1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /* Copyright 2017-2019 NXP */
3 
4 #include "enetc.h"
5 #include <linux/tcp.h>
6 #include <linux/udp.h>
7 #include <linux/vmalloc.h>
8 
9 /* ENETC overhead: optional extension BD + 1 BD gap */
10 #define ENETC_TXBDS_NEEDED(val)	((val) + 2)
11 /* max # of chained Tx BDs is 15, including head and extension BD */
12 #define ENETC_MAX_SKB_FRAGS	13
13 #define ENETC_TXBDS_MAX_NEEDED	ENETC_TXBDS_NEEDED(ENETC_MAX_SKB_FRAGS + 1)
14 
15 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
16 			      int active_offloads);
17 
18 netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
19 {
20 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
21 	struct enetc_bdr *tx_ring;
22 	int count;
23 
24 	tx_ring = priv->tx_ring[skb->queue_mapping];
25 
26 	if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
27 		if (unlikely(skb_linearize(skb)))
28 			goto drop_packet_err;
29 
30 	count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
31 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
32 		netif_stop_subqueue(ndev, tx_ring->index);
33 		return NETDEV_TX_BUSY;
34 	}
35 
36 	enetc_lock_mdio();
37 	count = enetc_map_tx_buffs(tx_ring, skb, priv->active_offloads);
38 	enetc_unlock_mdio();
39 
40 	if (unlikely(!count))
41 		goto drop_packet_err;
42 
43 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
44 		netif_stop_subqueue(ndev, tx_ring->index);
45 
46 	return NETDEV_TX_OK;
47 
48 drop_packet_err:
49 	dev_kfree_skb_any(skb);
50 	return NETDEV_TX_OK;
51 }
52 
53 static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
54 				struct enetc_tx_swbd *tx_swbd)
55 {
56 	if (tx_swbd->is_dma_page)
57 		dma_unmap_page(tx_ring->dev, tx_swbd->dma,
58 			       tx_swbd->len, DMA_TO_DEVICE);
59 	else
60 		dma_unmap_single(tx_ring->dev, tx_swbd->dma,
61 				 tx_swbd->len, DMA_TO_DEVICE);
62 	tx_swbd->dma = 0;
63 }
64 
65 static void enetc_free_tx_skb(struct enetc_bdr *tx_ring,
66 			      struct enetc_tx_swbd *tx_swbd)
67 {
68 	if (tx_swbd->dma)
69 		enetc_unmap_tx_buff(tx_ring, tx_swbd);
70 
71 	if (tx_swbd->skb) {
72 		dev_kfree_skb_any(tx_swbd->skb);
73 		tx_swbd->skb = NULL;
74 	}
75 }
76 
77 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
78 			      int active_offloads)
79 {
80 	struct enetc_tx_swbd *tx_swbd;
81 	skb_frag_t *frag;
82 	int len = skb_headlen(skb);
83 	union enetc_tx_bd temp_bd;
84 	union enetc_tx_bd *txbd;
85 	bool do_vlan, do_tstamp;
86 	int i, count = 0;
87 	unsigned int f;
88 	dma_addr_t dma;
89 	u8 flags = 0;
90 
91 	i = tx_ring->next_to_use;
92 	txbd = ENETC_TXBD(*tx_ring, i);
93 	prefetchw(txbd);
94 
95 	dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
96 	if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
97 		goto dma_err;
98 
99 	temp_bd.addr = cpu_to_le64(dma);
100 	temp_bd.buf_len = cpu_to_le16(len);
101 	temp_bd.lstatus = 0;
102 
103 	tx_swbd = &tx_ring->tx_swbd[i];
104 	tx_swbd->dma = dma;
105 	tx_swbd->len = len;
106 	tx_swbd->is_dma_page = 0;
107 	count++;
108 
109 	do_vlan = skb_vlan_tag_present(skb);
110 	do_tstamp = (active_offloads & ENETC_F_TX_TSTAMP) &&
111 		    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP);
112 	tx_swbd->do_tstamp = do_tstamp;
113 	tx_swbd->check_wb = tx_swbd->do_tstamp;
114 
115 	if (do_vlan || do_tstamp)
116 		flags |= ENETC_TXBD_FLAGS_EX;
117 
118 	if (tx_ring->tsd_enable)
119 		flags |= ENETC_TXBD_FLAGS_TSE | ENETC_TXBD_FLAGS_TXSTART;
120 
121 	/* first BD needs frm_len and offload flags set */
122 	temp_bd.frm_len = cpu_to_le16(skb->len);
123 	temp_bd.flags = flags;
124 
125 	if (flags & ENETC_TXBD_FLAGS_TSE)
126 		temp_bd.txstart = enetc_txbd_set_tx_start(skb->skb_mstamp_ns,
127 							  flags);
128 
129 	if (flags & ENETC_TXBD_FLAGS_EX) {
130 		u8 e_flags = 0;
131 		*txbd = temp_bd;
132 		enetc_clear_tx_bd(&temp_bd);
133 
134 		/* add extension BD for VLAN and/or timestamping */
135 		flags = 0;
136 		tx_swbd++;
137 		txbd++;
138 		i++;
139 		if (unlikely(i == tx_ring->bd_count)) {
140 			i = 0;
141 			tx_swbd = tx_ring->tx_swbd;
142 			txbd = ENETC_TXBD(*tx_ring, 0);
143 		}
144 		prefetchw(txbd);
145 
146 		if (do_vlan) {
147 			temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
148 			temp_bd.ext.tpid = 0; /* < C-TAG */
149 			e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
150 		}
151 
152 		if (do_tstamp) {
153 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
154 			e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
155 		}
156 
157 		temp_bd.ext.e_flags = e_flags;
158 		count++;
159 	}
160 
161 	frag = &skb_shinfo(skb)->frags[0];
162 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
163 		len = skb_frag_size(frag);
164 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
165 				       DMA_TO_DEVICE);
166 		if (dma_mapping_error(tx_ring->dev, dma))
167 			goto dma_err;
168 
169 		*txbd = temp_bd;
170 		enetc_clear_tx_bd(&temp_bd);
171 
172 		flags = 0;
173 		tx_swbd++;
174 		txbd++;
175 		i++;
176 		if (unlikely(i == tx_ring->bd_count)) {
177 			i = 0;
178 			tx_swbd = tx_ring->tx_swbd;
179 			txbd = ENETC_TXBD(*tx_ring, 0);
180 		}
181 		prefetchw(txbd);
182 
183 		temp_bd.addr = cpu_to_le64(dma);
184 		temp_bd.buf_len = cpu_to_le16(len);
185 
186 		tx_swbd->dma = dma;
187 		tx_swbd->len = len;
188 		tx_swbd->is_dma_page = 1;
189 		count++;
190 	}
191 
192 	/* last BD needs 'F' bit set */
193 	flags |= ENETC_TXBD_FLAGS_F;
194 	temp_bd.flags = flags;
195 	*txbd = temp_bd;
196 
197 	tx_ring->tx_swbd[i].skb = skb;
198 
199 	enetc_bdr_idx_inc(tx_ring, &i);
200 	tx_ring->next_to_use = i;
201 
202 	skb_tx_timestamp(skb);
203 
204 	/* let H/W know BD ring has been updated */
205 	enetc_wr_reg_hot(tx_ring->tpir, i); /* includes wmb() */
206 
207 	return count;
208 
209 dma_err:
210 	dev_err(tx_ring->dev, "DMA map error");
211 
212 	do {
213 		tx_swbd = &tx_ring->tx_swbd[i];
214 		enetc_free_tx_skb(tx_ring, tx_swbd);
215 		if (i == 0)
216 			i = tx_ring->bd_count;
217 		i--;
218 	} while (count--);
219 
220 	return 0;
221 }
222 
223 static irqreturn_t enetc_msix(int irq, void *data)
224 {
225 	struct enetc_int_vector	*v = data;
226 	int i;
227 
228 	enetc_lock_mdio();
229 
230 	/* disable interrupts */
231 	enetc_wr_reg_hot(v->rbier, 0);
232 	enetc_wr_reg_hot(v->ricr1, v->rx_ictt);
233 
234 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
235 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), 0);
236 
237 	enetc_unlock_mdio();
238 
239 	napi_schedule(&v->napi);
240 
241 	return IRQ_HANDLED;
242 }
243 
244 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget);
245 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
246 			       struct napi_struct *napi, int work_limit);
247 
248 static void enetc_rx_dim_work(struct work_struct *w)
249 {
250 	struct dim *dim = container_of(w, struct dim, work);
251 	struct dim_cq_moder moder =
252 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
253 	struct enetc_int_vector	*v =
254 		container_of(dim, struct enetc_int_vector, rx_dim);
255 
256 	v->rx_ictt = enetc_usecs_to_cycles(moder.usec);
257 	dim->state = DIM_START_MEASURE;
258 }
259 
260 static void enetc_rx_net_dim(struct enetc_int_vector *v)
261 {
262 	struct dim_sample dim_sample;
263 
264 	v->comp_cnt++;
265 
266 	if (!v->rx_napi_work)
267 		return;
268 
269 	dim_update_sample(v->comp_cnt,
270 			  v->rx_ring.stats.packets,
271 			  v->rx_ring.stats.bytes,
272 			  &dim_sample);
273 	net_dim(&v->rx_dim, dim_sample);
274 }
275 
276 static int enetc_poll(struct napi_struct *napi, int budget)
277 {
278 	struct enetc_int_vector
279 		*v = container_of(napi, struct enetc_int_vector, napi);
280 	bool complete = true;
281 	int work_done;
282 	int i;
283 
284 	enetc_lock_mdio();
285 
286 	for (i = 0; i < v->count_tx_rings; i++)
287 		if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
288 			complete = false;
289 
290 	work_done = enetc_clean_rx_ring(&v->rx_ring, napi, budget);
291 	if (work_done == budget)
292 		complete = false;
293 	if (work_done)
294 		v->rx_napi_work = true;
295 
296 	if (!complete) {
297 		enetc_unlock_mdio();
298 		return budget;
299 	}
300 
301 	napi_complete_done(napi, work_done);
302 
303 	if (likely(v->rx_dim_en))
304 		enetc_rx_net_dim(v);
305 
306 	v->rx_napi_work = false;
307 
308 	/* enable interrupts */
309 	enetc_wr_reg_hot(v->rbier, ENETC_RBIER_RXTIE);
310 
311 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
312 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i),
313 				 ENETC_TBIER_TXTIE);
314 
315 	enetc_unlock_mdio();
316 
317 	return work_done;
318 }
319 
320 static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
321 {
322 	int pi = enetc_rd_reg_hot(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
323 
324 	return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
325 }
326 
327 static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
328 				u64 *tstamp)
329 {
330 	u32 lo, hi, tstamp_lo;
331 
332 	lo = enetc_rd_hot(hw, ENETC_SICTR0);
333 	hi = enetc_rd_hot(hw, ENETC_SICTR1);
334 	tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
335 	if (lo <= tstamp_lo)
336 		hi -= 1;
337 	*tstamp = (u64)hi << 32 | tstamp_lo;
338 }
339 
340 static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
341 {
342 	struct skb_shared_hwtstamps shhwtstamps;
343 
344 	if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
345 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
346 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
347 		/* Ensure skb_mstamp_ns, which might have been populated with
348 		 * the txtime, is not mistaken for a software timestamp,
349 		 * because this will prevent the dispatch of our hardware
350 		 * timestamp to the socket.
351 		 */
352 		skb->tstamp = ktime_set(0, 0);
353 		skb_tstamp_tx(skb, &shhwtstamps);
354 	}
355 }
356 
357 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
358 {
359 	struct net_device *ndev = tx_ring->ndev;
360 	int tx_frm_cnt = 0, tx_byte_cnt = 0;
361 	struct enetc_tx_swbd *tx_swbd;
362 	int i, bds_to_clean;
363 	bool do_tstamp;
364 	u64 tstamp = 0;
365 
366 	i = tx_ring->next_to_clean;
367 	tx_swbd = &tx_ring->tx_swbd[i];
368 
369 	bds_to_clean = enetc_bd_ready_count(tx_ring, i);
370 
371 	do_tstamp = false;
372 
373 	while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
374 		bool is_eof = !!tx_swbd->skb;
375 
376 		if (unlikely(tx_swbd->check_wb)) {
377 			struct enetc_ndev_priv *priv = netdev_priv(ndev);
378 			union enetc_tx_bd *txbd;
379 
380 			txbd = ENETC_TXBD(*tx_ring, i);
381 
382 			if (txbd->flags & ENETC_TXBD_FLAGS_W &&
383 			    tx_swbd->do_tstamp) {
384 				enetc_get_tx_tstamp(&priv->si->hw, txbd,
385 						    &tstamp);
386 				do_tstamp = true;
387 			}
388 		}
389 
390 		if (likely(tx_swbd->dma))
391 			enetc_unmap_tx_buff(tx_ring, tx_swbd);
392 
393 		if (is_eof) {
394 			if (unlikely(do_tstamp)) {
395 				enetc_tstamp_tx(tx_swbd->skb, tstamp);
396 				do_tstamp = false;
397 			}
398 			napi_consume_skb(tx_swbd->skb, napi_budget);
399 			tx_swbd->skb = NULL;
400 		}
401 
402 		tx_byte_cnt += tx_swbd->len;
403 
404 		bds_to_clean--;
405 		tx_swbd++;
406 		i++;
407 		if (unlikely(i == tx_ring->bd_count)) {
408 			i = 0;
409 			tx_swbd = tx_ring->tx_swbd;
410 		}
411 
412 		/* BD iteration loop end */
413 		if (is_eof) {
414 			tx_frm_cnt++;
415 			/* re-arm interrupt source */
416 			enetc_wr_reg_hot(tx_ring->idr, BIT(tx_ring->index) |
417 					 BIT(16 + tx_ring->index));
418 		}
419 
420 		if (unlikely(!bds_to_clean))
421 			bds_to_clean = enetc_bd_ready_count(tx_ring, i);
422 	}
423 
424 	tx_ring->next_to_clean = i;
425 	tx_ring->stats.packets += tx_frm_cnt;
426 	tx_ring->stats.bytes += tx_byte_cnt;
427 
428 	if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
429 		     __netif_subqueue_stopped(ndev, tx_ring->index) &&
430 		     (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
431 		netif_wake_subqueue(ndev, tx_ring->index);
432 	}
433 
434 	return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
435 }
436 
437 static bool enetc_new_page(struct enetc_bdr *rx_ring,
438 			   struct enetc_rx_swbd *rx_swbd)
439 {
440 	struct page *page;
441 	dma_addr_t addr;
442 
443 	page = dev_alloc_page();
444 	if (unlikely(!page))
445 		return false;
446 
447 	addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
448 	if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
449 		__free_page(page);
450 
451 		return false;
452 	}
453 
454 	rx_swbd->dma = addr;
455 	rx_swbd->page = page;
456 	rx_swbd->page_offset = ENETC_RXB_PAD;
457 
458 	return true;
459 }
460 
461 static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
462 {
463 	struct enetc_rx_swbd *rx_swbd;
464 	union enetc_rx_bd *rxbd;
465 	int i, j;
466 
467 	i = rx_ring->next_to_use;
468 	rx_swbd = &rx_ring->rx_swbd[i];
469 	rxbd = enetc_rxbd(rx_ring, i);
470 
471 	for (j = 0; j < buff_cnt; j++) {
472 		/* try reuse page */
473 		if (unlikely(!rx_swbd->page)) {
474 			if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
475 				rx_ring->stats.rx_alloc_errs++;
476 				break;
477 			}
478 		}
479 
480 		/* update RxBD */
481 		rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
482 					   rx_swbd->page_offset);
483 		/* clear 'R" as well */
484 		rxbd->r.lstatus = 0;
485 
486 		rxbd = enetc_rxbd_next(rx_ring, rxbd, i);
487 		rx_swbd++;
488 		i++;
489 		if (unlikely(i == rx_ring->bd_count)) {
490 			i = 0;
491 			rx_swbd = rx_ring->rx_swbd;
492 		}
493 	}
494 
495 	if (likely(j)) {
496 		rx_ring->next_to_alloc = i; /* keep track from page reuse */
497 		rx_ring->next_to_use = i;
498 	}
499 
500 	return j;
501 }
502 
503 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
504 static void enetc_get_rx_tstamp(struct net_device *ndev,
505 				union enetc_rx_bd *rxbd,
506 				struct sk_buff *skb)
507 {
508 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
509 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
510 	struct enetc_hw *hw = &priv->si->hw;
511 	u32 lo, hi, tstamp_lo;
512 	u64 tstamp;
513 
514 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
515 		lo = enetc_rd_reg_hot(hw->reg + ENETC_SICTR0);
516 		hi = enetc_rd_reg_hot(hw->reg + ENETC_SICTR1);
517 		rxbd = enetc_rxbd_ext(rxbd);
518 		tstamp_lo = le32_to_cpu(rxbd->ext.tstamp);
519 		if (lo <= tstamp_lo)
520 			hi -= 1;
521 
522 		tstamp = (u64)hi << 32 | tstamp_lo;
523 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
524 		shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
525 	}
526 }
527 #endif
528 
529 static void enetc_get_offloads(struct enetc_bdr *rx_ring,
530 			       union enetc_rx_bd *rxbd, struct sk_buff *skb)
531 {
532 	struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
533 
534 	/* TODO: hashing */
535 	if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
536 		u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
537 
538 		skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
539 		skb->ip_summed = CHECKSUM_COMPLETE;
540 	}
541 
542 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN) {
543 		__be16 tpid = 0;
544 
545 		switch (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TPID) {
546 		case 0:
547 			tpid = htons(ETH_P_8021Q);
548 			break;
549 		case 1:
550 			tpid = htons(ETH_P_8021AD);
551 			break;
552 		case 2:
553 			tpid = htons(enetc_port_rd(&priv->si->hw,
554 						   ENETC_PCVLANR1));
555 			break;
556 		case 3:
557 			tpid = htons(enetc_port_rd(&priv->si->hw,
558 						   ENETC_PCVLANR2));
559 			break;
560 		default:
561 			break;
562 		}
563 
564 		__vlan_hwaccel_put_tag(skb, tpid, le16_to_cpu(rxbd->r.vlan_opt));
565 	}
566 
567 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
568 	if (priv->active_offloads & ENETC_F_RX_TSTAMP)
569 		enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
570 #endif
571 }
572 
573 static void enetc_process_skb(struct enetc_bdr *rx_ring,
574 			      struct sk_buff *skb)
575 {
576 	skb_record_rx_queue(skb, rx_ring->index);
577 	skb->protocol = eth_type_trans(skb, rx_ring->ndev);
578 }
579 
580 static bool enetc_page_reusable(struct page *page)
581 {
582 	return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
583 }
584 
585 static void enetc_reuse_page(struct enetc_bdr *rx_ring,
586 			     struct enetc_rx_swbd *old)
587 {
588 	struct enetc_rx_swbd *new;
589 
590 	new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
591 
592 	/* next buf that may reuse a page */
593 	enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
594 
595 	/* copy page reference */
596 	*new = *old;
597 }
598 
599 static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
600 					       int i, u16 size)
601 {
602 	struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
603 
604 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
605 				      rx_swbd->page_offset,
606 				      size, DMA_FROM_DEVICE);
607 	return rx_swbd;
608 }
609 
610 static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
611 			      struct enetc_rx_swbd *rx_swbd)
612 {
613 	if (likely(enetc_page_reusable(rx_swbd->page))) {
614 		rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
615 		page_ref_inc(rx_swbd->page);
616 
617 		enetc_reuse_page(rx_ring, rx_swbd);
618 
619 		/* sync for use by the device */
620 		dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
621 						 rx_swbd->page_offset,
622 						 ENETC_RXB_DMA_SIZE,
623 						 DMA_FROM_DEVICE);
624 	} else {
625 		dma_unmap_page(rx_ring->dev, rx_swbd->dma,
626 			       PAGE_SIZE, DMA_FROM_DEVICE);
627 	}
628 
629 	rx_swbd->page = NULL;
630 }
631 
632 static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
633 						int i, u16 size)
634 {
635 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
636 	struct sk_buff *skb;
637 	void *ba;
638 
639 	ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
640 	skb = build_skb(ba - ENETC_RXB_PAD, ENETC_RXB_TRUESIZE);
641 	if (unlikely(!skb)) {
642 		rx_ring->stats.rx_alloc_errs++;
643 		return NULL;
644 	}
645 
646 	skb_reserve(skb, ENETC_RXB_PAD);
647 	__skb_put(skb, size);
648 
649 	enetc_put_rx_buff(rx_ring, rx_swbd);
650 
651 	return skb;
652 }
653 
654 static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
655 				     u16 size, struct sk_buff *skb)
656 {
657 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
658 
659 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
660 			rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
661 
662 	enetc_put_rx_buff(rx_ring, rx_swbd);
663 }
664 
665 #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
666 
667 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
668 			       struct napi_struct *napi, int work_limit)
669 {
670 	int rx_frm_cnt = 0, rx_byte_cnt = 0;
671 	int cleaned_cnt, i;
672 
673 	cleaned_cnt = enetc_bd_unused(rx_ring);
674 	/* next descriptor to process */
675 	i = rx_ring->next_to_clean;
676 
677 	while (likely(rx_frm_cnt < work_limit)) {
678 		union enetc_rx_bd *rxbd;
679 		struct sk_buff *skb;
680 		u32 bd_status;
681 		u16 size;
682 
683 		if (cleaned_cnt >= ENETC_RXBD_BUNDLE) {
684 			int count = enetc_refill_rx_ring(rx_ring, cleaned_cnt);
685 
686 			/* update ENETC's consumer index */
687 			enetc_wr_reg_hot(rx_ring->rcir, rx_ring->next_to_use);
688 			cleaned_cnt -= count;
689 		}
690 
691 		rxbd = enetc_rxbd(rx_ring, i);
692 		bd_status = le32_to_cpu(rxbd->r.lstatus);
693 		if (!bd_status)
694 			break;
695 
696 		enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
697 		dma_rmb(); /* for reading other rxbd fields */
698 		size = le16_to_cpu(rxbd->r.buf_len);
699 		skb = enetc_map_rx_buff_to_skb(rx_ring, i, size);
700 		if (!skb)
701 			break;
702 
703 		enetc_get_offloads(rx_ring, rxbd, skb);
704 
705 		cleaned_cnt++;
706 
707 		rxbd = enetc_rxbd_next(rx_ring, rxbd, i);
708 		if (unlikely(++i == rx_ring->bd_count))
709 			i = 0;
710 
711 		if (unlikely(bd_status &
712 			     ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))) {
713 			dev_kfree_skb(skb);
714 			while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
715 				dma_rmb();
716 				bd_status = le32_to_cpu(rxbd->r.lstatus);
717 
718 				rxbd = enetc_rxbd_next(rx_ring, rxbd, i);
719 				if (unlikely(++i == rx_ring->bd_count))
720 					i = 0;
721 			}
722 
723 			rx_ring->ndev->stats.rx_dropped++;
724 			rx_ring->ndev->stats.rx_errors++;
725 
726 			break;
727 		}
728 
729 		/* not last BD in frame? */
730 		while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
731 			bd_status = le32_to_cpu(rxbd->r.lstatus);
732 			size = ENETC_RXB_DMA_SIZE;
733 
734 			if (bd_status & ENETC_RXBD_LSTATUS_F) {
735 				dma_rmb();
736 				size = le16_to_cpu(rxbd->r.buf_len);
737 			}
738 
739 			enetc_add_rx_buff_to_skb(rx_ring, i, size, skb);
740 
741 			cleaned_cnt++;
742 
743 			rxbd = enetc_rxbd_next(rx_ring, rxbd, i);
744 			if (unlikely(++i == rx_ring->bd_count))
745 				i = 0;
746 		}
747 
748 		rx_byte_cnt += skb->len;
749 
750 		enetc_process_skb(rx_ring, skb);
751 
752 		napi_gro_receive(napi, skb);
753 
754 		rx_frm_cnt++;
755 	}
756 
757 	rx_ring->next_to_clean = i;
758 
759 	rx_ring->stats.packets += rx_frm_cnt;
760 	rx_ring->stats.bytes += rx_byte_cnt;
761 
762 	return rx_frm_cnt;
763 }
764 
765 /* Probing and Init */
766 #define ENETC_MAX_RFS_SIZE 64
767 void enetc_get_si_caps(struct enetc_si *si)
768 {
769 	struct enetc_hw *hw = &si->hw;
770 	u32 val;
771 
772 	/* find out how many of various resources we have to work with */
773 	val = enetc_rd(hw, ENETC_SICAPR0);
774 	si->num_rx_rings = (val >> 16) & 0xff;
775 	si->num_tx_rings = val & 0xff;
776 
777 	val = enetc_rd(hw, ENETC_SIRFSCAPR);
778 	si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
779 	si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
780 
781 	si->num_rss = 0;
782 	val = enetc_rd(hw, ENETC_SIPCAPR0);
783 	if (val & ENETC_SIPCAPR0_RSS) {
784 		u32 rss;
785 
786 		rss = enetc_rd(hw, ENETC_SIRSSCAPR);
787 		si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss);
788 	}
789 
790 	if (val & ENETC_SIPCAPR0_QBV)
791 		si->hw_features |= ENETC_SI_F_QBV;
792 
793 	if (val & ENETC_SIPCAPR0_PSFP)
794 		si->hw_features |= ENETC_SI_F_PSFP;
795 }
796 
797 static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size)
798 {
799 	r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size,
800 					&r->bd_dma_base, GFP_KERNEL);
801 	if (!r->bd_base)
802 		return -ENOMEM;
803 
804 	/* h/w requires 128B alignment */
805 	if (!IS_ALIGNED(r->bd_dma_base, 128)) {
806 		dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base,
807 				  r->bd_dma_base);
808 		return -EINVAL;
809 	}
810 
811 	return 0;
812 }
813 
814 static int enetc_alloc_txbdr(struct enetc_bdr *txr)
815 {
816 	int err;
817 
818 	txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd));
819 	if (!txr->tx_swbd)
820 		return -ENOMEM;
821 
822 	err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd));
823 	if (err) {
824 		vfree(txr->tx_swbd);
825 		return err;
826 	}
827 
828 	txr->next_to_clean = 0;
829 	txr->next_to_use = 0;
830 
831 	return 0;
832 }
833 
834 static void enetc_free_txbdr(struct enetc_bdr *txr)
835 {
836 	int size, i;
837 
838 	for (i = 0; i < txr->bd_count; i++)
839 		enetc_free_tx_skb(txr, &txr->tx_swbd[i]);
840 
841 	size = txr->bd_count * sizeof(union enetc_tx_bd);
842 
843 	dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base);
844 	txr->bd_base = NULL;
845 
846 	vfree(txr->tx_swbd);
847 	txr->tx_swbd = NULL;
848 }
849 
850 static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
851 {
852 	int i, err;
853 
854 	for (i = 0; i < priv->num_tx_rings; i++) {
855 		err = enetc_alloc_txbdr(priv->tx_ring[i]);
856 
857 		if (err)
858 			goto fail;
859 	}
860 
861 	return 0;
862 
863 fail:
864 	while (i-- > 0)
865 		enetc_free_txbdr(priv->tx_ring[i]);
866 
867 	return err;
868 }
869 
870 static void enetc_free_tx_resources(struct enetc_ndev_priv *priv)
871 {
872 	int i;
873 
874 	for (i = 0; i < priv->num_tx_rings; i++)
875 		enetc_free_txbdr(priv->tx_ring[i]);
876 }
877 
878 static int enetc_alloc_rxbdr(struct enetc_bdr *rxr, bool extended)
879 {
880 	size_t size = sizeof(union enetc_rx_bd);
881 	int err;
882 
883 	rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd));
884 	if (!rxr->rx_swbd)
885 		return -ENOMEM;
886 
887 	if (extended)
888 		size *= 2;
889 
890 	err = enetc_dma_alloc_bdr(rxr, size);
891 	if (err) {
892 		vfree(rxr->rx_swbd);
893 		return err;
894 	}
895 
896 	rxr->next_to_clean = 0;
897 	rxr->next_to_use = 0;
898 	rxr->next_to_alloc = 0;
899 	rxr->ext_en = extended;
900 
901 	return 0;
902 }
903 
904 static void enetc_free_rxbdr(struct enetc_bdr *rxr)
905 {
906 	int size;
907 
908 	size = rxr->bd_count * sizeof(union enetc_rx_bd);
909 
910 	dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base);
911 	rxr->bd_base = NULL;
912 
913 	vfree(rxr->rx_swbd);
914 	rxr->rx_swbd = NULL;
915 }
916 
917 static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv)
918 {
919 	bool extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP);
920 	int i, err;
921 
922 	for (i = 0; i < priv->num_rx_rings; i++) {
923 		err = enetc_alloc_rxbdr(priv->rx_ring[i], extended);
924 
925 		if (err)
926 			goto fail;
927 	}
928 
929 	return 0;
930 
931 fail:
932 	while (i-- > 0)
933 		enetc_free_rxbdr(priv->rx_ring[i]);
934 
935 	return err;
936 }
937 
938 static void enetc_free_rx_resources(struct enetc_ndev_priv *priv)
939 {
940 	int i;
941 
942 	for (i = 0; i < priv->num_rx_rings; i++)
943 		enetc_free_rxbdr(priv->rx_ring[i]);
944 }
945 
946 static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
947 {
948 	int i;
949 
950 	if (!tx_ring->tx_swbd)
951 		return;
952 
953 	for (i = 0; i < tx_ring->bd_count; i++) {
954 		struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
955 
956 		enetc_free_tx_skb(tx_ring, tx_swbd);
957 	}
958 
959 	tx_ring->next_to_clean = 0;
960 	tx_ring->next_to_use = 0;
961 }
962 
963 static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
964 {
965 	int i;
966 
967 	if (!rx_ring->rx_swbd)
968 		return;
969 
970 	for (i = 0; i < rx_ring->bd_count; i++) {
971 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
972 
973 		if (!rx_swbd->page)
974 			continue;
975 
976 		dma_unmap_page(rx_ring->dev, rx_swbd->dma,
977 			       PAGE_SIZE, DMA_FROM_DEVICE);
978 		__free_page(rx_swbd->page);
979 		rx_swbd->page = NULL;
980 	}
981 
982 	rx_ring->next_to_clean = 0;
983 	rx_ring->next_to_use = 0;
984 	rx_ring->next_to_alloc = 0;
985 }
986 
987 static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
988 {
989 	int i;
990 
991 	for (i = 0; i < priv->num_rx_rings; i++)
992 		enetc_free_rx_ring(priv->rx_ring[i]);
993 
994 	for (i = 0; i < priv->num_tx_rings; i++)
995 		enetc_free_tx_ring(priv->tx_ring[i]);
996 }
997 
998 int enetc_alloc_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
999 {
1000 	int size = cbdr->bd_count * sizeof(struct enetc_cbd);
1001 
1002 	cbdr->bd_base = dma_alloc_coherent(dev, size, &cbdr->bd_dma_base,
1003 					   GFP_KERNEL);
1004 	if (!cbdr->bd_base)
1005 		return -ENOMEM;
1006 
1007 	/* h/w requires 128B alignment */
1008 	if (!IS_ALIGNED(cbdr->bd_dma_base, 128)) {
1009 		dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
1010 		return -EINVAL;
1011 	}
1012 
1013 	cbdr->next_to_clean = 0;
1014 	cbdr->next_to_use = 0;
1015 
1016 	return 0;
1017 }
1018 
1019 void enetc_free_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
1020 {
1021 	int size = cbdr->bd_count * sizeof(struct enetc_cbd);
1022 
1023 	dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
1024 	cbdr->bd_base = NULL;
1025 }
1026 
1027 void enetc_setup_cbdr(struct enetc_hw *hw, struct enetc_cbdr *cbdr)
1028 {
1029 	/* set CBDR cache attributes */
1030 	enetc_wr(hw, ENETC_SICAR2,
1031 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
1032 
1033 	enetc_wr(hw, ENETC_SICBDRBAR0, lower_32_bits(cbdr->bd_dma_base));
1034 	enetc_wr(hw, ENETC_SICBDRBAR1, upper_32_bits(cbdr->bd_dma_base));
1035 	enetc_wr(hw, ENETC_SICBDRLENR, ENETC_RTBLENR_LEN(cbdr->bd_count));
1036 
1037 	enetc_wr(hw, ENETC_SICBDRPIR, 0);
1038 	enetc_wr(hw, ENETC_SICBDRCIR, 0);
1039 
1040 	/* enable ring */
1041 	enetc_wr(hw, ENETC_SICBDRMR, BIT(31));
1042 
1043 	cbdr->pir = hw->reg + ENETC_SICBDRPIR;
1044 	cbdr->cir = hw->reg + ENETC_SICBDRCIR;
1045 }
1046 
1047 void enetc_clear_cbdr(struct enetc_hw *hw)
1048 {
1049 	enetc_wr(hw, ENETC_SICBDRMR, 0);
1050 }
1051 
1052 static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
1053 {
1054 	int *rss_table;
1055 	int i;
1056 
1057 	rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
1058 	if (!rss_table)
1059 		return -ENOMEM;
1060 
1061 	/* Set up RSS table defaults */
1062 	for (i = 0; i < si->num_rss; i++)
1063 		rss_table[i] = i % num_groups;
1064 
1065 	enetc_set_rss_table(si, rss_table, si->num_rss);
1066 
1067 	kfree(rss_table);
1068 
1069 	return 0;
1070 }
1071 
1072 int enetc_configure_si(struct enetc_ndev_priv *priv)
1073 {
1074 	struct enetc_si *si = priv->si;
1075 	struct enetc_hw *hw = &si->hw;
1076 	int err;
1077 
1078 	/* set SI cache attributes */
1079 	enetc_wr(hw, ENETC_SICAR0,
1080 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
1081 	enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
1082 	/* enable SI */
1083 	enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
1084 
1085 	if (si->num_rss) {
1086 		err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
1087 		if (err)
1088 			return err;
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
1095 {
1096 	struct enetc_si *si = priv->si;
1097 	int cpus = num_online_cpus();
1098 
1099 	priv->tx_bd_count = ENETC_TX_RING_DEFAULT_SIZE;
1100 	priv->rx_bd_count = ENETC_RX_RING_DEFAULT_SIZE;
1101 
1102 	/* Enable all available TX rings in order to configure as many
1103 	 * priorities as possible, when needed.
1104 	 * TODO: Make # of TX rings run-time configurable
1105 	 */
1106 	priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
1107 	priv->num_tx_rings = si->num_tx_rings;
1108 	priv->bdr_int_num = cpus;
1109 	priv->ic_mode = ENETC_IC_RX_ADAPTIVE | ENETC_IC_TX_MANUAL;
1110 	priv->tx_ictt = ENETC_TXIC_TIMETHR;
1111 
1112 	/* SI specific */
1113 	si->cbd_ring.bd_count = ENETC_CBDR_DEFAULT_SIZE;
1114 }
1115 
1116 int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
1117 {
1118 	struct enetc_si *si = priv->si;
1119 	int err;
1120 
1121 	err = enetc_alloc_cbdr(priv->dev, &si->cbd_ring);
1122 	if (err)
1123 		return err;
1124 
1125 	enetc_setup_cbdr(&si->hw, &si->cbd_ring);
1126 
1127 	priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
1128 				  GFP_KERNEL);
1129 	if (!priv->cls_rules) {
1130 		err = -ENOMEM;
1131 		goto err_alloc_cls;
1132 	}
1133 
1134 	return 0;
1135 
1136 err_alloc_cls:
1137 	enetc_clear_cbdr(&si->hw);
1138 	enetc_free_cbdr(priv->dev, &si->cbd_ring);
1139 
1140 	return err;
1141 }
1142 
1143 void enetc_free_si_resources(struct enetc_ndev_priv *priv)
1144 {
1145 	struct enetc_si *si = priv->si;
1146 
1147 	enetc_clear_cbdr(&si->hw);
1148 	enetc_free_cbdr(priv->dev, &si->cbd_ring);
1149 
1150 	kfree(priv->cls_rules);
1151 }
1152 
1153 static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1154 {
1155 	int idx = tx_ring->index;
1156 	u32 tbmr;
1157 
1158 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
1159 		       lower_32_bits(tx_ring->bd_dma_base));
1160 
1161 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
1162 		       upper_32_bits(tx_ring->bd_dma_base));
1163 
1164 	WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
1165 	enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
1166 		       ENETC_RTBLENR_LEN(tx_ring->bd_count));
1167 
1168 	/* clearing PI/CI registers for Tx not supported, adjust sw indexes */
1169 	tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
1170 	tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
1171 
1172 	/* enable Tx ints by setting pkt thr to 1 */
1173 	enetc_txbdr_wr(hw, idx, ENETC_TBICR0, ENETC_TBICR0_ICEN | 0x1);
1174 
1175 	tbmr = ENETC_TBMR_EN;
1176 	if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
1177 		tbmr |= ENETC_TBMR_VIH;
1178 
1179 	/* enable ring */
1180 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
1181 
1182 	tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
1183 	tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
1184 	tx_ring->idr = hw->reg + ENETC_SITXIDR;
1185 }
1186 
1187 static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1188 {
1189 	int idx = rx_ring->index;
1190 	u32 rbmr;
1191 
1192 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
1193 		       lower_32_bits(rx_ring->bd_dma_base));
1194 
1195 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
1196 		       upper_32_bits(rx_ring->bd_dma_base));
1197 
1198 	WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
1199 	enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
1200 		       ENETC_RTBLENR_LEN(rx_ring->bd_count));
1201 
1202 	enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
1203 
1204 	enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
1205 
1206 	/* enable Rx ints by setting pkt thr to 1 */
1207 	enetc_rxbdr_wr(hw, idx, ENETC_RBICR0, ENETC_RBICR0_ICEN | 0x1);
1208 
1209 	rbmr = ENETC_RBMR_EN;
1210 
1211 	if (rx_ring->ext_en)
1212 		rbmr |= ENETC_RBMR_BDS;
1213 
1214 	if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1215 		rbmr |= ENETC_RBMR_VTE;
1216 
1217 	rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
1218 	rx_ring->idr = hw->reg + ENETC_SIRXIDR;
1219 
1220 	enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
1221 	/* update ENETC's consumer index */
1222 	enetc_rxbdr_wr(hw, idx, ENETC_RBCIR, rx_ring->next_to_use);
1223 
1224 	/* enable ring */
1225 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
1226 }
1227 
1228 static void enetc_setup_bdrs(struct enetc_ndev_priv *priv)
1229 {
1230 	int i;
1231 
1232 	for (i = 0; i < priv->num_tx_rings; i++)
1233 		enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]);
1234 
1235 	for (i = 0; i < priv->num_rx_rings; i++)
1236 		enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1237 }
1238 
1239 static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1240 {
1241 	int idx = rx_ring->index;
1242 
1243 	/* disable EN bit on ring */
1244 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
1245 }
1246 
1247 static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1248 {
1249 	int delay = 8, timeout = 100;
1250 	int idx = tx_ring->index;
1251 
1252 	/* disable EN bit on ring */
1253 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
1254 
1255 	/* wait for busy to clear */
1256 	while (delay < timeout &&
1257 	       enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
1258 		msleep(delay);
1259 		delay *= 2;
1260 	}
1261 
1262 	if (delay >= timeout)
1263 		netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
1264 			    idx);
1265 }
1266 
1267 static void enetc_clear_bdrs(struct enetc_ndev_priv *priv)
1268 {
1269 	int i;
1270 
1271 	for (i = 0; i < priv->num_tx_rings; i++)
1272 		enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]);
1273 
1274 	for (i = 0; i < priv->num_rx_rings; i++)
1275 		enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1276 
1277 	udelay(1);
1278 }
1279 
1280 static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
1281 {
1282 	struct pci_dev *pdev = priv->si->pdev;
1283 	cpumask_t cpu_mask;
1284 	int i, j, err;
1285 
1286 	for (i = 0; i < priv->bdr_int_num; i++) {
1287 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1288 		struct enetc_int_vector *v = priv->int_vector[i];
1289 		int entry = ENETC_BDR_INT_BASE_IDX + i;
1290 		struct enetc_hw *hw = &priv->si->hw;
1291 
1292 		snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
1293 			 priv->ndev->name, i);
1294 		err = request_irq(irq, enetc_msix, 0, v->name, v);
1295 		if (err) {
1296 			dev_err(priv->dev, "request_irq() failed!\n");
1297 			goto irq_err;
1298 		}
1299 		disable_irq(irq);
1300 
1301 		v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
1302 		v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
1303 		v->ricr1 = hw->reg + ENETC_BDR(RX, i, ENETC_RBICR1);
1304 
1305 		enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
1306 
1307 		for (j = 0; j < v->count_tx_rings; j++) {
1308 			int idx = v->tx_ring[j].index;
1309 
1310 			enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
1311 		}
1312 		cpumask_clear(&cpu_mask);
1313 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
1314 		irq_set_affinity_hint(irq, &cpu_mask);
1315 	}
1316 
1317 	return 0;
1318 
1319 irq_err:
1320 	while (i--) {
1321 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1322 
1323 		irq_set_affinity_hint(irq, NULL);
1324 		free_irq(irq, priv->int_vector[i]);
1325 	}
1326 
1327 	return err;
1328 }
1329 
1330 static void enetc_free_irqs(struct enetc_ndev_priv *priv)
1331 {
1332 	struct pci_dev *pdev = priv->si->pdev;
1333 	int i;
1334 
1335 	for (i = 0; i < priv->bdr_int_num; i++) {
1336 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1337 
1338 		irq_set_affinity_hint(irq, NULL);
1339 		free_irq(irq, priv->int_vector[i]);
1340 	}
1341 }
1342 
1343 static void enetc_setup_interrupts(struct enetc_ndev_priv *priv)
1344 {
1345 	struct enetc_hw *hw = &priv->si->hw;
1346 	u32 icpt, ictt;
1347 	int i;
1348 
1349 	/* enable Tx & Rx event indication */
1350 	if (priv->ic_mode &
1351 	    (ENETC_IC_RX_MANUAL | ENETC_IC_RX_ADAPTIVE)) {
1352 		icpt = ENETC_RBICR0_SET_ICPT(ENETC_RXIC_PKTTHR);
1353 		/* init to non-0 minimum, will be adjusted later */
1354 		ictt = 0x1;
1355 	} else {
1356 		icpt = 0x1; /* enable Rx ints by setting pkt thr to 1 */
1357 		ictt = 0;
1358 	}
1359 
1360 	for (i = 0; i < priv->num_rx_rings; i++) {
1361 		enetc_rxbdr_wr(hw, i, ENETC_RBICR1, ictt);
1362 		enetc_rxbdr_wr(hw, i, ENETC_RBICR0, ENETC_RBICR0_ICEN | icpt);
1363 		enetc_rxbdr_wr(hw, i, ENETC_RBIER, ENETC_RBIER_RXTIE);
1364 	}
1365 
1366 	if (priv->ic_mode & ENETC_IC_TX_MANUAL)
1367 		icpt = ENETC_TBICR0_SET_ICPT(ENETC_TXIC_PKTTHR);
1368 	else
1369 		icpt = 0x1; /* enable Tx ints by setting pkt thr to 1 */
1370 
1371 	for (i = 0; i < priv->num_tx_rings; i++) {
1372 		enetc_txbdr_wr(hw, i, ENETC_TBICR1, priv->tx_ictt);
1373 		enetc_txbdr_wr(hw, i, ENETC_TBICR0, ENETC_TBICR0_ICEN | icpt);
1374 		enetc_txbdr_wr(hw, i, ENETC_TBIER, ENETC_TBIER_TXTIE);
1375 	}
1376 }
1377 
1378 static void enetc_clear_interrupts(struct enetc_ndev_priv *priv)
1379 {
1380 	int i;
1381 
1382 	for (i = 0; i < priv->num_tx_rings; i++)
1383 		enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0);
1384 
1385 	for (i = 0; i < priv->num_rx_rings; i++)
1386 		enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0);
1387 }
1388 
1389 static int enetc_phylink_connect(struct net_device *ndev)
1390 {
1391 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1392 	struct ethtool_eee edata;
1393 	int err;
1394 
1395 	if (!priv->phylink)
1396 		return 0; /* phy-less mode */
1397 
1398 	err = phylink_of_phy_connect(priv->phylink, priv->dev->of_node, 0);
1399 	if (err) {
1400 		dev_err(&ndev->dev, "could not attach to PHY\n");
1401 		return err;
1402 	}
1403 
1404 	/* disable EEE autoneg, until ENETC driver supports it */
1405 	memset(&edata, 0, sizeof(struct ethtool_eee));
1406 	phylink_ethtool_set_eee(priv->phylink, &edata);
1407 
1408 	return 0;
1409 }
1410 
1411 void enetc_start(struct net_device *ndev)
1412 {
1413 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1414 	int i;
1415 
1416 	enetc_setup_interrupts(priv);
1417 
1418 	for (i = 0; i < priv->bdr_int_num; i++) {
1419 		int irq = pci_irq_vector(priv->si->pdev,
1420 					 ENETC_BDR_INT_BASE_IDX + i);
1421 
1422 		napi_enable(&priv->int_vector[i]->napi);
1423 		enable_irq(irq);
1424 	}
1425 
1426 	if (priv->phylink)
1427 		phylink_start(priv->phylink);
1428 	else
1429 		netif_carrier_on(ndev);
1430 
1431 	netif_tx_start_all_queues(ndev);
1432 }
1433 
1434 int enetc_open(struct net_device *ndev)
1435 {
1436 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1437 	int err;
1438 
1439 	err = enetc_setup_irqs(priv);
1440 	if (err)
1441 		return err;
1442 
1443 	err = enetc_phylink_connect(ndev);
1444 	if (err)
1445 		goto err_phy_connect;
1446 
1447 	err = enetc_alloc_tx_resources(priv);
1448 	if (err)
1449 		goto err_alloc_tx;
1450 
1451 	err = enetc_alloc_rx_resources(priv);
1452 	if (err)
1453 		goto err_alloc_rx;
1454 
1455 	err = netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1456 	if (err)
1457 		goto err_set_queues;
1458 
1459 	err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings);
1460 	if (err)
1461 		goto err_set_queues;
1462 
1463 	enetc_setup_bdrs(priv);
1464 	enetc_start(ndev);
1465 
1466 	return 0;
1467 
1468 err_set_queues:
1469 	enetc_free_rx_resources(priv);
1470 err_alloc_rx:
1471 	enetc_free_tx_resources(priv);
1472 err_alloc_tx:
1473 	if (priv->phylink)
1474 		phylink_disconnect_phy(priv->phylink);
1475 err_phy_connect:
1476 	enetc_free_irqs(priv);
1477 
1478 	return err;
1479 }
1480 
1481 void enetc_stop(struct net_device *ndev)
1482 {
1483 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1484 	int i;
1485 
1486 	netif_tx_stop_all_queues(ndev);
1487 
1488 	for (i = 0; i < priv->bdr_int_num; i++) {
1489 		int irq = pci_irq_vector(priv->si->pdev,
1490 					 ENETC_BDR_INT_BASE_IDX + i);
1491 
1492 		disable_irq(irq);
1493 		napi_synchronize(&priv->int_vector[i]->napi);
1494 		napi_disable(&priv->int_vector[i]->napi);
1495 	}
1496 
1497 	if (priv->phylink)
1498 		phylink_stop(priv->phylink);
1499 	else
1500 		netif_carrier_off(ndev);
1501 
1502 	enetc_clear_interrupts(priv);
1503 }
1504 
1505 int enetc_close(struct net_device *ndev)
1506 {
1507 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1508 
1509 	enetc_stop(ndev);
1510 	enetc_clear_bdrs(priv);
1511 
1512 	if (priv->phylink)
1513 		phylink_disconnect_phy(priv->phylink);
1514 	enetc_free_rxtx_rings(priv);
1515 	enetc_free_rx_resources(priv);
1516 	enetc_free_tx_resources(priv);
1517 	enetc_free_irqs(priv);
1518 
1519 	return 0;
1520 }
1521 
1522 static int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data)
1523 {
1524 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1525 	struct tc_mqprio_qopt *mqprio = type_data;
1526 	struct enetc_bdr *tx_ring;
1527 	u8 num_tc;
1528 	int i;
1529 
1530 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1531 	num_tc = mqprio->num_tc;
1532 
1533 	if (!num_tc) {
1534 		netdev_reset_tc(ndev);
1535 		netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1536 
1537 		/* Reset all ring priorities to 0 */
1538 		for (i = 0; i < priv->num_tx_rings; i++) {
1539 			tx_ring = priv->tx_ring[i];
1540 			enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, 0);
1541 		}
1542 
1543 		return 0;
1544 	}
1545 
1546 	/* Check if we have enough BD rings available to accommodate all TCs */
1547 	if (num_tc > priv->num_tx_rings) {
1548 		netdev_err(ndev, "Max %d traffic classes supported\n",
1549 			   priv->num_tx_rings);
1550 		return -EINVAL;
1551 	}
1552 
1553 	/* For the moment, we use only one BD ring per TC.
1554 	 *
1555 	 * Configure num_tc BD rings with increasing priorities.
1556 	 */
1557 	for (i = 0; i < num_tc; i++) {
1558 		tx_ring = priv->tx_ring[i];
1559 		enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, i);
1560 	}
1561 
1562 	/* Reset the number of netdev queues based on the TC count */
1563 	netif_set_real_num_tx_queues(ndev, num_tc);
1564 
1565 	netdev_set_num_tc(ndev, num_tc);
1566 
1567 	/* Each TC is associated with one netdev queue */
1568 	for (i = 0; i < num_tc; i++)
1569 		netdev_set_tc_queue(ndev, i, 1, i);
1570 
1571 	return 0;
1572 }
1573 
1574 int enetc_setup_tc(struct net_device *ndev, enum tc_setup_type type,
1575 		   void *type_data)
1576 {
1577 	switch (type) {
1578 	case TC_SETUP_QDISC_MQPRIO:
1579 		return enetc_setup_tc_mqprio(ndev, type_data);
1580 	case TC_SETUP_QDISC_TAPRIO:
1581 		return enetc_setup_tc_taprio(ndev, type_data);
1582 	case TC_SETUP_QDISC_CBS:
1583 		return enetc_setup_tc_cbs(ndev, type_data);
1584 	case TC_SETUP_QDISC_ETF:
1585 		return enetc_setup_tc_txtime(ndev, type_data);
1586 	case TC_SETUP_BLOCK:
1587 		return enetc_setup_tc_psfp(ndev, type_data);
1588 	default:
1589 		return -EOPNOTSUPP;
1590 	}
1591 }
1592 
1593 struct net_device_stats *enetc_get_stats(struct net_device *ndev)
1594 {
1595 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1596 	struct net_device_stats *stats = &ndev->stats;
1597 	unsigned long packets = 0, bytes = 0;
1598 	int i;
1599 
1600 	for (i = 0; i < priv->num_rx_rings; i++) {
1601 		packets += priv->rx_ring[i]->stats.packets;
1602 		bytes	+= priv->rx_ring[i]->stats.bytes;
1603 	}
1604 
1605 	stats->rx_packets = packets;
1606 	stats->rx_bytes = bytes;
1607 	bytes = 0;
1608 	packets = 0;
1609 
1610 	for (i = 0; i < priv->num_tx_rings; i++) {
1611 		packets += priv->tx_ring[i]->stats.packets;
1612 		bytes	+= priv->tx_ring[i]->stats.bytes;
1613 	}
1614 
1615 	stats->tx_packets = packets;
1616 	stats->tx_bytes = bytes;
1617 
1618 	return stats;
1619 }
1620 
1621 static int enetc_set_rss(struct net_device *ndev, int en)
1622 {
1623 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1624 	struct enetc_hw *hw = &priv->si->hw;
1625 	u32 reg;
1626 
1627 	enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
1628 
1629 	reg = enetc_rd(hw, ENETC_SIMR);
1630 	reg &= ~ENETC_SIMR_RSSE;
1631 	reg |= (en) ? ENETC_SIMR_RSSE : 0;
1632 	enetc_wr(hw, ENETC_SIMR, reg);
1633 
1634 	return 0;
1635 }
1636 
1637 static int enetc_set_psfp(struct net_device *ndev, int en)
1638 {
1639 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1640 	int err;
1641 
1642 	if (en) {
1643 		err = enetc_psfp_enable(priv);
1644 		if (err)
1645 			return err;
1646 
1647 		priv->active_offloads |= ENETC_F_QCI;
1648 		return 0;
1649 	}
1650 
1651 	err = enetc_psfp_disable(priv);
1652 	if (err)
1653 		return err;
1654 
1655 	priv->active_offloads &= ~ENETC_F_QCI;
1656 
1657 	return 0;
1658 }
1659 
1660 static void enetc_enable_rxvlan(struct net_device *ndev, bool en)
1661 {
1662 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1663 	int i;
1664 
1665 	for (i = 0; i < priv->num_rx_rings; i++)
1666 		enetc_bdr_enable_rxvlan(&priv->si->hw, i, en);
1667 }
1668 
1669 static void enetc_enable_txvlan(struct net_device *ndev, bool en)
1670 {
1671 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1672 	int i;
1673 
1674 	for (i = 0; i < priv->num_tx_rings; i++)
1675 		enetc_bdr_enable_txvlan(&priv->si->hw, i, en);
1676 }
1677 
1678 int enetc_set_features(struct net_device *ndev,
1679 		       netdev_features_t features)
1680 {
1681 	netdev_features_t changed = ndev->features ^ features;
1682 	int err = 0;
1683 
1684 	if (changed & NETIF_F_RXHASH)
1685 		enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
1686 
1687 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1688 		enetc_enable_rxvlan(ndev,
1689 				    !!(features & NETIF_F_HW_VLAN_CTAG_RX));
1690 
1691 	if (changed & NETIF_F_HW_VLAN_CTAG_TX)
1692 		enetc_enable_txvlan(ndev,
1693 				    !!(features & NETIF_F_HW_VLAN_CTAG_TX));
1694 
1695 	if (changed & NETIF_F_HW_TC)
1696 		err = enetc_set_psfp(ndev, !!(features & NETIF_F_HW_TC));
1697 
1698 	return err;
1699 }
1700 
1701 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
1702 static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
1703 {
1704 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1705 	struct hwtstamp_config config;
1706 	int ao;
1707 
1708 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1709 		return -EFAULT;
1710 
1711 	switch (config.tx_type) {
1712 	case HWTSTAMP_TX_OFF:
1713 		priv->active_offloads &= ~ENETC_F_TX_TSTAMP;
1714 		break;
1715 	case HWTSTAMP_TX_ON:
1716 		priv->active_offloads |= ENETC_F_TX_TSTAMP;
1717 		break;
1718 	default:
1719 		return -ERANGE;
1720 	}
1721 
1722 	ao = priv->active_offloads;
1723 	switch (config.rx_filter) {
1724 	case HWTSTAMP_FILTER_NONE:
1725 		priv->active_offloads &= ~ENETC_F_RX_TSTAMP;
1726 		break;
1727 	default:
1728 		priv->active_offloads |= ENETC_F_RX_TSTAMP;
1729 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1730 	}
1731 
1732 	if (netif_running(ndev) && ao != priv->active_offloads) {
1733 		enetc_close(ndev);
1734 		enetc_open(ndev);
1735 	}
1736 
1737 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1738 	       -EFAULT : 0;
1739 }
1740 
1741 static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
1742 {
1743 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1744 	struct hwtstamp_config config;
1745 
1746 	config.flags = 0;
1747 
1748 	if (priv->active_offloads & ENETC_F_TX_TSTAMP)
1749 		config.tx_type = HWTSTAMP_TX_ON;
1750 	else
1751 		config.tx_type = HWTSTAMP_TX_OFF;
1752 
1753 	config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
1754 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
1755 
1756 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1757 	       -EFAULT : 0;
1758 }
1759 #endif
1760 
1761 int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1762 {
1763 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1764 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
1765 	if (cmd == SIOCSHWTSTAMP)
1766 		return enetc_hwtstamp_set(ndev, rq);
1767 	if (cmd == SIOCGHWTSTAMP)
1768 		return enetc_hwtstamp_get(ndev, rq);
1769 #endif
1770 
1771 	if (!priv->phylink)
1772 		return -EOPNOTSUPP;
1773 
1774 	return phylink_mii_ioctl(priv->phylink, rq, cmd);
1775 }
1776 
1777 int enetc_alloc_msix(struct enetc_ndev_priv *priv)
1778 {
1779 	struct pci_dev *pdev = priv->si->pdev;
1780 	int v_tx_rings;
1781 	int i, n, err, nvec;
1782 
1783 	nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
1784 	/* allocate MSIX for both messaging and Rx/Tx interrupts */
1785 	n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
1786 
1787 	if (n < 0)
1788 		return n;
1789 
1790 	if (n != nvec)
1791 		return -EPERM;
1792 
1793 	/* # of tx rings per int vector */
1794 	v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
1795 
1796 	for (i = 0; i < priv->bdr_int_num; i++) {
1797 		struct enetc_int_vector *v;
1798 		struct enetc_bdr *bdr;
1799 		int j;
1800 
1801 		v = kzalloc(struct_size(v, tx_ring, v_tx_rings), GFP_KERNEL);
1802 		if (!v) {
1803 			err = -ENOMEM;
1804 			goto fail;
1805 		}
1806 
1807 		priv->int_vector[i] = v;
1808 
1809 		/* init defaults for adaptive IC */
1810 		if (priv->ic_mode & ENETC_IC_RX_ADAPTIVE) {
1811 			v->rx_ictt = 0x1;
1812 			v->rx_dim_en = true;
1813 		}
1814 		INIT_WORK(&v->rx_dim.work, enetc_rx_dim_work);
1815 		netif_napi_add(priv->ndev, &v->napi, enetc_poll,
1816 			       NAPI_POLL_WEIGHT);
1817 		v->count_tx_rings = v_tx_rings;
1818 
1819 		for (j = 0; j < v_tx_rings; j++) {
1820 			int idx;
1821 
1822 			/* default tx ring mapping policy */
1823 			if (priv->bdr_int_num == ENETC_MAX_BDR_INT)
1824 				idx = 2 * j + i; /* 2 CPUs */
1825 			else
1826 				idx = j + i * v_tx_rings; /* default */
1827 
1828 			__set_bit(idx, &v->tx_rings_map);
1829 			bdr = &v->tx_ring[j];
1830 			bdr->index = idx;
1831 			bdr->ndev = priv->ndev;
1832 			bdr->dev = priv->dev;
1833 			bdr->bd_count = priv->tx_bd_count;
1834 			priv->tx_ring[idx] = bdr;
1835 		}
1836 
1837 		bdr = &v->rx_ring;
1838 		bdr->index = i;
1839 		bdr->ndev = priv->ndev;
1840 		bdr->dev = priv->dev;
1841 		bdr->bd_count = priv->rx_bd_count;
1842 		priv->rx_ring[i] = bdr;
1843 	}
1844 
1845 	return 0;
1846 
1847 fail:
1848 	while (i--) {
1849 		netif_napi_del(&priv->int_vector[i]->napi);
1850 		cancel_work_sync(&priv->int_vector[i]->rx_dim.work);
1851 		kfree(priv->int_vector[i]);
1852 	}
1853 
1854 	pci_free_irq_vectors(pdev);
1855 
1856 	return err;
1857 }
1858 
1859 void enetc_free_msix(struct enetc_ndev_priv *priv)
1860 {
1861 	int i;
1862 
1863 	for (i = 0; i < priv->bdr_int_num; i++) {
1864 		struct enetc_int_vector *v = priv->int_vector[i];
1865 
1866 		netif_napi_del(&v->napi);
1867 		cancel_work_sync(&v->rx_dim.work);
1868 	}
1869 
1870 	for (i = 0; i < priv->num_rx_rings; i++)
1871 		priv->rx_ring[i] = NULL;
1872 
1873 	for (i = 0; i < priv->num_tx_rings; i++)
1874 		priv->tx_ring[i] = NULL;
1875 
1876 	for (i = 0; i < priv->bdr_int_num; i++) {
1877 		kfree(priv->int_vector[i]);
1878 		priv->int_vector[i] = NULL;
1879 	}
1880 
1881 	/* disable all MSIX for this device */
1882 	pci_free_irq_vectors(priv->si->pdev);
1883 }
1884 
1885 static void enetc_kfree_si(struct enetc_si *si)
1886 {
1887 	char *p = (char *)si - si->pad;
1888 
1889 	kfree(p);
1890 }
1891 
1892 static void enetc_detect_errata(struct enetc_si *si)
1893 {
1894 	if (si->pdev->revision == ENETC_REV1)
1895 		si->errata = ENETC_ERR_VLAN_ISOL | ENETC_ERR_UCMCSWP;
1896 }
1897 
1898 int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
1899 {
1900 	struct enetc_si *si, *p;
1901 	struct enetc_hw *hw;
1902 	size_t alloc_size;
1903 	int err, len;
1904 
1905 	pcie_flr(pdev);
1906 	err = pci_enable_device_mem(pdev);
1907 	if (err) {
1908 		dev_err(&pdev->dev, "device enable failed\n");
1909 		return err;
1910 	}
1911 
1912 	/* set up for high or low dma */
1913 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1914 	if (err) {
1915 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1916 		if (err) {
1917 			dev_err(&pdev->dev,
1918 				"DMA configuration failed: 0x%x\n", err);
1919 			goto err_dma;
1920 		}
1921 	}
1922 
1923 	err = pci_request_mem_regions(pdev, name);
1924 	if (err) {
1925 		dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
1926 		goto err_pci_mem_reg;
1927 	}
1928 
1929 	pci_set_master(pdev);
1930 
1931 	alloc_size = sizeof(struct enetc_si);
1932 	if (sizeof_priv) {
1933 		/* align priv to 32B */
1934 		alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
1935 		alloc_size += sizeof_priv;
1936 	}
1937 	/* force 32B alignment for enetc_si */
1938 	alloc_size += ENETC_SI_ALIGN - 1;
1939 
1940 	p = kzalloc(alloc_size, GFP_KERNEL);
1941 	if (!p) {
1942 		err = -ENOMEM;
1943 		goto err_alloc_si;
1944 	}
1945 
1946 	si = PTR_ALIGN(p, ENETC_SI_ALIGN);
1947 	si->pad = (char *)si - (char *)p;
1948 
1949 	pci_set_drvdata(pdev, si);
1950 	si->pdev = pdev;
1951 	hw = &si->hw;
1952 
1953 	len = pci_resource_len(pdev, ENETC_BAR_REGS);
1954 	hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
1955 	if (!hw->reg) {
1956 		err = -ENXIO;
1957 		dev_err(&pdev->dev, "ioremap() failed\n");
1958 		goto err_ioremap;
1959 	}
1960 	if (len > ENETC_PORT_BASE)
1961 		hw->port = hw->reg + ENETC_PORT_BASE;
1962 	if (len > ENETC_GLOBAL_BASE)
1963 		hw->global = hw->reg + ENETC_GLOBAL_BASE;
1964 
1965 	enetc_detect_errata(si);
1966 
1967 	return 0;
1968 
1969 err_ioremap:
1970 	enetc_kfree_si(si);
1971 err_alloc_si:
1972 	pci_release_mem_regions(pdev);
1973 err_pci_mem_reg:
1974 err_dma:
1975 	pci_disable_device(pdev);
1976 
1977 	return err;
1978 }
1979 
1980 void enetc_pci_remove(struct pci_dev *pdev)
1981 {
1982 	struct enetc_si *si = pci_get_drvdata(pdev);
1983 	struct enetc_hw *hw = &si->hw;
1984 
1985 	iounmap(hw->reg);
1986 	enetc_kfree_si(si);
1987 	pci_release_mem_regions(pdev);
1988 	pci_disable_device(pdev);
1989 }
1990