disable(&fep->napi);
3246 		netif_tx_disable(ndev);
3247 		fec_stop(ndev);
3248 	}
3249 
3250 	phy_disconnect(ndev->phydev);
3251 
3252 	if (fep->quirks & FEC_QUIRK_ERR006687)
3253 		imx6q_cpuidle_fec_irqs_unused();
3254 
3255 	fec_enet_update_ethtool_stats(ndev);
3256 
3257 	fec_enet_clk_enable(ndev, false);
3258 	if (fep->quirks & FEC_QUIRK_HAS_PMQOS)
3259 		cpu_latency_qos_remove_request(&fep->pm_qos_req);
3260 
3261 	pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3262 	pm_runtime_mark_last_busy(&fep->pdev->dev);
3263 	pm_runtime_put_autosuspend(&fep->pdev->dev);
3264 
3265 	fec_enet_free_buffers(ndev);
3266 
3267 	return 0;
3268 }
3269 
3270 /* Set or clear the multicast filter for this adaptor.
3271  * Skeleton taken from sunlance driver.
3272  * The CPM Ethernet implementation allows Multicast as well as individual
3273  * MAC address filtering.  Some of the drivers check to make sure it is
3274  * a group multicast address, and discard those that are not.  I guess I
3275  * will do the same for now, but just remove the test if you want
3276  * individual filtering as well (do the upper net layers want or support
3277  * this kind of feature?).
3278  */
3279 
3280 #define FEC_HASH_BITS	6		/* #bits in hash */
3281 
3282 static void set_multicast_list(struct net_device *ndev)
3283 {
3284 	struct fec_enet_private *fep = netdev_priv(ndev);
3285 	struct netdev_hw_addr *ha;
3286 	unsigned int crc, tmp;
3287 	unsigned char hash;
3288 	unsigned int hash_high = 0, hash_low = 0;
3289 
3290 	if (ndev->flags & IFF_PROMISC) {
3291 		tmp = readl(fep->hwp + FEC_R_CNTRL);
3292 		tmp |= 0x8;
3293 		writel(tmp, fep->hwp + FEC_R_CNTRL);
3294 		return;
3295 	}
3296 
3297 	tmp = readl(fep->hwp + FEC_R_CNTRL);
3298 	tmp &= ~0x8;
3299 	writel(tmp, fep->hwp + FEC_R_CNTRL);
3300 
3301 	if (ndev->flags & IFF_ALLMULTI) {
3302 		/* Catch all multicast addresses, so set the
3303 		 * filter to all 1's
3304 		 */
3305 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3306 		writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3307 
3308 		return;
3309 	}
3310 
3311 	/* Add the addresses in hash register */
3312 	netdev_for_each_mc_addr(ha, ndev) {
3313 		/* calculate crc32 value of mac address */
3314 		crc = ether_crc_le(ndev->addr_len, ha->addr);
3315 
3316 		/* only upper 6 bits (FEC_HASH_BITS) are used
3317 		 * which point to specific bit in the hash registers
3318 		 */
3319 		hash = (crc >> (32 - FEC_HASH_BITS)) & 0x3f;
3320 
3321 		if (hash > 31)
3322 			hash_high |= 1 << (hash - 32);
3323 		else
3324 			hash_low |= 1 << hash;
3325 	}
3326 
3327 	writel(hash_high, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3328 	writel(hash_low, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3329 }
3330 
3331 /* Set a MAC change in hardware. */
3332 static int
3333 fec_set_mac_address(struct net_device *ndev, void *p)
3334 {
3335 	struct fec_enet_private *fep = netdev_priv(ndev);
3336 	struct sockaddr *addr = p;
3337 
3338 	if (addr) {
3339 		if (!is_valid_ether_addr(addr->sa_data))
3340 			return -EADDRNOTAVAIL;
3341 		eth_hw_addr_set(ndev, addr->sa_data);
3342 	}
3343 
3344 	/* Add netif status check here to avoid system hang in below case:
3345 	 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
3346 	 * After ethx down, fec all clocks are gated off and then register
3347 	 * access causes system hang.
3348 	 */
3349 	if (!netif_running(ndev))
3350 		return 0;
3351 
3352 	writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3353 		(ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3354 		fep->hwp + FEC_ADDR_LOW);
3355 	writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3356 		fep->hwp + FEC_ADDR_HIGH);
3357 	return 0;
3358 }
3359 
3360 #ifdef CONFIG_NET_POLL_CONTROLLER
3361 /**
3362  * fec_poll_controller - FEC Poll controller function
3363  * @dev: The FEC network adapter
3364  *
3365  * Polled functionality used by netconsole and others in non interrupt mode
3366  *
3367  */
3368 static void fec_poll_controller(struct net_device *dev)
3369 {
3370 	int i;
3371 	struct fec_enet_private *fep = netdev_priv(dev);
3372 
3373 	for (i = 0; i < FEC_IRQ_NUM; i++) {
3374 		if (fep->irq[i] > 0) {
3375 			disable_irq(fep->irq[i]);
3376 			fec_enet_interrupt(fep->irq[i], dev);
3377 			enable_irq(fep->irq[i]);
3378 		}
3379 	}
3380 }
3381 #endif
3382 
3383 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3384 	netdev_features_t features)
3385 {
3386 	struct fec_enet_private *fep = netdev_priv(netdev);
3387 	netdev_features_t changed = features ^ netdev->features;
3388 
3389 	netdev->features = features;
3390 
3391 	/* Receive checksum has been changed */
3392 	if (changed & NETIF_F_RXCSUM) {
3393 		if (features & NETIF_F_RXCSUM)
3394 			fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3395 		else
3396 			fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3397 	}
3398 }
3399 
3400 static int fec_set_features(struct net_device *netdev,
3401 	netdev_features_t features)
3402 {
3403 	struct fec_enet_private *fep = netdev_priv(netdev);
3404 	netdev_features_t changed = features ^ netdev->features;
3405 
3406 	if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3407 		napi_disable(&fep->napi);
3408 		netif_tx_lock_bh(netdev);
3409 		fec_stop(netdev);
3410 		fec_enet_set_netdev_features(netdev, features);
3411 		fec_restart(netdev);
3412 		netif_tx_wake_all_queues(netdev);
3413 		netif_tx_unlock_bh(netdev);
3414 		napi_enable(&fep->napi);
3415 	} else {
3416 		fec_enet_set_netdev_features(netdev, features);
3417 	}
3418 
3419 	return 0;
3420 }
3421 
3422 static u16 fec_enet_get_raw_vlan_tci(struct sk_buff *skb)
3423 {
3424 	struct vlan_ethhdr *vhdr;
3425 	unsigned short vlan_TCI = 0;
3426 
3427 	if (skb->protocol == htons(ETH_P_ALL)) {
3428 		vhdr = (struct vlan_ethhdr *)(skb->data);
3429 		vlan_TCI = ntohs(vhdr->h_vlan_TCI);
3430 	}
3431 
3432 	return vlan_TCI;
3433 }
3434 
3435 static u16 fec_enet_select_queue(struct net_device *ndev, struct sk_buff *skb,
3436 				 struct net_device *sb_dev)
3437 {
3438 	struct fec_enet_private *fep = netdev_priv(ndev);
3439 	u16 vlan_tag;
3440 
3441 	if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
3442 		return netdev_pick_tx(ndev, skb, NULL);
3443 
3444 	vlan_tag = fec_enet_get_raw_vlan_tci(skb);
3445 	if (!vlan_tag)
3446 		return vlan_tag;
3447 
3448 	return fec_enet_vlan_pri_to_queue[vlan_tag >> 13];
3449 }
3450 
3451 static const struct net_device_ops fec_netdev_ops = {
3452 	.ndo_open		= fec_enet_open,
3453 	.ndo_stop		= fec_enet_close,
3454 	.ndo_start_xmit		= fec_enet_start_xmit,
3455 	.ndo_select_queue       = fec_enet_select_queue,
3456 	.ndo_set_rx_mode	= set_multicast_list,
3457 	.ndo_validate_addr	= eth_validate_addr,
3458 	.ndo_tx_timeout		= fec_timeout,
3459 	.ndo_set_mac_address	= fec_set_mac_address,
3460 	.ndo_eth_ioctl		= fec_enet_ioctl,
3461 #ifdef CONFIG_NET_POLL_CONTROLLER
3462 	.ndo_poll_controller	= fec_poll_controller,
3463 #endif
3464 	.ndo_set_features	= fec_set_features,
3465 };
3466 
3467 static const unsigned short offset_des_active_rxq[] = {
3468 	FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3469 };
3470 
3471 static const unsigned short offset_des_active_txq[] = {
3472 	FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3473 };
3474 
3475  /*
3476   * XXX:  We need to clean up on failure exits here.
3477   *
3478   */
3479 static int fec_enet_init(struct net_device *ndev)
3480 {
3481 	struct fec_enet_private *fep = netdev_priv(ndev);
3482 	struct bufdesc *cbd_base;
3483 	dma_addr_t bd_dma;
3484 	int bd_size;
3485 	unsigned int i;
3486 	unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3487 			sizeof(struct bufdesc);
3488 	unsigned dsize_log2 = __fls(dsize);
3489 	int ret;
3490 
3491 	WARN_ON(dsize != (1 << dsize_log2));
3492 #if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
3493 	fep->rx_align = 0xf;
3494 	fep->tx_align = 0xf;
3495 #else
3496 	fep->rx_align = 0x3;
3497 	fep->tx_align = 0x3;
3498 #endif
3499 
3500 	/* Check mask of the streaming and coherent API */
3501 	ret = dma_set_mask_and_coherent(&fep->pdev->dev, DMA_BIT_MASK(32));
3502 	if (ret < 0) {
3503 		dev_warn(&fep->pdev->dev, "No suitable DMA available\n");
3504 		return ret;
3505 	}
3506 
3507 	ret = fec_enet_alloc_queue(ndev);
3508 	if (ret)
3509 		return ret;
3510 
3511 	bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3512 
3513 	/* Allocate memory for buffer descriptors. */
3514 	cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3515 				       GFP_KERNEL);
3516 	if (!cbd_base) {
3517 		ret = -ENOMEM;
3518 		goto free_queue_mem;
3519 	}
3520 
3521 	/* Get the Ethernet address */
3522 	ret = fec_get_mac(ndev);
3523 	if (ret)
3524 		goto free_queue_mem;
3525 
3526 	/* make sure MAC we just acquired is programmed into the hw */
3527 	fec_set_mac_address(ndev, NULL);
3528 
3529 	/* Set receive and transmit descriptor base. */
3530 	for (i = 0; i < fep->num_rx_queues; i++) {
3531 		struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3532 		unsigned size = dsize * rxq->bd.ring_size;
3533 
3534 		rxq->bd.qid = i;
3535 		rxq->bd.base = cbd_base;
3536 		rxq->bd.cur = cbd_base;
3537 		rxq->bd.dma = bd_dma;
3538 		rxq->bd.dsize = dsize;
3539 		rxq->bd.dsize_log2 = dsize_log2;
3540 		rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3541 		bd_dma += size;
3542 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3543 		rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3544 	}
3545 
3546 	for (i = 0; i < fep->num_tx_queues; i++) {
3547 		struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3548 		unsigned size = dsize * txq->bd.ring_size;
3549 
3550 		txq->bd.qid = i;
3551 		txq->bd.base = cbd_base;
3552 		txq->bd.cur = cbd_base;
3553 		txq->bd.dma = bd_dma;
3554 		txq->bd.dsize = dsize;
3555 		txq->bd.dsize_log2 = dsize_log2;
3556 		txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3557 		bd_dma += size;
3558 		cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3559 		txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3560 	}
3561 
3562 
3563 	/* The FEC Ethernet specific entries in the device structure */
3564 	ndev->watchdog_timeo = TX_TIMEOUT;
3565 	ndev->netdev_ops = &fec_netdev_ops;
3566 	ndev->ethtool_ops = &fec_enet_ethtool_ops;
3567 
3568 	writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3569 	netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3570 
3571 	if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3572 		/* enable hw VLAN support */
3573 		ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3574 
3575 	if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3576 		netif_set_tso_max_segs(ndev, FEC_MAX_TSO_SEGS);
3577 
3578 		/* enable hw accelerator */
3579 		ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3580 				| NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3581 		fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3582 	}
3583 
3584 	if (fep->quirks & FEC_QUIRK_HAS_MULTI_QUEUES) {
3585 		fep->tx_align = 0;
3586 		fep->rx_align = 0x3f;
3587 	}
3588 
3589 	ndev->hw_features = ndev->features;
3590 
3591 	fec_restart(ndev);
3592 
3593 	if (fep->quirks & FEC_QUIRK_MIB_CLEAR)
3594 		fec_enet_clear_ethtool_stats(ndev);
3595 	else
3596 		fec_enet_update_ethtool_stats(ndev);
3597 
3598 	return 0;
3599 
3600 free_queue_mem:
3601 	fec_enet_free_queue(ndev);
3602 	return ret;
3603 }
3604 
3605 #ifdef CONFIG_OF
3606 static int fec_reset_phy(struct platform_device *pdev)
3607 {
3608 	int err, phy_reset;
3609 	bool active_high = false;
3610 	int msec = 1, phy_post_delay = 0;
3611 	struct device_node *np = pdev->dev.of_node;
3612 
3613 	if (!np)
3614 		return 0;
3615 
3616 	err = of_property_read_u32(np, "phy-reset-duration", &msec);
3617 	/* A sane reset duration should not be longer than 1s */
3618 	if (!err && msec > 1000)
3619 		msec = 1;
3620 
3621 	phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3622 	if (phy_reset == -EPROBE_DEFER)
3623 		return phy_reset;
3624 	else if (!gpio_is_valid(phy_reset))
3625 		return 0;
3626 
3627 	err = of_property_read_u32(np, "phy-reset-post-delay", &phy_post_delay);
3628 	/* valid reset duration should be less than 1s */
3629 	if (!err && phy_post_delay > 1000)
3630 		return -EINVAL;
3631 
3632 	active_high = of_property_read_bool(np, "phy-reset-active-high");
3633 
3634 	err = devm_gpio_request_one(&pdev->dev, phy_reset,
3635 			active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3636 			"phy-reset");
3637 	if (err) {
3638 		dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3639 		return err;
3640 	}
3641 
3642 	if (msec > 20)
3643 		msleep(msec);
3644 	else
3645 		usleep_range(msec * 1000, msec * 1000 + 1000);
3646 
3647 	gpio_set_value_cansleep(phy_reset, !active_high);
3648 
3649 	if (!phy_post_delay)
3650 		return 0;
3651 
3652 	if (phy_post_delay > 20)
3653 		msleep(phy_post_delay);
3654 	else
3655 		usleep_range(phy_post_delay * 1000,
3656 			     phy_post_delay * 1000 + 1000);
3657 
3658 	return 0;
3659 }
3660 #else /* CONFIG_OF */
3661 static int fec_reset_phy(struct platform_device *pdev)
3662 {
3663 	/*
3664 	 * In case of platform probe, the reset has been done
3665 	 * by machine code.
3666 	 */
3667 	return 0;
3668 }
3669 #endif /* CONFIG_OF */
3670 
3671 static void
3672 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3673 {
3674 	struct device_node *np = pdev->dev.of_node;
3675 
3676 	*num_tx = *num_rx = 1;
3677 
3678 	if (!np || !of_device_is_available(np))
3679 		return;
3680 
3681 	/* parse the num of tx and rx queues */
3682 	of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3683 
3684 	of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3685 
3686 	if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3687 		dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3688 			 *num_tx);
3689 		*num_tx = 1;
3690 		return;
3691 	}
3692 
3693 	if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3694 		dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3695 			 *num_rx);
3696 		*num_rx = 1;
3697 		return;
3698 	}
3699 
3700 }
3701 
3702 static int fec_enet_get_irq_cnt(struct platform_device *pdev)
3703 {
3704 	int irq_cnt = platform_irq_count(pdev);
3705 
3706 	if (irq_cnt > FEC_IRQ_NUM)
3707 		irq_cnt = FEC_IRQ_NUM;	/* last for pps */
3708 	else if (irq_cnt == 2)
3709 		irq_cnt = 1;	/* last for pps */
3710 	else if (irq_cnt <= 0)
3711 		irq_cnt = 1;	/* At least 1 irq is needed */
3712 	return irq_cnt;
3713 }
3714 
3715 static void fec_enet_get_wakeup_irq(struct platform_device *pdev)
3716 {
3717 	struct net_device *ndev = platform_get_drvdata(pdev);
3718 	struct fec_enet_private *fep = netdev_priv(ndev);
3719 
3720 	if (fep->quirks & FEC_QUIRK_WAKEUP_FROM_INT2)
3721 		fep->wake_irq = fep->irq[2];
3722 	else
3723 		fep->wake_irq = fep->irq[0];
3724 }
3725 
3726 static int fec_enet_init_stop_mode(struct fec_enet_private *fep,
3727 				   struct device_node *np)
3728 {
3729 	struct device_node *gpr_np;
3730 	u32 out_val[3];
3731 	int ret = 0;
3732 
3733 	gpr_np = of_parse_phandle(np, "fsl,stop-mode", 0);
3734 	if (!gpr_np)
3735 		return 0;
3736 
3737 	ret = of_property_read_u32_array(np, "fsl,stop-mode", out_val,
3738 					 ARRAY_SIZE(out_val));
3739 	if (ret) {
3740 		dev_dbg(&fep->pdev->dev, "no stop mode property\n");
3741 		goto out;
3742 	}
3743 
3744 	fep->stop_gpr.gpr = syscon_node_to_regmap(gpr_np);
3745 	if (IS_ERR(fep->stop_gpr.gpr)) {
3746 		dev_err(&fep->pdev->dev, "could not find gpr regmap\n");
3747 		ret = PTR_ERR(fep->stop_gpr.gpr);
3748 		fep->stop_gpr.gpr = NULL;
3749 		goto out;
3750 	}
3751 
3752 	fep->stop_gpr.reg = out_val[1];
3753 	fep->stop_gpr.bit = out_val[2];
3754 
3755 out:
3756 	of_node_put(gpr_np);
3757 
3758 	return ret;
3759 }
3760 
3761 static int
3762 fec_probe(struct platform_device *pdev)
3763 {
3764 	struct fec_enet_private *fep;
3765 	struct fec_platform_data *pdata;
3766 	phy_interface_t interface;
3767 	struct net_device *ndev;
3768 	int i, irq, ret = 0;
3769 	const struct of_device_id *of_id;
3770 	static int dev_id;
3771 	struct device_node *np = pdev->dev.of_node, *phy_node;
3772 	int num_tx_qs;
3773 	int num_rx_qs;
3774 	char irq_name[8];
3775 	int irq_cnt;
3776 	struct fec_devinfo *dev_info;
3777 
3778 	fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3779 
3780 	/* Init network device */
3781 	ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private) +
3782 				  FEC_STATS_SIZE, num_tx_qs, num_rx_qs);
3783 	if (!ndev)
3784 		return -ENOMEM;
3785 
3786 	SET_NETDEV_DEV(ndev, &pdev->dev);
3787 
3788 	/* setup board info structure */
3789 	fep = netdev_priv(ndev);
3790 
3791 	of_id = of_match_device(fec_dt_ids, &pdev->dev);
3792 	if (of_id)
3793 		pdev->id_entry = of_id->data;
3794 	dev_info = (struct fec_devinfo *)pdev->id_entry->driver_data;
3795 	if (dev_info)
3796 		fep->quirks = dev_info->quirks;
3797 
3798 	fep->netdev = ndev;
3799 	fep->num_rx_queues = num_rx_qs;
3800 	fep->num_tx_queues = num_tx_qs;
3801 
3802 #if !defined(CONFIG_M5272)
3803 	/* default enable pause frame auto negotiation */
3804 	if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3805 		fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3806 #endif
3807 
3808 	/* Select default pin state */
3809 	pinctrl_pm_select_default_state(&pdev->dev);
3810 
3811 	fep->hwp = devm_platform_ioremap_resource(pdev, 0);
3812 	if (IS_ERR(fep->hwp)) {
3813 		ret = PTR_ERR(fep->hwp);
3814 		goto failed_ioremap;
3815 	}
3816 
3817 	fep->pdev = pdev;
3818 	fep->dev_id = dev_id++;
3819 
3820 	platform_set_drvdata(pdev, ndev);
3821 
3822 	if ((of_machine_is_compatible("fsl,imx6q") ||
3823 	     of_machine_is_compatible("fsl,imx6dl")) &&
3824 	    !of_property_read_bool(np, "fsl,err006687-workaround-present"))
3825 		fep->quirks |= FEC_QUIRK_ERR006687;
3826 
3827 	if (of_get_property(np, "fsl,magic-packet", NULL))
3828 		fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3829 
3830 	ret = fec_enet_init_stop_mode(fep, np);
3831 	if (ret)
3832 		goto failed_stop_mode;
3833 
3834 	phy_node = of_parse_phandle(np, "phy-handle", 0);
3835 	if (!phy_node && of_phy_is_fixed_link(np)) {
3836 		ret = of_phy_register_fixed_link(np);
3837 		if (ret < 0) {
3838 			dev_err(&pdev->dev,
3839 				"broken fixed-link specification\n");
3840 			goto failed_phy;
3841 		}
3842 		phy_node = of_node_get(np);
3843 	}
3844 	fep->phy_node = phy_node;
3845 
3846 	ret = of_get_phy_mode(pdev->dev.of_node, &interface);
3847 	if (ret) {
3848 		pdata = dev_get_platdata(&pdev->dev);
3849 		if (pdata)
3850 			fep->phy_interface = pdata->phy;
3851 		else
3852 			fep->phy_interface = PHY_INTERFACE_MODE_MII;
3853 	} else {
3854 		fep->phy_interface = interface;
3855 	}
3856 
3857 	ret = fec_enet_parse_rgmii_delay(fep, np);
3858 	if (ret)
3859 		goto failed_rgmii_delay;
3860 
3861 	fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3862 	if (IS_ERR(fep->clk_ipg)) {
3863 		ret = PTR_ERR(fep->clk_ipg);
3864 		goto failed_clk;
3865 	}
3866 
3867 	fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3868 	if (IS_ERR(fep->clk_ahb)) {
3869 		ret = PTR_ERR(fep->clk_ahb);
3870 		goto failed_clk;
3871 	}
3872 
3873 	fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3874 
3875 	/* enet_out is optional, depends on board */
3876 	fep->clk_enet_out = devm_clk_get_optional(&pdev->dev, "enet_out");
3877 	if (IS_ERR(fep->clk_enet_out)) {
3878 		ret = PTR_ERR(fep->clk_enet_out);
3879 		goto failed_clk;
3880 	}
3881 
3882 	fep->ptp_clk_on = false;
3883 	mutex_init(&fep->ptp_clk_mutex);
3884 
3885 	/* clk_ref is optional, depends on board */
3886 	fep->clk_ref = devm_clk_get_optional(&pdev->dev, "enet_clk_ref");
3887 	if (IS_ERR(fep->clk_ref)) {
3888 		ret = PTR_ERR(fep->clk_ref);
3889 		goto failed_clk;
3890 	}
3891 	fep->clk_ref_rate = clk_get_rate(fep->clk_ref);
3892 
3893 	/* clk_2x_txclk is optional, depends on board */
3894 	if (fep->rgmii_txc_dly || fep->rgmii_rxc_dly) {
3895 		fep->clk_2x_txclk = devm_clk_get(&pdev->dev, "enet_2x_txclk");
3896 		if (IS_ERR(fep->clk_2x_txclk))
3897 			fep->clk_2x_txclk = NULL;
3898 	}
3899 
3900 	fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3901 	fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3902 	if (IS_ERR(fep->clk_ptp)) {
3903 		fep->clk_ptp = NULL;
3904 		fep->bufdesc_ex = false;
3905 	}
3906 
3907 	ret = fec_enet_clk_enable(ndev, true);
3908 	if (ret)
3909 		goto failed_clk;
3910 
3911 	ret = clk_prepare_enable(fep->clk_ipg);
3912 	if (ret)
3913 		goto failed_clk_ipg;
3914 	ret = clk_prepare_enable(fep->clk_ahb);
3915 	if (ret)
3916 		goto failed_clk_ahb;
3917 
3918 	fep->reg_phy = devm_regulator_get_optional(&pdev->dev, "phy");
3919 	if (!IS_ERR(fep->reg_phy)) {
3920 		ret = regulator_enable(fep->reg_phy);
3921 		if (ret) {
3922 			dev_err(&pdev->dev,
3923 				"Failed to enable phy regulator: %d\n", ret);
3924 			goto failed_regulator;
3925 		}
3926 	} else {
3927 		if (PTR_ERR(fep->reg_phy) == -EPROBE_DEFER) {
3928 			ret = -EPROBE_DEFER;
3929 			goto failed_regulator;
3930 		}
3931 		fep->reg_phy = NULL;
3932 	}
3933 
3934 	pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3935 	pm_runtime_use_autosuspend(&pdev->dev);
3936 	pm_runtime_get_noresume(&pdev->dev);
3937 	pm_runtime_set_active(&pdev->dev);
3938 	pm_runtime_enable(&pdev->dev);
3939 
3940 	ret = fec_reset_phy(pdev);
3941 	if (ret)
3942 		goto failed_reset;
3943 
3944 	irq_cnt = fec_enet_get_irq_cnt(pdev);
3945 	if (fep->bufdesc_ex)
3946 		fec_ptp_init(pdev, irq_cnt);
3947 
3948 	ret = fec_enet_init(ndev);
3949 	if (ret)
3950 		goto failed_init;
3951 
3952 	for (i = 0; i < irq_cnt; i++) {
3953 		snprintf(irq_name, sizeof(irq_name), "int%d", i);
3954 		irq = platform_get_irq_byname_optional(pdev, irq_name);
3955 		if (irq < 0)
3956 			irq = platform_get_irq(pdev, i);
3957 		if (irq < 0) {
3958 			ret = irq;
3959 			goto failed_irq;
3960 		}
3961 		ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3962 				       0, pdev->name, ndev);
3963 		if (ret)
3964 			goto failed_irq;
3965 
3966 		fep->irq[i] = irq;
3967 	}
3968 
3969 	/* Decide which interrupt line is wakeup capable */
3970 	fec_enet_get_wakeup_irq(pdev);
3971 
3972 	ret = fec_enet_mii_init(pdev);
3973 	if (ret)
3974 		goto failed_mii_init;
3975 
3976 	/* Carrier starts down, phylib will bring it up */
3977 	netif_carrier_off(ndev);
3978 	fec_enet_clk_enable(ndev, false);
3979 	pinctrl_pm_select_sleep_state(&pdev->dev);
3980 
3981 	ndev->max_mtu = PKT_MAXBUF_SIZE - ETH_HLEN - ETH_FCS_LEN;
3982 
3983 	ret = register_netdev(ndev);
3984 	if (ret)
3985 		goto failed_register;
3986 
3987 	device_init_wakeup(&ndev->dev, fep->wol_flag &
3988 			   FEC_WOL_HAS_MAGIC_PACKET);
3989 
3990 	if (fep->bufdesc_ex && fep->ptp_clock)
3991 		netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3992 
3993 	fep->rx_copybreak = COPYBREAK_DEFAULT;
3994 	INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3995 
3996 	pm_runtime_mark_last_busy(&pdev->dev);
3997 	pm_runtime_put_autosuspend(&pdev->dev);
3998 
3999 	return 0;
4000 
4001 failed_register:
4002 	fec_enet_mii_remove(fep);
4003 failed_mii_init:
4004 failed_irq:
4005 failed_init:
4006 	fec_ptp_stop(pdev);
4007 failed_reset:
4008 	pm_runtime_put_noidle(&pdev->dev);
4009 	pm_runtime_disable(&pdev->dev);
4010 	if (fep->reg_phy)
4011 		regulator_disable(fep->reg_phy);
4012 failed_regulator:
4013 	clk_disable_unprepare(fep->clk_ahb);
4014 failed_clk_ahb:
4015 	clk_disable_unprepare(fep->clk_ipg);
4016 failed_clk_ipg:
4017 	fec_enet_clk_enable(ndev, false);
4018 failed_clk:
4019 failed_rgmii_delay:
4020 	if (of_phy_is_fixed_link(np))
4021 		of_phy_deregister_fixed_link(np);
4022 	of_node_put(phy_node);
4023 failed_stop_mode:
4024 failed_phy:
4025 	dev_id--;
4026 failed_ioremap:
4027 	free_netdev(ndev);
4028 
4029 	return ret;
4030 }
4031 
4032 static int
4033 fec_drv_remove(struct platform_device *pdev)
4034 {
4035 	struct net_device *ndev = platform_get_drvdata(pdev);
4036 	struct fec_enet_private *fep = netdev_priv(ndev);
4037 	struct device_node *np = pdev->dev.of_node;
4038 	int ret;
4039 
4040 	ret = pm_runtime_resume_and_get(&pdev->dev);
4041 	if (ret < 0)
4042 		return ret;
4043 
4044 	cancel_work_sync(&fep->tx_timeout_work);
4045 	fec_ptp_stop(pdev);
4046 	unregister_netdev(ndev);
4047 	fec_enet_mii_remove(fep);
4048 	if (fep->reg_phy)
4049 		regulator_disable(fep->reg_phy);
4050 
4051 	if (of_phy_is_fixed_link(np))
4052 		of_phy_deregister_fixed_link(np);
4053 	of_node_put(fep->phy_node);
4054 
4055 	clk_disable_unprepare(fep->clk_ahb);
4056 	clk_disable_unprepare(fep->clk_ipg);
4057 	pm_runtime_put_noidle(&pdev->dev);
4058 	pm_runtime_disable(&pdev->dev);
4059 
4060 	free_netdev(ndev);
4061 	return 0;
4062 }
4063 
4064 static int __maybe_unused fec_suspend(struct device *dev)
4065 {
4066 	struct net_device *ndev = dev_get_drvdata(dev);
4067 	struct fec_enet_private *fep = netdev_priv(ndev);
4068 
4069 	rtnl_lock();
4070 	if (netif_running(ndev)) {
4071 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
4072 			fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
4073 		phy_stop(ndev->phydev);
4074 		napi_disable(&fep->napi);
4075 		netif_tx_lock_bh(ndev);
4076 		netif_device_detach(ndev);
4077 		netif_tx_unlock_bh(ndev);
4078 		fec_stop(ndev);
4079 		if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4080 			fec_irqs_disable(ndev);
4081 			pinctrl_pm_select_sleep_state(&fep->pdev->dev);
4082 		} else {
4083 			fec_irqs_disable_except_wakeup(ndev);
4084 			if (fep->wake_irq > 0) {
4085 				disable_irq(fep->wake_irq);
4086 				enable_irq_wake(fep->wake_irq);
4087 			}
4088 			fec_enet_stop_mode(fep, true);
4089 		}
4090 		/* It's safe to disable clocks since interrupts are masked */
4091 		fec_enet_clk_enable(ndev, false);
4092 	}
4093 	rtnl_unlock();
4094 
4095 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
4096 		regulator_disable(fep->reg_phy);
4097 
4098 	/* SOC supply clock to phy, when clock is disabled, phy link down
4099 	 * SOC control phy regulator, when regulator is disabled, phy link down
4100 	 */
4101 	if (fep->clk_enet_out || fep->reg_phy)
4102 		fep->link = 0;
4103 
4104 	return 0;
4105 }
4106 
4107 static int __maybe_unused fec_resume(struct device *dev)
4108 {
4109 	struct net_device *ndev = dev_get_drvdata(dev);
4110 	struct fec_enet_private *fep = netdev_priv(ndev);
4111 	int ret;
4112 	int val;
4113 
4114 	if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
4115 		ret = regulator_enable(fep->reg_phy);
4116 		if (ret)
4117 			return ret;
4118 	}
4119 
4120 	rtnl_lock();
4121 	if (netif_running(ndev)) {
4122 		ret = fec_enet_clk_enable(ndev, true);
4123 		if (ret) {
4124 			rtnl_unlock();
4125 			goto failed_clk;
4126 		}
4127 		if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
4128 			fec_enet_stop_mode(fep, false);
4129 			if (fep->wake_irq) {
4130 				disable_irq_wake(fep->wake_irq);
4131 				enable_irq(fep->wake_irq);
4132 			}
4133 
4134 			val = readl(fep->hwp + FEC_ECNTRL);
4135 			val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
4136 			writel(val, fep->hwp + FEC_ECNTRL);
4137 			fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
4138 		} else {
4139 			pinctrl_pm_select_default_state(&fep->pdev->dev);
4140 		}
4141 		fec_restart(ndev);
4142 		netif_tx_lock_bh(ndev);
4143 		netif_device_attach(ndev);
4144 		netif_tx_unlock_bh(ndev);
4145 		napi_enable(&fep->napi);
4146 		phy_init_hw(ndev->phydev);
4147 		phy_start(ndev->phydev);
4148 	}
4149 	rtnl_unlock();
4150 
4151 	return 0;
4152 
4153 failed_clk:
4154 	if (fep->reg_phy)
4155 		regulator_disable(fep->reg_phy);
4156 	return ret;
4157 }
4158 
4159 static int __maybe_unused fec_runtime_suspend(struct device *dev)
4160 {
4161 	struct net_device *ndev = dev_get_drvdata(dev);
4162 	struct fec_enet_private *fep = netdev_priv(ndev);
4163 
4164 	clk_disable_unprepare(fep->clk_ahb);
4165 	clk_disable_unprepare(fep->clk_ipg);
4166 
4167 	return 0;
4168 }
4169 
4170 static int __maybe_unused fec_runtime_resume(struct device *dev)
4171 {
4172 	struct net_device *ndev = dev_get_drvdata(dev);
4173 	struct fec_enet_private *fep = netdev_priv(ndev);
4174 	int ret;
4175 
4176 	ret = clk_prepare_enable(fep->clk_ahb);
4177 	if (ret)
4178 		return ret;
4179 	ret = clk_prepare_enable(fep->clk_ipg);
4180 	if (ret)
4181 		goto failed_clk_ipg;
4182 
4183 	return 0;
4184 
4185 failed_clk_ipg:
4186 	clk_disable_unprepare(fep->clk_ahb);
4187 	return ret;
4188 }
4189 
4190 static const struct dev_pm_ops fec_pm_ops = {
4191 	SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
4192 	SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
4193 };
4194 
4195 static struct platform_driver fec_driver = {
4196 	.driver	= {
4197 		.name	= DRIVER_NAME,
4198 		.pm	= &fec_pm_ops,
4199 		.of_match_table = fec_dt_ids,
4200 		.suppress_bind_attrs = true,
4201 	},
4202 	.id_table = fec_devtype,
4203 	.probe	= fec_probe,
4204 	.remove	= fec_drv_remove,
4205 };
4206 
4207 module_platform_driver(fec_driver);
4208 
4209 MODULE_LICENSE("GPL");
4210