1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* Copyright 2017-2019 NXP */ 3 4 #include "enetc.h" 5 #include <linux/bpf_trace.h> 6 #include <linux/tcp.h> 7 #include <linux/udp.h> 8 #include <linux/vmalloc.h> 9 #include <linux/ptp_classify.h> 10 #include <net/pkt_sched.h> 11 12 static int enetc_num_stack_tx_queues(struct enetc_ndev_priv *priv) 13 { 14 int num_tx_rings = priv->num_tx_rings; 15 int i; 16 17 for (i = 0; i < priv->num_rx_rings; i++) 18 if (priv->rx_ring[i]->xdp.prog) 19 return num_tx_rings - num_possible_cpus(); 20 21 return num_tx_rings; 22 } 23 24 static struct enetc_bdr *enetc_rx_ring_from_xdp_tx_ring(struct enetc_ndev_priv *priv, 25 struct enetc_bdr *tx_ring) 26 { 27 int index = &priv->tx_ring[tx_ring->index] - priv->xdp_tx_ring; 28 29 return priv->rx_ring[index]; 30 } 31 32 static struct sk_buff *enetc_tx_swbd_get_skb(struct enetc_tx_swbd *tx_swbd) 33 { 34 if (tx_swbd->is_xdp_tx || tx_swbd->is_xdp_redirect) 35 return NULL; 36 37 return tx_swbd->skb; 38 } 39 40 static struct xdp_frame * 41 enetc_tx_swbd_get_xdp_frame(struct enetc_tx_swbd *tx_swbd) 42 { 43 if (tx_swbd->is_xdp_redirect) 44 return tx_swbd->xdp_frame; 45 46 return NULL; 47 } 48 49 static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring, 50 struct enetc_tx_swbd *tx_swbd) 51 { 52 /* For XDP_TX, pages come from RX, whereas for the other contexts where 53 * we have is_dma_page_set, those come from skb_frag_dma_map. We need 54 * to match the DMA mapping length, so we need to differentiate those. 55 */ 56 if (tx_swbd->is_dma_page) 57 dma_unmap_page(tx_ring->dev, tx_swbd->dma, 58 tx_swbd->is_xdp_tx ? PAGE_SIZE : tx_swbd->len, 59 tx_swbd->dir); 60 else 61 dma_unmap_single(tx_ring->dev, tx_swbd->dma, 62 tx_swbd->len, tx_swbd->dir); 63 tx_swbd->dma = 0; 64 } 65 66 static void enetc_free_tx_frame(struct enetc_bdr *tx_ring, 67 struct enetc_tx_swbd *tx_swbd) 68 { 69 struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd); 70 struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd); 71 72 if (tx_swbd->dma) 73 enetc_unmap_tx_buff(tx_ring, tx_swbd); 74 75 if (xdp_frame) { 76 xdp_return_frame(tx_swbd->xdp_frame); 77 tx_swbd->xdp_frame = NULL; 78 } else if (skb) { 79 dev_kfree_skb_any(skb); 80 tx_swbd->skb = NULL; 81 } 82 } 83 84 /* Let H/W know BD ring has been updated */ 85 static void enetc_update_tx_ring_tail(struct enetc_bdr *tx_ring) 86 { 87 /* includes wmb() */ 88 enetc_wr_reg_hot(tx_ring->tpir, tx_ring->next_to_use); 89 } 90 91 static int enetc_ptp_parse(struct sk_buff *skb, u8 *udp, 92 u8 *msgtype, u8 *twostep, 93 u16 *correction_offset, u16 *body_offset) 94 { 95 unsigned int ptp_class; 96 struct ptp_header *hdr; 97 unsigned int type; 98 u8 *base; 99 100 ptp_class = ptp_classify_raw(skb); 101 if (ptp_class == PTP_CLASS_NONE) 102 return -EINVAL; 103 104 hdr = ptp_parse_header(skb, ptp_class); 105 if (!hdr) 106 return -EINVAL; 107 108 type = ptp_class & PTP_CLASS_PMASK; 109 if (type == PTP_CLASS_IPV4 || type == PTP_CLASS_IPV6) 110 *udp = 1; 111 else 112 *udp = 0; 113 114 *msgtype = ptp_get_msgtype(hdr, ptp_class); 115 *twostep = hdr->flag_field[0] & 0x2; 116 117 base = skb_mac_header(skb); 118 *correction_offset = (u8 *)&hdr->correction - base; 119 *body_offset = (u8 *)hdr + sizeof(struct ptp_header) - base; 120 121 return 0; 122 } 123 124 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb) 125 { 126 bool do_vlan, do_onestep_tstamp = false, do_twostep_tstamp = false; 127 struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev); 128 struct enetc_hw *hw = &priv->si->hw; 129 struct enetc_tx_swbd *tx_swbd; 130 int len = skb_headlen(skb); 131 union enetc_tx_bd temp_bd; 132 u8 msgtype, twostep, udp; 133 union enetc_tx_bd *txbd; 134 u16 offset1, offset2; 135 int i, count = 0; 136 skb_frag_t *frag; 137 unsigned int f; 138 dma_addr_t dma; 139 u8 flags = 0; 140 141 i = tx_ring->next_to_use; 142 txbd = ENETC_TXBD(*tx_ring, i); 143 prefetchw(txbd); 144 145 dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE); 146 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) 147 goto dma_err; 148 149 temp_bd.addr = cpu_to_le64(dma); 150 temp_bd.buf_len = cpu_to_le16(len); 151 temp_bd.lstatus = 0; 152 153 tx_swbd = &tx_ring->tx_swbd[i]; 154 tx_swbd->dma = dma; 155 tx_swbd->len = len; 156 tx_swbd->is_dma_page = 0; 157 tx_swbd->dir = DMA_TO_DEVICE; 158 count++; 159 160 do_vlan = skb_vlan_tag_present(skb); 161 if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) { 162 if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep, &offset1, 163 &offset2) || 164 msgtype != PTP_MSGTYPE_SYNC || twostep) 165 WARN_ONCE(1, "Bad packet for one-step timestamping\n"); 166 else 167 do_onestep_tstamp = true; 168 } else if (skb->cb[0] & ENETC_F_TX_TSTAMP) { 169 do_twostep_tstamp = true; 170 } 171 172 tx_swbd->do_twostep_tstamp = do_twostep_tstamp; 173 tx_swbd->check_wb = tx_swbd->do_twostep_tstamp; 174 175 if (do_vlan || do_onestep_tstamp || do_twostep_tstamp) 176 flags |= ENETC_TXBD_FLAGS_EX; 177 178 if (tx_ring->tsd_enable) 179 flags |= ENETC_TXBD_FLAGS_TSE | ENETC_TXBD_FLAGS_TXSTART; 180 181 /* first BD needs frm_len and offload flags set */ 182 temp_bd.frm_len = cpu_to_le16(skb->len); 183 temp_bd.flags = flags; 184 185 if (flags & ENETC_TXBD_FLAGS_TSE) 186 temp_bd.txstart = enetc_txbd_set_tx_start(skb->skb_mstamp_ns, 187 flags); 188 189 if (flags & ENETC_TXBD_FLAGS_EX) { 190 u8 e_flags = 0; 191 *txbd = temp_bd; 192 enetc_clear_tx_bd(&temp_bd); 193 194 /* add extension BD for VLAN and/or timestamping */ 195 flags = 0; 196 tx_swbd++; 197 txbd++; 198 i++; 199 if (unlikely(i == tx_ring->bd_count)) { 200 i = 0; 201 tx_swbd = tx_ring->tx_swbd; 202 txbd = ENETC_TXBD(*tx_ring, 0); 203 } 204 prefetchw(txbd); 205 206 if (do_vlan) { 207 temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb)); 208 temp_bd.ext.tpid = 0; /* < C-TAG */ 209 e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS; 210 } 211 212 if (do_onestep_tstamp) { 213 u32 lo, hi, val; 214 u64 sec, nsec; 215 u8 *data; 216 217 lo = enetc_rd_hot(hw, ENETC_SICTR0); 218 hi = enetc_rd_hot(hw, ENETC_SICTR1); 219 sec = (u64)hi << 32 | lo; 220 nsec = do_div(sec, 1000000000); 221 222 /* Configure extension BD */ 223 temp_bd.ext.tstamp = cpu_to_le32(lo & 0x3fffffff); 224 e_flags |= ENETC_TXBD_E_FLAGS_ONE_STEP_PTP; 225 226 /* Update originTimestamp field of Sync packet 227 * - 48 bits seconds field 228 * - 32 bits nanseconds field 229 */ 230 data = skb_mac_header(skb); 231 *(__be16 *)(data + offset2) = 232 htons((sec >> 32) & 0xffff); 233 *(__be32 *)(data + offset2 + 2) = 234 htonl(sec & 0xffffffff); 235 *(__be32 *)(data + offset2 + 6) = htonl(nsec); 236 237 /* Configure single-step register */ 238 val = ENETC_PM0_SINGLE_STEP_EN; 239 val |= ENETC_SET_SINGLE_STEP_OFFSET(offset1); 240 if (udp) 241 val |= ENETC_PM0_SINGLE_STEP_CH; 242 243 enetc_port_wr(hw, ENETC_PM0_SINGLE_STEP, val); 244 enetc_port_wr(hw, ENETC_PM1_SINGLE_STEP, val); 245 } else if (do_twostep_tstamp) { 246 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 247 e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP; 248 } 249 250 temp_bd.ext.e_flags = e_flags; 251 count++; 252 } 253 254 frag = &skb_shinfo(skb)->frags[0]; 255 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) { 256 len = skb_frag_size(frag); 257 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len, 258 DMA_TO_DEVICE); 259 if (dma_mapping_error(tx_ring->dev, dma)) 260 goto dma_err; 261 262 *txbd = temp_bd; 263 enetc_clear_tx_bd(&temp_bd); 264 265 flags = 0; 266 tx_swbd++; 267 txbd++; 268 i++; 269 if (unlikely(i == tx_ring->bd_count)) { 270 i = 0; 271 tx_swbd = tx_ring->tx_swbd; 272 txbd = ENETC_TXBD(*tx_ring, 0); 273 } 274 prefetchw(txbd); 275 276 temp_bd.addr = cpu_to_le64(dma); 277 temp_bd.buf_len = cpu_to_le16(len); 278 279 tx_swbd->dma = dma; 280 tx_swbd->len = len; 281 tx_swbd->is_dma_page = 1; 282 tx_swbd->dir = DMA_TO_DEVICE; 283 count++; 284 } 285 286 /* last BD needs 'F' bit set */ 287 flags |= ENETC_TXBD_FLAGS_F; 288 temp_bd.flags = flags; 289 *txbd = temp_bd; 290 291 tx_ring->tx_swbd[i].is_eof = true; 292 tx_ring->tx_swbd[i].skb = skb; 293 294 enetc_bdr_idx_inc(tx_ring, &i); 295 tx_ring->next_to_use = i; 296 297 skb_tx_timestamp(skb); 298 299 enetc_update_tx_ring_tail(tx_ring); 300 301 return count; 302 303 dma_err: 304 dev_err(tx_ring->dev, "DMA map error"); 305 306 do { 307 tx_swbd = &tx_ring->tx_swbd[i]; 308 enetc_free_tx_frame(tx_ring, tx_swbd); 309 if (i == 0) 310 i = tx_ring->bd_count; 311 i--; 312 } while (count--); 313 314 return 0; 315 } 316 317 static netdev_tx_t enetc_start_xmit(struct sk_buff *skb, 318 struct net_device *ndev) 319 { 320 struct enetc_ndev_priv *priv = netdev_priv(ndev); 321 struct enetc_bdr *tx_ring; 322 int count; 323 324 /* Queue one-step Sync packet if already locked */ 325 if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) { 326 if (test_and_set_bit_lock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS, 327 &priv->flags)) { 328 skb_queue_tail(&priv->tx_skbs, skb); 329 return NETDEV_TX_OK; 330 } 331 } 332 333 tx_ring = priv->tx_ring[skb->queue_mapping]; 334 335 if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS)) 336 if (unlikely(skb_linearize(skb))) 337 goto drop_packet_err; 338 339 count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */ 340 if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) { 341 netif_stop_subqueue(ndev, tx_ring->index); 342 return NETDEV_TX_BUSY; 343 } 344 345 enetc_lock_mdio(); 346 count = enetc_map_tx_buffs(tx_ring, skb); 347 enetc_unlock_mdio(); 348 349 if (unlikely(!count)) 350 goto drop_packet_err; 351 352 if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED) 353 netif_stop_subqueue(ndev, tx_ring->index); 354 355 return NETDEV_TX_OK; 356 357 drop_packet_err: 358 dev_kfree_skb_any(skb); 359 return NETDEV_TX_OK; 360 } 361 362 netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev) 363 { 364 struct enetc_ndev_priv *priv = netdev_priv(ndev); 365 u8 udp, msgtype, twostep; 366 u16 offset1, offset2; 367 368 /* Mark tx timestamp type on skb->cb[0] if requires */ 369 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 370 (priv->active_offloads & ENETC_F_TX_TSTAMP_MASK)) { 371 skb->cb[0] = priv->active_offloads & ENETC_F_TX_TSTAMP_MASK; 372 } else { 373 skb->cb[0] = 0; 374 } 375 376 /* Fall back to two-step timestamp if not one-step Sync packet */ 377 if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) { 378 if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep, 379 &offset1, &offset2) || 380 msgtype != PTP_MSGTYPE_SYNC || twostep != 0) 381 skb->cb[0] = ENETC_F_TX_TSTAMP; 382 } 383 384 return enetc_start_xmit(skb, ndev); 385 } 386 387 static irqreturn_t enetc_msix(int irq, void *data) 388 { 389 struct enetc_int_vector *v = data; 390 int i; 391 392 enetc_lock_mdio(); 393 394 /* disable interrupts */ 395 enetc_wr_reg_hot(v->rbier, 0); 396 enetc_wr_reg_hot(v->ricr1, v->rx_ictt); 397 398 for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS) 399 enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), 0); 400 401 enetc_unlock_mdio(); 402 403 napi_schedule(&v->napi); 404 405 return IRQ_HANDLED; 406 } 407 408 static void enetc_rx_dim_work(struct work_struct *w) 409 { 410 struct dim *dim = container_of(w, struct dim, work); 411 struct dim_cq_moder moder = 412 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 413 struct enetc_int_vector *v = 414 container_of(dim, struct enetc_int_vector, rx_dim); 415 416 v->rx_ictt = enetc_usecs_to_cycles(moder.usec); 417 dim->state = DIM_START_MEASURE; 418 } 419 420 static void enetc_rx_net_dim(struct enetc_int_vector *v) 421 { 422 struct dim_sample dim_sample = {}; 423 424 v->comp_cnt++; 425 426 if (!v->rx_napi_work) 427 return; 428 429 dim_update_sample(v->comp_cnt, 430 v->rx_ring.stats.packets, 431 v->rx_ring.stats.bytes, 432 &dim_sample); 433 net_dim(&v->rx_dim, dim_sample); 434 } 435 436 static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci) 437 { 438 int pi = enetc_rd_reg_hot(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK; 439 440 return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi; 441 } 442 443 static bool enetc_page_reusable(struct page *page) 444 { 445 return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1); 446 } 447 448 static void enetc_reuse_page(struct enetc_bdr *rx_ring, 449 struct enetc_rx_swbd *old) 450 { 451 struct enetc_rx_swbd *new; 452 453 new = &rx_ring->rx_swbd[rx_ring->next_to_alloc]; 454 455 /* next buf that may reuse a page */ 456 enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc); 457 458 /* copy page reference */ 459 *new = *old; 460 } 461 462 static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd, 463 u64 *tstamp) 464 { 465 u32 lo, hi, tstamp_lo; 466 467 lo = enetc_rd_hot(hw, ENETC_SICTR0); 468 hi = enetc_rd_hot(hw, ENETC_SICTR1); 469 tstamp_lo = le32_to_cpu(txbd->wb.tstamp); 470 if (lo <= tstamp_lo) 471 hi -= 1; 472 *tstamp = (u64)hi << 32 | tstamp_lo; 473 } 474 475 static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp) 476 { 477 struct skb_shared_hwtstamps shhwtstamps; 478 479 if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) { 480 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 481 shhwtstamps.hwtstamp = ns_to_ktime(tstamp); 482 skb_txtime_consumed(skb); 483 skb_tstamp_tx(skb, &shhwtstamps); 484 } 485 } 486 487 static void enetc_recycle_xdp_tx_buff(struct enetc_bdr *tx_ring, 488 struct enetc_tx_swbd *tx_swbd) 489 { 490 struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev); 491 struct enetc_rx_swbd rx_swbd = { 492 .dma = tx_swbd->dma, 493 .page = tx_swbd->page, 494 .page_offset = tx_swbd->page_offset, 495 .dir = tx_swbd->dir, 496 .len = tx_swbd->len, 497 }; 498 struct enetc_bdr *rx_ring; 499 500 rx_ring = enetc_rx_ring_from_xdp_tx_ring(priv, tx_ring); 501 502 if (likely(enetc_swbd_unused(rx_ring))) { 503 enetc_reuse_page(rx_ring, &rx_swbd); 504 505 /* sync for use by the device */ 506 dma_sync_single_range_for_device(rx_ring->dev, rx_swbd.dma, 507 rx_swbd.page_offset, 508 ENETC_RXB_DMA_SIZE_XDP, 509 rx_swbd.dir); 510 511 rx_ring->stats.recycles++; 512 } else { 513 /* RX ring is already full, we need to unmap and free the 514 * page, since there's nothing useful we can do with it. 515 */ 516 rx_ring->stats.recycle_failures++; 517 518 dma_unmap_page(rx_ring->dev, rx_swbd.dma, PAGE_SIZE, 519 rx_swbd.dir); 520 __free_page(rx_swbd.page); 521 } 522 523 rx_ring->xdp.xdp_tx_in_flight--; 524 } 525 526 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget) 527 { 528 struct net_device *ndev = tx_ring->ndev; 529 struct enetc_ndev_priv *priv = netdev_priv(ndev); 530 int tx_frm_cnt = 0, tx_byte_cnt = 0; 531 struct enetc_tx_swbd *tx_swbd; 532 int i, bds_to_clean; 533 bool do_twostep_tstamp; 534 u64 tstamp = 0; 535 536 i = tx_ring->next_to_clean; 537 tx_swbd = &tx_ring->tx_swbd[i]; 538 539 bds_to_clean = enetc_bd_ready_count(tx_ring, i); 540 541 do_twostep_tstamp = false; 542 543 while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) { 544 struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd); 545 struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd); 546 bool is_eof = tx_swbd->is_eof; 547 548 if (unlikely(tx_swbd->check_wb)) { 549 struct enetc_ndev_priv *priv = netdev_priv(ndev); 550 union enetc_tx_bd *txbd; 551 552 txbd = ENETC_TXBD(*tx_ring, i); 553 554 if (txbd->flags & ENETC_TXBD_FLAGS_W && 555 tx_swbd->do_twostep_tstamp) { 556 enetc_get_tx_tstamp(&priv->si->hw, txbd, 557 &tstamp); 558 do_twostep_tstamp = true; 559 } 560 } 561 562 if (tx_swbd->is_xdp_tx) 563 enetc_recycle_xdp_tx_buff(tx_ring, tx_swbd); 564 else if (likely(tx_swbd->dma)) 565 enetc_unmap_tx_buff(tx_ring, tx_swbd); 566 567 if (xdp_frame) { 568 xdp_return_frame(xdp_frame); 569 } else if (skb) { 570 if (unlikely(tx_swbd->skb->cb[0] & 571 ENETC_F_TX_ONESTEP_SYNC_TSTAMP)) { 572 /* Start work to release lock for next one-step 573 * timestamping packet. And send one skb in 574 * tx_skbs queue if has. 575 */ 576 schedule_work(&priv->tx_onestep_tstamp); 577 } else if (unlikely(do_twostep_tstamp)) { 578 enetc_tstamp_tx(skb, tstamp); 579 do_twostep_tstamp = false; 580 } 581 napi_consume_skb(skb, napi_budget); 582 } 583 584 tx_byte_cnt += tx_swbd->len; 585 /* Scrub the swbd here so we don't have to do that 586 * when we reuse it during xmit 587 */ 588 memset(tx_swbd, 0, sizeof(*tx_swbd)); 589 590 bds_to_clean--; 591 tx_swbd++; 592 i++; 593 if (unlikely(i == tx_ring->bd_count)) { 594 i = 0; 595 tx_swbd = tx_ring->tx_swbd; 596 } 597 598 /* BD iteration loop end */ 599 if (is_eof) { 600 tx_frm_cnt++; 601 /* re-arm interrupt source */ 602 enetc_wr_reg_hot(tx_ring->idr, BIT(tx_ring->index) | 603 BIT(16 + tx_ring->index)); 604 } 605 606 if (unlikely(!bds_to_clean)) 607 bds_to_clean = enetc_bd_ready_count(tx_ring, i); 608 } 609 610 tx_ring->next_to_clean = i; 611 tx_ring->stats.packets += tx_frm_cnt; 612 tx_ring->stats.bytes += tx_byte_cnt; 613 614 if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) && 615 __netif_subqueue_stopped(ndev, tx_ring->index) && 616 (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) { 617 netif_wake_subqueue(ndev, tx_ring->index); 618 } 619 620 return tx_frm_cnt != ENETC_DEFAULT_TX_WORK; 621 } 622 623 static bool enetc_new_page(struct enetc_bdr *rx_ring, 624 struct enetc_rx_swbd *rx_swbd) 625 { 626 bool xdp = !!(rx_ring->xdp.prog); 627 struct page *page; 628 dma_addr_t addr; 629 630 page = dev_alloc_page(); 631 if (unlikely(!page)) 632 return false; 633 634 /* For XDP_TX, we forgo dma_unmap -> dma_map */ 635 rx_swbd->dir = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 636 637 addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, rx_swbd->dir); 638 if (unlikely(dma_mapping_error(rx_ring->dev, addr))) { 639 __free_page(page); 640 641 return false; 642 } 643 644 rx_swbd->dma = addr; 645 rx_swbd->page = page; 646 rx_swbd->page_offset = rx_ring->buffer_offset; 647 648 return true; 649 } 650 651 static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt) 652 { 653 struct enetc_rx_swbd *rx_swbd; 654 union enetc_rx_bd *rxbd; 655 int i, j; 656 657 i = rx_ring->next_to_use; 658 rx_swbd = &rx_ring->rx_swbd[i]; 659 rxbd = enetc_rxbd(rx_ring, i); 660 661 for (j = 0; j < buff_cnt; j++) { 662 /* try reuse page */ 663 if (unlikely(!rx_swbd->page)) { 664 if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) { 665 rx_ring->stats.rx_alloc_errs++; 666 break; 667 } 668 } 669 670 /* update RxBD */ 671 rxbd->w.addr = cpu_to_le64(rx_swbd->dma + 672 rx_swbd->page_offset); 673 /* clear 'R" as well */ 674 rxbd->r.lstatus = 0; 675 676 enetc_rxbd_next(rx_ring, &rxbd, &i); 677 rx_swbd = &rx_ring->rx_swbd[i]; 678 } 679 680 if (likely(j)) { 681 rx_ring->next_to_alloc = i; /* keep track from page reuse */ 682 rx_ring->next_to_use = i; 683 684 /* update ENETC's consumer index */ 685 enetc_wr_reg_hot(rx_ring->rcir, rx_ring->next_to_use); 686 } 687 688 return j; 689 } 690 691 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK 692 static void enetc_get_rx_tstamp(struct net_device *ndev, 693 union enetc_rx_bd *rxbd, 694 struct sk_buff *skb) 695 { 696 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 697 struct enetc_ndev_priv *priv = netdev_priv(ndev); 698 struct enetc_hw *hw = &priv->si->hw; 699 u32 lo, hi, tstamp_lo; 700 u64 tstamp; 701 702 if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) { 703 lo = enetc_rd_reg_hot(hw->reg + ENETC_SICTR0); 704 hi = enetc_rd_reg_hot(hw->reg + ENETC_SICTR1); 705 rxbd = enetc_rxbd_ext(rxbd); 706 tstamp_lo = le32_to_cpu(rxbd->ext.tstamp); 707 if (lo <= tstamp_lo) 708 hi -= 1; 709 710 tstamp = (u64)hi << 32 | tstamp_lo; 711 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 712 shhwtstamps->hwtstamp = ns_to_ktime(tstamp); 713 } 714 } 715 #endif 716 717 static void enetc_get_offloads(struct enetc_bdr *rx_ring, 718 union enetc_rx_bd *rxbd, struct sk_buff *skb) 719 { 720 struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev); 721 722 /* TODO: hashing */ 723 if (rx_ring->ndev->features & NETIF_F_RXCSUM) { 724 u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum); 725 726 skb->csum = csum_unfold((__force __sum16)~htons(inet_csum)); 727 skb->ip_summed = CHECKSUM_COMPLETE; 728 } 729 730 if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN) { 731 __be16 tpid = 0; 732 733 switch (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TPID) { 734 case 0: 735 tpid = htons(ETH_P_8021Q); 736 break; 737 case 1: 738 tpid = htons(ETH_P_8021AD); 739 break; 740 case 2: 741 tpid = htons(enetc_port_rd(&priv->si->hw, 742 ENETC_PCVLANR1)); 743 break; 744 case 3: 745 tpid = htons(enetc_port_rd(&priv->si->hw, 746 ENETC_PCVLANR2)); 747 break; 748 default: 749 break; 750 } 751 752 __vlan_hwaccel_put_tag(skb, tpid, le16_to_cpu(rxbd->r.vlan_opt)); 753 } 754 755 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK 756 if (priv->active_offloads & ENETC_F_RX_TSTAMP) 757 enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb); 758 #endif 759 } 760 761 /* This gets called during the non-XDP NAPI poll cycle as well as on XDP_PASS, 762 * so it needs to work with both DMA_FROM_DEVICE as well as DMA_BIDIRECTIONAL 763 * mapped buffers. 764 */ 765 static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring, 766 int i, u16 size) 767 { 768 struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i]; 769 770 dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma, 771 rx_swbd->page_offset, 772 size, rx_swbd->dir); 773 return rx_swbd; 774 } 775 776 /* Reuse the current page without performing half-page buffer flipping */ 777 static void enetc_put_rx_buff(struct enetc_bdr *rx_ring, 778 struct enetc_rx_swbd *rx_swbd) 779 { 780 size_t buffer_size = ENETC_RXB_TRUESIZE - rx_ring->buffer_offset; 781 782 enetc_reuse_page(rx_ring, rx_swbd); 783 784 dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma, 785 rx_swbd->page_offset, 786 buffer_size, rx_swbd->dir); 787 788 rx_swbd->page = NULL; 789 } 790 791 /* Reuse the current page by performing half-page buffer flipping */ 792 static void enetc_flip_rx_buff(struct enetc_bdr *rx_ring, 793 struct enetc_rx_swbd *rx_swbd) 794 { 795 if (likely(enetc_page_reusable(rx_swbd->page))) { 796 rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE; 797 page_ref_inc(rx_swbd->page); 798 799 enetc_put_rx_buff(rx_ring, rx_swbd); 800 } else { 801 dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE, 802 rx_swbd->dir); 803 rx_swbd->page = NULL; 804 } 805 } 806 807 static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring, 808 int i, u16 size) 809 { 810 struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size); 811 struct sk_buff *skb; 812 void *ba; 813 814 ba = page_address(rx_swbd->page) + rx_swbd->page_offset; 815 skb = build_skb(ba - rx_ring->buffer_offset, ENETC_RXB_TRUESIZE); 816 if (unlikely(!skb)) { 817 rx_ring->stats.rx_alloc_errs++; 818 return NULL; 819 } 820 821 skb_reserve(skb, rx_ring->buffer_offset); 822 __skb_put(skb, size); 823 824 enetc_flip_rx_buff(rx_ring, rx_swbd); 825 826 return skb; 827 } 828 829 static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i, 830 u16 size, struct sk_buff *skb) 831 { 832 struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size); 833 834 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page, 835 rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE); 836 837 enetc_flip_rx_buff(rx_ring, rx_swbd); 838 } 839 840 static bool enetc_check_bd_errors_and_consume(struct enetc_bdr *rx_ring, 841 u32 bd_status, 842 union enetc_rx_bd **rxbd, int *i) 843 { 844 if (likely(!(bd_status & ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK)))) 845 return false; 846 847 enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]); 848 enetc_rxbd_next(rx_ring, rxbd, i); 849 850 while (!(bd_status & ENETC_RXBD_LSTATUS_F)) { 851 dma_rmb(); 852 bd_status = le32_to_cpu((*rxbd)->r.lstatus); 853 854 enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]); 855 enetc_rxbd_next(rx_ring, rxbd, i); 856 } 857 858 rx_ring->ndev->stats.rx_dropped++; 859 rx_ring->ndev->stats.rx_errors++; 860 861 return true; 862 } 863 864 static struct sk_buff *enetc_build_skb(struct enetc_bdr *rx_ring, 865 u32 bd_status, union enetc_rx_bd **rxbd, 866 int *i, int *cleaned_cnt, int buffer_size) 867 { 868 struct sk_buff *skb; 869 u16 size; 870 871 size = le16_to_cpu((*rxbd)->r.buf_len); 872 skb = enetc_map_rx_buff_to_skb(rx_ring, *i, size); 873 if (!skb) 874 return NULL; 875 876 enetc_get_offloads(rx_ring, *rxbd, skb); 877 878 (*cleaned_cnt)++; 879 880 enetc_rxbd_next(rx_ring, rxbd, i); 881 882 /* not last BD in frame? */ 883 while (!(bd_status & ENETC_RXBD_LSTATUS_F)) { 884 bd_status = le32_to_cpu((*rxbd)->r.lstatus); 885 size = buffer_size; 886 887 if (bd_status & ENETC_RXBD_LSTATUS_F) { 888 dma_rmb(); 889 size = le16_to_cpu((*rxbd)->r.buf_len); 890 } 891 892 enetc_add_rx_buff_to_skb(rx_ring, *i, size, skb); 893 894 (*cleaned_cnt)++; 895 896 enetc_rxbd_next(rx_ring, rxbd, i); 897 } 898 899 skb_record_rx_queue(skb, rx_ring->index); 900 skb->protocol = eth_type_trans(skb, rx_ring->ndev); 901 902 return skb; 903 } 904 905 #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */ 906 907 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring, 908 struct napi_struct *napi, int work_limit) 909 { 910 int rx_frm_cnt = 0, rx_byte_cnt = 0; 911 int cleaned_cnt, i; 912 913 cleaned_cnt = enetc_bd_unused(rx_ring); 914 /* next descriptor to process */ 915 i = rx_ring->next_to_clean; 916 917 while (likely(rx_frm_cnt < work_limit)) { 918 union enetc_rx_bd *rxbd; 919 struct sk_buff *skb; 920 u32 bd_status; 921 922 if (cleaned_cnt >= ENETC_RXBD_BUNDLE) 923 cleaned_cnt -= enetc_refill_rx_ring(rx_ring, 924 cleaned_cnt); 925 926 rxbd = enetc_rxbd(rx_ring, i); 927 bd_status = le32_to_cpu(rxbd->r.lstatus); 928 if (!bd_status) 929 break; 930 931 enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index)); 932 dma_rmb(); /* for reading other rxbd fields */ 933 934 if (enetc_check_bd_errors_and_consume(rx_ring, bd_status, 935 &rxbd, &i)) 936 break; 937 938 skb = enetc_build_skb(rx_ring, bd_status, &rxbd, &i, 939 &cleaned_cnt, ENETC_RXB_DMA_SIZE); 940 if (!skb) 941 break; 942 943 rx_byte_cnt += skb->len; 944 rx_frm_cnt++; 945 946 napi_gro_receive(napi, skb); 947 } 948 949 rx_ring->next_to_clean = i; 950 951 rx_ring->stats.packets += rx_frm_cnt; 952 rx_ring->stats.bytes += rx_byte_cnt; 953 954 return rx_frm_cnt; 955 } 956 957 static void enetc_xdp_map_tx_buff(struct enetc_bdr *tx_ring, int i, 958 struct enetc_tx_swbd *tx_swbd, 959 int frm_len) 960 { 961 union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i); 962 963 prefetchw(txbd); 964 965 enetc_clear_tx_bd(txbd); 966 txbd->addr = cpu_to_le64(tx_swbd->dma + tx_swbd->page_offset); 967 txbd->buf_len = cpu_to_le16(tx_swbd->len); 968 txbd->frm_len = cpu_to_le16(frm_len); 969 970 memcpy(&tx_ring->tx_swbd[i], tx_swbd, sizeof(*tx_swbd)); 971 } 972 973 /* Puts in the TX ring one XDP frame, mapped as an array of TX software buffer 974 * descriptors. 975 */ 976 static bool enetc_xdp_tx(struct enetc_bdr *tx_ring, 977 struct enetc_tx_swbd *xdp_tx_arr, int num_tx_swbd) 978 { 979 struct enetc_tx_swbd *tmp_tx_swbd = xdp_tx_arr; 980 int i, k, frm_len = tmp_tx_swbd->len; 981 982 if (unlikely(enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(num_tx_swbd))) 983 return false; 984 985 while (unlikely(!tmp_tx_swbd->is_eof)) { 986 tmp_tx_swbd++; 987 frm_len += tmp_tx_swbd->len; 988 } 989 990 i = tx_ring->next_to_use; 991 992 for (k = 0; k < num_tx_swbd; k++) { 993 struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[k]; 994 995 enetc_xdp_map_tx_buff(tx_ring, i, xdp_tx_swbd, frm_len); 996 997 /* last BD needs 'F' bit set */ 998 if (xdp_tx_swbd->is_eof) { 999 union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i); 1000 1001 txbd->flags = ENETC_TXBD_FLAGS_F; 1002 } 1003 1004 enetc_bdr_idx_inc(tx_ring, &i); 1005 } 1006 1007 tx_ring->next_to_use = i; 1008 1009 return true; 1010 } 1011 1012 static int enetc_xdp_frame_to_xdp_tx_swbd(struct enetc_bdr *tx_ring, 1013 struct enetc_tx_swbd *xdp_tx_arr, 1014 struct xdp_frame *xdp_frame) 1015 { 1016 struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[0]; 1017 struct skb_shared_info *shinfo; 1018 void *data = xdp_frame->data; 1019 int len = xdp_frame->len; 1020 skb_frag_t *frag; 1021 dma_addr_t dma; 1022 unsigned int f; 1023 int n = 0; 1024 1025 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE); 1026 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) { 1027 netdev_err(tx_ring->ndev, "DMA map error\n"); 1028 return -1; 1029 } 1030 1031 xdp_tx_swbd->dma = dma; 1032 xdp_tx_swbd->dir = DMA_TO_DEVICE; 1033 xdp_tx_swbd->len = len; 1034 xdp_tx_swbd->is_xdp_redirect = true; 1035 xdp_tx_swbd->is_eof = false; 1036 xdp_tx_swbd->xdp_frame = NULL; 1037 1038 n++; 1039 xdp_tx_swbd = &xdp_tx_arr[n]; 1040 1041 shinfo = xdp_get_shared_info_from_frame(xdp_frame); 1042 1043 for (f = 0, frag = &shinfo->frags[0]; f < shinfo->nr_frags; 1044 f++, frag++) { 1045 data = skb_frag_address(frag); 1046 len = skb_frag_size(frag); 1047 1048 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE); 1049 if (unlikely(dma_mapping_error(tx_ring->dev, dma))) { 1050 /* Undo the DMA mapping for all fragments */ 1051 while (--n >= 0) 1052 enetc_unmap_tx_buff(tx_ring, &xdp_tx_arr[n]); 1053 1054 netdev_err(tx_ring->ndev, "DMA map error\n"); 1055 return -1; 1056 } 1057 1058 xdp_tx_swbd->dma = dma; 1059 xdp_tx_swbd->dir = DMA_TO_DEVICE; 1060 xdp_tx_swbd->len = len; 1061 xdp_tx_swbd->is_xdp_redirect = true; 1062 xdp_tx_swbd->is_eof = false; 1063 xdp_tx_swbd->xdp_frame = NULL; 1064 1065 n++; 1066 xdp_tx_swbd = &xdp_tx_arr[n]; 1067 } 1068 1069 xdp_tx_arr[n - 1].is_eof = true; 1070 xdp_tx_arr[n - 1].xdp_frame = xdp_frame; 1071 1072 return n; 1073 } 1074 1075 int enetc_xdp_xmit(struct net_device *ndev, int num_frames, 1076 struct xdp_frame **frames, u32 flags) 1077 { 1078 struct enetc_tx_swbd xdp_redirect_arr[ENETC_MAX_SKB_FRAGS] = {0}; 1079 struct enetc_ndev_priv *priv = netdev_priv(ndev); 1080 struct enetc_bdr *tx_ring; 1081 int xdp_tx_bd_cnt, i, k; 1082 int xdp_tx_frm_cnt = 0; 1083 1084 enetc_lock_mdio(); 1085 1086 tx_ring = priv->xdp_tx_ring[smp_processor_id()]; 1087 1088 prefetchw(ENETC_TXBD(*tx_ring, tx_ring->next_to_use)); 1089 1090 for (k = 0; k < num_frames; k++) { 1091 xdp_tx_bd_cnt = enetc_xdp_frame_to_xdp_tx_swbd(tx_ring, 1092 xdp_redirect_arr, 1093 frames[k]); 1094 if (unlikely(xdp_tx_bd_cnt < 0)) 1095 break; 1096 1097 if (unlikely(!enetc_xdp_tx(tx_ring, xdp_redirect_arr, 1098 xdp_tx_bd_cnt))) { 1099 for (i = 0; i < xdp_tx_bd_cnt; i++) 1100 enetc_unmap_tx_buff(tx_ring, 1101 &xdp_redirect_arr[i]); 1102 tx_ring->stats.xdp_tx_drops++; 1103 break; 1104 } 1105 1106 xdp_tx_frm_cnt++; 1107 } 1108 1109 if (unlikely((flags & XDP_XMIT_FLUSH) || k != xdp_tx_frm_cnt)) 1110 enetc_update_tx_ring_tail(tx_ring); 1111 1112 tx_ring->stats.xdp_tx += xdp_tx_frm_cnt; 1113 1114 enetc_unlock_mdio(); 1115 1116 return xdp_tx_frm_cnt; 1117 } 1118 1119 static void enetc_map_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i, 1120 struct xdp_buff *xdp_buff, u16 size) 1121 { 1122 struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size); 1123 void *hard_start = page_address(rx_swbd->page) + rx_swbd->page_offset; 1124 struct skb_shared_info *shinfo; 1125 1126 /* To be used for XDP_TX */ 1127 rx_swbd->len = size; 1128 1129 xdp_prepare_buff(xdp_buff, hard_start - rx_ring->buffer_offset, 1130 rx_ring->buffer_offset, size, false); 1131 1132 shinfo = xdp_get_shared_info_from_buff(xdp_buff); 1133 shinfo->nr_frags = 0; 1134 } 1135 1136 static void enetc_add_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i, 1137 u16 size, struct xdp_buff *xdp_buff) 1138 { 1139 struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp_buff); 1140 struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size); 1141 skb_frag_t *frag = &shinfo->frags[shinfo->nr_frags]; 1142 1143 /* To be used for XDP_TX */ 1144 rx_swbd->len = size; 1145 1146 skb_frag_off_set(frag, rx_swbd->page_offset); 1147 skb_frag_size_set(frag, size); 1148 __skb_frag_set_page(frag, rx_swbd->page); 1149 1150 shinfo->nr_frags++; 1151 } 1152 1153 static void enetc_build_xdp_buff(struct enetc_bdr *rx_ring, u32 bd_status, 1154 union enetc_rx_bd **rxbd, int *i, 1155 int *cleaned_cnt, struct xdp_buff *xdp_buff) 1156 { 1157 u16 size = le16_to_cpu((*rxbd)->r.buf_len); 1158 1159 xdp_init_buff(xdp_buff, ENETC_RXB_TRUESIZE, &rx_ring->xdp.rxq); 1160 1161 enetc_map_rx_buff_to_xdp(rx_ring, *i, xdp_buff, size); 1162 (*cleaned_cnt)++; 1163 enetc_rxbd_next(rx_ring, rxbd, i); 1164 1165 /* not last BD in frame? */ 1166 while (!(bd_status & ENETC_RXBD_LSTATUS_F)) { 1167 bd_status = le32_to_cpu((*rxbd)->r.lstatus); 1168 size = ENETC_RXB_DMA_SIZE_XDP; 1169 1170 if (bd_status & ENETC_RXBD_LSTATUS_F) { 1171 dma_rmb(); 1172 size = le16_to_cpu((*rxbd)->r.buf_len); 1173 } 1174 1175 enetc_add_rx_buff_to_xdp(rx_ring, *i, size, xdp_buff); 1176 (*cleaned_cnt)++; 1177 enetc_rxbd_next(rx_ring, rxbd, i); 1178 } 1179 } 1180 1181 /* Convert RX buffer descriptors to TX buffer descriptors. These will be 1182 * recycled back into the RX ring in enetc_clean_tx_ring. 1183 */ 1184 static int enetc_rx_swbd_to_xdp_tx_swbd(struct enetc_tx_swbd *xdp_tx_arr, 1185 struct enetc_bdr *rx_ring, 1186 int rx_ring_first, int rx_ring_last) 1187 { 1188 int n = 0; 1189 1190 for (; rx_ring_first != rx_ring_last; 1191 n++, enetc_bdr_idx_inc(rx_ring, &rx_ring_first)) { 1192 struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first]; 1193 struct enetc_tx_swbd *tx_swbd = &xdp_tx_arr[n]; 1194 1195 /* No need to dma_map, we already have DMA_BIDIRECTIONAL */ 1196 tx_swbd->dma = rx_swbd->dma; 1197 tx_swbd->dir = rx_swbd->dir; 1198 tx_swbd->page = rx_swbd->page; 1199 tx_swbd->page_offset = rx_swbd->page_offset; 1200 tx_swbd->len = rx_swbd->len; 1201 tx_swbd->is_dma_page = true; 1202 tx_swbd->is_xdp_tx = true; 1203 tx_swbd->is_eof = false; 1204 } 1205 1206 /* We rely on caller providing an rx_ring_last > rx_ring_first */ 1207 xdp_tx_arr[n - 1].is_eof = true; 1208 1209 return n; 1210 } 1211 1212 static void enetc_xdp_drop(struct enetc_bdr *rx_ring, int rx_ring_first, 1213 int rx_ring_last) 1214 { 1215 while (rx_ring_first != rx_ring_last) { 1216 enetc_put_rx_buff(rx_ring, 1217 &rx_ring->rx_swbd[rx_ring_first]); 1218 enetc_bdr_idx_inc(rx_ring, &rx_ring_first); 1219 } 1220 rx_ring->stats.xdp_drops++; 1221 } 1222 1223 static void enetc_xdp_free(struct enetc_bdr *rx_ring, int rx_ring_first, 1224 int rx_ring_last) 1225 { 1226 while (rx_ring_first != rx_ring_last) { 1227 struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first]; 1228 1229 if (rx_swbd->page) { 1230 dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE, 1231 rx_swbd->dir); 1232 __free_page(rx_swbd->page); 1233 rx_swbd->page = NULL; 1234 } 1235 enetc_bdr_idx_inc(rx_ring, &rx_ring_first); 1236 } 1237 rx_ring->stats.xdp_redirect_failures++; 1238 } 1239 1240 static int enetc_clean_rx_ring_xdp(struct enetc_bdr *rx_ring, 1241 struct napi_struct *napi, int work_limit, 1242 struct bpf_prog *prog) 1243 { 1244 int xdp_tx_bd_cnt, xdp_tx_frm_cnt = 0, xdp_redirect_frm_cnt = 0; 1245 struct enetc_tx_swbd xdp_tx_arr[ENETC_MAX_SKB_FRAGS] = {0}; 1246 struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev); 1247 int rx_frm_cnt = 0, rx_byte_cnt = 0; 1248 struct enetc_bdr *tx_ring; 1249 int cleaned_cnt, i; 1250 u32 xdp_act; 1251 1252 cleaned_cnt = enetc_bd_unused(rx_ring); 1253 /* next descriptor to process */ 1254 i = rx_ring->next_to_clean; 1255 1256 while (likely(rx_frm_cnt < work_limit)) { 1257 union enetc_rx_bd *rxbd, *orig_rxbd; 1258 int orig_i, orig_cleaned_cnt; 1259 struct xdp_buff xdp_buff; 1260 struct sk_buff *skb; 1261 int tmp_orig_i, err; 1262 u32 bd_status; 1263 1264 rxbd = enetc_rxbd(rx_ring, i); 1265 bd_status = le32_to_cpu(rxbd->r.lstatus); 1266 if (!bd_status) 1267 break; 1268 1269 enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index)); 1270 dma_rmb(); /* for reading other rxbd fields */ 1271 1272 if (enetc_check_bd_errors_and_consume(rx_ring, bd_status, 1273 &rxbd, &i)) 1274 break; 1275 1276 orig_rxbd = rxbd; 1277 orig_cleaned_cnt = cleaned_cnt; 1278 orig_i = i; 1279 1280 enetc_build_xdp_buff(rx_ring, bd_status, &rxbd, &i, 1281 &cleaned_cnt, &xdp_buff); 1282 1283 xdp_act = bpf_prog_run_xdp(prog, &xdp_buff); 1284 1285 switch (xdp_act) { 1286 default: 1287 bpf_warn_invalid_xdp_action(xdp_act); 1288 fallthrough; 1289 case XDP_ABORTED: 1290 trace_xdp_exception(rx_ring->ndev, prog, xdp_act); 1291 fallthrough; 1292 case XDP_DROP: 1293 enetc_xdp_drop(rx_ring, orig_i, i); 1294 break; 1295 case XDP_PASS: 1296 rxbd = orig_rxbd; 1297 cleaned_cnt = orig_cleaned_cnt; 1298 i = orig_i; 1299 1300 skb = enetc_build_skb(rx_ring, bd_status, &rxbd, 1301 &i, &cleaned_cnt, 1302 ENETC_RXB_DMA_SIZE_XDP); 1303 if (unlikely(!skb)) 1304 goto out; 1305 1306 napi_gro_receive(napi, skb); 1307 break; 1308 case XDP_TX: 1309 tx_ring = priv->xdp_tx_ring[rx_ring->index]; 1310 xdp_tx_bd_cnt = enetc_rx_swbd_to_xdp_tx_swbd(xdp_tx_arr, 1311 rx_ring, 1312 orig_i, i); 1313 1314 if (!enetc_xdp_tx(tx_ring, xdp_tx_arr, xdp_tx_bd_cnt)) { 1315 enetc_xdp_drop(rx_ring, orig_i, i); 1316 tx_ring->stats.xdp_tx_drops++; 1317 } else { 1318 tx_ring->stats.xdp_tx += xdp_tx_bd_cnt; 1319 rx_ring->xdp.xdp_tx_in_flight += xdp_tx_bd_cnt; 1320 xdp_tx_frm_cnt++; 1321 /* The XDP_TX enqueue was successful, so we 1322 * need to scrub the RX software BDs because 1323 * the ownership of the buffers no longer 1324 * belongs to the RX ring, and we must prevent 1325 * enetc_refill_rx_ring() from reusing 1326 * rx_swbd->page. 1327 */ 1328 while (orig_i != i) { 1329 rx_ring->rx_swbd[orig_i].page = NULL; 1330 enetc_bdr_idx_inc(rx_ring, &orig_i); 1331 } 1332 } 1333 break; 1334 case XDP_REDIRECT: 1335 /* xdp_return_frame does not support S/G in the sense 1336 * that it leaks the fragments (__xdp_return should not 1337 * call page_frag_free only for the initial buffer). 1338 * Until XDP_REDIRECT gains support for S/G let's keep 1339 * the code structure in place, but dead. We drop the 1340 * S/G frames ourselves to avoid memory leaks which 1341 * would otherwise leave the kernel OOM. 1342 */ 1343 if (unlikely(cleaned_cnt - orig_cleaned_cnt != 1)) { 1344 enetc_xdp_drop(rx_ring, orig_i, i); 1345 rx_ring->stats.xdp_redirect_sg++; 1346 break; 1347 } 1348 1349 tmp_orig_i = orig_i; 1350 1351 while (orig_i != i) { 1352 enetc_flip_rx_buff(rx_ring, 1353 &rx_ring->rx_swbd[orig_i]); 1354 enetc_bdr_idx_inc(rx_ring, &orig_i); 1355 } 1356 1357 err = xdp_do_redirect(rx_ring->ndev, &xdp_buff, prog); 1358 if (unlikely(err)) { 1359 enetc_xdp_free(rx_ring, tmp_orig_i, i); 1360 } else { 1361 xdp_redirect_frm_cnt++; 1362 rx_ring->stats.xdp_redirect++; 1363 } 1364 } 1365 1366 rx_frm_cnt++; 1367 } 1368 1369 out: 1370 rx_ring->next_to_clean = i; 1371 1372 rx_ring->stats.packets += rx_frm_cnt; 1373 rx_ring->stats.bytes += rx_byte_cnt; 1374 1375 if (xdp_redirect_frm_cnt) 1376 xdp_do_flush_map(); 1377 1378 if (xdp_tx_frm_cnt) 1379 enetc_update_tx_ring_tail(tx_ring); 1380 1381 if (cleaned_cnt > rx_ring->xdp.xdp_tx_in_flight) 1382 enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring) - 1383 rx_ring->xdp.xdp_tx_in_flight); 1384 1385 return rx_frm_cnt; 1386 } 1387 1388 static int enetc_poll(struct napi_struct *napi, int budget) 1389 { 1390 struct enetc_int_vector 1391 *v = container_of(napi, struct enetc_int_vector, napi); 1392 struct enetc_bdr *rx_ring = &v->rx_ring; 1393 struct bpf_prog *prog; 1394 bool complete = true; 1395 int work_done; 1396 int i; 1397 1398 enetc_lock_mdio(); 1399 1400 for (i = 0; i < v->count_tx_rings; i++) 1401 if (!enetc_clean_tx_ring(&v->tx_ring[i], budget)) 1402 complete = false; 1403 1404 prog = rx_ring->xdp.prog; 1405 if (prog) 1406 work_done = enetc_clean_rx_ring_xdp(rx_ring, napi, budget, prog); 1407 else 1408 work_done = enetc_clean_rx_ring(rx_ring, napi, budget); 1409 if (work_done == budget) 1410 complete = false; 1411 if (work_done) 1412 v->rx_napi_work = true; 1413 1414 if (!complete) { 1415 enetc_unlock_mdio(); 1416 return budget; 1417 } 1418 1419 napi_complete_done(napi, work_done); 1420 1421 if (likely(v->rx_dim_en)) 1422 enetc_rx_net_dim(v); 1423 1424 v->rx_napi_work = false; 1425 1426 /* enable interrupts */ 1427 enetc_wr_reg_hot(v->rbier, ENETC_RBIER_RXTIE); 1428 1429 for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS) 1430 enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), 1431 ENETC_TBIER_TXTIE); 1432 1433 enetc_unlock_mdio(); 1434 1435 return work_done; 1436 } 1437 1438 /* Probing and Init */ 1439 #define ENETC_MAX_RFS_SIZE 64 1440 void enetc_get_si_caps(struct enetc_si *si) 1441 { 1442 struct enetc_hw *hw = &si->hw; 1443 u32 val; 1444 1445 /* find out how many of various resources we have to work with */ 1446 val = enetc_rd(hw, ENETC_SICAPR0); 1447 si->num_rx_rings = (val >> 16) & 0xff; 1448 si->num_tx_rings = val & 0xff; 1449 1450 val = enetc_rd(hw, ENETC_SIRFSCAPR); 1451 si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val); 1452 si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE); 1453 1454 si->num_rss = 0; 1455 val = enetc_rd(hw, ENETC_SIPCAPR0); 1456 if (val & ENETC_SIPCAPR0_RSS) { 1457 u32 rss; 1458 1459 rss = enetc_rd(hw, ENETC_SIRSSCAPR); 1460 si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss); 1461 } 1462 1463 if (val & ENETC_SIPCAPR0_QBV) 1464 si->hw_features |= ENETC_SI_F_QBV; 1465 1466 if (val & ENETC_SIPCAPR0_PSFP) 1467 si->hw_features |= ENETC_SI_F_PSFP; 1468 } 1469 1470 static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size) 1471 { 1472 r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size, 1473 &r->bd_dma_base, GFP_KERNEL); 1474 if (!r->bd_base) 1475 return -ENOMEM; 1476 1477 /* h/w requires 128B alignment */ 1478 if (!IS_ALIGNED(r->bd_dma_base, 128)) { 1479 dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base, 1480 r->bd_dma_base); 1481 return -EINVAL; 1482 } 1483 1484 return 0; 1485 } 1486 1487 static int enetc_alloc_txbdr(struct enetc_bdr *txr) 1488 { 1489 int err; 1490 1491 txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd)); 1492 if (!txr->tx_swbd) 1493 return -ENOMEM; 1494 1495 err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd)); 1496 if (err) { 1497 vfree(txr->tx_swbd); 1498 return err; 1499 } 1500 1501 txr->next_to_clean = 0; 1502 txr->next_to_use = 0; 1503 1504 return 0; 1505 } 1506 1507 static void enetc_free_txbdr(struct enetc_bdr *txr) 1508 { 1509 int size, i; 1510 1511 for (i = 0; i < txr->bd_count; i++) 1512 enetc_free_tx_frame(txr, &txr->tx_swbd[i]); 1513 1514 size = txr->bd_count * sizeof(union enetc_tx_bd); 1515 1516 dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base); 1517 txr->bd_base = NULL; 1518 1519 vfree(txr->tx_swbd); 1520 txr->tx_swbd = NULL; 1521 } 1522 1523 static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv) 1524 { 1525 int i, err; 1526 1527 for (i = 0; i < priv->num_tx_rings; i++) { 1528 err = enetc_alloc_txbdr(priv->tx_ring[i]); 1529 1530 if (err) 1531 goto fail; 1532 } 1533 1534 return 0; 1535 1536 fail: 1537 while (i-- > 0) 1538 enetc_free_txbdr(priv->tx_ring[i]); 1539 1540 return err; 1541 } 1542 1543 static void enetc_free_tx_resources(struct enetc_ndev_priv *priv) 1544 { 1545 int i; 1546 1547 for (i = 0; i < priv->num_tx_rings; i++) 1548 enetc_free_txbdr(priv->tx_ring[i]); 1549 } 1550 1551 static int enetc_alloc_rxbdr(struct enetc_bdr *rxr, bool extended) 1552 { 1553 size_t size = sizeof(union enetc_rx_bd); 1554 int err; 1555 1556 rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd)); 1557 if (!rxr->rx_swbd) 1558 return -ENOMEM; 1559 1560 if (extended) 1561 size *= 2; 1562 1563 err = enetc_dma_alloc_bdr(rxr, size); 1564 if (err) { 1565 vfree(rxr->rx_swbd); 1566 return err; 1567 } 1568 1569 rxr->next_to_clean = 0; 1570 rxr->next_to_use = 0; 1571 rxr->next_to_alloc = 0; 1572 rxr->ext_en = extended; 1573 1574 return 0; 1575 } 1576 1577 static void enetc_free_rxbdr(struct enetc_bdr *rxr) 1578 { 1579 int size; 1580 1581 size = rxr->bd_count * sizeof(union enetc_rx_bd); 1582 1583 dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base); 1584 rxr->bd_base = NULL; 1585 1586 vfree(rxr->rx_swbd); 1587 rxr->rx_swbd = NULL; 1588 } 1589 1590 static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv) 1591 { 1592 bool extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP); 1593 int i, err; 1594 1595 for (i = 0; i < priv->num_rx_rings; i++) { 1596 err = enetc_alloc_rxbdr(priv->rx_ring[i], extended); 1597 1598 if (err) 1599 goto fail; 1600 } 1601 1602 return 0; 1603 1604 fail: 1605 while (i-- > 0) 1606 enetc_free_rxbdr(priv->rx_ring[i]); 1607 1608 return err; 1609 } 1610 1611 static void enetc_free_rx_resources(struct enetc_ndev_priv *priv) 1612 { 1613 int i; 1614 1615 for (i = 0; i < priv->num_rx_rings; i++) 1616 enetc_free_rxbdr(priv->rx_ring[i]); 1617 } 1618 1619 static void enetc_free_tx_ring(struct enetc_bdr *tx_ring) 1620 { 1621 int i; 1622 1623 if (!tx_ring->tx_swbd) 1624 return; 1625 1626 for (i = 0; i < tx_ring->bd_count; i++) { 1627 struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i]; 1628 1629 enetc_free_tx_frame(tx_ring, tx_swbd); 1630 } 1631 1632 tx_ring->next_to_clean = 0; 1633 tx_ring->next_to_use = 0; 1634 } 1635 1636 static void enetc_free_rx_ring(struct enetc_bdr *rx_ring) 1637 { 1638 int i; 1639 1640 if (!rx_ring->rx_swbd) 1641 return; 1642 1643 for (i = 0; i < rx_ring->bd_count; i++) { 1644 struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i]; 1645 1646 if (!rx_swbd->page) 1647 continue; 1648 1649 dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE, 1650 rx_swbd->dir); 1651 __free_page(rx_swbd->page); 1652 rx_swbd->page = NULL; 1653 } 1654 1655 rx_ring->next_to_clean = 0; 1656 rx_ring->next_to_use = 0; 1657 rx_ring->next_to_alloc = 0; 1658 } 1659 1660 static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv) 1661 { 1662 int i; 1663 1664 for (i = 0; i < priv->num_rx_rings; i++) 1665 enetc_free_rx_ring(priv->rx_ring[i]); 1666 1667 for (i = 0; i < priv->num_tx_rings; i++) 1668 enetc_free_tx_ring(priv->tx_ring[i]); 1669 } 1670 1671 static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups) 1672 { 1673 int *rss_table; 1674 int i; 1675 1676 rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL); 1677 if (!rss_table) 1678 return -ENOMEM; 1679 1680 /* Set up RSS table defaults */ 1681 for (i = 0; i < si->num_rss; i++) 1682 rss_table[i] = i % num_groups; 1683 1684 enetc_set_rss_table(si, rss_table, si->num_rss); 1685 1686 kfree(rss_table); 1687 1688 return 0; 1689 } 1690 1691 int enetc_configure_si(struct enetc_ndev_priv *priv) 1692 { 1693 struct enetc_si *si = priv->si; 1694 struct enetc_hw *hw = &si->hw; 1695 int err; 1696 1697 /* set SI cache attributes */ 1698 enetc_wr(hw, ENETC_SICAR0, 1699 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT); 1700 enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI); 1701 /* enable SI */ 1702 enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN); 1703 1704 if (si->num_rss) { 1705 err = enetc_setup_default_rss_table(si, priv->num_rx_rings); 1706 if (err) 1707 return err; 1708 } 1709 1710 return 0; 1711 } 1712 1713 void enetc_init_si_rings_params(struct enetc_ndev_priv *priv) 1714 { 1715 struct enetc_si *si = priv->si; 1716 int cpus = num_online_cpus(); 1717 1718 priv->tx_bd_count = ENETC_TX_RING_DEFAULT_SIZE; 1719 priv->rx_bd_count = ENETC_RX_RING_DEFAULT_SIZE; 1720 1721 /* Enable all available TX rings in order to configure as many 1722 * priorities as possible, when needed. 1723 * TODO: Make # of TX rings run-time configurable 1724 */ 1725 priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings); 1726 priv->num_tx_rings = si->num_tx_rings; 1727 priv->bdr_int_num = cpus; 1728 priv->ic_mode = ENETC_IC_RX_ADAPTIVE | ENETC_IC_TX_MANUAL; 1729 priv->tx_ictt = ENETC_TXIC_TIMETHR; 1730 } 1731 1732 int enetc_alloc_si_resources(struct enetc_ndev_priv *priv) 1733 { 1734 struct enetc_si *si = priv->si; 1735 1736 priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules), 1737 GFP_KERNEL); 1738 if (!priv->cls_rules) 1739 return -ENOMEM; 1740 1741 return 0; 1742 } 1743 1744 void enetc_free_si_resources(struct enetc_ndev_priv *priv) 1745 { 1746 kfree(priv->cls_rules); 1747 } 1748 1749 static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring) 1750 { 1751 int idx = tx_ring->index; 1752 u32 tbmr; 1753 1754 enetc_txbdr_wr(hw, idx, ENETC_TBBAR0, 1755 lower_32_bits(tx_ring->bd_dma_base)); 1756 1757 enetc_txbdr_wr(hw, idx, ENETC_TBBAR1, 1758 upper_32_bits(tx_ring->bd_dma_base)); 1759 1760 WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */ 1761 enetc_txbdr_wr(hw, idx, ENETC_TBLENR, 1762 ENETC_RTBLENR_LEN(tx_ring->bd_count)); 1763 1764 /* clearing PI/CI registers for Tx not supported, adjust sw indexes */ 1765 tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR); 1766 tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR); 1767 1768 /* enable Tx ints by setting pkt thr to 1 */ 1769 enetc_txbdr_wr(hw, idx, ENETC_TBICR0, ENETC_TBICR0_ICEN | 0x1); 1770 1771 tbmr = ENETC_TBMR_EN; 1772 if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) 1773 tbmr |= ENETC_TBMR_VIH; 1774 1775 /* enable ring */ 1776 enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr); 1777 1778 tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR); 1779 tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR); 1780 tx_ring->idr = hw->reg + ENETC_SITXIDR; 1781 } 1782 1783 static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring) 1784 { 1785 int idx = rx_ring->index; 1786 u32 rbmr; 1787 1788 enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0, 1789 lower_32_bits(rx_ring->bd_dma_base)); 1790 1791 enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1, 1792 upper_32_bits(rx_ring->bd_dma_base)); 1793 1794 WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */ 1795 enetc_rxbdr_wr(hw, idx, ENETC_RBLENR, 1796 ENETC_RTBLENR_LEN(rx_ring->bd_count)); 1797 1798 if (rx_ring->xdp.prog) 1799 enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE_XDP); 1800 else 1801 enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE); 1802 1803 enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0); 1804 1805 /* enable Rx ints by setting pkt thr to 1 */ 1806 enetc_rxbdr_wr(hw, idx, ENETC_RBICR0, ENETC_RBICR0_ICEN | 0x1); 1807 1808 rbmr = ENETC_RBMR_EN; 1809 1810 if (rx_ring->ext_en) 1811 rbmr |= ENETC_RBMR_BDS; 1812 1813 if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) 1814 rbmr |= ENETC_RBMR_VTE; 1815 1816 rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR); 1817 rx_ring->idr = hw->reg + ENETC_SIRXIDR; 1818 1819 enetc_lock_mdio(); 1820 enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring)); 1821 enetc_unlock_mdio(); 1822 1823 /* enable ring */ 1824 enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr); 1825 } 1826 1827 static void enetc_setup_bdrs(struct enetc_ndev_priv *priv) 1828 { 1829 int i; 1830 1831 for (i = 0; i < priv->num_tx_rings; i++) 1832 enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]); 1833 1834 for (i = 0; i < priv->num_rx_rings; i++) 1835 enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]); 1836 } 1837 1838 static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring) 1839 { 1840 int idx = rx_ring->index; 1841 1842 /* disable EN bit on ring */ 1843 enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0); 1844 } 1845 1846 static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring) 1847 { 1848 int delay = 8, timeout = 100; 1849 int idx = tx_ring->index; 1850 1851 /* disable EN bit on ring */ 1852 enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0); 1853 1854 /* wait for busy to clear */ 1855 while (delay < timeout && 1856 enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) { 1857 msleep(delay); 1858 delay *= 2; 1859 } 1860 1861 if (delay >= timeout) 1862 netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n", 1863 idx); 1864 } 1865 1866 static void enetc_clear_bdrs(struct enetc_ndev_priv *priv) 1867 { 1868 int i; 1869 1870 for (i = 0; i < priv->num_tx_rings; i++) 1871 enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]); 1872 1873 for (i = 0; i < priv->num_rx_rings; i++) 1874 enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]); 1875 1876 udelay(1); 1877 } 1878 1879 static int enetc_setup_irqs(struct enetc_ndev_priv *priv) 1880 { 1881 struct pci_dev *pdev = priv->si->pdev; 1882 int i, j, err; 1883 1884 for (i = 0; i < priv->bdr_int_num; i++) { 1885 int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i); 1886 struct enetc_int_vector *v = priv->int_vector[i]; 1887 int entry = ENETC_BDR_INT_BASE_IDX + i; 1888 struct enetc_hw *hw = &priv->si->hw; 1889 1890 snprintf(v->name, sizeof(v->name), "%s-rxtx%d", 1891 priv->ndev->name, i); 1892 err = request_irq(irq, enetc_msix, 0, v->name, v); 1893 if (err) { 1894 dev_err(priv->dev, "request_irq() failed!\n"); 1895 goto irq_err; 1896 } 1897 disable_irq(irq); 1898 1899 v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER); 1900 v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER); 1901 v->ricr1 = hw->reg + ENETC_BDR(RX, i, ENETC_RBICR1); 1902 1903 enetc_wr(hw, ENETC_SIMSIRRV(i), entry); 1904 1905 for (j = 0; j < v->count_tx_rings; j++) { 1906 int idx = v->tx_ring[j].index; 1907 1908 enetc_wr(hw, ENETC_SIMSITRV(idx), entry); 1909 } 1910 irq_set_affinity_hint(irq, get_cpu_mask(i % num_online_cpus())); 1911 } 1912 1913 return 0; 1914 1915 irq_err: 1916 while (i--) { 1917 int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i); 1918 1919 irq_set_affinity_hint(irq, NULL); 1920 free_irq(irq, priv->int_vector[i]); 1921 } 1922 1923 return err; 1924 } 1925 1926 static void enetc_free_irqs(struct enetc_ndev_priv *priv) 1927 { 1928 struct pci_dev *pdev = priv->si->pdev; 1929 int i; 1930 1931 for (i = 0; i < priv->bdr_int_num; i++) { 1932 int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i); 1933 1934 irq_set_affinity_hint(irq, NULL); 1935 free_irq(irq, priv->int_vector[i]); 1936 } 1937 } 1938 1939 static void enetc_setup_interrupts(struct enetc_ndev_priv *priv) 1940 { 1941 struct enetc_hw *hw = &priv->si->hw; 1942 u32 icpt, ictt; 1943 int i; 1944 1945 /* enable Tx & Rx event indication */ 1946 if (priv->ic_mode & 1947 (ENETC_IC_RX_MANUAL | ENETC_IC_RX_ADAPTIVE)) { 1948 icpt = ENETC_RBICR0_SET_ICPT(ENETC_RXIC_PKTTHR); 1949 /* init to non-0 minimum, will be adjusted later */ 1950 ictt = 0x1; 1951 } else { 1952 icpt = 0x1; /* enable Rx ints by setting pkt thr to 1 */ 1953 ictt = 0; 1954 } 1955 1956 for (i = 0; i < priv->num_rx_rings; i++) { 1957 enetc_rxbdr_wr(hw, i, ENETC_RBICR1, ictt); 1958 enetc_rxbdr_wr(hw, i, ENETC_RBICR0, ENETC_RBICR0_ICEN | icpt); 1959 enetc_rxbdr_wr(hw, i, ENETC_RBIER, ENETC_RBIER_RXTIE); 1960 } 1961 1962 if (priv->ic_mode & ENETC_IC_TX_MANUAL) 1963 icpt = ENETC_TBICR0_SET_ICPT(ENETC_TXIC_PKTTHR); 1964 else 1965 icpt = 0x1; /* enable Tx ints by setting pkt thr to 1 */ 1966 1967 for (i = 0; i < priv->num_tx_rings; i++) { 1968 enetc_txbdr_wr(hw, i, ENETC_TBICR1, priv->tx_ictt); 1969 enetc_txbdr_wr(hw, i, ENETC_TBICR0, ENETC_TBICR0_ICEN | icpt); 1970 enetc_txbdr_wr(hw, i, ENETC_TBIER, ENETC_TBIER_TXTIE); 1971 } 1972 } 1973 1974 static void enetc_clear_interrupts(struct enetc_ndev_priv *priv) 1975 { 1976 int i; 1977 1978 for (i = 0; i < priv->num_tx_rings; i++) 1979 enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0); 1980 1981 for (i = 0; i < priv->num_rx_rings; i++) 1982 enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0); 1983 } 1984 1985 static int enetc_phylink_connect(struct net_device *ndev) 1986 { 1987 struct enetc_ndev_priv *priv = netdev_priv(ndev); 1988 struct ethtool_eee edata; 1989 int err; 1990 1991 if (!priv->phylink) 1992 return 0; /* phy-less mode */ 1993 1994 err = phylink_of_phy_connect(priv->phylink, priv->dev->of_node, 0); 1995 if (err) { 1996 dev_err(&ndev->dev, "could not attach to PHY\n"); 1997 return err; 1998 } 1999 2000 /* disable EEE autoneg, until ENETC driver supports it */ 2001 memset(&edata, 0, sizeof(struct ethtool_eee)); 2002 phylink_ethtool_set_eee(priv->phylink, &edata); 2003 2004 return 0; 2005 } 2006 2007 static void enetc_tx_onestep_tstamp(struct work_struct *work) 2008 { 2009 struct enetc_ndev_priv *priv; 2010 struct sk_buff *skb; 2011 2012 priv = container_of(work, struct enetc_ndev_priv, tx_onestep_tstamp); 2013 2014 netif_tx_lock(priv->ndev); 2015 2016 clear_bit_unlock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS, &priv->flags); 2017 skb = skb_dequeue(&priv->tx_skbs); 2018 if (skb) 2019 enetc_start_xmit(skb, priv->ndev); 2020 2021 netif_tx_unlock(priv->ndev); 2022 } 2023 2024 static void enetc_tx_onestep_tstamp_init(struct enetc_ndev_priv *priv) 2025 { 2026 INIT_WORK(&priv->tx_onestep_tstamp, enetc_tx_onestep_tstamp); 2027 skb_queue_head_init(&priv->tx_skbs); 2028 } 2029 2030 void enetc_start(struct net_device *ndev) 2031 { 2032 struct enetc_ndev_priv *priv = netdev_priv(ndev); 2033 int i; 2034 2035 enetc_setup_interrupts(priv); 2036 2037 for (i = 0; i < priv->bdr_int_num; i++) { 2038 int irq = pci_irq_vector(priv->si->pdev, 2039 ENETC_BDR_INT_BASE_IDX + i); 2040 2041 napi_enable(&priv->int_vector[i]->napi); 2042 enable_irq(irq); 2043 } 2044 2045 if (priv->phylink) 2046 phylink_start(priv->phylink); 2047 else 2048 netif_carrier_on(ndev); 2049 2050 netif_tx_start_all_queues(ndev); 2051 } 2052 2053 int enetc_open(struct net_device *ndev) 2054 { 2055 struct enetc_ndev_priv *priv = netdev_priv(ndev); 2056 int num_stack_tx_queues; 2057 int err; 2058 2059 err = enetc_setup_irqs(priv); 2060 if (err) 2061 return err; 2062 2063 err = enetc_phylink_connect(ndev); 2064 if (err) 2065 goto err_phy_connect; 2066 2067 err = enetc_alloc_tx_resources(priv); 2068 if (err) 2069 goto err_alloc_tx; 2070 2071 err = enetc_alloc_rx_resources(priv); 2072 if (err) 2073 goto err_alloc_rx; 2074 2075 num_stack_tx_queues = enetc_num_stack_tx_queues(priv); 2076 2077 err = netif_set_real_num_tx_queues(ndev, num_stack_tx_queues); 2078 if (err) 2079 goto err_set_queues; 2080 2081 err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings); 2082 if (err) 2083 goto err_set_queues; 2084 2085 enetc_tx_onestep_tstamp_init(priv); 2086 enetc_setup_bdrs(priv); 2087 enetc_start(ndev); 2088 2089 return 0; 2090 2091 err_set_queues: 2092 enetc_free_rx_resources(priv); 2093 err_alloc_rx: 2094 enetc_free_tx_resources(priv); 2095 err_alloc_tx: 2096 if (priv->phylink) 2097 phylink_disconnect_phy(priv->phylink); 2098 err_phy_connect: 2099 enetc_free_irqs(priv); 2100 2101 return err; 2102 } 2103 2104 void enetc_stop(struct net_device *ndev) 2105 { 2106 struct enetc_ndev_priv *priv = netdev_priv(ndev); 2107 int i; 2108 2109 netif_tx_stop_all_queues(ndev); 2110 2111 for (i = 0; i < priv->bdr_int_num; i++) { 2112 int irq = pci_irq_vector(priv->si->pdev, 2113 ENETC_BDR_INT_BASE_IDX + i); 2114 2115 disable_irq(irq); 2116 napi_synchronize(&priv->int_vector[i]->napi); 2117 napi_disable(&priv->int_vector[i]->napi); 2118 } 2119 2120 if (priv->phylink) 2121 phylink_stop(priv->phylink); 2122 else 2123 netif_carrier_off(ndev); 2124 2125 enetc_clear_interrupts(priv); 2126 } 2127 2128 int enetc_close(struct net_device *ndev) 2129 { 2130 struct enetc_ndev_priv *priv = netdev_priv(ndev); 2131 2132 enetc_stop(ndev); 2133 enetc_clear_bdrs(priv); 2134 2135 if (priv->phylink) 2136 phylink_disconnect_phy(priv->phylink); 2137 enetc_free_rxtx_rings(priv); 2138 enetc_free_rx_resources(priv); 2139 enetc_free_tx_resources(priv); 2140 enetc_free_irqs(priv); 2141 2142 return 0; 2143 } 2144 2145 static int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data) 2146 { 2147 struct enetc_ndev_priv *priv = netdev_priv(ndev); 2148 struct tc_mqprio_qopt *mqprio = type_data; 2149 struct enetc_bdr *tx_ring; 2150 int num_stack_tx_queues; 2151 u8 num_tc; 2152 int i; 2153 2154 num_stack_tx_queues = enetc_num_stack_tx_queues(priv); 2155 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 2156 num_tc = mqprio->num_tc; 2157 2158 if (!num_tc) { 2159 netdev_reset_tc(ndev); 2160 netif_set_real_num_tx_queues(ndev, num_stack_tx_queues); 2161 2162 /* Reset all ring priorities to 0 */ 2163 for (i = 0; i < priv->num_tx_rings; i++) { 2164 tx_ring = priv->tx_ring[i]; 2165 enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, 0); 2166 } 2167 2168 return 0; 2169 } 2170 2171 /* Check if we have enough BD rings available to accommodate all TCs */ 2172 if (num_tc > num_stack_tx_queues) { 2173 netdev_err(ndev, "Max %d traffic classes supported\n", 2174 priv->num_tx_rings); 2175 return -EINVAL; 2176 } 2177 2178 /* For the moment, we use only one BD ring per TC. 2179 * 2180 * Configure num_tc BD rings with increasing priorities. 2181 */ 2182 for (i = 0; i < num_tc; i++) { 2183 tx_ring = priv->tx_ring[i]; 2184 enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, i); 2185 } 2186 2187 /* Reset the number of netdev queues based on the TC count */ 2188 netif_set_real_num_tx_queues(ndev, num_tc); 2189 2190 netdev_set_num_tc(ndev, num_tc); 2191 2192 /* Each TC is associated with one netdev queue */ 2193 for (i = 0; i < num_tc; i++) 2194 netdev_set_tc_queue(ndev, i, 1, i); 2195 2196 return 0; 2197 } 2198 2199 int enetc_setup_tc(struct net_device *ndev, enum tc_setup_type type, 2200 void *type_data) 2201 { 2202 switch (type) { 2203 case TC_SETUP_QDISC_MQPRIO: 2204 return enetc_setup_tc_mqprio(ndev, type_data); 2205 case TC_SETUP_QDISC_TAPRIO: 2206 return enetc_setup_tc_taprio(ndev, type_data); 2207 case TC_SETUP_QDISC_CBS: 2208 return enetc_setup_tc_cbs(ndev, type_data); 2209 case TC_SETUP_QDISC_ETF: 2210 return enetc_setup_tc_txtime(ndev, type_data); 2211 case TC_SETUP_BLOCK: 2212 return enetc_setup_tc_psfp(ndev, type_data); 2213 default: 2214 return -EOPNOTSUPP; 2215 } 2216 } 2217 2218 static int enetc_setup_xdp_prog(struct net_device *dev, struct bpf_prog *prog, 2219 struct netlink_ext_ack *extack) 2220 { 2221 struct enetc_ndev_priv *priv = netdev_priv(dev); 2222 struct bpf_prog *old_prog; 2223 bool is_up; 2224 int i; 2225 2226 /* The buffer layout is changing, so we need to drain the old 2227 * RX buffers and seed new ones. 2228 */ 2229 is_up = netif_running(dev); 2230 if (is_up) 2231 dev_close(dev); 2232 2233 old_prog = xchg(&priv->xdp_prog, prog); 2234 if (old_prog) 2235 bpf_prog_put(old_prog); 2236 2237 for (i = 0; i < priv->num_rx_rings; i++) { 2238 struct enetc_bdr *rx_ring = priv->rx_ring[i]; 2239 2240 rx_ring->xdp.prog = prog; 2241 2242 if (prog) 2243 rx_ring->buffer_offset = XDP_PACKET_HEADROOM; 2244 else 2245 rx_ring->buffer_offset = ENETC_RXB_PAD; 2246 } 2247 2248 if (is_up) 2249 return dev_open(dev, extack); 2250 2251 return 0; 2252 } 2253 2254 int enetc_setup_bpf(struct net_device *dev, struct netdev_bpf *xdp) 2255 { 2256 switch (xdp->command) { 2257 case XDP_SETUP_PROG: 2258 return enetc_setup_xdp_prog(dev, xdp->prog, xdp->extack); 2259 default: 2260 return -EINVAL; 2261 } 2262 2263 return 0; 2264 } 2265 2266 struct net_device_stats *enetc_get_stats(struct net_device *ndev) 2267 { 2268 struct enetc_ndev_priv *priv = netdev_priv(ndev); 2269 struct net_device_stats *stats = &ndev->stats; 2270 unsigned long packets = 0, bytes = 0; 2271 int i; 2272 2273 for (i = 0; i < priv->num_rx_rings; i++) { 2274 packets += priv->rx_ring[i]->stats.packets; 2275 bytes += priv->rx_ring[i]->stats.bytes; 2276 } 2277 2278 stats->rx_packets = packets; 2279 stats->rx_bytes = bytes; 2280 bytes = 0; 2281 packets = 0; 2282 2283 for (i = 0; i < priv->num_tx_rings; i++) { 2284 packets += priv->tx_ring[i]->stats.packets; 2285 bytes += priv->tx_ring[i]->stats.bytes; 2286 } 2287 2288 stats->tx_packets = packets; 2289 stats->tx_bytes = bytes; 2290 2291 return stats; 2292 } 2293 2294 static int enetc_set_rss(struct net_device *ndev, int en) 2295 { 2296 struct enetc_ndev_priv *priv = netdev_priv(ndev); 2297 struct enetc_hw *hw = &priv->si->hw; 2298 u32 reg; 2299 2300 enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings); 2301 2302 reg = enetc_rd(hw, ENETC_SIMR); 2303 reg &= ~ENETC_SIMR_RSSE; 2304 reg |= (en) ? ENETC_SIMR_RSSE : 0; 2305 enetc_wr(hw, ENETC_SIMR, reg); 2306 2307 return 0; 2308 } 2309 2310 static int enetc_set_psfp(struct net_device *ndev, int en) 2311 { 2312 struct enetc_ndev_priv *priv = netdev_priv(ndev); 2313 int err; 2314 2315 if (en) { 2316 err = enetc_psfp_enable(priv); 2317 if (err) 2318 return err; 2319 2320 priv->active_offloads |= ENETC_F_QCI; 2321 return 0; 2322 } 2323 2324 err = enetc_psfp_disable(priv); 2325 if (err) 2326 return err; 2327 2328 priv->active_offloads &= ~ENETC_F_QCI; 2329 2330 return 0; 2331 } 2332 2333 static void enetc_enable_rxvlan(struct net_device *ndev, bool en) 2334 { 2335 struct enetc_ndev_priv *priv = netdev_priv(ndev); 2336 int i; 2337 2338 for (i = 0; i < priv->num_rx_rings; i++) 2339 enetc_bdr_enable_rxvlan(&priv->si->hw, i, en); 2340 } 2341 2342 static void enetc_enable_txvlan(struct net_device *ndev, bool en) 2343 { 2344 struct enetc_ndev_priv *priv = netdev_priv(ndev); 2345 int i; 2346 2347 for (i = 0; i < priv->num_tx_rings; i++) 2348 enetc_bdr_enable_txvlan(&priv->si->hw, i, en); 2349 } 2350 2351 int enetc_set_features(struct net_device *ndev, 2352 netdev_features_t features) 2353 { 2354 netdev_features_t changed = ndev->features ^ features; 2355 int err = 0; 2356 2357 if (changed & NETIF_F_RXHASH) 2358 enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH)); 2359 2360 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 2361 enetc_enable_rxvlan(ndev, 2362 !!(features & NETIF_F_HW_VLAN_CTAG_RX)); 2363 2364 if (changed & NETIF_F_HW_VLAN_CTAG_TX) 2365 enetc_enable_txvlan(ndev, 2366 !!(features & NETIF_F_HW_VLAN_CTAG_TX)); 2367 2368 if (changed & NETIF_F_HW_TC) 2369 err = enetc_set_psfp(ndev, !!(features & NETIF_F_HW_TC)); 2370 2371 return err; 2372 } 2373 2374 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK 2375 static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr) 2376 { 2377 struct enetc_ndev_priv *priv = netdev_priv(ndev); 2378 struct hwtstamp_config config; 2379 int ao; 2380 2381 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 2382 return -EFAULT; 2383 2384 switch (config.tx_type) { 2385 case HWTSTAMP_TX_OFF: 2386 priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK; 2387 break; 2388 case HWTSTAMP_TX_ON: 2389 priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK; 2390 priv->active_offloads |= ENETC_F_TX_TSTAMP; 2391 break; 2392 case HWTSTAMP_TX_ONESTEP_SYNC: 2393 priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK; 2394 priv->active_offloads |= ENETC_F_TX_ONESTEP_SYNC_TSTAMP; 2395 break; 2396 default: 2397 return -ERANGE; 2398 } 2399 2400 ao = priv->active_offloads; 2401 switch (config.rx_filter) { 2402 case HWTSTAMP_FILTER_NONE: 2403 priv->active_offloads &= ~ENETC_F_RX_TSTAMP; 2404 break; 2405 default: 2406 priv->active_offloads |= ENETC_F_RX_TSTAMP; 2407 config.rx_filter = HWTSTAMP_FILTER_ALL; 2408 } 2409 2410 if (netif_running(ndev) && ao != priv->active_offloads) { 2411 enetc_close(ndev); 2412 enetc_open(ndev); 2413 } 2414 2415 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2416 -EFAULT : 0; 2417 } 2418 2419 static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr) 2420 { 2421 struct enetc_ndev_priv *priv = netdev_priv(ndev); 2422 struct hwtstamp_config config; 2423 2424 config.flags = 0; 2425 2426 if (priv->active_offloads & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) 2427 config.tx_type = HWTSTAMP_TX_ONESTEP_SYNC; 2428 else if (priv->active_offloads & ENETC_F_TX_TSTAMP) 2429 config.tx_type = HWTSTAMP_TX_ON; 2430 else 2431 config.tx_type = HWTSTAMP_TX_OFF; 2432 2433 config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ? 2434 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE; 2435 2436 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 2437 -EFAULT : 0; 2438 } 2439 #endif 2440 2441 int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) 2442 { 2443 struct enetc_ndev_priv *priv = netdev_priv(ndev); 2444 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK 2445 if (cmd == SIOCSHWTSTAMP) 2446 return enetc_hwtstamp_set(ndev, rq); 2447 if (cmd == SIOCGHWTSTAMP) 2448 return enetc_hwtstamp_get(ndev, rq); 2449 #endif 2450 2451 if (!priv->phylink) 2452 return -EOPNOTSUPP; 2453 2454 return phylink_mii_ioctl(priv->phylink, rq, cmd); 2455 } 2456 2457 int enetc_alloc_msix(struct enetc_ndev_priv *priv) 2458 { 2459 struct pci_dev *pdev = priv->si->pdev; 2460 int first_xdp_tx_ring; 2461 int i, n, err, nvec; 2462 int v_tx_rings; 2463 2464 nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num; 2465 /* allocate MSIX for both messaging and Rx/Tx interrupts */ 2466 n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX); 2467 2468 if (n < 0) 2469 return n; 2470 2471 if (n != nvec) 2472 return -EPERM; 2473 2474 /* # of tx rings per int vector */ 2475 v_tx_rings = priv->num_tx_rings / priv->bdr_int_num; 2476 2477 for (i = 0; i < priv->bdr_int_num; i++) { 2478 struct enetc_int_vector *v; 2479 struct enetc_bdr *bdr; 2480 int j; 2481 2482 v = kzalloc(struct_size(v, tx_ring, v_tx_rings), GFP_KERNEL); 2483 if (!v) { 2484 err = -ENOMEM; 2485 goto fail; 2486 } 2487 2488 priv->int_vector[i] = v; 2489 2490 bdr = &v->rx_ring; 2491 bdr->index = i; 2492 bdr->ndev = priv->ndev; 2493 bdr->dev = priv->dev; 2494 bdr->bd_count = priv->rx_bd_count; 2495 bdr->buffer_offset = ENETC_RXB_PAD; 2496 priv->rx_ring[i] = bdr; 2497 2498 err = xdp_rxq_info_reg(&bdr->xdp.rxq, priv->ndev, i, 0); 2499 if (err) { 2500 kfree(v); 2501 goto fail; 2502 } 2503 2504 err = xdp_rxq_info_reg_mem_model(&bdr->xdp.rxq, 2505 MEM_TYPE_PAGE_SHARED, NULL); 2506 if (err) { 2507 xdp_rxq_info_unreg(&bdr->xdp.rxq); 2508 kfree(v); 2509 goto fail; 2510 } 2511 2512 /* init defaults for adaptive IC */ 2513 if (priv->ic_mode & ENETC_IC_RX_ADAPTIVE) { 2514 v->rx_ictt = 0x1; 2515 v->rx_dim_en = true; 2516 } 2517 INIT_WORK(&v->rx_dim.work, enetc_rx_dim_work); 2518 netif_napi_add(priv->ndev, &v->napi, enetc_poll, 2519 NAPI_POLL_WEIGHT); 2520 v->count_tx_rings = v_tx_rings; 2521 2522 for (j = 0; j < v_tx_rings; j++) { 2523 int idx; 2524 2525 /* default tx ring mapping policy */ 2526 idx = priv->bdr_int_num * j + i; 2527 __set_bit(idx, &v->tx_rings_map); 2528 bdr = &v->tx_ring[j]; 2529 bdr->index = idx; 2530 bdr->ndev = priv->ndev; 2531 bdr->dev = priv->dev; 2532 bdr->bd_count = priv->tx_bd_count; 2533 priv->tx_ring[idx] = bdr; 2534 } 2535 } 2536 2537 first_xdp_tx_ring = priv->num_tx_rings - num_possible_cpus(); 2538 priv->xdp_tx_ring = &priv->tx_ring[first_xdp_tx_ring]; 2539 2540 return 0; 2541 2542 fail: 2543 while (i--) { 2544 struct enetc_int_vector *v = priv->int_vector[i]; 2545 struct enetc_bdr *rx_ring = &v->rx_ring; 2546 2547 xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq); 2548 xdp_rxq_info_unreg(&rx_ring->xdp.rxq); 2549 netif_napi_del(&v->napi); 2550 cancel_work_sync(&v->rx_dim.work); 2551 kfree(v); 2552 } 2553 2554 pci_free_irq_vectors(pdev); 2555 2556 return err; 2557 } 2558 2559 void enetc_free_msix(struct enetc_ndev_priv *priv) 2560 { 2561 int i; 2562 2563 for (i = 0; i < priv->bdr_int_num; i++) { 2564 struct enetc_int_vector *v = priv->int_vector[i]; 2565 struct enetc_bdr *rx_ring = &v->rx_ring; 2566 2567 xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq); 2568 xdp_rxq_info_unreg(&rx_ring->xdp.rxq); 2569 netif_napi_del(&v->napi); 2570 cancel_work_sync(&v->rx_dim.work); 2571 } 2572 2573 for (i = 0; i < priv->num_rx_rings; i++) 2574 priv->rx_ring[i] = NULL; 2575 2576 for (i = 0; i < priv->num_tx_rings; i++) 2577 priv->tx_ring[i] = NULL; 2578 2579 for (i = 0; i < priv->bdr_int_num; i++) { 2580 kfree(priv->int_vector[i]); 2581 priv->int_vector[i] = NULL; 2582 } 2583 2584 /* disable all MSIX for this device */ 2585 pci_free_irq_vectors(priv->si->pdev); 2586 } 2587 2588 static void enetc_kfree_si(struct enetc_si *si) 2589 { 2590 char *p = (char *)si - si->pad; 2591 2592 kfree(p); 2593 } 2594 2595 static void enetc_detect_errata(struct enetc_si *si) 2596 { 2597 if (si->pdev->revision == ENETC_REV1) 2598 si->errata = ENETC_ERR_VLAN_ISOL | ENETC_ERR_UCMCSWP; 2599 } 2600 2601 int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv) 2602 { 2603 struct enetc_si *si, *p; 2604 struct enetc_hw *hw; 2605 size_t alloc_size; 2606 int err, len; 2607 2608 pcie_flr(pdev); 2609 err = pci_enable_device_mem(pdev); 2610 if (err) { 2611 dev_err(&pdev->dev, "device enable failed\n"); 2612 return err; 2613 } 2614 2615 /* set up for high or low dma */ 2616 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2617 if (err) { 2618 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2619 if (err) { 2620 dev_err(&pdev->dev, 2621 "DMA configuration failed: 0x%x\n", err); 2622 goto err_dma; 2623 } 2624 } 2625 2626 err = pci_request_mem_regions(pdev, name); 2627 if (err) { 2628 dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err); 2629 goto err_pci_mem_reg; 2630 } 2631 2632 pci_set_master(pdev); 2633 2634 alloc_size = sizeof(struct enetc_si); 2635 if (sizeof_priv) { 2636 /* align priv to 32B */ 2637 alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN); 2638 alloc_size += sizeof_priv; 2639 } 2640 /* force 32B alignment for enetc_si */ 2641 alloc_size += ENETC_SI_ALIGN - 1; 2642 2643 p = kzalloc(alloc_size, GFP_KERNEL); 2644 if (!p) { 2645 err = -ENOMEM; 2646 goto err_alloc_si; 2647 } 2648 2649 si = PTR_ALIGN(p, ENETC_SI_ALIGN); 2650 si->pad = (char *)si - (char *)p; 2651 2652 pci_set_drvdata(pdev, si); 2653 si->pdev = pdev; 2654 hw = &si->hw; 2655 2656 len = pci_resource_len(pdev, ENETC_BAR_REGS); 2657 hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len); 2658 if (!hw->reg) { 2659 err = -ENXIO; 2660 dev_err(&pdev->dev, "ioremap() failed\n"); 2661 goto err_ioremap; 2662 } 2663 if (len > ENETC_PORT_BASE) 2664 hw->port = hw->reg + ENETC_PORT_BASE; 2665 if (len > ENETC_GLOBAL_BASE) 2666 hw->global = hw->reg + ENETC_GLOBAL_BASE; 2667 2668 enetc_detect_errata(si); 2669 2670 return 0; 2671 2672 err_ioremap: 2673 enetc_kfree_si(si); 2674 err_alloc_si: 2675 pci_release_mem_regions(pdev); 2676 err_pci_mem_reg: 2677 err_dma: 2678 pci_disable_device(pdev); 2679 2680 return err; 2681 } 2682 2683 void enetc_pci_remove(struct pci_dev *pdev) 2684 { 2685 struct enetc_si *si = pci_get_drvdata(pdev); 2686 struct enetc_hw *hw = &si->hw; 2687 2688 iounmap(hw->reg); 2689 enetc_kfree_si(si); 2690 pci_release_mem_regions(pdev); 2691 pci_disable_device(pdev); 2692 } 2693