1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /* Copyright 2017-2019 NXP */
3 
4 #include "enetc.h"
5 #include <linux/bpf_trace.h>
6 #include <linux/tcp.h>
7 #include <linux/udp.h>
8 #include <linux/vmalloc.h>
9 #include <linux/ptp_classify.h>
10 #include <net/ip6_checksum.h>
11 #include <net/pkt_sched.h>
12 #include <net/tso.h>
13 
14 static int enetc_num_stack_tx_queues(struct enetc_ndev_priv *priv)
15 {
16 	int num_tx_rings = priv->num_tx_rings;
17 	int i;
18 
19 	for (i = 0; i < priv->num_rx_rings; i++)
20 		if (priv->rx_ring[i]->xdp.prog)
21 			return num_tx_rings - num_possible_cpus();
22 
23 	return num_tx_rings;
24 }
25 
26 static struct enetc_bdr *enetc_rx_ring_from_xdp_tx_ring(struct enetc_ndev_priv *priv,
27 							struct enetc_bdr *tx_ring)
28 {
29 	int index = &priv->tx_ring[tx_ring->index] - priv->xdp_tx_ring;
30 
31 	return priv->rx_ring[index];
32 }
33 
34 static struct sk_buff *enetc_tx_swbd_get_skb(struct enetc_tx_swbd *tx_swbd)
35 {
36 	if (tx_swbd->is_xdp_tx || tx_swbd->is_xdp_redirect)
37 		return NULL;
38 
39 	return tx_swbd->skb;
40 }
41 
42 static struct xdp_frame *
43 enetc_tx_swbd_get_xdp_frame(struct enetc_tx_swbd *tx_swbd)
44 {
45 	if (tx_swbd->is_xdp_redirect)
46 		return tx_swbd->xdp_frame;
47 
48 	return NULL;
49 }
50 
51 static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
52 				struct enetc_tx_swbd *tx_swbd)
53 {
54 	/* For XDP_TX, pages come from RX, whereas for the other contexts where
55 	 * we have is_dma_page_set, those come from skb_frag_dma_map. We need
56 	 * to match the DMA mapping length, so we need to differentiate those.
57 	 */
58 	if (tx_swbd->is_dma_page)
59 		dma_unmap_page(tx_ring->dev, tx_swbd->dma,
60 			       tx_swbd->is_xdp_tx ? PAGE_SIZE : tx_swbd->len,
61 			       tx_swbd->dir);
62 	else
63 		dma_unmap_single(tx_ring->dev, tx_swbd->dma,
64 				 tx_swbd->len, tx_swbd->dir);
65 	tx_swbd->dma = 0;
66 }
67 
68 static void enetc_free_tx_frame(struct enetc_bdr *tx_ring,
69 				struct enetc_tx_swbd *tx_swbd)
70 {
71 	struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd);
72 	struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd);
73 
74 	if (tx_swbd->dma)
75 		enetc_unmap_tx_buff(tx_ring, tx_swbd);
76 
77 	if (xdp_frame) {
78 		xdp_return_frame(tx_swbd->xdp_frame);
79 		tx_swbd->xdp_frame = NULL;
80 	} else if (skb) {
81 		dev_kfree_skb_any(skb);
82 		tx_swbd->skb = NULL;
83 	}
84 }
85 
86 /* Let H/W know BD ring has been updated */
87 static void enetc_update_tx_ring_tail(struct enetc_bdr *tx_ring)
88 {
89 	/* includes wmb() */
90 	enetc_wr_reg_hot(tx_ring->tpir, tx_ring->next_to_use);
91 }
92 
93 static int enetc_ptp_parse(struct sk_buff *skb, u8 *udp,
94 			   u8 *msgtype, u8 *twostep,
95 			   u16 *correction_offset, u16 *body_offset)
96 {
97 	unsigned int ptp_class;
98 	struct ptp_header *hdr;
99 	unsigned int type;
100 	u8 *base;
101 
102 	ptp_class = ptp_classify_raw(skb);
103 	if (ptp_class == PTP_CLASS_NONE)
104 		return -EINVAL;
105 
106 	hdr = ptp_parse_header(skb, ptp_class);
107 	if (!hdr)
108 		return -EINVAL;
109 
110 	type = ptp_class & PTP_CLASS_PMASK;
111 	if (type == PTP_CLASS_IPV4 || type == PTP_CLASS_IPV6)
112 		*udp = 1;
113 	else
114 		*udp = 0;
115 
116 	*msgtype = ptp_get_msgtype(hdr, ptp_class);
117 	*twostep = hdr->flag_field[0] & 0x2;
118 
119 	base = skb_mac_header(skb);
120 	*correction_offset = (u8 *)&hdr->correction - base;
121 	*body_offset = (u8 *)hdr + sizeof(struct ptp_header) - base;
122 
123 	return 0;
124 }
125 
126 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb)
127 {
128 	bool do_vlan, do_onestep_tstamp = false, do_twostep_tstamp = false;
129 	struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev);
130 	struct enetc_hw *hw = &priv->si->hw;
131 	struct enetc_tx_swbd *tx_swbd;
132 	int len = skb_headlen(skb);
133 	union enetc_tx_bd temp_bd;
134 	u8 msgtype, twostep, udp;
135 	union enetc_tx_bd *txbd;
136 	u16 offset1, offset2;
137 	int i, count = 0;
138 	skb_frag_t *frag;
139 	unsigned int f;
140 	dma_addr_t dma;
141 	u8 flags = 0;
142 
143 	i = tx_ring->next_to_use;
144 	txbd = ENETC_TXBD(*tx_ring, i);
145 	prefetchw(txbd);
146 
147 	dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
148 	if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
149 		goto dma_err;
150 
151 	temp_bd.addr = cpu_to_le64(dma);
152 	temp_bd.buf_len = cpu_to_le16(len);
153 	temp_bd.lstatus = 0;
154 
155 	tx_swbd = &tx_ring->tx_swbd[i];
156 	tx_swbd->dma = dma;
157 	tx_swbd->len = len;
158 	tx_swbd->is_dma_page = 0;
159 	tx_swbd->dir = DMA_TO_DEVICE;
160 	count++;
161 
162 	do_vlan = skb_vlan_tag_present(skb);
163 	if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
164 		if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep, &offset1,
165 				    &offset2) ||
166 		    msgtype != PTP_MSGTYPE_SYNC || twostep)
167 			WARN_ONCE(1, "Bad packet for one-step timestamping\n");
168 		else
169 			do_onestep_tstamp = true;
170 	} else if (skb->cb[0] & ENETC_F_TX_TSTAMP) {
171 		do_twostep_tstamp = true;
172 	}
173 
174 	tx_swbd->do_twostep_tstamp = do_twostep_tstamp;
175 	tx_swbd->check_wb = tx_swbd->do_twostep_tstamp;
176 
177 	if (do_vlan || do_onestep_tstamp || do_twostep_tstamp)
178 		flags |= ENETC_TXBD_FLAGS_EX;
179 
180 	if (tx_ring->tsd_enable)
181 		flags |= ENETC_TXBD_FLAGS_TSE | ENETC_TXBD_FLAGS_TXSTART;
182 
183 	/* first BD needs frm_len and offload flags set */
184 	temp_bd.frm_len = cpu_to_le16(skb->len);
185 	temp_bd.flags = flags;
186 
187 	if (flags & ENETC_TXBD_FLAGS_TSE)
188 		temp_bd.txstart = enetc_txbd_set_tx_start(skb->skb_mstamp_ns,
189 							  flags);
190 
191 	if (flags & ENETC_TXBD_FLAGS_EX) {
192 		u8 e_flags = 0;
193 		*txbd = temp_bd;
194 		enetc_clear_tx_bd(&temp_bd);
195 
196 		/* add extension BD for VLAN and/or timestamping */
197 		flags = 0;
198 		tx_swbd++;
199 		txbd++;
200 		i++;
201 		if (unlikely(i == tx_ring->bd_count)) {
202 			i = 0;
203 			tx_swbd = tx_ring->tx_swbd;
204 			txbd = ENETC_TXBD(*tx_ring, 0);
205 		}
206 		prefetchw(txbd);
207 
208 		if (do_vlan) {
209 			temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
210 			temp_bd.ext.tpid = 0; /* < C-TAG */
211 			e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
212 		}
213 
214 		if (do_onestep_tstamp) {
215 			u32 lo, hi, val;
216 			u64 sec, nsec;
217 			u8 *data;
218 
219 			lo = enetc_rd_hot(hw, ENETC_SICTR0);
220 			hi = enetc_rd_hot(hw, ENETC_SICTR1);
221 			sec = (u64)hi << 32 | lo;
222 			nsec = do_div(sec, 1000000000);
223 
224 			/* Configure extension BD */
225 			temp_bd.ext.tstamp = cpu_to_le32(lo & 0x3fffffff);
226 			e_flags |= ENETC_TXBD_E_FLAGS_ONE_STEP_PTP;
227 
228 			/* Update originTimestamp field of Sync packet
229 			 * - 48 bits seconds field
230 			 * - 32 bits nanseconds field
231 			 */
232 			data = skb_mac_header(skb);
233 			*(__be16 *)(data + offset2) =
234 				htons((sec >> 32) & 0xffff);
235 			*(__be32 *)(data + offset2 + 2) =
236 				htonl(sec & 0xffffffff);
237 			*(__be32 *)(data + offset2 + 6) = htonl(nsec);
238 
239 			/* Configure single-step register */
240 			val = ENETC_PM0_SINGLE_STEP_EN;
241 			val |= ENETC_SET_SINGLE_STEP_OFFSET(offset1);
242 			if (udp)
243 				val |= ENETC_PM0_SINGLE_STEP_CH;
244 
245 			enetc_port_wr(hw, ENETC_PM0_SINGLE_STEP, val);
246 			enetc_port_wr(hw, ENETC_PM1_SINGLE_STEP, val);
247 		} else if (do_twostep_tstamp) {
248 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
249 			e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
250 		}
251 
252 		temp_bd.ext.e_flags = e_flags;
253 		count++;
254 	}
255 
256 	frag = &skb_shinfo(skb)->frags[0];
257 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
258 		len = skb_frag_size(frag);
259 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
260 				       DMA_TO_DEVICE);
261 		if (dma_mapping_error(tx_ring->dev, dma))
262 			goto dma_err;
263 
264 		*txbd = temp_bd;
265 		enetc_clear_tx_bd(&temp_bd);
266 
267 		flags = 0;
268 		tx_swbd++;
269 		txbd++;
270 		i++;
271 		if (unlikely(i == tx_ring->bd_count)) {
272 			i = 0;
273 			tx_swbd = tx_ring->tx_swbd;
274 			txbd = ENETC_TXBD(*tx_ring, 0);
275 		}
276 		prefetchw(txbd);
277 
278 		temp_bd.addr = cpu_to_le64(dma);
279 		temp_bd.buf_len = cpu_to_le16(len);
280 
281 		tx_swbd->dma = dma;
282 		tx_swbd->len = len;
283 		tx_swbd->is_dma_page = 1;
284 		tx_swbd->dir = DMA_TO_DEVICE;
285 		count++;
286 	}
287 
288 	/* last BD needs 'F' bit set */
289 	flags |= ENETC_TXBD_FLAGS_F;
290 	temp_bd.flags = flags;
291 	*txbd = temp_bd;
292 
293 	tx_ring->tx_swbd[i].is_eof = true;
294 	tx_ring->tx_swbd[i].skb = skb;
295 
296 	enetc_bdr_idx_inc(tx_ring, &i);
297 	tx_ring->next_to_use = i;
298 
299 	skb_tx_timestamp(skb);
300 
301 	enetc_update_tx_ring_tail(tx_ring);
302 
303 	return count;
304 
305 dma_err:
306 	dev_err(tx_ring->dev, "DMA map error");
307 
308 	do {
309 		tx_swbd = &tx_ring->tx_swbd[i];
310 		enetc_free_tx_frame(tx_ring, tx_swbd);
311 		if (i == 0)
312 			i = tx_ring->bd_count;
313 		i--;
314 	} while (count--);
315 
316 	return 0;
317 }
318 
319 static void enetc_map_tx_tso_hdr(struct enetc_bdr *tx_ring, struct sk_buff *skb,
320 				 struct enetc_tx_swbd *tx_swbd,
321 				 union enetc_tx_bd *txbd, int *i, int hdr_len,
322 				 int data_len)
323 {
324 	union enetc_tx_bd txbd_tmp;
325 	u8 flags = 0, e_flags = 0;
326 	dma_addr_t addr;
327 
328 	enetc_clear_tx_bd(&txbd_tmp);
329 	addr = tx_ring->tso_headers_dma + *i * TSO_HEADER_SIZE;
330 
331 	if (skb_vlan_tag_present(skb))
332 		flags |= ENETC_TXBD_FLAGS_EX;
333 
334 	txbd_tmp.addr = cpu_to_le64(addr);
335 	txbd_tmp.buf_len = cpu_to_le16(hdr_len);
336 
337 	/* first BD needs frm_len and offload flags set */
338 	txbd_tmp.frm_len = cpu_to_le16(hdr_len + data_len);
339 	txbd_tmp.flags = flags;
340 
341 	/* For the TSO header we do not set the dma address since we do not
342 	 * want it unmapped when we do cleanup. We still set len so that we
343 	 * count the bytes sent.
344 	 */
345 	tx_swbd->len = hdr_len;
346 	tx_swbd->do_twostep_tstamp = false;
347 	tx_swbd->check_wb = false;
348 
349 	/* Actually write the header in the BD */
350 	*txbd = txbd_tmp;
351 
352 	/* Add extension BD for VLAN */
353 	if (flags & ENETC_TXBD_FLAGS_EX) {
354 		/* Get the next BD */
355 		enetc_bdr_idx_inc(tx_ring, i);
356 		txbd = ENETC_TXBD(*tx_ring, *i);
357 		tx_swbd = &tx_ring->tx_swbd[*i];
358 		prefetchw(txbd);
359 
360 		/* Setup the VLAN fields */
361 		enetc_clear_tx_bd(&txbd_tmp);
362 		txbd_tmp.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
363 		txbd_tmp.ext.tpid = 0; /* < C-TAG */
364 		e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
365 
366 		/* Write the BD */
367 		txbd_tmp.ext.e_flags = e_flags;
368 		*txbd = txbd_tmp;
369 	}
370 }
371 
372 static int enetc_map_tx_tso_data(struct enetc_bdr *tx_ring, struct sk_buff *skb,
373 				 struct enetc_tx_swbd *tx_swbd,
374 				 union enetc_tx_bd *txbd, char *data,
375 				 int size, bool last_bd)
376 {
377 	union enetc_tx_bd txbd_tmp;
378 	dma_addr_t addr;
379 	u8 flags = 0;
380 
381 	enetc_clear_tx_bd(&txbd_tmp);
382 
383 	addr = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
384 	if (unlikely(dma_mapping_error(tx_ring->dev, addr))) {
385 		netdev_err(tx_ring->ndev, "DMA map error\n");
386 		return -ENOMEM;
387 	}
388 
389 	if (last_bd) {
390 		flags |= ENETC_TXBD_FLAGS_F;
391 		tx_swbd->is_eof = 1;
392 	}
393 
394 	txbd_tmp.addr = cpu_to_le64(addr);
395 	txbd_tmp.buf_len = cpu_to_le16(size);
396 	txbd_tmp.flags = flags;
397 
398 	tx_swbd->dma = addr;
399 	tx_swbd->len = size;
400 	tx_swbd->dir = DMA_TO_DEVICE;
401 
402 	*txbd = txbd_tmp;
403 
404 	return 0;
405 }
406 
407 static __wsum enetc_tso_hdr_csum(struct tso_t *tso, struct sk_buff *skb,
408 				 char *hdr, int hdr_len, int *l4_hdr_len)
409 {
410 	char *l4_hdr = hdr + skb_transport_offset(skb);
411 	int mac_hdr_len = skb_network_offset(skb);
412 
413 	if (tso->tlen != sizeof(struct udphdr)) {
414 		struct tcphdr *tcph = (struct tcphdr *)(l4_hdr);
415 
416 		tcph->check = 0;
417 	} else {
418 		struct udphdr *udph = (struct udphdr *)(l4_hdr);
419 
420 		udph->check = 0;
421 	}
422 
423 	/* Compute the IP checksum. This is necessary since tso_build_hdr()
424 	 * already incremented the IP ID field.
425 	 */
426 	if (!tso->ipv6) {
427 		struct iphdr *iph = (void *)(hdr + mac_hdr_len);
428 
429 		iph->check = 0;
430 		iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
431 	}
432 
433 	/* Compute the checksum over the L4 header. */
434 	*l4_hdr_len = hdr_len - skb_transport_offset(skb);
435 	return csum_partial(l4_hdr, *l4_hdr_len, 0);
436 }
437 
438 static void enetc_tso_complete_csum(struct enetc_bdr *tx_ring, struct tso_t *tso,
439 				    struct sk_buff *skb, char *hdr, int len,
440 				    __wsum sum)
441 {
442 	char *l4_hdr = hdr + skb_transport_offset(skb);
443 	__sum16 csum_final;
444 
445 	/* Complete the L4 checksum by appending the pseudo-header to the
446 	 * already computed checksum.
447 	 */
448 	if (!tso->ipv6)
449 		csum_final = csum_tcpudp_magic(ip_hdr(skb)->saddr,
450 					       ip_hdr(skb)->daddr,
451 					       len, ip_hdr(skb)->protocol, sum);
452 	else
453 		csum_final = csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
454 					     &ipv6_hdr(skb)->daddr,
455 					     len, ipv6_hdr(skb)->nexthdr, sum);
456 
457 	if (tso->tlen != sizeof(struct udphdr)) {
458 		struct tcphdr *tcph = (struct tcphdr *)(l4_hdr);
459 
460 		tcph->check = csum_final;
461 	} else {
462 		struct udphdr *udph = (struct udphdr *)(l4_hdr);
463 
464 		udph->check = csum_final;
465 	}
466 }
467 
468 static int enetc_map_tx_tso_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb)
469 {
470 	int hdr_len, total_len, data_len;
471 	struct enetc_tx_swbd *tx_swbd;
472 	union enetc_tx_bd *txbd;
473 	struct tso_t tso;
474 	__wsum csum, csum2;
475 	int count = 0, pos;
476 	int err, i, bd_data_num;
477 
478 	/* Initialize the TSO handler, and prepare the first payload */
479 	hdr_len = tso_start(skb, &tso);
480 	total_len = skb->len - hdr_len;
481 	i = tx_ring->next_to_use;
482 
483 	while (total_len > 0) {
484 		char *hdr;
485 
486 		/* Get the BD */
487 		txbd = ENETC_TXBD(*tx_ring, i);
488 		tx_swbd = &tx_ring->tx_swbd[i];
489 		prefetchw(txbd);
490 
491 		/* Determine the length of this packet */
492 		data_len = min_t(int, skb_shinfo(skb)->gso_size, total_len);
493 		total_len -= data_len;
494 
495 		/* prepare packet headers: MAC + IP + TCP */
496 		hdr = tx_ring->tso_headers + i * TSO_HEADER_SIZE;
497 		tso_build_hdr(skb, hdr, &tso, data_len, total_len == 0);
498 
499 		/* compute the csum over the L4 header */
500 		csum = enetc_tso_hdr_csum(&tso, skb, hdr, hdr_len, &pos);
501 		enetc_map_tx_tso_hdr(tx_ring, skb, tx_swbd, txbd, &i, hdr_len, data_len);
502 		bd_data_num = 0;
503 		count++;
504 
505 		while (data_len > 0) {
506 			int size;
507 
508 			size = min_t(int, tso.size, data_len);
509 
510 			/* Advance the index in the BDR */
511 			enetc_bdr_idx_inc(tx_ring, &i);
512 			txbd = ENETC_TXBD(*tx_ring, i);
513 			tx_swbd = &tx_ring->tx_swbd[i];
514 			prefetchw(txbd);
515 
516 			/* Compute the checksum over this segment of data and
517 			 * add it to the csum already computed (over the L4
518 			 * header and possible other data segments).
519 			 */
520 			csum2 = csum_partial(tso.data, size, 0);
521 			csum = csum_block_add(csum, csum2, pos);
522 			pos += size;
523 
524 			err = enetc_map_tx_tso_data(tx_ring, skb, tx_swbd, txbd,
525 						    tso.data, size,
526 						    size == data_len);
527 			if (err)
528 				goto err_map_data;
529 
530 			data_len -= size;
531 			count++;
532 			bd_data_num++;
533 			tso_build_data(skb, &tso, size);
534 
535 			if (unlikely(bd_data_num >= ENETC_MAX_SKB_FRAGS && data_len))
536 				goto err_chained_bd;
537 		}
538 
539 		enetc_tso_complete_csum(tx_ring, &tso, skb, hdr, pos, csum);
540 
541 		if (total_len == 0)
542 			tx_swbd->skb = skb;
543 
544 		/* Go to the next BD */
545 		enetc_bdr_idx_inc(tx_ring, &i);
546 	}
547 
548 	tx_ring->next_to_use = i;
549 	enetc_update_tx_ring_tail(tx_ring);
550 
551 	return count;
552 
553 err_map_data:
554 	dev_err(tx_ring->dev, "DMA map error");
555 
556 err_chained_bd:
557 	do {
558 		tx_swbd = &tx_ring->tx_swbd[i];
559 		enetc_free_tx_frame(tx_ring, tx_swbd);
560 		if (i == 0)
561 			i = tx_ring->bd_count;
562 		i--;
563 	} while (count--);
564 
565 	return 0;
566 }
567 
568 static netdev_tx_t enetc_start_xmit(struct sk_buff *skb,
569 				    struct net_device *ndev)
570 {
571 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
572 	struct enetc_bdr *tx_ring;
573 	int count, err;
574 
575 	/* Queue one-step Sync packet if already locked */
576 	if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
577 		if (test_and_set_bit_lock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS,
578 					  &priv->flags)) {
579 			skb_queue_tail(&priv->tx_skbs, skb);
580 			return NETDEV_TX_OK;
581 		}
582 	}
583 
584 	tx_ring = priv->tx_ring[skb->queue_mapping];
585 
586 	if (skb_is_gso(skb)) {
587 		if (enetc_bd_unused(tx_ring) < tso_count_descs(skb)) {
588 			netif_stop_subqueue(ndev, tx_ring->index);
589 			return NETDEV_TX_BUSY;
590 		}
591 
592 		enetc_lock_mdio();
593 		count = enetc_map_tx_tso_buffs(tx_ring, skb);
594 		enetc_unlock_mdio();
595 	} else {
596 		if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
597 			if (unlikely(skb_linearize(skb)))
598 				goto drop_packet_err;
599 
600 		count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
601 		if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
602 			netif_stop_subqueue(ndev, tx_ring->index);
603 			return NETDEV_TX_BUSY;
604 		}
605 
606 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
607 			err = skb_checksum_help(skb);
608 			if (err)
609 				goto drop_packet_err;
610 		}
611 		enetc_lock_mdio();
612 		count = enetc_map_tx_buffs(tx_ring, skb);
613 		enetc_unlock_mdio();
614 	}
615 
616 	if (unlikely(!count))
617 		goto drop_packet_err;
618 
619 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
620 		netif_stop_subqueue(ndev, tx_ring->index);
621 
622 	return NETDEV_TX_OK;
623 
624 drop_packet_err:
625 	dev_kfree_skb_any(skb);
626 	return NETDEV_TX_OK;
627 }
628 
629 netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
630 {
631 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
632 	u8 udp, msgtype, twostep;
633 	u16 offset1, offset2;
634 
635 	/* Mark tx timestamp type on skb->cb[0] if requires */
636 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
637 	    (priv->active_offloads & ENETC_F_TX_TSTAMP_MASK)) {
638 		skb->cb[0] = priv->active_offloads & ENETC_F_TX_TSTAMP_MASK;
639 	} else {
640 		skb->cb[0] = 0;
641 	}
642 
643 	/* Fall back to two-step timestamp if not one-step Sync packet */
644 	if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
645 		if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep,
646 				    &offset1, &offset2) ||
647 		    msgtype != PTP_MSGTYPE_SYNC || twostep != 0)
648 			skb->cb[0] = ENETC_F_TX_TSTAMP;
649 	}
650 
651 	return enetc_start_xmit(skb, ndev);
652 }
653 
654 static irqreturn_t enetc_msix(int irq, void *data)
655 {
656 	struct enetc_int_vector	*v = data;
657 	int i;
658 
659 	enetc_lock_mdio();
660 
661 	/* disable interrupts */
662 	enetc_wr_reg_hot(v->rbier, 0);
663 	enetc_wr_reg_hot(v->ricr1, v->rx_ictt);
664 
665 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
666 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), 0);
667 
668 	enetc_unlock_mdio();
669 
670 	napi_schedule(&v->napi);
671 
672 	return IRQ_HANDLED;
673 }
674 
675 static void enetc_rx_dim_work(struct work_struct *w)
676 {
677 	struct dim *dim = container_of(w, struct dim, work);
678 	struct dim_cq_moder moder =
679 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
680 	struct enetc_int_vector	*v =
681 		container_of(dim, struct enetc_int_vector, rx_dim);
682 
683 	v->rx_ictt = enetc_usecs_to_cycles(moder.usec);
684 	dim->state = DIM_START_MEASURE;
685 }
686 
687 static void enetc_rx_net_dim(struct enetc_int_vector *v)
688 {
689 	struct dim_sample dim_sample = {};
690 
691 	v->comp_cnt++;
692 
693 	if (!v->rx_napi_work)
694 		return;
695 
696 	dim_update_sample(v->comp_cnt,
697 			  v->rx_ring.stats.packets,
698 			  v->rx_ring.stats.bytes,
699 			  &dim_sample);
700 	net_dim(&v->rx_dim, dim_sample);
701 }
702 
703 static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
704 {
705 	int pi = enetc_rd_reg_hot(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
706 
707 	return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
708 }
709 
710 static bool enetc_page_reusable(struct page *page)
711 {
712 	return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
713 }
714 
715 static void enetc_reuse_page(struct enetc_bdr *rx_ring,
716 			     struct enetc_rx_swbd *old)
717 {
718 	struct enetc_rx_swbd *new;
719 
720 	new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
721 
722 	/* next buf that may reuse a page */
723 	enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
724 
725 	/* copy page reference */
726 	*new = *old;
727 }
728 
729 static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
730 				u64 *tstamp)
731 {
732 	u32 lo, hi, tstamp_lo;
733 
734 	lo = enetc_rd_hot(hw, ENETC_SICTR0);
735 	hi = enetc_rd_hot(hw, ENETC_SICTR1);
736 	tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
737 	if (lo <= tstamp_lo)
738 		hi -= 1;
739 	*tstamp = (u64)hi << 32 | tstamp_lo;
740 }
741 
742 static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
743 {
744 	struct skb_shared_hwtstamps shhwtstamps;
745 
746 	if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
747 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
748 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
749 		skb_txtime_consumed(skb);
750 		skb_tstamp_tx(skb, &shhwtstamps);
751 	}
752 }
753 
754 static void enetc_recycle_xdp_tx_buff(struct enetc_bdr *tx_ring,
755 				      struct enetc_tx_swbd *tx_swbd)
756 {
757 	struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev);
758 	struct enetc_rx_swbd rx_swbd = {
759 		.dma = tx_swbd->dma,
760 		.page = tx_swbd->page,
761 		.page_offset = tx_swbd->page_offset,
762 		.dir = tx_swbd->dir,
763 		.len = tx_swbd->len,
764 	};
765 	struct enetc_bdr *rx_ring;
766 
767 	rx_ring = enetc_rx_ring_from_xdp_tx_ring(priv, tx_ring);
768 
769 	if (likely(enetc_swbd_unused(rx_ring))) {
770 		enetc_reuse_page(rx_ring, &rx_swbd);
771 
772 		/* sync for use by the device */
773 		dma_sync_single_range_for_device(rx_ring->dev, rx_swbd.dma,
774 						 rx_swbd.page_offset,
775 						 ENETC_RXB_DMA_SIZE_XDP,
776 						 rx_swbd.dir);
777 
778 		rx_ring->stats.recycles++;
779 	} else {
780 		/* RX ring is already full, we need to unmap and free the
781 		 * page, since there's nothing useful we can do with it.
782 		 */
783 		rx_ring->stats.recycle_failures++;
784 
785 		dma_unmap_page(rx_ring->dev, rx_swbd.dma, PAGE_SIZE,
786 			       rx_swbd.dir);
787 		__free_page(rx_swbd.page);
788 	}
789 
790 	rx_ring->xdp.xdp_tx_in_flight--;
791 }
792 
793 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
794 {
795 	struct net_device *ndev = tx_ring->ndev;
796 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
797 	int tx_frm_cnt = 0, tx_byte_cnt = 0;
798 	struct enetc_tx_swbd *tx_swbd;
799 	int i, bds_to_clean;
800 	bool do_twostep_tstamp;
801 	u64 tstamp = 0;
802 
803 	i = tx_ring->next_to_clean;
804 	tx_swbd = &tx_ring->tx_swbd[i];
805 
806 	bds_to_clean = enetc_bd_ready_count(tx_ring, i);
807 
808 	do_twostep_tstamp = false;
809 
810 	while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
811 		struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd);
812 		struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd);
813 		bool is_eof = tx_swbd->is_eof;
814 
815 		if (unlikely(tx_swbd->check_wb)) {
816 			union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
817 
818 			if (txbd->flags & ENETC_TXBD_FLAGS_W &&
819 			    tx_swbd->do_twostep_tstamp) {
820 				enetc_get_tx_tstamp(&priv->si->hw, txbd,
821 						    &tstamp);
822 				do_twostep_tstamp = true;
823 			}
824 		}
825 
826 		if (tx_swbd->is_xdp_tx)
827 			enetc_recycle_xdp_tx_buff(tx_ring, tx_swbd);
828 		else if (likely(tx_swbd->dma))
829 			enetc_unmap_tx_buff(tx_ring, tx_swbd);
830 
831 		if (xdp_frame) {
832 			xdp_return_frame(xdp_frame);
833 		} else if (skb) {
834 			if (unlikely(skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP)) {
835 				/* Start work to release lock for next one-step
836 				 * timestamping packet. And send one skb in
837 				 * tx_skbs queue if has.
838 				 */
839 				schedule_work(&priv->tx_onestep_tstamp);
840 			} else if (unlikely(do_twostep_tstamp)) {
841 				enetc_tstamp_tx(skb, tstamp);
842 				do_twostep_tstamp = false;
843 			}
844 			napi_consume_skb(skb, napi_budget);
845 		}
846 
847 		tx_byte_cnt += tx_swbd->len;
848 		/* Scrub the swbd here so we don't have to do that
849 		 * when we reuse it during xmit
850 		 */
851 		memset(tx_swbd, 0, sizeof(*tx_swbd));
852 
853 		bds_to_clean--;
854 		tx_swbd++;
855 		i++;
856 		if (unlikely(i == tx_ring->bd_count)) {
857 			i = 0;
858 			tx_swbd = tx_ring->tx_swbd;
859 		}
860 
861 		/* BD iteration loop end */
862 		if (is_eof) {
863 			tx_frm_cnt++;
864 			/* re-arm interrupt source */
865 			enetc_wr_reg_hot(tx_ring->idr, BIT(tx_ring->index) |
866 					 BIT(16 + tx_ring->index));
867 		}
868 
869 		if (unlikely(!bds_to_clean))
870 			bds_to_clean = enetc_bd_ready_count(tx_ring, i);
871 	}
872 
873 	tx_ring->next_to_clean = i;
874 	tx_ring->stats.packets += tx_frm_cnt;
875 	tx_ring->stats.bytes += tx_byte_cnt;
876 
877 	if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
878 		     __netif_subqueue_stopped(ndev, tx_ring->index) &&
879 		     (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
880 		netif_wake_subqueue(ndev, tx_ring->index);
881 	}
882 
883 	return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
884 }
885 
886 static bool enetc_new_page(struct enetc_bdr *rx_ring,
887 			   struct enetc_rx_swbd *rx_swbd)
888 {
889 	bool xdp = !!(rx_ring->xdp.prog);
890 	struct page *page;
891 	dma_addr_t addr;
892 
893 	page = dev_alloc_page();
894 	if (unlikely(!page))
895 		return false;
896 
897 	/* For XDP_TX, we forgo dma_unmap -> dma_map */
898 	rx_swbd->dir = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
899 
900 	addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, rx_swbd->dir);
901 	if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
902 		__free_page(page);
903 
904 		return false;
905 	}
906 
907 	rx_swbd->dma = addr;
908 	rx_swbd->page = page;
909 	rx_swbd->page_offset = rx_ring->buffer_offset;
910 
911 	return true;
912 }
913 
914 static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
915 {
916 	struct enetc_rx_swbd *rx_swbd;
917 	union enetc_rx_bd *rxbd;
918 	int i, j;
919 
920 	i = rx_ring->next_to_use;
921 	rx_swbd = &rx_ring->rx_swbd[i];
922 	rxbd = enetc_rxbd(rx_ring, i);
923 
924 	for (j = 0; j < buff_cnt; j++) {
925 		/* try reuse page */
926 		if (unlikely(!rx_swbd->page)) {
927 			if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
928 				rx_ring->stats.rx_alloc_errs++;
929 				break;
930 			}
931 		}
932 
933 		/* update RxBD */
934 		rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
935 					   rx_swbd->page_offset);
936 		/* clear 'R" as well */
937 		rxbd->r.lstatus = 0;
938 
939 		enetc_rxbd_next(rx_ring, &rxbd, &i);
940 		rx_swbd = &rx_ring->rx_swbd[i];
941 	}
942 
943 	if (likely(j)) {
944 		rx_ring->next_to_alloc = i; /* keep track from page reuse */
945 		rx_ring->next_to_use = i;
946 
947 		/* update ENETC's consumer index */
948 		enetc_wr_reg_hot(rx_ring->rcir, rx_ring->next_to_use);
949 	}
950 
951 	return j;
952 }
953 
954 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
955 static void enetc_get_rx_tstamp(struct net_device *ndev,
956 				union enetc_rx_bd *rxbd,
957 				struct sk_buff *skb)
958 {
959 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
960 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
961 	struct enetc_hw *hw = &priv->si->hw;
962 	u32 lo, hi, tstamp_lo;
963 	u64 tstamp;
964 
965 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
966 		lo = enetc_rd_reg_hot(hw->reg + ENETC_SICTR0);
967 		hi = enetc_rd_reg_hot(hw->reg + ENETC_SICTR1);
968 		rxbd = enetc_rxbd_ext(rxbd);
969 		tstamp_lo = le32_to_cpu(rxbd->ext.tstamp);
970 		if (lo <= tstamp_lo)
971 			hi -= 1;
972 
973 		tstamp = (u64)hi << 32 | tstamp_lo;
974 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
975 		shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
976 	}
977 }
978 #endif
979 
980 static void enetc_get_offloads(struct enetc_bdr *rx_ring,
981 			       union enetc_rx_bd *rxbd, struct sk_buff *skb)
982 {
983 	struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
984 
985 	/* TODO: hashing */
986 	if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
987 		u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
988 
989 		skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
990 		skb->ip_summed = CHECKSUM_COMPLETE;
991 	}
992 
993 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN) {
994 		__be16 tpid = 0;
995 
996 		switch (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TPID) {
997 		case 0:
998 			tpid = htons(ETH_P_8021Q);
999 			break;
1000 		case 1:
1001 			tpid = htons(ETH_P_8021AD);
1002 			break;
1003 		case 2:
1004 			tpid = htons(enetc_port_rd(&priv->si->hw,
1005 						   ENETC_PCVLANR1));
1006 			break;
1007 		case 3:
1008 			tpid = htons(enetc_port_rd(&priv->si->hw,
1009 						   ENETC_PCVLANR2));
1010 			break;
1011 		default:
1012 			break;
1013 		}
1014 
1015 		__vlan_hwaccel_put_tag(skb, tpid, le16_to_cpu(rxbd->r.vlan_opt));
1016 	}
1017 
1018 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
1019 	if (priv->active_offloads & ENETC_F_RX_TSTAMP)
1020 		enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
1021 #endif
1022 }
1023 
1024 /* This gets called during the non-XDP NAPI poll cycle as well as on XDP_PASS,
1025  * so it needs to work with both DMA_FROM_DEVICE as well as DMA_BIDIRECTIONAL
1026  * mapped buffers.
1027  */
1028 static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
1029 					       int i, u16 size)
1030 {
1031 	struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
1032 
1033 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
1034 				      rx_swbd->page_offset,
1035 				      size, rx_swbd->dir);
1036 	return rx_swbd;
1037 }
1038 
1039 /* Reuse the current page without performing half-page buffer flipping */
1040 static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
1041 			      struct enetc_rx_swbd *rx_swbd)
1042 {
1043 	size_t buffer_size = ENETC_RXB_TRUESIZE - rx_ring->buffer_offset;
1044 
1045 	enetc_reuse_page(rx_ring, rx_swbd);
1046 
1047 	dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
1048 					 rx_swbd->page_offset,
1049 					 buffer_size, rx_swbd->dir);
1050 
1051 	rx_swbd->page = NULL;
1052 }
1053 
1054 /* Reuse the current page by performing half-page buffer flipping */
1055 static void enetc_flip_rx_buff(struct enetc_bdr *rx_ring,
1056 			       struct enetc_rx_swbd *rx_swbd)
1057 {
1058 	if (likely(enetc_page_reusable(rx_swbd->page))) {
1059 		rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
1060 		page_ref_inc(rx_swbd->page);
1061 
1062 		enetc_put_rx_buff(rx_ring, rx_swbd);
1063 	} else {
1064 		dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
1065 			       rx_swbd->dir);
1066 		rx_swbd->page = NULL;
1067 	}
1068 }
1069 
1070 static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
1071 						int i, u16 size)
1072 {
1073 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1074 	struct sk_buff *skb;
1075 	void *ba;
1076 
1077 	ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
1078 	skb = build_skb(ba - rx_ring->buffer_offset, ENETC_RXB_TRUESIZE);
1079 	if (unlikely(!skb)) {
1080 		rx_ring->stats.rx_alloc_errs++;
1081 		return NULL;
1082 	}
1083 
1084 	skb_reserve(skb, rx_ring->buffer_offset);
1085 	__skb_put(skb, size);
1086 
1087 	enetc_flip_rx_buff(rx_ring, rx_swbd);
1088 
1089 	return skb;
1090 }
1091 
1092 static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
1093 				     u16 size, struct sk_buff *skb)
1094 {
1095 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1096 
1097 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
1098 			rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
1099 
1100 	enetc_flip_rx_buff(rx_ring, rx_swbd);
1101 }
1102 
1103 static bool enetc_check_bd_errors_and_consume(struct enetc_bdr *rx_ring,
1104 					      u32 bd_status,
1105 					      union enetc_rx_bd **rxbd, int *i)
1106 {
1107 	if (likely(!(bd_status & ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))))
1108 		return false;
1109 
1110 	enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]);
1111 	enetc_rxbd_next(rx_ring, rxbd, i);
1112 
1113 	while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
1114 		dma_rmb();
1115 		bd_status = le32_to_cpu((*rxbd)->r.lstatus);
1116 
1117 		enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]);
1118 		enetc_rxbd_next(rx_ring, rxbd, i);
1119 	}
1120 
1121 	rx_ring->ndev->stats.rx_dropped++;
1122 	rx_ring->ndev->stats.rx_errors++;
1123 
1124 	return true;
1125 }
1126 
1127 static struct sk_buff *enetc_build_skb(struct enetc_bdr *rx_ring,
1128 				       u32 bd_status, union enetc_rx_bd **rxbd,
1129 				       int *i, int *cleaned_cnt, int buffer_size)
1130 {
1131 	struct sk_buff *skb;
1132 	u16 size;
1133 
1134 	size = le16_to_cpu((*rxbd)->r.buf_len);
1135 	skb = enetc_map_rx_buff_to_skb(rx_ring, *i, size);
1136 	if (!skb)
1137 		return NULL;
1138 
1139 	enetc_get_offloads(rx_ring, *rxbd, skb);
1140 
1141 	(*cleaned_cnt)++;
1142 
1143 	enetc_rxbd_next(rx_ring, rxbd, i);
1144 
1145 	/* not last BD in frame? */
1146 	while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
1147 		bd_status = le32_to_cpu((*rxbd)->r.lstatus);
1148 		size = buffer_size;
1149 
1150 		if (bd_status & ENETC_RXBD_LSTATUS_F) {
1151 			dma_rmb();
1152 			size = le16_to_cpu((*rxbd)->r.buf_len);
1153 		}
1154 
1155 		enetc_add_rx_buff_to_skb(rx_ring, *i, size, skb);
1156 
1157 		(*cleaned_cnt)++;
1158 
1159 		enetc_rxbd_next(rx_ring, rxbd, i);
1160 	}
1161 
1162 	skb_record_rx_queue(skb, rx_ring->index);
1163 	skb->protocol = eth_type_trans(skb, rx_ring->ndev);
1164 
1165 	return skb;
1166 }
1167 
1168 #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
1169 
1170 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
1171 			       struct napi_struct *napi, int work_limit)
1172 {
1173 	int rx_frm_cnt = 0, rx_byte_cnt = 0;
1174 	int cleaned_cnt, i;
1175 
1176 	cleaned_cnt = enetc_bd_unused(rx_ring);
1177 	/* next descriptor to process */
1178 	i = rx_ring->next_to_clean;
1179 
1180 	while (likely(rx_frm_cnt < work_limit)) {
1181 		union enetc_rx_bd *rxbd;
1182 		struct sk_buff *skb;
1183 		u32 bd_status;
1184 
1185 		if (cleaned_cnt >= ENETC_RXBD_BUNDLE)
1186 			cleaned_cnt -= enetc_refill_rx_ring(rx_ring,
1187 							    cleaned_cnt);
1188 
1189 		rxbd = enetc_rxbd(rx_ring, i);
1190 		bd_status = le32_to_cpu(rxbd->r.lstatus);
1191 		if (!bd_status)
1192 			break;
1193 
1194 		enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
1195 		dma_rmb(); /* for reading other rxbd fields */
1196 
1197 		if (enetc_check_bd_errors_and_consume(rx_ring, bd_status,
1198 						      &rxbd, &i))
1199 			break;
1200 
1201 		skb = enetc_build_skb(rx_ring, bd_status, &rxbd, &i,
1202 				      &cleaned_cnt, ENETC_RXB_DMA_SIZE);
1203 		if (!skb)
1204 			break;
1205 
1206 		rx_byte_cnt += skb->len;
1207 		rx_frm_cnt++;
1208 
1209 		napi_gro_receive(napi, skb);
1210 	}
1211 
1212 	rx_ring->next_to_clean = i;
1213 
1214 	rx_ring->stats.packets += rx_frm_cnt;
1215 	rx_ring->stats.bytes += rx_byte_cnt;
1216 
1217 	return rx_frm_cnt;
1218 }
1219 
1220 static void enetc_xdp_map_tx_buff(struct enetc_bdr *tx_ring, int i,
1221 				  struct enetc_tx_swbd *tx_swbd,
1222 				  int frm_len)
1223 {
1224 	union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
1225 
1226 	prefetchw(txbd);
1227 
1228 	enetc_clear_tx_bd(txbd);
1229 	txbd->addr = cpu_to_le64(tx_swbd->dma + tx_swbd->page_offset);
1230 	txbd->buf_len = cpu_to_le16(tx_swbd->len);
1231 	txbd->frm_len = cpu_to_le16(frm_len);
1232 
1233 	memcpy(&tx_ring->tx_swbd[i], tx_swbd, sizeof(*tx_swbd));
1234 }
1235 
1236 /* Puts in the TX ring one XDP frame, mapped as an array of TX software buffer
1237  * descriptors.
1238  */
1239 static bool enetc_xdp_tx(struct enetc_bdr *tx_ring,
1240 			 struct enetc_tx_swbd *xdp_tx_arr, int num_tx_swbd)
1241 {
1242 	struct enetc_tx_swbd *tmp_tx_swbd = xdp_tx_arr;
1243 	int i, k, frm_len = tmp_tx_swbd->len;
1244 
1245 	if (unlikely(enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(num_tx_swbd)))
1246 		return false;
1247 
1248 	while (unlikely(!tmp_tx_swbd->is_eof)) {
1249 		tmp_tx_swbd++;
1250 		frm_len += tmp_tx_swbd->len;
1251 	}
1252 
1253 	i = tx_ring->next_to_use;
1254 
1255 	for (k = 0; k < num_tx_swbd; k++) {
1256 		struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[k];
1257 
1258 		enetc_xdp_map_tx_buff(tx_ring, i, xdp_tx_swbd, frm_len);
1259 
1260 		/* last BD needs 'F' bit set */
1261 		if (xdp_tx_swbd->is_eof) {
1262 			union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
1263 
1264 			txbd->flags = ENETC_TXBD_FLAGS_F;
1265 		}
1266 
1267 		enetc_bdr_idx_inc(tx_ring, &i);
1268 	}
1269 
1270 	tx_ring->next_to_use = i;
1271 
1272 	return true;
1273 }
1274 
1275 static int enetc_xdp_frame_to_xdp_tx_swbd(struct enetc_bdr *tx_ring,
1276 					  struct enetc_tx_swbd *xdp_tx_arr,
1277 					  struct xdp_frame *xdp_frame)
1278 {
1279 	struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[0];
1280 	struct skb_shared_info *shinfo;
1281 	void *data = xdp_frame->data;
1282 	int len = xdp_frame->len;
1283 	skb_frag_t *frag;
1284 	dma_addr_t dma;
1285 	unsigned int f;
1286 	int n = 0;
1287 
1288 	dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
1289 	if (unlikely(dma_mapping_error(tx_ring->dev, dma))) {
1290 		netdev_err(tx_ring->ndev, "DMA map error\n");
1291 		return -1;
1292 	}
1293 
1294 	xdp_tx_swbd->dma = dma;
1295 	xdp_tx_swbd->dir = DMA_TO_DEVICE;
1296 	xdp_tx_swbd->len = len;
1297 	xdp_tx_swbd->is_xdp_redirect = true;
1298 	xdp_tx_swbd->is_eof = false;
1299 	xdp_tx_swbd->xdp_frame = NULL;
1300 
1301 	n++;
1302 	xdp_tx_swbd = &xdp_tx_arr[n];
1303 
1304 	shinfo = xdp_get_shared_info_from_frame(xdp_frame);
1305 
1306 	for (f = 0, frag = &shinfo->frags[0]; f < shinfo->nr_frags;
1307 	     f++, frag++) {
1308 		data = skb_frag_address(frag);
1309 		len = skb_frag_size(frag);
1310 
1311 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
1312 		if (unlikely(dma_mapping_error(tx_ring->dev, dma))) {
1313 			/* Undo the DMA mapping for all fragments */
1314 			while (--n >= 0)
1315 				enetc_unmap_tx_buff(tx_ring, &xdp_tx_arr[n]);
1316 
1317 			netdev_err(tx_ring->ndev, "DMA map error\n");
1318 			return -1;
1319 		}
1320 
1321 		xdp_tx_swbd->dma = dma;
1322 		xdp_tx_swbd->dir = DMA_TO_DEVICE;
1323 		xdp_tx_swbd->len = len;
1324 		xdp_tx_swbd->is_xdp_redirect = true;
1325 		xdp_tx_swbd->is_eof = false;
1326 		xdp_tx_swbd->xdp_frame = NULL;
1327 
1328 		n++;
1329 		xdp_tx_swbd = &xdp_tx_arr[n];
1330 	}
1331 
1332 	xdp_tx_arr[n - 1].is_eof = true;
1333 	xdp_tx_arr[n - 1].xdp_frame = xdp_frame;
1334 
1335 	return n;
1336 }
1337 
1338 int enetc_xdp_xmit(struct net_device *ndev, int num_frames,
1339 		   struct xdp_frame **frames, u32 flags)
1340 {
1341 	struct enetc_tx_swbd xdp_redirect_arr[ENETC_MAX_SKB_FRAGS] = {0};
1342 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1343 	struct enetc_bdr *tx_ring;
1344 	int xdp_tx_bd_cnt, i, k;
1345 	int xdp_tx_frm_cnt = 0;
1346 
1347 	enetc_lock_mdio();
1348 
1349 	tx_ring = priv->xdp_tx_ring[smp_processor_id()];
1350 
1351 	prefetchw(ENETC_TXBD(*tx_ring, tx_ring->next_to_use));
1352 
1353 	for (k = 0; k < num_frames; k++) {
1354 		xdp_tx_bd_cnt = enetc_xdp_frame_to_xdp_tx_swbd(tx_ring,
1355 							       xdp_redirect_arr,
1356 							       frames[k]);
1357 		if (unlikely(xdp_tx_bd_cnt < 0))
1358 			break;
1359 
1360 		if (unlikely(!enetc_xdp_tx(tx_ring, xdp_redirect_arr,
1361 					   xdp_tx_bd_cnt))) {
1362 			for (i = 0; i < xdp_tx_bd_cnt; i++)
1363 				enetc_unmap_tx_buff(tx_ring,
1364 						    &xdp_redirect_arr[i]);
1365 			tx_ring->stats.xdp_tx_drops++;
1366 			break;
1367 		}
1368 
1369 		xdp_tx_frm_cnt++;
1370 	}
1371 
1372 	if (unlikely((flags & XDP_XMIT_FLUSH) || k != xdp_tx_frm_cnt))
1373 		enetc_update_tx_ring_tail(tx_ring);
1374 
1375 	tx_ring->stats.xdp_tx += xdp_tx_frm_cnt;
1376 
1377 	enetc_unlock_mdio();
1378 
1379 	return xdp_tx_frm_cnt;
1380 }
1381 
1382 static void enetc_map_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i,
1383 				     struct xdp_buff *xdp_buff, u16 size)
1384 {
1385 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1386 	void *hard_start = page_address(rx_swbd->page) + rx_swbd->page_offset;
1387 	struct skb_shared_info *shinfo;
1388 
1389 	/* To be used for XDP_TX */
1390 	rx_swbd->len = size;
1391 
1392 	xdp_prepare_buff(xdp_buff, hard_start - rx_ring->buffer_offset,
1393 			 rx_ring->buffer_offset, size, false);
1394 
1395 	shinfo = xdp_get_shared_info_from_buff(xdp_buff);
1396 	shinfo->nr_frags = 0;
1397 }
1398 
1399 static void enetc_add_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i,
1400 				     u16 size, struct xdp_buff *xdp_buff)
1401 {
1402 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp_buff);
1403 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1404 	skb_frag_t *frag = &shinfo->frags[shinfo->nr_frags];
1405 
1406 	/* To be used for XDP_TX */
1407 	rx_swbd->len = size;
1408 
1409 	skb_frag_off_set(frag, rx_swbd->page_offset);
1410 	skb_frag_size_set(frag, size);
1411 	__skb_frag_set_page(frag, rx_swbd->page);
1412 
1413 	shinfo->nr_frags++;
1414 }
1415 
1416 static void enetc_build_xdp_buff(struct enetc_bdr *rx_ring, u32 bd_status,
1417 				 union enetc_rx_bd **rxbd, int *i,
1418 				 int *cleaned_cnt, struct xdp_buff *xdp_buff)
1419 {
1420 	u16 size = le16_to_cpu((*rxbd)->r.buf_len);
1421 
1422 	xdp_init_buff(xdp_buff, ENETC_RXB_TRUESIZE, &rx_ring->xdp.rxq);
1423 
1424 	enetc_map_rx_buff_to_xdp(rx_ring, *i, xdp_buff, size);
1425 	(*cleaned_cnt)++;
1426 	enetc_rxbd_next(rx_ring, rxbd, i);
1427 
1428 	/* not last BD in frame? */
1429 	while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
1430 		bd_status = le32_to_cpu((*rxbd)->r.lstatus);
1431 		size = ENETC_RXB_DMA_SIZE_XDP;
1432 
1433 		if (bd_status & ENETC_RXBD_LSTATUS_F) {
1434 			dma_rmb();
1435 			size = le16_to_cpu((*rxbd)->r.buf_len);
1436 		}
1437 
1438 		enetc_add_rx_buff_to_xdp(rx_ring, *i, size, xdp_buff);
1439 		(*cleaned_cnt)++;
1440 		enetc_rxbd_next(rx_ring, rxbd, i);
1441 	}
1442 }
1443 
1444 /* Convert RX buffer descriptors to TX buffer descriptors. These will be
1445  * recycled back into the RX ring in enetc_clean_tx_ring.
1446  */
1447 static int enetc_rx_swbd_to_xdp_tx_swbd(struct enetc_tx_swbd *xdp_tx_arr,
1448 					struct enetc_bdr *rx_ring,
1449 					int rx_ring_first, int rx_ring_last)
1450 {
1451 	int n = 0;
1452 
1453 	for (; rx_ring_first != rx_ring_last;
1454 	     n++, enetc_bdr_idx_inc(rx_ring, &rx_ring_first)) {
1455 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first];
1456 		struct enetc_tx_swbd *tx_swbd = &xdp_tx_arr[n];
1457 
1458 		/* No need to dma_map, we already have DMA_BIDIRECTIONAL */
1459 		tx_swbd->dma = rx_swbd->dma;
1460 		tx_swbd->dir = rx_swbd->dir;
1461 		tx_swbd->page = rx_swbd->page;
1462 		tx_swbd->page_offset = rx_swbd->page_offset;
1463 		tx_swbd->len = rx_swbd->len;
1464 		tx_swbd->is_dma_page = true;
1465 		tx_swbd->is_xdp_tx = true;
1466 		tx_swbd->is_eof = false;
1467 	}
1468 
1469 	/* We rely on caller providing an rx_ring_last > rx_ring_first */
1470 	xdp_tx_arr[n - 1].is_eof = true;
1471 
1472 	return n;
1473 }
1474 
1475 static void enetc_xdp_drop(struct enetc_bdr *rx_ring, int rx_ring_first,
1476 			   int rx_ring_last)
1477 {
1478 	while (rx_ring_first != rx_ring_last) {
1479 		enetc_put_rx_buff(rx_ring,
1480 				  &rx_ring->rx_swbd[rx_ring_first]);
1481 		enetc_bdr_idx_inc(rx_ring, &rx_ring_first);
1482 	}
1483 	rx_ring->stats.xdp_drops++;
1484 }
1485 
1486 static void enetc_xdp_free(struct enetc_bdr *rx_ring, int rx_ring_first,
1487 			   int rx_ring_last)
1488 {
1489 	while (rx_ring_first != rx_ring_last) {
1490 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first];
1491 
1492 		if (rx_swbd->page) {
1493 			dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
1494 				       rx_swbd->dir);
1495 			__free_page(rx_swbd->page);
1496 			rx_swbd->page = NULL;
1497 		}
1498 		enetc_bdr_idx_inc(rx_ring, &rx_ring_first);
1499 	}
1500 	rx_ring->stats.xdp_redirect_failures++;
1501 }
1502 
1503 static int enetc_clean_rx_ring_xdp(struct enetc_bdr *rx_ring,
1504 				   struct napi_struct *napi, int work_limit,
1505 				   struct bpf_prog *prog)
1506 {
1507 	int xdp_tx_bd_cnt, xdp_tx_frm_cnt = 0, xdp_redirect_frm_cnt = 0;
1508 	struct enetc_tx_swbd xdp_tx_arr[ENETC_MAX_SKB_FRAGS] = {0};
1509 	struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
1510 	int rx_frm_cnt = 0, rx_byte_cnt = 0;
1511 	struct enetc_bdr *tx_ring;
1512 	int cleaned_cnt, i;
1513 	u32 xdp_act;
1514 
1515 	cleaned_cnt = enetc_bd_unused(rx_ring);
1516 	/* next descriptor to process */
1517 	i = rx_ring->next_to_clean;
1518 
1519 	while (likely(rx_frm_cnt < work_limit)) {
1520 		union enetc_rx_bd *rxbd, *orig_rxbd;
1521 		int orig_i, orig_cleaned_cnt;
1522 		struct xdp_buff xdp_buff;
1523 		struct sk_buff *skb;
1524 		int tmp_orig_i, err;
1525 		u32 bd_status;
1526 
1527 		rxbd = enetc_rxbd(rx_ring, i);
1528 		bd_status = le32_to_cpu(rxbd->r.lstatus);
1529 		if (!bd_status)
1530 			break;
1531 
1532 		enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
1533 		dma_rmb(); /* for reading other rxbd fields */
1534 
1535 		if (enetc_check_bd_errors_and_consume(rx_ring, bd_status,
1536 						      &rxbd, &i))
1537 			break;
1538 
1539 		orig_rxbd = rxbd;
1540 		orig_cleaned_cnt = cleaned_cnt;
1541 		orig_i = i;
1542 
1543 		enetc_build_xdp_buff(rx_ring, bd_status, &rxbd, &i,
1544 				     &cleaned_cnt, &xdp_buff);
1545 
1546 		xdp_act = bpf_prog_run_xdp(prog, &xdp_buff);
1547 
1548 		switch (xdp_act) {
1549 		default:
1550 			bpf_warn_invalid_xdp_action(rx_ring->ndev, prog, xdp_act);
1551 			fallthrough;
1552 		case XDP_ABORTED:
1553 			trace_xdp_exception(rx_ring->ndev, prog, xdp_act);
1554 			fallthrough;
1555 		case XDP_DROP:
1556 			enetc_xdp_drop(rx_ring, orig_i, i);
1557 			break;
1558 		case XDP_PASS:
1559 			rxbd = orig_rxbd;
1560 			cleaned_cnt = orig_cleaned_cnt;
1561 			i = orig_i;
1562 
1563 			skb = enetc_build_skb(rx_ring, bd_status, &rxbd,
1564 					      &i, &cleaned_cnt,
1565 					      ENETC_RXB_DMA_SIZE_XDP);
1566 			if (unlikely(!skb))
1567 				goto out;
1568 
1569 			napi_gro_receive(napi, skb);
1570 			break;
1571 		case XDP_TX:
1572 			tx_ring = priv->xdp_tx_ring[rx_ring->index];
1573 			xdp_tx_bd_cnt = enetc_rx_swbd_to_xdp_tx_swbd(xdp_tx_arr,
1574 								     rx_ring,
1575 								     orig_i, i);
1576 
1577 			if (!enetc_xdp_tx(tx_ring, xdp_tx_arr, xdp_tx_bd_cnt)) {
1578 				enetc_xdp_drop(rx_ring, orig_i, i);
1579 				tx_ring->stats.xdp_tx_drops++;
1580 			} else {
1581 				tx_ring->stats.xdp_tx += xdp_tx_bd_cnt;
1582 				rx_ring->xdp.xdp_tx_in_flight += xdp_tx_bd_cnt;
1583 				xdp_tx_frm_cnt++;
1584 				/* The XDP_TX enqueue was successful, so we
1585 				 * need to scrub the RX software BDs because
1586 				 * the ownership of the buffers no longer
1587 				 * belongs to the RX ring, and we must prevent
1588 				 * enetc_refill_rx_ring() from reusing
1589 				 * rx_swbd->page.
1590 				 */
1591 				while (orig_i != i) {
1592 					rx_ring->rx_swbd[orig_i].page = NULL;
1593 					enetc_bdr_idx_inc(rx_ring, &orig_i);
1594 				}
1595 			}
1596 			break;
1597 		case XDP_REDIRECT:
1598 			/* xdp_return_frame does not support S/G in the sense
1599 			 * that it leaks the fragments (__xdp_return should not
1600 			 * call page_frag_free only for the initial buffer).
1601 			 * Until XDP_REDIRECT gains support for S/G let's keep
1602 			 * the code structure in place, but dead. We drop the
1603 			 * S/G frames ourselves to avoid memory leaks which
1604 			 * would otherwise leave the kernel OOM.
1605 			 */
1606 			if (unlikely(cleaned_cnt - orig_cleaned_cnt != 1)) {
1607 				enetc_xdp_drop(rx_ring, orig_i, i);
1608 				rx_ring->stats.xdp_redirect_sg++;
1609 				break;
1610 			}
1611 
1612 			tmp_orig_i = orig_i;
1613 
1614 			while (orig_i != i) {
1615 				enetc_flip_rx_buff(rx_ring,
1616 						   &rx_ring->rx_swbd[orig_i]);
1617 				enetc_bdr_idx_inc(rx_ring, &orig_i);
1618 			}
1619 
1620 			err = xdp_do_redirect(rx_ring->ndev, &xdp_buff, prog);
1621 			if (unlikely(err)) {
1622 				enetc_xdp_free(rx_ring, tmp_orig_i, i);
1623 			} else {
1624 				xdp_redirect_frm_cnt++;
1625 				rx_ring->stats.xdp_redirect++;
1626 			}
1627 		}
1628 
1629 		rx_frm_cnt++;
1630 	}
1631 
1632 out:
1633 	rx_ring->next_to_clean = i;
1634 
1635 	rx_ring->stats.packets += rx_frm_cnt;
1636 	rx_ring->stats.bytes += rx_byte_cnt;
1637 
1638 	if (xdp_redirect_frm_cnt)
1639 		xdp_do_flush_map();
1640 
1641 	if (xdp_tx_frm_cnt)
1642 		enetc_update_tx_ring_tail(tx_ring);
1643 
1644 	if (cleaned_cnt > rx_ring->xdp.xdp_tx_in_flight)
1645 		enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring) -
1646 				     rx_ring->xdp.xdp_tx_in_flight);
1647 
1648 	return rx_frm_cnt;
1649 }
1650 
1651 static int enetc_poll(struct napi_struct *napi, int budget)
1652 {
1653 	struct enetc_int_vector
1654 		*v = container_of(napi, struct enetc_int_vector, napi);
1655 	struct enetc_bdr *rx_ring = &v->rx_ring;
1656 	struct bpf_prog *prog;
1657 	bool complete = true;
1658 	int work_done;
1659 	int i;
1660 
1661 	enetc_lock_mdio();
1662 
1663 	for (i = 0; i < v->count_tx_rings; i++)
1664 		if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
1665 			complete = false;
1666 
1667 	prog = rx_ring->xdp.prog;
1668 	if (prog)
1669 		work_done = enetc_clean_rx_ring_xdp(rx_ring, napi, budget, prog);
1670 	else
1671 		work_done = enetc_clean_rx_ring(rx_ring, napi, budget);
1672 	if (work_done == budget)
1673 		complete = false;
1674 	if (work_done)
1675 		v->rx_napi_work = true;
1676 
1677 	if (!complete) {
1678 		enetc_unlock_mdio();
1679 		return budget;
1680 	}
1681 
1682 	napi_complete_done(napi, work_done);
1683 
1684 	if (likely(v->rx_dim_en))
1685 		enetc_rx_net_dim(v);
1686 
1687 	v->rx_napi_work = false;
1688 
1689 	/* enable interrupts */
1690 	enetc_wr_reg_hot(v->rbier, ENETC_RBIER_RXTIE);
1691 
1692 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
1693 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i),
1694 				 ENETC_TBIER_TXTIE);
1695 
1696 	enetc_unlock_mdio();
1697 
1698 	return work_done;
1699 }
1700 
1701 /* Probing and Init */
1702 #define ENETC_MAX_RFS_SIZE 64
1703 void enetc_get_si_caps(struct enetc_si *si)
1704 {
1705 	struct enetc_hw *hw = &si->hw;
1706 	u32 val;
1707 
1708 	/* find out how many of various resources we have to work with */
1709 	val = enetc_rd(hw, ENETC_SICAPR0);
1710 	si->num_rx_rings = (val >> 16) & 0xff;
1711 	si->num_tx_rings = val & 0xff;
1712 
1713 	val = enetc_rd(hw, ENETC_SIRFSCAPR);
1714 	si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
1715 	si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
1716 
1717 	si->num_rss = 0;
1718 	val = enetc_rd(hw, ENETC_SIPCAPR0);
1719 	if (val & ENETC_SIPCAPR0_RSS) {
1720 		u32 rss;
1721 
1722 		rss = enetc_rd(hw, ENETC_SIRSSCAPR);
1723 		si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss);
1724 	}
1725 
1726 	if (val & ENETC_SIPCAPR0_QBV)
1727 		si->hw_features |= ENETC_SI_F_QBV;
1728 
1729 	if (val & ENETC_SIPCAPR0_PSFP)
1730 		si->hw_features |= ENETC_SI_F_PSFP;
1731 }
1732 
1733 static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size)
1734 {
1735 	r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size,
1736 					&r->bd_dma_base, GFP_KERNEL);
1737 	if (!r->bd_base)
1738 		return -ENOMEM;
1739 
1740 	/* h/w requires 128B alignment */
1741 	if (!IS_ALIGNED(r->bd_dma_base, 128)) {
1742 		dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base,
1743 				  r->bd_dma_base);
1744 		return -EINVAL;
1745 	}
1746 
1747 	return 0;
1748 }
1749 
1750 static int enetc_alloc_txbdr(struct enetc_bdr *txr)
1751 {
1752 	int err;
1753 
1754 	txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd));
1755 	if (!txr->tx_swbd)
1756 		return -ENOMEM;
1757 
1758 	err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd));
1759 	if (err)
1760 		goto err_alloc_bdr;
1761 
1762 	txr->tso_headers = dma_alloc_coherent(txr->dev,
1763 					      txr->bd_count * TSO_HEADER_SIZE,
1764 					      &txr->tso_headers_dma,
1765 					      GFP_KERNEL);
1766 	if (!txr->tso_headers) {
1767 		err = -ENOMEM;
1768 		goto err_alloc_tso;
1769 	}
1770 
1771 	txr->next_to_clean = 0;
1772 	txr->next_to_use = 0;
1773 
1774 	return 0;
1775 
1776 err_alloc_tso:
1777 	dma_free_coherent(txr->dev, txr->bd_count * sizeof(union enetc_tx_bd),
1778 			  txr->bd_base, txr->bd_dma_base);
1779 	txr->bd_base = NULL;
1780 err_alloc_bdr:
1781 	vfree(txr->tx_swbd);
1782 	txr->tx_swbd = NULL;
1783 
1784 	return err;
1785 }
1786 
1787 static void enetc_free_txbdr(struct enetc_bdr *txr)
1788 {
1789 	int size, i;
1790 
1791 	for (i = 0; i < txr->bd_count; i++)
1792 		enetc_free_tx_frame(txr, &txr->tx_swbd[i]);
1793 
1794 	size = txr->bd_count * sizeof(union enetc_tx_bd);
1795 
1796 	dma_free_coherent(txr->dev, txr->bd_count * TSO_HEADER_SIZE,
1797 			  txr->tso_headers, txr->tso_headers_dma);
1798 	txr->tso_headers = NULL;
1799 
1800 	dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base);
1801 	txr->bd_base = NULL;
1802 
1803 	vfree(txr->tx_swbd);
1804 	txr->tx_swbd = NULL;
1805 }
1806 
1807 static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
1808 {
1809 	int i, err;
1810 
1811 	for (i = 0; i < priv->num_tx_rings; i++) {
1812 		err = enetc_alloc_txbdr(priv->tx_ring[i]);
1813 
1814 		if (err)
1815 			goto fail;
1816 	}
1817 
1818 	return 0;
1819 
1820 fail:
1821 	while (i-- > 0)
1822 		enetc_free_txbdr(priv->tx_ring[i]);
1823 
1824 	return err;
1825 }
1826 
1827 static void enetc_free_tx_resources(struct enetc_ndev_priv *priv)
1828 {
1829 	int i;
1830 
1831 	for (i = 0; i < priv->num_tx_rings; i++)
1832 		enetc_free_txbdr(priv->tx_ring[i]);
1833 }
1834 
1835 static int enetc_alloc_rxbdr(struct enetc_bdr *rxr, bool extended)
1836 {
1837 	size_t size = sizeof(union enetc_rx_bd);
1838 	int err;
1839 
1840 	rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd));
1841 	if (!rxr->rx_swbd)
1842 		return -ENOMEM;
1843 
1844 	if (extended)
1845 		size *= 2;
1846 
1847 	err = enetc_dma_alloc_bdr(rxr, size);
1848 	if (err) {
1849 		vfree(rxr->rx_swbd);
1850 		return err;
1851 	}
1852 
1853 	rxr->next_to_clean = 0;
1854 	rxr->next_to_use = 0;
1855 	rxr->next_to_alloc = 0;
1856 	rxr->ext_en = extended;
1857 
1858 	return 0;
1859 }
1860 
1861 static void enetc_free_rxbdr(struct enetc_bdr *rxr)
1862 {
1863 	int size;
1864 
1865 	size = rxr->bd_count * sizeof(union enetc_rx_bd);
1866 
1867 	dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base);
1868 	rxr->bd_base = NULL;
1869 
1870 	vfree(rxr->rx_swbd);
1871 	rxr->rx_swbd = NULL;
1872 }
1873 
1874 static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv)
1875 {
1876 	bool extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP);
1877 	int i, err;
1878 
1879 	for (i = 0; i < priv->num_rx_rings; i++) {
1880 		err = enetc_alloc_rxbdr(priv->rx_ring[i], extended);
1881 
1882 		if (err)
1883 			goto fail;
1884 	}
1885 
1886 	return 0;
1887 
1888 fail:
1889 	while (i-- > 0)
1890 		enetc_free_rxbdr(priv->rx_ring[i]);
1891 
1892 	return err;
1893 }
1894 
1895 static void enetc_free_rx_resources(struct enetc_ndev_priv *priv)
1896 {
1897 	int i;
1898 
1899 	for (i = 0; i < priv->num_rx_rings; i++)
1900 		enetc_free_rxbdr(priv->rx_ring[i]);
1901 }
1902 
1903 static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
1904 {
1905 	int i;
1906 
1907 	if (!tx_ring->tx_swbd)
1908 		return;
1909 
1910 	for (i = 0; i < tx_ring->bd_count; i++) {
1911 		struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
1912 
1913 		enetc_free_tx_frame(tx_ring, tx_swbd);
1914 	}
1915 
1916 	tx_ring->next_to_clean = 0;
1917 	tx_ring->next_to_use = 0;
1918 }
1919 
1920 static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
1921 {
1922 	int i;
1923 
1924 	if (!rx_ring->rx_swbd)
1925 		return;
1926 
1927 	for (i = 0; i < rx_ring->bd_count; i++) {
1928 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
1929 
1930 		if (!rx_swbd->page)
1931 			continue;
1932 
1933 		dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
1934 			       rx_swbd->dir);
1935 		__free_page(rx_swbd->page);
1936 		rx_swbd->page = NULL;
1937 	}
1938 
1939 	rx_ring->next_to_clean = 0;
1940 	rx_ring->next_to_use = 0;
1941 	rx_ring->next_to_alloc = 0;
1942 }
1943 
1944 static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
1945 {
1946 	int i;
1947 
1948 	for (i = 0; i < priv->num_rx_rings; i++)
1949 		enetc_free_rx_ring(priv->rx_ring[i]);
1950 
1951 	for (i = 0; i < priv->num_tx_rings; i++)
1952 		enetc_free_tx_ring(priv->tx_ring[i]);
1953 }
1954 
1955 static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
1956 {
1957 	int *rss_table;
1958 	int i;
1959 
1960 	rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
1961 	if (!rss_table)
1962 		return -ENOMEM;
1963 
1964 	/* Set up RSS table defaults */
1965 	for (i = 0; i < si->num_rss; i++)
1966 		rss_table[i] = i % num_groups;
1967 
1968 	enetc_set_rss_table(si, rss_table, si->num_rss);
1969 
1970 	kfree(rss_table);
1971 
1972 	return 0;
1973 }
1974 
1975 int enetc_configure_si(struct enetc_ndev_priv *priv)
1976 {
1977 	struct enetc_si *si = priv->si;
1978 	struct enetc_hw *hw = &si->hw;
1979 	int err;
1980 
1981 	/* set SI cache attributes */
1982 	enetc_wr(hw, ENETC_SICAR0,
1983 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
1984 	enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
1985 	/* enable SI */
1986 	enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
1987 
1988 	if (si->num_rss) {
1989 		err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
1990 		if (err)
1991 			return err;
1992 	}
1993 
1994 	return 0;
1995 }
1996 
1997 void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
1998 {
1999 	struct enetc_si *si = priv->si;
2000 	int cpus = num_online_cpus();
2001 
2002 	priv->tx_bd_count = ENETC_TX_RING_DEFAULT_SIZE;
2003 	priv->rx_bd_count = ENETC_RX_RING_DEFAULT_SIZE;
2004 
2005 	/* Enable all available TX rings in order to configure as many
2006 	 * priorities as possible, when needed.
2007 	 * TODO: Make # of TX rings run-time configurable
2008 	 */
2009 	priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
2010 	priv->num_tx_rings = si->num_tx_rings;
2011 	priv->bdr_int_num = cpus;
2012 	priv->ic_mode = ENETC_IC_RX_ADAPTIVE | ENETC_IC_TX_MANUAL;
2013 	priv->tx_ictt = ENETC_TXIC_TIMETHR;
2014 }
2015 
2016 int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
2017 {
2018 	struct enetc_si *si = priv->si;
2019 
2020 	priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
2021 				  GFP_KERNEL);
2022 	if (!priv->cls_rules)
2023 		return -ENOMEM;
2024 
2025 	return 0;
2026 }
2027 
2028 void enetc_free_si_resources(struct enetc_ndev_priv *priv)
2029 {
2030 	kfree(priv->cls_rules);
2031 }
2032 
2033 static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
2034 {
2035 	int idx = tx_ring->index;
2036 	u32 tbmr;
2037 
2038 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
2039 		       lower_32_bits(tx_ring->bd_dma_base));
2040 
2041 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
2042 		       upper_32_bits(tx_ring->bd_dma_base));
2043 
2044 	WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
2045 	enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
2046 		       ENETC_RTBLENR_LEN(tx_ring->bd_count));
2047 
2048 	/* clearing PI/CI registers for Tx not supported, adjust sw indexes */
2049 	tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
2050 	tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
2051 
2052 	/* enable Tx ints by setting pkt thr to 1 */
2053 	enetc_txbdr_wr(hw, idx, ENETC_TBICR0, ENETC_TBICR0_ICEN | 0x1);
2054 
2055 	tbmr = ENETC_TBMR_EN;
2056 	if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
2057 		tbmr |= ENETC_TBMR_VIH;
2058 
2059 	/* enable ring */
2060 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
2061 
2062 	tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
2063 	tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
2064 	tx_ring->idr = hw->reg + ENETC_SITXIDR;
2065 }
2066 
2067 static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
2068 {
2069 	int idx = rx_ring->index;
2070 	u32 rbmr;
2071 
2072 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
2073 		       lower_32_bits(rx_ring->bd_dma_base));
2074 
2075 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
2076 		       upper_32_bits(rx_ring->bd_dma_base));
2077 
2078 	WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
2079 	enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
2080 		       ENETC_RTBLENR_LEN(rx_ring->bd_count));
2081 
2082 	if (rx_ring->xdp.prog)
2083 		enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE_XDP);
2084 	else
2085 		enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
2086 
2087 	enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
2088 
2089 	/* enable Rx ints by setting pkt thr to 1 */
2090 	enetc_rxbdr_wr(hw, idx, ENETC_RBICR0, ENETC_RBICR0_ICEN | 0x1);
2091 
2092 	rbmr = ENETC_RBMR_EN;
2093 
2094 	if (rx_ring->ext_en)
2095 		rbmr |= ENETC_RBMR_BDS;
2096 
2097 	if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
2098 		rbmr |= ENETC_RBMR_VTE;
2099 
2100 	rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
2101 	rx_ring->idr = hw->reg + ENETC_SIRXIDR;
2102 
2103 	enetc_lock_mdio();
2104 	enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
2105 	enetc_unlock_mdio();
2106 
2107 	/* enable ring */
2108 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
2109 }
2110 
2111 static void enetc_setup_bdrs(struct enetc_ndev_priv *priv)
2112 {
2113 	int i;
2114 
2115 	for (i = 0; i < priv->num_tx_rings; i++)
2116 		enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]);
2117 
2118 	for (i = 0; i < priv->num_rx_rings; i++)
2119 		enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]);
2120 }
2121 
2122 static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
2123 {
2124 	int idx = rx_ring->index;
2125 
2126 	/* disable EN bit on ring */
2127 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
2128 }
2129 
2130 static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
2131 {
2132 	int delay = 8, timeout = 100;
2133 	int idx = tx_ring->index;
2134 
2135 	/* disable EN bit on ring */
2136 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
2137 
2138 	/* wait for busy to clear */
2139 	while (delay < timeout &&
2140 	       enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
2141 		msleep(delay);
2142 		delay *= 2;
2143 	}
2144 
2145 	if (delay >= timeout)
2146 		netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
2147 			    idx);
2148 }
2149 
2150 static void enetc_clear_bdrs(struct enetc_ndev_priv *priv)
2151 {
2152 	int i;
2153 
2154 	for (i = 0; i < priv->num_tx_rings; i++)
2155 		enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]);
2156 
2157 	for (i = 0; i < priv->num_rx_rings; i++)
2158 		enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]);
2159 
2160 	udelay(1);
2161 }
2162 
2163 static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
2164 {
2165 	struct pci_dev *pdev = priv->si->pdev;
2166 	int i, j, err;
2167 
2168 	for (i = 0; i < priv->bdr_int_num; i++) {
2169 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
2170 		struct enetc_int_vector *v = priv->int_vector[i];
2171 		int entry = ENETC_BDR_INT_BASE_IDX + i;
2172 		struct enetc_hw *hw = &priv->si->hw;
2173 
2174 		snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
2175 			 priv->ndev->name, i);
2176 		err = request_irq(irq, enetc_msix, 0, v->name, v);
2177 		if (err) {
2178 			dev_err(priv->dev, "request_irq() failed!\n");
2179 			goto irq_err;
2180 		}
2181 		disable_irq(irq);
2182 
2183 		v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
2184 		v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
2185 		v->ricr1 = hw->reg + ENETC_BDR(RX, i, ENETC_RBICR1);
2186 
2187 		enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
2188 
2189 		for (j = 0; j < v->count_tx_rings; j++) {
2190 			int idx = v->tx_ring[j].index;
2191 
2192 			enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
2193 		}
2194 		irq_set_affinity_hint(irq, get_cpu_mask(i % num_online_cpus()));
2195 	}
2196 
2197 	return 0;
2198 
2199 irq_err:
2200 	while (i--) {
2201 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
2202 
2203 		irq_set_affinity_hint(irq, NULL);
2204 		free_irq(irq, priv->int_vector[i]);
2205 	}
2206 
2207 	return err;
2208 }
2209 
2210 static void enetc_free_irqs(struct enetc_ndev_priv *priv)
2211 {
2212 	struct pci_dev *pdev = priv->si->pdev;
2213 	int i;
2214 
2215 	for (i = 0; i < priv->bdr_int_num; i++) {
2216 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
2217 
2218 		irq_set_affinity_hint(irq, NULL);
2219 		free_irq(irq, priv->int_vector[i]);
2220 	}
2221 }
2222 
2223 static void enetc_setup_interrupts(struct enetc_ndev_priv *priv)
2224 {
2225 	struct enetc_hw *hw = &priv->si->hw;
2226 	u32 icpt, ictt;
2227 	int i;
2228 
2229 	/* enable Tx & Rx event indication */
2230 	if (priv->ic_mode &
2231 	    (ENETC_IC_RX_MANUAL | ENETC_IC_RX_ADAPTIVE)) {
2232 		icpt = ENETC_RBICR0_SET_ICPT(ENETC_RXIC_PKTTHR);
2233 		/* init to non-0 minimum, will be adjusted later */
2234 		ictt = 0x1;
2235 	} else {
2236 		icpt = 0x1; /* enable Rx ints by setting pkt thr to 1 */
2237 		ictt = 0;
2238 	}
2239 
2240 	for (i = 0; i < priv->num_rx_rings; i++) {
2241 		enetc_rxbdr_wr(hw, i, ENETC_RBICR1, ictt);
2242 		enetc_rxbdr_wr(hw, i, ENETC_RBICR0, ENETC_RBICR0_ICEN | icpt);
2243 		enetc_rxbdr_wr(hw, i, ENETC_RBIER, ENETC_RBIER_RXTIE);
2244 	}
2245 
2246 	if (priv->ic_mode & ENETC_IC_TX_MANUAL)
2247 		icpt = ENETC_TBICR0_SET_ICPT(ENETC_TXIC_PKTTHR);
2248 	else
2249 		icpt = 0x1; /* enable Tx ints by setting pkt thr to 1 */
2250 
2251 	for (i = 0; i < priv->num_tx_rings; i++) {
2252 		enetc_txbdr_wr(hw, i, ENETC_TBICR1, priv->tx_ictt);
2253 		enetc_txbdr_wr(hw, i, ENETC_TBICR0, ENETC_TBICR0_ICEN | icpt);
2254 		enetc_txbdr_wr(hw, i, ENETC_TBIER, ENETC_TBIER_TXTIE);
2255 	}
2256 }
2257 
2258 static void enetc_clear_interrupts(struct enetc_ndev_priv *priv)
2259 {
2260 	int i;
2261 
2262 	for (i = 0; i < priv->num_tx_rings; i++)
2263 		enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0);
2264 
2265 	for (i = 0; i < priv->num_rx_rings; i++)
2266 		enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0);
2267 }
2268 
2269 static int enetc_phylink_connect(struct net_device *ndev)
2270 {
2271 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2272 	struct ethtool_eee edata;
2273 	int err;
2274 
2275 	if (!priv->phylink)
2276 		return 0; /* phy-less mode */
2277 
2278 	err = phylink_of_phy_connect(priv->phylink, priv->dev->of_node, 0);
2279 	if (err) {
2280 		dev_err(&ndev->dev, "could not attach to PHY\n");
2281 		return err;
2282 	}
2283 
2284 	/* disable EEE autoneg, until ENETC driver supports it */
2285 	memset(&edata, 0, sizeof(struct ethtool_eee));
2286 	phylink_ethtool_set_eee(priv->phylink, &edata);
2287 
2288 	return 0;
2289 }
2290 
2291 static void enetc_tx_onestep_tstamp(struct work_struct *work)
2292 {
2293 	struct enetc_ndev_priv *priv;
2294 	struct sk_buff *skb;
2295 
2296 	priv = container_of(work, struct enetc_ndev_priv, tx_onestep_tstamp);
2297 
2298 	netif_tx_lock(priv->ndev);
2299 
2300 	clear_bit_unlock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS, &priv->flags);
2301 	skb = skb_dequeue(&priv->tx_skbs);
2302 	if (skb)
2303 		enetc_start_xmit(skb, priv->ndev);
2304 
2305 	netif_tx_unlock(priv->ndev);
2306 }
2307 
2308 static void enetc_tx_onestep_tstamp_init(struct enetc_ndev_priv *priv)
2309 {
2310 	INIT_WORK(&priv->tx_onestep_tstamp, enetc_tx_onestep_tstamp);
2311 	skb_queue_head_init(&priv->tx_skbs);
2312 }
2313 
2314 void enetc_start(struct net_device *ndev)
2315 {
2316 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2317 	int i;
2318 
2319 	enetc_setup_interrupts(priv);
2320 
2321 	for (i = 0; i < priv->bdr_int_num; i++) {
2322 		int irq = pci_irq_vector(priv->si->pdev,
2323 					 ENETC_BDR_INT_BASE_IDX + i);
2324 
2325 		napi_enable(&priv->int_vector[i]->napi);
2326 		enable_irq(irq);
2327 	}
2328 
2329 	if (priv->phylink)
2330 		phylink_start(priv->phylink);
2331 	else
2332 		netif_carrier_on(ndev);
2333 
2334 	netif_tx_start_all_queues(ndev);
2335 }
2336 
2337 int enetc_open(struct net_device *ndev)
2338 {
2339 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2340 	int num_stack_tx_queues;
2341 	int err;
2342 
2343 	err = enetc_setup_irqs(priv);
2344 	if (err)
2345 		return err;
2346 
2347 	err = enetc_phylink_connect(ndev);
2348 	if (err)
2349 		goto err_phy_connect;
2350 
2351 	err = enetc_alloc_tx_resources(priv);
2352 	if (err)
2353 		goto err_alloc_tx;
2354 
2355 	err = enetc_alloc_rx_resources(priv);
2356 	if (err)
2357 		goto err_alloc_rx;
2358 
2359 	num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
2360 
2361 	err = netif_set_real_num_tx_queues(ndev, num_stack_tx_queues);
2362 	if (err)
2363 		goto err_set_queues;
2364 
2365 	err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings);
2366 	if (err)
2367 		goto err_set_queues;
2368 
2369 	enetc_tx_onestep_tstamp_init(priv);
2370 	enetc_setup_bdrs(priv);
2371 	enetc_start(ndev);
2372 
2373 	return 0;
2374 
2375 err_set_queues:
2376 	enetc_free_rx_resources(priv);
2377 err_alloc_rx:
2378 	enetc_free_tx_resources(priv);
2379 err_alloc_tx:
2380 	if (priv->phylink)
2381 		phylink_disconnect_phy(priv->phylink);
2382 err_phy_connect:
2383 	enetc_free_irqs(priv);
2384 
2385 	return err;
2386 }
2387 
2388 void enetc_stop(struct net_device *ndev)
2389 {
2390 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2391 	int i;
2392 
2393 	netif_tx_stop_all_queues(ndev);
2394 
2395 	for (i = 0; i < priv->bdr_int_num; i++) {
2396 		int irq = pci_irq_vector(priv->si->pdev,
2397 					 ENETC_BDR_INT_BASE_IDX + i);
2398 
2399 		disable_irq(irq);
2400 		napi_synchronize(&priv->int_vector[i]->napi);
2401 		napi_disable(&priv->int_vector[i]->napi);
2402 	}
2403 
2404 	if (priv->phylink)
2405 		phylink_stop(priv->phylink);
2406 	else
2407 		netif_carrier_off(ndev);
2408 
2409 	enetc_clear_interrupts(priv);
2410 }
2411 
2412 int enetc_close(struct net_device *ndev)
2413 {
2414 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2415 
2416 	enetc_stop(ndev);
2417 	enetc_clear_bdrs(priv);
2418 
2419 	if (priv->phylink)
2420 		phylink_disconnect_phy(priv->phylink);
2421 	enetc_free_rxtx_rings(priv);
2422 	enetc_free_rx_resources(priv);
2423 	enetc_free_tx_resources(priv);
2424 	enetc_free_irqs(priv);
2425 
2426 	return 0;
2427 }
2428 
2429 static int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data)
2430 {
2431 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2432 	struct tc_mqprio_qopt *mqprio = type_data;
2433 	struct enetc_bdr *tx_ring;
2434 	int num_stack_tx_queues;
2435 	u8 num_tc;
2436 	int i;
2437 
2438 	num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
2439 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
2440 	num_tc = mqprio->num_tc;
2441 
2442 	if (!num_tc) {
2443 		netdev_reset_tc(ndev);
2444 		netif_set_real_num_tx_queues(ndev, num_stack_tx_queues);
2445 
2446 		/* Reset all ring priorities to 0 */
2447 		for (i = 0; i < priv->num_tx_rings; i++) {
2448 			tx_ring = priv->tx_ring[i];
2449 			enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, 0);
2450 		}
2451 
2452 		return 0;
2453 	}
2454 
2455 	/* Check if we have enough BD rings available to accommodate all TCs */
2456 	if (num_tc > num_stack_tx_queues) {
2457 		netdev_err(ndev, "Max %d traffic classes supported\n",
2458 			   priv->num_tx_rings);
2459 		return -EINVAL;
2460 	}
2461 
2462 	/* For the moment, we use only one BD ring per TC.
2463 	 *
2464 	 * Configure num_tc BD rings with increasing priorities.
2465 	 */
2466 	for (i = 0; i < num_tc; i++) {
2467 		tx_ring = priv->tx_ring[i];
2468 		enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, i);
2469 	}
2470 
2471 	/* Reset the number of netdev queues based on the TC count */
2472 	netif_set_real_num_tx_queues(ndev, num_tc);
2473 
2474 	netdev_set_num_tc(ndev, num_tc);
2475 
2476 	/* Each TC is associated with one netdev queue */
2477 	for (i = 0; i < num_tc; i++)
2478 		netdev_set_tc_queue(ndev, i, 1, i);
2479 
2480 	return 0;
2481 }
2482 
2483 int enetc_setup_tc(struct net_device *ndev, enum tc_setup_type type,
2484 		   void *type_data)
2485 {
2486 	switch (type) {
2487 	case TC_SETUP_QDISC_MQPRIO:
2488 		return enetc_setup_tc_mqprio(ndev, type_data);
2489 	case TC_SETUP_QDISC_TAPRIO:
2490 		return enetc_setup_tc_taprio(ndev, type_data);
2491 	case TC_SETUP_QDISC_CBS:
2492 		return enetc_setup_tc_cbs(ndev, type_data);
2493 	case TC_SETUP_QDISC_ETF:
2494 		return enetc_setup_tc_txtime(ndev, type_data);
2495 	case TC_SETUP_BLOCK:
2496 		return enetc_setup_tc_psfp(ndev, type_data);
2497 	default:
2498 		return -EOPNOTSUPP;
2499 	}
2500 }
2501 
2502 static int enetc_setup_xdp_prog(struct net_device *dev, struct bpf_prog *prog,
2503 				struct netlink_ext_ack *extack)
2504 {
2505 	struct enetc_ndev_priv *priv = netdev_priv(dev);
2506 	struct bpf_prog *old_prog;
2507 	bool is_up;
2508 	int i;
2509 
2510 	/* The buffer layout is changing, so we need to drain the old
2511 	 * RX buffers and seed new ones.
2512 	 */
2513 	is_up = netif_running(dev);
2514 	if (is_up)
2515 		dev_close(dev);
2516 
2517 	old_prog = xchg(&priv->xdp_prog, prog);
2518 	if (old_prog)
2519 		bpf_prog_put(old_prog);
2520 
2521 	for (i = 0; i < priv->num_rx_rings; i++) {
2522 		struct enetc_bdr *rx_ring = priv->rx_ring[i];
2523 
2524 		rx_ring->xdp.prog = prog;
2525 
2526 		if (prog)
2527 			rx_ring->buffer_offset = XDP_PACKET_HEADROOM;
2528 		else
2529 			rx_ring->buffer_offset = ENETC_RXB_PAD;
2530 	}
2531 
2532 	if (is_up)
2533 		return dev_open(dev, extack);
2534 
2535 	return 0;
2536 }
2537 
2538 int enetc_setup_bpf(struct net_device *dev, struct netdev_bpf *xdp)
2539 {
2540 	switch (xdp->command) {
2541 	case XDP_SETUP_PROG:
2542 		return enetc_setup_xdp_prog(dev, xdp->prog, xdp->extack);
2543 	default:
2544 		return -EINVAL;
2545 	}
2546 
2547 	return 0;
2548 }
2549 
2550 struct net_device_stats *enetc_get_stats(struct net_device *ndev)
2551 {
2552 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2553 	struct net_device_stats *stats = &ndev->stats;
2554 	unsigned long packets = 0, bytes = 0;
2555 	int i;
2556 
2557 	for (i = 0; i < priv->num_rx_rings; i++) {
2558 		packets += priv->rx_ring[i]->stats.packets;
2559 		bytes	+= priv->rx_ring[i]->stats.bytes;
2560 	}
2561 
2562 	stats->rx_packets = packets;
2563 	stats->rx_bytes = bytes;
2564 	bytes = 0;
2565 	packets = 0;
2566 
2567 	for (i = 0; i < priv->num_tx_rings; i++) {
2568 		packets += priv->tx_ring[i]->stats.packets;
2569 		bytes	+= priv->tx_ring[i]->stats.bytes;
2570 	}
2571 
2572 	stats->tx_packets = packets;
2573 	stats->tx_bytes = bytes;
2574 
2575 	return stats;
2576 }
2577 
2578 static int enetc_set_rss(struct net_device *ndev, int en)
2579 {
2580 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2581 	struct enetc_hw *hw = &priv->si->hw;
2582 	u32 reg;
2583 
2584 	enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
2585 
2586 	reg = enetc_rd(hw, ENETC_SIMR);
2587 	reg &= ~ENETC_SIMR_RSSE;
2588 	reg |= (en) ? ENETC_SIMR_RSSE : 0;
2589 	enetc_wr(hw, ENETC_SIMR, reg);
2590 
2591 	return 0;
2592 }
2593 
2594 static int enetc_set_psfp(struct net_device *ndev, int en)
2595 {
2596 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2597 	int err;
2598 
2599 	if (en) {
2600 		err = enetc_psfp_enable(priv);
2601 		if (err)
2602 			return err;
2603 
2604 		priv->active_offloads |= ENETC_F_QCI;
2605 		return 0;
2606 	}
2607 
2608 	err = enetc_psfp_disable(priv);
2609 	if (err)
2610 		return err;
2611 
2612 	priv->active_offloads &= ~ENETC_F_QCI;
2613 
2614 	return 0;
2615 }
2616 
2617 static void enetc_enable_rxvlan(struct net_device *ndev, bool en)
2618 {
2619 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2620 	int i;
2621 
2622 	for (i = 0; i < priv->num_rx_rings; i++)
2623 		enetc_bdr_enable_rxvlan(&priv->si->hw, i, en);
2624 }
2625 
2626 static void enetc_enable_txvlan(struct net_device *ndev, bool en)
2627 {
2628 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2629 	int i;
2630 
2631 	for (i = 0; i < priv->num_tx_rings; i++)
2632 		enetc_bdr_enable_txvlan(&priv->si->hw, i, en);
2633 }
2634 
2635 int enetc_set_features(struct net_device *ndev,
2636 		       netdev_features_t features)
2637 {
2638 	netdev_features_t changed = ndev->features ^ features;
2639 	int err = 0;
2640 
2641 	if (changed & NETIF_F_RXHASH)
2642 		enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
2643 
2644 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2645 		enetc_enable_rxvlan(ndev,
2646 				    !!(features & NETIF_F_HW_VLAN_CTAG_RX));
2647 
2648 	if (changed & NETIF_F_HW_VLAN_CTAG_TX)
2649 		enetc_enable_txvlan(ndev,
2650 				    !!(features & NETIF_F_HW_VLAN_CTAG_TX));
2651 
2652 	if (changed & NETIF_F_HW_TC)
2653 		err = enetc_set_psfp(ndev, !!(features & NETIF_F_HW_TC));
2654 
2655 	return err;
2656 }
2657 
2658 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
2659 static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
2660 {
2661 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2662 	struct hwtstamp_config config;
2663 	int ao;
2664 
2665 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2666 		return -EFAULT;
2667 
2668 	switch (config.tx_type) {
2669 	case HWTSTAMP_TX_OFF:
2670 		priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2671 		break;
2672 	case HWTSTAMP_TX_ON:
2673 		priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2674 		priv->active_offloads |= ENETC_F_TX_TSTAMP;
2675 		break;
2676 	case HWTSTAMP_TX_ONESTEP_SYNC:
2677 		priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2678 		priv->active_offloads |= ENETC_F_TX_ONESTEP_SYNC_TSTAMP;
2679 		break;
2680 	default:
2681 		return -ERANGE;
2682 	}
2683 
2684 	ao = priv->active_offloads;
2685 	switch (config.rx_filter) {
2686 	case HWTSTAMP_FILTER_NONE:
2687 		priv->active_offloads &= ~ENETC_F_RX_TSTAMP;
2688 		break;
2689 	default:
2690 		priv->active_offloads |= ENETC_F_RX_TSTAMP;
2691 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2692 	}
2693 
2694 	if (netif_running(ndev) && ao != priv->active_offloads) {
2695 		enetc_close(ndev);
2696 		enetc_open(ndev);
2697 	}
2698 
2699 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2700 	       -EFAULT : 0;
2701 }
2702 
2703 static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
2704 {
2705 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2706 	struct hwtstamp_config config;
2707 
2708 	config.flags = 0;
2709 
2710 	if (priv->active_offloads & ENETC_F_TX_ONESTEP_SYNC_TSTAMP)
2711 		config.tx_type = HWTSTAMP_TX_ONESTEP_SYNC;
2712 	else if (priv->active_offloads & ENETC_F_TX_TSTAMP)
2713 		config.tx_type = HWTSTAMP_TX_ON;
2714 	else
2715 		config.tx_type = HWTSTAMP_TX_OFF;
2716 
2717 	config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
2718 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
2719 
2720 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2721 	       -EFAULT : 0;
2722 }
2723 #endif
2724 
2725 int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2726 {
2727 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2728 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
2729 	if (cmd == SIOCSHWTSTAMP)
2730 		return enetc_hwtstamp_set(ndev, rq);
2731 	if (cmd == SIOCGHWTSTAMP)
2732 		return enetc_hwtstamp_get(ndev, rq);
2733 #endif
2734 
2735 	if (!priv->phylink)
2736 		return -EOPNOTSUPP;
2737 
2738 	return phylink_mii_ioctl(priv->phylink, rq, cmd);
2739 }
2740 
2741 int enetc_alloc_msix(struct enetc_ndev_priv *priv)
2742 {
2743 	struct pci_dev *pdev = priv->si->pdev;
2744 	int first_xdp_tx_ring;
2745 	int i, n, err, nvec;
2746 	int v_tx_rings;
2747 
2748 	nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
2749 	/* allocate MSIX for both messaging and Rx/Tx interrupts */
2750 	n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
2751 
2752 	if (n < 0)
2753 		return n;
2754 
2755 	if (n != nvec)
2756 		return -EPERM;
2757 
2758 	/* # of tx rings per int vector */
2759 	v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
2760 
2761 	for (i = 0; i < priv->bdr_int_num; i++) {
2762 		struct enetc_int_vector *v;
2763 		struct enetc_bdr *bdr;
2764 		int j;
2765 
2766 		v = kzalloc(struct_size(v, tx_ring, v_tx_rings), GFP_KERNEL);
2767 		if (!v) {
2768 			err = -ENOMEM;
2769 			goto fail;
2770 		}
2771 
2772 		priv->int_vector[i] = v;
2773 
2774 		bdr = &v->rx_ring;
2775 		bdr->index = i;
2776 		bdr->ndev = priv->ndev;
2777 		bdr->dev = priv->dev;
2778 		bdr->bd_count = priv->rx_bd_count;
2779 		bdr->buffer_offset = ENETC_RXB_PAD;
2780 		priv->rx_ring[i] = bdr;
2781 
2782 		err = xdp_rxq_info_reg(&bdr->xdp.rxq, priv->ndev, i, 0);
2783 		if (err) {
2784 			kfree(v);
2785 			goto fail;
2786 		}
2787 
2788 		err = xdp_rxq_info_reg_mem_model(&bdr->xdp.rxq,
2789 						 MEM_TYPE_PAGE_SHARED, NULL);
2790 		if (err) {
2791 			xdp_rxq_info_unreg(&bdr->xdp.rxq);
2792 			kfree(v);
2793 			goto fail;
2794 		}
2795 
2796 		/* init defaults for adaptive IC */
2797 		if (priv->ic_mode & ENETC_IC_RX_ADAPTIVE) {
2798 			v->rx_ictt = 0x1;
2799 			v->rx_dim_en = true;
2800 		}
2801 		INIT_WORK(&v->rx_dim.work, enetc_rx_dim_work);
2802 		netif_napi_add(priv->ndev, &v->napi, enetc_poll,
2803 			       NAPI_POLL_WEIGHT);
2804 		v->count_tx_rings = v_tx_rings;
2805 
2806 		for (j = 0; j < v_tx_rings; j++) {
2807 			int idx;
2808 
2809 			/* default tx ring mapping policy */
2810 			idx = priv->bdr_int_num * j + i;
2811 			__set_bit(idx, &v->tx_rings_map);
2812 			bdr = &v->tx_ring[j];
2813 			bdr->index = idx;
2814 			bdr->ndev = priv->ndev;
2815 			bdr->dev = priv->dev;
2816 			bdr->bd_count = priv->tx_bd_count;
2817 			priv->tx_ring[idx] = bdr;
2818 		}
2819 	}
2820 
2821 	first_xdp_tx_ring = priv->num_tx_rings - num_possible_cpus();
2822 	priv->xdp_tx_ring = &priv->tx_ring[first_xdp_tx_ring];
2823 
2824 	return 0;
2825 
2826 fail:
2827 	while (i--) {
2828 		struct enetc_int_vector *v = priv->int_vector[i];
2829 		struct enetc_bdr *rx_ring = &v->rx_ring;
2830 
2831 		xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq);
2832 		xdp_rxq_info_unreg(&rx_ring->xdp.rxq);
2833 		netif_napi_del(&v->napi);
2834 		cancel_work_sync(&v->rx_dim.work);
2835 		kfree(v);
2836 	}
2837 
2838 	pci_free_irq_vectors(pdev);
2839 
2840 	return err;
2841 }
2842 
2843 void enetc_free_msix(struct enetc_ndev_priv *priv)
2844 {
2845 	int i;
2846 
2847 	for (i = 0; i < priv->bdr_int_num; i++) {
2848 		struct enetc_int_vector *v = priv->int_vector[i];
2849 		struct enetc_bdr *rx_ring = &v->rx_ring;
2850 
2851 		xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq);
2852 		xdp_rxq_info_unreg(&rx_ring->xdp.rxq);
2853 		netif_napi_del(&v->napi);
2854 		cancel_work_sync(&v->rx_dim.work);
2855 	}
2856 
2857 	for (i = 0; i < priv->num_rx_rings; i++)
2858 		priv->rx_ring[i] = NULL;
2859 
2860 	for (i = 0; i < priv->num_tx_rings; i++)
2861 		priv->tx_ring[i] = NULL;
2862 
2863 	for (i = 0; i < priv->bdr_int_num; i++) {
2864 		kfree(priv->int_vector[i]);
2865 		priv->int_vector[i] = NULL;
2866 	}
2867 
2868 	/* disable all MSIX for this device */
2869 	pci_free_irq_vectors(priv->si->pdev);
2870 }
2871 
2872 static void enetc_kfree_si(struct enetc_si *si)
2873 {
2874 	char *p = (char *)si - si->pad;
2875 
2876 	kfree(p);
2877 }
2878 
2879 static void enetc_detect_errata(struct enetc_si *si)
2880 {
2881 	if (si->pdev->revision == ENETC_REV1)
2882 		si->errata = ENETC_ERR_VLAN_ISOL | ENETC_ERR_UCMCSWP;
2883 }
2884 
2885 int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
2886 {
2887 	struct enetc_si *si, *p;
2888 	struct enetc_hw *hw;
2889 	size_t alloc_size;
2890 	int err, len;
2891 
2892 	pcie_flr(pdev);
2893 	err = pci_enable_device_mem(pdev);
2894 	if (err)
2895 		return dev_err_probe(&pdev->dev, err, "device enable failed\n");
2896 
2897 	/* set up for high or low dma */
2898 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2899 	if (err) {
2900 		dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err);
2901 		goto err_dma;
2902 	}
2903 
2904 	err = pci_request_mem_regions(pdev, name);
2905 	if (err) {
2906 		dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
2907 		goto err_pci_mem_reg;
2908 	}
2909 
2910 	pci_set_master(pdev);
2911 
2912 	alloc_size = sizeof(struct enetc_si);
2913 	if (sizeof_priv) {
2914 		/* align priv to 32B */
2915 		alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
2916 		alloc_size += sizeof_priv;
2917 	}
2918 	/* force 32B alignment for enetc_si */
2919 	alloc_size += ENETC_SI_ALIGN - 1;
2920 
2921 	p = kzalloc(alloc_size, GFP_KERNEL);
2922 	if (!p) {
2923 		err = -ENOMEM;
2924 		goto err_alloc_si;
2925 	}
2926 
2927 	si = PTR_ALIGN(p, ENETC_SI_ALIGN);
2928 	si->pad = (char *)si - (char *)p;
2929 
2930 	pci_set_drvdata(pdev, si);
2931 	si->pdev = pdev;
2932 	hw = &si->hw;
2933 
2934 	len = pci_resource_len(pdev, ENETC_BAR_REGS);
2935 	hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
2936 	if (!hw->reg) {
2937 		err = -ENXIO;
2938 		dev_err(&pdev->dev, "ioremap() failed\n");
2939 		goto err_ioremap;
2940 	}
2941 	if (len > ENETC_PORT_BASE)
2942 		hw->port = hw->reg + ENETC_PORT_BASE;
2943 	if (len > ENETC_GLOBAL_BASE)
2944 		hw->global = hw->reg + ENETC_GLOBAL_BASE;
2945 
2946 	enetc_detect_errata(si);
2947 
2948 	return 0;
2949 
2950 err_ioremap:
2951 	enetc_kfree_si(si);
2952 err_alloc_si:
2953 	pci_release_mem_regions(pdev);
2954 err_pci_mem_reg:
2955 err_dma:
2956 	pci_disable_device(pdev);
2957 
2958 	return err;
2959 }
2960 
2961 void enetc_pci_remove(struct pci_dev *pdev)
2962 {
2963 	struct enetc_si *si = pci_get_drvdata(pdev);
2964 	struct enetc_hw *hw = &si->hw;
2965 
2966 	iounmap(hw->reg);
2967 	enetc_kfree_si(si);
2968 	pci_release_mem_regions(pdev);
2969 	pci_disable_device(pdev);
2970 }
2971