1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /* Copyright 2017-2019 NXP */
3 
4 #include "enetc.h"
5 #include <linux/bpf_trace.h>
6 #include <linux/tcp.h>
7 #include <linux/udp.h>
8 #include <linux/vmalloc.h>
9 #include <linux/ptp_classify.h>
10 #include <net/ip6_checksum.h>
11 #include <net/pkt_sched.h>
12 #include <net/tso.h>
13 
14 static int enetc_num_stack_tx_queues(struct enetc_ndev_priv *priv)
15 {
16 	int num_tx_rings = priv->num_tx_rings;
17 	int i;
18 
19 	for (i = 0; i < priv->num_rx_rings; i++)
20 		if (priv->rx_ring[i]->xdp.prog)
21 			return num_tx_rings - num_possible_cpus();
22 
23 	return num_tx_rings;
24 }
25 
26 static struct enetc_bdr *enetc_rx_ring_from_xdp_tx_ring(struct enetc_ndev_priv *priv,
27 							struct enetc_bdr *tx_ring)
28 {
29 	int index = &priv->tx_ring[tx_ring->index] - priv->xdp_tx_ring;
30 
31 	return priv->rx_ring[index];
32 }
33 
34 static struct sk_buff *enetc_tx_swbd_get_skb(struct enetc_tx_swbd *tx_swbd)
35 {
36 	if (tx_swbd->is_xdp_tx || tx_swbd->is_xdp_redirect)
37 		return NULL;
38 
39 	return tx_swbd->skb;
40 }
41 
42 static struct xdp_frame *
43 enetc_tx_swbd_get_xdp_frame(struct enetc_tx_swbd *tx_swbd)
44 {
45 	if (tx_swbd->is_xdp_redirect)
46 		return tx_swbd->xdp_frame;
47 
48 	return NULL;
49 }
50 
51 static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
52 				struct enetc_tx_swbd *tx_swbd)
53 {
54 	/* For XDP_TX, pages come from RX, whereas for the other contexts where
55 	 * we have is_dma_page_set, those come from skb_frag_dma_map. We need
56 	 * to match the DMA mapping length, so we need to differentiate those.
57 	 */
58 	if (tx_swbd->is_dma_page)
59 		dma_unmap_page(tx_ring->dev, tx_swbd->dma,
60 			       tx_swbd->is_xdp_tx ? PAGE_SIZE : tx_swbd->len,
61 			       tx_swbd->dir);
62 	else
63 		dma_unmap_single(tx_ring->dev, tx_swbd->dma,
64 				 tx_swbd->len, tx_swbd->dir);
65 	tx_swbd->dma = 0;
66 }
67 
68 static void enetc_free_tx_frame(struct enetc_bdr *tx_ring,
69 				struct enetc_tx_swbd *tx_swbd)
70 {
71 	struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd);
72 	struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd);
73 
74 	if (tx_swbd->dma)
75 		enetc_unmap_tx_buff(tx_ring, tx_swbd);
76 
77 	if (xdp_frame) {
78 		xdp_return_frame(tx_swbd->xdp_frame);
79 		tx_swbd->xdp_frame = NULL;
80 	} else if (skb) {
81 		dev_kfree_skb_any(skb);
82 		tx_swbd->skb = NULL;
83 	}
84 }
85 
86 /* Let H/W know BD ring has been updated */
87 static void enetc_update_tx_ring_tail(struct enetc_bdr *tx_ring)
88 {
89 	/* includes wmb() */
90 	enetc_wr_reg_hot(tx_ring->tpir, tx_ring->next_to_use);
91 }
92 
93 static int enetc_ptp_parse(struct sk_buff *skb, u8 *udp,
94 			   u8 *msgtype, u8 *twostep,
95 			   u16 *correction_offset, u16 *body_offset)
96 {
97 	unsigned int ptp_class;
98 	struct ptp_header *hdr;
99 	unsigned int type;
100 	u8 *base;
101 
102 	ptp_class = ptp_classify_raw(skb);
103 	if (ptp_class == PTP_CLASS_NONE)
104 		return -EINVAL;
105 
106 	hdr = ptp_parse_header(skb, ptp_class);
107 	if (!hdr)
108 		return -EINVAL;
109 
110 	type = ptp_class & PTP_CLASS_PMASK;
111 	if (type == PTP_CLASS_IPV4 || type == PTP_CLASS_IPV6)
112 		*udp = 1;
113 	else
114 		*udp = 0;
115 
116 	*msgtype = ptp_get_msgtype(hdr, ptp_class);
117 	*twostep = hdr->flag_field[0] & 0x2;
118 
119 	base = skb_mac_header(skb);
120 	*correction_offset = (u8 *)&hdr->correction - base;
121 	*body_offset = (u8 *)hdr + sizeof(struct ptp_header) - base;
122 
123 	return 0;
124 }
125 
126 static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb)
127 {
128 	bool do_vlan, do_onestep_tstamp = false, do_twostep_tstamp = false;
129 	struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev);
130 	struct enetc_hw *hw = &priv->si->hw;
131 	struct enetc_tx_swbd *tx_swbd;
132 	int len = skb_headlen(skb);
133 	union enetc_tx_bd temp_bd;
134 	u8 msgtype, twostep, udp;
135 	union enetc_tx_bd *txbd;
136 	u16 offset1, offset2;
137 	int i, count = 0;
138 	skb_frag_t *frag;
139 	unsigned int f;
140 	dma_addr_t dma;
141 	u8 flags = 0;
142 
143 	i = tx_ring->next_to_use;
144 	txbd = ENETC_TXBD(*tx_ring, i);
145 	prefetchw(txbd);
146 
147 	dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
148 	if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
149 		goto dma_err;
150 
151 	temp_bd.addr = cpu_to_le64(dma);
152 	temp_bd.buf_len = cpu_to_le16(len);
153 	temp_bd.lstatus = 0;
154 
155 	tx_swbd = &tx_ring->tx_swbd[i];
156 	tx_swbd->dma = dma;
157 	tx_swbd->len = len;
158 	tx_swbd->is_dma_page = 0;
159 	tx_swbd->dir = DMA_TO_DEVICE;
160 	count++;
161 
162 	do_vlan = skb_vlan_tag_present(skb);
163 	if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
164 		if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep, &offset1,
165 				    &offset2) ||
166 		    msgtype != PTP_MSGTYPE_SYNC || twostep)
167 			WARN_ONCE(1, "Bad packet for one-step timestamping\n");
168 		else
169 			do_onestep_tstamp = true;
170 	} else if (skb->cb[0] & ENETC_F_TX_TSTAMP) {
171 		do_twostep_tstamp = true;
172 	}
173 
174 	tx_swbd->do_twostep_tstamp = do_twostep_tstamp;
175 	tx_swbd->check_wb = tx_swbd->do_twostep_tstamp;
176 
177 	if (do_vlan || do_onestep_tstamp || do_twostep_tstamp)
178 		flags |= ENETC_TXBD_FLAGS_EX;
179 
180 	if (tx_ring->tsd_enable)
181 		flags |= ENETC_TXBD_FLAGS_TSE | ENETC_TXBD_FLAGS_TXSTART;
182 
183 	/* first BD needs frm_len and offload flags set */
184 	temp_bd.frm_len = cpu_to_le16(skb->len);
185 	temp_bd.flags = flags;
186 
187 	if (flags & ENETC_TXBD_FLAGS_TSE)
188 		temp_bd.txstart = enetc_txbd_set_tx_start(skb->skb_mstamp_ns,
189 							  flags);
190 
191 	if (flags & ENETC_TXBD_FLAGS_EX) {
192 		u8 e_flags = 0;
193 		*txbd = temp_bd;
194 		enetc_clear_tx_bd(&temp_bd);
195 
196 		/* add extension BD for VLAN and/or timestamping */
197 		flags = 0;
198 		tx_swbd++;
199 		txbd++;
200 		i++;
201 		if (unlikely(i == tx_ring->bd_count)) {
202 			i = 0;
203 			tx_swbd = tx_ring->tx_swbd;
204 			txbd = ENETC_TXBD(*tx_ring, 0);
205 		}
206 		prefetchw(txbd);
207 
208 		if (do_vlan) {
209 			temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
210 			temp_bd.ext.tpid = 0; /* < C-TAG */
211 			e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
212 		}
213 
214 		if (do_onestep_tstamp) {
215 			u32 lo, hi, val;
216 			u64 sec, nsec;
217 			u8 *data;
218 
219 			lo = enetc_rd_hot(hw, ENETC_SICTR0);
220 			hi = enetc_rd_hot(hw, ENETC_SICTR1);
221 			sec = (u64)hi << 32 | lo;
222 			nsec = do_div(sec, 1000000000);
223 
224 			/* Configure extension BD */
225 			temp_bd.ext.tstamp = cpu_to_le32(lo & 0x3fffffff);
226 			e_flags |= ENETC_TXBD_E_FLAGS_ONE_STEP_PTP;
227 
228 			/* Update originTimestamp field of Sync packet
229 			 * - 48 bits seconds field
230 			 * - 32 bits nanseconds field
231 			 */
232 			data = skb_mac_header(skb);
233 			*(__be16 *)(data + offset2) =
234 				htons((sec >> 32) & 0xffff);
235 			*(__be32 *)(data + offset2 + 2) =
236 				htonl(sec & 0xffffffff);
237 			*(__be32 *)(data + offset2 + 6) = htonl(nsec);
238 
239 			/* Configure single-step register */
240 			val = ENETC_PM0_SINGLE_STEP_EN;
241 			val |= ENETC_SET_SINGLE_STEP_OFFSET(offset1);
242 			if (udp)
243 				val |= ENETC_PM0_SINGLE_STEP_CH;
244 
245 			enetc_port_wr(hw, ENETC_PM0_SINGLE_STEP, val);
246 			enetc_port_wr(hw, ENETC_PM1_SINGLE_STEP, val);
247 		} else if (do_twostep_tstamp) {
248 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
249 			e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
250 		}
251 
252 		temp_bd.ext.e_flags = e_flags;
253 		count++;
254 	}
255 
256 	frag = &skb_shinfo(skb)->frags[0];
257 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
258 		len = skb_frag_size(frag);
259 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
260 				       DMA_TO_DEVICE);
261 		if (dma_mapping_error(tx_ring->dev, dma))
262 			goto dma_err;
263 
264 		*txbd = temp_bd;
265 		enetc_clear_tx_bd(&temp_bd);
266 
267 		flags = 0;
268 		tx_swbd++;
269 		txbd++;
270 		i++;
271 		if (unlikely(i == tx_ring->bd_count)) {
272 			i = 0;
273 			tx_swbd = tx_ring->tx_swbd;
274 			txbd = ENETC_TXBD(*tx_ring, 0);
275 		}
276 		prefetchw(txbd);
277 
278 		temp_bd.addr = cpu_to_le64(dma);
279 		temp_bd.buf_len = cpu_to_le16(len);
280 
281 		tx_swbd->dma = dma;
282 		tx_swbd->len = len;
283 		tx_swbd->is_dma_page = 1;
284 		tx_swbd->dir = DMA_TO_DEVICE;
285 		count++;
286 	}
287 
288 	/* last BD needs 'F' bit set */
289 	flags |= ENETC_TXBD_FLAGS_F;
290 	temp_bd.flags = flags;
291 	*txbd = temp_bd;
292 
293 	tx_ring->tx_swbd[i].is_eof = true;
294 	tx_ring->tx_swbd[i].skb = skb;
295 
296 	enetc_bdr_idx_inc(tx_ring, &i);
297 	tx_ring->next_to_use = i;
298 
299 	skb_tx_timestamp(skb);
300 
301 	enetc_update_tx_ring_tail(tx_ring);
302 
303 	return count;
304 
305 dma_err:
306 	dev_err(tx_ring->dev, "DMA map error");
307 
308 	do {
309 		tx_swbd = &tx_ring->tx_swbd[i];
310 		enetc_free_tx_frame(tx_ring, tx_swbd);
311 		if (i == 0)
312 			i = tx_ring->bd_count;
313 		i--;
314 	} while (count--);
315 
316 	return 0;
317 }
318 
319 static void enetc_map_tx_tso_hdr(struct enetc_bdr *tx_ring, struct sk_buff *skb,
320 				 struct enetc_tx_swbd *tx_swbd,
321 				 union enetc_tx_bd *txbd, int *i, int hdr_len,
322 				 int data_len)
323 {
324 	union enetc_tx_bd txbd_tmp;
325 	u8 flags = 0, e_flags = 0;
326 	dma_addr_t addr;
327 
328 	enetc_clear_tx_bd(&txbd_tmp);
329 	addr = tx_ring->tso_headers_dma + *i * TSO_HEADER_SIZE;
330 
331 	if (skb_vlan_tag_present(skb))
332 		flags |= ENETC_TXBD_FLAGS_EX;
333 
334 	txbd_tmp.addr = cpu_to_le64(addr);
335 	txbd_tmp.buf_len = cpu_to_le16(hdr_len);
336 
337 	/* first BD needs frm_len and offload flags set */
338 	txbd_tmp.frm_len = cpu_to_le16(hdr_len + data_len);
339 	txbd_tmp.flags = flags;
340 
341 	/* For the TSO header we do not set the dma address since we do not
342 	 * want it unmapped when we do cleanup. We still set len so that we
343 	 * count the bytes sent.
344 	 */
345 	tx_swbd->len = hdr_len;
346 	tx_swbd->do_twostep_tstamp = false;
347 	tx_swbd->check_wb = false;
348 
349 	/* Actually write the header in the BD */
350 	*txbd = txbd_tmp;
351 
352 	/* Add extension BD for VLAN */
353 	if (flags & ENETC_TXBD_FLAGS_EX) {
354 		/* Get the next BD */
355 		enetc_bdr_idx_inc(tx_ring, i);
356 		txbd = ENETC_TXBD(*tx_ring, *i);
357 		tx_swbd = &tx_ring->tx_swbd[*i];
358 		prefetchw(txbd);
359 
360 		/* Setup the VLAN fields */
361 		enetc_clear_tx_bd(&txbd_tmp);
362 		txbd_tmp.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
363 		txbd_tmp.ext.tpid = 0; /* < C-TAG */
364 		e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
365 
366 		/* Write the BD */
367 		txbd_tmp.ext.e_flags = e_flags;
368 		*txbd = txbd_tmp;
369 	}
370 }
371 
372 static int enetc_map_tx_tso_data(struct enetc_bdr *tx_ring, struct sk_buff *skb,
373 				 struct enetc_tx_swbd *tx_swbd,
374 				 union enetc_tx_bd *txbd, char *data,
375 				 int size, bool last_bd)
376 {
377 	union enetc_tx_bd txbd_tmp;
378 	dma_addr_t addr;
379 	u8 flags = 0;
380 
381 	enetc_clear_tx_bd(&txbd_tmp);
382 
383 	addr = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
384 	if (unlikely(dma_mapping_error(tx_ring->dev, addr))) {
385 		netdev_err(tx_ring->ndev, "DMA map error\n");
386 		return -ENOMEM;
387 	}
388 
389 	if (last_bd) {
390 		flags |= ENETC_TXBD_FLAGS_F;
391 		tx_swbd->is_eof = 1;
392 	}
393 
394 	txbd_tmp.addr = cpu_to_le64(addr);
395 	txbd_tmp.buf_len = cpu_to_le16(size);
396 	txbd_tmp.flags = flags;
397 
398 	tx_swbd->dma = addr;
399 	tx_swbd->len = size;
400 	tx_swbd->dir = DMA_TO_DEVICE;
401 
402 	*txbd = txbd_tmp;
403 
404 	return 0;
405 }
406 
407 static __wsum enetc_tso_hdr_csum(struct tso_t *tso, struct sk_buff *skb,
408 				 char *hdr, int hdr_len, int *l4_hdr_len)
409 {
410 	char *l4_hdr = hdr + skb_transport_offset(skb);
411 	int mac_hdr_len = skb_network_offset(skb);
412 
413 	if (tso->tlen != sizeof(struct udphdr)) {
414 		struct tcphdr *tcph = (struct tcphdr *)(l4_hdr);
415 
416 		tcph->check = 0;
417 	} else {
418 		struct udphdr *udph = (struct udphdr *)(l4_hdr);
419 
420 		udph->check = 0;
421 	}
422 
423 	/* Compute the IP checksum. This is necessary since tso_build_hdr()
424 	 * already incremented the IP ID field.
425 	 */
426 	if (!tso->ipv6) {
427 		struct iphdr *iph = (void *)(hdr + mac_hdr_len);
428 
429 		iph->check = 0;
430 		iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
431 	}
432 
433 	/* Compute the checksum over the L4 header. */
434 	*l4_hdr_len = hdr_len - skb_transport_offset(skb);
435 	return csum_partial(l4_hdr, *l4_hdr_len, 0);
436 }
437 
438 static void enetc_tso_complete_csum(struct enetc_bdr *tx_ring, struct tso_t *tso,
439 				    struct sk_buff *skb, char *hdr, int len,
440 				    __wsum sum)
441 {
442 	char *l4_hdr = hdr + skb_transport_offset(skb);
443 	__sum16 csum_final;
444 
445 	/* Complete the L4 checksum by appending the pseudo-header to the
446 	 * already computed checksum.
447 	 */
448 	if (!tso->ipv6)
449 		csum_final = csum_tcpudp_magic(ip_hdr(skb)->saddr,
450 					       ip_hdr(skb)->daddr,
451 					       len, ip_hdr(skb)->protocol, sum);
452 	else
453 		csum_final = csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
454 					     &ipv6_hdr(skb)->daddr,
455 					     len, ipv6_hdr(skb)->nexthdr, sum);
456 
457 	if (tso->tlen != sizeof(struct udphdr)) {
458 		struct tcphdr *tcph = (struct tcphdr *)(l4_hdr);
459 
460 		tcph->check = csum_final;
461 	} else {
462 		struct udphdr *udph = (struct udphdr *)(l4_hdr);
463 
464 		udph->check = csum_final;
465 	}
466 }
467 
468 static int enetc_map_tx_tso_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb)
469 {
470 	int hdr_len, total_len, data_len;
471 	struct enetc_tx_swbd *tx_swbd;
472 	union enetc_tx_bd *txbd;
473 	struct tso_t tso;
474 	__wsum csum, csum2;
475 	int count = 0, pos;
476 	int err, i, bd_data_num;
477 
478 	/* Initialize the TSO handler, and prepare the first payload */
479 	hdr_len = tso_start(skb, &tso);
480 	total_len = skb->len - hdr_len;
481 	i = tx_ring->next_to_use;
482 
483 	while (total_len > 0) {
484 		char *hdr;
485 
486 		/* Get the BD */
487 		txbd = ENETC_TXBD(*tx_ring, i);
488 		tx_swbd = &tx_ring->tx_swbd[i];
489 		prefetchw(txbd);
490 
491 		/* Determine the length of this packet */
492 		data_len = min_t(int, skb_shinfo(skb)->gso_size, total_len);
493 		total_len -= data_len;
494 
495 		/* prepare packet headers: MAC + IP + TCP */
496 		hdr = tx_ring->tso_headers + i * TSO_HEADER_SIZE;
497 		tso_build_hdr(skb, hdr, &tso, data_len, total_len == 0);
498 
499 		/* compute the csum over the L4 header */
500 		csum = enetc_tso_hdr_csum(&tso, skb, hdr, hdr_len, &pos);
501 		enetc_map_tx_tso_hdr(tx_ring, skb, tx_swbd, txbd, &i, hdr_len, data_len);
502 		bd_data_num = 0;
503 		count++;
504 
505 		while (data_len > 0) {
506 			int size;
507 
508 			size = min_t(int, tso.size, data_len);
509 
510 			/* Advance the index in the BDR */
511 			enetc_bdr_idx_inc(tx_ring, &i);
512 			txbd = ENETC_TXBD(*tx_ring, i);
513 			tx_swbd = &tx_ring->tx_swbd[i];
514 			prefetchw(txbd);
515 
516 			/* Compute the checksum over this segment of data and
517 			 * add it to the csum already computed (over the L4
518 			 * header and possible other data segments).
519 			 */
520 			csum2 = csum_partial(tso.data, size, 0);
521 			csum = csum_block_add(csum, csum2, pos);
522 			pos += size;
523 
524 			err = enetc_map_tx_tso_data(tx_ring, skb, tx_swbd, txbd,
525 						    tso.data, size,
526 						    size == data_len);
527 			if (err)
528 				goto err_map_data;
529 
530 			data_len -= size;
531 			count++;
532 			bd_data_num++;
533 			tso_build_data(skb, &tso, size);
534 
535 			if (unlikely(bd_data_num >= ENETC_MAX_SKB_FRAGS && data_len))
536 				goto err_chained_bd;
537 		}
538 
539 		enetc_tso_complete_csum(tx_ring, &tso, skb, hdr, pos, csum);
540 
541 		if (total_len == 0)
542 			tx_swbd->skb = skb;
543 
544 		/* Go to the next BD */
545 		enetc_bdr_idx_inc(tx_ring, &i);
546 	}
547 
548 	tx_ring->next_to_use = i;
549 	enetc_update_tx_ring_tail(tx_ring);
550 
551 	return count;
552 
553 err_map_data:
554 	dev_err(tx_ring->dev, "DMA map error");
555 
556 err_chained_bd:
557 	do {
558 		tx_swbd = &tx_ring->tx_swbd[i];
559 		enetc_free_tx_frame(tx_ring, tx_swbd);
560 		if (i == 0)
561 			i = tx_ring->bd_count;
562 		i--;
563 	} while (count--);
564 
565 	return 0;
566 }
567 
568 static netdev_tx_t enetc_start_xmit(struct sk_buff *skb,
569 				    struct net_device *ndev)
570 {
571 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
572 	struct enetc_bdr *tx_ring;
573 	int count, err;
574 
575 	/* Queue one-step Sync packet if already locked */
576 	if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
577 		if (test_and_set_bit_lock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS,
578 					  &priv->flags)) {
579 			skb_queue_tail(&priv->tx_skbs, skb);
580 			return NETDEV_TX_OK;
581 		}
582 	}
583 
584 	tx_ring = priv->tx_ring[skb->queue_mapping];
585 
586 	if (skb_is_gso(skb)) {
587 		if (enetc_bd_unused(tx_ring) < tso_count_descs(skb)) {
588 			netif_stop_subqueue(ndev, tx_ring->index);
589 			return NETDEV_TX_BUSY;
590 		}
591 
592 		enetc_lock_mdio();
593 		count = enetc_map_tx_tso_buffs(tx_ring, skb);
594 		enetc_unlock_mdio();
595 	} else {
596 		if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
597 			if (unlikely(skb_linearize(skb)))
598 				goto drop_packet_err;
599 
600 		count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
601 		if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
602 			netif_stop_subqueue(ndev, tx_ring->index);
603 			return NETDEV_TX_BUSY;
604 		}
605 
606 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
607 			err = skb_checksum_help(skb);
608 			if (err)
609 				goto drop_packet_err;
610 		}
611 		enetc_lock_mdio();
612 		count = enetc_map_tx_buffs(tx_ring, skb);
613 		enetc_unlock_mdio();
614 	}
615 
616 	if (unlikely(!count))
617 		goto drop_packet_err;
618 
619 	if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
620 		netif_stop_subqueue(ndev, tx_ring->index);
621 
622 	return NETDEV_TX_OK;
623 
624 drop_packet_err:
625 	dev_kfree_skb_any(skb);
626 	return NETDEV_TX_OK;
627 }
628 
629 netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
630 {
631 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
632 	u8 udp, msgtype, twostep;
633 	u16 offset1, offset2;
634 
635 	/* Mark tx timestamp type on skb->cb[0] if requires */
636 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
637 	    (priv->active_offloads & ENETC_F_TX_TSTAMP_MASK)) {
638 		skb->cb[0] = priv->active_offloads & ENETC_F_TX_TSTAMP_MASK;
639 	} else {
640 		skb->cb[0] = 0;
641 	}
642 
643 	/* Fall back to two-step timestamp if not one-step Sync packet */
644 	if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
645 		if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep,
646 				    &offset1, &offset2) ||
647 		    msgtype != PTP_MSGTYPE_SYNC || twostep != 0)
648 			skb->cb[0] = ENETC_F_TX_TSTAMP;
649 	}
650 
651 	return enetc_start_xmit(skb, ndev);
652 }
653 
654 static irqreturn_t enetc_msix(int irq, void *data)
655 {
656 	struct enetc_int_vector	*v = data;
657 	int i;
658 
659 	enetc_lock_mdio();
660 
661 	/* disable interrupts */
662 	enetc_wr_reg_hot(v->rbier, 0);
663 	enetc_wr_reg_hot(v->ricr1, v->rx_ictt);
664 
665 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
666 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), 0);
667 
668 	enetc_unlock_mdio();
669 
670 	napi_schedule(&v->napi);
671 
672 	return IRQ_HANDLED;
673 }
674 
675 static void enetc_rx_dim_work(struct work_struct *w)
676 {
677 	struct dim *dim = container_of(w, struct dim, work);
678 	struct dim_cq_moder moder =
679 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
680 	struct enetc_int_vector	*v =
681 		container_of(dim, struct enetc_int_vector, rx_dim);
682 
683 	v->rx_ictt = enetc_usecs_to_cycles(moder.usec);
684 	dim->state = DIM_START_MEASURE;
685 }
686 
687 static void enetc_rx_net_dim(struct enetc_int_vector *v)
688 {
689 	struct dim_sample dim_sample = {};
690 
691 	v->comp_cnt++;
692 
693 	if (!v->rx_napi_work)
694 		return;
695 
696 	dim_update_sample(v->comp_cnt,
697 			  v->rx_ring.stats.packets,
698 			  v->rx_ring.stats.bytes,
699 			  &dim_sample);
700 	net_dim(&v->rx_dim, dim_sample);
701 }
702 
703 static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
704 {
705 	int pi = enetc_rd_reg_hot(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
706 
707 	return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
708 }
709 
710 static bool enetc_page_reusable(struct page *page)
711 {
712 	return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
713 }
714 
715 static void enetc_reuse_page(struct enetc_bdr *rx_ring,
716 			     struct enetc_rx_swbd *old)
717 {
718 	struct enetc_rx_swbd *new;
719 
720 	new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
721 
722 	/* next buf that may reuse a page */
723 	enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
724 
725 	/* copy page reference */
726 	*new = *old;
727 }
728 
729 static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
730 				u64 *tstamp)
731 {
732 	u32 lo, hi, tstamp_lo;
733 
734 	lo = enetc_rd_hot(hw, ENETC_SICTR0);
735 	hi = enetc_rd_hot(hw, ENETC_SICTR1);
736 	tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
737 	if (lo <= tstamp_lo)
738 		hi -= 1;
739 	*tstamp = (u64)hi << 32 | tstamp_lo;
740 }
741 
742 static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
743 {
744 	struct skb_shared_hwtstamps shhwtstamps;
745 
746 	if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
747 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
748 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
749 		skb_txtime_consumed(skb);
750 		skb_tstamp_tx(skb, &shhwtstamps);
751 	}
752 }
753 
754 static void enetc_recycle_xdp_tx_buff(struct enetc_bdr *tx_ring,
755 				      struct enetc_tx_swbd *tx_swbd)
756 {
757 	struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev);
758 	struct enetc_rx_swbd rx_swbd = {
759 		.dma = tx_swbd->dma,
760 		.page = tx_swbd->page,
761 		.page_offset = tx_swbd->page_offset,
762 		.dir = tx_swbd->dir,
763 		.len = tx_swbd->len,
764 	};
765 	struct enetc_bdr *rx_ring;
766 
767 	rx_ring = enetc_rx_ring_from_xdp_tx_ring(priv, tx_ring);
768 
769 	if (likely(enetc_swbd_unused(rx_ring))) {
770 		enetc_reuse_page(rx_ring, &rx_swbd);
771 
772 		/* sync for use by the device */
773 		dma_sync_single_range_for_device(rx_ring->dev, rx_swbd.dma,
774 						 rx_swbd.page_offset,
775 						 ENETC_RXB_DMA_SIZE_XDP,
776 						 rx_swbd.dir);
777 
778 		rx_ring->stats.recycles++;
779 	} else {
780 		/* RX ring is already full, we need to unmap and free the
781 		 * page, since there's nothing useful we can do with it.
782 		 */
783 		rx_ring->stats.recycle_failures++;
784 
785 		dma_unmap_page(rx_ring->dev, rx_swbd.dma, PAGE_SIZE,
786 			       rx_swbd.dir);
787 		__free_page(rx_swbd.page);
788 	}
789 
790 	rx_ring->xdp.xdp_tx_in_flight--;
791 }
792 
793 static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
794 {
795 	struct net_device *ndev = tx_ring->ndev;
796 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
797 	int tx_frm_cnt = 0, tx_byte_cnt = 0;
798 	struct enetc_tx_swbd *tx_swbd;
799 	int i, bds_to_clean;
800 	bool do_twostep_tstamp;
801 	u64 tstamp = 0;
802 
803 	i = tx_ring->next_to_clean;
804 	tx_swbd = &tx_ring->tx_swbd[i];
805 
806 	bds_to_clean = enetc_bd_ready_count(tx_ring, i);
807 
808 	do_twostep_tstamp = false;
809 
810 	while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
811 		struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd);
812 		struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd);
813 		bool is_eof = tx_swbd->is_eof;
814 
815 		if (unlikely(tx_swbd->check_wb)) {
816 			struct enetc_ndev_priv *priv = netdev_priv(ndev);
817 			union enetc_tx_bd *txbd;
818 
819 			txbd = ENETC_TXBD(*tx_ring, i);
820 
821 			if (txbd->flags & ENETC_TXBD_FLAGS_W &&
822 			    tx_swbd->do_twostep_tstamp) {
823 				enetc_get_tx_tstamp(&priv->si->hw, txbd,
824 						    &tstamp);
825 				do_twostep_tstamp = true;
826 			}
827 		}
828 
829 		if (tx_swbd->is_xdp_tx)
830 			enetc_recycle_xdp_tx_buff(tx_ring, tx_swbd);
831 		else if (likely(tx_swbd->dma))
832 			enetc_unmap_tx_buff(tx_ring, tx_swbd);
833 
834 		if (xdp_frame) {
835 			xdp_return_frame(xdp_frame);
836 		} else if (skb) {
837 			if (unlikely(tx_swbd->skb->cb[0] &
838 				     ENETC_F_TX_ONESTEP_SYNC_TSTAMP)) {
839 				/* Start work to release lock for next one-step
840 				 * timestamping packet. And send one skb in
841 				 * tx_skbs queue if has.
842 				 */
843 				schedule_work(&priv->tx_onestep_tstamp);
844 			} else if (unlikely(do_twostep_tstamp)) {
845 				enetc_tstamp_tx(skb, tstamp);
846 				do_twostep_tstamp = false;
847 			}
848 			napi_consume_skb(skb, napi_budget);
849 		}
850 
851 		tx_byte_cnt += tx_swbd->len;
852 		/* Scrub the swbd here so we don't have to do that
853 		 * when we reuse it during xmit
854 		 */
855 		memset(tx_swbd, 0, sizeof(*tx_swbd));
856 
857 		bds_to_clean--;
858 		tx_swbd++;
859 		i++;
860 		if (unlikely(i == tx_ring->bd_count)) {
861 			i = 0;
862 			tx_swbd = tx_ring->tx_swbd;
863 		}
864 
865 		/* BD iteration loop end */
866 		if (is_eof) {
867 			tx_frm_cnt++;
868 			/* re-arm interrupt source */
869 			enetc_wr_reg_hot(tx_ring->idr, BIT(tx_ring->index) |
870 					 BIT(16 + tx_ring->index));
871 		}
872 
873 		if (unlikely(!bds_to_clean))
874 			bds_to_clean = enetc_bd_ready_count(tx_ring, i);
875 	}
876 
877 	tx_ring->next_to_clean = i;
878 	tx_ring->stats.packets += tx_frm_cnt;
879 	tx_ring->stats.bytes += tx_byte_cnt;
880 
881 	if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
882 		     __netif_subqueue_stopped(ndev, tx_ring->index) &&
883 		     (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
884 		netif_wake_subqueue(ndev, tx_ring->index);
885 	}
886 
887 	return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
888 }
889 
890 static bool enetc_new_page(struct enetc_bdr *rx_ring,
891 			   struct enetc_rx_swbd *rx_swbd)
892 {
893 	bool xdp = !!(rx_ring->xdp.prog);
894 	struct page *page;
895 	dma_addr_t addr;
896 
897 	page = dev_alloc_page();
898 	if (unlikely(!page))
899 		return false;
900 
901 	/* For XDP_TX, we forgo dma_unmap -> dma_map */
902 	rx_swbd->dir = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
903 
904 	addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, rx_swbd->dir);
905 	if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
906 		__free_page(page);
907 
908 		return false;
909 	}
910 
911 	rx_swbd->dma = addr;
912 	rx_swbd->page = page;
913 	rx_swbd->page_offset = rx_ring->buffer_offset;
914 
915 	return true;
916 }
917 
918 static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
919 {
920 	struct enetc_rx_swbd *rx_swbd;
921 	union enetc_rx_bd *rxbd;
922 	int i, j;
923 
924 	i = rx_ring->next_to_use;
925 	rx_swbd = &rx_ring->rx_swbd[i];
926 	rxbd = enetc_rxbd(rx_ring, i);
927 
928 	for (j = 0; j < buff_cnt; j++) {
929 		/* try reuse page */
930 		if (unlikely(!rx_swbd->page)) {
931 			if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
932 				rx_ring->stats.rx_alloc_errs++;
933 				break;
934 			}
935 		}
936 
937 		/* update RxBD */
938 		rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
939 					   rx_swbd->page_offset);
940 		/* clear 'R" as well */
941 		rxbd->r.lstatus = 0;
942 
943 		enetc_rxbd_next(rx_ring, &rxbd, &i);
944 		rx_swbd = &rx_ring->rx_swbd[i];
945 	}
946 
947 	if (likely(j)) {
948 		rx_ring->next_to_alloc = i; /* keep track from page reuse */
949 		rx_ring->next_to_use = i;
950 
951 		/* update ENETC's consumer index */
952 		enetc_wr_reg_hot(rx_ring->rcir, rx_ring->next_to_use);
953 	}
954 
955 	return j;
956 }
957 
958 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
959 static void enetc_get_rx_tstamp(struct net_device *ndev,
960 				union enetc_rx_bd *rxbd,
961 				struct sk_buff *skb)
962 {
963 	struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
964 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
965 	struct enetc_hw *hw = &priv->si->hw;
966 	u32 lo, hi, tstamp_lo;
967 	u64 tstamp;
968 
969 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
970 		lo = enetc_rd_reg_hot(hw->reg + ENETC_SICTR0);
971 		hi = enetc_rd_reg_hot(hw->reg + ENETC_SICTR1);
972 		rxbd = enetc_rxbd_ext(rxbd);
973 		tstamp_lo = le32_to_cpu(rxbd->ext.tstamp);
974 		if (lo <= tstamp_lo)
975 			hi -= 1;
976 
977 		tstamp = (u64)hi << 32 | tstamp_lo;
978 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
979 		shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
980 	}
981 }
982 #endif
983 
984 static void enetc_get_offloads(struct enetc_bdr *rx_ring,
985 			       union enetc_rx_bd *rxbd, struct sk_buff *skb)
986 {
987 	struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
988 
989 	/* TODO: hashing */
990 	if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
991 		u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
992 
993 		skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
994 		skb->ip_summed = CHECKSUM_COMPLETE;
995 	}
996 
997 	if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN) {
998 		__be16 tpid = 0;
999 
1000 		switch (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TPID) {
1001 		case 0:
1002 			tpid = htons(ETH_P_8021Q);
1003 			break;
1004 		case 1:
1005 			tpid = htons(ETH_P_8021AD);
1006 			break;
1007 		case 2:
1008 			tpid = htons(enetc_port_rd(&priv->si->hw,
1009 						   ENETC_PCVLANR1));
1010 			break;
1011 		case 3:
1012 			tpid = htons(enetc_port_rd(&priv->si->hw,
1013 						   ENETC_PCVLANR2));
1014 			break;
1015 		default:
1016 			break;
1017 		}
1018 
1019 		__vlan_hwaccel_put_tag(skb, tpid, le16_to_cpu(rxbd->r.vlan_opt));
1020 	}
1021 
1022 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
1023 	if (priv->active_offloads & ENETC_F_RX_TSTAMP)
1024 		enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
1025 #endif
1026 }
1027 
1028 /* This gets called during the non-XDP NAPI poll cycle as well as on XDP_PASS,
1029  * so it needs to work with both DMA_FROM_DEVICE as well as DMA_BIDIRECTIONAL
1030  * mapped buffers.
1031  */
1032 static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
1033 					       int i, u16 size)
1034 {
1035 	struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
1036 
1037 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
1038 				      rx_swbd->page_offset,
1039 				      size, rx_swbd->dir);
1040 	return rx_swbd;
1041 }
1042 
1043 /* Reuse the current page without performing half-page buffer flipping */
1044 static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
1045 			      struct enetc_rx_swbd *rx_swbd)
1046 {
1047 	size_t buffer_size = ENETC_RXB_TRUESIZE - rx_ring->buffer_offset;
1048 
1049 	enetc_reuse_page(rx_ring, rx_swbd);
1050 
1051 	dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
1052 					 rx_swbd->page_offset,
1053 					 buffer_size, rx_swbd->dir);
1054 
1055 	rx_swbd->page = NULL;
1056 }
1057 
1058 /* Reuse the current page by performing half-page buffer flipping */
1059 static void enetc_flip_rx_buff(struct enetc_bdr *rx_ring,
1060 			       struct enetc_rx_swbd *rx_swbd)
1061 {
1062 	if (likely(enetc_page_reusable(rx_swbd->page))) {
1063 		rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
1064 		page_ref_inc(rx_swbd->page);
1065 
1066 		enetc_put_rx_buff(rx_ring, rx_swbd);
1067 	} else {
1068 		dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
1069 			       rx_swbd->dir);
1070 		rx_swbd->page = NULL;
1071 	}
1072 }
1073 
1074 static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
1075 						int i, u16 size)
1076 {
1077 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1078 	struct sk_buff *skb;
1079 	void *ba;
1080 
1081 	ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
1082 	skb = build_skb(ba - rx_ring->buffer_offset, ENETC_RXB_TRUESIZE);
1083 	if (unlikely(!skb)) {
1084 		rx_ring->stats.rx_alloc_errs++;
1085 		return NULL;
1086 	}
1087 
1088 	skb_reserve(skb, rx_ring->buffer_offset);
1089 	__skb_put(skb, size);
1090 
1091 	enetc_flip_rx_buff(rx_ring, rx_swbd);
1092 
1093 	return skb;
1094 }
1095 
1096 static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
1097 				     u16 size, struct sk_buff *skb)
1098 {
1099 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1100 
1101 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
1102 			rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
1103 
1104 	enetc_flip_rx_buff(rx_ring, rx_swbd);
1105 }
1106 
1107 static bool enetc_check_bd_errors_and_consume(struct enetc_bdr *rx_ring,
1108 					      u32 bd_status,
1109 					      union enetc_rx_bd **rxbd, int *i)
1110 {
1111 	if (likely(!(bd_status & ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))))
1112 		return false;
1113 
1114 	enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]);
1115 	enetc_rxbd_next(rx_ring, rxbd, i);
1116 
1117 	while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
1118 		dma_rmb();
1119 		bd_status = le32_to_cpu((*rxbd)->r.lstatus);
1120 
1121 		enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]);
1122 		enetc_rxbd_next(rx_ring, rxbd, i);
1123 	}
1124 
1125 	rx_ring->ndev->stats.rx_dropped++;
1126 	rx_ring->ndev->stats.rx_errors++;
1127 
1128 	return true;
1129 }
1130 
1131 static struct sk_buff *enetc_build_skb(struct enetc_bdr *rx_ring,
1132 				       u32 bd_status, union enetc_rx_bd **rxbd,
1133 				       int *i, int *cleaned_cnt, int buffer_size)
1134 {
1135 	struct sk_buff *skb;
1136 	u16 size;
1137 
1138 	size = le16_to_cpu((*rxbd)->r.buf_len);
1139 	skb = enetc_map_rx_buff_to_skb(rx_ring, *i, size);
1140 	if (!skb)
1141 		return NULL;
1142 
1143 	enetc_get_offloads(rx_ring, *rxbd, skb);
1144 
1145 	(*cleaned_cnt)++;
1146 
1147 	enetc_rxbd_next(rx_ring, rxbd, i);
1148 
1149 	/* not last BD in frame? */
1150 	while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
1151 		bd_status = le32_to_cpu((*rxbd)->r.lstatus);
1152 		size = buffer_size;
1153 
1154 		if (bd_status & ENETC_RXBD_LSTATUS_F) {
1155 			dma_rmb();
1156 			size = le16_to_cpu((*rxbd)->r.buf_len);
1157 		}
1158 
1159 		enetc_add_rx_buff_to_skb(rx_ring, *i, size, skb);
1160 
1161 		(*cleaned_cnt)++;
1162 
1163 		enetc_rxbd_next(rx_ring, rxbd, i);
1164 	}
1165 
1166 	skb_record_rx_queue(skb, rx_ring->index);
1167 	skb->protocol = eth_type_trans(skb, rx_ring->ndev);
1168 
1169 	return skb;
1170 }
1171 
1172 #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
1173 
1174 static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
1175 			       struct napi_struct *napi, int work_limit)
1176 {
1177 	int rx_frm_cnt = 0, rx_byte_cnt = 0;
1178 	int cleaned_cnt, i;
1179 
1180 	cleaned_cnt = enetc_bd_unused(rx_ring);
1181 	/* next descriptor to process */
1182 	i = rx_ring->next_to_clean;
1183 
1184 	while (likely(rx_frm_cnt < work_limit)) {
1185 		union enetc_rx_bd *rxbd;
1186 		struct sk_buff *skb;
1187 		u32 bd_status;
1188 
1189 		if (cleaned_cnt >= ENETC_RXBD_BUNDLE)
1190 			cleaned_cnt -= enetc_refill_rx_ring(rx_ring,
1191 							    cleaned_cnt);
1192 
1193 		rxbd = enetc_rxbd(rx_ring, i);
1194 		bd_status = le32_to_cpu(rxbd->r.lstatus);
1195 		if (!bd_status)
1196 			break;
1197 
1198 		enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
1199 		dma_rmb(); /* for reading other rxbd fields */
1200 
1201 		if (enetc_check_bd_errors_and_consume(rx_ring, bd_status,
1202 						      &rxbd, &i))
1203 			break;
1204 
1205 		skb = enetc_build_skb(rx_ring, bd_status, &rxbd, &i,
1206 				      &cleaned_cnt, ENETC_RXB_DMA_SIZE);
1207 		if (!skb)
1208 			break;
1209 
1210 		rx_byte_cnt += skb->len;
1211 		rx_frm_cnt++;
1212 
1213 		napi_gro_receive(napi, skb);
1214 	}
1215 
1216 	rx_ring->next_to_clean = i;
1217 
1218 	rx_ring->stats.packets += rx_frm_cnt;
1219 	rx_ring->stats.bytes += rx_byte_cnt;
1220 
1221 	return rx_frm_cnt;
1222 }
1223 
1224 static void enetc_xdp_map_tx_buff(struct enetc_bdr *tx_ring, int i,
1225 				  struct enetc_tx_swbd *tx_swbd,
1226 				  int frm_len)
1227 {
1228 	union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
1229 
1230 	prefetchw(txbd);
1231 
1232 	enetc_clear_tx_bd(txbd);
1233 	txbd->addr = cpu_to_le64(tx_swbd->dma + tx_swbd->page_offset);
1234 	txbd->buf_len = cpu_to_le16(tx_swbd->len);
1235 	txbd->frm_len = cpu_to_le16(frm_len);
1236 
1237 	memcpy(&tx_ring->tx_swbd[i], tx_swbd, sizeof(*tx_swbd));
1238 }
1239 
1240 /* Puts in the TX ring one XDP frame, mapped as an array of TX software buffer
1241  * descriptors.
1242  */
1243 static bool enetc_xdp_tx(struct enetc_bdr *tx_ring,
1244 			 struct enetc_tx_swbd *xdp_tx_arr, int num_tx_swbd)
1245 {
1246 	struct enetc_tx_swbd *tmp_tx_swbd = xdp_tx_arr;
1247 	int i, k, frm_len = tmp_tx_swbd->len;
1248 
1249 	if (unlikely(enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(num_tx_swbd)))
1250 		return false;
1251 
1252 	while (unlikely(!tmp_tx_swbd->is_eof)) {
1253 		tmp_tx_swbd++;
1254 		frm_len += tmp_tx_swbd->len;
1255 	}
1256 
1257 	i = tx_ring->next_to_use;
1258 
1259 	for (k = 0; k < num_tx_swbd; k++) {
1260 		struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[k];
1261 
1262 		enetc_xdp_map_tx_buff(tx_ring, i, xdp_tx_swbd, frm_len);
1263 
1264 		/* last BD needs 'F' bit set */
1265 		if (xdp_tx_swbd->is_eof) {
1266 			union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
1267 
1268 			txbd->flags = ENETC_TXBD_FLAGS_F;
1269 		}
1270 
1271 		enetc_bdr_idx_inc(tx_ring, &i);
1272 	}
1273 
1274 	tx_ring->next_to_use = i;
1275 
1276 	return true;
1277 }
1278 
1279 static int enetc_xdp_frame_to_xdp_tx_swbd(struct enetc_bdr *tx_ring,
1280 					  struct enetc_tx_swbd *xdp_tx_arr,
1281 					  struct xdp_frame *xdp_frame)
1282 {
1283 	struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[0];
1284 	struct skb_shared_info *shinfo;
1285 	void *data = xdp_frame->data;
1286 	int len = xdp_frame->len;
1287 	skb_frag_t *frag;
1288 	dma_addr_t dma;
1289 	unsigned int f;
1290 	int n = 0;
1291 
1292 	dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
1293 	if (unlikely(dma_mapping_error(tx_ring->dev, dma))) {
1294 		netdev_err(tx_ring->ndev, "DMA map error\n");
1295 		return -1;
1296 	}
1297 
1298 	xdp_tx_swbd->dma = dma;
1299 	xdp_tx_swbd->dir = DMA_TO_DEVICE;
1300 	xdp_tx_swbd->len = len;
1301 	xdp_tx_swbd->is_xdp_redirect = true;
1302 	xdp_tx_swbd->is_eof = false;
1303 	xdp_tx_swbd->xdp_frame = NULL;
1304 
1305 	n++;
1306 	xdp_tx_swbd = &xdp_tx_arr[n];
1307 
1308 	shinfo = xdp_get_shared_info_from_frame(xdp_frame);
1309 
1310 	for (f = 0, frag = &shinfo->frags[0]; f < shinfo->nr_frags;
1311 	     f++, frag++) {
1312 		data = skb_frag_address(frag);
1313 		len = skb_frag_size(frag);
1314 
1315 		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
1316 		if (unlikely(dma_mapping_error(tx_ring->dev, dma))) {
1317 			/* Undo the DMA mapping for all fragments */
1318 			while (--n >= 0)
1319 				enetc_unmap_tx_buff(tx_ring, &xdp_tx_arr[n]);
1320 
1321 			netdev_err(tx_ring->ndev, "DMA map error\n");
1322 			return -1;
1323 		}
1324 
1325 		xdp_tx_swbd->dma = dma;
1326 		xdp_tx_swbd->dir = DMA_TO_DEVICE;
1327 		xdp_tx_swbd->len = len;
1328 		xdp_tx_swbd->is_xdp_redirect = true;
1329 		xdp_tx_swbd->is_eof = false;
1330 		xdp_tx_swbd->xdp_frame = NULL;
1331 
1332 		n++;
1333 		xdp_tx_swbd = &xdp_tx_arr[n];
1334 	}
1335 
1336 	xdp_tx_arr[n - 1].is_eof = true;
1337 	xdp_tx_arr[n - 1].xdp_frame = xdp_frame;
1338 
1339 	return n;
1340 }
1341 
1342 int enetc_xdp_xmit(struct net_device *ndev, int num_frames,
1343 		   struct xdp_frame **frames, u32 flags)
1344 {
1345 	struct enetc_tx_swbd xdp_redirect_arr[ENETC_MAX_SKB_FRAGS] = {0};
1346 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
1347 	struct enetc_bdr *tx_ring;
1348 	int xdp_tx_bd_cnt, i, k;
1349 	int xdp_tx_frm_cnt = 0;
1350 
1351 	enetc_lock_mdio();
1352 
1353 	tx_ring = priv->xdp_tx_ring[smp_processor_id()];
1354 
1355 	prefetchw(ENETC_TXBD(*tx_ring, tx_ring->next_to_use));
1356 
1357 	for (k = 0; k < num_frames; k++) {
1358 		xdp_tx_bd_cnt = enetc_xdp_frame_to_xdp_tx_swbd(tx_ring,
1359 							       xdp_redirect_arr,
1360 							       frames[k]);
1361 		if (unlikely(xdp_tx_bd_cnt < 0))
1362 			break;
1363 
1364 		if (unlikely(!enetc_xdp_tx(tx_ring, xdp_redirect_arr,
1365 					   xdp_tx_bd_cnt))) {
1366 			for (i = 0; i < xdp_tx_bd_cnt; i++)
1367 				enetc_unmap_tx_buff(tx_ring,
1368 						    &xdp_redirect_arr[i]);
1369 			tx_ring->stats.xdp_tx_drops++;
1370 			break;
1371 		}
1372 
1373 		xdp_tx_frm_cnt++;
1374 	}
1375 
1376 	if (unlikely((flags & XDP_XMIT_FLUSH) || k != xdp_tx_frm_cnt))
1377 		enetc_update_tx_ring_tail(tx_ring);
1378 
1379 	tx_ring->stats.xdp_tx += xdp_tx_frm_cnt;
1380 
1381 	enetc_unlock_mdio();
1382 
1383 	return xdp_tx_frm_cnt;
1384 }
1385 
1386 static void enetc_map_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i,
1387 				     struct xdp_buff *xdp_buff, u16 size)
1388 {
1389 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1390 	void *hard_start = page_address(rx_swbd->page) + rx_swbd->page_offset;
1391 	struct skb_shared_info *shinfo;
1392 
1393 	/* To be used for XDP_TX */
1394 	rx_swbd->len = size;
1395 
1396 	xdp_prepare_buff(xdp_buff, hard_start - rx_ring->buffer_offset,
1397 			 rx_ring->buffer_offset, size, false);
1398 
1399 	shinfo = xdp_get_shared_info_from_buff(xdp_buff);
1400 	shinfo->nr_frags = 0;
1401 }
1402 
1403 static void enetc_add_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i,
1404 				     u16 size, struct xdp_buff *xdp_buff)
1405 {
1406 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp_buff);
1407 	struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
1408 	skb_frag_t *frag = &shinfo->frags[shinfo->nr_frags];
1409 
1410 	/* To be used for XDP_TX */
1411 	rx_swbd->len = size;
1412 
1413 	skb_frag_off_set(frag, rx_swbd->page_offset);
1414 	skb_frag_size_set(frag, size);
1415 	__skb_frag_set_page(frag, rx_swbd->page);
1416 
1417 	shinfo->nr_frags++;
1418 }
1419 
1420 static void enetc_build_xdp_buff(struct enetc_bdr *rx_ring, u32 bd_status,
1421 				 union enetc_rx_bd **rxbd, int *i,
1422 				 int *cleaned_cnt, struct xdp_buff *xdp_buff)
1423 {
1424 	u16 size = le16_to_cpu((*rxbd)->r.buf_len);
1425 
1426 	xdp_init_buff(xdp_buff, ENETC_RXB_TRUESIZE, &rx_ring->xdp.rxq);
1427 
1428 	enetc_map_rx_buff_to_xdp(rx_ring, *i, xdp_buff, size);
1429 	(*cleaned_cnt)++;
1430 	enetc_rxbd_next(rx_ring, rxbd, i);
1431 
1432 	/* not last BD in frame? */
1433 	while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
1434 		bd_status = le32_to_cpu((*rxbd)->r.lstatus);
1435 		size = ENETC_RXB_DMA_SIZE_XDP;
1436 
1437 		if (bd_status & ENETC_RXBD_LSTATUS_F) {
1438 			dma_rmb();
1439 			size = le16_to_cpu((*rxbd)->r.buf_len);
1440 		}
1441 
1442 		enetc_add_rx_buff_to_xdp(rx_ring, *i, size, xdp_buff);
1443 		(*cleaned_cnt)++;
1444 		enetc_rxbd_next(rx_ring, rxbd, i);
1445 	}
1446 }
1447 
1448 /* Convert RX buffer descriptors to TX buffer descriptors. These will be
1449  * recycled back into the RX ring in enetc_clean_tx_ring.
1450  */
1451 static int enetc_rx_swbd_to_xdp_tx_swbd(struct enetc_tx_swbd *xdp_tx_arr,
1452 					struct enetc_bdr *rx_ring,
1453 					int rx_ring_first, int rx_ring_last)
1454 {
1455 	int n = 0;
1456 
1457 	for (; rx_ring_first != rx_ring_last;
1458 	     n++, enetc_bdr_idx_inc(rx_ring, &rx_ring_first)) {
1459 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first];
1460 		struct enetc_tx_swbd *tx_swbd = &xdp_tx_arr[n];
1461 
1462 		/* No need to dma_map, we already have DMA_BIDIRECTIONAL */
1463 		tx_swbd->dma = rx_swbd->dma;
1464 		tx_swbd->dir = rx_swbd->dir;
1465 		tx_swbd->page = rx_swbd->page;
1466 		tx_swbd->page_offset = rx_swbd->page_offset;
1467 		tx_swbd->len = rx_swbd->len;
1468 		tx_swbd->is_dma_page = true;
1469 		tx_swbd->is_xdp_tx = true;
1470 		tx_swbd->is_eof = false;
1471 	}
1472 
1473 	/* We rely on caller providing an rx_ring_last > rx_ring_first */
1474 	xdp_tx_arr[n - 1].is_eof = true;
1475 
1476 	return n;
1477 }
1478 
1479 static void enetc_xdp_drop(struct enetc_bdr *rx_ring, int rx_ring_first,
1480 			   int rx_ring_last)
1481 {
1482 	while (rx_ring_first != rx_ring_last) {
1483 		enetc_put_rx_buff(rx_ring,
1484 				  &rx_ring->rx_swbd[rx_ring_first]);
1485 		enetc_bdr_idx_inc(rx_ring, &rx_ring_first);
1486 	}
1487 	rx_ring->stats.xdp_drops++;
1488 }
1489 
1490 static void enetc_xdp_free(struct enetc_bdr *rx_ring, int rx_ring_first,
1491 			   int rx_ring_last)
1492 {
1493 	while (rx_ring_first != rx_ring_last) {
1494 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first];
1495 
1496 		if (rx_swbd->page) {
1497 			dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
1498 				       rx_swbd->dir);
1499 			__free_page(rx_swbd->page);
1500 			rx_swbd->page = NULL;
1501 		}
1502 		enetc_bdr_idx_inc(rx_ring, &rx_ring_first);
1503 	}
1504 	rx_ring->stats.xdp_redirect_failures++;
1505 }
1506 
1507 static int enetc_clean_rx_ring_xdp(struct enetc_bdr *rx_ring,
1508 				   struct napi_struct *napi, int work_limit,
1509 				   struct bpf_prog *prog)
1510 {
1511 	int xdp_tx_bd_cnt, xdp_tx_frm_cnt = 0, xdp_redirect_frm_cnt = 0;
1512 	struct enetc_tx_swbd xdp_tx_arr[ENETC_MAX_SKB_FRAGS] = {0};
1513 	struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
1514 	int rx_frm_cnt = 0, rx_byte_cnt = 0;
1515 	struct enetc_bdr *tx_ring;
1516 	int cleaned_cnt, i;
1517 	u32 xdp_act;
1518 
1519 	cleaned_cnt = enetc_bd_unused(rx_ring);
1520 	/* next descriptor to process */
1521 	i = rx_ring->next_to_clean;
1522 
1523 	while (likely(rx_frm_cnt < work_limit)) {
1524 		union enetc_rx_bd *rxbd, *orig_rxbd;
1525 		int orig_i, orig_cleaned_cnt;
1526 		struct xdp_buff xdp_buff;
1527 		struct sk_buff *skb;
1528 		int tmp_orig_i, err;
1529 		u32 bd_status;
1530 
1531 		rxbd = enetc_rxbd(rx_ring, i);
1532 		bd_status = le32_to_cpu(rxbd->r.lstatus);
1533 		if (!bd_status)
1534 			break;
1535 
1536 		enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
1537 		dma_rmb(); /* for reading other rxbd fields */
1538 
1539 		if (enetc_check_bd_errors_and_consume(rx_ring, bd_status,
1540 						      &rxbd, &i))
1541 			break;
1542 
1543 		orig_rxbd = rxbd;
1544 		orig_cleaned_cnt = cleaned_cnt;
1545 		orig_i = i;
1546 
1547 		enetc_build_xdp_buff(rx_ring, bd_status, &rxbd, &i,
1548 				     &cleaned_cnt, &xdp_buff);
1549 
1550 		xdp_act = bpf_prog_run_xdp(prog, &xdp_buff);
1551 
1552 		switch (xdp_act) {
1553 		default:
1554 			bpf_warn_invalid_xdp_action(xdp_act);
1555 			fallthrough;
1556 		case XDP_ABORTED:
1557 			trace_xdp_exception(rx_ring->ndev, prog, xdp_act);
1558 			fallthrough;
1559 		case XDP_DROP:
1560 			enetc_xdp_drop(rx_ring, orig_i, i);
1561 			break;
1562 		case XDP_PASS:
1563 			rxbd = orig_rxbd;
1564 			cleaned_cnt = orig_cleaned_cnt;
1565 			i = orig_i;
1566 
1567 			skb = enetc_build_skb(rx_ring, bd_status, &rxbd,
1568 					      &i, &cleaned_cnt,
1569 					      ENETC_RXB_DMA_SIZE_XDP);
1570 			if (unlikely(!skb))
1571 				goto out;
1572 
1573 			napi_gro_receive(napi, skb);
1574 			break;
1575 		case XDP_TX:
1576 			tx_ring = priv->xdp_tx_ring[rx_ring->index];
1577 			xdp_tx_bd_cnt = enetc_rx_swbd_to_xdp_tx_swbd(xdp_tx_arr,
1578 								     rx_ring,
1579 								     orig_i, i);
1580 
1581 			if (!enetc_xdp_tx(tx_ring, xdp_tx_arr, xdp_tx_bd_cnt)) {
1582 				enetc_xdp_drop(rx_ring, orig_i, i);
1583 				tx_ring->stats.xdp_tx_drops++;
1584 			} else {
1585 				tx_ring->stats.xdp_tx += xdp_tx_bd_cnt;
1586 				rx_ring->xdp.xdp_tx_in_flight += xdp_tx_bd_cnt;
1587 				xdp_tx_frm_cnt++;
1588 				/* The XDP_TX enqueue was successful, so we
1589 				 * need to scrub the RX software BDs because
1590 				 * the ownership of the buffers no longer
1591 				 * belongs to the RX ring, and we must prevent
1592 				 * enetc_refill_rx_ring() from reusing
1593 				 * rx_swbd->page.
1594 				 */
1595 				while (orig_i != i) {
1596 					rx_ring->rx_swbd[orig_i].page = NULL;
1597 					enetc_bdr_idx_inc(rx_ring, &orig_i);
1598 				}
1599 			}
1600 			break;
1601 		case XDP_REDIRECT:
1602 			/* xdp_return_frame does not support S/G in the sense
1603 			 * that it leaks the fragments (__xdp_return should not
1604 			 * call page_frag_free only for the initial buffer).
1605 			 * Until XDP_REDIRECT gains support for S/G let's keep
1606 			 * the code structure in place, but dead. We drop the
1607 			 * S/G frames ourselves to avoid memory leaks which
1608 			 * would otherwise leave the kernel OOM.
1609 			 */
1610 			if (unlikely(cleaned_cnt - orig_cleaned_cnt != 1)) {
1611 				enetc_xdp_drop(rx_ring, orig_i, i);
1612 				rx_ring->stats.xdp_redirect_sg++;
1613 				break;
1614 			}
1615 
1616 			tmp_orig_i = orig_i;
1617 
1618 			while (orig_i != i) {
1619 				enetc_flip_rx_buff(rx_ring,
1620 						   &rx_ring->rx_swbd[orig_i]);
1621 				enetc_bdr_idx_inc(rx_ring, &orig_i);
1622 			}
1623 
1624 			err = xdp_do_redirect(rx_ring->ndev, &xdp_buff, prog);
1625 			if (unlikely(err)) {
1626 				enetc_xdp_free(rx_ring, tmp_orig_i, i);
1627 			} else {
1628 				xdp_redirect_frm_cnt++;
1629 				rx_ring->stats.xdp_redirect++;
1630 			}
1631 		}
1632 
1633 		rx_frm_cnt++;
1634 	}
1635 
1636 out:
1637 	rx_ring->next_to_clean = i;
1638 
1639 	rx_ring->stats.packets += rx_frm_cnt;
1640 	rx_ring->stats.bytes += rx_byte_cnt;
1641 
1642 	if (xdp_redirect_frm_cnt)
1643 		xdp_do_flush_map();
1644 
1645 	if (xdp_tx_frm_cnt)
1646 		enetc_update_tx_ring_tail(tx_ring);
1647 
1648 	if (cleaned_cnt > rx_ring->xdp.xdp_tx_in_flight)
1649 		enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring) -
1650 				     rx_ring->xdp.xdp_tx_in_flight);
1651 
1652 	return rx_frm_cnt;
1653 }
1654 
1655 static int enetc_poll(struct napi_struct *napi, int budget)
1656 {
1657 	struct enetc_int_vector
1658 		*v = container_of(napi, struct enetc_int_vector, napi);
1659 	struct enetc_bdr *rx_ring = &v->rx_ring;
1660 	struct bpf_prog *prog;
1661 	bool complete = true;
1662 	int work_done;
1663 	int i;
1664 
1665 	enetc_lock_mdio();
1666 
1667 	for (i = 0; i < v->count_tx_rings; i++)
1668 		if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
1669 			complete = false;
1670 
1671 	prog = rx_ring->xdp.prog;
1672 	if (prog)
1673 		work_done = enetc_clean_rx_ring_xdp(rx_ring, napi, budget, prog);
1674 	else
1675 		work_done = enetc_clean_rx_ring(rx_ring, napi, budget);
1676 	if (work_done == budget)
1677 		complete = false;
1678 	if (work_done)
1679 		v->rx_napi_work = true;
1680 
1681 	if (!complete) {
1682 		enetc_unlock_mdio();
1683 		return budget;
1684 	}
1685 
1686 	napi_complete_done(napi, work_done);
1687 
1688 	if (likely(v->rx_dim_en))
1689 		enetc_rx_net_dim(v);
1690 
1691 	v->rx_napi_work = false;
1692 
1693 	/* enable interrupts */
1694 	enetc_wr_reg_hot(v->rbier, ENETC_RBIER_RXTIE);
1695 
1696 	for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
1697 		enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i),
1698 				 ENETC_TBIER_TXTIE);
1699 
1700 	enetc_unlock_mdio();
1701 
1702 	return work_done;
1703 }
1704 
1705 /* Probing and Init */
1706 #define ENETC_MAX_RFS_SIZE 64
1707 void enetc_get_si_caps(struct enetc_si *si)
1708 {
1709 	struct enetc_hw *hw = &si->hw;
1710 	u32 val;
1711 
1712 	/* find out how many of various resources we have to work with */
1713 	val = enetc_rd(hw, ENETC_SICAPR0);
1714 	si->num_rx_rings = (val >> 16) & 0xff;
1715 	si->num_tx_rings = val & 0xff;
1716 
1717 	val = enetc_rd(hw, ENETC_SIRFSCAPR);
1718 	si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
1719 	si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
1720 
1721 	si->num_rss = 0;
1722 	val = enetc_rd(hw, ENETC_SIPCAPR0);
1723 	if (val & ENETC_SIPCAPR0_RSS) {
1724 		u32 rss;
1725 
1726 		rss = enetc_rd(hw, ENETC_SIRSSCAPR);
1727 		si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss);
1728 	}
1729 
1730 	if (val & ENETC_SIPCAPR0_QBV)
1731 		si->hw_features |= ENETC_SI_F_QBV;
1732 
1733 	if (val & ENETC_SIPCAPR0_PSFP)
1734 		si->hw_features |= ENETC_SI_F_PSFP;
1735 }
1736 
1737 static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size)
1738 {
1739 	r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size,
1740 					&r->bd_dma_base, GFP_KERNEL);
1741 	if (!r->bd_base)
1742 		return -ENOMEM;
1743 
1744 	/* h/w requires 128B alignment */
1745 	if (!IS_ALIGNED(r->bd_dma_base, 128)) {
1746 		dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base,
1747 				  r->bd_dma_base);
1748 		return -EINVAL;
1749 	}
1750 
1751 	return 0;
1752 }
1753 
1754 static int enetc_alloc_txbdr(struct enetc_bdr *txr)
1755 {
1756 	int err;
1757 
1758 	txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd));
1759 	if (!txr->tx_swbd)
1760 		return -ENOMEM;
1761 
1762 	err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd));
1763 	if (err)
1764 		goto err_alloc_bdr;
1765 
1766 	txr->tso_headers = dma_alloc_coherent(txr->dev,
1767 					      txr->bd_count * TSO_HEADER_SIZE,
1768 					      &txr->tso_headers_dma,
1769 					      GFP_KERNEL);
1770 	if (!txr->tso_headers) {
1771 		err = -ENOMEM;
1772 		goto err_alloc_tso;
1773 	}
1774 
1775 	txr->next_to_clean = 0;
1776 	txr->next_to_use = 0;
1777 
1778 	return 0;
1779 
1780 err_alloc_tso:
1781 	dma_free_coherent(txr->dev, txr->bd_count * sizeof(union enetc_tx_bd),
1782 			  txr->bd_base, txr->bd_dma_base);
1783 	txr->bd_base = NULL;
1784 err_alloc_bdr:
1785 	vfree(txr->tx_swbd);
1786 	txr->tx_swbd = NULL;
1787 
1788 	return err;
1789 }
1790 
1791 static void enetc_free_txbdr(struct enetc_bdr *txr)
1792 {
1793 	int size, i;
1794 
1795 	for (i = 0; i < txr->bd_count; i++)
1796 		enetc_free_tx_frame(txr, &txr->tx_swbd[i]);
1797 
1798 	size = txr->bd_count * sizeof(union enetc_tx_bd);
1799 
1800 	dma_free_coherent(txr->dev, txr->bd_count * TSO_HEADER_SIZE,
1801 			  txr->tso_headers, txr->tso_headers_dma);
1802 	txr->tso_headers = NULL;
1803 
1804 	dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base);
1805 	txr->bd_base = NULL;
1806 
1807 	vfree(txr->tx_swbd);
1808 	txr->tx_swbd = NULL;
1809 }
1810 
1811 static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
1812 {
1813 	int i, err;
1814 
1815 	for (i = 0; i < priv->num_tx_rings; i++) {
1816 		err = enetc_alloc_txbdr(priv->tx_ring[i]);
1817 
1818 		if (err)
1819 			goto fail;
1820 	}
1821 
1822 	return 0;
1823 
1824 fail:
1825 	while (i-- > 0)
1826 		enetc_free_txbdr(priv->tx_ring[i]);
1827 
1828 	return err;
1829 }
1830 
1831 static void enetc_free_tx_resources(struct enetc_ndev_priv *priv)
1832 {
1833 	int i;
1834 
1835 	for (i = 0; i < priv->num_tx_rings; i++)
1836 		enetc_free_txbdr(priv->tx_ring[i]);
1837 }
1838 
1839 static int enetc_alloc_rxbdr(struct enetc_bdr *rxr, bool extended)
1840 {
1841 	size_t size = sizeof(union enetc_rx_bd);
1842 	int err;
1843 
1844 	rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd));
1845 	if (!rxr->rx_swbd)
1846 		return -ENOMEM;
1847 
1848 	if (extended)
1849 		size *= 2;
1850 
1851 	err = enetc_dma_alloc_bdr(rxr, size);
1852 	if (err) {
1853 		vfree(rxr->rx_swbd);
1854 		return err;
1855 	}
1856 
1857 	rxr->next_to_clean = 0;
1858 	rxr->next_to_use = 0;
1859 	rxr->next_to_alloc = 0;
1860 	rxr->ext_en = extended;
1861 
1862 	return 0;
1863 }
1864 
1865 static void enetc_free_rxbdr(struct enetc_bdr *rxr)
1866 {
1867 	int size;
1868 
1869 	size = rxr->bd_count * sizeof(union enetc_rx_bd);
1870 
1871 	dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base);
1872 	rxr->bd_base = NULL;
1873 
1874 	vfree(rxr->rx_swbd);
1875 	rxr->rx_swbd = NULL;
1876 }
1877 
1878 static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv)
1879 {
1880 	bool extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP);
1881 	int i, err;
1882 
1883 	for (i = 0; i < priv->num_rx_rings; i++) {
1884 		err = enetc_alloc_rxbdr(priv->rx_ring[i], extended);
1885 
1886 		if (err)
1887 			goto fail;
1888 	}
1889 
1890 	return 0;
1891 
1892 fail:
1893 	while (i-- > 0)
1894 		enetc_free_rxbdr(priv->rx_ring[i]);
1895 
1896 	return err;
1897 }
1898 
1899 static void enetc_free_rx_resources(struct enetc_ndev_priv *priv)
1900 {
1901 	int i;
1902 
1903 	for (i = 0; i < priv->num_rx_rings; i++)
1904 		enetc_free_rxbdr(priv->rx_ring[i]);
1905 }
1906 
1907 static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
1908 {
1909 	int i;
1910 
1911 	if (!tx_ring->tx_swbd)
1912 		return;
1913 
1914 	for (i = 0; i < tx_ring->bd_count; i++) {
1915 		struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
1916 
1917 		enetc_free_tx_frame(tx_ring, tx_swbd);
1918 	}
1919 
1920 	tx_ring->next_to_clean = 0;
1921 	tx_ring->next_to_use = 0;
1922 }
1923 
1924 static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
1925 {
1926 	int i;
1927 
1928 	if (!rx_ring->rx_swbd)
1929 		return;
1930 
1931 	for (i = 0; i < rx_ring->bd_count; i++) {
1932 		struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
1933 
1934 		if (!rx_swbd->page)
1935 			continue;
1936 
1937 		dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
1938 			       rx_swbd->dir);
1939 		__free_page(rx_swbd->page);
1940 		rx_swbd->page = NULL;
1941 	}
1942 
1943 	rx_ring->next_to_clean = 0;
1944 	rx_ring->next_to_use = 0;
1945 	rx_ring->next_to_alloc = 0;
1946 }
1947 
1948 static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
1949 {
1950 	int i;
1951 
1952 	for (i = 0; i < priv->num_rx_rings; i++)
1953 		enetc_free_rx_ring(priv->rx_ring[i]);
1954 
1955 	for (i = 0; i < priv->num_tx_rings; i++)
1956 		enetc_free_tx_ring(priv->tx_ring[i]);
1957 }
1958 
1959 static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
1960 {
1961 	int *rss_table;
1962 	int i;
1963 
1964 	rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
1965 	if (!rss_table)
1966 		return -ENOMEM;
1967 
1968 	/* Set up RSS table defaults */
1969 	for (i = 0; i < si->num_rss; i++)
1970 		rss_table[i] = i % num_groups;
1971 
1972 	enetc_set_rss_table(si, rss_table, si->num_rss);
1973 
1974 	kfree(rss_table);
1975 
1976 	return 0;
1977 }
1978 
1979 int enetc_configure_si(struct enetc_ndev_priv *priv)
1980 {
1981 	struct enetc_si *si = priv->si;
1982 	struct enetc_hw *hw = &si->hw;
1983 	int err;
1984 
1985 	/* set SI cache attributes */
1986 	enetc_wr(hw, ENETC_SICAR0,
1987 		 ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
1988 	enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
1989 	/* enable SI */
1990 	enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
1991 
1992 	if (si->num_rss) {
1993 		err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
1994 		if (err)
1995 			return err;
1996 	}
1997 
1998 	return 0;
1999 }
2000 
2001 void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
2002 {
2003 	struct enetc_si *si = priv->si;
2004 	int cpus = num_online_cpus();
2005 
2006 	priv->tx_bd_count = ENETC_TX_RING_DEFAULT_SIZE;
2007 	priv->rx_bd_count = ENETC_RX_RING_DEFAULT_SIZE;
2008 
2009 	/* Enable all available TX rings in order to configure as many
2010 	 * priorities as possible, when needed.
2011 	 * TODO: Make # of TX rings run-time configurable
2012 	 */
2013 	priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
2014 	priv->num_tx_rings = si->num_tx_rings;
2015 	priv->bdr_int_num = cpus;
2016 	priv->ic_mode = ENETC_IC_RX_ADAPTIVE | ENETC_IC_TX_MANUAL;
2017 	priv->tx_ictt = ENETC_TXIC_TIMETHR;
2018 }
2019 
2020 int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
2021 {
2022 	struct enetc_si *si = priv->si;
2023 
2024 	priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
2025 				  GFP_KERNEL);
2026 	if (!priv->cls_rules)
2027 		return -ENOMEM;
2028 
2029 	return 0;
2030 }
2031 
2032 void enetc_free_si_resources(struct enetc_ndev_priv *priv)
2033 {
2034 	kfree(priv->cls_rules);
2035 }
2036 
2037 static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
2038 {
2039 	int idx = tx_ring->index;
2040 	u32 tbmr;
2041 
2042 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
2043 		       lower_32_bits(tx_ring->bd_dma_base));
2044 
2045 	enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
2046 		       upper_32_bits(tx_ring->bd_dma_base));
2047 
2048 	WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
2049 	enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
2050 		       ENETC_RTBLENR_LEN(tx_ring->bd_count));
2051 
2052 	/* clearing PI/CI registers for Tx not supported, adjust sw indexes */
2053 	tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
2054 	tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
2055 
2056 	/* enable Tx ints by setting pkt thr to 1 */
2057 	enetc_txbdr_wr(hw, idx, ENETC_TBICR0, ENETC_TBICR0_ICEN | 0x1);
2058 
2059 	tbmr = ENETC_TBMR_EN;
2060 	if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
2061 		tbmr |= ENETC_TBMR_VIH;
2062 
2063 	/* enable ring */
2064 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
2065 
2066 	tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
2067 	tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
2068 	tx_ring->idr = hw->reg + ENETC_SITXIDR;
2069 }
2070 
2071 static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
2072 {
2073 	int idx = rx_ring->index;
2074 	u32 rbmr;
2075 
2076 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
2077 		       lower_32_bits(rx_ring->bd_dma_base));
2078 
2079 	enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
2080 		       upper_32_bits(rx_ring->bd_dma_base));
2081 
2082 	WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
2083 	enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
2084 		       ENETC_RTBLENR_LEN(rx_ring->bd_count));
2085 
2086 	if (rx_ring->xdp.prog)
2087 		enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE_XDP);
2088 	else
2089 		enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
2090 
2091 	enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
2092 
2093 	/* enable Rx ints by setting pkt thr to 1 */
2094 	enetc_rxbdr_wr(hw, idx, ENETC_RBICR0, ENETC_RBICR0_ICEN | 0x1);
2095 
2096 	rbmr = ENETC_RBMR_EN;
2097 
2098 	if (rx_ring->ext_en)
2099 		rbmr |= ENETC_RBMR_BDS;
2100 
2101 	if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
2102 		rbmr |= ENETC_RBMR_VTE;
2103 
2104 	rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
2105 	rx_ring->idr = hw->reg + ENETC_SIRXIDR;
2106 
2107 	enetc_lock_mdio();
2108 	enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
2109 	enetc_unlock_mdio();
2110 
2111 	/* enable ring */
2112 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
2113 }
2114 
2115 static void enetc_setup_bdrs(struct enetc_ndev_priv *priv)
2116 {
2117 	int i;
2118 
2119 	for (i = 0; i < priv->num_tx_rings; i++)
2120 		enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]);
2121 
2122 	for (i = 0; i < priv->num_rx_rings; i++)
2123 		enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]);
2124 }
2125 
2126 static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
2127 {
2128 	int idx = rx_ring->index;
2129 
2130 	/* disable EN bit on ring */
2131 	enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
2132 }
2133 
2134 static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
2135 {
2136 	int delay = 8, timeout = 100;
2137 	int idx = tx_ring->index;
2138 
2139 	/* disable EN bit on ring */
2140 	enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
2141 
2142 	/* wait for busy to clear */
2143 	while (delay < timeout &&
2144 	       enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
2145 		msleep(delay);
2146 		delay *= 2;
2147 	}
2148 
2149 	if (delay >= timeout)
2150 		netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
2151 			    idx);
2152 }
2153 
2154 static void enetc_clear_bdrs(struct enetc_ndev_priv *priv)
2155 {
2156 	int i;
2157 
2158 	for (i = 0; i < priv->num_tx_rings; i++)
2159 		enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]);
2160 
2161 	for (i = 0; i < priv->num_rx_rings; i++)
2162 		enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]);
2163 
2164 	udelay(1);
2165 }
2166 
2167 static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
2168 {
2169 	struct pci_dev *pdev = priv->si->pdev;
2170 	int i, j, err;
2171 
2172 	for (i = 0; i < priv->bdr_int_num; i++) {
2173 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
2174 		struct enetc_int_vector *v = priv->int_vector[i];
2175 		int entry = ENETC_BDR_INT_BASE_IDX + i;
2176 		struct enetc_hw *hw = &priv->si->hw;
2177 
2178 		snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
2179 			 priv->ndev->name, i);
2180 		err = request_irq(irq, enetc_msix, 0, v->name, v);
2181 		if (err) {
2182 			dev_err(priv->dev, "request_irq() failed!\n");
2183 			goto irq_err;
2184 		}
2185 		disable_irq(irq);
2186 
2187 		v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
2188 		v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
2189 		v->ricr1 = hw->reg + ENETC_BDR(RX, i, ENETC_RBICR1);
2190 
2191 		enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
2192 
2193 		for (j = 0; j < v->count_tx_rings; j++) {
2194 			int idx = v->tx_ring[j].index;
2195 
2196 			enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
2197 		}
2198 		irq_set_affinity_hint(irq, get_cpu_mask(i % num_online_cpus()));
2199 	}
2200 
2201 	return 0;
2202 
2203 irq_err:
2204 	while (i--) {
2205 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
2206 
2207 		irq_set_affinity_hint(irq, NULL);
2208 		free_irq(irq, priv->int_vector[i]);
2209 	}
2210 
2211 	return err;
2212 }
2213 
2214 static void enetc_free_irqs(struct enetc_ndev_priv *priv)
2215 {
2216 	struct pci_dev *pdev = priv->si->pdev;
2217 	int i;
2218 
2219 	for (i = 0; i < priv->bdr_int_num; i++) {
2220 		int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
2221 
2222 		irq_set_affinity_hint(irq, NULL);
2223 		free_irq(irq, priv->int_vector[i]);
2224 	}
2225 }
2226 
2227 static void enetc_setup_interrupts(struct enetc_ndev_priv *priv)
2228 {
2229 	struct enetc_hw *hw = &priv->si->hw;
2230 	u32 icpt, ictt;
2231 	int i;
2232 
2233 	/* enable Tx & Rx event indication */
2234 	if (priv->ic_mode &
2235 	    (ENETC_IC_RX_MANUAL | ENETC_IC_RX_ADAPTIVE)) {
2236 		icpt = ENETC_RBICR0_SET_ICPT(ENETC_RXIC_PKTTHR);
2237 		/* init to non-0 minimum, will be adjusted later */
2238 		ictt = 0x1;
2239 	} else {
2240 		icpt = 0x1; /* enable Rx ints by setting pkt thr to 1 */
2241 		ictt = 0;
2242 	}
2243 
2244 	for (i = 0; i < priv->num_rx_rings; i++) {
2245 		enetc_rxbdr_wr(hw, i, ENETC_RBICR1, ictt);
2246 		enetc_rxbdr_wr(hw, i, ENETC_RBICR0, ENETC_RBICR0_ICEN | icpt);
2247 		enetc_rxbdr_wr(hw, i, ENETC_RBIER, ENETC_RBIER_RXTIE);
2248 	}
2249 
2250 	if (priv->ic_mode & ENETC_IC_TX_MANUAL)
2251 		icpt = ENETC_TBICR0_SET_ICPT(ENETC_TXIC_PKTTHR);
2252 	else
2253 		icpt = 0x1; /* enable Tx ints by setting pkt thr to 1 */
2254 
2255 	for (i = 0; i < priv->num_tx_rings; i++) {
2256 		enetc_txbdr_wr(hw, i, ENETC_TBICR1, priv->tx_ictt);
2257 		enetc_txbdr_wr(hw, i, ENETC_TBICR0, ENETC_TBICR0_ICEN | icpt);
2258 		enetc_txbdr_wr(hw, i, ENETC_TBIER, ENETC_TBIER_TXTIE);
2259 	}
2260 }
2261 
2262 static void enetc_clear_interrupts(struct enetc_ndev_priv *priv)
2263 {
2264 	int i;
2265 
2266 	for (i = 0; i < priv->num_tx_rings; i++)
2267 		enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0);
2268 
2269 	for (i = 0; i < priv->num_rx_rings; i++)
2270 		enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0);
2271 }
2272 
2273 static int enetc_phylink_connect(struct net_device *ndev)
2274 {
2275 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2276 	struct ethtool_eee edata;
2277 	int err;
2278 
2279 	if (!priv->phylink)
2280 		return 0; /* phy-less mode */
2281 
2282 	err = phylink_of_phy_connect(priv->phylink, priv->dev->of_node, 0);
2283 	if (err) {
2284 		dev_err(&ndev->dev, "could not attach to PHY\n");
2285 		return err;
2286 	}
2287 
2288 	/* disable EEE autoneg, until ENETC driver supports it */
2289 	memset(&edata, 0, sizeof(struct ethtool_eee));
2290 	phylink_ethtool_set_eee(priv->phylink, &edata);
2291 
2292 	return 0;
2293 }
2294 
2295 static void enetc_tx_onestep_tstamp(struct work_struct *work)
2296 {
2297 	struct enetc_ndev_priv *priv;
2298 	struct sk_buff *skb;
2299 
2300 	priv = container_of(work, struct enetc_ndev_priv, tx_onestep_tstamp);
2301 
2302 	netif_tx_lock(priv->ndev);
2303 
2304 	clear_bit_unlock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS, &priv->flags);
2305 	skb = skb_dequeue(&priv->tx_skbs);
2306 	if (skb)
2307 		enetc_start_xmit(skb, priv->ndev);
2308 
2309 	netif_tx_unlock(priv->ndev);
2310 }
2311 
2312 static void enetc_tx_onestep_tstamp_init(struct enetc_ndev_priv *priv)
2313 {
2314 	INIT_WORK(&priv->tx_onestep_tstamp, enetc_tx_onestep_tstamp);
2315 	skb_queue_head_init(&priv->tx_skbs);
2316 }
2317 
2318 void enetc_start(struct net_device *ndev)
2319 {
2320 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2321 	int i;
2322 
2323 	enetc_setup_interrupts(priv);
2324 
2325 	for (i = 0; i < priv->bdr_int_num; i++) {
2326 		int irq = pci_irq_vector(priv->si->pdev,
2327 					 ENETC_BDR_INT_BASE_IDX + i);
2328 
2329 		napi_enable(&priv->int_vector[i]->napi);
2330 		enable_irq(irq);
2331 	}
2332 
2333 	if (priv->phylink)
2334 		phylink_start(priv->phylink);
2335 	else
2336 		netif_carrier_on(ndev);
2337 
2338 	netif_tx_start_all_queues(ndev);
2339 }
2340 
2341 int enetc_open(struct net_device *ndev)
2342 {
2343 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2344 	int num_stack_tx_queues;
2345 	int err;
2346 
2347 	err = enetc_setup_irqs(priv);
2348 	if (err)
2349 		return err;
2350 
2351 	err = enetc_phylink_connect(ndev);
2352 	if (err)
2353 		goto err_phy_connect;
2354 
2355 	err = enetc_alloc_tx_resources(priv);
2356 	if (err)
2357 		goto err_alloc_tx;
2358 
2359 	err = enetc_alloc_rx_resources(priv);
2360 	if (err)
2361 		goto err_alloc_rx;
2362 
2363 	num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
2364 
2365 	err = netif_set_real_num_tx_queues(ndev, num_stack_tx_queues);
2366 	if (err)
2367 		goto err_set_queues;
2368 
2369 	err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings);
2370 	if (err)
2371 		goto err_set_queues;
2372 
2373 	enetc_tx_onestep_tstamp_init(priv);
2374 	enetc_setup_bdrs(priv);
2375 	enetc_start(ndev);
2376 
2377 	return 0;
2378 
2379 err_set_queues:
2380 	enetc_free_rx_resources(priv);
2381 err_alloc_rx:
2382 	enetc_free_tx_resources(priv);
2383 err_alloc_tx:
2384 	if (priv->phylink)
2385 		phylink_disconnect_phy(priv->phylink);
2386 err_phy_connect:
2387 	enetc_free_irqs(priv);
2388 
2389 	return err;
2390 }
2391 
2392 void enetc_stop(struct net_device *ndev)
2393 {
2394 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2395 	int i;
2396 
2397 	netif_tx_stop_all_queues(ndev);
2398 
2399 	for (i = 0; i < priv->bdr_int_num; i++) {
2400 		int irq = pci_irq_vector(priv->si->pdev,
2401 					 ENETC_BDR_INT_BASE_IDX + i);
2402 
2403 		disable_irq(irq);
2404 		napi_synchronize(&priv->int_vector[i]->napi);
2405 		napi_disable(&priv->int_vector[i]->napi);
2406 	}
2407 
2408 	if (priv->phylink)
2409 		phylink_stop(priv->phylink);
2410 	else
2411 		netif_carrier_off(ndev);
2412 
2413 	enetc_clear_interrupts(priv);
2414 }
2415 
2416 int enetc_close(struct net_device *ndev)
2417 {
2418 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2419 
2420 	enetc_stop(ndev);
2421 	enetc_clear_bdrs(priv);
2422 
2423 	if (priv->phylink)
2424 		phylink_disconnect_phy(priv->phylink);
2425 	enetc_free_rxtx_rings(priv);
2426 	enetc_free_rx_resources(priv);
2427 	enetc_free_tx_resources(priv);
2428 	enetc_free_irqs(priv);
2429 
2430 	return 0;
2431 }
2432 
2433 static int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data)
2434 {
2435 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2436 	struct tc_mqprio_qopt *mqprio = type_data;
2437 	struct enetc_bdr *tx_ring;
2438 	int num_stack_tx_queues;
2439 	u8 num_tc;
2440 	int i;
2441 
2442 	num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
2443 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
2444 	num_tc = mqprio->num_tc;
2445 
2446 	if (!num_tc) {
2447 		netdev_reset_tc(ndev);
2448 		netif_set_real_num_tx_queues(ndev, num_stack_tx_queues);
2449 
2450 		/* Reset all ring priorities to 0 */
2451 		for (i = 0; i < priv->num_tx_rings; i++) {
2452 			tx_ring = priv->tx_ring[i];
2453 			enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, 0);
2454 		}
2455 
2456 		return 0;
2457 	}
2458 
2459 	/* Check if we have enough BD rings available to accommodate all TCs */
2460 	if (num_tc > num_stack_tx_queues) {
2461 		netdev_err(ndev, "Max %d traffic classes supported\n",
2462 			   priv->num_tx_rings);
2463 		return -EINVAL;
2464 	}
2465 
2466 	/* For the moment, we use only one BD ring per TC.
2467 	 *
2468 	 * Configure num_tc BD rings with increasing priorities.
2469 	 */
2470 	for (i = 0; i < num_tc; i++) {
2471 		tx_ring = priv->tx_ring[i];
2472 		enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, i);
2473 	}
2474 
2475 	/* Reset the number of netdev queues based on the TC count */
2476 	netif_set_real_num_tx_queues(ndev, num_tc);
2477 
2478 	netdev_set_num_tc(ndev, num_tc);
2479 
2480 	/* Each TC is associated with one netdev queue */
2481 	for (i = 0; i < num_tc; i++)
2482 		netdev_set_tc_queue(ndev, i, 1, i);
2483 
2484 	return 0;
2485 }
2486 
2487 int enetc_setup_tc(struct net_device *ndev, enum tc_setup_type type,
2488 		   void *type_data)
2489 {
2490 	switch (type) {
2491 	case TC_SETUP_QDISC_MQPRIO:
2492 		return enetc_setup_tc_mqprio(ndev, type_data);
2493 	case TC_SETUP_QDISC_TAPRIO:
2494 		return enetc_setup_tc_taprio(ndev, type_data);
2495 	case TC_SETUP_QDISC_CBS:
2496 		return enetc_setup_tc_cbs(ndev, type_data);
2497 	case TC_SETUP_QDISC_ETF:
2498 		return enetc_setup_tc_txtime(ndev, type_data);
2499 	case TC_SETUP_BLOCK:
2500 		return enetc_setup_tc_psfp(ndev, type_data);
2501 	default:
2502 		return -EOPNOTSUPP;
2503 	}
2504 }
2505 
2506 static int enetc_setup_xdp_prog(struct net_device *dev, struct bpf_prog *prog,
2507 				struct netlink_ext_ack *extack)
2508 {
2509 	struct enetc_ndev_priv *priv = netdev_priv(dev);
2510 	struct bpf_prog *old_prog;
2511 	bool is_up;
2512 	int i;
2513 
2514 	/* The buffer layout is changing, so we need to drain the old
2515 	 * RX buffers and seed new ones.
2516 	 */
2517 	is_up = netif_running(dev);
2518 	if (is_up)
2519 		dev_close(dev);
2520 
2521 	old_prog = xchg(&priv->xdp_prog, prog);
2522 	if (old_prog)
2523 		bpf_prog_put(old_prog);
2524 
2525 	for (i = 0; i < priv->num_rx_rings; i++) {
2526 		struct enetc_bdr *rx_ring = priv->rx_ring[i];
2527 
2528 		rx_ring->xdp.prog = prog;
2529 
2530 		if (prog)
2531 			rx_ring->buffer_offset = XDP_PACKET_HEADROOM;
2532 		else
2533 			rx_ring->buffer_offset = ENETC_RXB_PAD;
2534 	}
2535 
2536 	if (is_up)
2537 		return dev_open(dev, extack);
2538 
2539 	return 0;
2540 }
2541 
2542 int enetc_setup_bpf(struct net_device *dev, struct netdev_bpf *xdp)
2543 {
2544 	switch (xdp->command) {
2545 	case XDP_SETUP_PROG:
2546 		return enetc_setup_xdp_prog(dev, xdp->prog, xdp->extack);
2547 	default:
2548 		return -EINVAL;
2549 	}
2550 
2551 	return 0;
2552 }
2553 
2554 struct net_device_stats *enetc_get_stats(struct net_device *ndev)
2555 {
2556 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2557 	struct net_device_stats *stats = &ndev->stats;
2558 	unsigned long packets = 0, bytes = 0;
2559 	int i;
2560 
2561 	for (i = 0; i < priv->num_rx_rings; i++) {
2562 		packets += priv->rx_ring[i]->stats.packets;
2563 		bytes	+= priv->rx_ring[i]->stats.bytes;
2564 	}
2565 
2566 	stats->rx_packets = packets;
2567 	stats->rx_bytes = bytes;
2568 	bytes = 0;
2569 	packets = 0;
2570 
2571 	for (i = 0; i < priv->num_tx_rings; i++) {
2572 		packets += priv->tx_ring[i]->stats.packets;
2573 		bytes	+= priv->tx_ring[i]->stats.bytes;
2574 	}
2575 
2576 	stats->tx_packets = packets;
2577 	stats->tx_bytes = bytes;
2578 
2579 	return stats;
2580 }
2581 
2582 static int enetc_set_rss(struct net_device *ndev, int en)
2583 {
2584 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2585 	struct enetc_hw *hw = &priv->si->hw;
2586 	u32 reg;
2587 
2588 	enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
2589 
2590 	reg = enetc_rd(hw, ENETC_SIMR);
2591 	reg &= ~ENETC_SIMR_RSSE;
2592 	reg |= (en) ? ENETC_SIMR_RSSE : 0;
2593 	enetc_wr(hw, ENETC_SIMR, reg);
2594 
2595 	return 0;
2596 }
2597 
2598 static int enetc_set_psfp(struct net_device *ndev, int en)
2599 {
2600 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2601 	int err;
2602 
2603 	if (en) {
2604 		err = enetc_psfp_enable(priv);
2605 		if (err)
2606 			return err;
2607 
2608 		priv->active_offloads |= ENETC_F_QCI;
2609 		return 0;
2610 	}
2611 
2612 	err = enetc_psfp_disable(priv);
2613 	if (err)
2614 		return err;
2615 
2616 	priv->active_offloads &= ~ENETC_F_QCI;
2617 
2618 	return 0;
2619 }
2620 
2621 static void enetc_enable_rxvlan(struct net_device *ndev, bool en)
2622 {
2623 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2624 	int i;
2625 
2626 	for (i = 0; i < priv->num_rx_rings; i++)
2627 		enetc_bdr_enable_rxvlan(&priv->si->hw, i, en);
2628 }
2629 
2630 static void enetc_enable_txvlan(struct net_device *ndev, bool en)
2631 {
2632 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2633 	int i;
2634 
2635 	for (i = 0; i < priv->num_tx_rings; i++)
2636 		enetc_bdr_enable_txvlan(&priv->si->hw, i, en);
2637 }
2638 
2639 int enetc_set_features(struct net_device *ndev,
2640 		       netdev_features_t features)
2641 {
2642 	netdev_features_t changed = ndev->features ^ features;
2643 	int err = 0;
2644 
2645 	if (changed & NETIF_F_RXHASH)
2646 		enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
2647 
2648 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2649 		enetc_enable_rxvlan(ndev,
2650 				    !!(features & NETIF_F_HW_VLAN_CTAG_RX));
2651 
2652 	if (changed & NETIF_F_HW_VLAN_CTAG_TX)
2653 		enetc_enable_txvlan(ndev,
2654 				    !!(features & NETIF_F_HW_VLAN_CTAG_TX));
2655 
2656 	if (changed & NETIF_F_HW_TC)
2657 		err = enetc_set_psfp(ndev, !!(features & NETIF_F_HW_TC));
2658 
2659 	return err;
2660 }
2661 
2662 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
2663 static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
2664 {
2665 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2666 	struct hwtstamp_config config;
2667 	int ao;
2668 
2669 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2670 		return -EFAULT;
2671 
2672 	switch (config.tx_type) {
2673 	case HWTSTAMP_TX_OFF:
2674 		priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2675 		break;
2676 	case HWTSTAMP_TX_ON:
2677 		priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2678 		priv->active_offloads |= ENETC_F_TX_TSTAMP;
2679 		break;
2680 	case HWTSTAMP_TX_ONESTEP_SYNC:
2681 		priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
2682 		priv->active_offloads |= ENETC_F_TX_ONESTEP_SYNC_TSTAMP;
2683 		break;
2684 	default:
2685 		return -ERANGE;
2686 	}
2687 
2688 	ao = priv->active_offloads;
2689 	switch (config.rx_filter) {
2690 	case HWTSTAMP_FILTER_NONE:
2691 		priv->active_offloads &= ~ENETC_F_RX_TSTAMP;
2692 		break;
2693 	default:
2694 		priv->active_offloads |= ENETC_F_RX_TSTAMP;
2695 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2696 	}
2697 
2698 	if (netif_running(ndev) && ao != priv->active_offloads) {
2699 		enetc_close(ndev);
2700 		enetc_open(ndev);
2701 	}
2702 
2703 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2704 	       -EFAULT : 0;
2705 }
2706 
2707 static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
2708 {
2709 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2710 	struct hwtstamp_config config;
2711 
2712 	config.flags = 0;
2713 
2714 	if (priv->active_offloads & ENETC_F_TX_ONESTEP_SYNC_TSTAMP)
2715 		config.tx_type = HWTSTAMP_TX_ONESTEP_SYNC;
2716 	else if (priv->active_offloads & ENETC_F_TX_TSTAMP)
2717 		config.tx_type = HWTSTAMP_TX_ON;
2718 	else
2719 		config.tx_type = HWTSTAMP_TX_OFF;
2720 
2721 	config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
2722 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
2723 
2724 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2725 	       -EFAULT : 0;
2726 }
2727 #endif
2728 
2729 int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2730 {
2731 	struct enetc_ndev_priv *priv = netdev_priv(ndev);
2732 #ifdef CONFIG_FSL_ENETC_PTP_CLOCK
2733 	if (cmd == SIOCSHWTSTAMP)
2734 		return enetc_hwtstamp_set(ndev, rq);
2735 	if (cmd == SIOCGHWTSTAMP)
2736 		return enetc_hwtstamp_get(ndev, rq);
2737 #endif
2738 
2739 	if (!priv->phylink)
2740 		return -EOPNOTSUPP;
2741 
2742 	return phylink_mii_ioctl(priv->phylink, rq, cmd);
2743 }
2744 
2745 int enetc_alloc_msix(struct enetc_ndev_priv *priv)
2746 {
2747 	struct pci_dev *pdev = priv->si->pdev;
2748 	int first_xdp_tx_ring;
2749 	int i, n, err, nvec;
2750 	int v_tx_rings;
2751 
2752 	nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
2753 	/* allocate MSIX for both messaging and Rx/Tx interrupts */
2754 	n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
2755 
2756 	if (n < 0)
2757 		return n;
2758 
2759 	if (n != nvec)
2760 		return -EPERM;
2761 
2762 	/* # of tx rings per int vector */
2763 	v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
2764 
2765 	for (i = 0; i < priv->bdr_int_num; i++) {
2766 		struct enetc_int_vector *v;
2767 		struct enetc_bdr *bdr;
2768 		int j;
2769 
2770 		v = kzalloc(struct_size(v, tx_ring, v_tx_rings), GFP_KERNEL);
2771 		if (!v) {
2772 			err = -ENOMEM;
2773 			goto fail;
2774 		}
2775 
2776 		priv->int_vector[i] = v;
2777 
2778 		bdr = &v->rx_ring;
2779 		bdr->index = i;
2780 		bdr->ndev = priv->ndev;
2781 		bdr->dev = priv->dev;
2782 		bdr->bd_count = priv->rx_bd_count;
2783 		bdr->buffer_offset = ENETC_RXB_PAD;
2784 		priv->rx_ring[i] = bdr;
2785 
2786 		err = xdp_rxq_info_reg(&bdr->xdp.rxq, priv->ndev, i, 0);
2787 		if (err) {
2788 			kfree(v);
2789 			goto fail;
2790 		}
2791 
2792 		err = xdp_rxq_info_reg_mem_model(&bdr->xdp.rxq,
2793 						 MEM_TYPE_PAGE_SHARED, NULL);
2794 		if (err) {
2795 			xdp_rxq_info_unreg(&bdr->xdp.rxq);
2796 			kfree(v);
2797 			goto fail;
2798 		}
2799 
2800 		/* init defaults for adaptive IC */
2801 		if (priv->ic_mode & ENETC_IC_RX_ADAPTIVE) {
2802 			v->rx_ictt = 0x1;
2803 			v->rx_dim_en = true;
2804 		}
2805 		INIT_WORK(&v->rx_dim.work, enetc_rx_dim_work);
2806 		netif_napi_add(priv->ndev, &v->napi, enetc_poll,
2807 			       NAPI_POLL_WEIGHT);
2808 		v->count_tx_rings = v_tx_rings;
2809 
2810 		for (j = 0; j < v_tx_rings; j++) {
2811 			int idx;
2812 
2813 			/* default tx ring mapping policy */
2814 			idx = priv->bdr_int_num * j + i;
2815 			__set_bit(idx, &v->tx_rings_map);
2816 			bdr = &v->tx_ring[j];
2817 			bdr->index = idx;
2818 			bdr->ndev = priv->ndev;
2819 			bdr->dev = priv->dev;
2820 			bdr->bd_count = priv->tx_bd_count;
2821 			priv->tx_ring[idx] = bdr;
2822 		}
2823 	}
2824 
2825 	first_xdp_tx_ring = priv->num_tx_rings - num_possible_cpus();
2826 	priv->xdp_tx_ring = &priv->tx_ring[first_xdp_tx_ring];
2827 
2828 	return 0;
2829 
2830 fail:
2831 	while (i--) {
2832 		struct enetc_int_vector *v = priv->int_vector[i];
2833 		struct enetc_bdr *rx_ring = &v->rx_ring;
2834 
2835 		xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq);
2836 		xdp_rxq_info_unreg(&rx_ring->xdp.rxq);
2837 		netif_napi_del(&v->napi);
2838 		cancel_work_sync(&v->rx_dim.work);
2839 		kfree(v);
2840 	}
2841 
2842 	pci_free_irq_vectors(pdev);
2843 
2844 	return err;
2845 }
2846 
2847 void enetc_free_msix(struct enetc_ndev_priv *priv)
2848 {
2849 	int i;
2850 
2851 	for (i = 0; i < priv->bdr_int_num; i++) {
2852 		struct enetc_int_vector *v = priv->int_vector[i];
2853 		struct enetc_bdr *rx_ring = &v->rx_ring;
2854 
2855 		xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq);
2856 		xdp_rxq_info_unreg(&rx_ring->xdp.rxq);
2857 		netif_napi_del(&v->napi);
2858 		cancel_work_sync(&v->rx_dim.work);
2859 	}
2860 
2861 	for (i = 0; i < priv->num_rx_rings; i++)
2862 		priv->rx_ring[i] = NULL;
2863 
2864 	for (i = 0; i < priv->num_tx_rings; i++)
2865 		priv->tx_ring[i] = NULL;
2866 
2867 	for (i = 0; i < priv->bdr_int_num; i++) {
2868 		kfree(priv->int_vector[i]);
2869 		priv->int_vector[i] = NULL;
2870 	}
2871 
2872 	/* disable all MSIX for this device */
2873 	pci_free_irq_vectors(priv->si->pdev);
2874 }
2875 
2876 static void enetc_kfree_si(struct enetc_si *si)
2877 {
2878 	char *p = (char *)si - si->pad;
2879 
2880 	kfree(p);
2881 }
2882 
2883 static void enetc_detect_errata(struct enetc_si *si)
2884 {
2885 	if (si->pdev->revision == ENETC_REV1)
2886 		si->errata = ENETC_ERR_VLAN_ISOL | ENETC_ERR_UCMCSWP;
2887 }
2888 
2889 int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
2890 {
2891 	struct enetc_si *si, *p;
2892 	struct enetc_hw *hw;
2893 	size_t alloc_size;
2894 	int err, len;
2895 
2896 	pcie_flr(pdev);
2897 	err = pci_enable_device_mem(pdev);
2898 	if (err)
2899 		return dev_err_probe(&pdev->dev, err, "device enable failed\n");
2900 
2901 	/* set up for high or low dma */
2902 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2903 	if (err) {
2904 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2905 		if (err) {
2906 			dev_err(&pdev->dev,
2907 				"DMA configuration failed: 0x%x\n", err);
2908 			goto err_dma;
2909 		}
2910 	}
2911 
2912 	err = pci_request_mem_regions(pdev, name);
2913 	if (err) {
2914 		dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
2915 		goto err_pci_mem_reg;
2916 	}
2917 
2918 	pci_set_master(pdev);
2919 
2920 	alloc_size = sizeof(struct enetc_si);
2921 	if (sizeof_priv) {
2922 		/* align priv to 32B */
2923 		alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
2924 		alloc_size += sizeof_priv;
2925 	}
2926 	/* force 32B alignment for enetc_si */
2927 	alloc_size += ENETC_SI_ALIGN - 1;
2928 
2929 	p = kzalloc(alloc_size, GFP_KERNEL);
2930 	if (!p) {
2931 		err = -ENOMEM;
2932 		goto err_alloc_si;
2933 	}
2934 
2935 	si = PTR_ALIGN(p, ENETC_SI_ALIGN);
2936 	si->pad = (char *)si - (char *)p;
2937 
2938 	pci_set_drvdata(pdev, si);
2939 	si->pdev = pdev;
2940 	hw = &si->hw;
2941 
2942 	len = pci_resource_len(pdev, ENETC_BAR_REGS);
2943 	hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
2944 	if (!hw->reg) {
2945 		err = -ENXIO;
2946 		dev_err(&pdev->dev, "ioremap() failed\n");
2947 		goto err_ioremap;
2948 	}
2949 	if (len > ENETC_PORT_BASE)
2950 		hw->port = hw->reg + ENETC_PORT_BASE;
2951 	if (len > ENETC_GLOBAL_BASE)
2952 		hw->global = hw->reg + ENETC_GLOBAL_BASE;
2953 
2954 	enetc_detect_errata(si);
2955 
2956 	return 0;
2957 
2958 err_ioremap:
2959 	enetc_kfree_si(si);
2960 err_alloc_si:
2961 	pci_release_mem_regions(pdev);
2962 err_pci_mem_reg:
2963 err_dma:
2964 	pci_disable_device(pdev);
2965 
2966 	return err;
2967 }
2968 
2969 void enetc_pci_remove(struct pci_dev *pdev)
2970 {
2971 	struct enetc_si *si = pci_get_drvdata(pdev);
2972 	struct enetc_hw *hw = &si->hw;
2973 
2974 	iounmap(hw->reg);
2975 	enetc_kfree_si(si);
2976 	pci_release_mem_regions(pdev);
2977 	pci_disable_device(pdev);
2978 }
2979