1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /* Copyright 2017-2019 NXP */
3 
4 #include "enetc.h"
5 #include <linux/tcp.h>
6 #include <linux/udp.h>
7 #include <linux/of_mdio.h>
8 #include <linux/vmalloc.h>
9 
10 /* ENETC overhead: optional extension BD + 1 BD gap */
11 #define ENETC_TXBDS_NEEDED(val)	((val) + 2)
12 /* max # of chained Tx BDs is 15, including head and extension BD */
13 #define ENETC_MAX_SKB_FRAGS	13
14 #define ENETC_TXBDS_MAX_NEEDED	ENETC_TXBDS_NEEDED(ENETC_MAX_SKB_FRAGS + 1)
15 
16 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
17 			      int active_offloads);
18 
19 netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
20 {
21 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
22 	struct enetc_bdr *tx_ring;
23 	int count;
24 
25 	tx_ring = priv->tx_ring[skb->queue_mapping];
26 
27 	if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
28 		if (unlikely(skb_linearize(skb)))
29 			goto drop_packet_err;
30 
31 	count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
32 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
33 		netif_stop_subqueue(ndev, tx_ring->index);
34 		return NETDEV_TX_BUSY;
35 	}
36 
37 	count = enetc_map_tx_buffs(tx_ring, skb, priv->active_offloads);
38 	if (unlikely(!count))
39 		goto drop_packet_err;
40 
41 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
42 		netif_stop_subqueue(ndev, tx_ring->index);
43 
44 	return NETDEV_TX_OK;
45 
46 drop_packet_err:
47 	dev_kfree_skb_any(skb);
48 	return NETDEV_TX_OK;
49 }
50 
51 static bool enetc_tx_csum(struct sk_buff *skb, union enetc_tx_bd *txbd)
52 {
53 	int l3_start, l3_hsize;
54 	u16 l3_flags, l4_flags;
55 
56 	if (skb->ip_summed != CHECKSUM_PARTIAL)
57 		return false;
58 
59 	switch (skb->csum_offset) {
60 	case offsetof(struct tcphdr, check):
61 		l4_flags = ENETC_TXBD_L4_TCP;
62 		break;
63 	case offsetof(struct udphdr, check):
64 		l4_flags = ENETC_TXBD_L4_UDP;
65 		break;
66 	default:
67 		skb_checksum_help(skb);
68 		return false;
69 	}
70 
71 	l3_start = skb_network_offset(skb);
72 	l3_hsize = skb_network_header_len(skb);
73 
74 	l3_flags = 0;
75 	if (skb->protocol == htons(ETH_P_IPV6))
76 		l3_flags = ENETC_TXBD_L3_IPV6;
77 
78 	/* write BD fields */
79 	txbd->l3_csoff = enetc_txbd_l3_csoff(l3_start, l3_hsize, l3_flags);
80 	txbd->l4_csoff = l4_flags;
81 
82 	return true;
83 }
84 
85 static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
86 				struct enetc_tx_swbd *tx_swbd)
87 {
88 	if (tx_swbd->is_dma_page)
89 		dma_unmap_page(tx_ring->dev, tx_swbd->dma,
90 			       tx_swbd->len, DMA_TO_DEVICE);
91 	else
92 		dma_unmap_single(tx_ring->dev, tx_swbd->dma,
93 				 tx_swbd->len, DMA_TO_DEVICE);
94 	tx_swbd->dma = 0;
95 }
96 
97 static void enetc_free_tx_skb(struct enetc_bdr *tx_ring,
98 			      struct enetc_tx_swbd *tx_swbd)
99 {
100 	if (tx_swbd->dma)
101 		enetc_unmap_tx_buff(tx_ring, tx_swbd);
102 
103 	if (tx_swbd->skb) {
104 		dev_kfree_skb_any(tx_swbd->skb);
105 		tx_swbd->skb = NULL;
106 	}
107 }
108 
109 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb,
110 			      int active_offloads)
111 {
112 	struct enetc_tx_swbd *tx_swbd;
113 	skb_frag_t *frag;
114 	int len = skb_headlen(skb);
115 	union enetc_tx_bd temp_bd;
116 	union enetc_tx_bd *txbd;
117 	bool do_vlan, do_tstamp;
118 	int i, count = 0;
119 	unsigned int f;
120 	dma_addr_t dma;
121 	u8 flags = 0;
122 
123 	i = tx_ring->next_to_use;
124 	txbd = ENETC_TXBD(*tx_ring, i);
125 	prefetchw(txbd);
126 
127 	dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
128 	if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
129 		goto dma_err;
130 
131 	temp_bd.addr = cpu_to_le64(dma);
132 	temp_bd.buf_len = cpu_to_le16(len);
133 	temp_bd.lstatus = 0;
134 
135 	tx_swbd = &tx_ring->tx_swbd[i];
136 	tx_swbd->dma = dma;
137 	tx_swbd->len = len;
138 	tx_swbd->is_dma_page = 0;
139 	count++;
140 
141 	do_vlan = skb_vlan_tag_present(skb);
142 	do_tstamp = (active_offloads & ENETC_F_TX_TSTAMP) &&
143 		    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP);
144 	tx_swbd->do_tstamp = do_tstamp;
145 	tx_swbd->check_wb = tx_swbd->do_tstamp;
146 
147 	if (do_vlan || do_tstamp)
148 		flags |= ENETC_TXBD_FLAGS_EX;
149 
150 	if (enetc_tx_csum(skb, &temp_bd))
151 		flags |= ENETC_TXBD_FLAGS_CSUM | ENETC_TXBD_FLAGS_L4CS;
152 	else if (tx_ring->tsd_enable)
153 		flags |= ENETC_TXBD_FLAGS_TSE | ENETC_TXBD_FLAGS_TXSTART;
154 
155 	/* first BD needs frm_len and offload flags set */
156 	temp_bd.frm_len = cpu_to_le16(skb->len);
157 	temp_bd.flags = flags;
158 
159 	if (flags & ENETC_TXBD_FLAGS_TSE) {
160 		u32 temp;
161 
162 		temp = (skb->skb_mstamp_ns >> 5 & ENETC_TXBD_TXSTART_MASK)
163 			| (flags << ENETC_TXBD_FLAGS_OFFSET);
164 		temp_bd.txstart = cpu_to_le32(temp);
165 	}
166 
167 	if (flags & ENETC_TXBD_FLAGS_EX) {
168 		u8 e_flags = 0;
169 		*txbd = temp_bd;
170 		enetc_clear_tx_bd(&temp_bd);
171 
172 		/* add extension BD for VLAN and/or timestamping */
173 		flags = 0;
174 		tx_swbd++;
175 		txbd++;
176 		i++;
177 		if (unlikely(i == tx_ring->bd_count)) {
178 			i = 0;
179 			tx_swbd = tx_ring->tx_swbd;
180 			txbd = ENETC_TXBD(*tx_ring, 0);
181 		}
182 		prefetchw(txbd);
183 
184 		if (do_vlan) {
185 			temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
186 			temp_bd.ext.tpid = 0; /* < C-TAG */
187 			e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
188 		}
189 
190 		if (do_tstamp) {
191 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
192 			e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
193 		}
194 
195 		temp_bd.ext.e_flags = e_flags;
196 		count++;
197 	}
198 
199 	frag = &skb_shinfo(skb)->frags[0];
200 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
201 		len = skb_frag_size(frag);
202 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
203 				       DMA_TO_DEVICE);
204 		if (dma_mapping_error(tx_ring->dev, dma))
205 			goto dma_err;
206 
207 		*txbd = temp_bd;
208 		enetc_clear_tx_bd(&temp_bd);
209 
210 		flags = 0;
211 		tx_swbd++;
212 		txbd++;
213 		i++;
214 		if (unlikely(i == tx_ring->bd_count)) {
215 			i = 0;
216 			tx_swbd = tx_ring->tx_swbd;
217 			txbd = ENETC_TXBD(*tx_ring, 0);
218 		}
219 		prefetchw(txbd);
220 
221 		temp_bd.addr = cpu_to_le64(dma);
222 		temp_bd.buf_len = cpu_to_le16(len);
223 
224 		tx_swbd->dma = dma;
225 		tx_swbd->len = len;
226 		tx_swbd->is_dma_page = 1;
227 		count++;
228 	}
229 
230 	/* last BD needs 'F' bit set */
231 	flags |= ENETC_TXBD_FLAGS_F;
232 	temp_bd.flags = flags;
233 	*txbd = temp_bd;
234 
235 	tx_ring->tx_swbd[i].skb = skb;
236 
237 	enetc_bdr_idx_inc(tx_ring, &i);
238 	tx_ring->next_to_use = i;
239 
240 	skb_tx_timestamp(skb);
241 
242 	/* let H/W know BD ring has been updated */
243 	enetc_wr_reg(tx_ring->tpir, i); /* includes wmb() */
244 
245 	return count;
246 
247 dma_err:
248 	dev_err(tx_ring->dev, "DMA map error");
249 
250 	do {
251 		tx_swbd = &tx_ring->tx_swbd[i];
252 		enetc_free_tx_skb(tx_ring, tx_swbd);
253 		if (i == 0)
254 			i = tx_ring->bd_count;
255 		i--;
256 	} while (count--);
257 
258 	return 0;
259 }
260 
261 static irqreturn_t enetc_msix(int irq, void *data)
262 {
263 	struct enetc_int_vector	*v = data;
264 	int i;
265 
266 	/* disable interrupts */
267 	enetc_wr_reg(v->rbier, 0);
268 
269 	for_each_set_bit(i, &v->tx_rings_map, v->count_tx_rings)
270 		enetc_wr_reg(v->tbier_base + ENETC_BDR_OFF(i), 0);
271 
272 	napi_schedule_irqoff(&v->napi);
273 
274 	return IRQ_HANDLED;
275 }
276 
277 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget);
278 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
279 			       struct napi_struct *napi, int work_limit);
280 
281 static int enetc_poll(struct napi_struct *napi, int budget)
282 {
283 	struct enetc_int_vector
284 		*v = container_of(napi, struct enetc_int_vector, napi);
285 	bool complete = true;
286 	int work_done;
287 	int i;
288 
289 	for (i = 0; i < v->count_tx_rings; i++)
290 		if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
291 			complete = false;
292 
293 	work_done = enetc_clean_rx_ring(&v->rx_ring, napi, budget);
294 	if (work_done == budget)
295 		complete = false;
296 
297 	if (!complete)
298 		return budget;
299 
300 	napi_complete_done(napi, work_done);
301 
302 	/* enable interrupts */
303 	enetc_wr_reg(v->rbier, ENETC_RBIER_RXTIE);
304 
305 	for_each_set_bit(i, &v->tx_rings_map, v->count_tx_rings)
306 		enetc_wr_reg(v->tbier_base + ENETC_BDR_OFF(i),
307 			     ENETC_TBIER_TXTIE);
308 
309 	return work_done;
310 }
311 
312 static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
313 {
314 	int pi = enetc_rd_reg(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
315 
316 	return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
317 }
318 
319 static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
320 				u64 *tstamp)
321 {
322 	u32 lo, hi, tstamp_lo;
323 
324 	lo = enetc_rd(hw, ENETC_SICTR0);
325 	hi = enetc_rd(hw, ENETC_SICTR1);
326 	tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
327 	if (lo <= tstamp_lo)
328 		hi -= 1;
329 	*tstamp = (u64)hi << 32 | tstamp_lo;
330 }
331 
332 static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
333 {
334 	struct skb_shared_hwtstamps shhwtstamps;
335 
336 	if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
337 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
338 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
339 		skb_tstamp_tx(skb, &shhwtstamps);
340 	}
341 }
342 
343 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
344 {
345 	struct net_device *ndev = tx_ring->ndev;
346 	int tx_frm_cnt = 0, tx_byte_cnt = 0;
347 	struct enetc_tx_swbd *tx_swbd;
348 	int i, bds_to_clean;
349 	bool do_tstamp;
350 	u64 tstamp = 0;
351 
352 	i = tx_ring->next_to_clean;
353 	tx_swbd = &tx_ring->tx_swbd[i];
354 	bds_to_clean = enetc_bd_ready_count(tx_ring, i);
355 
356 	do_tstamp = false;
357 
358 	while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
359 		bool is_eof = !!tx_swbd->skb;
360 
361 		if (unlikely(tx_swbd->check_wb)) {
362 			struct enetc_ndev_priv *priv = netdev_priv(ndev);
363 			union enetc_tx_bd *txbd;
364 
365 			txbd = ENETC_TXBD(*tx_ring, i);
366 
367 			if (txbd->flags & ENETC_TXBD_FLAGS_W &&
368 			    tx_swbd->do_tstamp) {
369 				enetc_get_tx_tstamp(&priv->si->hw, txbd,
370 						    &tstamp);
371 				do_tstamp = true;
372 			}
373 		}
374 
375 		if (likely(tx_swbd->dma))
376 			enetc_unmap_tx_buff(tx_ring, tx_swbd);
377 
378 		if (is_eof) {
379 			if (unlikely(do_tstamp)) {
380 				enetc_tstamp_tx(tx_swbd->skb, tstamp);
381 				do_tstamp = false;
382 			}
383 			napi_consume_skb(tx_swbd->skb, napi_budget);
384 			tx_swbd->skb = NULL;
385 		}
386 
387 		tx_byte_cnt += tx_swbd->len;
388 
389 		bds_to_clean--;
390 		tx_swbd++;
391 		i++;
392 		if (unlikely(i == tx_ring->bd_count)) {
393 			i = 0;
394 			tx_swbd = tx_ring->tx_swbd;
395 		}
396 
397 		/* BD iteration loop end */
398 		if (is_eof) {
399 			tx_frm_cnt++;
400 			/* re-arm interrupt source */
401 			enetc_wr_reg(tx_ring->idr, BIT(tx_ring->index) |
402 				     BIT(16 + tx_ring->index));
403 		}
404 
405 		if (unlikely(!bds_to_clean))
406 			bds_to_clean = enetc_bd_ready_count(tx_ring, i);
407 	}
408 
409 	tx_ring->next_to_clean = i;
410 	tx_ring->stats.packets += tx_frm_cnt;
411 	tx_ring->stats.bytes += tx_byte_cnt;
412 
413 	if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
414 		     __netif_subqueue_stopped(ndev, tx_ring->index) &&
415 		     (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
416 		netif_wake_subqueue(ndev, tx_ring->index);
417 	}
418 
419 	return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
420 }
421 
422 static bool enetc_new_page(struct enetc_bdr *rx_ring,
423 			   struct enetc_rx_swbd *rx_swbd)
424 {
425 	struct page *page;
426 	dma_addr_t addr;
427 
428 	page = dev_alloc_page();
429 	if (unlikely(!page))
430 		return false;
431 
432 	addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
433 	if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
434 		__free_page(page);
435 
436 		return false;
437 	}
438 
439 	rx_swbd->dma = addr;
440 	rx_swbd->page = page;
441 	rx_swbd->page_offset = ENETC_RXB_PAD;
442 
443 	return true;
444 }
445 
446 static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
447 {
448 	struct enetc_rx_swbd *rx_swbd;
449 	union enetc_rx_bd *rxbd;
450 	int i, j;
451 
452 	i = rx_ring->next_to_use;
453 	rx_swbd = &rx_ring->rx_swbd[i];
454 	rxbd = enetc_rxbd(rx_ring, i);
455 
456 	for (j = 0; j < buff_cnt; j++) {
457 		/* try reuse page */
458 		if (unlikely(!rx_swbd->page)) {
459 			if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
460 				rx_ring->stats.rx_alloc_errs++;
461 				break;
462 			}
463 		}
464 
465 		/* update RxBD */
466 		rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
467 					   rx_swbd->page_offset);
468 		/* clear 'R" as well */
469 		rxbd->r.lstatus = 0;
470 
471 		rxbd = enetc_rxbd_next(rx_ring, rxbd, i);
472 		rx_swbd++;
473 		i++;
474 		if (unlikely(i == rx_ring->bd_count)) {
475 			i = 0;
476 			rx_swbd = rx_ring->rx_swbd;
477 		}
478 	}
479 
480 	if (likely(j)) {
481 		rx_ring->next_to_alloc = i; /* keep track from page reuse */
482 		rx_ring->next_to_use = i;
483 		/* update ENETC's consumer index */
484 		enetc_wr_reg(rx_ring->rcir, i);
485 	}
486 
487 	return j;
488 }
489 
490 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
491 static void enetc_get_rx_tstamp(struct net_device *ndev,
492 				union enetc_rx_bd *rxbd,
493 				struct sk_buff *skb)
494 {
495 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
496 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
497 	struct enetc_hw *hw = &priv->si->hw;
498 	u32 lo, hi, tstamp_lo;
499 	u64 tstamp;
500 
501 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
502 		lo = enetc_rd(hw, ENETC_SICTR0);
503 		hi = enetc_rd(hw, ENETC_SICTR1);
504 		rxbd = enetc_rxbd_ext(rxbd);
505 		tstamp_lo = le32_to_cpu(rxbd->ext.tstamp);
506 		if (lo <= tstamp_lo)
507 			hi -= 1;
508 
509 		tstamp = (u64)hi << 32 | tstamp_lo;
510 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
511 		shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
512 	}
513 }
514 #endif
515 
516 static void enetc_get_offloads(struct enetc_bdr *rx_ring,
517 			       union enetc_rx_bd *rxbd, struct sk_buff *skb)
518 {
519 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
520 	struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
521 #endif
522 	/* TODO: hashing */
523 	if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
524 		u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
525 
526 		skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
527 		skb->ip_summed = CHECKSUM_COMPLETE;
528 	}
529 
530 	/* copy VLAN to skb, if one is extracted, for now we assume it's a
531 	 * standard TPID, but HW also supports custom values
532 	 */
533 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN)
534 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
535 				       le16_to_cpu(rxbd->r.vlan_opt));
536 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
537 	if (priv->active_offloads & ENETC_F_RX_TSTAMP)
538 		enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
539 #endif
540 }
541 
542 static void enetc_process_skb(struct enetc_bdr *rx_ring,
543 			      struct sk_buff *skb)
544 {
545 	skb_record_rx_queue(skb, rx_ring->index);
546 	skb->protocol = eth_type_trans(skb, rx_ring->ndev);
547 }
548 
549 static bool enetc_page_reusable(struct page *page)
550 {
551 	return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
552 }
553 
554 static void enetc_reuse_page(struct enetc_bdr *rx_ring,
555 			     struct enetc_rx_swbd *old)
556 {
557 	struct enetc_rx_swbd *new;
558 
559 	new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
560 
561 	/* next buf that may reuse a page */
562 	enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
563 
564 	/* copy page reference */
565 	*new = *old;
566 }
567 
568 static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
569 					       int i, u16 size)
570 {
571 	struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
572 
573 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
574 				      rx_swbd->page_offset,
575 				      size, DMA_FROM_DEVICE);
576 	return rx_swbd;
577 }
578 
579 static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
580 			      struct enetc_rx_swbd *rx_swbd)
581 {
582 	if (likely(enetc_page_reusable(rx_swbd->page))) {
583 		rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
584 		page_ref_inc(rx_swbd->page);
585 
586 		enetc_reuse_page(rx_ring, rx_swbd);
587 
588 		/* sync for use by the device */
589 		dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
590 						 rx_swbd->page_offset,
591 						 ENETC_RXB_DMA_SIZE,
592 						 DMA_FROM_DEVICE);
593 	} else {
594 		dma_unmap_page(rx_ring->dev, rx_swbd->dma,
595 			       PAGE_SIZE, DMA_FROM_DEVICE);
596 	}
597 
598 	rx_swbd->page = NULL;
599 }
600 
601 static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
602 						int i, u16 size)
603 {
604 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
605 	struct sk_buff *skb;
606 	void *ba;
607 
608 	ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
609 	skb = build_skb(ba - ENETC_RXB_PAD, ENETC_RXB_TRUESIZE);
610 	if (unlikely(!skb)) {
611 		rx_ring->stats.rx_alloc_errs++;
612 		return NULL;
613 	}
614 
615 	skb_reserve(skb, ENETC_RXB_PAD);
616 	__skb_put(skb, size);
617 
618 	enetc_put_rx_buff(rx_ring, rx_swbd);
619 
620 	return skb;
621 }
622 
623 static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
624 				     u16 size, struct sk_buff *skb)
625 {
626 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
627 
628 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
629 			rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
630 
631 	enetc_put_rx_buff(rx_ring, rx_swbd);
632 }
633 
634 #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
635 
636 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
637 			       struct napi_struct *napi, int work_limit)
638 {
639 	int rx_frm_cnt = 0, rx_byte_cnt = 0;
640 	int cleaned_cnt, i;
641 
642 	cleaned_cnt = enetc_bd_unused(rx_ring);
643 	/* next descriptor to process */
644 	i = rx_ring->next_to_clean;
645 
646 	while (likely(rx_frm_cnt < work_limit)) {
647 		union enetc_rx_bd *rxbd;
648 		struct sk_buff *skb;
649 		u32 bd_status;
650 		u16 size;
651 
652 		if (cleaned_cnt >= ENETC_RXBD_BUNDLE) {
653 			int count = enetc_refill_rx_ring(rx_ring, cleaned_cnt);
654 
655 			cleaned_cnt -= count;
656 		}
657 
658 		rxbd = enetc_rxbd(rx_ring, i);
659 		bd_status = le32_to_cpu(rxbd->r.lstatus);
660 		if (!bd_status)
661 			break;
662 
663 		enetc_wr_reg(rx_ring->idr, BIT(rx_ring->index));
664 		dma_rmb(); /* for reading other rxbd fields */
665 		size = le16_to_cpu(rxbd->r.buf_len);
666 		skb = enetc_map_rx_buff_to_skb(rx_ring, i, size);
667 		if (!skb)
668 			break;
669 
670 		enetc_get_offloads(rx_ring, rxbd, skb);
671 
672 		cleaned_cnt++;
673 
674 		rxbd = enetc_rxbd_next(rx_ring, rxbd, i);
675 		if (unlikely(++i == rx_ring->bd_count))
676 			i = 0;
677 
678 		if (unlikely(bd_status &
679 			     ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))) {
680 			dev_kfree_skb(skb);
681 			while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
682 				dma_rmb();
683 				bd_status = le32_to_cpu(rxbd->r.lstatus);
684 
685 				rxbd = enetc_rxbd_next(rx_ring, rxbd, i);
686 				if (unlikely(++i == rx_ring->bd_count))
687 					i = 0;
688 			}
689 
690 			rx_ring->ndev->stats.rx_dropped++;
691 			rx_ring->ndev->stats.rx_errors++;
692 
693 			break;
694 		}
695 
696 		/* not last BD in frame? */
697 		while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
698 			bd_status = le32_to_cpu(rxbd->r.lstatus);
699 			size = ENETC_RXB_DMA_SIZE;
700 
701 			if (bd_status & ENETC_RXBD_LSTATUS_F) {
702 				dma_rmb();
703 				size = le16_to_cpu(rxbd->r.buf_len);
704 			}
705 
706 			enetc_add_rx_buff_to_skb(rx_ring, i, size, skb);
707 
708 			cleaned_cnt++;
709 
710 			rxbd = enetc_rxbd_next(rx_ring, rxbd, i);
711 			if (unlikely(++i == rx_ring->bd_count))
712 				i = 0;
713 		}
714 
715 		rx_byte_cnt += skb->len;
716 
717 		enetc_process_skb(rx_ring, skb);
718 
719 		napi_gro_receive(napi, skb);
720 
721 		rx_frm_cnt++;
722 	}
723 
724 	rx_ring->next_to_clean = i;
725 
726 	rx_ring->stats.packets += rx_frm_cnt;
727 	rx_ring->stats.bytes += rx_byte_cnt;
728 
729 	return rx_frm_cnt;
730 }
731 
732 /* Probing and Init */
733 #define ENETC_MAX_RFS_SIZE 64
734 void enetc_get_si_caps(struct enetc_si *si)
735 {
736 	struct enetc_hw *hw = &si->hw;
737 	u32 val;
738 
739 	/* find out how many of various resources we have to work with */
740 	val = enetc_rd(hw, ENETC_SICAPR0);
741 	si->num_rx_rings = (val >> 16) & 0xff;
742 	si->num_tx_rings = val & 0xff;
743 
744 	val = enetc_rd(hw, ENETC_SIRFSCAPR);
745 	si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
746 	si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
747 
748 	si->num_rss = 0;
749 	val = enetc_rd(hw, ENETC_SIPCAPR0);
750 	if (val & ENETC_SIPCAPR0_RSS) {
751 		u32 rss;
752 
753 		rss = enetc_rd(hw, ENETC_SIRSSCAPR);
754 		si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss);
755 	}
756 
757 	if (val & ENETC_SIPCAPR0_QBV)
758 		si->hw_features |= ENETC_SI_F_QBV;
759 
760 	if (val & ENETC_SIPCAPR0_PSFP)
761 		si->hw_features |= ENETC_SI_F_PSFP;
762 }
763 
764 static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size)
765 {
766 	r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size,
767 					&r->bd_dma_base, GFP_KERNEL);
768 	if (!r->bd_base)
769 		return -ENOMEM;
770 
771 	/* h/w requires 128B alignment */
772 	if (!IS_ALIGNED(r->bd_dma_base, 128)) {
773 		dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base,
774 				  r->bd_dma_base);
775 		return -EINVAL;
776 	}
777 
778 	return 0;
779 }
780 
781 static int enetc_alloc_txbdr(struct enetc_bdr *txr)
782 {
783 	int err;
784 
785 	txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd));
786 	if (!txr->tx_swbd)
787 		return -ENOMEM;
788 
789 	err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd));
790 	if (err) {
791 		vfree(txr->tx_swbd);
792 		return err;
793 	}
794 
795 	txr->next_to_clean = 0;
796 	txr->next_to_use = 0;
797 
798 	return 0;
799 }
800 
801 static void enetc_free_txbdr(struct enetc_bdr *txr)
802 {
803 	int size, i;
804 
805 	for (i = 0; i < txr->bd_count; i++)
806 		enetc_free_tx_skb(txr, &txr->tx_swbd[i]);
807 
808 	size = txr->bd_count * sizeof(union enetc_tx_bd);
809 
810 	dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base);
811 	txr->bd_base = NULL;
812 
813 	vfree(txr->tx_swbd);
814 	txr->tx_swbd = NULL;
815 }
816 
817 static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
818 {
819 	int i, err;
820 
821 	for (i = 0; i < priv->num_tx_rings; i++) {
822 		err = enetc_alloc_txbdr(priv->tx_ring[i]);
823 
824 		if (err)
825 			goto fail;
826 	}
827 
828 	return 0;
829 
830 fail:
831 	while (i-- > 0)
832 		enetc_free_txbdr(priv->tx_ring[i]);
833 
834 	return err;
835 }
836 
837 static void enetc_free_tx_resources(struct enetc_ndev_priv *priv)
838 {
839 	int i;
840 
841 	for (i = 0; i < priv->num_tx_rings; i++)
842 		enetc_free_txbdr(priv->tx_ring[i]);
843 }
844 
845 static int enetc_alloc_rxbdr(struct enetc_bdr *rxr, bool extended)
846 {
847 	size_t size = sizeof(union enetc_rx_bd);
848 	int err;
849 
850 	rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd));
851 	if (!rxr->rx_swbd)
852 		return -ENOMEM;
853 
854 	if (extended)
855 		size *= 2;
856 
857 	err = enetc_dma_alloc_bdr(rxr, size);
858 	if (err) {
859 		vfree(rxr->rx_swbd);
860 		return err;
861 	}
862 
863 	rxr->next_to_clean = 0;
864 	rxr->next_to_use = 0;
865 	rxr->next_to_alloc = 0;
866 	rxr->ext_en = extended;
867 
868 	return 0;
869 }
870 
871 static void enetc_free_rxbdr(struct enetc_bdr *rxr)
872 {
873 	int size;
874 
875 	size = rxr->bd_count * sizeof(union enetc_rx_bd);
876 
877 	dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base);
878 	rxr->bd_base = NULL;
879 
880 	vfree(rxr->rx_swbd);
881 	rxr->rx_swbd = NULL;
882 }
883 
884 static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv)
885 {
886 	bool extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP);
887 	int i, err;
888 
889 	for (i = 0; i < priv->num_rx_rings; i++) {
890 		err = enetc_alloc_rxbdr(priv->rx_ring[i], extended);
891 
892 		if (err)
893 			goto fail;
894 	}
895 
896 	return 0;
897 
898 fail:
899 	while (i-- > 0)
900 		enetc_free_rxbdr(priv->rx_ring[i]);
901 
902 	return err;
903 }
904 
905 static void enetc_free_rx_resources(struct enetc_ndev_priv *priv)
906 {
907 	int i;
908 
909 	for (i = 0; i < priv->num_rx_rings; i++)
910 		enetc_free_rxbdr(priv->rx_ring[i]);
911 }
912 
913 static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
914 {
915 	int i;
916 
917 	if (!tx_ring->tx_swbd)
918 		return;
919 
920 	for (i = 0; i < tx_ring->bd_count; i++) {
921 		struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
922 
923 		enetc_free_tx_skb(tx_ring, tx_swbd);
924 	}
925 
926 	tx_ring->next_to_clean = 0;
927 	tx_ring->next_to_use = 0;
928 }
929 
930 static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
931 {
932 	int i;
933 
934 	if (!rx_ring->rx_swbd)
935 		return;
936 
937 	for (i = 0; i < rx_ring->bd_count; i++) {
938 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
939 
940 		if (!rx_swbd->page)
941 			continue;
942 
943 		dma_unmap_page(rx_ring->dev, rx_swbd->dma,
944 			       PAGE_SIZE, DMA_FROM_DEVICE);
945 		__free_page(rx_swbd->page);
946 		rx_swbd->page = NULL;
947 	}
948 
949 	rx_ring->next_to_clean = 0;
950 	rx_ring->next_to_use = 0;
951 	rx_ring->next_to_alloc = 0;
952 }
953 
954 static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
955 {
956 	int i;
957 
958 	for (i = 0; i < priv->num_rx_rings; i++)
959 		enetc_free_rx_ring(priv->rx_ring[i]);
960 
961 	for (i = 0; i < priv->num_tx_rings; i++)
962 		enetc_free_tx_ring(priv->tx_ring[i]);
963 }
964 
965 static int enetc_alloc_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
966 {
967 	int size = cbdr->bd_count * sizeof(struct enetc_cbd);
968 
969 	cbdr->bd_base = dma_alloc_coherent(dev, size, &cbdr->bd_dma_base,
970 					   GFP_KERNEL);
971 	if (!cbdr->bd_base)
972 		return -ENOMEM;
973 
974 	/* h/w requires 128B alignment */
975 	if (!IS_ALIGNED(cbdr->bd_dma_base, 128)) {
976 		dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
977 		return -EINVAL;
978 	}
979 
980 	cbdr->next_to_clean = 0;
981 	cbdr->next_to_use = 0;
982 
983 	return 0;
984 }
985 
986 static void enetc_free_cbdr(struct device *dev, struct enetc_cbdr *cbdr)
987 {
988 	int size = cbdr->bd_count * sizeof(struct enetc_cbd);
989 
990 	dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base);
991 	cbdr->bd_base = NULL;
992 }
993 
994 static void enetc_setup_cbdr(struct enetc_hw *hw, struct enetc_cbdr *cbdr)
995 {
996 	/* set CBDR cache attributes */
997 	enetc_wr(hw, ENETC_SICAR2,
998 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
999 
1000 	enetc_wr(hw, ENETC_SICBDRBAR0, lower_32_bits(cbdr->bd_dma_base));
1001 	enetc_wr(hw, ENETC_SICBDRBAR1, upper_32_bits(cbdr->bd_dma_base));
1002 	enetc_wr(hw, ENETC_SICBDRLENR, ENETC_RTBLENR_LEN(cbdr->bd_count));
1003 
1004 	enetc_wr(hw, ENETC_SICBDRPIR, 0);
1005 	enetc_wr(hw, ENETC_SICBDRCIR, 0);
1006 
1007 	/* enable ring */
1008 	enetc_wr(hw, ENETC_SICBDRMR, BIT(31));
1009 
1010 	cbdr->pir = hw->reg + ENETC_SICBDRPIR;
1011 	cbdr->cir = hw->reg + ENETC_SICBDRCIR;
1012 }
1013 
1014 static void enetc_clear_cbdr(struct enetc_hw *hw)
1015 {
1016 	enetc_wr(hw, ENETC_SICBDRMR, 0);
1017 }
1018 
1019 static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
1020 {
1021 	int *rss_table;
1022 	int i;
1023 
1024 	rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
1025 	if (!rss_table)
1026 		return -ENOMEM;
1027 
1028 	/* Set up RSS table defaults */
1029 	for (i = 0; i < si->num_rss; i++)
1030 		rss_table[i] = i % num_groups;
1031 
1032 	enetc_set_rss_table(si, rss_table, si->num_rss);
1033 
1034 	kfree(rss_table);
1035 
1036 	return 0;
1037 }
1038 
1039 static int enetc_configure_si(struct enetc_ndev_priv *priv)
1040 {
1041 	struct enetc_si *si = priv->si;
1042 	struct enetc_hw *hw = &si->hw;
1043 	int err;
1044 
1045 	enetc_setup_cbdr(hw, &si->cbd_ring);
1046 	/* set SI cache attributes */
1047 	enetc_wr(hw, ENETC_SICAR0,
1048 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
1049 	enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
1050 	/* enable SI */
1051 	enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
1052 
1053 	if (si->num_rss) {
1054 		err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
1055 		if (err)
1056 			return err;
1057 	}
1058 
1059 	return 0;
1060 }
1061 
1062 void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
1063 {
1064 	struct enetc_si *si = priv->si;
1065 	int cpus = num_online_cpus();
1066 
1067 	priv->tx_bd_count = ENETC_BDR_DEFAULT_SIZE;
1068 	priv->rx_bd_count = ENETC_BDR_DEFAULT_SIZE;
1069 
1070 	/* Enable all available TX rings in order to configure as many
1071 	 * priorities as possible, when needed.
1072 	 * TODO: Make # of TX rings run-time configurable
1073 	 */
1074 	priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
1075 	priv->num_tx_rings = si->num_tx_rings;
1076 	priv->bdr_int_num = cpus;
1077 
1078 	/* SI specific */
1079 	si->cbd_ring.bd_count = ENETC_CBDR_DEFAULT_SIZE;
1080 }
1081 
1082 int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
1083 {
1084 	struct enetc_si *si = priv->si;
1085 	int err;
1086 
1087 	err = enetc_alloc_cbdr(priv->dev, &si->cbd_ring);
1088 	if (err)
1089 		return err;
1090 
1091 	priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
1092 				  GFP_KERNEL);
1093 	if (!priv->cls_rules) {
1094 		err = -ENOMEM;
1095 		goto err_alloc_cls;
1096 	}
1097 
1098 	err = enetc_configure_si(priv);
1099 	if (err)
1100 		goto err_config_si;
1101 
1102 	return 0;
1103 
1104 err_config_si:
1105 	kfree(priv->cls_rules);
1106 err_alloc_cls:
1107 	enetc_clear_cbdr(&si->hw);
1108 	enetc_free_cbdr(priv->dev, &si->cbd_ring);
1109 
1110 	return err;
1111 }
1112 
1113 void enetc_free_si_resources(struct enetc_ndev_priv *priv)
1114 {
1115 	struct enetc_si *si = priv->si;
1116 
1117 	enetc_clear_cbdr(&si->hw);
1118 	enetc_free_cbdr(priv->dev, &si->cbd_ring);
1119 
1120 	kfree(priv->cls_rules);
1121 }
1122 
1123 static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1124 {
1125 	int idx = tx_ring->index;
1126 	u32 tbmr;
1127 
1128 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
1129 		       lower_32_bits(tx_ring->bd_dma_base));
1130 
1131 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
1132 		       upper_32_bits(tx_ring->bd_dma_base));
1133 
1134 	WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
1135 	enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
1136 		       ENETC_RTBLENR_LEN(tx_ring->bd_count));
1137 
1138 	/* clearing PI/CI registers for Tx not supported, adjust sw indexes */
1139 	tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
1140 	tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
1141 
1142 	/* enable Tx ints by setting pkt thr to 1 */
1143 	enetc_txbdr_wr(hw, idx, ENETC_TBICIR0, ENETC_TBICIR0_ICEN | 0x1);
1144 
1145 	tbmr = ENETC_TBMR_EN;
1146 	if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
1147 		tbmr |= ENETC_TBMR_VIH;
1148 
1149 	/* enable ring */
1150 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
1151 
1152 	tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
1153 	tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
1154 	tx_ring->idr = hw->reg + ENETC_SITXIDR;
1155 }
1156 
1157 static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1158 {
1159 	int idx = rx_ring->index;
1160 	u32 rbmr;
1161 
1162 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
1163 		       lower_32_bits(rx_ring->bd_dma_base));
1164 
1165 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
1166 		       upper_32_bits(rx_ring->bd_dma_base));
1167 
1168 	WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
1169 	enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
1170 		       ENETC_RTBLENR_LEN(rx_ring->bd_count));
1171 
1172 	enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
1173 
1174 	enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
1175 
1176 	/* enable Rx ints by setting pkt thr to 1 */
1177 	enetc_rxbdr_wr(hw, idx, ENETC_RBICIR0, ENETC_RBICIR0_ICEN | 0x1);
1178 
1179 	rbmr = ENETC_RBMR_EN;
1180 
1181 	if (rx_ring->ext_en)
1182 		rbmr |= ENETC_RBMR_BDS;
1183 
1184 	if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
1185 		rbmr |= ENETC_RBMR_VTE;
1186 
1187 	rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
1188 	rx_ring->idr = hw->reg + ENETC_SIRXIDR;
1189 
1190 	enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
1191 
1192 	/* enable ring */
1193 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
1194 }
1195 
1196 static void enetc_setup_bdrs(struct enetc_ndev_priv *priv)
1197 {
1198 	int i;
1199 
1200 	for (i = 0; i < priv->num_tx_rings; i++)
1201 		enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]);
1202 
1203 	for (i = 0; i < priv->num_rx_rings; i++)
1204 		enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1205 }
1206 
1207 static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
1208 {
1209 	int idx = rx_ring->index;
1210 
1211 	/* disable EN bit on ring */
1212 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
1213 }
1214 
1215 static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
1216 {
1217 	int delay = 8, timeout = 100;
1218 	int idx = tx_ring->index;
1219 
1220 	/* disable EN bit on ring */
1221 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
1222 
1223 	/* wait for busy to clear */
1224 	while (delay < timeout &&
1225 	       enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
1226 		msleep(delay);
1227 		delay *= 2;
1228 	}
1229 
1230 	if (delay >= timeout)
1231 		netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
1232 			    idx);
1233 }
1234 
1235 static void enetc_clear_bdrs(struct enetc_ndev_priv *priv)
1236 {
1237 	int i;
1238 
1239 	for (i = 0; i < priv->num_tx_rings; i++)
1240 		enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]);
1241 
1242 	for (i = 0; i < priv->num_rx_rings; i++)
1243 		enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]);
1244 
1245 	udelay(1);
1246 }
1247 
1248 static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
1249 {
1250 	struct pci_dev *pdev = priv->si->pdev;
1251 	cpumask_t cpu_mask;
1252 	int i, j, err;
1253 
1254 	for (i = 0; i < priv->bdr_int_num; i++) {
1255 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1256 		struct enetc_int_vector *v = priv->int_vector[i];
1257 		int entry = ENETC_BDR_INT_BASE_IDX + i;
1258 		struct enetc_hw *hw = &priv->si->hw;
1259 
1260 		snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
1261 			 priv->ndev->name, i);
1262 		err = request_irq(irq, enetc_msix, 0, v->name, v);
1263 		if (err) {
1264 			dev_err(priv->dev, "request_irq() failed!\n");
1265 			goto irq_err;
1266 		}
1267 
1268 		v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
1269 		v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
1270 
1271 		enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
1272 
1273 		for (j = 0; j < v->count_tx_rings; j++) {
1274 			int idx = v->tx_ring[j].index;
1275 
1276 			enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
1277 		}
1278 		cpumask_clear(&cpu_mask);
1279 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
1280 		irq_set_affinity_hint(irq, &cpu_mask);
1281 	}
1282 
1283 	return 0;
1284 
1285 irq_err:
1286 	while (i--) {
1287 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1288 
1289 		irq_set_affinity_hint(irq, NULL);
1290 		free_irq(irq, priv->int_vector[i]);
1291 	}
1292 
1293 	return err;
1294 }
1295 
1296 static void enetc_free_irqs(struct enetc_ndev_priv *priv)
1297 {
1298 	struct pci_dev *pdev = priv->si->pdev;
1299 	int i;
1300 
1301 	for (i = 0; i < priv->bdr_int_num; i++) {
1302 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
1303 
1304 		irq_set_affinity_hint(irq, NULL);
1305 		free_irq(irq, priv->int_vector[i]);
1306 	}
1307 }
1308 
1309 static void enetc_enable_interrupts(struct enetc_ndev_priv *priv)
1310 {
1311 	int i;
1312 
1313 	/* enable Tx & Rx event indication */
1314 	for (i = 0; i < priv->num_rx_rings; i++) {
1315 		enetc_rxbdr_wr(&priv->si->hw, i,
1316 			       ENETC_RBIER, ENETC_RBIER_RXTIE);
1317 	}
1318 
1319 	for (i = 0; i < priv->num_tx_rings; i++) {
1320 		enetc_txbdr_wr(&priv->si->hw, i,
1321 			       ENETC_TBIER, ENETC_TBIER_TXTIE);
1322 	}
1323 }
1324 
1325 static void enetc_disable_interrupts(struct enetc_ndev_priv *priv)
1326 {
1327 	int i;
1328 
1329 	for (i = 0; i < priv->num_tx_rings; i++)
1330 		enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0);
1331 
1332 	for (i = 0; i < priv->num_rx_rings; i++)
1333 		enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0);
1334 }
1335 
1336 static void adjust_link(struct net_device *ndev)
1337 {
1338 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1339 	struct phy_device *phydev = ndev->phydev;
1340 
1341 	if (priv->active_offloads & ENETC_F_QBV)
1342 		enetc_sched_speed_set(ndev);
1343 
1344 	phy_print_status(phydev);
1345 }
1346 
1347 static int enetc_phy_connect(struct net_device *ndev)
1348 {
1349 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1350 	struct phy_device *phydev;
1351 	struct ethtool_eee edata;
1352 
1353 	if (!priv->phy_node)
1354 		return 0; /* phy-less mode */
1355 
1356 	phydev = of_phy_connect(ndev, priv->phy_node, &adjust_link,
1357 				0, priv->if_mode);
1358 	if (!phydev) {
1359 		dev_err(&ndev->dev, "could not attach to PHY\n");
1360 		return -ENODEV;
1361 	}
1362 
1363 	phy_attached_info(phydev);
1364 
1365 	/* disable EEE autoneg, until ENETC driver supports it */
1366 	memset(&edata, 0, sizeof(struct ethtool_eee));
1367 	phy_ethtool_set_eee(phydev, &edata);
1368 
1369 	return 0;
1370 }
1371 
1372 int enetc_open(struct net_device *ndev)
1373 {
1374 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1375 	int i, err;
1376 
1377 	err = enetc_setup_irqs(priv);
1378 	if (err)
1379 		return err;
1380 
1381 	err = enetc_phy_connect(ndev);
1382 	if (err)
1383 		goto err_phy_connect;
1384 
1385 	err = enetc_alloc_tx_resources(priv);
1386 	if (err)
1387 		goto err_alloc_tx;
1388 
1389 	err = enetc_alloc_rx_resources(priv);
1390 	if (err)
1391 		goto err_alloc_rx;
1392 
1393 	enetc_setup_bdrs(priv);
1394 
1395 	err = netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1396 	if (err)
1397 		goto err_set_queues;
1398 
1399 	err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings);
1400 	if (err)
1401 		goto err_set_queues;
1402 
1403 	for (i = 0; i < priv->bdr_int_num; i++)
1404 		napi_enable(&priv->int_vector[i]->napi);
1405 
1406 	enetc_enable_interrupts(priv);
1407 
1408 	if (ndev->phydev)
1409 		phy_start(ndev->phydev);
1410 	else
1411 		netif_carrier_on(ndev);
1412 
1413 	netif_tx_start_all_queues(ndev);
1414 
1415 	return 0;
1416 
1417 err_set_queues:
1418 	enetc_free_rx_resources(priv);
1419 err_alloc_rx:
1420 	enetc_free_tx_resources(priv);
1421 err_alloc_tx:
1422 	if (ndev->phydev)
1423 		phy_disconnect(ndev->phydev);
1424 err_phy_connect:
1425 	enetc_free_irqs(priv);
1426 
1427 	return err;
1428 }
1429 
1430 int enetc_close(struct net_device *ndev)
1431 {
1432 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1433 	int i;
1434 
1435 	netif_tx_stop_all_queues(ndev);
1436 
1437 	if (ndev->phydev) {
1438 		phy_stop(ndev->phydev);
1439 		phy_disconnect(ndev->phydev);
1440 	} else {
1441 		netif_carrier_off(ndev);
1442 	}
1443 
1444 	for (i = 0; i < priv->bdr_int_num; i++) {
1445 		napi_synchronize(&priv->int_vector[i]->napi);
1446 		napi_disable(&priv->int_vector[i]->napi);
1447 	}
1448 
1449 	enetc_disable_interrupts(priv);
1450 	enetc_clear_bdrs(priv);
1451 
1452 	enetc_free_rxtx_rings(priv);
1453 	enetc_free_rx_resources(priv);
1454 	enetc_free_tx_resources(priv);
1455 	enetc_free_irqs(priv);
1456 
1457 	return 0;
1458 }
1459 
1460 static int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data)
1461 {
1462 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1463 	struct tc_mqprio_qopt *mqprio = type_data;
1464 	struct enetc_bdr *tx_ring;
1465 	u8 num_tc;
1466 	int i;
1467 
1468 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1469 	num_tc = mqprio->num_tc;
1470 
1471 	if (!num_tc) {
1472 		netdev_reset_tc(ndev);
1473 		netif_set_real_num_tx_queues(ndev, priv->num_tx_rings);
1474 
1475 		/* Reset all ring priorities to 0 */
1476 		for (i = 0; i < priv->num_tx_rings; i++) {
1477 			tx_ring = priv->tx_ring[i];
1478 			enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, 0);
1479 		}
1480 
1481 		return 0;
1482 	}
1483 
1484 	/* Check if we have enough BD rings available to accommodate all TCs */
1485 	if (num_tc > priv->num_tx_rings) {
1486 		netdev_err(ndev, "Max %d traffic classes supported\n",
1487 			   priv->num_tx_rings);
1488 		return -EINVAL;
1489 	}
1490 
1491 	/* For the moment, we use only one BD ring per TC.
1492 	 *
1493 	 * Configure num_tc BD rings with increasing priorities.
1494 	 */
1495 	for (i = 0; i < num_tc; i++) {
1496 		tx_ring = priv->tx_ring[i];
1497 		enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, i);
1498 	}
1499 
1500 	/* Reset the number of netdev queues based on the TC count */
1501 	netif_set_real_num_tx_queues(ndev, num_tc);
1502 
1503 	netdev_set_num_tc(ndev, num_tc);
1504 
1505 	/* Each TC is associated with one netdev queue */
1506 	for (i = 0; i < num_tc; i++)
1507 		netdev_set_tc_queue(ndev, i, 1, i);
1508 
1509 	return 0;
1510 }
1511 
1512 int enetc_setup_tc(struct net_device *ndev, enum tc_setup_type type,
1513 		   void *type_data)
1514 {
1515 	switch (type) {
1516 	case TC_SETUP_QDISC_MQPRIO:
1517 		return enetc_setup_tc_mqprio(ndev, type_data);
1518 	case TC_SETUP_QDISC_TAPRIO:
1519 		return enetc_setup_tc_taprio(ndev, type_data);
1520 	case TC_SETUP_QDISC_CBS:
1521 		return enetc_setup_tc_cbs(ndev, type_data);
1522 	case TC_SETUP_QDISC_ETF:
1523 		return enetc_setup_tc_txtime(ndev, type_data);
1524 	case TC_SETUP_BLOCK:
1525 		return enetc_setup_tc_psfp(ndev, type_data);
1526 	default:
1527 		return -EOPNOTSUPP;
1528 	}
1529 }
1530 
1531 struct net_device_stats *enetc_get_stats(struct net_device *ndev)
1532 {
1533 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1534 	struct net_device_stats *stats = &ndev->stats;
1535 	unsigned long packets = 0, bytes = 0;
1536 	int i;
1537 
1538 	for (i = 0; i < priv->num_rx_rings; i++) {
1539 		packets += priv->rx_ring[i]->stats.packets;
1540 		bytes	+= priv->rx_ring[i]->stats.bytes;
1541 	}
1542 
1543 	stats->rx_packets = packets;
1544 	stats->rx_bytes = bytes;
1545 	bytes = 0;
1546 	packets = 0;
1547 
1548 	for (i = 0; i < priv->num_tx_rings; i++) {
1549 		packets += priv->tx_ring[i]->stats.packets;
1550 		bytes	+= priv->tx_ring[i]->stats.bytes;
1551 	}
1552 
1553 	stats->tx_packets = packets;
1554 	stats->tx_bytes = bytes;
1555 
1556 	return stats;
1557 }
1558 
1559 static int enetc_set_rss(struct net_device *ndev, int en)
1560 {
1561 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1562 	struct enetc_hw *hw = &priv->si->hw;
1563 	u32 reg;
1564 
1565 	enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
1566 
1567 	reg = enetc_rd(hw, ENETC_SIMR);
1568 	reg &= ~ENETC_SIMR_RSSE;
1569 	reg |= (en) ? ENETC_SIMR_RSSE : 0;
1570 	enetc_wr(hw, ENETC_SIMR, reg);
1571 
1572 	return 0;
1573 }
1574 
1575 static int enetc_set_psfp(struct net_device *ndev, int en)
1576 {
1577 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1578 	int err;
1579 
1580 	if (en) {
1581 		err = enetc_psfp_enable(priv);
1582 		if (err)
1583 			return err;
1584 
1585 		priv->active_offloads |= ENETC_F_QCI;
1586 		return 0;
1587 	}
1588 
1589 	err = enetc_psfp_disable(priv);
1590 	if (err)
1591 		return err;
1592 
1593 	priv->active_offloads &= ~ENETC_F_QCI;
1594 
1595 	return 0;
1596 }
1597 
1598 static void enetc_enable_rxvlan(struct net_device *ndev, bool en)
1599 {
1600 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1601 	int i;
1602 
1603 	for (i = 0; i < priv->num_rx_rings; i++)
1604 		enetc_bdr_enable_rxvlan(&priv->si->hw, i, en);
1605 }
1606 
1607 static void enetc_enable_txvlan(struct net_device *ndev, bool en)
1608 {
1609 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1610 	int i;
1611 
1612 	for (i = 0; i < priv->num_tx_rings; i++)
1613 		enetc_bdr_enable_txvlan(&priv->si->hw, i, en);
1614 }
1615 
1616 int enetc_set_features(struct net_device *ndev,
1617 		       netdev_features_t features)
1618 {
1619 	netdev_features_t changed = ndev->features ^ features;
1620 	int err = 0;
1621 
1622 	if (changed & NETIF_F_RXHASH)
1623 		enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
1624 
1625 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1626 		enetc_enable_rxvlan(ndev,
1627 				    !!(features & NETIF_F_HW_VLAN_CTAG_RX));
1628 
1629 	if (changed & NETIF_F_HW_VLAN_CTAG_TX)
1630 		enetc_enable_txvlan(ndev,
1631 				    !!(features & NETIF_F_HW_VLAN_CTAG_TX));
1632 
1633 	if (changed & NETIF_F_HW_TC)
1634 		err = enetc_set_psfp(ndev, !!(features & NETIF_F_HW_TC));
1635 
1636 	return err;
1637 }
1638 
1639 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
1640 static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
1641 {
1642 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1643 	struct hwtstamp_config config;
1644 	int ao;
1645 
1646 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1647 		return -EFAULT;
1648 
1649 	switch (config.tx_type) {
1650 	case HWTSTAMP_TX_OFF:
1651 		priv->active_offloads &= ~ENETC_F_TX_TSTAMP;
1652 		break;
1653 	case HWTSTAMP_TX_ON:
1654 		priv->active_offloads |= ENETC_F_TX_TSTAMP;
1655 		break;
1656 	default:
1657 		return -ERANGE;
1658 	}
1659 
1660 	ao = priv->active_offloads;
1661 	switch (config.rx_filter) {
1662 	case HWTSTAMP_FILTER_NONE:
1663 		priv->active_offloads &= ~ENETC_F_RX_TSTAMP;
1664 		break;
1665 	default:
1666 		priv->active_offloads |= ENETC_F_RX_TSTAMP;
1667 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1668 	}
1669 
1670 	if (netif_running(ndev) && ao != priv->active_offloads) {
1671 		enetc_close(ndev);
1672 		enetc_open(ndev);
1673 	}
1674 
1675 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1676 	       -EFAULT : 0;
1677 }
1678 
1679 static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
1680 {
1681 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1682 	struct hwtstamp_config config;
1683 
1684 	config.flags = 0;
1685 
1686 	if (priv->active_offloads & ENETC_F_TX_TSTAMP)
1687 		config.tx_type = HWTSTAMP_TX_ON;
1688 	else
1689 		config.tx_type = HWTSTAMP_TX_OFF;
1690 
1691 	config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
1692 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
1693 
1694 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1695 	       -EFAULT : 0;
1696 }
1697 #endif
1698 
1699 int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1700 {
1701 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
1702 	if (cmd == SIOCSHWTSTAMP)
1703 		return enetc_hwtstamp_set(ndev, rq);
1704 	if (cmd == SIOCGHWTSTAMP)
1705 		return enetc_hwtstamp_get(ndev, rq);
1706 #endif
1707 
1708 	if (!ndev->phydev)
1709 		return -EOPNOTSUPP;
1710 	return phy_mii_ioctl(ndev->phydev, rq, cmd);
1711 }
1712 
1713 int enetc_alloc_msix(struct enetc_ndev_priv *priv)
1714 {
1715 	struct pci_dev *pdev = priv->si->pdev;
1716 	int size, v_tx_rings;
1717 	int i, n, err, nvec;
1718 
1719 	nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
1720 	/* allocate MSIX for both messaging and Rx/Tx interrupts */
1721 	n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
1722 
1723 	if (n < 0)
1724 		return n;
1725 
1726 	if (n != nvec)
1727 		return -EPERM;
1728 
1729 	/* # of tx rings per int vector */
1730 	v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
1731 	size = sizeof(struct enetc_int_vector) +
1732 	       sizeof(struct enetc_bdr) * v_tx_rings;
1733 
1734 	for (i = 0; i < priv->bdr_int_num; i++) {
1735 		struct enetc_int_vector *v;
1736 		struct enetc_bdr *bdr;
1737 		int j;
1738 
1739 		v = kzalloc(size, GFP_KERNEL);
1740 		if (!v) {
1741 			err = -ENOMEM;
1742 			goto fail;
1743 		}
1744 
1745 		priv->int_vector[i] = v;
1746 
1747 		netif_napi_add(priv->ndev, &v->napi, enetc_poll,
1748 			       NAPI_POLL_WEIGHT);
1749 		v->count_tx_rings = v_tx_rings;
1750 
1751 		for (j = 0; j < v_tx_rings; j++) {
1752 			int idx;
1753 
1754 			/* default tx ring mapping policy */
1755 			if (priv->bdr_int_num == ENETC_MAX_BDR_INT)
1756 				idx = 2 * j + i; /* 2 CPUs */
1757 			else
1758 				idx = j + i * v_tx_rings; /* default */
1759 
1760 			__set_bit(idx, &v->tx_rings_map);
1761 			bdr = &v->tx_ring[j];
1762 			bdr->index = idx;
1763 			bdr->ndev = priv->ndev;
1764 			bdr->dev = priv->dev;
1765 			bdr->bd_count = priv->tx_bd_count;
1766 			priv->tx_ring[idx] = bdr;
1767 		}
1768 
1769 		bdr = &v->rx_ring;
1770 		bdr->index = i;
1771 		bdr->ndev = priv->ndev;
1772 		bdr->dev = priv->dev;
1773 		bdr->bd_count = priv->rx_bd_count;
1774 		priv->rx_ring[i] = bdr;
1775 	}
1776 
1777 	return 0;
1778 
1779 fail:
1780 	while (i--) {
1781 		netif_napi_del(&priv->int_vector[i]->napi);
1782 		kfree(priv->int_vector[i]);
1783 	}
1784 
1785 	pci_free_irq_vectors(pdev);
1786 
1787 	return err;
1788 }
1789 
1790 void enetc_free_msix(struct enetc_ndev_priv *priv)
1791 {
1792 	int i;
1793 
1794 	for (i = 0; i < priv->bdr_int_num; i++) {
1795 		struct enetc_int_vector *v = priv->int_vector[i];
1796 
1797 		netif_napi_del(&v->napi);
1798 	}
1799 
1800 	for (i = 0; i < priv->num_rx_rings; i++)
1801 		priv->rx_ring[i] = NULL;
1802 
1803 	for (i = 0; i < priv->num_tx_rings; i++)
1804 		priv->tx_ring[i] = NULL;
1805 
1806 	for (i = 0; i < priv->bdr_int_num; i++) {
1807 		kfree(priv->int_vector[i]);
1808 		priv->int_vector[i] = NULL;
1809 	}
1810 
1811 	/* disable all MSIX for this device */
1812 	pci_free_irq_vectors(priv->si->pdev);
1813 }
1814 
1815 static void enetc_kfree_si(struct enetc_si *si)
1816 {
1817 	char *p = (char *)si - si->pad;
1818 
1819 	kfree(p);
1820 }
1821 
1822 static void enetc_detect_errata(struct enetc_si *si)
1823 {
1824 	if (si->pdev->revision == ENETC_REV1)
1825 		si->errata = ENETC_ERR_TXCSUM | ENETC_ERR_VLAN_ISOL |
1826 			     ENETC_ERR_UCMCSWP;
1827 }
1828 
1829 int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
1830 {
1831 	struct enetc_si *si, *p;
1832 	struct enetc_hw *hw;
1833 	size_t alloc_size;
1834 	int err, len;
1835 
1836 	pcie_flr(pdev);
1837 	err = pci_enable_device_mem(pdev);
1838 	if (err) {
1839 		dev_err(&pdev->dev, "device enable failed\n");
1840 		return err;
1841 	}
1842 
1843 	/* set up for high or low dma */
1844 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1845 	if (err) {
1846 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1847 		if (err) {
1848 			dev_err(&pdev->dev,
1849 				"DMA configuration failed: 0x%x\n", err);
1850 			goto err_dma;
1851 		}
1852 	}
1853 
1854 	err = pci_request_mem_regions(pdev, name);
1855 	if (err) {
1856 		dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
1857 		goto err_pci_mem_reg;
1858 	}
1859 
1860 	pci_set_master(pdev);
1861 
1862 	alloc_size = sizeof(struct enetc_si);
1863 	if (sizeof_priv) {
1864 		/* align priv to 32B */
1865 		alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
1866 		alloc_size += sizeof_priv;
1867 	}
1868 	/* force 32B alignment for enetc_si */
1869 	alloc_size += ENETC_SI_ALIGN - 1;
1870 
1871 	p = kzalloc(alloc_size, GFP_KERNEL);
1872 	if (!p) {
1873 		err = -ENOMEM;
1874 		goto err_alloc_si;
1875 	}
1876 
1877 	si = PTR_ALIGN(p, ENETC_SI_ALIGN);
1878 	si->pad = (char *)si - (char *)p;
1879 
1880 	pci_set_drvdata(pdev, si);
1881 	si->pdev = pdev;
1882 	hw = &si->hw;
1883 
1884 	len = pci_resource_len(pdev, ENETC_BAR_REGS);
1885 	hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
1886 	if (!hw->reg) {
1887 		err = -ENXIO;
1888 		dev_err(&pdev->dev, "ioremap() failed\n");
1889 		goto err_ioremap;
1890 	}
1891 	if (len > ENETC_PORT_BASE)
1892 		hw->port = hw->reg + ENETC_PORT_BASE;
1893 	if (len > ENETC_GLOBAL_BASE)
1894 		hw->global = hw->reg + ENETC_GLOBAL_BASE;
1895 
1896 	enetc_detect_errata(si);
1897 
1898 	return 0;
1899 
1900 err_ioremap:
1901 	enetc_kfree_si(si);
1902 err_alloc_si:
1903 	pci_release_mem_regions(pdev);
1904 err_pci_mem_reg:
1905 err_dma:
1906 	pci_disable_device(pdev);
1907 
1908 	return err;
1909 }
1910 
1911 void enetc_pci_remove(struct pci_dev *pdev)
1912 {
1913 	struct enetc_si *si = pci_get_drvdata(pdev);
1914 	struct enetc_hw *hw = &si->hw;
1915 
1916 	iounmap(hw->reg);
1917 	enetc_kfree_si(si);
1918 	pci_release_mem_regions(pdev);
1919 	pci_disable_device(pdev);
1920 }
1921