1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /* Copyright 2017-2019 NXP */
3 
4 #include "enetc.h"
5 #include <linux/tcp.h>
6 #include <linux/udp.h>
7 #include <linux/of_mdio.h>
8 #include <linux/vmalloc.h>
9 
10 /* ENETC overhead: optional extension BD + 1 BD gap */
11 #define ENETC_TXBDS_NEEDED(val)	((val) + 2)
12 /* max # of chained Tx BDs is 15, including head and extension BD */
13 #define ENETC_MAX_SKB_FRAGS	13
14 #define ENETC_TXBDS_MAX_NEEDED	ENETC_TXBDS_NEEDED(ENETC_MAX_SKB_FRAGS + 1)
15 
16 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
17 			      int active_offloads);
18 
19 netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
20 {
21 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
22 	struct enetc_bdr *tx_ring;
23 	int count;
24 
25 	tx_ring = priv->tx_ring[skb->queue_mapping];
26 
27 	if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
28 		if (unlikely(skb_linearize(skb)))
29 			goto drop_packet_err;
30 
31 	count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
32 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
33 		netif_stop_subqueue(ndev, tx_ring->index);
34 		return NETDEV_TX_BUSY;
35 	}
36 
37 	count = enetc_map_tx_buffs(tx_ring, skb, priv->active_offloads);
38 	if (unlikely(!count))
39 		goto drop_packet_err;
40 
41 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
42 		netif_stop_subqueue(ndev, tx_ring->index);
43 
44 	return NETDEV_TX_OK;
45 
46 drop_packet_err:
47 	dev_kfree_skb_any(skb);
48 	return NETDEV_TX_OK;
49 }
50 
51 static bool enetc_tx_csum(struct sk_buff *skb, union enetc_tx_bd *txbd)
52 {
53 	int l3_start, l3_hsize;
54 	u16 l3_flags, l4_flags;
55 
56 	if (skb->ip_summed != CHECKSUM_PARTIAL)
57 		return false;
58 
59 	switch (skb->csum_offset) {
60 	case offsetof(struct tcphdr, check):
61 		l4_flags = ENETC_TXBD_L4_TCP;
62 		break;
63 	case offsetof(struct udphdr, check):
64 		l4_flags = ENETC_TXBD_L4_UDP;
65 		break;
66 	default:
67 		skb_checksum_help(skb);
68 		return false;
69 	}
70 
71 	l3_start = skb_network_offset(skb);
72 	l3_hsize = skb_network_header_len(skb);
73 
74 	l3_flags = 0;
75 	if (skb->protocol == htons(ETH_P_IPV6))
76 		l3_flags = ENETC_TXBD_L3_IPV6;
77 
78 	/* write BD fields */
79 	txbd->l3_csoff = enetc_txbd_l3_csoff(l3_start, l3_hsize, l3_flags);
80 	txbd->l4_csoff = l4_flags;
81 
82 	return true;
83 }
84 
85 static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
86 				struct enetc_tx_swbd *tx_swbd)
87 {
88 	if (tx_swbd->is_dma_page)
89 		dma_unmap_page(tx_ring->dev, tx_swbd->dma,
90 			       tx_swbd->len, DMA_TO_DEVICE);
91 	else
92 		dma_unmap_single(tx_ring->dev, tx_swbd->dma,
93 				 tx_swbd->len, DMA_TO_DEVICE);
94 	tx_swbd->dma = 0;
95 }
96 
97 static void enetc_free_tx_skb(struct enetc_bdr *tx_ring,
98 			      struct enetc_tx_swbd *tx_swbd)
99 {
100 	if (tx_swbd->dma)
101 		enetc_unmap_tx_buff(tx_ring, tx_swbd);
102 
103 	if (tx_swbd->skb) {
104 		dev_kfree_skb_any(tx_swbd->skb);
105 		tx_swbd->skb = NULL;
106 	}
107 }
108 
109 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
110 			      int active_offloads)
111 {
112 	struct enetc_tx_swbd *tx_swbd;
113 	skb_frag_t *frag;
114 	int len = skb_headlen(skb);
115 	union enetc_tx_bd temp_bd;
116 	union enetc_tx_bd *txbd;
117 	bool do_vlan, do_tstamp;
118 	int i, count = 0;
119 	unsigned int f;
120 	dma_addr_t dma;
121 	u8 flags = 0;
122 
123 	i = tx_ring->next_to_use;
124 	txbd = ENETC_TXBD(*tx_ring, i);
125 	prefetchw(txbd);
126 
127 	dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
128 	if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
129 		goto dma_err;
130 
131 	temp_bd.addr = cpu_to_le64(dma);
132 	temp_bd.buf_len = cpu_to_le16(len);
133 	temp_bd.lstatus = 0;
134 
135 	tx_swbd = &tx_ring->tx_swbd[i];
136 	tx_swbd->dma = dma;
137 	tx_swbd->len = len;
138 	tx_swbd->is_dma_page = 0;
139 	count++;
140 
141 	do_vlan = skb_vlan_tag_present(skb);
142 	do_tstamp = (active_offloads & ENETC_F_TX_TSTAMP) &&
143 		    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP);
144 	tx_swbd->do_tstamp = do_tstamp;
145 	tx_swbd->check_wb = tx_swbd->do_tstamp;
146 
147 	if (do_vlan || do_tstamp)
148 		flags |= ENETC_TXBD_FLAGS_EX;
149 
150 	if (enetc_tx_csum(skb, &temp_bd))
151 		flags |= ENETC_TXBD_FLAGS_CSUM | ENETC_TXBD_FLAGS_L4CS;
152 	else if (tx_ring->tsd_enable)
153 		flags |= ENETC_TXBD_FLAGS_TSE | ENETC_TXBD_FLAGS_TXSTART;
154 
155 	/* first BD needs frm_len and offload flags set */
156 	temp_bd.frm_len = cpu_to_le16(skb->len);
157 	temp_bd.flags = flags;
158 
159 	if (flags & ENETC_TXBD_FLAGS_TSE) {
160 		u32 temp;
161 
162 		temp = (skb->skb_mstamp_ns >> 5 & ENETC_TXBD_TXSTART_MASK)
163 			| (flags << ENETC_TXBD_FLAGS_OFFSET);
164 		temp_bd.txstart = cpu_to_le32(temp);
165 	}
166 
167 	if (flags & ENETC_TXBD_FLAGS_EX) {
168 		u8 e_flags = 0;
169 		*txbd = temp_bd;
170 		enetc_clear_tx_bd(&temp_bd);
171 
172 		/* add extension BD for VLAN and/or timestamping */
173 		flags = 0;
174 		tx_swbd++;
175 		txbd++;
176 		i++;
177 		if (unlikely(i == tx_ring->bd_count)) {
178 			i = 0;
179 			tx_swbd = tx_ring->tx_swbd;
180 			txbd = ENETC_TXBD(*tx_ring, 0);
181 		}
182 		prefetchw(txbd);
183 
184 		if (do_vlan) {
185 			temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
186 			temp_bd.ext.tpid = 0; /* < C-TAG */
187 			e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
188 		}
189 
190 		if (do_tstamp) {
191 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
192 			e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
193 		}
194 
195 		temp_bd.ext.e_flags = e_flags;
196 		count++;
197 	}
198 
199 	frag = &skb_shinfo(skb)->frags[0];
200 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
201 		len = skb_frag_size(frag);
202 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
203 				       DMA_TO_DEVICE);
204 		if (dma_mapping_error(tx_ring->dev, dma))
205 			goto dma_err;
206 
207 		*txbd = temp_bd;
208 		enetc_clear_tx_bd(&temp_bd);
209 
210 		flags = 0;
211 		tx_swbd++;
212 		txbd++;
213 		i++;
214 		if (unlikely(i == tx_ring->bd_count)) {
215 			i = 0;
216 			tx_swbd = tx_ring->tx_swbd;
217 			txbd = ENETC_TXBD(*tx_ring, 0);
218 		}
219 		prefetchw(txbd);
220 
221 		temp_bd.addr = cpu_to_le64(dma);
222 		temp_bd.buf_len = cpu_to_le16(len);
223 
224 		tx_swbd->dma = dma;
225 		tx_swbd->len = len;
226 		tx_swbd->is_dma_page = 1;
227 		count++;
228 	}
229 
230 	/* last BD needs 'F' bit set */
231 	flags |= ENETC_TXBD_FLAGS_F;
232 	temp_bd.flags = flags;
233 	*txbd = temp_bd;
234 
235 	tx_ring->tx_swbd[i].skb = skb;
236 
237 	enetc_bdr_idx_inc(tx_ring, &i);
238 	tx_ring->next_to_use = i;
239 
240 	skb_tx_timestamp(skb);
241 
242 	/* let H/W know BD ring has been updated */
243 	enetc_wr_reg(tx_ring->tpir, i); /* includes wmb() */
244 
245 	return count;
246 
247 dma_err:
248 	dev_err(tx_ring->dev, "DMA map error");
249 
250 	do {
251 		tx_swbd = &tx_ring->tx_swbd[i];
252 		enetc_free_tx_skb(tx_ring, tx_swbd);
253 		if (i == 0)
254 			i = tx_ring->bd_count;
255 		i--;
256 	} while (count--);
257 
258 	return 0;
259 }
260 
261 static irqreturn_t enetc_msix(int irq, void *data)
262 {
263 	struct enetc_int_vector	*v = data;
264 	int i;
265 
266 	/* disable interrupts */
267 	enetc_wr_reg(v->rbier, 0);
268 
269 	for_each_set_bit(i, &v->tx_rings_map, v->count_tx_rings)
270 		enetc_wr_reg(v->tbier_base + ENETC_BDR_OFF(i), 0);
271 
272 	napi_schedule_irqoff(&v->napi);
273 
274 	return IRQ_HANDLED;
275 }
276 
277 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget);
278 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
279 			       struct napi_struct *napi, int work_limit);
280 
281 static int enetc_poll(struct napi_struct *napi, int budget)
282 {
283 	struct enetc_int_vector
284 		*v = container_of(napi, struct enetc_int_vector, napi);
285 	bool complete = true;
286 	int work_done;
287 	int i;
288 
289 	for (i = 0; i < v->count_tx_rings; i++)
290 		if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
291 			complete = false;
292 
293 	work_done = enetc_clean_rx_ring(&v->rx_ring, napi, budget);
294 	if (work_done == budget)
295 		complete = false;
296 
297 	if (!complete)
298 		return budget;
299 
300 	napi_complete_done(napi, work_done);
301 
302 	/* enable interrupts */
303 	enetc_wr_reg(v->rbier, ENETC_RBIER_RXTIE);
304 
305 	for_each_set_bit(i, &v->tx_rings_map, v->count_tx_rings)
306 		enetc_wr_reg(v->tbier_base + ENETC_BDR_OFF(i),
307 			     ENETC_TBIER_TXTIE);
308 
309 	return work_done;
310 }
311 
312 static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
313 {
314 	int pi = enetc_rd_reg(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
315 
316 	return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
317 }
318 
319 static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
320 				u64 *tstamp)
321 {
322 	u32 lo, hi, tstamp_lo;
323 
324 	lo = enetc_rd(hw, ENETC_SICTR0);
325 	hi = enetc_rd(hw, ENETC_SICTR1);
326 	tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
327 	if (lo <= tstamp_lo)
328 		hi -= 1;
329 	*tstamp = (u64)hi << 32 | tstamp_lo;
330 }
331 
332 static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
333 {
334 	struct skb_shared_hwtstamps shhwtstamps;
335 
336 	if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
337 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
338 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
339 		skb_tstamp_tx(skb, &shhwtstamps);
340 	}
341 }
342 
343 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
344 {
345 	struct net_device *ndev = tx_ring->ndev;
346 	int tx_frm_cnt = 0, tx_byte_cnt = 0;
347 	struct enetc_tx_swbd *tx_swbd;
348 	int i, bds_to_clean;
349 	bool do_tstamp;
350 	u64 tstamp = 0;
351 
352 	i = tx_ring->next_to_clean;
353 	tx_swbd = &tx_ring->tx_swbd[i];
354 	bds_to_clean = enetc_bd_ready_count(tx_ring, i);
355 
356 	do_tstamp = false;
357 
358 	while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
359 		bool is_eof = !!tx_swbd->skb;
360 
361 		if (unlikely(tx_swbd->check_wb)) {
362 			struct enetc_ndev_priv *priv = netdev_priv(ndev);
363 			union enetc_tx_bd *txbd;
364 
365 			txbd = ENETC_TXBD(*tx_ring, i);
366 
367 			if (txbd->flags & ENETC_TXBD_FLAGS_W &&
368 			    tx_swbd->do_tstamp) {
369 				enetc_get_tx_tstamp(&priv->si->hw, txbd,
370 						    &tstamp);
371 				do_tstamp = true;
372 			}
373 		}
374 
375 		if (likely(tx_swbd->dma))
376 			enetc_unmap_tx_buff(tx_ring, tx_swbd);
377 
378 		if (is_eof) {
379 			if (unlikely(do_tstamp)) {
380 				enetc_tstamp_tx(tx_swbd->skb, tstamp);
381 				do_tstamp = false;
382 			}
383 			napi_consume_skb(tx_swbd->skb, napi_budget);
384 			tx_swbd->skb = NULL;
385 		}
386 
387 		tx_byte_cnt += tx_swbd->len;
388 
389 		bds_to_clean--;
390 		tx_swbd++;
391 		i++;
392 		if (unlikely(i == tx_ring->bd_count)) {
393 			i = 0;
394 			tx_swbd = tx_ring->tx_swbd;
395 		}
396 
397 		/* BD iteration loop end */
398 		if (is_eof) {
399 			tx_frm_cnt++;
400 			/* re-arm interrupt source */
401 			enetc_wr_reg(tx_ring->idr, BIT(tx_ring->index) |
402 				     BIT(16 + tx_ring->index));
403 		}
404 
405 		if (unlikely(!bds_to_clean))
406 			bds_to_clean = enetc_bd_ready_count(tx_ring, i);
407 	}
408 
409 	tx_ring->next_to_clean = i;
410 	tx_ring->stats.packets += tx_frm_cnt;
411 	tx_ring->stats.bytes += tx_byte_cnt;
412 
413 	if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
414 		     __netif_subqueue_stopped(ndev, tx_ring->index) &&
415 		     (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
416 		netif_wake_subqueue(ndev, tx_ring->index);
417 	}
418 
419 	return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
420 }
421 
422 static bool enetc_new_page(struct enetc_bdr *rx_ring,
423 			   struct enetc_rx_swbd *rx_swbd)
424 {
425 	struct page *page;
426 	dma_addr_t addr;
427 
428 	page = dev_alloc_page();
429 	if (unlikely(!page))
430 		return false;
431 
432 	addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
433 	if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
434 		__free_page(page);
435 
436 		return false;
437 	}
438 
439 	rx_swbd->dma = addr;
440 	rx_swbd->page = page;
441 	rx_swbd->page_offset = ENETC_RXB_PAD;
442 
443 	return true;
444 }
445 
446 static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
447 {
448 	struct enetc_rx_swbd *rx_swbd;
449 	union enetc_rx_bd *rxbd;
450 	int i, j;
451 
452 	i = rx_ring->next_to_use;
453 	rx_swbd = &rx_ring->rx_swbd[i];
454 	rxbd = ENETC_RXBD(*rx_ring, i);
455 
456 	for (j = 0; j < buff_cnt; j++) {
457 		/* try reuse page */
458 		if (unlikely(!rx_swbd->page)) {
459 			if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
460 				rx_ring->stats.rx_alloc_errs++;
461 				break;
462 			}
463 		}
464 
465 		/* update RxBD */
466 		rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
467 					   rx_swbd->page_offset);
468 		/* clear 'R" as well */
469 		rxbd->r.lstatus = 0;
470 
471 		rx_swbd++;
472 		rxbd++;
473 		i++;
474 		if (unlikely(i == rx_ring->bd_count)) {
475 			i = 0;
476 			rx_swbd = rx_ring->rx_swbd;
477 			rxbd = ENETC_RXBD(*rx_ring, 0);
478 		}
479 	}
480 
481 	if (likely(j)) {
482 		rx_ring->next_to_alloc = i; /* keep track from page reuse */
483 		rx_ring->next_to_use = i;
484 		/* update ENETC's consumer index */
485 		enetc_wr_reg(rx_ring->rcir, i);
486 	}
487 
488 	return j;
489 }
490 
491 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
492 static void enetc_get_rx_tstamp(struct net_device *ndev,
493 				union enetc_rx_bd *rxbd,
494 				struct sk_buff *skb)
495 {
496 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
497 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
498 	struct enetc_hw *hw = &priv->si->hw;
499 	u32 lo, hi, tstamp_lo;
500 	u64 tstamp;
501 
502 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
503 		lo = enetc_rd(hw, ENETC_SICTR0);
504 		hi = enetc_rd(hw, ENETC_SICTR1);
505 		tstamp_lo = le32_to_cpu(rxbd->r.tstamp);
506 		if (lo <= tstamp_lo)
507 			hi -= 1;
508 
509 		tstamp = (u64)hi << 32 | tstamp_lo;
510 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
511 		shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
512 	}
513 }
514 #endif
515 
516 static void enetc_get_offloads(struct enetc_bdr *rx_ring,
517 			       union enetc_rx_bd *rxbd, struct sk_buff *skb)
518 {
519 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
520 	struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
521 #endif
522 	/* TODO: hashing */
523 	if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
524 		u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
525 
526 		skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
527 		skb->ip_summed = CHECKSUM_COMPLETE;
528 	}
529 
530 	/* copy VLAN to skb, if one is extracted, for now we assume it's a
531 	 * standard TPID, but HW also supports custom values
532 	 */
533 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN)
534 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
535 				       le16_to_cpu(rxbd->r.vlan_opt));
536 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
537 	if (priv->active_offloads & ENETC_F_RX_TSTAMP)
538 		enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
539 #endif
540 }
541 
542 static void enetc_process_skb(struct enetc_bdr *rx_ring,
543 			      struct sk_buff *skb)
544 {
545 	skb_record_rx_queue(skb, rx_ring->index);
546 	skb->protocol = eth_type_trans(skb, rx_ring->ndev);
547 }
548 
549 static bool enetc_page_reusable(struct page *page)
550 {
551 	return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
552 }
553 
554 static void enetc_reuse_page(struct enetc_bdr *rx_ring,
555 			     struct enetc_rx_swbd *old)
556 {
557 	struct enetc_rx_swbd *new;
558 
559 	new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
560 
561 	/* next buf that may reuse a page */
562 	enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
563 
564 	/* copy page reference */
565 	*new = *old;
566 }
567 
568 static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
569 					       int i, u16 size)
570 {
571 	struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
572 
573 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
574 				      rx_swbd->page_offset,
575 				      size, DMA_FROM_DEVICE);
576 	return rx_swbd;
577 }
578 
579 static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
580 			      struct enetc_rx_swbd *rx_swbd)
581 {
582 	if (likely(enetc_page_reusable(rx_swbd->page))) {
583 		rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
584 		page_ref_inc(rx_swbd->page);
585 
586 		enetc_reuse_page(rx_ring, rx_swbd);
587 
588 		/* sync for use by the device */
589 		dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
590 						 rx_swbd->page_offset,
591 						 ENETC_RXB_DMA_SIZE,
592 						 DMA_FROM_DEVICE);
593 	} else {
594 		dma_unmap_page(rx_ring->dev, rx_swbd->dma,
595 			       PAGE_SIZE, DMA_FROM_DEVICE);
596 	}
597 
598 	rx_swbd->page = NULL;
599 }
600 
601 static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
602 						int i, u16 size)
603 {
604 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
605 	struct sk_buff *skb;
606 	void *ba;
607 
608 	ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
609 	skb = build_skb(ba - ENETC_RXB_PAD, ENETC_RXB_TRUESIZE);
610 	if (unlikely(!skb)) {
611 		rx_ring->stats.rx_alloc_errs++;
612 		return NULL;
613 	}
614 
615 	skb_reserve(skb, ENETC_RXB_PAD);
616 	__skb_put(skb, size);
617 
618 	enetc_put_rx_buff(rx_ring, rx_swbd);
619 
620 	return skb;
621 }
622 
623 static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
624 				     u16 size, struct sk_buff *skb)
625 {
626 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
627 
628 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
629 			rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
630 
631 	enetc_put_rx_buff(rx_ring, rx_swbd);
632 }
633 
634 #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
635 
636 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
637 			       struct napi_struct *napi, int work_limit)
638 {
639 	int rx_frm_cnt = 0, rx_byte_cnt = 0;
640 	int cleaned_cnt, i;
641 
642 	cleaned_cnt = enetc_bd_unused(rx_ring);
643 	/* next descriptor to process */
644 	i = rx_ring->next_to_clean;
645 
646 	while (likely(rx_frm_cnt < work_limit)) {
647 		union enetc_rx_bd *rxbd;
648 		struct sk_buff *skb;
649 		u32 bd_status;
650 		u16 size;
651 
652 		if (cleaned_cnt >= ENETC_RXBD_BUNDLE) {
653 			int count = enetc_refill_rx_ring(rx_ring, cleaned_cnt);
654 
655 			cleaned_cnt -= count;
656 		}
657 
658 		rxbd = ENETC_RXBD(*rx_ring, i);
659 		bd_status = le32_to_cpu(rxbd->r.lstatus);
660 		if (!bd_status)
661 			break;
662 
663 		enetc_wr_reg(rx_ring->idr, BIT(rx_ring->index));
664 		dma_rmb(); /* for reading other rxbd fields */
665 		size = le16_to_cpu(rxbd->r.buf_len);
666 		skb = enetc_map_rx_buff_to_skb(rx_ring, i, size);
667 		if (!skb)
668 			break;
669 
670 		enetc_get_offloads(rx_ring, rxbd, skb);
671 
672 		cleaned_cnt++;
673 		rxbd++;
674 		i++;
675 		if (unlikely(i == rx_ring->bd_count)) {
676 			i = 0;
677 			rxbd = ENETC_RXBD(*rx_ring, 0);
678 		}
679 
680 		if (unlikely(bd_status &
681 			     ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))) {
682 			dev_kfree_skb(skb);
683 			while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
684 				dma_rmb();
685 				bd_status = le32_to_cpu(rxbd->r.lstatus);
686 				rxbd++;
687 				i++;
688 				if (unlikely(i == rx_ring->bd_count)) {
689 					i = 0;
690 					rxbd = ENETC_RXBD(*rx_ring, 0);
691 				}
692 			}
693 
694 			rx_ring->ndev->stats.rx_dropped++;
695 			rx_ring->ndev->stats.rx_errors++;
696 
697 			break;
698 		}
699 
700 		/* not last BD in frame? */
701 		while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
702 			bd_status = le32_to_cpu(rxbd->r.lstatus);
703 			size = ENETC_RXB_DMA_SIZE;
704 
705 			if (bd_status & ENETC_RXBD_LSTATUS_F) {
706 				dma_rmb();
707 				size = le16_to_cpu(rxbd->r.buf_len);
708 			}
709 
710 			enetc_add_rx_buff_to_skb(rx_ring, i, size, skb);
711 
712 			cleaned_cnt++;
713 			rxbd++;
714 			i++;
715 			if (unlikely(i == rx_ring->bd_count)) {
716 				i = 0;
717 				rxbd = ENETC_RXBD(*rx_ring, 0);
718 			}
719 		}
720 
721 		rx_byte_cnt += skb->len;
722 
723 		enetc_process_skb(rx_ring, skb);
724 
725 		napi_gro_receive(napi, skb);
726 
727 		rx_frm_cnt++;
728 	}
729 
730 	rx_ring->next_to_clean = i;
731 
732 	rx_ring->stats.packets += rx_frm_cnt;
733 	rx_ring->stats.bytes += rx_byte_cnt;
734 
735 	return rx_frm_cnt;
736 }
737 
738 /* Probing and Init */
739 #define ENETC_MAX_RFS_SIZE 64
740 void enetc_get_si_caps(struct enetc_si *si)
741 {
742 	struct enetc_hw *hw = &si->hw;
743 	u32 val;
744 
745 	/* find out how many of various resources we have to work with */
746 	val = enetc_rd(hw, ENETC_SICAPR0);
747 	si->num_rx_rings = (val >> 16) & 0xff;
748 	si->num_tx_rings = val & 0xff;
749 
750 	val = enetc_rd(hw, ENETC_SIRFSCAPR);
751 	si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
752 	si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
753 
754 	si->num_rss = 0;
755 	val = enetc_rd(hw, ENETC_SIPCAPR0);
756 	if (val & ENETC_SIPCAPR0_RSS) {
757 		u32 rss;
758 
759 		rss = enetc_rd(hw, ENETC_SIRSSCAPR);
760 		si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss);
761 	}
762 
763 	if (val & ENETC_SIPCAPR0_QBV)
764 		si->hw_features |= ENETC_SI_F_QBV;
765 }
766 
767 static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size)
768 {
769 	r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size,
770 					&r->bd_dma_base, GFP_KERNEL);
771 	if (!r->bd_base)
772 		return -ENOMEM;
773 
774 	/* h/w requires 128B alignment */
775 	if (!IS_ALIGNED(r->bd_dma_base, 128)) {
776 		dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base,
777 				  r->bd_dma_base);
778 		return -EINVAL;
779 	}
780 
781 	return 0;
782 }
783 
784 static int enetc_alloc_txbdr(struct enetc_bdr *txr)
785 {
786 	int err;
787 
788 	txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd));
789 	if (!txr->tx_swbd)
790 		return -ENOMEM;
791 
792 	err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd));
793 	if (err) {
794 		vfree(txr->tx_swbd);
795 		return err;
796 	}
797 
798 	txr->next_to_clean = 0;
799 	txr->next_to_use = 0;
800 
801 	return 0;
802 }
803 
804 static void enetc_free_txbdr(struct enetc_bdr *txr)
805 {
806 	int size, i;
807 
808 	for (i = 0; i < txr->bd_count; i++)
809 		enetc_free_tx_skb(txr, &txr->tx_swbd[i]);
810 
811 	size = txr->bd_count * sizeof(union enetc_tx_bd);
812 
813 	dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base);
814 	txr->bd_base = NULL;
815 
816 	vfree(txr->tx_swbd);
817 	txr->tx_swbd = NULL;
818 }
819 
820 static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
821 {
822 	int i, err;
823 
824 	for (i = 0; i < priv->num_tx_rings; i++) {
825 		err = enetc_alloc_txbdr(priv->tx_ring[i]);
826 
827 		if (err)
828 			goto fail;
829 	}
830 
831 	return 0;
832 
833 fail:
834 	while (i-- > 0)
835 		enetc_free_txbdr(priv->tx_ring[i]);
836 
837 	return err;
838 }
839 
840 static void enetc_free_tx_resources(struct enetc_ndev_priv *priv)
841 {
842 	int i;
843 
844 	for (i = 0; i < priv->num_tx_rings; i++)
845 		enetc_free_txbdr(priv->tx_ring[i]);
846 }
847 
848 static int enetc_alloc_rxbdr(struct enetc_bdr *rxr)
849 {
850 	int err;
851 
852 	rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd));
853 	if (!rxr->rx_swbd)
854 		return -ENOMEM;
855 
856 	err = enetc_dma_alloc_bdr(rxr, sizeof(union enetc_rx_bd));
857 	if (err) {
858 		vfree(rxr->rx_swbd);
859 		return err;
860 	}
861 
862 	rxr->next_to_clean = 0;
863 	rxr->next_to_use = 0;
864 	rxr->next_to_alloc = 0;
865 
866 	return 0;
867 }
868 
869 static void enetc_free_rxbdr(struct enetc_bdr *rxr)
870 {
871 	int size;
872 
873 	size = rxr->bd_count * sizeof(union enetc_rx_bd);
874 
875 	dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base);
876 	rxr->bd_base = NULL;
877 
878 	vfree(rxr->rx_swbd);
879 	rxr->rx_swbd = NULL;
880 }
881 
882 static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv)
883 {
884 	int i, err;
885 
886 	for (i = 0; i < priv->num_rx_rings; i++) {
887 		err = enetc_alloc_rxbdr(priv->rx_ring[i]);
888 
889 		if (err)
890 			goto fail;
891 	}
892 
893 	return 0;
894 
895 fail:
896 	while (i-- > 0)
897 		enetc_free_rxbdr(priv->rx_ring[i]);
898 
899 	return err;
900 }
901 
902 static void enetc_free_rx_resources(struct enetc_ndev_priv *priv)
903 {
904 	int i;
905 
906 	for (i = 0; i < priv->num_rx_rings; i++)
907 		enetc_free_rxbdr(priv->rx_ring[i]);
908 }
909 
910 static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
911 {
912 	int i;
913 
914 	if (!tx_ring->tx_swbd)
915 		return;
916 
917 	for (i = 0; i < tx_ring->bd_count; i++) {
918 		struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
919 
920 		enetc_free_tx_skb(tx_ring, tx_swbd);
921 	}
922 
923 	tx_ring->next_to_clean = 0;
924 	tx_ring->next_to_use = 0;
925 }
926 
927 static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
928 {
929 	int i;
930 
931 	if (!rx_ring->rx_swbd)
932 		return;
933 
934 	for (i = 0; i < rx_ring->bd_count; i++) {
935 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
936 
937 		if (!rx_swbd->page)
938 			continue;
939 
940 		dma_unmap_page(rx_ring->dev, rx_swbd->dma,
941 			       PAGE_SIZE, DMA_FROM_DEVICE);
942 		__free_page(rx_swbd->page);
943 		rx_swbd->page = NULL;
944 	}
945 
946 	rx_ring->next_to_clean = 0;
947 	rx_ring->next_to_use = 0;
948 	rx_ring->next_to_alloc = 0;
949 }
950 
951 static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
952 {
953 	int i;
954 
955 	for (i = 0; i < priv->num_rx_rings; i++)
956 		enetc_free_rx_ring(priv->rx_ring[i]);
957 
958 	for (i = 0; i < priv->num_tx_rings; i++)
959 		enetc_free_tx_ring(priv->tx_ring[i]);
960 }
961 
962 static int enetc_alloc_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
963 {
964 	int size = cbdr->bd_count * sizeof(struct enetc_cbd);
965 
966 	cbdr->bd_base = dma_alloc_coherent(dev, size, &cbdr->bd_dma_base,
967 					   GFP_KERNEL);
968 	if (!cbdr->bd_base)
969 		return -ENOMEM;
970 
971 	/* h/w requires 128B alignment */
972 	if (!IS_ALIGNED(cbdr->bd_dma_base, 128)) {
973 		dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
974 		return -EINVAL;
975 	}
976 
977 	cbdr->next_to_clean = 0;
978 	cbdr->next_to_use = 0;
979 
980 	return 0;
981 }
982 
983 static void enetc_free_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
984 {
985 	int size = cbdr->bd_count * sizeof(struct enetc_cbd);
986 
987 	dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
988 	cbdr->bd_base = NULL;
989 }
990 
991 static void enetc_setup_cbdr(struct enetc_hw *hw, struct enetc_cbdr *cbdr)
992 {
993 	/* set CBDR cache attributes */
994 	enetc_wr(hw, ENETC_SICAR2,
995 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
996 
997 	enetc_wr(hw, ENETC_SICBDRBAR0, lower_32_bits(cbdr->bd_dma_base));
998 	enetc_wr(hw, ENETC_SICBDRBAR1, upper_32_bits(cbdr->bd_dma_base));
999 	enetc_wr(hw, ENETC_SICBDRLENR, ENETC_RTBLENR_LEN(cbdr->bd_count));
1000 
1001 	enetc_wr(hw, ENETC_SICBDRPIR, 0);
1002 	enetc_wr(hw, ENETC_SICBDRCIR, 0);
1003 
1004 	/* enable ring */
1005 	enetc_wr(hw, ENETC_SICBDRMR, BIT(31));
1006 
1007 	cbdr->pir = hw->reg + ENETC_SICBDRPIR;
1008 	cbdr->cir = hw->reg + ENETC_SICBDRCIR;
1009 }
1010 
1011 static void enetc_clear_cbdr(struct enetc_hw *hw)
1012 {
1013 	enetc_wr(hw, ENETC_SICBDRMR, 0);
1014 }
1015 
1016 static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
1017 {
1018 	int *rss_table;
1019 	int i;
1020 
1021 	rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
1022 	if (!rss_table)
1023 		return -ENOMEM;
1024 
1025 	/* Set up RSS table defaults */
1026 	for (i = 0; i < si->num_rss; i++)
1027 		rss_table[i] = i % num_groups;
1028 
1029 	enetc_set_rss_table(si, rss_table, si->num_rss);
1030 
1031 	kfree(rss_table);
1032 
1033 	return 0;
1034 }
1035 
1036 static int enetc_configure_si(struct enetc_ndev_priv *priv)
1037 {
1038 	struct enetc_si *si = priv->si;
1039 	struct enetc_hw *hw = &si->hw;
1040 	int err;
1041 
1042 	enetc_setup_cbdr(hw, &si->cbd_ring);
1043 	/* set SI cache attributes */
1044 	enetc_wr(hw, ENETC_SICAR0,
1045 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
1046 	enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
1047 	/* enable SI */
1048 	enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
1049 
1050 	if (si->num_rss) {
1051 		err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
1052 		if (err)
1053 			return err;
1054 	}
1055 
1056 	return 0;
1057 }
1058 
1059 void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
1060 {
1061 	struct enetc_si *si = priv->si;
1062 	int cpus = num_online_cpus();
1063 
1064 	priv->tx_bd_count = ENETC_BDR_DEFAULT_SIZE;
1065 	priv->rx_bd_count = ENETC_BDR_DEFAULT_SIZE;
1066 
1067 	/* Enable all available TX rings in order to configure as many
1068 	 * priorities as possible, when needed.
1069 	 * TODO: Make # of TX rings run-time configurable
1070 	 */
1071 	priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
1072 	priv->num_tx_rings = si->num_tx_rings;
1073 	priv->bdr_int_num = cpus;
1074 
1075 	/* SI specific */
1076 	si->cbd_ring.bd_count = ENETC_CBDR_DEFAULT_SIZE;
1077 }
1078 
1079 int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
1080 {
1081 	struct enetc_si *si = priv->si;
1082 	int err;
1083 
1084 	err = enetc_alloc_cbdr(priv->dev, &si->cbd_ring);
1085 	if (err)
1086 		return err;
1087 
1088 	priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
1089 				  GFP_KERNEL);
1090 	if (!priv->cls_rules) {
1091 		err = -ENOMEM;
1092 		goto err_alloc_cls;
1093 	}
1094 
1095 	err = enetc_configure_si(priv);
1096 	if (err)
1097 		goto err_config_si;
1098 
1099 	return 0;
1100 
1101 err_config_si:
1102 	kfree(priv->cls_rules);
1103 err_alloc_cls:
1104 	enetc_clear_cbdr(&si->hw);
1105 	enetc_free_cbdr(priv->dev, &si->cbd_ring);
1106 
1107 	return err;
1108 }
1109 
1110 void enetc_free_si_resources(struct enetc_ndev_priv *priv)
1111 {
1112 	struct enetc_si *si = priv->si;
1113 
1114 	enetc_clear_cbdr(&si->hw);
1115 	enetc_free_cbdr(priv->dev, &si->cbd_ring);
1116 
1117 	kfree(priv->cls_rules);
1118 }
1119 
1120 static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1121 {
1122 	int idx = tx_ring->index;
1123 	u32 tbmr;
1124 
1125 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
1126 		       lower_32_bits(tx_ring->bd_dma_base));
1127 
1128 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
1129 		       upper_32_bits(tx_ring->bd_dma_base));
1130 
1131 	WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
1132 	enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
1133 		       ENETC_RTBLENR_LEN(tx_ring->bd_count));
1134 
1135 	/* clearing PI/CI registers for Tx not supported, adjust sw indexes */
1136 	tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
1137 	tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
1138 
1139 	/* enable Tx ints by setting pkt thr to 1 */
1140 	enetc_txbdr_wr(hw, idx, ENETC_TBICIR0, ENETC_TBICIR0_ICEN | 0x1);
1141 
1142 	tbmr = ENETC_TBMR_EN;
1143 	if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
1144 		tbmr |= ENETC_TBMR_VIH;
1145 
1146 	/* enable ring */
1147 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
1148 
1149 	tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
1150 	tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
1151 	tx_ring->idr = hw->reg + ENETC_SITXIDR;
1152 }
1153 
1154 static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1155 {
1156 	int idx = rx_ring->index;
1157 	u32 rbmr;
1158 
1159 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
1160 		       lower_32_bits(rx_ring->bd_dma_base));
1161 
1162 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
1163 		       upper_32_bits(rx_ring->bd_dma_base));
1164 
1165 	WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
1166 	enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
1167 		       ENETC_RTBLENR_LEN(rx_ring->bd_count));
1168 
1169 	enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
1170 
1171 	enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
1172 
1173 	/* enable Rx ints by setting pkt thr to 1 */
1174 	enetc_rxbdr_wr(hw, idx, ENETC_RBICIR0, ENETC_RBICIR0_ICEN | 0x1);
1175 
1176 	rbmr = ENETC_RBMR_EN;
1177 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
1178 	rbmr |= ENETC_RBMR_BDS;
1179 #endif
1180 	if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1181 		rbmr |= ENETC_RBMR_VTE;
1182 
1183 	rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
1184 	rx_ring->idr = hw->reg + ENETC_SIRXIDR;
1185 
1186 	enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
1187 
1188 	/* enable ring */
1189 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
1190 }
1191 
1192 static void enetc_setup_bdrs(struct enetc_ndev_priv *priv)
1193 {
1194 	int i;
1195 
1196 	for (i = 0; i < priv->num_tx_rings; i++)
1197 		enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]);
1198 
1199 	for (i = 0; i < priv->num_rx_rings; i++)
1200 		enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1201 }
1202 
1203 static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1204 {
1205 	int idx = rx_ring->index;
1206 
1207 	/* disable EN bit on ring */
1208 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
1209 }
1210 
1211 static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1212 {
1213 	int delay = 8, timeout = 100;
1214 	int idx = tx_ring->index;
1215 
1216 	/* disable EN bit on ring */
1217 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
1218 
1219 	/* wait for busy to clear */
1220 	while (delay < timeout &&
1221 	       enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
1222 		msleep(delay);
1223 		delay *= 2;
1224 	}
1225 
1226 	if (delay >= timeout)
1227 		netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
1228 			    idx);
1229 }
1230 
1231 static void enetc_clear_bdrs(struct enetc_ndev_priv *priv)
1232 {
1233 	int i;
1234 
1235 	for (i = 0; i < priv->num_tx_rings; i++)
1236 		enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]);
1237 
1238 	for (i = 0; i < priv->num_rx_rings; i++)
1239 		enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1240 
1241 	udelay(1);
1242 }
1243 
1244 static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
1245 {
1246 	struct pci_dev *pdev = priv->si->pdev;
1247 	cpumask_t cpu_mask;
1248 	int i, j, err;
1249 
1250 	for (i = 0; i < priv->bdr_int_num; i++) {
1251 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1252 		struct enetc_int_vector *v = priv->int_vector[i];
1253 		int entry = ENETC_BDR_INT_BASE_IDX + i;
1254 		struct enetc_hw *hw = &priv->si->hw;
1255 
1256 		snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
1257 			 priv->ndev->name, i);
1258 		err = request_irq(irq, enetc_msix, 0, v->name, v);
1259 		if (err) {
1260 			dev_err(priv->dev, "request_irq() failed!\n");
1261 			goto irq_err;
1262 		}
1263 
1264 		v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
1265 		v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
1266 
1267 		enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
1268 
1269 		for (j = 0; j < v->count_tx_rings; j++) {
1270 			int idx = v->tx_ring[j].index;
1271 
1272 			enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
1273 		}
1274 		cpumask_clear(&cpu_mask);
1275 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
1276 		irq_set_affinity_hint(irq, &cpu_mask);
1277 	}
1278 
1279 	return 0;
1280 
1281 irq_err:
1282 	while (i--) {
1283 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1284 
1285 		irq_set_affinity_hint(irq, NULL);
1286 		free_irq(irq, priv->int_vector[i]);
1287 	}
1288 
1289 	return err;
1290 }
1291 
1292 static void enetc_free_irqs(struct enetc_ndev_priv *priv)
1293 {
1294 	struct pci_dev *pdev = priv->si->pdev;
1295 	int i;
1296 
1297 	for (i = 0; i < priv->bdr_int_num; i++) {
1298 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1299 
1300 		irq_set_affinity_hint(irq, NULL);
1301 		free_irq(irq, priv->int_vector[i]);
1302 	}
1303 }
1304 
1305 static void enetc_enable_interrupts(struct enetc_ndev_priv *priv)
1306 {
1307 	int i;
1308 
1309 	/* enable Tx & Rx event indication */
1310 	for (i = 0; i < priv->num_rx_rings; i++) {
1311 		enetc_rxbdr_wr(&priv->si->hw, i,
1312 			       ENETC_RBIER, ENETC_RBIER_RXTIE);
1313 	}
1314 
1315 	for (i = 0; i < priv->num_tx_rings; i++) {
1316 		enetc_txbdr_wr(&priv->si->hw, i,
1317 			       ENETC_TBIER, ENETC_TBIER_TXTIE);
1318 	}
1319 }
1320 
1321 static void enetc_disable_interrupts(struct enetc_ndev_priv *priv)
1322 {
1323 	int i;
1324 
1325 	for (i = 0; i < priv->num_tx_rings; i++)
1326 		enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0);
1327 
1328 	for (i = 0; i < priv->num_rx_rings; i++)
1329 		enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0);
1330 }
1331 
1332 static void adjust_link(struct net_device *ndev)
1333 {
1334 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1335 	struct phy_device *phydev = ndev->phydev;
1336 
1337 	if (priv->active_offloads & ENETC_F_QBV)
1338 		enetc_sched_speed_set(ndev);
1339 
1340 	phy_print_status(phydev);
1341 }
1342 
1343 static int enetc_phy_connect(struct net_device *ndev)
1344 {
1345 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1346 	struct phy_device *phydev;
1347 	struct ethtool_eee edata;
1348 
1349 	if (!priv->phy_node)
1350 		return 0; /* phy-less mode */
1351 
1352 	phydev = of_phy_connect(ndev, priv->phy_node, &adjust_link,
1353 				0, priv->if_mode);
1354 	if (!phydev) {
1355 		dev_err(&ndev->dev, "could not attach to PHY\n");
1356 		return -ENODEV;
1357 	}
1358 
1359 	phy_attached_info(phydev);
1360 
1361 	/* disable EEE autoneg, until ENETC driver supports it */
1362 	memset(&edata, 0, sizeof(struct ethtool_eee));
1363 	phy_ethtool_set_eee(phydev, &edata);
1364 
1365 	return 0;
1366 }
1367 
1368 int enetc_open(struct net_device *ndev)
1369 {
1370 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1371 	int i, err;
1372 
1373 	err = enetc_setup_irqs(priv);
1374 	if (err)
1375 		return err;
1376 
1377 	err = enetc_phy_connect(ndev);
1378 	if (err)
1379 		goto err_phy_connect;
1380 
1381 	err = enetc_alloc_tx_resources(priv);
1382 	if (err)
1383 		goto err_alloc_tx;
1384 
1385 	err = enetc_alloc_rx_resources(priv);
1386 	if (err)
1387 		goto err_alloc_rx;
1388 
1389 	enetc_setup_bdrs(priv);
1390 
1391 	err = netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1392 	if (err)
1393 		goto err_set_queues;
1394 
1395 	err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings);
1396 	if (err)
1397 		goto err_set_queues;
1398 
1399 	for (i = 0; i < priv->bdr_int_num; i++)
1400 		napi_enable(&priv->int_vector[i]->napi);
1401 
1402 	enetc_enable_interrupts(priv);
1403 
1404 	if (ndev->phydev)
1405 		phy_start(ndev->phydev);
1406 	else
1407 		netif_carrier_on(ndev);
1408 
1409 	netif_tx_start_all_queues(ndev);
1410 
1411 	return 0;
1412 
1413 err_set_queues:
1414 	enetc_free_rx_resources(priv);
1415 err_alloc_rx:
1416 	enetc_free_tx_resources(priv);
1417 err_alloc_tx:
1418 	if (ndev->phydev)
1419 		phy_disconnect(ndev->phydev);
1420 err_phy_connect:
1421 	enetc_free_irqs(priv);
1422 
1423 	return err;
1424 }
1425 
1426 int enetc_close(struct net_device *ndev)
1427 {
1428 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1429 	int i;
1430 
1431 	netif_tx_stop_all_queues(ndev);
1432 
1433 	if (ndev->phydev) {
1434 		phy_stop(ndev->phydev);
1435 		phy_disconnect(ndev->phydev);
1436 	} else {
1437 		netif_carrier_off(ndev);
1438 	}
1439 
1440 	for (i = 0; i < priv->bdr_int_num; i++) {
1441 		napi_synchronize(&priv->int_vector[i]->napi);
1442 		napi_disable(&priv->int_vector[i]->napi);
1443 	}
1444 
1445 	enetc_disable_interrupts(priv);
1446 	enetc_clear_bdrs(priv);
1447 
1448 	enetc_free_rxtx_rings(priv);
1449 	enetc_free_rx_resources(priv);
1450 	enetc_free_tx_resources(priv);
1451 	enetc_free_irqs(priv);
1452 
1453 	return 0;
1454 }
1455 
1456 static int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data)
1457 {
1458 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1459 	struct tc_mqprio_qopt *mqprio = type_data;
1460 	struct enetc_bdr *tx_ring;
1461 	u8 num_tc;
1462 	int i;
1463 
1464 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1465 	num_tc = mqprio->num_tc;
1466 
1467 	if (!num_tc) {
1468 		netdev_reset_tc(ndev);
1469 		netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1470 
1471 		/* Reset all ring priorities to 0 */
1472 		for (i = 0; i < priv->num_tx_rings; i++) {
1473 			tx_ring = priv->tx_ring[i];
1474 			enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, 0);
1475 		}
1476 
1477 		return 0;
1478 	}
1479 
1480 	/* Check if we have enough BD rings available to accommodate all TCs */
1481 	if (num_tc > priv->num_tx_rings) {
1482 		netdev_err(ndev, "Max %d traffic classes supported\n",
1483 			   priv->num_tx_rings);
1484 		return -EINVAL;
1485 	}
1486 
1487 	/* For the moment, we use only one BD ring per TC.
1488 	 *
1489 	 * Configure num_tc BD rings with increasing priorities.
1490 	 */
1491 	for (i = 0; i < num_tc; i++) {
1492 		tx_ring = priv->tx_ring[i];
1493 		enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, i);
1494 	}
1495 
1496 	/* Reset the number of netdev queues based on the TC count */
1497 	netif_set_real_num_tx_queues(ndev, num_tc);
1498 
1499 	netdev_set_num_tc(ndev, num_tc);
1500 
1501 	/* Each TC is associated with one netdev queue */
1502 	for (i = 0; i < num_tc; i++)
1503 		netdev_set_tc_queue(ndev, i, 1, i);
1504 
1505 	return 0;
1506 }
1507 
1508 int enetc_setup_tc(struct net_device *ndev, enum tc_setup_type type,
1509 		   void *type_data)
1510 {
1511 	switch (type) {
1512 	case TC_SETUP_QDISC_MQPRIO:
1513 		return enetc_setup_tc_mqprio(ndev, type_data);
1514 	case TC_SETUP_QDISC_TAPRIO:
1515 		return enetc_setup_tc_taprio(ndev, type_data);
1516 	case TC_SETUP_QDISC_CBS:
1517 		return enetc_setup_tc_cbs(ndev, type_data);
1518 	case TC_SETUP_QDISC_ETF:
1519 		return enetc_setup_tc_txtime(ndev, type_data);
1520 	default:
1521 		return -EOPNOTSUPP;
1522 	}
1523 }
1524 
1525 struct net_device_stats *enetc_get_stats(struct net_device *ndev)
1526 {
1527 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1528 	struct net_device_stats *stats = &ndev->stats;
1529 	unsigned long packets = 0, bytes = 0;
1530 	int i;
1531 
1532 	for (i = 0; i < priv->num_rx_rings; i++) {
1533 		packets += priv->rx_ring[i]->stats.packets;
1534 		bytes	+= priv->rx_ring[i]->stats.bytes;
1535 	}
1536 
1537 	stats->rx_packets = packets;
1538 	stats->rx_bytes = bytes;
1539 	bytes = 0;
1540 	packets = 0;
1541 
1542 	for (i = 0; i < priv->num_tx_rings; i++) {
1543 		packets += priv->tx_ring[i]->stats.packets;
1544 		bytes	+= priv->tx_ring[i]->stats.bytes;
1545 	}
1546 
1547 	stats->tx_packets = packets;
1548 	stats->tx_bytes = bytes;
1549 
1550 	return stats;
1551 }
1552 
1553 static int enetc_set_rss(struct net_device *ndev, int en)
1554 {
1555 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1556 	struct enetc_hw *hw = &priv->si->hw;
1557 	u32 reg;
1558 
1559 	enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
1560 
1561 	reg = enetc_rd(hw, ENETC_SIMR);
1562 	reg &= ~ENETC_SIMR_RSSE;
1563 	reg |= (en) ? ENETC_SIMR_RSSE : 0;
1564 	enetc_wr(hw, ENETC_SIMR, reg);
1565 
1566 	return 0;
1567 }
1568 
1569 int enetc_set_features(struct net_device *ndev,
1570 		       netdev_features_t features)
1571 {
1572 	netdev_features_t changed = ndev->features ^ features;
1573 
1574 	if (changed & NETIF_F_RXHASH)
1575 		enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
1576 
1577 	return 0;
1578 }
1579 
1580 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
1581 static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
1582 {
1583 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1584 	struct hwtstamp_config config;
1585 
1586 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1587 		return -EFAULT;
1588 
1589 	switch (config.tx_type) {
1590 	case HWTSTAMP_TX_OFF:
1591 		priv->active_offloads &= ~ENETC_F_TX_TSTAMP;
1592 		break;
1593 	case HWTSTAMP_TX_ON:
1594 		priv->active_offloads |= ENETC_F_TX_TSTAMP;
1595 		break;
1596 	default:
1597 		return -ERANGE;
1598 	}
1599 
1600 	switch (config.rx_filter) {
1601 	case HWTSTAMP_FILTER_NONE:
1602 		priv->active_offloads &= ~ENETC_F_RX_TSTAMP;
1603 		break;
1604 	default:
1605 		priv->active_offloads |= ENETC_F_RX_TSTAMP;
1606 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1607 	}
1608 
1609 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1610 	       -EFAULT : 0;
1611 }
1612 
1613 static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
1614 {
1615 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1616 	struct hwtstamp_config config;
1617 
1618 	config.flags = 0;
1619 
1620 	if (priv->active_offloads & ENETC_F_TX_TSTAMP)
1621 		config.tx_type = HWTSTAMP_TX_ON;
1622 	else
1623 		config.tx_type = HWTSTAMP_TX_OFF;
1624 
1625 	config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
1626 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
1627 
1628 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1629 	       -EFAULT : 0;
1630 }
1631 #endif
1632 
1633 int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1634 {
1635 #ifdef CONFIG_FSL_ENETC_HW_TIMESTAMPING
1636 	if (cmd == SIOCSHWTSTAMP)
1637 		return enetc_hwtstamp_set(ndev, rq);
1638 	if (cmd == SIOCGHWTSTAMP)
1639 		return enetc_hwtstamp_get(ndev, rq);
1640 #endif
1641 
1642 	if (!ndev->phydev)
1643 		return -EOPNOTSUPP;
1644 	return phy_mii_ioctl(ndev->phydev, rq, cmd);
1645 }
1646 
1647 int enetc_alloc_msix(struct enetc_ndev_priv *priv)
1648 {
1649 	struct pci_dev *pdev = priv->si->pdev;
1650 	int size, v_tx_rings;
1651 	int i, n, err, nvec;
1652 
1653 	nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
1654 	/* allocate MSIX for both messaging and Rx/Tx interrupts */
1655 	n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
1656 
1657 	if (n < 0)
1658 		return n;
1659 
1660 	if (n != nvec)
1661 		return -EPERM;
1662 
1663 	/* # of tx rings per int vector */
1664 	v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
1665 	size = sizeof(struct enetc_int_vector) +
1666 	       sizeof(struct enetc_bdr) * v_tx_rings;
1667 
1668 	for (i = 0; i < priv->bdr_int_num; i++) {
1669 		struct enetc_int_vector *v;
1670 		struct enetc_bdr *bdr;
1671 		int j;
1672 
1673 		v = kzalloc(size, GFP_KERNEL);
1674 		if (!v) {
1675 			err = -ENOMEM;
1676 			goto fail;
1677 		}
1678 
1679 		priv->int_vector[i] = v;
1680 
1681 		netif_napi_add(priv->ndev, &v->napi, enetc_poll,
1682 			       NAPI_POLL_WEIGHT);
1683 		v->count_tx_rings = v_tx_rings;
1684 
1685 		for (j = 0; j < v_tx_rings; j++) {
1686 			int idx;
1687 
1688 			/* default tx ring mapping policy */
1689 			if (priv->bdr_int_num == ENETC_MAX_BDR_INT)
1690 				idx = 2 * j + i; /* 2 CPUs */
1691 			else
1692 				idx = j + i * v_tx_rings; /* default */
1693 
1694 			__set_bit(idx, &v->tx_rings_map);
1695 			bdr = &v->tx_ring[j];
1696 			bdr->index = idx;
1697 			bdr->ndev = priv->ndev;
1698 			bdr->dev = priv->dev;
1699 			bdr->bd_count = priv->tx_bd_count;
1700 			priv->tx_ring[idx] = bdr;
1701 		}
1702 
1703 		bdr = &v->rx_ring;
1704 		bdr->index = i;
1705 		bdr->ndev = priv->ndev;
1706 		bdr->dev = priv->dev;
1707 		bdr->bd_count = priv->rx_bd_count;
1708 		priv->rx_ring[i] = bdr;
1709 	}
1710 
1711 	return 0;
1712 
1713 fail:
1714 	while (i--) {
1715 		netif_napi_del(&priv->int_vector[i]->napi);
1716 		kfree(priv->int_vector[i]);
1717 	}
1718 
1719 	pci_free_irq_vectors(pdev);
1720 
1721 	return err;
1722 }
1723 
1724 void enetc_free_msix(struct enetc_ndev_priv *priv)
1725 {
1726 	int i;
1727 
1728 	for (i = 0; i < priv->bdr_int_num; i++) {
1729 		struct enetc_int_vector *v = priv->int_vector[i];
1730 
1731 		netif_napi_del(&v->napi);
1732 	}
1733 
1734 	for (i = 0; i < priv->num_rx_rings; i++)
1735 		priv->rx_ring[i] = NULL;
1736 
1737 	for (i = 0; i < priv->num_tx_rings; i++)
1738 		priv->tx_ring[i] = NULL;
1739 
1740 	for (i = 0; i < priv->bdr_int_num; i++) {
1741 		kfree(priv->int_vector[i]);
1742 		priv->int_vector[i] = NULL;
1743 	}
1744 
1745 	/* disable all MSIX for this device */
1746 	pci_free_irq_vectors(priv->si->pdev);
1747 }
1748 
1749 static void enetc_kfree_si(struct enetc_si *si)
1750 {
1751 	char *p = (char *)si - si->pad;
1752 
1753 	kfree(p);
1754 }
1755 
1756 static void enetc_detect_errata(struct enetc_si *si)
1757 {
1758 	if (si->pdev->revision == ENETC_REV1)
1759 		si->errata = ENETC_ERR_TXCSUM | ENETC_ERR_VLAN_ISOL |
1760 			     ENETC_ERR_UCMCSWP;
1761 }
1762 
1763 int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
1764 {
1765 	struct enetc_si *si, *p;
1766 	struct enetc_hw *hw;
1767 	size_t alloc_size;
1768 	int err, len;
1769 
1770 	pcie_flr(pdev);
1771 	err = pci_enable_device_mem(pdev);
1772 	if (err) {
1773 		dev_err(&pdev->dev, "device enable failed\n");
1774 		return err;
1775 	}
1776 
1777 	/* set up for high or low dma */
1778 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1779 	if (err) {
1780 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1781 		if (err) {
1782 			dev_err(&pdev->dev,
1783 				"DMA configuration failed: 0x%x\n", err);
1784 			goto err_dma;
1785 		}
1786 	}
1787 
1788 	err = pci_request_mem_regions(pdev, name);
1789 	if (err) {
1790 		dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
1791 		goto err_pci_mem_reg;
1792 	}
1793 
1794 	pci_set_master(pdev);
1795 
1796 	alloc_size = sizeof(struct enetc_si);
1797 	if (sizeof_priv) {
1798 		/* align priv to 32B */
1799 		alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
1800 		alloc_size += sizeof_priv;
1801 	}
1802 	/* force 32B alignment for enetc_si */
1803 	alloc_size += ENETC_SI_ALIGN - 1;
1804 
1805 	p = kzalloc(alloc_size, GFP_KERNEL);
1806 	if (!p) {
1807 		err = -ENOMEM;
1808 		goto err_alloc_si;
1809 	}
1810 
1811 	si = PTR_ALIGN(p, ENETC_SI_ALIGN);
1812 	si->pad = (char *)si - (char *)p;
1813 
1814 	pci_set_drvdata(pdev, si);
1815 	si->pdev = pdev;
1816 	hw = &si->hw;
1817 
1818 	len = pci_resource_len(pdev, ENETC_BAR_REGS);
1819 	hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
1820 	if (!hw->reg) {
1821 		err = -ENXIO;
1822 		dev_err(&pdev->dev, "ioremap() failed\n");
1823 		goto err_ioremap;
1824 	}
1825 	if (len > ENETC_PORT_BASE)
1826 		hw->port = hw->reg + ENETC_PORT_BASE;
1827 	if (len > ENETC_GLOBAL_BASE)
1828 		hw->global = hw->reg + ENETC_GLOBAL_BASE;
1829 
1830 	enetc_detect_errata(si);
1831 
1832 	return 0;
1833 
1834 err_ioremap:
1835 	enetc_kfree_si(si);
1836 err_alloc_si:
1837 	pci_release_mem_regions(pdev);
1838 err_pci_mem_reg:
1839 err_dma:
1840 	pci_disable_device(pdev);
1841 
1842 	return err;
1843 }
1844 
1845 void enetc_pci_remove(struct pci_dev *pdev)
1846 {
1847 	struct enetc_si *si = pci_get_drvdata(pdev);
1848 	struct enetc_hw *hw = &si->hw;
1849 
1850 	iounmap(hw->reg);
1851 	enetc_kfree_si(si);
1852 	pci_release_mem_regions(pdev);
1853 	pci_disable_device(pdev);
1854 }
1855