xref: /openbmc/linux/drivers/net/ethernet/freescale/enetc/enetc.c (revision d4a96be65423296e42091b0b79973b8d446e7798)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /* Copyright 2017-2019 NXP */
3 
4 #include "enetc.h"
5 #include <linux/tcp.h>
6 #include <linux/udp.h>
7 #include <linux/vmalloc.h>
8 #include <net/pkt_sched.h>
9 
10 /* ENETC overhead: optional extension BD + 1 BD gap */
11 #define ENETC_TXBDS_NEEDED(val)	((val) + 2)
12 /* max # of chained Tx BDs is 15, including head and extension BD */
13 #define ENETC_MAX_SKB_FRAGS	13
14 #define ENETC_TXBDS_MAX_NEEDED	ENETC_TXBDS_NEEDED(ENETC_MAX_SKB_FRAGS + 1)
15 
16 static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
17 				struct enetc_tx_swbd *tx_swbd)
18 {
19 	if (tx_swbd->is_dma_page)
20 		dma_unmap_page(tx_ring->dev, tx_swbd->dma,
21 			       tx_swbd->len, DMA_TO_DEVICE);
22 	else
23 		dma_unmap_single(tx_ring->dev, tx_swbd->dma,
24 				 tx_swbd->len, DMA_TO_DEVICE);
25 	tx_swbd->dma = 0;
26 }
27 
28 static void enetc_free_tx_skb(struct enetc_bdr *tx_ring,
29 			      struct enetc_tx_swbd *tx_swbd)
30 {
31 	if (tx_swbd->dma)
32 		enetc_unmap_tx_buff(tx_ring, tx_swbd);
33 
34 	if (tx_swbd->skb) {
35 		dev_kfree_skb_any(tx_swbd->skb);
36 		tx_swbd->skb = NULL;
37 	}
38 }
39 
40 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
41 			      int active_offloads)
42 {
43 	struct enetc_tx_swbd *tx_swbd;
44 	skb_frag_t *frag;
45 	int len = skb_headlen(skb);
46 	union enetc_tx_bd temp_bd;
47 	union enetc_tx_bd *txbd;
48 	bool do_vlan, do_tstamp;
49 	int i, count = 0;
50 	unsigned int f;
51 	dma_addr_t dma;
52 	u8 flags = 0;
53 
54 	i = tx_ring->next_to_use;
55 	txbd = ENETC_TXBD(*tx_ring, i);
56 	prefetchw(txbd);
57 
58 	dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
59 	if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
60 		goto dma_err;
61 
62 	temp_bd.addr = cpu_to_le64(dma);
63 	temp_bd.buf_len = cpu_to_le16(len);
64 	temp_bd.lstatus = 0;
65 
66 	tx_swbd = &tx_ring->tx_swbd[i];
67 	tx_swbd->dma = dma;
68 	tx_swbd->len = len;
69 	tx_swbd->is_dma_page = 0;
70 	count++;
71 
72 	do_vlan = skb_vlan_tag_present(skb);
73 	do_tstamp = (active_offloads & ENETC_F_TX_TSTAMP) &&
74 		    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP);
75 	tx_swbd->do_tstamp = do_tstamp;
76 	tx_swbd->check_wb = tx_swbd->do_tstamp;
77 
78 	if (do_vlan || do_tstamp)
79 		flags |= ENETC_TXBD_FLAGS_EX;
80 
81 	if (tx_ring->tsd_enable)
82 		flags |= ENETC_TXBD_FLAGS_TSE | ENETC_TXBD_FLAGS_TXSTART;
83 
84 	/* first BD needs frm_len and offload flags set */
85 	temp_bd.frm_len = cpu_to_le16(skb->len);
86 	temp_bd.flags = flags;
87 
88 	if (flags & ENETC_TXBD_FLAGS_TSE)
89 		temp_bd.txstart = enetc_txbd_set_tx_start(skb->skb_mstamp_ns,
90 							  flags);
91 
92 	if (flags & ENETC_TXBD_FLAGS_EX) {
93 		u8 e_flags = 0;
94 		*txbd = temp_bd;
95 		enetc_clear_tx_bd(&temp_bd);
96 
97 		/* add extension BD for VLAN and/or timestamping */
98 		flags = 0;
99 		tx_swbd++;
100 		txbd++;
101 		i++;
102 		if (unlikely(i == tx_ring->bd_count)) {
103 			i = 0;
104 			tx_swbd = tx_ring->tx_swbd;
105 			txbd = ENETC_TXBD(*tx_ring, 0);
106 		}
107 		prefetchw(txbd);
108 
109 		if (do_vlan) {
110 			temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
111 			temp_bd.ext.tpid = 0; /* < C-TAG */
112 			e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
113 		}
114 
115 		if (do_tstamp) {
116 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
117 			e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
118 		}
119 
120 		temp_bd.ext.e_flags = e_flags;
121 		count++;
122 	}
123 
124 	frag = &skb_shinfo(skb)->frags[0];
125 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
126 		len = skb_frag_size(frag);
127 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
128 				       DMA_TO_DEVICE);
129 		if (dma_mapping_error(tx_ring->dev, dma))
130 			goto dma_err;
131 
132 		*txbd = temp_bd;
133 		enetc_clear_tx_bd(&temp_bd);
134 
135 		flags = 0;
136 		tx_swbd++;
137 		txbd++;
138 		i++;
139 		if (unlikely(i == tx_ring->bd_count)) {
140 			i = 0;
141 			tx_swbd = tx_ring->tx_swbd;
142 			txbd = ENETC_TXBD(*tx_ring, 0);
143 		}
144 		prefetchw(txbd);
145 
146 		temp_bd.addr = cpu_to_le64(dma);
147 		temp_bd.buf_len = cpu_to_le16(len);
148 
149 		tx_swbd->dma = dma;
150 		tx_swbd->len = len;
151 		tx_swbd->is_dma_page = 1;
152 		count++;
153 	}
154 
155 	/* last BD needs 'F' bit set */
156 	flags |= ENETC_TXBD_FLAGS_F;
157 	temp_bd.flags = flags;
158 	*txbd = temp_bd;
159 
160 	tx_ring->tx_swbd[i].skb = skb;
161 
162 	enetc_bdr_idx_inc(tx_ring, &i);
163 	tx_ring->next_to_use = i;
164 
165 	skb_tx_timestamp(skb);
166 
167 	/* let H/W know BD ring has been updated */
168 	enetc_wr_reg_hot(tx_ring->tpir, i); /* includes wmb() */
169 
170 	return count;
171 
172 dma_err:
173 	dev_err(tx_ring->dev, "DMA map error");
174 
175 	do {
176 		tx_swbd = &tx_ring->tx_swbd[i];
177 		enetc_free_tx_skb(tx_ring, tx_swbd);
178 		if (i == 0)
179 			i = tx_ring->bd_count;
180 		i--;
181 	} while (count--);
182 
183 	return 0;
184 }
185 
186 netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
187 {
188 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
189 	struct enetc_bdr *tx_ring;
190 	int count;
191 
192 	tx_ring = priv->tx_ring[skb->queue_mapping];
193 
194 	if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
195 		if (unlikely(skb_linearize(skb)))
196 			goto drop_packet_err;
197 
198 	count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
199 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
200 		netif_stop_subqueue(ndev, tx_ring->index);
201 		return NETDEV_TX_BUSY;
202 	}
203 
204 	enetc_lock_mdio();
205 	count = enetc_map_tx_buffs(tx_ring, skb, priv->active_offloads);
206 	enetc_unlock_mdio();
207 
208 	if (unlikely(!count))
209 		goto drop_packet_err;
210 
211 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
212 		netif_stop_subqueue(ndev, tx_ring->index);
213 
214 	return NETDEV_TX_OK;
215 
216 drop_packet_err:
217 	dev_kfree_skb_any(skb);
218 	return NETDEV_TX_OK;
219 }
220 
221 static irqreturn_t enetc_msix(int irq, void *data)
222 {
223 	struct enetc_int_vector	*v = data;
224 	int i;
225 
226 	enetc_lock_mdio();
227 
228 	/* disable interrupts */
229 	enetc_wr_reg_hot(v->rbier, 0);
230 	enetc_wr_reg_hot(v->ricr1, v->rx_ictt);
231 
232 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
233 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), 0);
234 
235 	enetc_unlock_mdio();
236 
237 	napi_schedule(&v->napi);
238 
239 	return IRQ_HANDLED;
240 }
241 
242 static void enetc_rx_dim_work(struct work_struct *w)
243 {
244 	struct dim *dim = container_of(w, struct dim, work);
245 	struct dim_cq_moder moder =
246 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
247 	struct enetc_int_vector	*v =
248 		container_of(dim, struct enetc_int_vector, rx_dim);
249 
250 	v->rx_ictt = enetc_usecs_to_cycles(moder.usec);
251 	dim->state = DIM_START_MEASURE;
252 }
253 
254 static void enetc_rx_net_dim(struct enetc_int_vector *v)
255 {
256 	struct dim_sample dim_sample;
257 
258 	v->comp_cnt++;
259 
260 	if (!v->rx_napi_work)
261 		return;
262 
263 	dim_update_sample(v->comp_cnt,
264 			  v->rx_ring.stats.packets,
265 			  v->rx_ring.stats.bytes,
266 			  &dim_sample);
267 	net_dim(&v->rx_dim, dim_sample);
268 }
269 
270 static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
271 {
272 	int pi = enetc_rd_reg_hot(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
273 
274 	return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
275 }
276 
277 static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
278 				u64 *tstamp)
279 {
280 	u32 lo, hi, tstamp_lo;
281 
282 	lo = enetc_rd_hot(hw, ENETC_SICTR0);
283 	hi = enetc_rd_hot(hw, ENETC_SICTR1);
284 	tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
285 	if (lo <= tstamp_lo)
286 		hi -= 1;
287 	*tstamp = (u64)hi << 32 | tstamp_lo;
288 }
289 
290 static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
291 {
292 	struct skb_shared_hwtstamps shhwtstamps;
293 
294 	if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
295 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
296 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
297 		skb_txtime_consumed(skb);
298 		skb_tstamp_tx(skb, &shhwtstamps);
299 	}
300 }
301 
302 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
303 {
304 	struct net_device *ndev = tx_ring->ndev;
305 	int tx_frm_cnt = 0, tx_byte_cnt = 0;
306 	struct enetc_tx_swbd *tx_swbd;
307 	int i, bds_to_clean;
308 	bool do_tstamp;
309 	u64 tstamp = 0;
310 
311 	i = tx_ring->next_to_clean;
312 	tx_swbd = &tx_ring->tx_swbd[i];
313 
314 	bds_to_clean = enetc_bd_ready_count(tx_ring, i);
315 
316 	do_tstamp = false;
317 
318 	while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
319 		bool is_eof = !!tx_swbd->skb;
320 
321 		if (unlikely(tx_swbd->check_wb)) {
322 			struct enetc_ndev_priv *priv = netdev_priv(ndev);
323 			union enetc_tx_bd *txbd;
324 
325 			txbd = ENETC_TXBD(*tx_ring, i);
326 
327 			if (txbd->flags & ENETC_TXBD_FLAGS_W &&
328 			    tx_swbd->do_tstamp) {
329 				enetc_get_tx_tstamp(&priv->si->hw, txbd,
330 						    &tstamp);
331 				do_tstamp = true;
332 			}
333 		}
334 
335 		if (likely(tx_swbd->dma))
336 			enetc_unmap_tx_buff(tx_ring, tx_swbd);
337 
338 		if (is_eof) {
339 			if (unlikely(do_tstamp)) {
340 				enetc_tstamp_tx(tx_swbd->skb, tstamp);
341 				do_tstamp = false;
342 			}
343 			napi_consume_skb(tx_swbd->skb, napi_budget);
344 			tx_swbd->skb = NULL;
345 		}
346 
347 		tx_byte_cnt += tx_swbd->len;
348 
349 		bds_to_clean--;
350 		tx_swbd++;
351 		i++;
352 		if (unlikely(i == tx_ring->bd_count)) {
353 			i = 0;
354 			tx_swbd = tx_ring->tx_swbd;
355 		}
356 
357 		/* BD iteration loop end */
358 		if (is_eof) {
359 			tx_frm_cnt++;
360 			/* re-arm interrupt source */
361 			enetc_wr_reg_hot(tx_ring->idr, BIT(tx_ring->index) |
362 					 BIT(16 + tx_ring->index));
363 		}
364 
365 		if (unlikely(!bds_to_clean))
366 			bds_to_clean = enetc_bd_ready_count(tx_ring, i);
367 	}
368 
369 	tx_ring->next_to_clean = i;
370 	tx_ring->stats.packets += tx_frm_cnt;
371 	tx_ring->stats.bytes += tx_byte_cnt;
372 
373 	if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
374 		     __netif_subqueue_stopped(ndev, tx_ring->index) &&
375 		     (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
376 		netif_wake_subqueue(ndev, tx_ring->index);
377 	}
378 
379 	return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
380 }
381 
382 static bool enetc_new_page(struct enetc_bdr *rx_ring,
383 			   struct enetc_rx_swbd *rx_swbd)
384 {
385 	struct page *page;
386 	dma_addr_t addr;
387 
388 	page = dev_alloc_page();
389 	if (unlikely(!page))
390 		return false;
391 
392 	addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
393 	if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
394 		__free_page(page);
395 
396 		return false;
397 	}
398 
399 	rx_swbd->dma = addr;
400 	rx_swbd->page = page;
401 	rx_swbd->page_offset = ENETC_RXB_PAD;
402 
403 	return true;
404 }
405 
406 static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
407 {
408 	struct enetc_rx_swbd *rx_swbd;
409 	union enetc_rx_bd *rxbd;
410 	int i, j;
411 
412 	i = rx_ring->next_to_use;
413 	rx_swbd = &rx_ring->rx_swbd[i];
414 	rxbd = enetc_rxbd(rx_ring, i);
415 
416 	for (j = 0; j < buff_cnt; j++) {
417 		/* try reuse page */
418 		if (unlikely(!rx_swbd->page)) {
419 			if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
420 				rx_ring->stats.rx_alloc_errs++;
421 				break;
422 			}
423 		}
424 
425 		/* update RxBD */
426 		rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
427 					   rx_swbd->page_offset);
428 		/* clear 'R" as well */
429 		rxbd->r.lstatus = 0;
430 
431 		enetc_rxbd_next(rx_ring, &rxbd, &i);
432 		rx_swbd = &rx_ring->rx_swbd[i];
433 	}
434 
435 	if (likely(j)) {
436 		rx_ring->next_to_alloc = i; /* keep track from page reuse */
437 		rx_ring->next_to_use = i;
438 
439 		/* update ENETC's consumer index */
440 		enetc_wr_reg_hot(rx_ring->rcir, rx_ring->next_to_use);
441 	}
442 
443 	return j;
444 }
445 
446 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
447 static void enetc_get_rx_tstamp(struct net_device *ndev,
448 				union enetc_rx_bd *rxbd,
449 				struct sk_buff *skb)
450 {
451 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
452 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
453 	struct enetc_hw *hw = &priv->si->hw;
454 	u32 lo, hi, tstamp_lo;
455 	u64 tstamp;
456 
457 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
458 		lo = enetc_rd_reg_hot(hw->reg + ENETC_SICTR0);
459 		hi = enetc_rd_reg_hot(hw->reg + ENETC_SICTR1);
460 		rxbd = enetc_rxbd_ext(rxbd);
461 		tstamp_lo = le32_to_cpu(rxbd->ext.tstamp);
462 		if (lo <= tstamp_lo)
463 			hi -= 1;
464 
465 		tstamp = (u64)hi << 32 | tstamp_lo;
466 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
467 		shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
468 	}
469 }
470 #endif
471 
472 static void enetc_get_offloads(struct enetc_bdr *rx_ring,
473 			       union enetc_rx_bd *rxbd, struct sk_buff *skb)
474 {
475 	struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
476 
477 	/* TODO: hashing */
478 	if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
479 		u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
480 
481 		skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
482 		skb->ip_summed = CHECKSUM_COMPLETE;
483 	}
484 
485 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN) {
486 		__be16 tpid = 0;
487 
488 		switch (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TPID) {
489 		case 0:
490 			tpid = htons(ETH_P_8021Q);
491 			break;
492 		case 1:
493 			tpid = htons(ETH_P_8021AD);
494 			break;
495 		case 2:
496 			tpid = htons(enetc_port_rd(&priv->si->hw,
497 						   ENETC_PCVLANR1));
498 			break;
499 		case 3:
500 			tpid = htons(enetc_port_rd(&priv->si->hw,
501 						   ENETC_PCVLANR2));
502 			break;
503 		default:
504 			break;
505 		}
506 
507 		__vlan_hwaccel_put_tag(skb, tpid, le16_to_cpu(rxbd->r.vlan_opt));
508 	}
509 
510 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
511 	if (priv->active_offloads & ENETC_F_RX_TSTAMP)
512 		enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
513 #endif
514 }
515 
516 static void enetc_process_skb(struct enetc_bdr *rx_ring,
517 			      struct sk_buff *skb)
518 {
519 	skb_record_rx_queue(skb, rx_ring->index);
520 	skb->protocol = eth_type_trans(skb, rx_ring->ndev);
521 }
522 
523 static bool enetc_page_reusable(struct page *page)
524 {
525 	return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
526 }
527 
528 static void enetc_reuse_page(struct enetc_bdr *rx_ring,
529 			     struct enetc_rx_swbd *old)
530 {
531 	struct enetc_rx_swbd *new;
532 
533 	new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
534 
535 	/* next buf that may reuse a page */
536 	enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
537 
538 	/* copy page reference */
539 	*new = *old;
540 }
541 
542 static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
543 					       int i, u16 size)
544 {
545 	struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
546 
547 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
548 				      rx_swbd->page_offset,
549 				      size, DMA_FROM_DEVICE);
550 	return rx_swbd;
551 }
552 
553 static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
554 			      struct enetc_rx_swbd *rx_swbd)
555 {
556 	if (likely(enetc_page_reusable(rx_swbd->page))) {
557 		rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
558 		page_ref_inc(rx_swbd->page);
559 
560 		enetc_reuse_page(rx_ring, rx_swbd);
561 
562 		/* sync for use by the device */
563 		dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
564 						 rx_swbd->page_offset,
565 						 ENETC_RXB_DMA_SIZE,
566 						 DMA_FROM_DEVICE);
567 	} else {
568 		dma_unmap_page(rx_ring->dev, rx_swbd->dma,
569 			       PAGE_SIZE, DMA_FROM_DEVICE);
570 	}
571 
572 	rx_swbd->page = NULL;
573 }
574 
575 static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
576 						int i, u16 size)
577 {
578 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
579 	struct sk_buff *skb;
580 	void *ba;
581 
582 	ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
583 	skb = build_skb(ba - ENETC_RXB_PAD, ENETC_RXB_TRUESIZE);
584 	if (unlikely(!skb)) {
585 		rx_ring->stats.rx_alloc_errs++;
586 		return NULL;
587 	}
588 
589 	skb_reserve(skb, ENETC_RXB_PAD);
590 	__skb_put(skb, size);
591 
592 	enetc_put_rx_buff(rx_ring, rx_swbd);
593 
594 	return skb;
595 }
596 
597 static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
598 				     u16 size, struct sk_buff *skb)
599 {
600 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
601 
602 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
603 			rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
604 
605 	enetc_put_rx_buff(rx_ring, rx_swbd);
606 }
607 
608 #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
609 
610 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
611 			       struct napi_struct *napi, int work_limit)
612 {
613 	int rx_frm_cnt = 0, rx_byte_cnt = 0;
614 	int cleaned_cnt, i;
615 
616 	cleaned_cnt = enetc_bd_unused(rx_ring);
617 	/* next descriptor to process */
618 	i = rx_ring->next_to_clean;
619 
620 	while (likely(rx_frm_cnt < work_limit)) {
621 		union enetc_rx_bd *rxbd;
622 		struct sk_buff *skb;
623 		u32 bd_status;
624 		u16 size;
625 
626 		if (cleaned_cnt >= ENETC_RXBD_BUNDLE)
627 			cleaned_cnt -= enetc_refill_rx_ring(rx_ring,
628 							    cleaned_cnt);
629 
630 		rxbd = enetc_rxbd(rx_ring, i);
631 		bd_status = le32_to_cpu(rxbd->r.lstatus);
632 		if (!bd_status)
633 			break;
634 
635 		enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
636 		dma_rmb(); /* for reading other rxbd fields */
637 		size = le16_to_cpu(rxbd->r.buf_len);
638 		skb = enetc_map_rx_buff_to_skb(rx_ring, i, size);
639 		if (!skb)
640 			break;
641 
642 		enetc_get_offloads(rx_ring, rxbd, skb);
643 
644 		cleaned_cnt++;
645 
646 		enetc_rxbd_next(rx_ring, &rxbd, &i);
647 
648 		if (unlikely(bd_status &
649 			     ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))) {
650 			dev_kfree_skb(skb);
651 			while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
652 				dma_rmb();
653 				bd_status = le32_to_cpu(rxbd->r.lstatus);
654 
655 				enetc_rxbd_next(rx_ring, &rxbd, &i);
656 			}
657 
658 			rx_ring->ndev->stats.rx_dropped++;
659 			rx_ring->ndev->stats.rx_errors++;
660 
661 			break;
662 		}
663 
664 		/* not last BD in frame? */
665 		while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
666 			bd_status = le32_to_cpu(rxbd->r.lstatus);
667 			size = ENETC_RXB_DMA_SIZE;
668 
669 			if (bd_status & ENETC_RXBD_LSTATUS_F) {
670 				dma_rmb();
671 				size = le16_to_cpu(rxbd->r.buf_len);
672 			}
673 
674 			enetc_add_rx_buff_to_skb(rx_ring, i, size, skb);
675 
676 			cleaned_cnt++;
677 
678 			enetc_rxbd_next(rx_ring, &rxbd, &i);
679 		}
680 
681 		rx_byte_cnt += skb->len;
682 
683 		enetc_process_skb(rx_ring, skb);
684 
685 		napi_gro_receive(napi, skb);
686 
687 		rx_frm_cnt++;
688 	}
689 
690 	rx_ring->next_to_clean = i;
691 
692 	rx_ring->stats.packets += rx_frm_cnt;
693 	rx_ring->stats.bytes += rx_byte_cnt;
694 
695 	return rx_frm_cnt;
696 }
697 
698 static int enetc_poll(struct napi_struct *napi, int budget)
699 {
700 	struct enetc_int_vector
701 		*v = container_of(napi, struct enetc_int_vector, napi);
702 	bool complete = true;
703 	int work_done;
704 	int i;
705 
706 	enetc_lock_mdio();
707 
708 	for (i = 0; i < v->count_tx_rings; i++)
709 		if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
710 			complete = false;
711 
712 	work_done = enetc_clean_rx_ring(&v->rx_ring, napi, budget);
713 	if (work_done == budget)
714 		complete = false;
715 	if (work_done)
716 		v->rx_napi_work = true;
717 
718 	if (!complete) {
719 		enetc_unlock_mdio();
720 		return budget;
721 	}
722 
723 	napi_complete_done(napi, work_done);
724 
725 	if (likely(v->rx_dim_en))
726 		enetc_rx_net_dim(v);
727 
728 	v->rx_napi_work = false;
729 
730 	/* enable interrupts */
731 	enetc_wr_reg_hot(v->rbier, ENETC_RBIER_RXTIE);
732 
733 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
734 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i),
735 				 ENETC_TBIER_TXTIE);
736 
737 	enetc_unlock_mdio();
738 
739 	return work_done;
740 }
741 
742 /* Probing and Init */
743 #define ENETC_MAX_RFS_SIZE 64
744 void enetc_get_si_caps(struct enetc_si *si)
745 {
746 	struct enetc_hw *hw = &si->hw;
747 	u32 val;
748 
749 	/* find out how many of various resources we have to work with */
750 	val = enetc_rd(hw, ENETC_SICAPR0);
751 	si->num_rx_rings = (val >> 16) & 0xff;
752 	si->num_tx_rings = val & 0xff;
753 
754 	val = enetc_rd(hw, ENETC_SIRFSCAPR);
755 	si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
756 	si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
757 
758 	si->num_rss = 0;
759 	val = enetc_rd(hw, ENETC_SIPCAPR0);
760 	if (val & ENETC_SIPCAPR0_RSS) {
761 		u32 rss;
762 
763 		rss = enetc_rd(hw, ENETC_SIRSSCAPR);
764 		si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss);
765 	}
766 
767 	if (val & ENETC_SIPCAPR0_QBV)
768 		si->hw_features |= ENETC_SI_F_QBV;
769 
770 	if (val & ENETC_SIPCAPR0_PSFP)
771 		si->hw_features |= ENETC_SI_F_PSFP;
772 }
773 
774 static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size)
775 {
776 	r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size,
777 					&r->bd_dma_base, GFP_KERNEL);
778 	if (!r->bd_base)
779 		return -ENOMEM;
780 
781 	/* h/w requires 128B alignment */
782 	if (!IS_ALIGNED(r->bd_dma_base, 128)) {
783 		dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base,
784 				  r->bd_dma_base);
785 		return -EINVAL;
786 	}
787 
788 	return 0;
789 }
790 
791 static int enetc_alloc_txbdr(struct enetc_bdr *txr)
792 {
793 	int err;
794 
795 	txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd));
796 	if (!txr->tx_swbd)
797 		return -ENOMEM;
798 
799 	err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd));
800 	if (err) {
801 		vfree(txr->tx_swbd);
802 		return err;
803 	}
804 
805 	txr->next_to_clean = 0;
806 	txr->next_to_use = 0;
807 
808 	return 0;
809 }
810 
811 static void enetc_free_txbdr(struct enetc_bdr *txr)
812 {
813 	int size, i;
814 
815 	for (i = 0; i < txr->bd_count; i++)
816 		enetc_free_tx_skb(txr, &txr->tx_swbd[i]);
817 
818 	size = txr->bd_count * sizeof(union enetc_tx_bd);
819 
820 	dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base);
821 	txr->bd_base = NULL;
822 
823 	vfree(txr->tx_swbd);
824 	txr->tx_swbd = NULL;
825 }
826 
827 static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
828 {
829 	int i, err;
830 
831 	for (i = 0; i < priv->num_tx_rings; i++) {
832 		err = enetc_alloc_txbdr(priv->tx_ring[i]);
833 
834 		if (err)
835 			goto fail;
836 	}
837 
838 	return 0;
839 
840 fail:
841 	while (i-- > 0)
842 		enetc_free_txbdr(priv->tx_ring[i]);
843 
844 	return err;
845 }
846 
847 static void enetc_free_tx_resources(struct enetc_ndev_priv *priv)
848 {
849 	int i;
850 
851 	for (i = 0; i < priv->num_tx_rings; i++)
852 		enetc_free_txbdr(priv->tx_ring[i]);
853 }
854 
855 static int enetc_alloc_rxbdr(struct enetc_bdr *rxr, bool extended)
856 {
857 	size_t size = sizeof(union enetc_rx_bd);
858 	int err;
859 
860 	rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd));
861 	if (!rxr->rx_swbd)
862 		return -ENOMEM;
863 
864 	if (extended)
865 		size *= 2;
866 
867 	err = enetc_dma_alloc_bdr(rxr, size);
868 	if (err) {
869 		vfree(rxr->rx_swbd);
870 		return err;
871 	}
872 
873 	rxr->next_to_clean = 0;
874 	rxr->next_to_use = 0;
875 	rxr->next_to_alloc = 0;
876 	rxr->ext_en = extended;
877 
878 	return 0;
879 }
880 
881 static void enetc_free_rxbdr(struct enetc_bdr *rxr)
882 {
883 	int size;
884 
885 	size = rxr->bd_count * sizeof(union enetc_rx_bd);
886 
887 	dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base);
888 	rxr->bd_base = NULL;
889 
890 	vfree(rxr->rx_swbd);
891 	rxr->rx_swbd = NULL;
892 }
893 
894 static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv)
895 {
896 	bool extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP);
897 	int i, err;
898 
899 	for (i = 0; i < priv->num_rx_rings; i++) {
900 		err = enetc_alloc_rxbdr(priv->rx_ring[i], extended);
901 
902 		if (err)
903 			goto fail;
904 	}
905 
906 	return 0;
907 
908 fail:
909 	while (i-- > 0)
910 		enetc_free_rxbdr(priv->rx_ring[i]);
911 
912 	return err;
913 }
914 
915 static void enetc_free_rx_resources(struct enetc_ndev_priv *priv)
916 {
917 	int i;
918 
919 	for (i = 0; i < priv->num_rx_rings; i++)
920 		enetc_free_rxbdr(priv->rx_ring[i]);
921 }
922 
923 static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
924 {
925 	int i;
926 
927 	if (!tx_ring->tx_swbd)
928 		return;
929 
930 	for (i = 0; i < tx_ring->bd_count; i++) {
931 		struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
932 
933 		enetc_free_tx_skb(tx_ring, tx_swbd);
934 	}
935 
936 	tx_ring->next_to_clean = 0;
937 	tx_ring->next_to_use = 0;
938 }
939 
940 static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
941 {
942 	int i;
943 
944 	if (!rx_ring->rx_swbd)
945 		return;
946 
947 	for (i = 0; i < rx_ring->bd_count; i++) {
948 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
949 
950 		if (!rx_swbd->page)
951 			continue;
952 
953 		dma_unmap_page(rx_ring->dev, rx_swbd->dma,
954 			       PAGE_SIZE, DMA_FROM_DEVICE);
955 		__free_page(rx_swbd->page);
956 		rx_swbd->page = NULL;
957 	}
958 
959 	rx_ring->next_to_clean = 0;
960 	rx_ring->next_to_use = 0;
961 	rx_ring->next_to_alloc = 0;
962 }
963 
964 static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
965 {
966 	int i;
967 
968 	for (i = 0; i < priv->num_rx_rings; i++)
969 		enetc_free_rx_ring(priv->rx_ring[i]);
970 
971 	for (i = 0; i < priv->num_tx_rings; i++)
972 		enetc_free_tx_ring(priv->tx_ring[i]);
973 }
974 
975 static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
976 {
977 	int *rss_table;
978 	int i;
979 
980 	rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
981 	if (!rss_table)
982 		return -ENOMEM;
983 
984 	/* Set up RSS table defaults */
985 	for (i = 0; i < si->num_rss; i++)
986 		rss_table[i] = i % num_groups;
987 
988 	enetc_set_rss_table(si, rss_table, si->num_rss);
989 
990 	kfree(rss_table);
991 
992 	return 0;
993 }
994 
995 int enetc_configure_si(struct enetc_ndev_priv *priv)
996 {
997 	struct enetc_si *si = priv->si;
998 	struct enetc_hw *hw = &si->hw;
999 	int err;
1000 
1001 	/* set SI cache attributes */
1002 	enetc_wr(hw, ENETC_SICAR0,
1003 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
1004 	enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
1005 	/* enable SI */
1006 	enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
1007 
1008 	if (si->num_rss) {
1009 		err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
1010 		if (err)
1011 			return err;
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
1018 {
1019 	struct enetc_si *si = priv->si;
1020 	int cpus = num_online_cpus();
1021 
1022 	priv->tx_bd_count = ENETC_TX_RING_DEFAULT_SIZE;
1023 	priv->rx_bd_count = ENETC_RX_RING_DEFAULT_SIZE;
1024 
1025 	/* Enable all available TX rings in order to configure as many
1026 	 * priorities as possible, when needed.
1027 	 * TODO: Make # of TX rings run-time configurable
1028 	 */
1029 	priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
1030 	priv->num_tx_rings = si->num_tx_rings;
1031 	priv->bdr_int_num = cpus;
1032 	priv->ic_mode = ENETC_IC_RX_ADAPTIVE | ENETC_IC_TX_MANUAL;
1033 	priv->tx_ictt = ENETC_TXIC_TIMETHR;
1034 }
1035 
1036 int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
1037 {
1038 	struct enetc_si *si = priv->si;
1039 
1040 	priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
1041 				  GFP_KERNEL);
1042 	if (!priv->cls_rules)
1043 		return -ENOMEM;
1044 
1045 	return 0;
1046 }
1047 
1048 void enetc_free_si_resources(struct enetc_ndev_priv *priv)
1049 {
1050 	kfree(priv->cls_rules);
1051 }
1052 
1053 static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1054 {
1055 	int idx = tx_ring->index;
1056 	u32 tbmr;
1057 
1058 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
1059 		       lower_32_bits(tx_ring->bd_dma_base));
1060 
1061 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
1062 		       upper_32_bits(tx_ring->bd_dma_base));
1063 
1064 	WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
1065 	enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
1066 		       ENETC_RTBLENR_LEN(tx_ring->bd_count));
1067 
1068 	/* clearing PI/CI registers for Tx not supported, adjust sw indexes */
1069 	tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
1070 	tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
1071 
1072 	/* enable Tx ints by setting pkt thr to 1 */
1073 	enetc_txbdr_wr(hw, idx, ENETC_TBICR0, ENETC_TBICR0_ICEN | 0x1);
1074 
1075 	tbmr = ENETC_TBMR_EN;
1076 	if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
1077 		tbmr |= ENETC_TBMR_VIH;
1078 
1079 	/* enable ring */
1080 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
1081 
1082 	tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
1083 	tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
1084 	tx_ring->idr = hw->reg + ENETC_SITXIDR;
1085 }
1086 
1087 static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1088 {
1089 	int idx = rx_ring->index;
1090 	u32 rbmr;
1091 
1092 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
1093 		       lower_32_bits(rx_ring->bd_dma_base));
1094 
1095 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
1096 		       upper_32_bits(rx_ring->bd_dma_base));
1097 
1098 	WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
1099 	enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
1100 		       ENETC_RTBLENR_LEN(rx_ring->bd_count));
1101 
1102 	enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
1103 
1104 	enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
1105 
1106 	/* enable Rx ints by setting pkt thr to 1 */
1107 	enetc_rxbdr_wr(hw, idx, ENETC_RBICR0, ENETC_RBICR0_ICEN | 0x1);
1108 
1109 	rbmr = ENETC_RBMR_EN;
1110 
1111 	if (rx_ring->ext_en)
1112 		rbmr |= ENETC_RBMR_BDS;
1113 
1114 	if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1115 		rbmr |= ENETC_RBMR_VTE;
1116 
1117 	rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
1118 	rx_ring->idr = hw->reg + ENETC_SIRXIDR;
1119 
1120 	enetc_lock_mdio();
1121 	enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
1122 	enetc_unlock_mdio();
1123 
1124 	/* enable ring */
1125 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
1126 }
1127 
1128 static void enetc_setup_bdrs(struct enetc_ndev_priv *priv)
1129 {
1130 	int i;
1131 
1132 	for (i = 0; i < priv->num_tx_rings; i++)
1133 		enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]);
1134 
1135 	for (i = 0; i < priv->num_rx_rings; i++)
1136 		enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1137 }
1138 
1139 static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1140 {
1141 	int idx = rx_ring->index;
1142 
1143 	/* disable EN bit on ring */
1144 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
1145 }
1146 
1147 static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1148 {
1149 	int delay = 8, timeout = 100;
1150 	int idx = tx_ring->index;
1151 
1152 	/* disable EN bit on ring */
1153 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
1154 
1155 	/* wait for busy to clear */
1156 	while (delay < timeout &&
1157 	       enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
1158 		msleep(delay);
1159 		delay *= 2;
1160 	}
1161 
1162 	if (delay >= timeout)
1163 		netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
1164 			    idx);
1165 }
1166 
1167 static void enetc_clear_bdrs(struct enetc_ndev_priv *priv)
1168 {
1169 	int i;
1170 
1171 	for (i = 0; i < priv->num_tx_rings; i++)
1172 		enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]);
1173 
1174 	for (i = 0; i < priv->num_rx_rings; i++)
1175 		enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1176 
1177 	udelay(1);
1178 }
1179 
1180 static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
1181 {
1182 	struct pci_dev *pdev = priv->si->pdev;
1183 	cpumask_t cpu_mask;
1184 	int i, j, err;
1185 
1186 	for (i = 0; i < priv->bdr_int_num; i++) {
1187 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1188 		struct enetc_int_vector *v = priv->int_vector[i];
1189 		int entry = ENETC_BDR_INT_BASE_IDX + i;
1190 		struct enetc_hw *hw = &priv->si->hw;
1191 
1192 		snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
1193 			 priv->ndev->name, i);
1194 		err = request_irq(irq, enetc_msix, 0, v->name, v);
1195 		if (err) {
1196 			dev_err(priv->dev, "request_irq() failed!\n");
1197 			goto irq_err;
1198 		}
1199 		disable_irq(irq);
1200 
1201 		v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
1202 		v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
1203 		v->ricr1 = hw->reg + ENETC_BDR(RX, i, ENETC_RBICR1);
1204 
1205 		enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
1206 
1207 		for (j = 0; j < v->count_tx_rings; j++) {
1208 			int idx = v->tx_ring[j].index;
1209 
1210 			enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
1211 		}
1212 		cpumask_clear(&cpu_mask);
1213 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
1214 		irq_set_affinity_hint(irq, &cpu_mask);
1215 	}
1216 
1217 	return 0;
1218 
1219 irq_err:
1220 	while (i--) {
1221 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1222 
1223 		irq_set_affinity_hint(irq, NULL);
1224 		free_irq(irq, priv->int_vector[i]);
1225 	}
1226 
1227 	return err;
1228 }
1229 
1230 static void enetc_free_irqs(struct enetc_ndev_priv *priv)
1231 {
1232 	struct pci_dev *pdev = priv->si->pdev;
1233 	int i;
1234 
1235 	for (i = 0; i < priv->bdr_int_num; i++) {
1236 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1237 
1238 		irq_set_affinity_hint(irq, NULL);
1239 		free_irq(irq, priv->int_vector[i]);
1240 	}
1241 }
1242 
1243 static void enetc_setup_interrupts(struct enetc_ndev_priv *priv)
1244 {
1245 	struct enetc_hw *hw = &priv->si->hw;
1246 	u32 icpt, ictt;
1247 	int i;
1248 
1249 	/* enable Tx & Rx event indication */
1250 	if (priv->ic_mode &
1251 	    (ENETC_IC_RX_MANUAL | ENETC_IC_RX_ADAPTIVE)) {
1252 		icpt = ENETC_RBICR0_SET_ICPT(ENETC_RXIC_PKTTHR);
1253 		/* init to non-0 minimum, will be adjusted later */
1254 		ictt = 0x1;
1255 	} else {
1256 		icpt = 0x1; /* enable Rx ints by setting pkt thr to 1 */
1257 		ictt = 0;
1258 	}
1259 
1260 	for (i = 0; i < priv->num_rx_rings; i++) {
1261 		enetc_rxbdr_wr(hw, i, ENETC_RBICR1, ictt);
1262 		enetc_rxbdr_wr(hw, i, ENETC_RBICR0, ENETC_RBICR0_ICEN | icpt);
1263 		enetc_rxbdr_wr(hw, i, ENETC_RBIER, ENETC_RBIER_RXTIE);
1264 	}
1265 
1266 	if (priv->ic_mode & ENETC_IC_TX_MANUAL)
1267 		icpt = ENETC_TBICR0_SET_ICPT(ENETC_TXIC_PKTTHR);
1268 	else
1269 		icpt = 0x1; /* enable Tx ints by setting pkt thr to 1 */
1270 
1271 	for (i = 0; i < priv->num_tx_rings; i++) {
1272 		enetc_txbdr_wr(hw, i, ENETC_TBICR1, priv->tx_ictt);
1273 		enetc_txbdr_wr(hw, i, ENETC_TBICR0, ENETC_TBICR0_ICEN | icpt);
1274 		enetc_txbdr_wr(hw, i, ENETC_TBIER, ENETC_TBIER_TXTIE);
1275 	}
1276 }
1277 
1278 static void enetc_clear_interrupts(struct enetc_ndev_priv *priv)
1279 {
1280 	int i;
1281 
1282 	for (i = 0; i < priv->num_tx_rings; i++)
1283 		enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0);
1284 
1285 	for (i = 0; i < priv->num_rx_rings; i++)
1286 		enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0);
1287 }
1288 
1289 static int enetc_phylink_connect(struct net_device *ndev)
1290 {
1291 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1292 	struct ethtool_eee edata;
1293 	int err;
1294 
1295 	if (!priv->phylink)
1296 		return 0; /* phy-less mode */
1297 
1298 	err = phylink_of_phy_connect(priv->phylink, priv->dev->of_node, 0);
1299 	if (err) {
1300 		dev_err(&ndev->dev, "could not attach to PHY\n");
1301 		return err;
1302 	}
1303 
1304 	/* disable EEE autoneg, until ENETC driver supports it */
1305 	memset(&edata, 0, sizeof(struct ethtool_eee));
1306 	phylink_ethtool_set_eee(priv->phylink, &edata);
1307 
1308 	return 0;
1309 }
1310 
1311 void enetc_start(struct net_device *ndev)
1312 {
1313 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1314 	int i;
1315 
1316 	enetc_setup_interrupts(priv);
1317 
1318 	for (i = 0; i < priv->bdr_int_num; i++) {
1319 		int irq = pci_irq_vector(priv->si->pdev,
1320 					 ENETC_BDR_INT_BASE_IDX + i);
1321 
1322 		napi_enable(&priv->int_vector[i]->napi);
1323 		enable_irq(irq);
1324 	}
1325 
1326 	if (priv->phylink)
1327 		phylink_start(priv->phylink);
1328 	else
1329 		netif_carrier_on(ndev);
1330 
1331 	netif_tx_start_all_queues(ndev);
1332 }
1333 
1334 int enetc_open(struct net_device *ndev)
1335 {
1336 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1337 	int err;
1338 
1339 	err = enetc_setup_irqs(priv);
1340 	if (err)
1341 		return err;
1342 
1343 	err = enetc_phylink_connect(ndev);
1344 	if (err)
1345 		goto err_phy_connect;
1346 
1347 	err = enetc_alloc_tx_resources(priv);
1348 	if (err)
1349 		goto err_alloc_tx;
1350 
1351 	err = enetc_alloc_rx_resources(priv);
1352 	if (err)
1353 		goto err_alloc_rx;
1354 
1355 	err = netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1356 	if (err)
1357 		goto err_set_queues;
1358 
1359 	err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings);
1360 	if (err)
1361 		goto err_set_queues;
1362 
1363 	enetc_setup_bdrs(priv);
1364 	enetc_start(ndev);
1365 
1366 	return 0;
1367 
1368 err_set_queues:
1369 	enetc_free_rx_resources(priv);
1370 err_alloc_rx:
1371 	enetc_free_tx_resources(priv);
1372 err_alloc_tx:
1373 	if (priv->phylink)
1374 		phylink_disconnect_phy(priv->phylink);
1375 err_phy_connect:
1376 	enetc_free_irqs(priv);
1377 
1378 	return err;
1379 }
1380 
1381 void enetc_stop(struct net_device *ndev)
1382 {
1383 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1384 	int i;
1385 
1386 	netif_tx_stop_all_queues(ndev);
1387 
1388 	for (i = 0; i < priv->bdr_int_num; i++) {
1389 		int irq = pci_irq_vector(priv->si->pdev,
1390 					 ENETC_BDR_INT_BASE_IDX + i);
1391 
1392 		disable_irq(irq);
1393 		napi_synchronize(&priv->int_vector[i]->napi);
1394 		napi_disable(&priv->int_vector[i]->napi);
1395 	}
1396 
1397 	if (priv->phylink)
1398 		phylink_stop(priv->phylink);
1399 	else
1400 		netif_carrier_off(ndev);
1401 
1402 	enetc_clear_interrupts(priv);
1403 }
1404 
1405 int enetc_close(struct net_device *ndev)
1406 {
1407 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1408 
1409 	enetc_stop(ndev);
1410 	enetc_clear_bdrs(priv);
1411 
1412 	if (priv->phylink)
1413 		phylink_disconnect_phy(priv->phylink);
1414 	enetc_free_rxtx_rings(priv);
1415 	enetc_free_rx_resources(priv);
1416 	enetc_free_tx_resources(priv);
1417 	enetc_free_irqs(priv);
1418 
1419 	return 0;
1420 }
1421 
1422 static int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data)
1423 {
1424 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1425 	struct tc_mqprio_qopt *mqprio = type_data;
1426 	struct enetc_bdr *tx_ring;
1427 	u8 num_tc;
1428 	int i;
1429 
1430 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1431 	num_tc = mqprio->num_tc;
1432 
1433 	if (!num_tc) {
1434 		netdev_reset_tc(ndev);
1435 		netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1436 
1437 		/* Reset all ring priorities to 0 */
1438 		for (i = 0; i < priv->num_tx_rings; i++) {
1439 			tx_ring = priv->tx_ring[i];
1440 			enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, 0);
1441 		}
1442 
1443 		return 0;
1444 	}
1445 
1446 	/* Check if we have enough BD rings available to accommodate all TCs */
1447 	if (num_tc > priv->num_tx_rings) {
1448 		netdev_err(ndev, "Max %d traffic classes supported\n",
1449 			   priv->num_tx_rings);
1450 		return -EINVAL;
1451 	}
1452 
1453 	/* For the moment, we use only one BD ring per TC.
1454 	 *
1455 	 * Configure num_tc BD rings with increasing priorities.
1456 	 */
1457 	for (i = 0; i < num_tc; i++) {
1458 		tx_ring = priv->tx_ring[i];
1459 		enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, i);
1460 	}
1461 
1462 	/* Reset the number of netdev queues based on the TC count */
1463 	netif_set_real_num_tx_queues(ndev, num_tc);
1464 
1465 	netdev_set_num_tc(ndev, num_tc);
1466 
1467 	/* Each TC is associated with one netdev queue */
1468 	for (i = 0; i < num_tc; i++)
1469 		netdev_set_tc_queue(ndev, i, 1, i);
1470 
1471 	return 0;
1472 }
1473 
1474 int enetc_setup_tc(struct net_device *ndev, enum tc_setup_type type,
1475 		   void *type_data)
1476 {
1477 	switch (type) {
1478 	case TC_SETUP_QDISC_MQPRIO:
1479 		return enetc_setup_tc_mqprio(ndev, type_data);
1480 	case TC_SETUP_QDISC_TAPRIO:
1481 		return enetc_setup_tc_taprio(ndev, type_data);
1482 	case TC_SETUP_QDISC_CBS:
1483 		return enetc_setup_tc_cbs(ndev, type_data);
1484 	case TC_SETUP_QDISC_ETF:
1485 		return enetc_setup_tc_txtime(ndev, type_data);
1486 	case TC_SETUP_BLOCK:
1487 		return enetc_setup_tc_psfp(ndev, type_data);
1488 	default:
1489 		return -EOPNOTSUPP;
1490 	}
1491 }
1492 
1493 struct net_device_stats *enetc_get_stats(struct net_device *ndev)
1494 {
1495 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1496 	struct net_device_stats *stats = &ndev->stats;
1497 	unsigned long packets = 0, bytes = 0;
1498 	int i;
1499 
1500 	for (i = 0; i < priv->num_rx_rings; i++) {
1501 		packets += priv->rx_ring[i]->stats.packets;
1502 		bytes	+= priv->rx_ring[i]->stats.bytes;
1503 	}
1504 
1505 	stats->rx_packets = packets;
1506 	stats->rx_bytes = bytes;
1507 	bytes = 0;
1508 	packets = 0;
1509 
1510 	for (i = 0; i < priv->num_tx_rings; i++) {
1511 		packets += priv->tx_ring[i]->stats.packets;
1512 		bytes	+= priv->tx_ring[i]->stats.bytes;
1513 	}
1514 
1515 	stats->tx_packets = packets;
1516 	stats->tx_bytes = bytes;
1517 
1518 	return stats;
1519 }
1520 
1521 static int enetc_set_rss(struct net_device *ndev, int en)
1522 {
1523 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1524 	struct enetc_hw *hw = &priv->si->hw;
1525 	u32 reg;
1526 
1527 	enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
1528 
1529 	reg = enetc_rd(hw, ENETC_SIMR);
1530 	reg &= ~ENETC_SIMR_RSSE;
1531 	reg |= (en) ? ENETC_SIMR_RSSE : 0;
1532 	enetc_wr(hw, ENETC_SIMR, reg);
1533 
1534 	return 0;
1535 }
1536 
1537 static int enetc_set_psfp(struct net_device *ndev, int en)
1538 {
1539 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1540 	int err;
1541 
1542 	if (en) {
1543 		err = enetc_psfp_enable(priv);
1544 		if (err)
1545 			return err;
1546 
1547 		priv->active_offloads |= ENETC_F_QCI;
1548 		return 0;
1549 	}
1550 
1551 	err = enetc_psfp_disable(priv);
1552 	if (err)
1553 		return err;
1554 
1555 	priv->active_offloads &= ~ENETC_F_QCI;
1556 
1557 	return 0;
1558 }
1559 
1560 static void enetc_enable_rxvlan(struct net_device *ndev, bool en)
1561 {
1562 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1563 	int i;
1564 
1565 	for (i = 0; i < priv->num_rx_rings; i++)
1566 		enetc_bdr_enable_rxvlan(&priv->si->hw, i, en);
1567 }
1568 
1569 static void enetc_enable_txvlan(struct net_device *ndev, bool en)
1570 {
1571 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1572 	int i;
1573 
1574 	for (i = 0; i < priv->num_tx_rings; i++)
1575 		enetc_bdr_enable_txvlan(&priv->si->hw, i, en);
1576 }
1577 
1578 int enetc_set_features(struct net_device *ndev,
1579 		       netdev_features_t features)
1580 {
1581 	netdev_features_t changed = ndev->features ^ features;
1582 	int err = 0;
1583 
1584 	if (changed & NETIF_F_RXHASH)
1585 		enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
1586 
1587 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1588 		enetc_enable_rxvlan(ndev,
1589 				    !!(features & NETIF_F_HW_VLAN_CTAG_RX));
1590 
1591 	if (changed & NETIF_F_HW_VLAN_CTAG_TX)
1592 		enetc_enable_txvlan(ndev,
1593 				    !!(features & NETIF_F_HW_VLAN_CTAG_TX));
1594 
1595 	if (changed & NETIF_F_HW_TC)
1596 		err = enetc_set_psfp(ndev, !!(features & NETIF_F_HW_TC));
1597 
1598 	return err;
1599 }
1600 
1601 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
1602 static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
1603 {
1604 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1605 	struct hwtstamp_config config;
1606 	int ao;
1607 
1608 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1609 		return -EFAULT;
1610 
1611 	switch (config.tx_type) {
1612 	case HWTSTAMP_TX_OFF:
1613 		priv->active_offloads &= ~ENETC_F_TX_TSTAMP;
1614 		break;
1615 	case HWTSTAMP_TX_ON:
1616 		priv->active_offloads |= ENETC_F_TX_TSTAMP;
1617 		break;
1618 	default:
1619 		return -ERANGE;
1620 	}
1621 
1622 	ao = priv->active_offloads;
1623 	switch (config.rx_filter) {
1624 	case HWTSTAMP_FILTER_NONE:
1625 		priv->active_offloads &= ~ENETC_F_RX_TSTAMP;
1626 		break;
1627 	default:
1628 		priv->active_offloads |= ENETC_F_RX_TSTAMP;
1629 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1630 	}
1631 
1632 	if (netif_running(ndev) && ao != priv->active_offloads) {
1633 		enetc_close(ndev);
1634 		enetc_open(ndev);
1635 	}
1636 
1637 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1638 	       -EFAULT : 0;
1639 }
1640 
1641 static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
1642 {
1643 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1644 	struct hwtstamp_config config;
1645 
1646 	config.flags = 0;
1647 
1648 	if (priv->active_offloads & ENETC_F_TX_TSTAMP)
1649 		config.tx_type = HWTSTAMP_TX_ON;
1650 	else
1651 		config.tx_type = HWTSTAMP_TX_OFF;
1652 
1653 	config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
1654 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
1655 
1656 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1657 	       -EFAULT : 0;
1658 }
1659 #endif
1660 
1661 int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1662 {
1663 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1664 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
1665 	if (cmd == SIOCSHWTSTAMP)
1666 		return enetc_hwtstamp_set(ndev, rq);
1667 	if (cmd == SIOCGHWTSTAMP)
1668 		return enetc_hwtstamp_get(ndev, rq);
1669 #endif
1670 
1671 	if (!priv->phylink)
1672 		return -EOPNOTSUPP;
1673 
1674 	return phylink_mii_ioctl(priv->phylink, rq, cmd);
1675 }
1676 
1677 int enetc_alloc_msix(struct enetc_ndev_priv *priv)
1678 {
1679 	struct pci_dev *pdev = priv->si->pdev;
1680 	int v_tx_rings;
1681 	int i, n, err, nvec;
1682 
1683 	nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
1684 	/* allocate MSIX for both messaging and Rx/Tx interrupts */
1685 	n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
1686 
1687 	if (n < 0)
1688 		return n;
1689 
1690 	if (n != nvec)
1691 		return -EPERM;
1692 
1693 	/* # of tx rings per int vector */
1694 	v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
1695 
1696 	for (i = 0; i < priv->bdr_int_num; i++) {
1697 		struct enetc_int_vector *v;
1698 		struct enetc_bdr *bdr;
1699 		int j;
1700 
1701 		v = kzalloc(struct_size(v, tx_ring, v_tx_rings), GFP_KERNEL);
1702 		if (!v) {
1703 			err = -ENOMEM;
1704 			goto fail;
1705 		}
1706 
1707 		priv->int_vector[i] = v;
1708 
1709 		/* init defaults for adaptive IC */
1710 		if (priv->ic_mode & ENETC_IC_RX_ADAPTIVE) {
1711 			v->rx_ictt = 0x1;
1712 			v->rx_dim_en = true;
1713 		}
1714 		INIT_WORK(&v->rx_dim.work, enetc_rx_dim_work);
1715 		netif_napi_add(priv->ndev, &v->napi, enetc_poll,
1716 			       NAPI_POLL_WEIGHT);
1717 		v->count_tx_rings = v_tx_rings;
1718 
1719 		for (j = 0; j < v_tx_rings; j++) {
1720 			int idx;
1721 
1722 			/* default tx ring mapping policy */
1723 			if (priv->bdr_int_num == ENETC_MAX_BDR_INT)
1724 				idx = 2 * j + i; /* 2 CPUs */
1725 			else
1726 				idx = j + i * v_tx_rings; /* default */
1727 
1728 			__set_bit(idx, &v->tx_rings_map);
1729 			bdr = &v->tx_ring[j];
1730 			bdr->index = idx;
1731 			bdr->ndev = priv->ndev;
1732 			bdr->dev = priv->dev;
1733 			bdr->bd_count = priv->tx_bd_count;
1734 			priv->tx_ring[idx] = bdr;
1735 		}
1736 
1737 		bdr = &v->rx_ring;
1738 		bdr->index = i;
1739 		bdr->ndev = priv->ndev;
1740 		bdr->dev = priv->dev;
1741 		bdr->bd_count = priv->rx_bd_count;
1742 		priv->rx_ring[i] = bdr;
1743 	}
1744 
1745 	return 0;
1746 
1747 fail:
1748 	while (i--) {
1749 		netif_napi_del(&priv->int_vector[i]->napi);
1750 		cancel_work_sync(&priv->int_vector[i]->rx_dim.work);
1751 		kfree(priv->int_vector[i]);
1752 	}
1753 
1754 	pci_free_irq_vectors(pdev);
1755 
1756 	return err;
1757 }
1758 
1759 void enetc_free_msix(struct enetc_ndev_priv *priv)
1760 {
1761 	int i;
1762 
1763 	for (i = 0; i < priv->bdr_int_num; i++) {
1764 		struct enetc_int_vector *v = priv->int_vector[i];
1765 
1766 		netif_napi_del(&v->napi);
1767 		cancel_work_sync(&v->rx_dim.work);
1768 	}
1769 
1770 	for (i = 0; i < priv->num_rx_rings; i++)
1771 		priv->rx_ring[i] = NULL;
1772 
1773 	for (i = 0; i < priv->num_tx_rings; i++)
1774 		priv->tx_ring[i] = NULL;
1775 
1776 	for (i = 0; i < priv->bdr_int_num; i++) {
1777 		kfree(priv->int_vector[i]);
1778 		priv->int_vector[i] = NULL;
1779 	}
1780 
1781 	/* disable all MSIX for this device */
1782 	pci_free_irq_vectors(priv->si->pdev);
1783 }
1784 
1785 static void enetc_kfree_si(struct enetc_si *si)
1786 {
1787 	char *p = (char *)si - si->pad;
1788 
1789 	kfree(p);
1790 }
1791 
1792 static void enetc_detect_errata(struct enetc_si *si)
1793 {
1794 	if (si->pdev->revision == ENETC_REV1)
1795 		si->errata = ENETC_ERR_VLAN_ISOL | ENETC_ERR_UCMCSWP;
1796 }
1797 
1798 int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
1799 {
1800 	struct enetc_si *si, *p;
1801 	struct enetc_hw *hw;
1802 	size_t alloc_size;
1803 	int err, len;
1804 
1805 	pcie_flr(pdev);
1806 	err = pci_enable_device_mem(pdev);
1807 	if (err) {
1808 		dev_err(&pdev->dev, "device enable failed\n");
1809 		return err;
1810 	}
1811 
1812 	/* set up for high or low dma */
1813 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1814 	if (err) {
1815 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1816 		if (err) {
1817 			dev_err(&pdev->dev,
1818 				"DMA configuration failed: 0x%x\n", err);
1819 			goto err_dma;
1820 		}
1821 	}
1822 
1823 	err = pci_request_mem_regions(pdev, name);
1824 	if (err) {
1825 		dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
1826 		goto err_pci_mem_reg;
1827 	}
1828 
1829 	pci_set_master(pdev);
1830 
1831 	alloc_size = sizeof(struct enetc_si);
1832 	if (sizeof_priv) {
1833 		/* align priv to 32B */
1834 		alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
1835 		alloc_size += sizeof_priv;
1836 	}
1837 	/* force 32B alignment for enetc_si */
1838 	alloc_size += ENETC_SI_ALIGN - 1;
1839 
1840 	p = kzalloc(alloc_size, GFP_KERNEL);
1841 	if (!p) {
1842 		err = -ENOMEM;
1843 		goto err_alloc_si;
1844 	}
1845 
1846 	si = PTR_ALIGN(p, ENETC_SI_ALIGN);
1847 	si->pad = (char *)si - (char *)p;
1848 
1849 	pci_set_drvdata(pdev, si);
1850 	si->pdev = pdev;
1851 	hw = &si->hw;
1852 
1853 	len = pci_resource_len(pdev, ENETC_BAR_REGS);
1854 	hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
1855 	if (!hw->reg) {
1856 		err = -ENXIO;
1857 		dev_err(&pdev->dev, "ioremap() failed\n");
1858 		goto err_ioremap;
1859 	}
1860 	if (len > ENETC_PORT_BASE)
1861 		hw->port = hw->reg + ENETC_PORT_BASE;
1862 	if (len > ENETC_GLOBAL_BASE)
1863 		hw->global = hw->reg + ENETC_GLOBAL_BASE;
1864 
1865 	enetc_detect_errata(si);
1866 
1867 	return 0;
1868 
1869 err_ioremap:
1870 	enetc_kfree_si(si);
1871 err_alloc_si:
1872 	pci_release_mem_regions(pdev);
1873 err_pci_mem_reg:
1874 err_dma:
1875 	pci_disable_device(pdev);
1876 
1877 	return err;
1878 }
1879 
1880 void enetc_pci_remove(struct pci_dev *pdev)
1881 {
1882 	struct enetc_si *si = pci_get_drvdata(pdev);
1883 	struct enetc_hw *hw = &si->hw;
1884 
1885 	iounmap(hw->reg);
1886 	enetc_kfree_si(si);
1887 	pci_release_mem_regions(pdev);
1888 	pci_disable_device(pdev);
1889 }
1890