1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /* Copyright 2017-2019 NXP */
3 
4 #include "enetc.h"
5 #include <linux/bpf_trace.h>
6 #include <linux/tcp.h>
7 #include <linux/udp.h>
8 #include <linux/vmalloc.h>
9 #include <linux/ptp_classify.h>
10 #include <net/ip6_checksum.h>
11 #include <net/pkt_sched.h>
12 #include <net/tso.h>
13 
14 u32 enetc_port_mac_rd(struct enetc_si *si, u32 reg)
15 {
16 	return enetc_port_rd(&si->hw, reg);
17 }
18 EXPORT_SYMBOL_GPL(enetc_port_mac_rd);
19 
20 void enetc_port_mac_wr(struct enetc_si *si, u32 reg, u32 val)
21 {
22 	enetc_port_wr(&si->hw, reg, val);
23 	if (si->hw_features & ENETC_SI_F_QBU)
24 		enetc_port_wr(&si->hw, reg + ENETC_PMAC_OFFSET, val);
25 }
26 EXPORT_SYMBOL_GPL(enetc_port_mac_wr);
27 
28 static void enetc_change_preemptible_tcs(struct enetc_ndev_priv *priv,
29 					 u8 preemptible_tcs)
30 {
31 	priv->preemptible_tcs = preemptible_tcs;
32 	enetc_mm_commit_preemptible_tcs(priv);
33 }
34 
35 static int enetc_num_stack_tx_queues(struct enetc_ndev_priv *priv)
36 {
37 	int num_tx_rings = priv->num_tx_rings;
38 
39 	if (priv->xdp_prog)
40 		return num_tx_rings - num_possible_cpus();
41 
42 	return num_tx_rings;
43 }
44 
45 static struct enetc_bdr *enetc_rx_ring_from_xdp_tx_ring(struct enetc_ndev_priv *priv,
46 							struct enetc_bdr *tx_ring)
47 {
48 	int index = &priv->tx_ring[tx_ring->index] - priv->xdp_tx_ring;
49 
50 	return priv->rx_ring[index];
51 }
52 
53 static struct sk_buff *enetc_tx_swbd_get_skb(struct enetc_tx_swbd *tx_swbd)
54 {
55 	if (tx_swbd->is_xdp_tx || tx_swbd->is_xdp_redirect)
56 		return NULL;
57 
58 	return tx_swbd->skb;
59 }
60 
61 static struct xdp_frame *
62 enetc_tx_swbd_get_xdp_frame(struct enetc_tx_swbd *tx_swbd)
63 {
64 	if (tx_swbd->is_xdp_redirect)
65 		return tx_swbd->xdp_frame;
66 
67 	return NULL;
68 }
69 
70 static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
71 				struct enetc_tx_swbd *tx_swbd)
72 {
73 	/* For XDP_TX, pages come from RX, whereas for the other contexts where
74 	 * we have is_dma_page_set, those come from skb_frag_dma_map. We need
75 	 * to match the DMA mapping length, so we need to differentiate those.
76 	 */
77 	if (tx_swbd->is_dma_page)
78 		dma_unmap_page(tx_ring->dev, tx_swbd->dma,
79 			       tx_swbd->is_xdp_tx ? PAGE_SIZE : tx_swbd->len,
80 			       tx_swbd->dir);
81 	else
82 		dma_unmap_single(tx_ring->dev, tx_swbd->dma,
83 				 tx_swbd->len, tx_swbd->dir);
84 	tx_swbd->dma = 0;
85 }
86 
87 static void enetc_free_tx_frame(struct enetc_bdr *tx_ring,
88 				struct enetc_tx_swbd *tx_swbd)
89 {
90 	struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd);
91 	struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd);
92 
93 	if (tx_swbd->dma)
94 		enetc_unmap_tx_buff(tx_ring, tx_swbd);
95 
96 	if (xdp_frame) {
97 		xdp_return_frame(tx_swbd->xdp_frame);
98 		tx_swbd->xdp_frame = NULL;
99 	} else if (skb) {
100 		dev_kfree_skb_any(skb);
101 		tx_swbd->skb = NULL;
102 	}
103 }
104 
105 /* Let H/W know BD ring has been updated */
106 static void enetc_update_tx_ring_tail(struct enetc_bdr *tx_ring)
107 {
108 	/* includes wmb() */
109 	enetc_wr_reg_hot(tx_ring->tpir, tx_ring->next_to_use);
110 }
111 
112 static int enetc_ptp_parse(struct sk_buff *skb, u8 *udp,
113 			   u8 *msgtype, u8 *twostep,
114 			   u16 *correction_offset, u16 *body_offset)
115 {
116 	unsigned int ptp_class;
117 	struct ptp_header *hdr;
118 	unsigned int type;
119 	u8 *base;
120 
121 	ptp_class = ptp_classify_raw(skb);
122 	if (ptp_class == PTP_CLASS_NONE)
123 		return -EINVAL;
124 
125 	hdr = ptp_parse_header(skb, ptp_class);
126 	if (!hdr)
127 		return -EINVAL;
128 
129 	type = ptp_class & PTP_CLASS_PMASK;
130 	if (type == PTP_CLASS_IPV4 || type == PTP_CLASS_IPV6)
131 		*udp = 1;
132 	else
133 		*udp = 0;
134 
135 	*msgtype = ptp_get_msgtype(hdr, ptp_class);
136 	*twostep = hdr->flag_field[0] & 0x2;
137 
138 	base = skb_mac_header(skb);
139 	*correction_offset = (u8 *)&hdr->correction - base;
140 	*body_offset = (u8 *)hdr + sizeof(struct ptp_header) - base;
141 
142 	return 0;
143 }
144 
145 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb)
146 {
147 	bool do_vlan, do_onestep_tstamp = false, do_twostep_tstamp = false;
148 	struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev);
149 	struct enetc_hw *hw = &priv->si->hw;
150 	struct enetc_tx_swbd *tx_swbd;
151 	int len = skb_headlen(skb);
152 	union enetc_tx_bd temp_bd;
153 	u8 msgtype, twostep, udp;
154 	union enetc_tx_bd *txbd;
155 	u16 offset1, offset2;
156 	int i, count = 0;
157 	skb_frag_t *frag;
158 	unsigned int f;
159 	dma_addr_t dma;
160 	u8 flags = 0;
161 
162 	i = tx_ring->next_to_use;
163 	txbd = ENETC_TXBD(*tx_ring, i);
164 	prefetchw(txbd);
165 
166 	dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
167 	if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
168 		goto dma_err;
169 
170 	temp_bd.addr = cpu_to_le64(dma);
171 	temp_bd.buf_len = cpu_to_le16(len);
172 	temp_bd.lstatus = 0;
173 
174 	tx_swbd = &tx_ring->tx_swbd[i];
175 	tx_swbd->dma = dma;
176 	tx_swbd->len = len;
177 	tx_swbd->is_dma_page = 0;
178 	tx_swbd->dir = DMA_TO_DEVICE;
179 	count++;
180 
181 	do_vlan = skb_vlan_tag_present(skb);
182 	if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
183 		if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep, &offset1,
184 				    &offset2) ||
185 		    msgtype != PTP_MSGTYPE_SYNC || twostep)
186 			WARN_ONCE(1, "Bad packet for one-step timestamping\n");
187 		else
188 			do_onestep_tstamp = true;
189 	} else if (skb->cb[0] & ENETC_F_TX_TSTAMP) {
190 		do_twostep_tstamp = true;
191 	}
192 
193 	tx_swbd->do_twostep_tstamp = do_twostep_tstamp;
194 	tx_swbd->qbv_en = !!(priv->active_offloads & ENETC_F_QBV);
195 	tx_swbd->check_wb = tx_swbd->do_twostep_tstamp || tx_swbd->qbv_en;
196 
197 	if (do_vlan || do_onestep_tstamp || do_twostep_tstamp)
198 		flags |= ENETC_TXBD_FLAGS_EX;
199 
200 	if (tx_ring->tsd_enable)
201 		flags |= ENETC_TXBD_FLAGS_TSE | ENETC_TXBD_FLAGS_TXSTART;
202 
203 	/* first BD needs frm_len and offload flags set */
204 	temp_bd.frm_len = cpu_to_le16(skb->len);
205 	temp_bd.flags = flags;
206 
207 	if (flags & ENETC_TXBD_FLAGS_TSE)
208 		temp_bd.txstart = enetc_txbd_set_tx_start(skb->skb_mstamp_ns,
209 							  flags);
210 
211 	if (flags & ENETC_TXBD_FLAGS_EX) {
212 		u8 e_flags = 0;
213 		*txbd = temp_bd;
214 		enetc_clear_tx_bd(&temp_bd);
215 
216 		/* add extension BD for VLAN and/or timestamping */
217 		flags = 0;
218 		tx_swbd++;
219 		txbd++;
220 		i++;
221 		if (unlikely(i == tx_ring->bd_count)) {
222 			i = 0;
223 			tx_swbd = tx_ring->tx_swbd;
224 			txbd = ENETC_TXBD(*tx_ring, 0);
225 		}
226 		prefetchw(txbd);
227 
228 		if (do_vlan) {
229 			temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
230 			temp_bd.ext.tpid = 0; /* < C-TAG */
231 			e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
232 		}
233 
234 		if (do_onestep_tstamp) {
235 			u32 lo, hi, val;
236 			u64 sec, nsec;
237 			u8 *data;
238 
239 			lo = enetc_rd_hot(hw, ENETC_SICTR0);
240 			hi = enetc_rd_hot(hw, ENETC_SICTR1);
241 			sec = (u64)hi << 32 | lo;
242 			nsec = do_div(sec, 1000000000);
243 
244 			/* Configure extension BD */
245 			temp_bd.ext.tstamp = cpu_to_le32(lo & 0x3fffffff);
246 			e_flags |= ENETC_TXBD_E_FLAGS_ONE_STEP_PTP;
247 
248 			/* Update originTimestamp field of Sync packet
249 			 * - 48 bits seconds field
250 			 * - 32 bits nanseconds field
251 			 */
252 			data = skb_mac_header(skb);
253 			*(__be16 *)(data + offset2) =
254 				htons((sec >> 32) & 0xffff);
255 			*(__be32 *)(data + offset2 + 2) =
256 				htonl(sec & 0xffffffff);
257 			*(__be32 *)(data + offset2 + 6) = htonl(nsec);
258 
259 			/* Configure single-step register */
260 			val = ENETC_PM0_SINGLE_STEP_EN;
261 			val |= ENETC_SET_SINGLE_STEP_OFFSET(offset1);
262 			if (udp)
263 				val |= ENETC_PM0_SINGLE_STEP_CH;
264 
265 			enetc_port_mac_wr(priv->si, ENETC_PM0_SINGLE_STEP,
266 					  val);
267 		} else if (do_twostep_tstamp) {
268 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
269 			e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
270 		}
271 
272 		temp_bd.ext.e_flags = e_flags;
273 		count++;
274 	}
275 
276 	frag = &skb_shinfo(skb)->frags[0];
277 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
278 		len = skb_frag_size(frag);
279 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
280 				       DMA_TO_DEVICE);
281 		if (dma_mapping_error(tx_ring->dev, dma))
282 			goto dma_err;
283 
284 		*txbd = temp_bd;
285 		enetc_clear_tx_bd(&temp_bd);
286 
287 		flags = 0;
288 		tx_swbd++;
289 		txbd++;
290 		i++;
291 		if (unlikely(i == tx_ring->bd_count)) {
292 			i = 0;
293 			tx_swbd = tx_ring->tx_swbd;
294 			txbd = ENETC_TXBD(*tx_ring, 0);
295 		}
296 		prefetchw(txbd);
297 
298 		temp_bd.addr = cpu_to_le64(dma);
299 		temp_bd.buf_len = cpu_to_le16(len);
300 
301 		tx_swbd->dma = dma;
302 		tx_swbd->len = len;
303 		tx_swbd->is_dma_page = 1;
304 		tx_swbd->dir = DMA_TO_DEVICE;
305 		count++;
306 	}
307 
308 	/* last BD needs 'F' bit set */
309 	flags |= ENETC_TXBD_FLAGS_F;
310 	temp_bd.flags = flags;
311 	*txbd = temp_bd;
312 
313 	tx_ring->tx_swbd[i].is_eof = true;
314 	tx_ring->tx_swbd[i].skb = skb;
315 
316 	enetc_bdr_idx_inc(tx_ring, &i);
317 	tx_ring->next_to_use = i;
318 
319 	skb_tx_timestamp(skb);
320 
321 	enetc_update_tx_ring_tail(tx_ring);
322 
323 	return count;
324 
325 dma_err:
326 	dev_err(tx_ring->dev, "DMA map error");
327 
328 	do {
329 		tx_swbd = &tx_ring->tx_swbd[i];
330 		enetc_free_tx_frame(tx_ring, tx_swbd);
331 		if (i == 0)
332 			i = tx_ring->bd_count;
333 		i--;
334 	} while (count--);
335 
336 	return 0;
337 }
338 
339 static void enetc_map_tx_tso_hdr(struct enetc_bdr *tx_ring, struct sk_buff *skb,
340 				 struct enetc_tx_swbd *tx_swbd,
341 				 union enetc_tx_bd *txbd, int *i, int hdr_len,
342 				 int data_len)
343 {
344 	union enetc_tx_bd txbd_tmp;
345 	u8 flags = 0, e_flags = 0;
346 	dma_addr_t addr;
347 
348 	enetc_clear_tx_bd(&txbd_tmp);
349 	addr = tx_ring->tso_headers_dma + *i * TSO_HEADER_SIZE;
350 
351 	if (skb_vlan_tag_present(skb))
352 		flags |= ENETC_TXBD_FLAGS_EX;
353 
354 	txbd_tmp.addr = cpu_to_le64(addr);
355 	txbd_tmp.buf_len = cpu_to_le16(hdr_len);
356 
357 	/* first BD needs frm_len and offload flags set */
358 	txbd_tmp.frm_len = cpu_to_le16(hdr_len + data_len);
359 	txbd_tmp.flags = flags;
360 
361 	/* For the TSO header we do not set the dma address since we do not
362 	 * want it unmapped when we do cleanup. We still set len so that we
363 	 * count the bytes sent.
364 	 */
365 	tx_swbd->len = hdr_len;
366 	tx_swbd->do_twostep_tstamp = false;
367 	tx_swbd->check_wb = false;
368 
369 	/* Actually write the header in the BD */
370 	*txbd = txbd_tmp;
371 
372 	/* Add extension BD for VLAN */
373 	if (flags & ENETC_TXBD_FLAGS_EX) {
374 		/* Get the next BD */
375 		enetc_bdr_idx_inc(tx_ring, i);
376 		txbd = ENETC_TXBD(*tx_ring, *i);
377 		tx_swbd = &tx_ring->tx_swbd[*i];
378 		prefetchw(txbd);
379 
380 		/* Setup the VLAN fields */
381 		enetc_clear_tx_bd(&txbd_tmp);
382 		txbd_tmp.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
383 		txbd_tmp.ext.tpid = 0; /* < C-TAG */
384 		e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
385 
386 		/* Write the BD */
387 		txbd_tmp.ext.e_flags = e_flags;
388 		*txbd = txbd_tmp;
389 	}
390 }
391 
392 static int enetc_map_tx_tso_data(struct enetc_bdr *tx_ring, struct sk_buff *skb,
393 				 struct enetc_tx_swbd *tx_swbd,
394 				 union enetc_tx_bd *txbd, char *data,
395 				 int size, bool last_bd)
396 {
397 	union enetc_tx_bd txbd_tmp;
398 	dma_addr_t addr;
399 	u8 flags = 0;
400 
401 	enetc_clear_tx_bd(&txbd_tmp);
402 
403 	addr = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
404 	if (unlikely(dma_mapping_error(tx_ring->dev, addr))) {
405 		netdev_err(tx_ring->ndev, "DMA map error\n");
406 		return -ENOMEM;
407 	}
408 
409 	if (last_bd) {
410 		flags |= ENETC_TXBD_FLAGS_F;
411 		tx_swbd->is_eof = 1;
412 	}
413 
414 	txbd_tmp.addr = cpu_to_le64(addr);
415 	txbd_tmp.buf_len = cpu_to_le16(size);
416 	txbd_tmp.flags = flags;
417 
418 	tx_swbd->dma = addr;
419 	tx_swbd->len = size;
420 	tx_swbd->dir = DMA_TO_DEVICE;
421 
422 	*txbd = txbd_tmp;
423 
424 	return 0;
425 }
426 
427 static __wsum enetc_tso_hdr_csum(struct tso_t *tso, struct sk_buff *skb,
428 				 char *hdr, int hdr_len, int *l4_hdr_len)
429 {
430 	char *l4_hdr = hdr + skb_transport_offset(skb);
431 	int mac_hdr_len = skb_network_offset(skb);
432 
433 	if (tso->tlen != sizeof(struct udphdr)) {
434 		struct tcphdr *tcph = (struct tcphdr *)(l4_hdr);
435 
436 		tcph->check = 0;
437 	} else {
438 		struct udphdr *udph = (struct udphdr *)(l4_hdr);
439 
440 		udph->check = 0;
441 	}
442 
443 	/* Compute the IP checksum. This is necessary since tso_build_hdr()
444 	 * already incremented the IP ID field.
445 	 */
446 	if (!tso->ipv6) {
447 		struct iphdr *iph = (void *)(hdr + mac_hdr_len);
448 
449 		iph->check = 0;
450 		iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
451 	}
452 
453 	/* Compute the checksum over the L4 header. */
454 	*l4_hdr_len = hdr_len - skb_transport_offset(skb);
455 	return csum_partial(l4_hdr, *l4_hdr_len, 0);
456 }
457 
458 static void enetc_tso_complete_csum(struct enetc_bdr *tx_ring, struct tso_t *tso,
459 				    struct sk_buff *skb, char *hdr, int len,
460 				    __wsum sum)
461 {
462 	char *l4_hdr = hdr + skb_transport_offset(skb);
463 	__sum16 csum_final;
464 
465 	/* Complete the L4 checksum by appending the pseudo-header to the
466 	 * already computed checksum.
467 	 */
468 	if (!tso->ipv6)
469 		csum_final = csum_tcpudp_magic(ip_hdr(skb)->saddr,
470 					       ip_hdr(skb)->daddr,
471 					       len, ip_hdr(skb)->protocol, sum);
472 	else
473 		csum_final = csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
474 					     &ipv6_hdr(skb)->daddr,
475 					     len, ipv6_hdr(skb)->nexthdr, sum);
476 
477 	if (tso->tlen != sizeof(struct udphdr)) {
478 		struct tcphdr *tcph = (struct tcphdr *)(l4_hdr);
479 
480 		tcph->check = csum_final;
481 	} else {
482 		struct udphdr *udph = (struct udphdr *)(l4_hdr);
483 
484 		udph->check = csum_final;
485 	}
486 }
487 
488 static int enetc_map_tx_tso_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb)
489 {
490 	int hdr_len, total_len, data_len;
491 	struct enetc_tx_swbd *tx_swbd;
492 	union enetc_tx_bd *txbd;
493 	struct tso_t tso;
494 	__wsum csum, csum2;
495 	int count = 0, pos;
496 	int err, i, bd_data_num;
497 
498 	/* Initialize the TSO handler, and prepare the first payload */
499 	hdr_len = tso_start(skb, &tso);
500 	total_len = skb->len - hdr_len;
501 	i = tx_ring->next_to_use;
502 
503 	while (total_len > 0) {
504 		char *hdr;
505 
506 		/* Get the BD */
507 		txbd = ENETC_TXBD(*tx_ring, i);
508 		tx_swbd = &tx_ring->tx_swbd[i];
509 		prefetchw(txbd);
510 
511 		/* Determine the length of this packet */
512 		data_len = min_t(int, skb_shinfo(skb)->gso_size, total_len);
513 		total_len -= data_len;
514 
515 		/* prepare packet headers: MAC + IP + TCP */
516 		hdr = tx_ring->tso_headers + i * TSO_HEADER_SIZE;
517 		tso_build_hdr(skb, hdr, &tso, data_len, total_len == 0);
518 
519 		/* compute the csum over the L4 header */
520 		csum = enetc_tso_hdr_csum(&tso, skb, hdr, hdr_len, &pos);
521 		enetc_map_tx_tso_hdr(tx_ring, skb, tx_swbd, txbd, &i, hdr_len, data_len);
522 		bd_data_num = 0;
523 		count++;
524 
525 		while (data_len > 0) {
526 			int size;
527 
528 			size = min_t(int, tso.size, data_len);
529 
530 			/* Advance the index in the BDR */
531 			enetc_bdr_idx_inc(tx_ring, &i);
532 			txbd = ENETC_TXBD(*tx_ring, i);
533 			tx_swbd = &tx_ring->tx_swbd[i];
534 			prefetchw(txbd);
535 
536 			/* Compute the checksum over this segment of data and
537 			 * add it to the csum already computed (over the L4
538 			 * header and possible other data segments).
539 			 */
540 			csum2 = csum_partial(tso.data, size, 0);
541 			csum = csum_block_add(csum, csum2, pos);
542 			pos += size;
543 
544 			err = enetc_map_tx_tso_data(tx_ring, skb, tx_swbd, txbd,
545 						    tso.data, size,
546 						    size == data_len);
547 			if (err)
548 				goto err_map_data;
549 
550 			data_len -= size;
551 			count++;
552 			bd_data_num++;
553 			tso_build_data(skb, &tso, size);
554 
555 			if (unlikely(bd_data_num >= ENETC_MAX_SKB_FRAGS && data_len))
556 				goto err_chained_bd;
557 		}
558 
559 		enetc_tso_complete_csum(tx_ring, &tso, skb, hdr, pos, csum);
560 
561 		if (total_len == 0)
562 			tx_swbd->skb = skb;
563 
564 		/* Go to the next BD */
565 		enetc_bdr_idx_inc(tx_ring, &i);
566 	}
567 
568 	tx_ring->next_to_use = i;
569 	enetc_update_tx_ring_tail(tx_ring);
570 
571 	return count;
572 
573 err_map_data:
574 	dev_err(tx_ring->dev, "DMA map error");
575 
576 err_chained_bd:
577 	do {
578 		tx_swbd = &tx_ring->tx_swbd[i];
579 		enetc_free_tx_frame(tx_ring, tx_swbd);
580 		if (i == 0)
581 			i = tx_ring->bd_count;
582 		i--;
583 	} while (count--);
584 
585 	return 0;
586 }
587 
588 static netdev_tx_t enetc_start_xmit(struct sk_buff *skb,
589 				    struct net_device *ndev)
590 {
591 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
592 	struct enetc_bdr *tx_ring;
593 	int count, err;
594 
595 	/* Queue one-step Sync packet if already locked */
596 	if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
597 		if (test_and_set_bit_lock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS,
598 					  &priv->flags)) {
599 			skb_queue_tail(&priv->tx_skbs, skb);
600 			return NETDEV_TX_OK;
601 		}
602 	}
603 
604 	tx_ring = priv->tx_ring[skb->queue_mapping];
605 
606 	if (skb_is_gso(skb)) {
607 		if (enetc_bd_unused(tx_ring) < tso_count_descs(skb)) {
608 			netif_stop_subqueue(ndev, tx_ring->index);
609 			return NETDEV_TX_BUSY;
610 		}
611 
612 		enetc_lock_mdio();
613 		count = enetc_map_tx_tso_buffs(tx_ring, skb);
614 		enetc_unlock_mdio();
615 	} else {
616 		if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
617 			if (unlikely(skb_linearize(skb)))
618 				goto drop_packet_err;
619 
620 		count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
621 		if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
622 			netif_stop_subqueue(ndev, tx_ring->index);
623 			return NETDEV_TX_BUSY;
624 		}
625 
626 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
627 			err = skb_checksum_help(skb);
628 			if (err)
629 				goto drop_packet_err;
630 		}
631 		enetc_lock_mdio();
632 		count = enetc_map_tx_buffs(tx_ring, skb);
633 		enetc_unlock_mdio();
634 	}
635 
636 	if (unlikely(!count))
637 		goto drop_packet_err;
638 
639 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
640 		netif_stop_subqueue(ndev, tx_ring->index);
641 
642 	return NETDEV_TX_OK;
643 
644 drop_packet_err:
645 	dev_kfree_skb_any(skb);
646 	return NETDEV_TX_OK;
647 }
648 
649 netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
650 {
651 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
652 	u8 udp, msgtype, twostep;
653 	u16 offset1, offset2;
654 
655 	/* Mark tx timestamp type on skb->cb[0] if requires */
656 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
657 	    (priv->active_offloads & ENETC_F_TX_TSTAMP_MASK)) {
658 		skb->cb[0] = priv->active_offloads & ENETC_F_TX_TSTAMP_MASK;
659 	} else {
660 		skb->cb[0] = 0;
661 	}
662 
663 	/* Fall back to two-step timestamp if not one-step Sync packet */
664 	if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
665 		if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep,
666 				    &offset1, &offset2) ||
667 		    msgtype != PTP_MSGTYPE_SYNC || twostep != 0)
668 			skb->cb[0] = ENETC_F_TX_TSTAMP;
669 	}
670 
671 	return enetc_start_xmit(skb, ndev);
672 }
673 EXPORT_SYMBOL_GPL(enetc_xmit);
674 
675 static irqreturn_t enetc_msix(int irq, void *data)
676 {
677 	struct enetc_int_vector	*v = data;
678 	int i;
679 
680 	enetc_lock_mdio();
681 
682 	/* disable interrupts */
683 	enetc_wr_reg_hot(v->rbier, 0);
684 	enetc_wr_reg_hot(v->ricr1, v->rx_ictt);
685 
686 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
687 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), 0);
688 
689 	enetc_unlock_mdio();
690 
691 	napi_schedule(&v->napi);
692 
693 	return IRQ_HANDLED;
694 }
695 
696 static void enetc_rx_dim_work(struct work_struct *w)
697 {
698 	struct dim *dim = container_of(w, struct dim, work);
699 	struct dim_cq_moder moder =
700 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
701 	struct enetc_int_vector	*v =
702 		container_of(dim, struct enetc_int_vector, rx_dim);
703 
704 	v->rx_ictt = enetc_usecs_to_cycles(moder.usec);
705 	dim->state = DIM_START_MEASURE;
706 }
707 
708 static void enetc_rx_net_dim(struct enetc_int_vector *v)
709 {
710 	struct dim_sample dim_sample = {};
711 
712 	v->comp_cnt++;
713 
714 	if (!v->rx_napi_work)
715 		return;
716 
717 	dim_update_sample(v->comp_cnt,
718 			  v->rx_ring.stats.packets,
719 			  v->rx_ring.stats.bytes,
720 			  &dim_sample);
721 	net_dim(&v->rx_dim, dim_sample);
722 }
723 
724 static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
725 {
726 	int pi = enetc_rd_reg_hot(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
727 
728 	return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
729 }
730 
731 static bool enetc_page_reusable(struct page *page)
732 {
733 	return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
734 }
735 
736 static void enetc_reuse_page(struct enetc_bdr *rx_ring,
737 			     struct enetc_rx_swbd *old)
738 {
739 	struct enetc_rx_swbd *new;
740 
741 	new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
742 
743 	/* next buf that may reuse a page */
744 	enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
745 
746 	/* copy page reference */
747 	*new = *old;
748 }
749 
750 static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
751 				u64 *tstamp)
752 {
753 	u32 lo, hi, tstamp_lo;
754 
755 	lo = enetc_rd_hot(hw, ENETC_SICTR0);
756 	hi = enetc_rd_hot(hw, ENETC_SICTR1);
757 	tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
758 	if (lo <= tstamp_lo)
759 		hi -= 1;
760 	*tstamp = (u64)hi << 32 | tstamp_lo;
761 }
762 
763 static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
764 {
765 	struct skb_shared_hwtstamps shhwtstamps;
766 
767 	if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
768 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
769 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
770 		skb_txtime_consumed(skb);
771 		skb_tstamp_tx(skb, &shhwtstamps);
772 	}
773 }
774 
775 static void enetc_recycle_xdp_tx_buff(struct enetc_bdr *tx_ring,
776 				      struct enetc_tx_swbd *tx_swbd)
777 {
778 	struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev);
779 	struct enetc_rx_swbd rx_swbd = {
780 		.dma = tx_swbd->dma,
781 		.page = tx_swbd->page,
782 		.page_offset = tx_swbd->page_offset,
783 		.dir = tx_swbd->dir,
784 		.len = tx_swbd->len,
785 	};
786 	struct enetc_bdr *rx_ring;
787 
788 	rx_ring = enetc_rx_ring_from_xdp_tx_ring(priv, tx_ring);
789 
790 	if (likely(enetc_swbd_unused(rx_ring))) {
791 		enetc_reuse_page(rx_ring, &rx_swbd);
792 
793 		/* sync for use by the device */
794 		dma_sync_single_range_for_device(rx_ring->dev, rx_swbd.dma,
795 						 rx_swbd.page_offset,
796 						 ENETC_RXB_DMA_SIZE_XDP,
797 						 rx_swbd.dir);
798 
799 		rx_ring->stats.recycles++;
800 	} else {
801 		/* RX ring is already full, we need to unmap and free the
802 		 * page, since there's nothing useful we can do with it.
803 		 */
804 		rx_ring->stats.recycle_failures++;
805 
806 		dma_unmap_page(rx_ring->dev, rx_swbd.dma, PAGE_SIZE,
807 			       rx_swbd.dir);
808 		__free_page(rx_swbd.page);
809 	}
810 
811 	rx_ring->xdp.xdp_tx_in_flight--;
812 }
813 
814 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
815 {
816 	int tx_frm_cnt = 0, tx_byte_cnt = 0, tx_win_drop = 0;
817 	struct net_device *ndev = tx_ring->ndev;
818 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
819 	struct enetc_tx_swbd *tx_swbd;
820 	int i, bds_to_clean;
821 	bool do_twostep_tstamp;
822 	u64 tstamp = 0;
823 
824 	i = tx_ring->next_to_clean;
825 	tx_swbd = &tx_ring->tx_swbd[i];
826 
827 	bds_to_clean = enetc_bd_ready_count(tx_ring, i);
828 
829 	do_twostep_tstamp = false;
830 
831 	while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
832 		struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd);
833 		struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd);
834 		bool is_eof = tx_swbd->is_eof;
835 
836 		if (unlikely(tx_swbd->check_wb)) {
837 			union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
838 
839 			if (txbd->flags & ENETC_TXBD_FLAGS_W &&
840 			    tx_swbd->do_twostep_tstamp) {
841 				enetc_get_tx_tstamp(&priv->si->hw, txbd,
842 						    &tstamp);
843 				do_twostep_tstamp = true;
844 			}
845 
846 			if (tx_swbd->qbv_en &&
847 			    txbd->wb.status & ENETC_TXBD_STATS_WIN)
848 				tx_win_drop++;
849 		}
850 
851 		if (tx_swbd->is_xdp_tx)
852 			enetc_recycle_xdp_tx_buff(tx_ring, tx_swbd);
853 		else if (likely(tx_swbd->dma))
854 			enetc_unmap_tx_buff(tx_ring, tx_swbd);
855 
856 		if (xdp_frame) {
857 			xdp_return_frame(xdp_frame);
858 		} else if (skb) {
859 			if (unlikely(skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP)) {
860 				/* Start work to release lock for next one-step
861 				 * timestamping packet. And send one skb in
862 				 * tx_skbs queue if has.
863 				 */
864 				schedule_work(&priv->tx_onestep_tstamp);
865 			} else if (unlikely(do_twostep_tstamp)) {
866 				enetc_tstamp_tx(skb, tstamp);
867 				do_twostep_tstamp = false;
868 			}
869 			napi_consume_skb(skb, napi_budget);
870 		}
871 
872 		tx_byte_cnt += tx_swbd->len;
873 		/* Scrub the swbd here so we don't have to do that
874 		 * when we reuse it during xmit
875 		 */
876 		memset(tx_swbd, 0, sizeof(*tx_swbd));
877 
878 		bds_to_clean--;
879 		tx_swbd++;
880 		i++;
881 		if (unlikely(i == tx_ring->bd_count)) {
882 			i = 0;
883 			tx_swbd = tx_ring->tx_swbd;
884 		}
885 
886 		/* BD iteration loop end */
887 		if (is_eof) {
888 			tx_frm_cnt++;
889 			/* re-arm interrupt source */
890 			enetc_wr_reg_hot(tx_ring->idr, BIT(tx_ring->index) |
891 					 BIT(16 + tx_ring->index));
892 		}
893 
894 		if (unlikely(!bds_to_clean))
895 			bds_to_clean = enetc_bd_ready_count(tx_ring, i);
896 	}
897 
898 	tx_ring->next_to_clean = i;
899 	tx_ring->stats.packets += tx_frm_cnt;
900 	tx_ring->stats.bytes += tx_byte_cnt;
901 	tx_ring->stats.win_drop += tx_win_drop;
902 
903 	if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
904 		     __netif_subqueue_stopped(ndev, tx_ring->index) &&
905 		     (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
906 		netif_wake_subqueue(ndev, tx_ring->index);
907 	}
908 
909 	return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
910 }
911 
912 static bool enetc_new_page(struct enetc_bdr *rx_ring,
913 			   struct enetc_rx_swbd *rx_swbd)
914 {
915 	bool xdp = !!(rx_ring->xdp.prog);
916 	struct page *page;
917 	dma_addr_t addr;
918 
919 	page = dev_alloc_page();
920 	if (unlikely(!page))
921 		return false;
922 
923 	/* For XDP_TX, we forgo dma_unmap -> dma_map */
924 	rx_swbd->dir = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
925 
926 	addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, rx_swbd->dir);
927 	if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
928 		__free_page(page);
929 
930 		return false;
931 	}
932 
933 	rx_swbd->dma = addr;
934 	rx_swbd->page = page;
935 	rx_swbd->page_offset = rx_ring->buffer_offset;
936 
937 	return true;
938 }
939 
940 static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
941 {
942 	struct enetc_rx_swbd *rx_swbd;
943 	union enetc_rx_bd *rxbd;
944 	int i, j;
945 
946 	i = rx_ring->next_to_use;
947 	rx_swbd = &rx_ring->rx_swbd[i];
948 	rxbd = enetc_rxbd(rx_ring, i);
949 
950 	for (j = 0; j < buff_cnt; j++) {
951 		/* try reuse page */
952 		if (unlikely(!rx_swbd->page)) {
953 			if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
954 				rx_ring->stats.rx_alloc_errs++;
955 				break;
956 			}
957 		}
958 
959 		/* update RxBD */
960 		rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
961 					   rx_swbd->page_offset);
962 		/* clear 'R" as well */
963 		rxbd->r.lstatus = 0;
964 
965 		enetc_rxbd_next(rx_ring, &rxbd, &i);
966 		rx_swbd = &rx_ring->rx_swbd[i];
967 	}
968 
969 	if (likely(j)) {
970 		rx_ring->next_to_alloc = i; /* keep track from page reuse */
971 		rx_ring->next_to_use = i;
972 
973 		/* update ENETC's consumer index */
974 		enetc_wr_reg_hot(rx_ring->rcir, rx_ring->next_to_use);
975 	}
976 
977 	return j;
978 }
979 
980 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
981 static void enetc_get_rx_tstamp(struct net_device *ndev,
982 				union enetc_rx_bd *rxbd,
983 				struct sk_buff *skb)
984 {
985 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
986 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
987 	struct enetc_hw *hw = &priv->si->hw;
988 	u32 lo, hi, tstamp_lo;
989 	u64 tstamp;
990 
991 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
992 		lo = enetc_rd_reg_hot(hw->reg + ENETC_SICTR0);
993 		hi = enetc_rd_reg_hot(hw->reg + ENETC_SICTR1);
994 		rxbd = enetc_rxbd_ext(rxbd);
995 		tstamp_lo = le32_to_cpu(rxbd->ext.tstamp);
996 		if (lo <= tstamp_lo)
997 			hi -= 1;
998 
999 		tstamp = (u64)hi << 32 | tstamp_lo;
1000 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1001 		shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
1002 	}
1003 }
1004 #endif
1005 
1006 static void enetc_get_offloads(struct enetc_bdr *rx_ring,
1007 			       union enetc_rx_bd *rxbd, struct sk_buff *skb)
1008 {
1009 	struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
1010 
1011 	/* TODO: hashing */
1012 	if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
1013 		u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
1014 
1015 		skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
1016 		skb->ip_summed = CHECKSUM_COMPLETE;
1017 	}
1018 
1019 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN) {
1020 		__be16 tpid = 0;
1021 
1022 		switch (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TPID) {
1023 		case 0:
1024 			tpid = htons(ETH_P_8021Q);
1025 			break;
1026 		case 1:
1027 			tpid = htons(ETH_P_8021AD);
1028 			break;
1029 		case 2:
1030 			tpid = htons(enetc_port_rd(&priv->si->hw,
1031 						   ENETC_PCVLANR1));
1032 			break;
1033 		case 3:
1034 			tpid = htons(enetc_port_rd(&priv->si->hw,
1035 						   ENETC_PCVLANR2));
1036 			break;
1037 		default:
1038 			break;
1039 		}
1040 
1041 		__vlan_hwaccel_put_tag(skb, tpid, le16_to_cpu(rxbd->r.vlan_opt));
1042 	}
1043 
1044 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
1045 	if (priv->active_offloads & ENETC_F_RX_TSTAMP)
1046 		enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
1047 #endif
1048 }
1049 
1050 /* This gets called during the non-XDP NAPI poll cycle as well as on XDP_PASS,
1051  * so it needs to work with both DMA_FROM_DEVICE as well as DMA_BIDIRECTIONAL
1052  * mapped buffers.
1053  */
1054 static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
1055 					       int i, u16 size)
1056 {
1057 	struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
1058 
1059 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
1060 				      rx_swbd->page_offset,
1061 				      size, rx_swbd->dir);
1062 	return rx_swbd;
1063 }
1064 
1065 /* Reuse the current page without performing half-page buffer flipping */
1066 static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
1067 			      struct enetc_rx_swbd *rx_swbd)
1068 {
1069 	size_t buffer_size = ENETC_RXB_TRUESIZE - rx_ring->buffer_offset;
1070 
1071 	enetc_reuse_page(rx_ring, rx_swbd);
1072 
1073 	dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
1074 					 rx_swbd->page_offset,
1075 					 buffer_size, rx_swbd->dir);
1076 
1077 	rx_swbd->page = NULL;
1078 }
1079 
1080 /* Reuse the current page by performing half-page buffer flipping */
1081 static void enetc_flip_rx_buff(struct enetc_bdr *rx_ring,
1082 			       struct enetc_rx_swbd *rx_swbd)
1083 {
1084 	if (likely(enetc_page_reusable(rx_swbd->page))) {
1085 		rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
1086 		page_ref_inc(rx_swbd->page);
1087 
1088 		enetc_put_rx_buff(rx_ring, rx_swbd);
1089 	} else {
1090 		dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
1091 			       rx_swbd->dir);
1092 		rx_swbd->page = NULL;
1093 	}
1094 }
1095 
1096 static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
1097 						int i, u16 size)
1098 {
1099 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1100 	struct sk_buff *skb;
1101 	void *ba;
1102 
1103 	ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
1104 	skb = build_skb(ba - rx_ring->buffer_offset, ENETC_RXB_TRUESIZE);
1105 	if (unlikely(!skb)) {
1106 		rx_ring->stats.rx_alloc_errs++;
1107 		return NULL;
1108 	}
1109 
1110 	skb_reserve(skb, rx_ring->buffer_offset);
1111 	__skb_put(skb, size);
1112 
1113 	enetc_flip_rx_buff(rx_ring, rx_swbd);
1114 
1115 	return skb;
1116 }
1117 
1118 static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
1119 				     u16 size, struct sk_buff *skb)
1120 {
1121 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1122 
1123 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
1124 			rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
1125 
1126 	enetc_flip_rx_buff(rx_ring, rx_swbd);
1127 }
1128 
1129 static bool enetc_check_bd_errors_and_consume(struct enetc_bdr *rx_ring,
1130 					      u32 bd_status,
1131 					      union enetc_rx_bd **rxbd, int *i)
1132 {
1133 	if (likely(!(bd_status & ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))))
1134 		return false;
1135 
1136 	enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]);
1137 	enetc_rxbd_next(rx_ring, rxbd, i);
1138 
1139 	while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
1140 		dma_rmb();
1141 		bd_status = le32_to_cpu((*rxbd)->r.lstatus);
1142 
1143 		enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]);
1144 		enetc_rxbd_next(rx_ring, rxbd, i);
1145 	}
1146 
1147 	rx_ring->ndev->stats.rx_dropped++;
1148 	rx_ring->ndev->stats.rx_errors++;
1149 
1150 	return true;
1151 }
1152 
1153 static struct sk_buff *enetc_build_skb(struct enetc_bdr *rx_ring,
1154 				       u32 bd_status, union enetc_rx_bd **rxbd,
1155 				       int *i, int *cleaned_cnt, int buffer_size)
1156 {
1157 	struct sk_buff *skb;
1158 	u16 size;
1159 
1160 	size = le16_to_cpu((*rxbd)->r.buf_len);
1161 	skb = enetc_map_rx_buff_to_skb(rx_ring, *i, size);
1162 	if (!skb)
1163 		return NULL;
1164 
1165 	enetc_get_offloads(rx_ring, *rxbd, skb);
1166 
1167 	(*cleaned_cnt)++;
1168 
1169 	enetc_rxbd_next(rx_ring, rxbd, i);
1170 
1171 	/* not last BD in frame? */
1172 	while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
1173 		bd_status = le32_to_cpu((*rxbd)->r.lstatus);
1174 		size = buffer_size;
1175 
1176 		if (bd_status & ENETC_RXBD_LSTATUS_F) {
1177 			dma_rmb();
1178 			size = le16_to_cpu((*rxbd)->r.buf_len);
1179 		}
1180 
1181 		enetc_add_rx_buff_to_skb(rx_ring, *i, size, skb);
1182 
1183 		(*cleaned_cnt)++;
1184 
1185 		enetc_rxbd_next(rx_ring, rxbd, i);
1186 	}
1187 
1188 	skb_record_rx_queue(skb, rx_ring->index);
1189 	skb->protocol = eth_type_trans(skb, rx_ring->ndev);
1190 
1191 	return skb;
1192 }
1193 
1194 #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
1195 
1196 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
1197 			       struct napi_struct *napi, int work_limit)
1198 {
1199 	int rx_frm_cnt = 0, rx_byte_cnt = 0;
1200 	int cleaned_cnt, i;
1201 
1202 	cleaned_cnt = enetc_bd_unused(rx_ring);
1203 	/* next descriptor to process */
1204 	i = rx_ring->next_to_clean;
1205 
1206 	while (likely(rx_frm_cnt < work_limit)) {
1207 		union enetc_rx_bd *rxbd;
1208 		struct sk_buff *skb;
1209 		u32 bd_status;
1210 
1211 		if (cleaned_cnt >= ENETC_RXBD_BUNDLE)
1212 			cleaned_cnt -= enetc_refill_rx_ring(rx_ring,
1213 							    cleaned_cnt);
1214 
1215 		rxbd = enetc_rxbd(rx_ring, i);
1216 		bd_status = le32_to_cpu(rxbd->r.lstatus);
1217 		if (!bd_status)
1218 			break;
1219 
1220 		enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
1221 		dma_rmb(); /* for reading other rxbd fields */
1222 
1223 		if (enetc_check_bd_errors_and_consume(rx_ring, bd_status,
1224 						      &rxbd, &i))
1225 			break;
1226 
1227 		skb = enetc_build_skb(rx_ring, bd_status, &rxbd, &i,
1228 				      &cleaned_cnt, ENETC_RXB_DMA_SIZE);
1229 		if (!skb)
1230 			break;
1231 
1232 		rx_byte_cnt += skb->len;
1233 		rx_frm_cnt++;
1234 
1235 		napi_gro_receive(napi, skb);
1236 	}
1237 
1238 	rx_ring->next_to_clean = i;
1239 
1240 	rx_ring->stats.packets += rx_frm_cnt;
1241 	rx_ring->stats.bytes += rx_byte_cnt;
1242 
1243 	return rx_frm_cnt;
1244 }
1245 
1246 static void enetc_xdp_map_tx_buff(struct enetc_bdr *tx_ring, int i,
1247 				  struct enetc_tx_swbd *tx_swbd,
1248 				  int frm_len)
1249 {
1250 	union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
1251 
1252 	prefetchw(txbd);
1253 
1254 	enetc_clear_tx_bd(txbd);
1255 	txbd->addr = cpu_to_le64(tx_swbd->dma + tx_swbd->page_offset);
1256 	txbd->buf_len = cpu_to_le16(tx_swbd->len);
1257 	txbd->frm_len = cpu_to_le16(frm_len);
1258 
1259 	memcpy(&tx_ring->tx_swbd[i], tx_swbd, sizeof(*tx_swbd));
1260 }
1261 
1262 /* Puts in the TX ring one XDP frame, mapped as an array of TX software buffer
1263  * descriptors.
1264  */
1265 static bool enetc_xdp_tx(struct enetc_bdr *tx_ring,
1266 			 struct enetc_tx_swbd *xdp_tx_arr, int num_tx_swbd)
1267 {
1268 	struct enetc_tx_swbd *tmp_tx_swbd = xdp_tx_arr;
1269 	int i, k, frm_len = tmp_tx_swbd->len;
1270 
1271 	if (unlikely(enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(num_tx_swbd)))
1272 		return false;
1273 
1274 	while (unlikely(!tmp_tx_swbd->is_eof)) {
1275 		tmp_tx_swbd++;
1276 		frm_len += tmp_tx_swbd->len;
1277 	}
1278 
1279 	i = tx_ring->next_to_use;
1280 
1281 	for (k = 0; k < num_tx_swbd; k++) {
1282 		struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[k];
1283 
1284 		enetc_xdp_map_tx_buff(tx_ring, i, xdp_tx_swbd, frm_len);
1285 
1286 		/* last BD needs 'F' bit set */
1287 		if (xdp_tx_swbd->is_eof) {
1288 			union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
1289 
1290 			txbd->flags = ENETC_TXBD_FLAGS_F;
1291 		}
1292 
1293 		enetc_bdr_idx_inc(tx_ring, &i);
1294 	}
1295 
1296 	tx_ring->next_to_use = i;
1297 
1298 	return true;
1299 }
1300 
1301 static int enetc_xdp_frame_to_xdp_tx_swbd(struct enetc_bdr *tx_ring,
1302 					  struct enetc_tx_swbd *xdp_tx_arr,
1303 					  struct xdp_frame *xdp_frame)
1304 {
1305 	struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[0];
1306 	struct skb_shared_info *shinfo;
1307 	void *data = xdp_frame->data;
1308 	int len = xdp_frame->len;
1309 	skb_frag_t *frag;
1310 	dma_addr_t dma;
1311 	unsigned int f;
1312 	int n = 0;
1313 
1314 	dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
1315 	if (unlikely(dma_mapping_error(tx_ring->dev, dma))) {
1316 		netdev_err(tx_ring->ndev, "DMA map error\n");
1317 		return -1;
1318 	}
1319 
1320 	xdp_tx_swbd->dma = dma;
1321 	xdp_tx_swbd->dir = DMA_TO_DEVICE;
1322 	xdp_tx_swbd->len = len;
1323 	xdp_tx_swbd->is_xdp_redirect = true;
1324 	xdp_tx_swbd->is_eof = false;
1325 	xdp_tx_swbd->xdp_frame = NULL;
1326 
1327 	n++;
1328 
1329 	if (!xdp_frame_has_frags(xdp_frame))
1330 		goto out;
1331 
1332 	xdp_tx_swbd = &xdp_tx_arr[n];
1333 
1334 	shinfo = xdp_get_shared_info_from_frame(xdp_frame);
1335 
1336 	for (f = 0, frag = &shinfo->frags[0]; f < shinfo->nr_frags;
1337 	     f++, frag++) {
1338 		data = skb_frag_address(frag);
1339 		len = skb_frag_size(frag);
1340 
1341 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
1342 		if (unlikely(dma_mapping_error(tx_ring->dev, dma))) {
1343 			/* Undo the DMA mapping for all fragments */
1344 			while (--n >= 0)
1345 				enetc_unmap_tx_buff(tx_ring, &xdp_tx_arr[n]);
1346 
1347 			netdev_err(tx_ring->ndev, "DMA map error\n");
1348 			return -1;
1349 		}
1350 
1351 		xdp_tx_swbd->dma = dma;
1352 		xdp_tx_swbd->dir = DMA_TO_DEVICE;
1353 		xdp_tx_swbd->len = len;
1354 		xdp_tx_swbd->is_xdp_redirect = true;
1355 		xdp_tx_swbd->is_eof = false;
1356 		xdp_tx_swbd->xdp_frame = NULL;
1357 
1358 		n++;
1359 		xdp_tx_swbd = &xdp_tx_arr[n];
1360 	}
1361 out:
1362 	xdp_tx_arr[n - 1].is_eof = true;
1363 	xdp_tx_arr[n - 1].xdp_frame = xdp_frame;
1364 
1365 	return n;
1366 }
1367 
1368 int enetc_xdp_xmit(struct net_device *ndev, int num_frames,
1369 		   struct xdp_frame **frames, u32 flags)
1370 {
1371 	struct enetc_tx_swbd xdp_redirect_arr[ENETC_MAX_SKB_FRAGS] = {0};
1372 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1373 	struct enetc_bdr *tx_ring;
1374 	int xdp_tx_bd_cnt, i, k;
1375 	int xdp_tx_frm_cnt = 0;
1376 
1377 	enetc_lock_mdio();
1378 
1379 	tx_ring = priv->xdp_tx_ring[smp_processor_id()];
1380 
1381 	prefetchw(ENETC_TXBD(*tx_ring, tx_ring->next_to_use));
1382 
1383 	for (k = 0; k < num_frames; k++) {
1384 		xdp_tx_bd_cnt = enetc_xdp_frame_to_xdp_tx_swbd(tx_ring,
1385 							       xdp_redirect_arr,
1386 							       frames[k]);
1387 		if (unlikely(xdp_tx_bd_cnt < 0))
1388 			break;
1389 
1390 		if (unlikely(!enetc_xdp_tx(tx_ring, xdp_redirect_arr,
1391 					   xdp_tx_bd_cnt))) {
1392 			for (i = 0; i < xdp_tx_bd_cnt; i++)
1393 				enetc_unmap_tx_buff(tx_ring,
1394 						    &xdp_redirect_arr[i]);
1395 			tx_ring->stats.xdp_tx_drops++;
1396 			break;
1397 		}
1398 
1399 		xdp_tx_frm_cnt++;
1400 	}
1401 
1402 	if (unlikely((flags & XDP_XMIT_FLUSH) || k != xdp_tx_frm_cnt))
1403 		enetc_update_tx_ring_tail(tx_ring);
1404 
1405 	tx_ring->stats.xdp_tx += xdp_tx_frm_cnt;
1406 
1407 	enetc_unlock_mdio();
1408 
1409 	return xdp_tx_frm_cnt;
1410 }
1411 EXPORT_SYMBOL_GPL(enetc_xdp_xmit);
1412 
1413 static void enetc_map_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i,
1414 				     struct xdp_buff *xdp_buff, u16 size)
1415 {
1416 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1417 	void *hard_start = page_address(rx_swbd->page) + rx_swbd->page_offset;
1418 
1419 	/* To be used for XDP_TX */
1420 	rx_swbd->len = size;
1421 
1422 	xdp_prepare_buff(xdp_buff, hard_start - rx_ring->buffer_offset,
1423 			 rx_ring->buffer_offset, size, false);
1424 }
1425 
1426 static void enetc_add_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i,
1427 				     u16 size, struct xdp_buff *xdp_buff)
1428 {
1429 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp_buff);
1430 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1431 	skb_frag_t *frag;
1432 
1433 	/* To be used for XDP_TX */
1434 	rx_swbd->len = size;
1435 
1436 	if (!xdp_buff_has_frags(xdp_buff)) {
1437 		xdp_buff_set_frags_flag(xdp_buff);
1438 		shinfo->xdp_frags_size = size;
1439 		shinfo->nr_frags = 0;
1440 	} else {
1441 		shinfo->xdp_frags_size += size;
1442 	}
1443 
1444 	if (page_is_pfmemalloc(rx_swbd->page))
1445 		xdp_buff_set_frag_pfmemalloc(xdp_buff);
1446 
1447 	frag = &shinfo->frags[shinfo->nr_frags];
1448 	skb_frag_off_set(frag, rx_swbd->page_offset);
1449 	skb_frag_size_set(frag, size);
1450 	__skb_frag_set_page(frag, rx_swbd->page);
1451 
1452 	shinfo->nr_frags++;
1453 }
1454 
1455 static void enetc_build_xdp_buff(struct enetc_bdr *rx_ring, u32 bd_status,
1456 				 union enetc_rx_bd **rxbd, int *i,
1457 				 int *cleaned_cnt, struct xdp_buff *xdp_buff)
1458 {
1459 	u16 size = le16_to_cpu((*rxbd)->r.buf_len);
1460 
1461 	xdp_init_buff(xdp_buff, ENETC_RXB_TRUESIZE, &rx_ring->xdp.rxq);
1462 
1463 	enetc_map_rx_buff_to_xdp(rx_ring, *i, xdp_buff, size);
1464 	(*cleaned_cnt)++;
1465 	enetc_rxbd_next(rx_ring, rxbd, i);
1466 
1467 	/* not last BD in frame? */
1468 	while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
1469 		bd_status = le32_to_cpu((*rxbd)->r.lstatus);
1470 		size = ENETC_RXB_DMA_SIZE_XDP;
1471 
1472 		if (bd_status & ENETC_RXBD_LSTATUS_F) {
1473 			dma_rmb();
1474 			size = le16_to_cpu((*rxbd)->r.buf_len);
1475 		}
1476 
1477 		enetc_add_rx_buff_to_xdp(rx_ring, *i, size, xdp_buff);
1478 		(*cleaned_cnt)++;
1479 		enetc_rxbd_next(rx_ring, rxbd, i);
1480 	}
1481 }
1482 
1483 /* Convert RX buffer descriptors to TX buffer descriptors. These will be
1484  * recycled back into the RX ring in enetc_clean_tx_ring.
1485  */
1486 static int enetc_rx_swbd_to_xdp_tx_swbd(struct enetc_tx_swbd *xdp_tx_arr,
1487 					struct enetc_bdr *rx_ring,
1488 					int rx_ring_first, int rx_ring_last)
1489 {
1490 	int n = 0;
1491 
1492 	for (; rx_ring_first != rx_ring_last;
1493 	     n++, enetc_bdr_idx_inc(rx_ring, &rx_ring_first)) {
1494 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first];
1495 		struct enetc_tx_swbd *tx_swbd = &xdp_tx_arr[n];
1496 
1497 		/* No need to dma_map, we already have DMA_BIDIRECTIONAL */
1498 		tx_swbd->dma = rx_swbd->dma;
1499 		tx_swbd->dir = rx_swbd->dir;
1500 		tx_swbd->page = rx_swbd->page;
1501 		tx_swbd->page_offset = rx_swbd->page_offset;
1502 		tx_swbd->len = rx_swbd->len;
1503 		tx_swbd->is_dma_page = true;
1504 		tx_swbd->is_xdp_tx = true;
1505 		tx_swbd->is_eof = false;
1506 	}
1507 
1508 	/* We rely on caller providing an rx_ring_last > rx_ring_first */
1509 	xdp_tx_arr[n - 1].is_eof = true;
1510 
1511 	return n;
1512 }
1513 
1514 static void enetc_xdp_drop(struct enetc_bdr *rx_ring, int rx_ring_first,
1515 			   int rx_ring_last)
1516 {
1517 	while (rx_ring_first != rx_ring_last) {
1518 		enetc_put_rx_buff(rx_ring,
1519 				  &rx_ring->rx_swbd[rx_ring_first]);
1520 		enetc_bdr_idx_inc(rx_ring, &rx_ring_first);
1521 	}
1522 	rx_ring->stats.xdp_drops++;
1523 }
1524 
1525 static int enetc_clean_rx_ring_xdp(struct enetc_bdr *rx_ring,
1526 				   struct napi_struct *napi, int work_limit,
1527 				   struct bpf_prog *prog)
1528 {
1529 	int xdp_tx_bd_cnt, xdp_tx_frm_cnt = 0, xdp_redirect_frm_cnt = 0;
1530 	struct enetc_tx_swbd xdp_tx_arr[ENETC_MAX_SKB_FRAGS] = {0};
1531 	struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
1532 	int rx_frm_cnt = 0, rx_byte_cnt = 0;
1533 	struct enetc_bdr *tx_ring;
1534 	int cleaned_cnt, i;
1535 	u32 xdp_act;
1536 
1537 	cleaned_cnt = enetc_bd_unused(rx_ring);
1538 	/* next descriptor to process */
1539 	i = rx_ring->next_to_clean;
1540 
1541 	while (likely(rx_frm_cnt < work_limit)) {
1542 		union enetc_rx_bd *rxbd, *orig_rxbd;
1543 		int orig_i, orig_cleaned_cnt;
1544 		struct xdp_buff xdp_buff;
1545 		struct sk_buff *skb;
1546 		u32 bd_status;
1547 		int err;
1548 
1549 		rxbd = enetc_rxbd(rx_ring, i);
1550 		bd_status = le32_to_cpu(rxbd->r.lstatus);
1551 		if (!bd_status)
1552 			break;
1553 
1554 		enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
1555 		dma_rmb(); /* for reading other rxbd fields */
1556 
1557 		if (enetc_check_bd_errors_and_consume(rx_ring, bd_status,
1558 						      &rxbd, &i))
1559 			break;
1560 
1561 		orig_rxbd = rxbd;
1562 		orig_cleaned_cnt = cleaned_cnt;
1563 		orig_i = i;
1564 
1565 		enetc_build_xdp_buff(rx_ring, bd_status, &rxbd, &i,
1566 				     &cleaned_cnt, &xdp_buff);
1567 
1568 		xdp_act = bpf_prog_run_xdp(prog, &xdp_buff);
1569 
1570 		switch (xdp_act) {
1571 		default:
1572 			bpf_warn_invalid_xdp_action(rx_ring->ndev, prog, xdp_act);
1573 			fallthrough;
1574 		case XDP_ABORTED:
1575 			trace_xdp_exception(rx_ring->ndev, prog, xdp_act);
1576 			fallthrough;
1577 		case XDP_DROP:
1578 			enetc_xdp_drop(rx_ring, orig_i, i);
1579 			break;
1580 		case XDP_PASS:
1581 			rxbd = orig_rxbd;
1582 			cleaned_cnt = orig_cleaned_cnt;
1583 			i = orig_i;
1584 
1585 			skb = enetc_build_skb(rx_ring, bd_status, &rxbd,
1586 					      &i, &cleaned_cnt,
1587 					      ENETC_RXB_DMA_SIZE_XDP);
1588 			if (unlikely(!skb))
1589 				goto out;
1590 
1591 			napi_gro_receive(napi, skb);
1592 			break;
1593 		case XDP_TX:
1594 			tx_ring = priv->xdp_tx_ring[rx_ring->index];
1595 			xdp_tx_bd_cnt = enetc_rx_swbd_to_xdp_tx_swbd(xdp_tx_arr,
1596 								     rx_ring,
1597 								     orig_i, i);
1598 
1599 			if (!enetc_xdp_tx(tx_ring, xdp_tx_arr, xdp_tx_bd_cnt)) {
1600 				enetc_xdp_drop(rx_ring, orig_i, i);
1601 				tx_ring->stats.xdp_tx_drops++;
1602 			} else {
1603 				tx_ring->stats.xdp_tx += xdp_tx_bd_cnt;
1604 				rx_ring->xdp.xdp_tx_in_flight += xdp_tx_bd_cnt;
1605 				xdp_tx_frm_cnt++;
1606 				/* The XDP_TX enqueue was successful, so we
1607 				 * need to scrub the RX software BDs because
1608 				 * the ownership of the buffers no longer
1609 				 * belongs to the RX ring, and we must prevent
1610 				 * enetc_refill_rx_ring() from reusing
1611 				 * rx_swbd->page.
1612 				 */
1613 				while (orig_i != i) {
1614 					rx_ring->rx_swbd[orig_i].page = NULL;
1615 					enetc_bdr_idx_inc(rx_ring, &orig_i);
1616 				}
1617 			}
1618 			break;
1619 		case XDP_REDIRECT:
1620 			err = xdp_do_redirect(rx_ring->ndev, &xdp_buff, prog);
1621 			if (unlikely(err)) {
1622 				enetc_xdp_drop(rx_ring, orig_i, i);
1623 				rx_ring->stats.xdp_redirect_failures++;
1624 			} else {
1625 				while (orig_i != i) {
1626 					enetc_flip_rx_buff(rx_ring,
1627 							   &rx_ring->rx_swbd[orig_i]);
1628 					enetc_bdr_idx_inc(rx_ring, &orig_i);
1629 				}
1630 				xdp_redirect_frm_cnt++;
1631 				rx_ring->stats.xdp_redirect++;
1632 			}
1633 		}
1634 
1635 		rx_frm_cnt++;
1636 	}
1637 
1638 out:
1639 	rx_ring->next_to_clean = i;
1640 
1641 	rx_ring->stats.packets += rx_frm_cnt;
1642 	rx_ring->stats.bytes += rx_byte_cnt;
1643 
1644 	if (xdp_redirect_frm_cnt)
1645 		xdp_do_flush_map();
1646 
1647 	if (xdp_tx_frm_cnt)
1648 		enetc_update_tx_ring_tail(tx_ring);
1649 
1650 	if (cleaned_cnt > rx_ring->xdp.xdp_tx_in_flight)
1651 		enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring) -
1652 				     rx_ring->xdp.xdp_tx_in_flight);
1653 
1654 	return rx_frm_cnt;
1655 }
1656 
1657 static int enetc_poll(struct napi_struct *napi, int budget)
1658 {
1659 	struct enetc_int_vector
1660 		*v = container_of(napi, struct enetc_int_vector, napi);
1661 	struct enetc_bdr *rx_ring = &v->rx_ring;
1662 	struct bpf_prog *prog;
1663 	bool complete = true;
1664 	int work_done;
1665 	int i;
1666 
1667 	enetc_lock_mdio();
1668 
1669 	for (i = 0; i < v->count_tx_rings; i++)
1670 		if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
1671 			complete = false;
1672 
1673 	prog = rx_ring->xdp.prog;
1674 	if (prog)
1675 		work_done = enetc_clean_rx_ring_xdp(rx_ring, napi, budget, prog);
1676 	else
1677 		work_done = enetc_clean_rx_ring(rx_ring, napi, budget);
1678 	if (work_done == budget)
1679 		complete = false;
1680 	if (work_done)
1681 		v->rx_napi_work = true;
1682 
1683 	if (!complete) {
1684 		enetc_unlock_mdio();
1685 		return budget;
1686 	}
1687 
1688 	napi_complete_done(napi, work_done);
1689 
1690 	if (likely(v->rx_dim_en))
1691 		enetc_rx_net_dim(v);
1692 
1693 	v->rx_napi_work = false;
1694 
1695 	/* enable interrupts */
1696 	enetc_wr_reg_hot(v->rbier, ENETC_RBIER_RXTIE);
1697 
1698 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
1699 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i),
1700 				 ENETC_TBIER_TXTIE);
1701 
1702 	enetc_unlock_mdio();
1703 
1704 	return work_done;
1705 }
1706 
1707 /* Probing and Init */
1708 #define ENETC_MAX_RFS_SIZE 64
1709 void enetc_get_si_caps(struct enetc_si *si)
1710 {
1711 	struct enetc_hw *hw = &si->hw;
1712 	u32 val;
1713 
1714 	/* find out how many of various resources we have to work with */
1715 	val = enetc_rd(hw, ENETC_SICAPR0);
1716 	si->num_rx_rings = (val >> 16) & 0xff;
1717 	si->num_tx_rings = val & 0xff;
1718 
1719 	val = enetc_rd(hw, ENETC_SIRFSCAPR);
1720 	si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
1721 	si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
1722 
1723 	si->num_rss = 0;
1724 	val = enetc_rd(hw, ENETC_SIPCAPR0);
1725 	if (val & ENETC_SIPCAPR0_RSS) {
1726 		u32 rss;
1727 
1728 		rss = enetc_rd(hw, ENETC_SIRSSCAPR);
1729 		si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss);
1730 	}
1731 
1732 	if (val & ENETC_SIPCAPR0_QBV)
1733 		si->hw_features |= ENETC_SI_F_QBV;
1734 
1735 	if (val & ENETC_SIPCAPR0_QBU)
1736 		si->hw_features |= ENETC_SI_F_QBU;
1737 
1738 	if (val & ENETC_SIPCAPR0_PSFP)
1739 		si->hw_features |= ENETC_SI_F_PSFP;
1740 }
1741 EXPORT_SYMBOL_GPL(enetc_get_si_caps);
1742 
1743 static int enetc_dma_alloc_bdr(struct enetc_bdr_resource *res)
1744 {
1745 	size_t bd_base_size = res->bd_count * res->bd_size;
1746 
1747 	res->bd_base = dma_alloc_coherent(res->dev, bd_base_size,
1748 					  &res->bd_dma_base, GFP_KERNEL);
1749 	if (!res->bd_base)
1750 		return -ENOMEM;
1751 
1752 	/* h/w requires 128B alignment */
1753 	if (!IS_ALIGNED(res->bd_dma_base, 128)) {
1754 		dma_free_coherent(res->dev, bd_base_size, res->bd_base,
1755 				  res->bd_dma_base);
1756 		return -EINVAL;
1757 	}
1758 
1759 	return 0;
1760 }
1761 
1762 static void enetc_dma_free_bdr(const struct enetc_bdr_resource *res)
1763 {
1764 	size_t bd_base_size = res->bd_count * res->bd_size;
1765 
1766 	dma_free_coherent(res->dev, bd_base_size, res->bd_base,
1767 			  res->bd_dma_base);
1768 }
1769 
1770 static int enetc_alloc_tx_resource(struct enetc_bdr_resource *res,
1771 				   struct device *dev, size_t bd_count)
1772 {
1773 	int err;
1774 
1775 	res->dev = dev;
1776 	res->bd_count = bd_count;
1777 	res->bd_size = sizeof(union enetc_tx_bd);
1778 
1779 	res->tx_swbd = vzalloc(bd_count * sizeof(*res->tx_swbd));
1780 	if (!res->tx_swbd)
1781 		return -ENOMEM;
1782 
1783 	err = enetc_dma_alloc_bdr(res);
1784 	if (err)
1785 		goto err_alloc_bdr;
1786 
1787 	res->tso_headers = dma_alloc_coherent(dev, bd_count * TSO_HEADER_SIZE,
1788 					      &res->tso_headers_dma,
1789 					      GFP_KERNEL);
1790 	if (!res->tso_headers) {
1791 		err = -ENOMEM;
1792 		goto err_alloc_tso;
1793 	}
1794 
1795 	return 0;
1796 
1797 err_alloc_tso:
1798 	enetc_dma_free_bdr(res);
1799 err_alloc_bdr:
1800 	vfree(res->tx_swbd);
1801 	res->tx_swbd = NULL;
1802 
1803 	return err;
1804 }
1805 
1806 static void enetc_free_tx_resource(const struct enetc_bdr_resource *res)
1807 {
1808 	dma_free_coherent(res->dev, res->bd_count * TSO_HEADER_SIZE,
1809 			  res->tso_headers, res->tso_headers_dma);
1810 	enetc_dma_free_bdr(res);
1811 	vfree(res->tx_swbd);
1812 }
1813 
1814 static struct enetc_bdr_resource *
1815 enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
1816 {
1817 	struct enetc_bdr_resource *tx_res;
1818 	int i, err;
1819 
1820 	tx_res = kcalloc(priv->num_tx_rings, sizeof(*tx_res), GFP_KERNEL);
1821 	if (!tx_res)
1822 		return ERR_PTR(-ENOMEM);
1823 
1824 	for (i = 0; i < priv->num_tx_rings; i++) {
1825 		struct enetc_bdr *tx_ring = priv->tx_ring[i];
1826 
1827 		err = enetc_alloc_tx_resource(&tx_res[i], tx_ring->dev,
1828 					      tx_ring->bd_count);
1829 		if (err)
1830 			goto fail;
1831 	}
1832 
1833 	return tx_res;
1834 
1835 fail:
1836 	while (i-- > 0)
1837 		enetc_free_tx_resource(&tx_res[i]);
1838 
1839 	kfree(tx_res);
1840 
1841 	return ERR_PTR(err);
1842 }
1843 
1844 static void enetc_free_tx_resources(const struct enetc_bdr_resource *tx_res,
1845 				    size_t num_resources)
1846 {
1847 	size_t i;
1848 
1849 	for (i = 0; i < num_resources; i++)
1850 		enetc_free_tx_resource(&tx_res[i]);
1851 
1852 	kfree(tx_res);
1853 }
1854 
1855 static int enetc_alloc_rx_resource(struct enetc_bdr_resource *res,
1856 				   struct device *dev, size_t bd_count,
1857 				   bool extended)
1858 {
1859 	int err;
1860 
1861 	res->dev = dev;
1862 	res->bd_count = bd_count;
1863 	res->bd_size = sizeof(union enetc_rx_bd);
1864 	if (extended)
1865 		res->bd_size *= 2;
1866 
1867 	res->rx_swbd = vzalloc(bd_count * sizeof(struct enetc_rx_swbd));
1868 	if (!res->rx_swbd)
1869 		return -ENOMEM;
1870 
1871 	err = enetc_dma_alloc_bdr(res);
1872 	if (err) {
1873 		vfree(res->rx_swbd);
1874 		return err;
1875 	}
1876 
1877 	return 0;
1878 }
1879 
1880 static void enetc_free_rx_resource(const struct enetc_bdr_resource *res)
1881 {
1882 	enetc_dma_free_bdr(res);
1883 	vfree(res->rx_swbd);
1884 }
1885 
1886 static struct enetc_bdr_resource *
1887 enetc_alloc_rx_resources(struct enetc_ndev_priv *priv, bool extended)
1888 {
1889 	struct enetc_bdr_resource *rx_res;
1890 	int i, err;
1891 
1892 	rx_res = kcalloc(priv->num_rx_rings, sizeof(*rx_res), GFP_KERNEL);
1893 	if (!rx_res)
1894 		return ERR_PTR(-ENOMEM);
1895 
1896 	for (i = 0; i < priv->num_rx_rings; i++) {
1897 		struct enetc_bdr *rx_ring = priv->rx_ring[i];
1898 
1899 		err = enetc_alloc_rx_resource(&rx_res[i], rx_ring->dev,
1900 					      rx_ring->bd_count, extended);
1901 		if (err)
1902 			goto fail;
1903 	}
1904 
1905 	return rx_res;
1906 
1907 fail:
1908 	while (i-- > 0)
1909 		enetc_free_rx_resource(&rx_res[i]);
1910 
1911 	kfree(rx_res);
1912 
1913 	return ERR_PTR(err);
1914 }
1915 
1916 static void enetc_free_rx_resources(const struct enetc_bdr_resource *rx_res,
1917 				    size_t num_resources)
1918 {
1919 	size_t i;
1920 
1921 	for (i = 0; i < num_resources; i++)
1922 		enetc_free_rx_resource(&rx_res[i]);
1923 
1924 	kfree(rx_res);
1925 }
1926 
1927 static void enetc_assign_tx_resource(struct enetc_bdr *tx_ring,
1928 				     const struct enetc_bdr_resource *res)
1929 {
1930 	tx_ring->bd_base = res ? res->bd_base : NULL;
1931 	tx_ring->bd_dma_base = res ? res->bd_dma_base : 0;
1932 	tx_ring->tx_swbd = res ? res->tx_swbd : NULL;
1933 	tx_ring->tso_headers = res ? res->tso_headers : NULL;
1934 	tx_ring->tso_headers_dma = res ? res->tso_headers_dma : 0;
1935 }
1936 
1937 static void enetc_assign_rx_resource(struct enetc_bdr *rx_ring,
1938 				     const struct enetc_bdr_resource *res)
1939 {
1940 	rx_ring->bd_base = res ? res->bd_base : NULL;
1941 	rx_ring->bd_dma_base = res ? res->bd_dma_base : 0;
1942 	rx_ring->rx_swbd = res ? res->rx_swbd : NULL;
1943 }
1944 
1945 static void enetc_assign_tx_resources(struct enetc_ndev_priv *priv,
1946 				      const struct enetc_bdr_resource *res)
1947 {
1948 	int i;
1949 
1950 	if (priv->tx_res)
1951 		enetc_free_tx_resources(priv->tx_res, priv->num_tx_rings);
1952 
1953 	for (i = 0; i < priv->num_tx_rings; i++) {
1954 		enetc_assign_tx_resource(priv->tx_ring[i],
1955 					 res ? &res[i] : NULL);
1956 	}
1957 
1958 	priv->tx_res = res;
1959 }
1960 
1961 static void enetc_assign_rx_resources(struct enetc_ndev_priv *priv,
1962 				      const struct enetc_bdr_resource *res)
1963 {
1964 	int i;
1965 
1966 	if (priv->rx_res)
1967 		enetc_free_rx_resources(priv->rx_res, priv->num_rx_rings);
1968 
1969 	for (i = 0; i < priv->num_rx_rings; i++) {
1970 		enetc_assign_rx_resource(priv->rx_ring[i],
1971 					 res ? &res[i] : NULL);
1972 	}
1973 
1974 	priv->rx_res = res;
1975 }
1976 
1977 static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
1978 {
1979 	int i;
1980 
1981 	for (i = 0; i < tx_ring->bd_count; i++) {
1982 		struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
1983 
1984 		enetc_free_tx_frame(tx_ring, tx_swbd);
1985 	}
1986 }
1987 
1988 static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
1989 {
1990 	int i;
1991 
1992 	for (i = 0; i < rx_ring->bd_count; i++) {
1993 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
1994 
1995 		if (!rx_swbd->page)
1996 			continue;
1997 
1998 		dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
1999 			       rx_swbd->dir);
2000 		__free_page(rx_swbd->page);
2001 		rx_swbd->page = NULL;
2002 	}
2003 }
2004 
2005 static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
2006 {
2007 	int i;
2008 
2009 	for (i = 0; i < priv->num_rx_rings; i++)
2010 		enetc_free_rx_ring(priv->rx_ring[i]);
2011 
2012 	for (i = 0; i < priv->num_tx_rings; i++)
2013 		enetc_free_tx_ring(priv->tx_ring[i]);
2014 }
2015 
2016 static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
2017 {
2018 	int *rss_table;
2019 	int i;
2020 
2021 	rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
2022 	if (!rss_table)
2023 		return -ENOMEM;
2024 
2025 	/* Set up RSS table defaults */
2026 	for (i = 0; i < si->num_rss; i++)
2027 		rss_table[i] = i % num_groups;
2028 
2029 	enetc_set_rss_table(si, rss_table, si->num_rss);
2030 
2031 	kfree(rss_table);
2032 
2033 	return 0;
2034 }
2035 
2036 int enetc_configure_si(struct enetc_ndev_priv *priv)
2037 {
2038 	struct enetc_si *si = priv->si;
2039 	struct enetc_hw *hw = &si->hw;
2040 	int err;
2041 
2042 	/* set SI cache attributes */
2043 	enetc_wr(hw, ENETC_SICAR0,
2044 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
2045 	enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
2046 	/* enable SI */
2047 	enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
2048 
2049 	if (si->num_rss) {
2050 		err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
2051 		if (err)
2052 			return err;
2053 	}
2054 
2055 	return 0;
2056 }
2057 EXPORT_SYMBOL_GPL(enetc_configure_si);
2058 
2059 void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
2060 {
2061 	struct enetc_si *si = priv->si;
2062 	int cpus = num_online_cpus();
2063 
2064 	priv->tx_bd_count = ENETC_TX_RING_DEFAULT_SIZE;
2065 	priv->rx_bd_count = ENETC_RX_RING_DEFAULT_SIZE;
2066 
2067 	/* Enable all available TX rings in order to configure as many
2068 	 * priorities as possible, when needed.
2069 	 * TODO: Make # of TX rings run-time configurable
2070 	 */
2071 	priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
2072 	priv->num_tx_rings = si->num_tx_rings;
2073 	priv->bdr_int_num = cpus;
2074 	priv->ic_mode = ENETC_IC_RX_ADAPTIVE | ENETC_IC_TX_MANUAL;
2075 	priv->tx_ictt = ENETC_TXIC_TIMETHR;
2076 }
2077 EXPORT_SYMBOL_GPL(enetc_init_si_rings_params);
2078 
2079 int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
2080 {
2081 	struct enetc_si *si = priv->si;
2082 
2083 	priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
2084 				  GFP_KERNEL);
2085 	if (!priv->cls_rules)
2086 		return -ENOMEM;
2087 
2088 	return 0;
2089 }
2090 EXPORT_SYMBOL_GPL(enetc_alloc_si_resources);
2091 
2092 void enetc_free_si_resources(struct enetc_ndev_priv *priv)
2093 {
2094 	kfree(priv->cls_rules);
2095 }
2096 EXPORT_SYMBOL_GPL(enetc_free_si_resources);
2097 
2098 static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
2099 {
2100 	int idx = tx_ring->index;
2101 	u32 tbmr;
2102 
2103 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
2104 		       lower_32_bits(tx_ring->bd_dma_base));
2105 
2106 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
2107 		       upper_32_bits(tx_ring->bd_dma_base));
2108 
2109 	WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
2110 	enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
2111 		       ENETC_RTBLENR_LEN(tx_ring->bd_count));
2112 
2113 	/* clearing PI/CI registers for Tx not supported, adjust sw indexes */
2114 	tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
2115 	tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
2116 
2117 	/* enable Tx ints by setting pkt thr to 1 */
2118 	enetc_txbdr_wr(hw, idx, ENETC_TBICR0, ENETC_TBICR0_ICEN | 0x1);
2119 
2120 	tbmr = ENETC_TBMR_SET_PRIO(tx_ring->prio);
2121 	if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
2122 		tbmr |= ENETC_TBMR_VIH;
2123 
2124 	/* enable ring */
2125 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
2126 
2127 	tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
2128 	tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
2129 	tx_ring->idr = hw->reg + ENETC_SITXIDR;
2130 }
2131 
2132 static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring,
2133 			      bool extended)
2134 {
2135 	int idx = rx_ring->index;
2136 	u32 rbmr = 0;
2137 
2138 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
2139 		       lower_32_bits(rx_ring->bd_dma_base));
2140 
2141 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
2142 		       upper_32_bits(rx_ring->bd_dma_base));
2143 
2144 	WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
2145 	enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
2146 		       ENETC_RTBLENR_LEN(rx_ring->bd_count));
2147 
2148 	if (rx_ring->xdp.prog)
2149 		enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE_XDP);
2150 	else
2151 		enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
2152 
2153 	/* Also prepare the consumer index in case page allocation never
2154 	 * succeeds. In that case, hardware will never advance producer index
2155 	 * to match consumer index, and will drop all frames.
2156 	 */
2157 	enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
2158 	enetc_rxbdr_wr(hw, idx, ENETC_RBCIR, 1);
2159 
2160 	/* enable Rx ints by setting pkt thr to 1 */
2161 	enetc_rxbdr_wr(hw, idx, ENETC_RBICR0, ENETC_RBICR0_ICEN | 0x1);
2162 
2163 	rx_ring->ext_en = extended;
2164 	if (rx_ring->ext_en)
2165 		rbmr |= ENETC_RBMR_BDS;
2166 
2167 	if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
2168 		rbmr |= ENETC_RBMR_VTE;
2169 
2170 	rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
2171 	rx_ring->idr = hw->reg + ENETC_SIRXIDR;
2172 
2173 	rx_ring->next_to_clean = 0;
2174 	rx_ring->next_to_use = 0;
2175 	rx_ring->next_to_alloc = 0;
2176 
2177 	enetc_lock_mdio();
2178 	enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
2179 	enetc_unlock_mdio();
2180 
2181 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
2182 }
2183 
2184 static void enetc_setup_bdrs(struct enetc_ndev_priv *priv, bool extended)
2185 {
2186 	struct enetc_hw *hw = &priv->si->hw;
2187 	int i;
2188 
2189 	for (i = 0; i < priv->num_tx_rings; i++)
2190 		enetc_setup_txbdr(hw, priv->tx_ring[i]);
2191 
2192 	for (i = 0; i < priv->num_rx_rings; i++)
2193 		enetc_setup_rxbdr(hw, priv->rx_ring[i], extended);
2194 }
2195 
2196 static void enetc_enable_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
2197 {
2198 	int idx = tx_ring->index;
2199 	u32 tbmr;
2200 
2201 	tbmr = enetc_txbdr_rd(hw, idx, ENETC_TBMR);
2202 	tbmr |= ENETC_TBMR_EN;
2203 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
2204 }
2205 
2206 static void enetc_enable_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
2207 {
2208 	int idx = rx_ring->index;
2209 	u32 rbmr;
2210 
2211 	rbmr = enetc_rxbdr_rd(hw, idx, ENETC_RBMR);
2212 	rbmr |= ENETC_RBMR_EN;
2213 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
2214 }
2215 
2216 static void enetc_enable_bdrs(struct enetc_ndev_priv *priv)
2217 {
2218 	struct enetc_hw *hw = &priv->si->hw;
2219 	int i;
2220 
2221 	for (i = 0; i < priv->num_tx_rings; i++)
2222 		enetc_enable_txbdr(hw, priv->tx_ring[i]);
2223 
2224 	for (i = 0; i < priv->num_rx_rings; i++)
2225 		enetc_enable_rxbdr(hw, priv->rx_ring[i]);
2226 }
2227 
2228 static void enetc_disable_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
2229 {
2230 	int idx = rx_ring->index;
2231 
2232 	/* disable EN bit on ring */
2233 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
2234 }
2235 
2236 static void enetc_disable_txbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
2237 {
2238 	int idx = rx_ring->index;
2239 
2240 	/* disable EN bit on ring */
2241 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
2242 }
2243 
2244 static void enetc_disable_bdrs(struct enetc_ndev_priv *priv)
2245 {
2246 	struct enetc_hw *hw = &priv->si->hw;
2247 	int i;
2248 
2249 	for (i = 0; i < priv->num_tx_rings; i++)
2250 		enetc_disable_txbdr(hw, priv->tx_ring[i]);
2251 
2252 	for (i = 0; i < priv->num_rx_rings; i++)
2253 		enetc_disable_rxbdr(hw, priv->rx_ring[i]);
2254 }
2255 
2256 static void enetc_wait_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
2257 {
2258 	int delay = 8, timeout = 100;
2259 	int idx = tx_ring->index;
2260 
2261 	/* wait for busy to clear */
2262 	while (delay < timeout &&
2263 	       enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
2264 		msleep(delay);
2265 		delay *= 2;
2266 	}
2267 
2268 	if (delay >= timeout)
2269 		netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
2270 			    idx);
2271 }
2272 
2273 static void enetc_wait_bdrs(struct enetc_ndev_priv *priv)
2274 {
2275 	struct enetc_hw *hw = &priv->si->hw;
2276 	int i;
2277 
2278 	for (i = 0; i < priv->num_tx_rings; i++)
2279 		enetc_wait_txbdr(hw, priv->tx_ring[i]);
2280 }
2281 
2282 static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
2283 {
2284 	struct pci_dev *pdev = priv->si->pdev;
2285 	struct enetc_hw *hw = &priv->si->hw;
2286 	int i, j, err;
2287 
2288 	for (i = 0; i < priv->bdr_int_num; i++) {
2289 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
2290 		struct enetc_int_vector *v = priv->int_vector[i];
2291 		int entry = ENETC_BDR_INT_BASE_IDX + i;
2292 
2293 		snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
2294 			 priv->ndev->name, i);
2295 		err = request_irq(irq, enetc_msix, 0, v->name, v);
2296 		if (err) {
2297 			dev_err(priv->dev, "request_irq() failed!\n");
2298 			goto irq_err;
2299 		}
2300 		disable_irq(irq);
2301 
2302 		v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
2303 		v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
2304 		v->ricr1 = hw->reg + ENETC_BDR(RX, i, ENETC_RBICR1);
2305 
2306 		enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
2307 
2308 		for (j = 0; j < v->count_tx_rings; j++) {
2309 			int idx = v->tx_ring[j].index;
2310 
2311 			enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
2312 		}
2313 		irq_set_affinity_hint(irq, get_cpu_mask(i % num_online_cpus()));
2314 	}
2315 
2316 	return 0;
2317 
2318 irq_err:
2319 	while (i--) {
2320 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
2321 
2322 		irq_set_affinity_hint(irq, NULL);
2323 		free_irq(irq, priv->int_vector[i]);
2324 	}
2325 
2326 	return err;
2327 }
2328 
2329 static void enetc_free_irqs(struct enetc_ndev_priv *priv)
2330 {
2331 	struct pci_dev *pdev = priv->si->pdev;
2332 	int i;
2333 
2334 	for (i = 0; i < priv->bdr_int_num; i++) {
2335 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
2336 
2337 		irq_set_affinity_hint(irq, NULL);
2338 		free_irq(irq, priv->int_vector[i]);
2339 	}
2340 }
2341 
2342 static void enetc_setup_interrupts(struct enetc_ndev_priv *priv)
2343 {
2344 	struct enetc_hw *hw = &priv->si->hw;
2345 	u32 icpt, ictt;
2346 	int i;
2347 
2348 	/* enable Tx & Rx event indication */
2349 	if (priv->ic_mode &
2350 	    (ENETC_IC_RX_MANUAL | ENETC_IC_RX_ADAPTIVE)) {
2351 		icpt = ENETC_RBICR0_SET_ICPT(ENETC_RXIC_PKTTHR);
2352 		/* init to non-0 minimum, will be adjusted later */
2353 		ictt = 0x1;
2354 	} else {
2355 		icpt = 0x1; /* enable Rx ints by setting pkt thr to 1 */
2356 		ictt = 0;
2357 	}
2358 
2359 	for (i = 0; i < priv->num_rx_rings; i++) {
2360 		enetc_rxbdr_wr(hw, i, ENETC_RBICR1, ictt);
2361 		enetc_rxbdr_wr(hw, i, ENETC_RBICR0, ENETC_RBICR0_ICEN | icpt);
2362 		enetc_rxbdr_wr(hw, i, ENETC_RBIER, ENETC_RBIER_RXTIE);
2363 	}
2364 
2365 	if (priv->ic_mode & ENETC_IC_TX_MANUAL)
2366 		icpt = ENETC_TBICR0_SET_ICPT(ENETC_TXIC_PKTTHR);
2367 	else
2368 		icpt = 0x1; /* enable Tx ints by setting pkt thr to 1 */
2369 
2370 	for (i = 0; i < priv->num_tx_rings; i++) {
2371 		enetc_txbdr_wr(hw, i, ENETC_TBICR1, priv->tx_ictt);
2372 		enetc_txbdr_wr(hw, i, ENETC_TBICR0, ENETC_TBICR0_ICEN | icpt);
2373 		enetc_txbdr_wr(hw, i, ENETC_TBIER, ENETC_TBIER_TXTIE);
2374 	}
2375 }
2376 
2377 static void enetc_clear_interrupts(struct enetc_ndev_priv *priv)
2378 {
2379 	struct enetc_hw *hw = &priv->si->hw;
2380 	int i;
2381 
2382 	for (i = 0; i < priv->num_tx_rings; i++)
2383 		enetc_txbdr_wr(hw, i, ENETC_TBIER, 0);
2384 
2385 	for (i = 0; i < priv->num_rx_rings; i++)
2386 		enetc_rxbdr_wr(hw, i, ENETC_RBIER, 0);
2387 }
2388 
2389 static int enetc_phylink_connect(struct net_device *ndev)
2390 {
2391 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2392 	struct ethtool_eee edata;
2393 	int err;
2394 
2395 	if (!priv->phylink) {
2396 		/* phy-less mode */
2397 		netif_carrier_on(ndev);
2398 		return 0;
2399 	}
2400 
2401 	err = phylink_of_phy_connect(priv->phylink, priv->dev->of_node, 0);
2402 	if (err) {
2403 		dev_err(&ndev->dev, "could not attach to PHY\n");
2404 		return err;
2405 	}
2406 
2407 	/* disable EEE autoneg, until ENETC driver supports it */
2408 	memset(&edata, 0, sizeof(struct ethtool_eee));
2409 	phylink_ethtool_set_eee(priv->phylink, &edata);
2410 
2411 	phylink_start(priv->phylink);
2412 
2413 	return 0;
2414 }
2415 
2416 static void enetc_tx_onestep_tstamp(struct work_struct *work)
2417 {
2418 	struct enetc_ndev_priv *priv;
2419 	struct sk_buff *skb;
2420 
2421 	priv = container_of(work, struct enetc_ndev_priv, tx_onestep_tstamp);
2422 
2423 	netif_tx_lock_bh(priv->ndev);
2424 
2425 	clear_bit_unlock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS, &priv->flags);
2426 	skb = skb_dequeue(&priv->tx_skbs);
2427 	if (skb)
2428 		enetc_start_xmit(skb, priv->ndev);
2429 
2430 	netif_tx_unlock_bh(priv->ndev);
2431 }
2432 
2433 static void enetc_tx_onestep_tstamp_init(struct enetc_ndev_priv *priv)
2434 {
2435 	INIT_WORK(&priv->tx_onestep_tstamp, enetc_tx_onestep_tstamp);
2436 	skb_queue_head_init(&priv->tx_skbs);
2437 }
2438 
2439 void enetc_start(struct net_device *ndev)
2440 {
2441 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2442 	int i;
2443 
2444 	enetc_setup_interrupts(priv);
2445 
2446 	for (i = 0; i < priv->bdr_int_num; i++) {
2447 		int irq = pci_irq_vector(priv->si->pdev,
2448 					 ENETC_BDR_INT_BASE_IDX + i);
2449 
2450 		napi_enable(&priv->int_vector[i]->napi);
2451 		enable_irq(irq);
2452 	}
2453 
2454 	enetc_enable_bdrs(priv);
2455 
2456 	netif_tx_start_all_queues(ndev);
2457 }
2458 EXPORT_SYMBOL_GPL(enetc_start);
2459 
2460 int enetc_open(struct net_device *ndev)
2461 {
2462 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2463 	struct enetc_bdr_resource *tx_res, *rx_res;
2464 	bool extended;
2465 	int err;
2466 
2467 	extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP);
2468 
2469 	err = enetc_setup_irqs(priv);
2470 	if (err)
2471 		return err;
2472 
2473 	err = enetc_phylink_connect(ndev);
2474 	if (err)
2475 		goto err_phy_connect;
2476 
2477 	tx_res = enetc_alloc_tx_resources(priv);
2478 	if (IS_ERR(tx_res)) {
2479 		err = PTR_ERR(tx_res);
2480 		goto err_alloc_tx;
2481 	}
2482 
2483 	rx_res = enetc_alloc_rx_resources(priv, extended);
2484 	if (IS_ERR(rx_res)) {
2485 		err = PTR_ERR(rx_res);
2486 		goto err_alloc_rx;
2487 	}
2488 
2489 	enetc_tx_onestep_tstamp_init(priv);
2490 	enetc_assign_tx_resources(priv, tx_res);
2491 	enetc_assign_rx_resources(priv, rx_res);
2492 	enetc_setup_bdrs(priv, extended);
2493 	enetc_start(ndev);
2494 
2495 	return 0;
2496 
2497 err_alloc_rx:
2498 	enetc_free_tx_resources(tx_res, priv->num_tx_rings);
2499 err_alloc_tx:
2500 	if (priv->phylink)
2501 		phylink_disconnect_phy(priv->phylink);
2502 err_phy_connect:
2503 	enetc_free_irqs(priv);
2504 
2505 	return err;
2506 }
2507 EXPORT_SYMBOL_GPL(enetc_open);
2508 
2509 void enetc_stop(struct net_device *ndev)
2510 {
2511 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2512 	int i;
2513 
2514 	netif_tx_stop_all_queues(ndev);
2515 
2516 	enetc_disable_bdrs(priv);
2517 
2518 	for (i = 0; i < priv->bdr_int_num; i++) {
2519 		int irq = pci_irq_vector(priv->si->pdev,
2520 					 ENETC_BDR_INT_BASE_IDX + i);
2521 
2522 		disable_irq(irq);
2523 		napi_synchronize(&priv->int_vector[i]->napi);
2524 		napi_disable(&priv->int_vector[i]->napi);
2525 	}
2526 
2527 	enetc_wait_bdrs(priv);
2528 
2529 	enetc_clear_interrupts(priv);
2530 }
2531 EXPORT_SYMBOL_GPL(enetc_stop);
2532 
2533 int enetc_close(struct net_device *ndev)
2534 {
2535 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2536 
2537 	enetc_stop(ndev);
2538 
2539 	if (priv->phylink) {
2540 		phylink_stop(priv->phylink);
2541 		phylink_disconnect_phy(priv->phylink);
2542 	} else {
2543 		netif_carrier_off(ndev);
2544 	}
2545 
2546 	enetc_free_rxtx_rings(priv);
2547 
2548 	/* Avoids dangling pointers and also frees old resources */
2549 	enetc_assign_rx_resources(priv, NULL);
2550 	enetc_assign_tx_resources(priv, NULL);
2551 
2552 	enetc_free_irqs(priv);
2553 
2554 	return 0;
2555 }
2556 EXPORT_SYMBOL_GPL(enetc_close);
2557 
2558 static int enetc_reconfigure(struct enetc_ndev_priv *priv, bool extended,
2559 			     int (*cb)(struct enetc_ndev_priv *priv, void *ctx),
2560 			     void *ctx)
2561 {
2562 	struct enetc_bdr_resource *tx_res, *rx_res;
2563 	int err;
2564 
2565 	ASSERT_RTNL();
2566 
2567 	/* If the interface is down, run the callback right away,
2568 	 * without reconfiguration.
2569 	 */
2570 	if (!netif_running(priv->ndev)) {
2571 		if (cb) {
2572 			err = cb(priv, ctx);
2573 			if (err)
2574 				return err;
2575 		}
2576 
2577 		return 0;
2578 	}
2579 
2580 	tx_res = enetc_alloc_tx_resources(priv);
2581 	if (IS_ERR(tx_res)) {
2582 		err = PTR_ERR(tx_res);
2583 		goto out;
2584 	}
2585 
2586 	rx_res = enetc_alloc_rx_resources(priv, extended);
2587 	if (IS_ERR(rx_res)) {
2588 		err = PTR_ERR(rx_res);
2589 		goto out_free_tx_res;
2590 	}
2591 
2592 	enetc_stop(priv->ndev);
2593 	enetc_free_rxtx_rings(priv);
2594 
2595 	/* Interface is down, run optional callback now */
2596 	if (cb) {
2597 		err = cb(priv, ctx);
2598 		if (err)
2599 			goto out_restart;
2600 	}
2601 
2602 	enetc_assign_tx_resources(priv, tx_res);
2603 	enetc_assign_rx_resources(priv, rx_res);
2604 	enetc_setup_bdrs(priv, extended);
2605 	enetc_start(priv->ndev);
2606 
2607 	return 0;
2608 
2609 out_restart:
2610 	enetc_setup_bdrs(priv, extended);
2611 	enetc_start(priv->ndev);
2612 	enetc_free_rx_resources(rx_res, priv->num_rx_rings);
2613 out_free_tx_res:
2614 	enetc_free_tx_resources(tx_res, priv->num_tx_rings);
2615 out:
2616 	return err;
2617 }
2618 
2619 static void enetc_debug_tx_ring_prios(struct enetc_ndev_priv *priv)
2620 {
2621 	int i;
2622 
2623 	for (i = 0; i < priv->num_tx_rings; i++)
2624 		netdev_dbg(priv->ndev, "TX ring %d prio %d\n", i,
2625 			   priv->tx_ring[i]->prio);
2626 }
2627 
2628 static void enetc_reset_tc_mqprio(struct net_device *ndev)
2629 {
2630 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2631 	struct enetc_hw *hw = &priv->si->hw;
2632 	struct enetc_bdr *tx_ring;
2633 	int num_stack_tx_queues;
2634 	int i;
2635 
2636 	num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
2637 
2638 	netdev_reset_tc(ndev);
2639 	netif_set_real_num_tx_queues(ndev, num_stack_tx_queues);
2640 	priv->min_num_stack_tx_queues = num_possible_cpus();
2641 
2642 	/* Reset all ring priorities to 0 */
2643 	for (i = 0; i < priv->num_tx_rings; i++) {
2644 		tx_ring = priv->tx_ring[i];
2645 		tx_ring->prio = 0;
2646 		enetc_set_bdr_prio(hw, tx_ring->index, tx_ring->prio);
2647 	}
2648 
2649 	enetc_debug_tx_ring_prios(priv);
2650 
2651 	enetc_change_preemptible_tcs(priv, 0);
2652 }
2653 
2654 int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data)
2655 {
2656 	struct tc_mqprio_qopt_offload *mqprio = type_data;
2657 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2658 	struct tc_mqprio_qopt *qopt = &mqprio->qopt;
2659 	struct enetc_hw *hw = &priv->si->hw;
2660 	int num_stack_tx_queues = 0;
2661 	struct enetc_bdr *tx_ring;
2662 	u8 num_tc = qopt->num_tc;
2663 	int offset, count;
2664 	int err, tc, q;
2665 
2666 	if (!num_tc) {
2667 		enetc_reset_tc_mqprio(ndev);
2668 		return 0;
2669 	}
2670 
2671 	err = netdev_set_num_tc(ndev, num_tc);
2672 	if (err)
2673 		return err;
2674 
2675 	for (tc = 0; tc < num_tc; tc++) {
2676 		offset = qopt->offset[tc];
2677 		count = qopt->count[tc];
2678 		num_stack_tx_queues += count;
2679 
2680 		err = netdev_set_tc_queue(ndev, tc, count, offset);
2681 		if (err)
2682 			goto err_reset_tc;
2683 
2684 		for (q = offset; q < offset + count; q++) {
2685 			tx_ring = priv->tx_ring[q];
2686 			/* The prio_tc_map is skb_tx_hash()'s way of selecting
2687 			 * between TX queues based on skb->priority. As such,
2688 			 * there's nothing to offload based on it.
2689 			 * Make the mqprio "traffic class" be the priority of
2690 			 * this ring group, and leave the Tx IPV to traffic
2691 			 * class mapping as its default mapping value of 1:1.
2692 			 */
2693 			tx_ring->prio = tc;
2694 			enetc_set_bdr_prio(hw, tx_ring->index, tx_ring->prio);
2695 		}
2696 	}
2697 
2698 	err = netif_set_real_num_tx_queues(ndev, num_stack_tx_queues);
2699 	if (err)
2700 		goto err_reset_tc;
2701 
2702 	priv->min_num_stack_tx_queues = num_stack_tx_queues;
2703 
2704 	enetc_debug_tx_ring_prios(priv);
2705 
2706 	enetc_change_preemptible_tcs(priv, mqprio->preemptible_tcs);
2707 
2708 	return 0;
2709 
2710 err_reset_tc:
2711 	enetc_reset_tc_mqprio(ndev);
2712 	return err;
2713 }
2714 EXPORT_SYMBOL_GPL(enetc_setup_tc_mqprio);
2715 
2716 static int enetc_reconfigure_xdp_cb(struct enetc_ndev_priv *priv, void *ctx)
2717 {
2718 	struct bpf_prog *old_prog, *prog = ctx;
2719 	int num_stack_tx_queues;
2720 	int err, i;
2721 
2722 	old_prog = xchg(&priv->xdp_prog, prog);
2723 
2724 	num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
2725 	err = netif_set_real_num_tx_queues(priv->ndev, num_stack_tx_queues);
2726 	if (err) {
2727 		xchg(&priv->xdp_prog, old_prog);
2728 		return err;
2729 	}
2730 
2731 	if (old_prog)
2732 		bpf_prog_put(old_prog);
2733 
2734 	for (i = 0; i < priv->num_rx_rings; i++) {
2735 		struct enetc_bdr *rx_ring = priv->rx_ring[i];
2736 
2737 		rx_ring->xdp.prog = prog;
2738 
2739 		if (prog)
2740 			rx_ring->buffer_offset = XDP_PACKET_HEADROOM;
2741 		else
2742 			rx_ring->buffer_offset = ENETC_RXB_PAD;
2743 	}
2744 
2745 	return 0;
2746 }
2747 
2748 static int enetc_setup_xdp_prog(struct net_device *ndev, struct bpf_prog *prog,
2749 				struct netlink_ext_ack *extack)
2750 {
2751 	int num_xdp_tx_queues = prog ? num_possible_cpus() : 0;
2752 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2753 	bool extended;
2754 
2755 	if (priv->min_num_stack_tx_queues + num_xdp_tx_queues >
2756 	    priv->num_tx_rings) {
2757 		NL_SET_ERR_MSG_FMT_MOD(extack,
2758 				       "Reserving %d XDP TXQs does not leave a minimum of %d TXQs for network stack (total %d available)",
2759 				       num_xdp_tx_queues,
2760 				       priv->min_num_stack_tx_queues,
2761 				       priv->num_tx_rings);
2762 		return -EBUSY;
2763 	}
2764 
2765 	extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP);
2766 
2767 	/* The buffer layout is changing, so we need to drain the old
2768 	 * RX buffers and seed new ones.
2769 	 */
2770 	return enetc_reconfigure(priv, extended, enetc_reconfigure_xdp_cb, prog);
2771 }
2772 
2773 int enetc_setup_bpf(struct net_device *ndev, struct netdev_bpf *bpf)
2774 {
2775 	switch (bpf->command) {
2776 	case XDP_SETUP_PROG:
2777 		return enetc_setup_xdp_prog(ndev, bpf->prog, bpf->extack);
2778 	default:
2779 		return -EINVAL;
2780 	}
2781 
2782 	return 0;
2783 }
2784 EXPORT_SYMBOL_GPL(enetc_setup_bpf);
2785 
2786 struct net_device_stats *enetc_get_stats(struct net_device *ndev)
2787 {
2788 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2789 	struct net_device_stats *stats = &ndev->stats;
2790 	unsigned long packets = 0, bytes = 0;
2791 	unsigned long tx_dropped = 0;
2792 	int i;
2793 
2794 	for (i = 0; i < priv->num_rx_rings; i++) {
2795 		packets += priv->rx_ring[i]->stats.packets;
2796 		bytes	+= priv->rx_ring[i]->stats.bytes;
2797 	}
2798 
2799 	stats->rx_packets = packets;
2800 	stats->rx_bytes = bytes;
2801 	bytes = 0;
2802 	packets = 0;
2803 
2804 	for (i = 0; i < priv->num_tx_rings; i++) {
2805 		packets += priv->tx_ring[i]->stats.packets;
2806 		bytes	+= priv->tx_ring[i]->stats.bytes;
2807 		tx_dropped += priv->tx_ring[i]->stats.win_drop;
2808 	}
2809 
2810 	stats->tx_packets = packets;
2811 	stats->tx_bytes = bytes;
2812 	stats->tx_dropped = tx_dropped;
2813 
2814 	return stats;
2815 }
2816 EXPORT_SYMBOL_GPL(enetc_get_stats);
2817 
2818 static int enetc_set_rss(struct net_device *ndev, int en)
2819 {
2820 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2821 	struct enetc_hw *hw = &priv->si->hw;
2822 	u32 reg;
2823 
2824 	enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
2825 
2826 	reg = enetc_rd(hw, ENETC_SIMR);
2827 	reg &= ~ENETC_SIMR_RSSE;
2828 	reg |= (en) ? ENETC_SIMR_RSSE : 0;
2829 	enetc_wr(hw, ENETC_SIMR, reg);
2830 
2831 	return 0;
2832 }
2833 
2834 static void enetc_enable_rxvlan(struct net_device *ndev, bool en)
2835 {
2836 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2837 	struct enetc_hw *hw = &priv->si->hw;
2838 	int i;
2839 
2840 	for (i = 0; i < priv->num_rx_rings; i++)
2841 		enetc_bdr_enable_rxvlan(hw, i, en);
2842 }
2843 
2844 static void enetc_enable_txvlan(struct net_device *ndev, bool en)
2845 {
2846 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2847 	struct enetc_hw *hw = &priv->si->hw;
2848 	int i;
2849 
2850 	for (i = 0; i < priv->num_tx_rings; i++)
2851 		enetc_bdr_enable_txvlan(hw, i, en);
2852 }
2853 
2854 void enetc_set_features(struct net_device *ndev, netdev_features_t features)
2855 {
2856 	netdev_features_t changed = ndev->features ^ features;
2857 
2858 	if (changed & NETIF_F_RXHASH)
2859 		enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
2860 
2861 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2862 		enetc_enable_rxvlan(ndev,
2863 				    !!(features & NETIF_F_HW_VLAN_CTAG_RX));
2864 
2865 	if (changed & NETIF_F_HW_VLAN_CTAG_TX)
2866 		enetc_enable_txvlan(ndev,
2867 				    !!(features & NETIF_F_HW_VLAN_CTAG_TX));
2868 }
2869 EXPORT_SYMBOL_GPL(enetc_set_features);
2870 
2871 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
2872 static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
2873 {
2874 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2875 	int err, new_offloads = priv->active_offloads;
2876 	struct hwtstamp_config config;
2877 
2878 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2879 		return -EFAULT;
2880 
2881 	switch (config.tx_type) {
2882 	case HWTSTAMP_TX_OFF:
2883 		new_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2884 		break;
2885 	case HWTSTAMP_TX_ON:
2886 		new_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2887 		new_offloads |= ENETC_F_TX_TSTAMP;
2888 		break;
2889 	case HWTSTAMP_TX_ONESTEP_SYNC:
2890 		new_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2891 		new_offloads |= ENETC_F_TX_ONESTEP_SYNC_TSTAMP;
2892 		break;
2893 	default:
2894 		return -ERANGE;
2895 	}
2896 
2897 	switch (config.rx_filter) {
2898 	case HWTSTAMP_FILTER_NONE:
2899 		new_offloads &= ~ENETC_F_RX_TSTAMP;
2900 		break;
2901 	default:
2902 		new_offloads |= ENETC_F_RX_TSTAMP;
2903 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2904 	}
2905 
2906 	if ((new_offloads ^ priv->active_offloads) & ENETC_F_RX_TSTAMP) {
2907 		bool extended = !!(new_offloads & ENETC_F_RX_TSTAMP);
2908 
2909 		err = enetc_reconfigure(priv, extended, NULL, NULL);
2910 		if (err)
2911 			return err;
2912 	}
2913 
2914 	priv->active_offloads = new_offloads;
2915 
2916 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2917 	       -EFAULT : 0;
2918 }
2919 
2920 static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
2921 {
2922 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2923 	struct hwtstamp_config config;
2924 
2925 	config.flags = 0;
2926 
2927 	if (priv->active_offloads & ENETC_F_TX_ONESTEP_SYNC_TSTAMP)
2928 		config.tx_type = HWTSTAMP_TX_ONESTEP_SYNC;
2929 	else if (priv->active_offloads & ENETC_F_TX_TSTAMP)
2930 		config.tx_type = HWTSTAMP_TX_ON;
2931 	else
2932 		config.tx_type = HWTSTAMP_TX_OFF;
2933 
2934 	config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
2935 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
2936 
2937 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2938 	       -EFAULT : 0;
2939 }
2940 #endif
2941 
2942 int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2943 {
2944 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2945 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
2946 	if (cmd == SIOCSHWTSTAMP)
2947 		return enetc_hwtstamp_set(ndev, rq);
2948 	if (cmd == SIOCGHWTSTAMP)
2949 		return enetc_hwtstamp_get(ndev, rq);
2950 #endif
2951 
2952 	if (!priv->phylink)
2953 		return -EOPNOTSUPP;
2954 
2955 	return phylink_mii_ioctl(priv->phylink, rq, cmd);
2956 }
2957 EXPORT_SYMBOL_GPL(enetc_ioctl);
2958 
2959 int enetc_alloc_msix(struct enetc_ndev_priv *priv)
2960 {
2961 	struct pci_dev *pdev = priv->si->pdev;
2962 	int num_stack_tx_queues;
2963 	int first_xdp_tx_ring;
2964 	int i, n, err, nvec;
2965 	int v_tx_rings;
2966 
2967 	nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
2968 	/* allocate MSIX for both messaging and Rx/Tx interrupts */
2969 	n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
2970 
2971 	if (n < 0)
2972 		return n;
2973 
2974 	if (n != nvec)
2975 		return -EPERM;
2976 
2977 	/* # of tx rings per int vector */
2978 	v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
2979 
2980 	for (i = 0; i < priv->bdr_int_num; i++) {
2981 		struct enetc_int_vector *v;
2982 		struct enetc_bdr *bdr;
2983 		int j;
2984 
2985 		v = kzalloc(struct_size(v, tx_ring, v_tx_rings), GFP_KERNEL);
2986 		if (!v) {
2987 			err = -ENOMEM;
2988 			goto fail;
2989 		}
2990 
2991 		priv->int_vector[i] = v;
2992 
2993 		bdr = &v->rx_ring;
2994 		bdr->index = i;
2995 		bdr->ndev = priv->ndev;
2996 		bdr->dev = priv->dev;
2997 		bdr->bd_count = priv->rx_bd_count;
2998 		bdr->buffer_offset = ENETC_RXB_PAD;
2999 		priv->rx_ring[i] = bdr;
3000 
3001 		err = xdp_rxq_info_reg(&bdr->xdp.rxq, priv->ndev, i, 0);
3002 		if (err) {
3003 			kfree(v);
3004 			goto fail;
3005 		}
3006 
3007 		err = xdp_rxq_info_reg_mem_model(&bdr->xdp.rxq,
3008 						 MEM_TYPE_PAGE_SHARED, NULL);
3009 		if (err) {
3010 			xdp_rxq_info_unreg(&bdr->xdp.rxq);
3011 			kfree(v);
3012 			goto fail;
3013 		}
3014 
3015 		/* init defaults for adaptive IC */
3016 		if (priv->ic_mode & ENETC_IC_RX_ADAPTIVE) {
3017 			v->rx_ictt = 0x1;
3018 			v->rx_dim_en = true;
3019 		}
3020 		INIT_WORK(&v->rx_dim.work, enetc_rx_dim_work);
3021 		netif_napi_add(priv->ndev, &v->napi, enetc_poll);
3022 		v->count_tx_rings = v_tx_rings;
3023 
3024 		for (j = 0; j < v_tx_rings; j++) {
3025 			int idx;
3026 
3027 			/* default tx ring mapping policy */
3028 			idx = priv->bdr_int_num * j + i;
3029 			__set_bit(idx, &v->tx_rings_map);
3030 			bdr = &v->tx_ring[j];
3031 			bdr->index = idx;
3032 			bdr->ndev = priv->ndev;
3033 			bdr->dev = priv->dev;
3034 			bdr->bd_count = priv->tx_bd_count;
3035 			priv->tx_ring[idx] = bdr;
3036 		}
3037 	}
3038 
3039 	num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
3040 
3041 	err = netif_set_real_num_tx_queues(priv->ndev, num_stack_tx_queues);
3042 	if (err)
3043 		goto fail;
3044 
3045 	err = netif_set_real_num_rx_queues(priv->ndev, priv->num_rx_rings);
3046 	if (err)
3047 		goto fail;
3048 
3049 	priv->min_num_stack_tx_queues = num_possible_cpus();
3050 	first_xdp_tx_ring = priv->num_tx_rings - num_possible_cpus();
3051 	priv->xdp_tx_ring = &priv->tx_ring[first_xdp_tx_ring];
3052 
3053 	return 0;
3054 
3055 fail:
3056 	while (i--) {
3057 		struct enetc_int_vector *v = priv->int_vector[i];
3058 		struct enetc_bdr *rx_ring = &v->rx_ring;
3059 
3060 		xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq);
3061 		xdp_rxq_info_unreg(&rx_ring->xdp.rxq);
3062 		netif_napi_del(&v->napi);
3063 		cancel_work_sync(&v->rx_dim.work);
3064 		kfree(v);
3065 	}
3066 
3067 	pci_free_irq_vectors(pdev);
3068 
3069 	return err;
3070 }
3071 EXPORT_SYMBOL_GPL(enetc_alloc_msix);
3072 
3073 void enetc_free_msix(struct enetc_ndev_priv *priv)
3074 {
3075 	int i;
3076 
3077 	for (i = 0; i < priv->bdr_int_num; i++) {
3078 		struct enetc_int_vector *v = priv->int_vector[i];
3079 		struct enetc_bdr *rx_ring = &v->rx_ring;
3080 
3081 		xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq);
3082 		xdp_rxq_info_unreg(&rx_ring->xdp.rxq);
3083 		netif_napi_del(&v->napi);
3084 		cancel_work_sync(&v->rx_dim.work);
3085 	}
3086 
3087 	for (i = 0; i < priv->num_rx_rings; i++)
3088 		priv->rx_ring[i] = NULL;
3089 
3090 	for (i = 0; i < priv->num_tx_rings; i++)
3091 		priv->tx_ring[i] = NULL;
3092 
3093 	for (i = 0; i < priv->bdr_int_num; i++) {
3094 		kfree(priv->int_vector[i]);
3095 		priv->int_vector[i] = NULL;
3096 	}
3097 
3098 	/* disable all MSIX for this device */
3099 	pci_free_irq_vectors(priv->si->pdev);
3100 }
3101 EXPORT_SYMBOL_GPL(enetc_free_msix);
3102 
3103 static void enetc_kfree_si(struct enetc_si *si)
3104 {
3105 	char *p = (char *)si - si->pad;
3106 
3107 	kfree(p);
3108 }
3109 
3110 static void enetc_detect_errata(struct enetc_si *si)
3111 {
3112 	if (si->pdev->revision == ENETC_REV1)
3113 		si->errata = ENETC_ERR_VLAN_ISOL | ENETC_ERR_UCMCSWP;
3114 }
3115 
3116 int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
3117 {
3118 	struct enetc_si *si, *p;
3119 	struct enetc_hw *hw;
3120 	size_t alloc_size;
3121 	int err, len;
3122 
3123 	pcie_flr(pdev);
3124 	err = pci_enable_device_mem(pdev);
3125 	if (err)
3126 		return dev_err_probe(&pdev->dev, err, "device enable failed\n");
3127 
3128 	/* set up for high or low dma */
3129 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3130 	if (err) {
3131 		dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err);
3132 		goto err_dma;
3133 	}
3134 
3135 	err = pci_request_mem_regions(pdev, name);
3136 	if (err) {
3137 		dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
3138 		goto err_pci_mem_reg;
3139 	}
3140 
3141 	pci_set_master(pdev);
3142 
3143 	alloc_size = sizeof(struct enetc_si);
3144 	if (sizeof_priv) {
3145 		/* align priv to 32B */
3146 		alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
3147 		alloc_size += sizeof_priv;
3148 	}
3149 	/* force 32B alignment for enetc_si */
3150 	alloc_size += ENETC_SI_ALIGN - 1;
3151 
3152 	p = kzalloc(alloc_size, GFP_KERNEL);
3153 	if (!p) {
3154 		err = -ENOMEM;
3155 		goto err_alloc_si;
3156 	}
3157 
3158 	si = PTR_ALIGN(p, ENETC_SI_ALIGN);
3159 	si->pad = (char *)si - (char *)p;
3160 
3161 	pci_set_drvdata(pdev, si);
3162 	si->pdev = pdev;
3163 	hw = &si->hw;
3164 
3165 	len = pci_resource_len(pdev, ENETC_BAR_REGS);
3166 	hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
3167 	if (!hw->reg) {
3168 		err = -ENXIO;
3169 		dev_err(&pdev->dev, "ioremap() failed\n");
3170 		goto err_ioremap;
3171 	}
3172 	if (len > ENETC_PORT_BASE)
3173 		hw->port = hw->reg + ENETC_PORT_BASE;
3174 	if (len > ENETC_GLOBAL_BASE)
3175 		hw->global = hw->reg + ENETC_GLOBAL_BASE;
3176 
3177 	enetc_detect_errata(si);
3178 
3179 	return 0;
3180 
3181 err_ioremap:
3182 	enetc_kfree_si(si);
3183 err_alloc_si:
3184 	pci_release_mem_regions(pdev);
3185 err_pci_mem_reg:
3186 err_dma:
3187 	pci_disable_device(pdev);
3188 
3189 	return err;
3190 }
3191 EXPORT_SYMBOL_GPL(enetc_pci_probe);
3192 
3193 void enetc_pci_remove(struct pci_dev *pdev)
3194 {
3195 	struct enetc_si *si = pci_get_drvdata(pdev);
3196 	struct enetc_hw *hw = &si->hw;
3197 
3198 	iounmap(hw->reg);
3199 	enetc_kfree_si(si);
3200 	pci_release_mem_regions(pdev);
3201 	pci_disable_device(pdev);
3202 }
3203 EXPORT_SYMBOL_GPL(enetc_pci_remove);
3204 
3205 MODULE_LICENSE("Dual BSD/GPL");
3206