1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* Copyright 2014-2016 Freescale Semiconductor Inc. 3 * Copyright 2016-2017 NXP 4 */ 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/platform_device.h> 8 #include <linux/etherdevice.h> 9 #include <linux/of_net.h> 10 #include <linux/interrupt.h> 11 #include <linux/msi.h> 12 #include <linux/kthread.h> 13 #include <linux/iommu.h> 14 #include <linux/net_tstamp.h> 15 #include <linux/fsl/mc.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_trace.h> 18 #include <net/sock.h> 19 20 #include "dpaa2-eth.h" 21 22 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files 23 * using trace events only need to #include <trace/events/sched.h> 24 */ 25 #define CREATE_TRACE_POINTS 26 #include "dpaa2-eth-trace.h" 27 28 MODULE_LICENSE("Dual BSD/GPL"); 29 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 30 MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver"); 31 32 static void *dpaa2_iova_to_virt(struct iommu_domain *domain, 33 dma_addr_t iova_addr) 34 { 35 phys_addr_t phys_addr; 36 37 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 38 39 return phys_to_virt(phys_addr); 40 } 41 42 static void validate_rx_csum(struct dpaa2_eth_priv *priv, 43 u32 fd_status, 44 struct sk_buff *skb) 45 { 46 skb_checksum_none_assert(skb); 47 48 /* HW checksum validation is disabled, nothing to do here */ 49 if (!(priv->net_dev->features & NETIF_F_RXCSUM)) 50 return; 51 52 /* Read checksum validation bits */ 53 if (!((fd_status & DPAA2_FAS_L3CV) && 54 (fd_status & DPAA2_FAS_L4CV))) 55 return; 56 57 /* Inform the stack there's no need to compute L3/L4 csum anymore */ 58 skb->ip_summed = CHECKSUM_UNNECESSARY; 59 } 60 61 /* Free a received FD. 62 * Not to be used for Tx conf FDs or on any other paths. 63 */ 64 static void free_rx_fd(struct dpaa2_eth_priv *priv, 65 const struct dpaa2_fd *fd, 66 void *vaddr) 67 { 68 struct device *dev = priv->net_dev->dev.parent; 69 dma_addr_t addr = dpaa2_fd_get_addr(fd); 70 u8 fd_format = dpaa2_fd_get_format(fd); 71 struct dpaa2_sg_entry *sgt; 72 void *sg_vaddr; 73 int i; 74 75 /* If single buffer frame, just free the data buffer */ 76 if (fd_format == dpaa2_fd_single) 77 goto free_buf; 78 else if (fd_format != dpaa2_fd_sg) 79 /* We don't support any other format */ 80 return; 81 82 /* For S/G frames, we first need to free all SG entries 83 * except the first one, which was taken care of already 84 */ 85 sgt = vaddr + dpaa2_fd_get_offset(fd); 86 for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 87 addr = dpaa2_sg_get_addr(&sgt[i]); 88 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 89 dma_unmap_single(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 90 DMA_BIDIRECTIONAL); 91 92 skb_free_frag(sg_vaddr); 93 if (dpaa2_sg_is_final(&sgt[i])) 94 break; 95 } 96 97 free_buf: 98 skb_free_frag(vaddr); 99 } 100 101 /* Build a linear skb based on a single-buffer frame descriptor */ 102 static struct sk_buff *build_linear_skb(struct dpaa2_eth_channel *ch, 103 const struct dpaa2_fd *fd, 104 void *fd_vaddr) 105 { 106 struct sk_buff *skb = NULL; 107 u16 fd_offset = dpaa2_fd_get_offset(fd); 108 u32 fd_length = dpaa2_fd_get_len(fd); 109 110 ch->buf_count--; 111 112 skb = build_skb(fd_vaddr, DPAA2_ETH_SKB_SIZE); 113 if (unlikely(!skb)) 114 return NULL; 115 116 skb_reserve(skb, fd_offset); 117 skb_put(skb, fd_length); 118 119 return skb; 120 } 121 122 /* Build a non linear (fragmented) skb based on a S/G table */ 123 static struct sk_buff *build_frag_skb(struct dpaa2_eth_priv *priv, 124 struct dpaa2_eth_channel *ch, 125 struct dpaa2_sg_entry *sgt) 126 { 127 struct sk_buff *skb = NULL; 128 struct device *dev = priv->net_dev->dev.parent; 129 void *sg_vaddr; 130 dma_addr_t sg_addr; 131 u16 sg_offset; 132 u32 sg_length; 133 struct page *page, *head_page; 134 int page_offset; 135 int i; 136 137 for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 138 struct dpaa2_sg_entry *sge = &sgt[i]; 139 140 /* NOTE: We only support SG entries in dpaa2_sg_single format, 141 * but this is the only format we may receive from HW anyway 142 */ 143 144 /* Get the address and length from the S/G entry */ 145 sg_addr = dpaa2_sg_get_addr(sge); 146 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr); 147 dma_unmap_single(dev, sg_addr, DPAA2_ETH_RX_BUF_SIZE, 148 DMA_BIDIRECTIONAL); 149 150 sg_length = dpaa2_sg_get_len(sge); 151 152 if (i == 0) { 153 /* We build the skb around the first data buffer */ 154 skb = build_skb(sg_vaddr, DPAA2_ETH_SKB_SIZE); 155 if (unlikely(!skb)) { 156 /* Free the first SG entry now, since we already 157 * unmapped it and obtained the virtual address 158 */ 159 skb_free_frag(sg_vaddr); 160 161 /* We still need to subtract the buffers used 162 * by this FD from our software counter 163 */ 164 while (!dpaa2_sg_is_final(&sgt[i]) && 165 i < DPAA2_ETH_MAX_SG_ENTRIES) 166 i++; 167 break; 168 } 169 170 sg_offset = dpaa2_sg_get_offset(sge); 171 skb_reserve(skb, sg_offset); 172 skb_put(skb, sg_length); 173 } else { 174 /* Rest of the data buffers are stored as skb frags */ 175 page = virt_to_page(sg_vaddr); 176 head_page = virt_to_head_page(sg_vaddr); 177 178 /* Offset in page (which may be compound). 179 * Data in subsequent SG entries is stored from the 180 * beginning of the buffer, so we don't need to add the 181 * sg_offset. 182 */ 183 page_offset = ((unsigned long)sg_vaddr & 184 (PAGE_SIZE - 1)) + 185 (page_address(page) - page_address(head_page)); 186 187 skb_add_rx_frag(skb, i - 1, head_page, page_offset, 188 sg_length, DPAA2_ETH_RX_BUF_SIZE); 189 } 190 191 if (dpaa2_sg_is_final(sge)) 192 break; 193 } 194 195 WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT"); 196 197 /* Count all data buffers + SG table buffer */ 198 ch->buf_count -= i + 2; 199 200 return skb; 201 } 202 203 /* Free buffers acquired from the buffer pool or which were meant to 204 * be released in the pool 205 */ 206 static void free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, int count) 207 { 208 struct device *dev = priv->net_dev->dev.parent; 209 void *vaddr; 210 int i; 211 212 for (i = 0; i < count; i++) { 213 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]); 214 dma_unmap_single(dev, buf_array[i], DPAA2_ETH_RX_BUF_SIZE, 215 DMA_BIDIRECTIONAL); 216 skb_free_frag(vaddr); 217 } 218 } 219 220 static void xdp_release_buf(struct dpaa2_eth_priv *priv, 221 struct dpaa2_eth_channel *ch, 222 dma_addr_t addr) 223 { 224 int err; 225 226 ch->xdp.drop_bufs[ch->xdp.drop_cnt++] = addr; 227 if (ch->xdp.drop_cnt < DPAA2_ETH_BUFS_PER_CMD) 228 return; 229 230 while ((err = dpaa2_io_service_release(ch->dpio, priv->bpid, 231 ch->xdp.drop_bufs, 232 ch->xdp.drop_cnt)) == -EBUSY) 233 cpu_relax(); 234 235 if (err) { 236 free_bufs(priv, ch->xdp.drop_bufs, ch->xdp.drop_cnt); 237 ch->buf_count -= ch->xdp.drop_cnt; 238 } 239 240 ch->xdp.drop_cnt = 0; 241 } 242 243 static int xdp_enqueue(struct dpaa2_eth_priv *priv, struct dpaa2_fd *fd, 244 void *buf_start, u16 queue_id) 245 { 246 struct dpaa2_eth_fq *fq; 247 struct dpaa2_faead *faead; 248 u32 ctrl, frc; 249 int i, err; 250 251 /* Mark the egress frame hardware annotation area as valid */ 252 frc = dpaa2_fd_get_frc(fd); 253 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 254 dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL); 255 256 /* Instruct hardware to release the FD buffer directly into 257 * the buffer pool once transmission is completed, instead of 258 * sending a Tx confirmation frame to us 259 */ 260 ctrl = DPAA2_FAEAD_A4V | DPAA2_FAEAD_A2V | DPAA2_FAEAD_EBDDV; 261 faead = dpaa2_get_faead(buf_start, false); 262 faead->ctrl = cpu_to_le32(ctrl); 263 faead->conf_fqid = 0; 264 265 fq = &priv->fq[queue_id]; 266 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 267 err = dpaa2_io_service_enqueue_qd(fq->channel->dpio, 268 priv->tx_qdid, 0, 269 fq->tx_qdbin, fd); 270 if (err != -EBUSY) 271 break; 272 } 273 274 return err; 275 } 276 277 static u32 run_xdp(struct dpaa2_eth_priv *priv, 278 struct dpaa2_eth_channel *ch, 279 struct dpaa2_eth_fq *rx_fq, 280 struct dpaa2_fd *fd, void *vaddr) 281 { 282 dma_addr_t addr = dpaa2_fd_get_addr(fd); 283 struct rtnl_link_stats64 *percpu_stats; 284 struct bpf_prog *xdp_prog; 285 struct xdp_buff xdp; 286 u32 xdp_act = XDP_PASS; 287 int err; 288 289 percpu_stats = this_cpu_ptr(priv->percpu_stats); 290 291 rcu_read_lock(); 292 293 xdp_prog = READ_ONCE(ch->xdp.prog); 294 if (!xdp_prog) 295 goto out; 296 297 xdp.data = vaddr + dpaa2_fd_get_offset(fd); 298 xdp.data_end = xdp.data + dpaa2_fd_get_len(fd); 299 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; 300 xdp_set_data_meta_invalid(&xdp); 301 302 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 303 304 /* xdp.data pointer may have changed */ 305 dpaa2_fd_set_offset(fd, xdp.data - vaddr); 306 dpaa2_fd_set_len(fd, xdp.data_end - xdp.data); 307 308 switch (xdp_act) { 309 case XDP_PASS: 310 break; 311 case XDP_TX: 312 err = xdp_enqueue(priv, fd, vaddr, rx_fq->flowid); 313 if (err) { 314 xdp_release_buf(priv, ch, addr); 315 percpu_stats->tx_errors++; 316 ch->stats.xdp_tx_err++; 317 } else { 318 percpu_stats->tx_packets++; 319 percpu_stats->tx_bytes += dpaa2_fd_get_len(fd); 320 ch->stats.xdp_tx++; 321 } 322 break; 323 default: 324 bpf_warn_invalid_xdp_action(xdp_act); 325 /* fall through */ 326 case XDP_ABORTED: 327 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 328 /* fall through */ 329 case XDP_DROP: 330 xdp_release_buf(priv, ch, addr); 331 ch->stats.xdp_drop++; 332 break; 333 } 334 335 out: 336 rcu_read_unlock(); 337 return xdp_act; 338 } 339 340 /* Main Rx frame processing routine */ 341 static void dpaa2_eth_rx(struct dpaa2_eth_priv *priv, 342 struct dpaa2_eth_channel *ch, 343 const struct dpaa2_fd *fd, 344 struct dpaa2_eth_fq *fq) 345 { 346 dma_addr_t addr = dpaa2_fd_get_addr(fd); 347 u8 fd_format = dpaa2_fd_get_format(fd); 348 void *vaddr; 349 struct sk_buff *skb; 350 struct rtnl_link_stats64 *percpu_stats; 351 struct dpaa2_eth_drv_stats *percpu_extras; 352 struct device *dev = priv->net_dev->dev.parent; 353 struct dpaa2_fas *fas; 354 void *buf_data; 355 u32 status = 0; 356 u32 xdp_act; 357 358 /* Tracing point */ 359 trace_dpaa2_rx_fd(priv->net_dev, fd); 360 361 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 362 dma_sync_single_for_cpu(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 363 DMA_BIDIRECTIONAL); 364 365 fas = dpaa2_get_fas(vaddr, false); 366 prefetch(fas); 367 buf_data = vaddr + dpaa2_fd_get_offset(fd); 368 prefetch(buf_data); 369 370 percpu_stats = this_cpu_ptr(priv->percpu_stats); 371 percpu_extras = this_cpu_ptr(priv->percpu_extras); 372 373 if (fd_format == dpaa2_fd_single) { 374 xdp_act = run_xdp(priv, ch, fq, (struct dpaa2_fd *)fd, vaddr); 375 if (xdp_act != XDP_PASS) { 376 percpu_stats->rx_packets++; 377 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 378 return; 379 } 380 381 dma_unmap_single(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 382 DMA_BIDIRECTIONAL); 383 skb = build_linear_skb(ch, fd, vaddr); 384 } else if (fd_format == dpaa2_fd_sg) { 385 WARN_ON(priv->xdp_prog); 386 387 dma_unmap_single(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 388 DMA_BIDIRECTIONAL); 389 skb = build_frag_skb(priv, ch, buf_data); 390 skb_free_frag(vaddr); 391 percpu_extras->rx_sg_frames++; 392 percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd); 393 } else { 394 /* We don't support any other format */ 395 goto err_frame_format; 396 } 397 398 if (unlikely(!skb)) 399 goto err_build_skb; 400 401 prefetch(skb->data); 402 403 /* Get the timestamp value */ 404 if (priv->rx_tstamp) { 405 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 406 __le64 *ts = dpaa2_get_ts(vaddr, false); 407 u64 ns; 408 409 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 410 411 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 412 shhwtstamps->hwtstamp = ns_to_ktime(ns); 413 } 414 415 /* Check if we need to validate the L4 csum */ 416 if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) { 417 status = le32_to_cpu(fas->status); 418 validate_rx_csum(priv, status, skb); 419 } 420 421 skb->protocol = eth_type_trans(skb, priv->net_dev); 422 skb_record_rx_queue(skb, fq->flowid); 423 424 percpu_stats->rx_packets++; 425 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 426 427 napi_gro_receive(&ch->napi, skb); 428 429 return; 430 431 err_build_skb: 432 free_rx_fd(priv, fd, vaddr); 433 err_frame_format: 434 percpu_stats->rx_dropped++; 435 } 436 437 /* Consume all frames pull-dequeued into the store. This is the simplest way to 438 * make sure we don't accidentally issue another volatile dequeue which would 439 * overwrite (leak) frames already in the store. 440 * 441 * Observance of NAPI budget is not our concern, leaving that to the caller. 442 */ 443 static int consume_frames(struct dpaa2_eth_channel *ch, 444 struct dpaa2_eth_fq **src) 445 { 446 struct dpaa2_eth_priv *priv = ch->priv; 447 struct dpaa2_eth_fq *fq = NULL; 448 struct dpaa2_dq *dq; 449 const struct dpaa2_fd *fd; 450 int cleaned = 0; 451 int is_last; 452 453 do { 454 dq = dpaa2_io_store_next(ch->store, &is_last); 455 if (unlikely(!dq)) { 456 /* If we're here, we *must* have placed a 457 * volatile dequeue comnmand, so keep reading through 458 * the store until we get some sort of valid response 459 * token (either a valid frame or an "empty dequeue") 460 */ 461 continue; 462 } 463 464 fd = dpaa2_dq_fd(dq); 465 fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq); 466 467 fq->consume(priv, ch, fd, fq); 468 cleaned++; 469 } while (!is_last); 470 471 if (!cleaned) 472 return 0; 473 474 fq->stats.frames += cleaned; 475 476 /* A dequeue operation only pulls frames from a single queue 477 * into the store. Return the frame queue as an out param. 478 */ 479 if (src) 480 *src = fq; 481 482 return cleaned; 483 } 484 485 /* Configure the egress frame annotation for timestamp update */ 486 static void enable_tx_tstamp(struct dpaa2_fd *fd, void *buf_start) 487 { 488 struct dpaa2_faead *faead; 489 u32 ctrl, frc; 490 491 /* Mark the egress frame annotation area as valid */ 492 frc = dpaa2_fd_get_frc(fd); 493 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 494 495 /* Set hardware annotation size */ 496 ctrl = dpaa2_fd_get_ctrl(fd); 497 dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL); 498 499 /* enable UPD (update prepanded data) bit in FAEAD field of 500 * hardware frame annotation area 501 */ 502 ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD; 503 faead = dpaa2_get_faead(buf_start, true); 504 faead->ctrl = cpu_to_le32(ctrl); 505 } 506 507 /* Create a frame descriptor based on a fragmented skb */ 508 static int build_sg_fd(struct dpaa2_eth_priv *priv, 509 struct sk_buff *skb, 510 struct dpaa2_fd *fd) 511 { 512 struct device *dev = priv->net_dev->dev.parent; 513 void *sgt_buf = NULL; 514 dma_addr_t addr; 515 int nr_frags = skb_shinfo(skb)->nr_frags; 516 struct dpaa2_sg_entry *sgt; 517 int i, err; 518 int sgt_buf_size; 519 struct scatterlist *scl, *crt_scl; 520 int num_sg; 521 int num_dma_bufs; 522 struct dpaa2_eth_swa *swa; 523 524 /* Create and map scatterlist. 525 * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have 526 * to go beyond nr_frags+1. 527 * Note: We don't support chained scatterlists 528 */ 529 if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1)) 530 return -EINVAL; 531 532 scl = kcalloc(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC); 533 if (unlikely(!scl)) 534 return -ENOMEM; 535 536 sg_init_table(scl, nr_frags + 1); 537 num_sg = skb_to_sgvec(skb, scl, 0, skb->len); 538 num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 539 if (unlikely(!num_dma_bufs)) { 540 err = -ENOMEM; 541 goto dma_map_sg_failed; 542 } 543 544 /* Prepare the HW SGT structure */ 545 sgt_buf_size = priv->tx_data_offset + 546 sizeof(struct dpaa2_sg_entry) * num_dma_bufs; 547 sgt_buf = netdev_alloc_frag(sgt_buf_size + DPAA2_ETH_TX_BUF_ALIGN); 548 if (unlikely(!sgt_buf)) { 549 err = -ENOMEM; 550 goto sgt_buf_alloc_failed; 551 } 552 sgt_buf = PTR_ALIGN(sgt_buf, DPAA2_ETH_TX_BUF_ALIGN); 553 memset(sgt_buf, 0, sgt_buf_size); 554 555 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 556 557 /* Fill in the HW SGT structure. 558 * 559 * sgt_buf is zeroed out, so the following fields are implicit 560 * in all sgt entries: 561 * - offset is 0 562 * - format is 'dpaa2_sg_single' 563 */ 564 for_each_sg(scl, crt_scl, num_dma_bufs, i) { 565 dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl)); 566 dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl)); 567 } 568 dpaa2_sg_set_final(&sgt[i - 1], true); 569 570 /* Store the skb backpointer in the SGT buffer. 571 * Fit the scatterlist and the number of buffers alongside the 572 * skb backpointer in the software annotation area. We'll need 573 * all of them on Tx Conf. 574 */ 575 swa = (struct dpaa2_eth_swa *)sgt_buf; 576 swa->skb = skb; 577 swa->scl = scl; 578 swa->num_sg = num_sg; 579 swa->sgt_size = sgt_buf_size; 580 581 /* Separately map the SGT buffer */ 582 addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 583 if (unlikely(dma_mapping_error(dev, addr))) { 584 err = -ENOMEM; 585 goto dma_map_single_failed; 586 } 587 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 588 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 589 dpaa2_fd_set_addr(fd, addr); 590 dpaa2_fd_set_len(fd, skb->len); 591 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 592 593 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 594 enable_tx_tstamp(fd, sgt_buf); 595 596 return 0; 597 598 dma_map_single_failed: 599 skb_free_frag(sgt_buf); 600 sgt_buf_alloc_failed: 601 dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 602 dma_map_sg_failed: 603 kfree(scl); 604 return err; 605 } 606 607 /* Create a frame descriptor based on a linear skb */ 608 static int build_single_fd(struct dpaa2_eth_priv *priv, 609 struct sk_buff *skb, 610 struct dpaa2_fd *fd) 611 { 612 struct device *dev = priv->net_dev->dev.parent; 613 u8 *buffer_start, *aligned_start; 614 struct sk_buff **skbh; 615 dma_addr_t addr; 616 617 buffer_start = skb->data - dpaa2_eth_needed_headroom(priv, skb); 618 619 /* If there's enough room to align the FD address, do it. 620 * It will help hardware optimize accesses. 621 */ 622 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 623 DPAA2_ETH_TX_BUF_ALIGN); 624 if (aligned_start >= skb->head) 625 buffer_start = aligned_start; 626 627 /* Store a backpointer to the skb at the beginning of the buffer 628 * (in the private data area) such that we can release it 629 * on Tx confirm 630 */ 631 skbh = (struct sk_buff **)buffer_start; 632 *skbh = skb; 633 634 addr = dma_map_single(dev, buffer_start, 635 skb_tail_pointer(skb) - buffer_start, 636 DMA_BIDIRECTIONAL); 637 if (unlikely(dma_mapping_error(dev, addr))) 638 return -ENOMEM; 639 640 dpaa2_fd_set_addr(fd, addr); 641 dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start)); 642 dpaa2_fd_set_len(fd, skb->len); 643 dpaa2_fd_set_format(fd, dpaa2_fd_single); 644 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 645 646 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 647 enable_tx_tstamp(fd, buffer_start); 648 649 return 0; 650 } 651 652 /* FD freeing routine on the Tx path 653 * 654 * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb 655 * back-pointed to is also freed. 656 * This can be called either from dpaa2_eth_tx_conf() or on the error path of 657 * dpaa2_eth_tx(). 658 */ 659 static void free_tx_fd(const struct dpaa2_eth_priv *priv, 660 const struct dpaa2_fd *fd) 661 { 662 struct device *dev = priv->net_dev->dev.parent; 663 dma_addr_t fd_addr; 664 struct sk_buff **skbh, *skb; 665 unsigned char *buffer_start; 666 struct dpaa2_eth_swa *swa; 667 u8 fd_format = dpaa2_fd_get_format(fd); 668 669 fd_addr = dpaa2_fd_get_addr(fd); 670 skbh = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr); 671 672 if (fd_format == dpaa2_fd_single) { 673 skb = *skbh; 674 buffer_start = (unsigned char *)skbh; 675 /* Accessing the skb buffer is safe before dma unmap, because 676 * we didn't map the actual skb shell. 677 */ 678 dma_unmap_single(dev, fd_addr, 679 skb_tail_pointer(skb) - buffer_start, 680 DMA_BIDIRECTIONAL); 681 } else if (fd_format == dpaa2_fd_sg) { 682 swa = (struct dpaa2_eth_swa *)skbh; 683 skb = swa->skb; 684 685 /* Unmap the scatterlist */ 686 dma_unmap_sg(dev, swa->scl, swa->num_sg, DMA_BIDIRECTIONAL); 687 kfree(swa->scl); 688 689 /* Unmap the SGT buffer */ 690 dma_unmap_single(dev, fd_addr, swa->sgt_size, 691 DMA_BIDIRECTIONAL); 692 } else { 693 netdev_dbg(priv->net_dev, "Invalid FD format\n"); 694 return; 695 } 696 697 /* Get the timestamp value */ 698 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 699 struct skb_shared_hwtstamps shhwtstamps; 700 __le64 *ts = dpaa2_get_ts(skbh, true); 701 u64 ns; 702 703 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 704 705 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 706 shhwtstamps.hwtstamp = ns_to_ktime(ns); 707 skb_tstamp_tx(skb, &shhwtstamps); 708 } 709 710 /* Free SGT buffer allocated on tx */ 711 if (fd_format != dpaa2_fd_single) 712 skb_free_frag(skbh); 713 714 /* Move on with skb release */ 715 dev_kfree_skb(skb); 716 } 717 718 static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) 719 { 720 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 721 struct dpaa2_fd fd; 722 struct rtnl_link_stats64 *percpu_stats; 723 struct dpaa2_eth_drv_stats *percpu_extras; 724 struct dpaa2_eth_fq *fq; 725 struct netdev_queue *nq; 726 u16 queue_mapping; 727 unsigned int needed_headroom; 728 u32 fd_len; 729 int err, i; 730 731 percpu_stats = this_cpu_ptr(priv->percpu_stats); 732 percpu_extras = this_cpu_ptr(priv->percpu_extras); 733 734 needed_headroom = dpaa2_eth_needed_headroom(priv, skb); 735 if (skb_headroom(skb) < needed_headroom) { 736 struct sk_buff *ns; 737 738 ns = skb_realloc_headroom(skb, needed_headroom); 739 if (unlikely(!ns)) { 740 percpu_stats->tx_dropped++; 741 goto err_alloc_headroom; 742 } 743 percpu_extras->tx_reallocs++; 744 745 if (skb->sk) 746 skb_set_owner_w(ns, skb->sk); 747 748 dev_kfree_skb(skb); 749 skb = ns; 750 } 751 752 /* We'll be holding a back-reference to the skb until Tx Confirmation; 753 * we don't want that overwritten by a concurrent Tx with a cloned skb. 754 */ 755 skb = skb_unshare(skb, GFP_ATOMIC); 756 if (unlikely(!skb)) { 757 /* skb_unshare() has already freed the skb */ 758 percpu_stats->tx_dropped++; 759 return NETDEV_TX_OK; 760 } 761 762 /* Setup the FD fields */ 763 memset(&fd, 0, sizeof(fd)); 764 765 if (skb_is_nonlinear(skb)) { 766 err = build_sg_fd(priv, skb, &fd); 767 percpu_extras->tx_sg_frames++; 768 percpu_extras->tx_sg_bytes += skb->len; 769 } else { 770 err = build_single_fd(priv, skb, &fd); 771 } 772 773 if (unlikely(err)) { 774 percpu_stats->tx_dropped++; 775 goto err_build_fd; 776 } 777 778 /* Tracing point */ 779 trace_dpaa2_tx_fd(net_dev, &fd); 780 781 /* TxConf FQ selection relies on queue id from the stack. 782 * In case of a forwarded frame from another DPNI interface, we choose 783 * a queue affined to the same core that processed the Rx frame 784 */ 785 queue_mapping = skb_get_queue_mapping(skb); 786 fq = &priv->fq[queue_mapping]; 787 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 788 err = dpaa2_io_service_enqueue_qd(fq->channel->dpio, 789 priv->tx_qdid, 0, 790 fq->tx_qdbin, &fd); 791 if (err != -EBUSY) 792 break; 793 } 794 percpu_extras->tx_portal_busy += i; 795 if (unlikely(err < 0)) { 796 percpu_stats->tx_errors++; 797 /* Clean up everything, including freeing the skb */ 798 free_tx_fd(priv, &fd); 799 } else { 800 fd_len = dpaa2_fd_get_len(&fd); 801 percpu_stats->tx_packets++; 802 percpu_stats->tx_bytes += fd_len; 803 804 nq = netdev_get_tx_queue(net_dev, queue_mapping); 805 netdev_tx_sent_queue(nq, fd_len); 806 } 807 808 return NETDEV_TX_OK; 809 810 err_build_fd: 811 err_alloc_headroom: 812 dev_kfree_skb(skb); 813 814 return NETDEV_TX_OK; 815 } 816 817 /* Tx confirmation frame processing routine */ 818 static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv, 819 struct dpaa2_eth_channel *ch __always_unused, 820 const struct dpaa2_fd *fd, 821 struct dpaa2_eth_fq *fq) 822 { 823 struct rtnl_link_stats64 *percpu_stats; 824 struct dpaa2_eth_drv_stats *percpu_extras; 825 u32 fd_len = dpaa2_fd_get_len(fd); 826 u32 fd_errors; 827 828 /* Tracing point */ 829 trace_dpaa2_tx_conf_fd(priv->net_dev, fd); 830 831 percpu_extras = this_cpu_ptr(priv->percpu_extras); 832 percpu_extras->tx_conf_frames++; 833 percpu_extras->tx_conf_bytes += fd_len; 834 835 fq->dq_frames++; 836 fq->dq_bytes += fd_len; 837 838 /* Check frame errors in the FD field */ 839 fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK; 840 free_tx_fd(priv, fd); 841 842 if (likely(!fd_errors)) 843 return; 844 845 if (net_ratelimit()) 846 netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n", 847 fd_errors); 848 849 percpu_stats = this_cpu_ptr(priv->percpu_stats); 850 /* Tx-conf logically pertains to the egress path. */ 851 percpu_stats->tx_errors++; 852 } 853 854 static int set_rx_csum(struct dpaa2_eth_priv *priv, bool enable) 855 { 856 int err; 857 858 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 859 DPNI_OFF_RX_L3_CSUM, enable); 860 if (err) { 861 netdev_err(priv->net_dev, 862 "dpni_set_offload(RX_L3_CSUM) failed\n"); 863 return err; 864 } 865 866 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 867 DPNI_OFF_RX_L4_CSUM, enable); 868 if (err) { 869 netdev_err(priv->net_dev, 870 "dpni_set_offload(RX_L4_CSUM) failed\n"); 871 return err; 872 } 873 874 return 0; 875 } 876 877 static int set_tx_csum(struct dpaa2_eth_priv *priv, bool enable) 878 { 879 int err; 880 881 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 882 DPNI_OFF_TX_L3_CSUM, enable); 883 if (err) { 884 netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n"); 885 return err; 886 } 887 888 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 889 DPNI_OFF_TX_L4_CSUM, enable); 890 if (err) { 891 netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n"); 892 return err; 893 } 894 895 return 0; 896 } 897 898 /* Perform a single release command to add buffers 899 * to the specified buffer pool 900 */ 901 static int add_bufs(struct dpaa2_eth_priv *priv, 902 struct dpaa2_eth_channel *ch, u16 bpid) 903 { 904 struct device *dev = priv->net_dev->dev.parent; 905 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 906 void *buf; 907 dma_addr_t addr; 908 int i, err; 909 910 for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) { 911 /* Allocate buffer visible to WRIOP + skb shared info + 912 * alignment padding 913 */ 914 buf = napi_alloc_frag(dpaa2_eth_buf_raw_size(priv)); 915 if (unlikely(!buf)) 916 goto err_alloc; 917 918 buf = PTR_ALIGN(buf, priv->rx_buf_align); 919 920 addr = dma_map_single(dev, buf, DPAA2_ETH_RX_BUF_SIZE, 921 DMA_BIDIRECTIONAL); 922 if (unlikely(dma_mapping_error(dev, addr))) 923 goto err_map; 924 925 buf_array[i] = addr; 926 927 /* tracing point */ 928 trace_dpaa2_eth_buf_seed(priv->net_dev, 929 buf, dpaa2_eth_buf_raw_size(priv), 930 addr, DPAA2_ETH_RX_BUF_SIZE, 931 bpid); 932 } 933 934 release_bufs: 935 /* In case the portal is busy, retry until successful */ 936 while ((err = dpaa2_io_service_release(ch->dpio, bpid, 937 buf_array, i)) == -EBUSY) 938 cpu_relax(); 939 940 /* If release command failed, clean up and bail out; 941 * not much else we can do about it 942 */ 943 if (err) { 944 free_bufs(priv, buf_array, i); 945 return 0; 946 } 947 948 return i; 949 950 err_map: 951 skb_free_frag(buf); 952 err_alloc: 953 /* If we managed to allocate at least some buffers, 954 * release them to hardware 955 */ 956 if (i) 957 goto release_bufs; 958 959 return 0; 960 } 961 962 static int seed_pool(struct dpaa2_eth_priv *priv, u16 bpid) 963 { 964 int i, j; 965 int new_count; 966 967 /* This is the lazy seeding of Rx buffer pools. 968 * dpaa2_add_bufs() is also used on the Rx hotpath and calls 969 * napi_alloc_frag(). The trouble with that is that it in turn ends up 970 * calling this_cpu_ptr(), which mandates execution in atomic context. 971 * Rather than splitting up the code, do a one-off preempt disable. 972 */ 973 preempt_disable(); 974 for (j = 0; j < priv->num_channels; j++) { 975 for (i = 0; i < DPAA2_ETH_NUM_BUFS; 976 i += DPAA2_ETH_BUFS_PER_CMD) { 977 new_count = add_bufs(priv, priv->channel[j], bpid); 978 priv->channel[j]->buf_count += new_count; 979 980 if (new_count < DPAA2_ETH_BUFS_PER_CMD) { 981 preempt_enable(); 982 return -ENOMEM; 983 } 984 } 985 } 986 preempt_enable(); 987 988 return 0; 989 } 990 991 /** 992 * Drain the specified number of buffers from the DPNI's private buffer pool. 993 * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD 994 */ 995 static void drain_bufs(struct dpaa2_eth_priv *priv, int count) 996 { 997 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 998 int ret; 999 1000 do { 1001 ret = dpaa2_io_service_acquire(NULL, priv->bpid, 1002 buf_array, count); 1003 if (ret < 0) { 1004 netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n"); 1005 return; 1006 } 1007 free_bufs(priv, buf_array, ret); 1008 } while (ret); 1009 } 1010 1011 static void drain_pool(struct dpaa2_eth_priv *priv) 1012 { 1013 int i; 1014 1015 drain_bufs(priv, DPAA2_ETH_BUFS_PER_CMD); 1016 drain_bufs(priv, 1); 1017 1018 for (i = 0; i < priv->num_channels; i++) 1019 priv->channel[i]->buf_count = 0; 1020 } 1021 1022 /* Function is called from softirq context only, so we don't need to guard 1023 * the access to percpu count 1024 */ 1025 static int refill_pool(struct dpaa2_eth_priv *priv, 1026 struct dpaa2_eth_channel *ch, 1027 u16 bpid) 1028 { 1029 int new_count; 1030 1031 if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH)) 1032 return 0; 1033 1034 do { 1035 new_count = add_bufs(priv, ch, bpid); 1036 if (unlikely(!new_count)) { 1037 /* Out of memory; abort for now, we'll try later on */ 1038 break; 1039 } 1040 ch->buf_count += new_count; 1041 } while (ch->buf_count < DPAA2_ETH_NUM_BUFS); 1042 1043 if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS)) 1044 return -ENOMEM; 1045 1046 return 0; 1047 } 1048 1049 static int pull_channel(struct dpaa2_eth_channel *ch) 1050 { 1051 int err; 1052 int dequeues = -1; 1053 1054 /* Retry while portal is busy */ 1055 do { 1056 err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id, 1057 ch->store); 1058 dequeues++; 1059 cpu_relax(); 1060 } while (err == -EBUSY); 1061 1062 ch->stats.dequeue_portal_busy += dequeues; 1063 if (unlikely(err)) 1064 ch->stats.pull_err++; 1065 1066 return err; 1067 } 1068 1069 /* NAPI poll routine 1070 * 1071 * Frames are dequeued from the QMan channel associated with this NAPI context. 1072 * Rx, Tx confirmation and (if configured) Rx error frames all count 1073 * towards the NAPI budget. 1074 */ 1075 static int dpaa2_eth_poll(struct napi_struct *napi, int budget) 1076 { 1077 struct dpaa2_eth_channel *ch; 1078 struct dpaa2_eth_priv *priv; 1079 int rx_cleaned = 0, txconf_cleaned = 0; 1080 struct dpaa2_eth_fq *fq, *txc_fq = NULL; 1081 struct netdev_queue *nq; 1082 int store_cleaned, work_done; 1083 int err; 1084 1085 ch = container_of(napi, struct dpaa2_eth_channel, napi); 1086 priv = ch->priv; 1087 1088 do { 1089 err = pull_channel(ch); 1090 if (unlikely(err)) 1091 break; 1092 1093 /* Refill pool if appropriate */ 1094 refill_pool(priv, ch, priv->bpid); 1095 1096 store_cleaned = consume_frames(ch, &fq); 1097 if (!store_cleaned) 1098 break; 1099 if (fq->type == DPAA2_RX_FQ) { 1100 rx_cleaned += store_cleaned; 1101 } else { 1102 txconf_cleaned += store_cleaned; 1103 /* We have a single Tx conf FQ on this channel */ 1104 txc_fq = fq; 1105 } 1106 1107 /* If we either consumed the whole NAPI budget with Rx frames 1108 * or we reached the Tx confirmations threshold, we're done. 1109 */ 1110 if (rx_cleaned >= budget || 1111 txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI) { 1112 work_done = budget; 1113 goto out; 1114 } 1115 } while (store_cleaned); 1116 1117 /* We didn't consume the entire budget, so finish napi and 1118 * re-enable data availability notifications 1119 */ 1120 napi_complete_done(napi, rx_cleaned); 1121 do { 1122 err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx); 1123 cpu_relax(); 1124 } while (err == -EBUSY); 1125 WARN_ONCE(err, "CDAN notifications rearm failed on core %d", 1126 ch->nctx.desired_cpu); 1127 1128 work_done = max(rx_cleaned, 1); 1129 1130 out: 1131 if (txc_fq) { 1132 nq = netdev_get_tx_queue(priv->net_dev, txc_fq->flowid); 1133 netdev_tx_completed_queue(nq, txc_fq->dq_frames, 1134 txc_fq->dq_bytes); 1135 txc_fq->dq_frames = 0; 1136 txc_fq->dq_bytes = 0; 1137 } 1138 1139 return work_done; 1140 } 1141 1142 static void enable_ch_napi(struct dpaa2_eth_priv *priv) 1143 { 1144 struct dpaa2_eth_channel *ch; 1145 int i; 1146 1147 for (i = 0; i < priv->num_channels; i++) { 1148 ch = priv->channel[i]; 1149 napi_enable(&ch->napi); 1150 } 1151 } 1152 1153 static void disable_ch_napi(struct dpaa2_eth_priv *priv) 1154 { 1155 struct dpaa2_eth_channel *ch; 1156 int i; 1157 1158 for (i = 0; i < priv->num_channels; i++) { 1159 ch = priv->channel[i]; 1160 napi_disable(&ch->napi); 1161 } 1162 } 1163 1164 static int link_state_update(struct dpaa2_eth_priv *priv) 1165 { 1166 struct dpni_link_state state = {0}; 1167 int err; 1168 1169 err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state); 1170 if (unlikely(err)) { 1171 netdev_err(priv->net_dev, 1172 "dpni_get_link_state() failed\n"); 1173 return err; 1174 } 1175 1176 /* Chech link state; speed / duplex changes are not treated yet */ 1177 if (priv->link_state.up == state.up) 1178 return 0; 1179 1180 priv->link_state = state; 1181 if (state.up) { 1182 netif_carrier_on(priv->net_dev); 1183 netif_tx_start_all_queues(priv->net_dev); 1184 } else { 1185 netif_tx_stop_all_queues(priv->net_dev); 1186 netif_carrier_off(priv->net_dev); 1187 } 1188 1189 netdev_info(priv->net_dev, "Link Event: state %s\n", 1190 state.up ? "up" : "down"); 1191 1192 return 0; 1193 } 1194 1195 static int dpaa2_eth_open(struct net_device *net_dev) 1196 { 1197 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1198 int err; 1199 1200 err = seed_pool(priv, priv->bpid); 1201 if (err) { 1202 /* Not much to do; the buffer pool, though not filled up, 1203 * may still contain some buffers which would enable us 1204 * to limp on. 1205 */ 1206 netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n", 1207 priv->dpbp_dev->obj_desc.id, priv->bpid); 1208 } 1209 1210 /* We'll only start the txqs when the link is actually ready; make sure 1211 * we don't race against the link up notification, which may come 1212 * immediately after dpni_enable(); 1213 */ 1214 netif_tx_stop_all_queues(net_dev); 1215 enable_ch_napi(priv); 1216 /* Also, explicitly set carrier off, otherwise netif_carrier_ok() will 1217 * return true and cause 'ip link show' to report the LOWER_UP flag, 1218 * even though the link notification wasn't even received. 1219 */ 1220 netif_carrier_off(net_dev); 1221 1222 err = dpni_enable(priv->mc_io, 0, priv->mc_token); 1223 if (err < 0) { 1224 netdev_err(net_dev, "dpni_enable() failed\n"); 1225 goto enable_err; 1226 } 1227 1228 /* If the DPMAC object has already processed the link up interrupt, 1229 * we have to learn the link state ourselves. 1230 */ 1231 err = link_state_update(priv); 1232 if (err < 0) { 1233 netdev_err(net_dev, "Can't update link state\n"); 1234 goto link_state_err; 1235 } 1236 1237 return 0; 1238 1239 link_state_err: 1240 enable_err: 1241 disable_ch_napi(priv); 1242 drain_pool(priv); 1243 return err; 1244 } 1245 1246 /* The DPIO store must be empty when we call this, 1247 * at the end of every NAPI cycle. 1248 */ 1249 static u32 drain_channel(struct dpaa2_eth_channel *ch) 1250 { 1251 u32 drained = 0, total = 0; 1252 1253 do { 1254 pull_channel(ch); 1255 drained = consume_frames(ch, NULL); 1256 total += drained; 1257 } while (drained); 1258 1259 return total; 1260 } 1261 1262 static u32 drain_ingress_frames(struct dpaa2_eth_priv *priv) 1263 { 1264 struct dpaa2_eth_channel *ch; 1265 int i; 1266 u32 drained = 0; 1267 1268 for (i = 0; i < priv->num_channels; i++) { 1269 ch = priv->channel[i]; 1270 drained += drain_channel(ch); 1271 } 1272 1273 return drained; 1274 } 1275 1276 static int dpaa2_eth_stop(struct net_device *net_dev) 1277 { 1278 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1279 int dpni_enabled = 0; 1280 int retries = 10; 1281 u32 drained; 1282 1283 netif_tx_stop_all_queues(net_dev); 1284 netif_carrier_off(net_dev); 1285 1286 /* Loop while dpni_disable() attempts to drain the egress FQs 1287 * and confirm them back to us. 1288 */ 1289 do { 1290 dpni_disable(priv->mc_io, 0, priv->mc_token); 1291 dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled); 1292 if (dpni_enabled) 1293 /* Allow the hardware some slack */ 1294 msleep(100); 1295 } while (dpni_enabled && --retries); 1296 if (!retries) { 1297 netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n"); 1298 /* Must go on and disable NAPI nonetheless, so we don't crash at 1299 * the next "ifconfig up" 1300 */ 1301 } 1302 1303 /* Wait for NAPI to complete on every core and disable it. 1304 * In particular, this will also prevent NAPI from being rescheduled if 1305 * a new CDAN is serviced, effectively discarding the CDAN. We therefore 1306 * don't even need to disarm the channels, except perhaps for the case 1307 * of a huge coalescing value. 1308 */ 1309 disable_ch_napi(priv); 1310 1311 /* Manually drain the Rx and TxConf queues */ 1312 drained = drain_ingress_frames(priv); 1313 if (drained) 1314 netdev_dbg(net_dev, "Drained %d frames.\n", drained); 1315 1316 /* Empty the buffer pool */ 1317 drain_pool(priv); 1318 1319 return 0; 1320 } 1321 1322 static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr) 1323 { 1324 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1325 struct device *dev = net_dev->dev.parent; 1326 int err; 1327 1328 err = eth_mac_addr(net_dev, addr); 1329 if (err < 0) { 1330 dev_err(dev, "eth_mac_addr() failed (%d)\n", err); 1331 return err; 1332 } 1333 1334 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 1335 net_dev->dev_addr); 1336 if (err) { 1337 dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err); 1338 return err; 1339 } 1340 1341 return 0; 1342 } 1343 1344 /** Fill in counters maintained by the GPP driver. These may be different from 1345 * the hardware counters obtained by ethtool. 1346 */ 1347 static void dpaa2_eth_get_stats(struct net_device *net_dev, 1348 struct rtnl_link_stats64 *stats) 1349 { 1350 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1351 struct rtnl_link_stats64 *percpu_stats; 1352 u64 *cpustats; 1353 u64 *netstats = (u64 *)stats; 1354 int i, j; 1355 int num = sizeof(struct rtnl_link_stats64) / sizeof(u64); 1356 1357 for_each_possible_cpu(i) { 1358 percpu_stats = per_cpu_ptr(priv->percpu_stats, i); 1359 cpustats = (u64 *)percpu_stats; 1360 for (j = 0; j < num; j++) 1361 netstats[j] += cpustats[j]; 1362 } 1363 } 1364 1365 /* Copy mac unicast addresses from @net_dev to @priv. 1366 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1367 */ 1368 static void add_uc_hw_addr(const struct net_device *net_dev, 1369 struct dpaa2_eth_priv *priv) 1370 { 1371 struct netdev_hw_addr *ha; 1372 int err; 1373 1374 netdev_for_each_uc_addr(ha, net_dev) { 1375 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1376 ha->addr); 1377 if (err) 1378 netdev_warn(priv->net_dev, 1379 "Could not add ucast MAC %pM to the filtering table (err %d)\n", 1380 ha->addr, err); 1381 } 1382 } 1383 1384 /* Copy mac multicast addresses from @net_dev to @priv 1385 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1386 */ 1387 static void add_mc_hw_addr(const struct net_device *net_dev, 1388 struct dpaa2_eth_priv *priv) 1389 { 1390 struct netdev_hw_addr *ha; 1391 int err; 1392 1393 netdev_for_each_mc_addr(ha, net_dev) { 1394 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1395 ha->addr); 1396 if (err) 1397 netdev_warn(priv->net_dev, 1398 "Could not add mcast MAC %pM to the filtering table (err %d)\n", 1399 ha->addr, err); 1400 } 1401 } 1402 1403 static void dpaa2_eth_set_rx_mode(struct net_device *net_dev) 1404 { 1405 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1406 int uc_count = netdev_uc_count(net_dev); 1407 int mc_count = netdev_mc_count(net_dev); 1408 u8 max_mac = priv->dpni_attrs.mac_filter_entries; 1409 u32 options = priv->dpni_attrs.options; 1410 u16 mc_token = priv->mc_token; 1411 struct fsl_mc_io *mc_io = priv->mc_io; 1412 int err; 1413 1414 /* Basic sanity checks; these probably indicate a misconfiguration */ 1415 if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0) 1416 netdev_info(net_dev, 1417 "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n", 1418 max_mac); 1419 1420 /* Force promiscuous if the uc or mc counts exceed our capabilities. */ 1421 if (uc_count > max_mac) { 1422 netdev_info(net_dev, 1423 "Unicast addr count reached %d, max allowed is %d; forcing promisc\n", 1424 uc_count, max_mac); 1425 goto force_promisc; 1426 } 1427 if (mc_count + uc_count > max_mac) { 1428 netdev_info(net_dev, 1429 "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n", 1430 uc_count + mc_count, max_mac); 1431 goto force_mc_promisc; 1432 } 1433 1434 /* Adjust promisc settings due to flag combinations */ 1435 if (net_dev->flags & IFF_PROMISC) 1436 goto force_promisc; 1437 if (net_dev->flags & IFF_ALLMULTI) { 1438 /* First, rebuild unicast filtering table. This should be done 1439 * in promisc mode, in order to avoid frame loss while we 1440 * progressively add entries to the table. 1441 * We don't know whether we had been in promisc already, and 1442 * making an MC call to find out is expensive; so set uc promisc 1443 * nonetheless. 1444 */ 1445 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1446 if (err) 1447 netdev_warn(net_dev, "Can't set uc promisc\n"); 1448 1449 /* Actual uc table reconstruction. */ 1450 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0); 1451 if (err) 1452 netdev_warn(net_dev, "Can't clear uc filters\n"); 1453 add_uc_hw_addr(net_dev, priv); 1454 1455 /* Finally, clear uc promisc and set mc promisc as requested. */ 1456 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1457 if (err) 1458 netdev_warn(net_dev, "Can't clear uc promisc\n"); 1459 goto force_mc_promisc; 1460 } 1461 1462 /* Neither unicast, nor multicast promisc will be on... eventually. 1463 * For now, rebuild mac filtering tables while forcing both of them on. 1464 */ 1465 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1466 if (err) 1467 netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err); 1468 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1469 if (err) 1470 netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err); 1471 1472 /* Actual mac filtering tables reconstruction */ 1473 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1); 1474 if (err) 1475 netdev_warn(net_dev, "Can't clear mac filters\n"); 1476 add_mc_hw_addr(net_dev, priv); 1477 add_uc_hw_addr(net_dev, priv); 1478 1479 /* Now we can clear both ucast and mcast promisc, without risking 1480 * to drop legitimate frames anymore. 1481 */ 1482 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1483 if (err) 1484 netdev_warn(net_dev, "Can't clear ucast promisc\n"); 1485 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0); 1486 if (err) 1487 netdev_warn(net_dev, "Can't clear mcast promisc\n"); 1488 1489 return; 1490 1491 force_promisc: 1492 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1493 if (err) 1494 netdev_warn(net_dev, "Can't set ucast promisc\n"); 1495 force_mc_promisc: 1496 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1497 if (err) 1498 netdev_warn(net_dev, "Can't set mcast promisc\n"); 1499 } 1500 1501 static int dpaa2_eth_set_features(struct net_device *net_dev, 1502 netdev_features_t features) 1503 { 1504 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1505 netdev_features_t changed = features ^ net_dev->features; 1506 bool enable; 1507 int err; 1508 1509 if (changed & NETIF_F_RXCSUM) { 1510 enable = !!(features & NETIF_F_RXCSUM); 1511 err = set_rx_csum(priv, enable); 1512 if (err) 1513 return err; 1514 } 1515 1516 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 1517 enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 1518 err = set_tx_csum(priv, enable); 1519 if (err) 1520 return err; 1521 } 1522 1523 return 0; 1524 } 1525 1526 static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1527 { 1528 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1529 struct hwtstamp_config config; 1530 1531 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 1532 return -EFAULT; 1533 1534 switch (config.tx_type) { 1535 case HWTSTAMP_TX_OFF: 1536 priv->tx_tstamp = false; 1537 break; 1538 case HWTSTAMP_TX_ON: 1539 priv->tx_tstamp = true; 1540 break; 1541 default: 1542 return -ERANGE; 1543 } 1544 1545 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 1546 priv->rx_tstamp = false; 1547 } else { 1548 priv->rx_tstamp = true; 1549 /* TS is set for all frame types, not only those requested */ 1550 config.rx_filter = HWTSTAMP_FILTER_ALL; 1551 } 1552 1553 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 1554 -EFAULT : 0; 1555 } 1556 1557 static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1558 { 1559 if (cmd == SIOCSHWTSTAMP) 1560 return dpaa2_eth_ts_ioctl(dev, rq, cmd); 1561 1562 return -EINVAL; 1563 } 1564 1565 static bool xdp_mtu_valid(struct dpaa2_eth_priv *priv, int mtu) 1566 { 1567 int mfl, linear_mfl; 1568 1569 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1570 linear_mfl = DPAA2_ETH_RX_BUF_SIZE - DPAA2_ETH_RX_HWA_SIZE - 1571 dpaa2_eth_rx_head_room(priv) - XDP_PACKET_HEADROOM; 1572 1573 if (mfl > linear_mfl) { 1574 netdev_warn(priv->net_dev, "Maximum MTU for XDP is %d\n", 1575 linear_mfl - VLAN_ETH_HLEN); 1576 return false; 1577 } 1578 1579 return true; 1580 } 1581 1582 static int set_rx_mfl(struct dpaa2_eth_priv *priv, int mtu, bool has_xdp) 1583 { 1584 int mfl, err; 1585 1586 /* We enforce a maximum Rx frame length based on MTU only if we have 1587 * an XDP program attached (in order to avoid Rx S/G frames). 1588 * Otherwise, we accept all incoming frames as long as they are not 1589 * larger than maximum size supported in hardware 1590 */ 1591 if (has_xdp) 1592 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1593 else 1594 mfl = DPAA2_ETH_MFL; 1595 1596 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, mfl); 1597 if (err) { 1598 netdev_err(priv->net_dev, "dpni_set_max_frame_length failed\n"); 1599 return err; 1600 } 1601 1602 return 0; 1603 } 1604 1605 static int dpaa2_eth_change_mtu(struct net_device *dev, int new_mtu) 1606 { 1607 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1608 int err; 1609 1610 if (!priv->xdp_prog) 1611 goto out; 1612 1613 if (!xdp_mtu_valid(priv, new_mtu)) 1614 return -EINVAL; 1615 1616 err = set_rx_mfl(priv, new_mtu, true); 1617 if (err) 1618 return err; 1619 1620 out: 1621 dev->mtu = new_mtu; 1622 return 0; 1623 } 1624 1625 static int update_rx_buffer_headroom(struct dpaa2_eth_priv *priv, bool has_xdp) 1626 { 1627 struct dpni_buffer_layout buf_layout = {0}; 1628 int err; 1629 1630 err = dpni_get_buffer_layout(priv->mc_io, 0, priv->mc_token, 1631 DPNI_QUEUE_RX, &buf_layout); 1632 if (err) { 1633 netdev_err(priv->net_dev, "dpni_get_buffer_layout failed\n"); 1634 return err; 1635 } 1636 1637 /* Reserve extra headroom for XDP header size changes */ 1638 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv) + 1639 (has_xdp ? XDP_PACKET_HEADROOM : 0); 1640 buf_layout.options = DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM; 1641 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 1642 DPNI_QUEUE_RX, &buf_layout); 1643 if (err) { 1644 netdev_err(priv->net_dev, "dpni_set_buffer_layout failed\n"); 1645 return err; 1646 } 1647 1648 return 0; 1649 } 1650 1651 static int setup_xdp(struct net_device *dev, struct bpf_prog *prog) 1652 { 1653 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1654 struct dpaa2_eth_channel *ch; 1655 struct bpf_prog *old; 1656 bool up, need_update; 1657 int i, err; 1658 1659 if (prog && !xdp_mtu_valid(priv, dev->mtu)) 1660 return -EINVAL; 1661 1662 if (prog) { 1663 prog = bpf_prog_add(prog, priv->num_channels); 1664 if (IS_ERR(prog)) 1665 return PTR_ERR(prog); 1666 } 1667 1668 up = netif_running(dev); 1669 need_update = (!!priv->xdp_prog != !!prog); 1670 1671 if (up) 1672 dpaa2_eth_stop(dev); 1673 1674 /* While in xdp mode, enforce a maximum Rx frame size based on MTU. 1675 * Also, when switching between xdp/non-xdp modes we need to reconfigure 1676 * our Rx buffer layout. Buffer pool was drained on dpaa2_eth_stop, 1677 * so we are sure no old format buffers will be used from now on. 1678 */ 1679 if (need_update) { 1680 err = set_rx_mfl(priv, dev->mtu, !!prog); 1681 if (err) 1682 goto out_err; 1683 err = update_rx_buffer_headroom(priv, !!prog); 1684 if (err) 1685 goto out_err; 1686 } 1687 1688 old = xchg(&priv->xdp_prog, prog); 1689 if (old) 1690 bpf_prog_put(old); 1691 1692 for (i = 0; i < priv->num_channels; i++) { 1693 ch = priv->channel[i]; 1694 old = xchg(&ch->xdp.prog, prog); 1695 if (old) 1696 bpf_prog_put(old); 1697 } 1698 1699 if (up) { 1700 err = dpaa2_eth_open(dev); 1701 if (err) 1702 return err; 1703 } 1704 1705 return 0; 1706 1707 out_err: 1708 if (prog) 1709 bpf_prog_sub(prog, priv->num_channels); 1710 if (up) 1711 dpaa2_eth_open(dev); 1712 1713 return err; 1714 } 1715 1716 static int dpaa2_eth_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1717 { 1718 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1719 1720 switch (xdp->command) { 1721 case XDP_SETUP_PROG: 1722 return setup_xdp(dev, xdp->prog); 1723 case XDP_QUERY_PROG: 1724 xdp->prog_id = priv->xdp_prog ? priv->xdp_prog->aux->id : 0; 1725 break; 1726 default: 1727 return -EINVAL; 1728 } 1729 1730 return 0; 1731 } 1732 1733 static const struct net_device_ops dpaa2_eth_ops = { 1734 .ndo_open = dpaa2_eth_open, 1735 .ndo_start_xmit = dpaa2_eth_tx, 1736 .ndo_stop = dpaa2_eth_stop, 1737 .ndo_set_mac_address = dpaa2_eth_set_addr, 1738 .ndo_get_stats64 = dpaa2_eth_get_stats, 1739 .ndo_set_rx_mode = dpaa2_eth_set_rx_mode, 1740 .ndo_set_features = dpaa2_eth_set_features, 1741 .ndo_do_ioctl = dpaa2_eth_ioctl, 1742 .ndo_change_mtu = dpaa2_eth_change_mtu, 1743 .ndo_bpf = dpaa2_eth_xdp, 1744 }; 1745 1746 static void cdan_cb(struct dpaa2_io_notification_ctx *ctx) 1747 { 1748 struct dpaa2_eth_channel *ch; 1749 1750 ch = container_of(ctx, struct dpaa2_eth_channel, nctx); 1751 1752 /* Update NAPI statistics */ 1753 ch->stats.cdan++; 1754 1755 napi_schedule_irqoff(&ch->napi); 1756 } 1757 1758 /* Allocate and configure a DPCON object */ 1759 static struct fsl_mc_device *setup_dpcon(struct dpaa2_eth_priv *priv) 1760 { 1761 struct fsl_mc_device *dpcon; 1762 struct device *dev = priv->net_dev->dev.parent; 1763 struct dpcon_attr attrs; 1764 int err; 1765 1766 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), 1767 FSL_MC_POOL_DPCON, &dpcon); 1768 if (err) { 1769 if (err == -ENXIO) 1770 err = -EPROBE_DEFER; 1771 else 1772 dev_info(dev, "Not enough DPCONs, will go on as-is\n"); 1773 return ERR_PTR(err); 1774 } 1775 1776 err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle); 1777 if (err) { 1778 dev_err(dev, "dpcon_open() failed\n"); 1779 goto free; 1780 } 1781 1782 err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle); 1783 if (err) { 1784 dev_err(dev, "dpcon_reset() failed\n"); 1785 goto close; 1786 } 1787 1788 err = dpcon_get_attributes(priv->mc_io, 0, dpcon->mc_handle, &attrs); 1789 if (err) { 1790 dev_err(dev, "dpcon_get_attributes() failed\n"); 1791 goto close; 1792 } 1793 1794 err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle); 1795 if (err) { 1796 dev_err(dev, "dpcon_enable() failed\n"); 1797 goto close; 1798 } 1799 1800 return dpcon; 1801 1802 close: 1803 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 1804 free: 1805 fsl_mc_object_free(dpcon); 1806 1807 return NULL; 1808 } 1809 1810 static void free_dpcon(struct dpaa2_eth_priv *priv, 1811 struct fsl_mc_device *dpcon) 1812 { 1813 dpcon_disable(priv->mc_io, 0, dpcon->mc_handle); 1814 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 1815 fsl_mc_object_free(dpcon); 1816 } 1817 1818 static struct dpaa2_eth_channel * 1819 alloc_channel(struct dpaa2_eth_priv *priv) 1820 { 1821 struct dpaa2_eth_channel *channel; 1822 struct dpcon_attr attr; 1823 struct device *dev = priv->net_dev->dev.parent; 1824 int err; 1825 1826 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 1827 if (!channel) 1828 return NULL; 1829 1830 channel->dpcon = setup_dpcon(priv); 1831 if (IS_ERR_OR_NULL(channel->dpcon)) { 1832 err = PTR_ERR(channel->dpcon); 1833 goto err_setup; 1834 } 1835 1836 err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle, 1837 &attr); 1838 if (err) { 1839 dev_err(dev, "dpcon_get_attributes() failed\n"); 1840 goto err_get_attr; 1841 } 1842 1843 channel->dpcon_id = attr.id; 1844 channel->ch_id = attr.qbman_ch_id; 1845 channel->priv = priv; 1846 1847 return channel; 1848 1849 err_get_attr: 1850 free_dpcon(priv, channel->dpcon); 1851 err_setup: 1852 kfree(channel); 1853 return ERR_PTR(err); 1854 } 1855 1856 static void free_channel(struct dpaa2_eth_priv *priv, 1857 struct dpaa2_eth_channel *channel) 1858 { 1859 free_dpcon(priv, channel->dpcon); 1860 kfree(channel); 1861 } 1862 1863 /* DPIO setup: allocate and configure QBMan channels, setup core affinity 1864 * and register data availability notifications 1865 */ 1866 static int setup_dpio(struct dpaa2_eth_priv *priv) 1867 { 1868 struct dpaa2_io_notification_ctx *nctx; 1869 struct dpaa2_eth_channel *channel; 1870 struct dpcon_notification_cfg dpcon_notif_cfg; 1871 struct device *dev = priv->net_dev->dev.parent; 1872 int i, err; 1873 1874 /* We want the ability to spread ingress traffic (RX, TX conf) to as 1875 * many cores as possible, so we need one channel for each core 1876 * (unless there's fewer queues than cores, in which case the extra 1877 * channels would be wasted). 1878 * Allocate one channel per core and register it to the core's 1879 * affine DPIO. If not enough channels are available for all cores 1880 * or if some cores don't have an affine DPIO, there will be no 1881 * ingress frame processing on those cores. 1882 */ 1883 cpumask_clear(&priv->dpio_cpumask); 1884 for_each_online_cpu(i) { 1885 /* Try to allocate a channel */ 1886 channel = alloc_channel(priv); 1887 if (IS_ERR_OR_NULL(channel)) { 1888 err = PTR_ERR(channel); 1889 if (err != -EPROBE_DEFER) 1890 dev_info(dev, 1891 "No affine channel for cpu %d and above\n", i); 1892 goto err_alloc_ch; 1893 } 1894 1895 priv->channel[priv->num_channels] = channel; 1896 1897 nctx = &channel->nctx; 1898 nctx->is_cdan = 1; 1899 nctx->cb = cdan_cb; 1900 nctx->id = channel->ch_id; 1901 nctx->desired_cpu = i; 1902 1903 /* Register the new context */ 1904 channel->dpio = dpaa2_io_service_select(i); 1905 err = dpaa2_io_service_register(channel->dpio, nctx, dev); 1906 if (err) { 1907 dev_dbg(dev, "No affine DPIO for cpu %d\n", i); 1908 /* If no affine DPIO for this core, there's probably 1909 * none available for next cores either. Signal we want 1910 * to retry later, in case the DPIO devices weren't 1911 * probed yet. 1912 */ 1913 err = -EPROBE_DEFER; 1914 goto err_service_reg; 1915 } 1916 1917 /* Register DPCON notification with MC */ 1918 dpcon_notif_cfg.dpio_id = nctx->dpio_id; 1919 dpcon_notif_cfg.priority = 0; 1920 dpcon_notif_cfg.user_ctx = nctx->qman64; 1921 err = dpcon_set_notification(priv->mc_io, 0, 1922 channel->dpcon->mc_handle, 1923 &dpcon_notif_cfg); 1924 if (err) { 1925 dev_err(dev, "dpcon_set_notification failed()\n"); 1926 goto err_set_cdan; 1927 } 1928 1929 /* If we managed to allocate a channel and also found an affine 1930 * DPIO for this core, add it to the final mask 1931 */ 1932 cpumask_set_cpu(i, &priv->dpio_cpumask); 1933 priv->num_channels++; 1934 1935 /* Stop if we already have enough channels to accommodate all 1936 * RX and TX conf queues 1937 */ 1938 if (priv->num_channels == priv->dpni_attrs.num_queues) 1939 break; 1940 } 1941 1942 return 0; 1943 1944 err_set_cdan: 1945 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 1946 err_service_reg: 1947 free_channel(priv, channel); 1948 err_alloc_ch: 1949 if (err == -EPROBE_DEFER) 1950 return err; 1951 1952 if (cpumask_empty(&priv->dpio_cpumask)) { 1953 dev_err(dev, "No cpu with an affine DPIO/DPCON\n"); 1954 return -ENODEV; 1955 } 1956 1957 dev_info(dev, "Cores %*pbl available for processing ingress traffic\n", 1958 cpumask_pr_args(&priv->dpio_cpumask)); 1959 1960 return 0; 1961 } 1962 1963 static void free_dpio(struct dpaa2_eth_priv *priv) 1964 { 1965 struct device *dev = priv->net_dev->dev.parent; 1966 struct dpaa2_eth_channel *ch; 1967 int i; 1968 1969 /* deregister CDAN notifications and free channels */ 1970 for (i = 0; i < priv->num_channels; i++) { 1971 ch = priv->channel[i]; 1972 dpaa2_io_service_deregister(ch->dpio, &ch->nctx, dev); 1973 free_channel(priv, ch); 1974 } 1975 } 1976 1977 static struct dpaa2_eth_channel *get_affine_channel(struct dpaa2_eth_priv *priv, 1978 int cpu) 1979 { 1980 struct device *dev = priv->net_dev->dev.parent; 1981 int i; 1982 1983 for (i = 0; i < priv->num_channels; i++) 1984 if (priv->channel[i]->nctx.desired_cpu == cpu) 1985 return priv->channel[i]; 1986 1987 /* We should never get here. Issue a warning and return 1988 * the first channel, because it's still better than nothing 1989 */ 1990 dev_warn(dev, "No affine channel found for cpu %d\n", cpu); 1991 1992 return priv->channel[0]; 1993 } 1994 1995 static void set_fq_affinity(struct dpaa2_eth_priv *priv) 1996 { 1997 struct device *dev = priv->net_dev->dev.parent; 1998 struct cpumask xps_mask; 1999 struct dpaa2_eth_fq *fq; 2000 int rx_cpu, txc_cpu; 2001 int i, err; 2002 2003 /* For each FQ, pick one channel/CPU to deliver frames to. 2004 * This may well change at runtime, either through irqbalance or 2005 * through direct user intervention. 2006 */ 2007 rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask); 2008 2009 for (i = 0; i < priv->num_fqs; i++) { 2010 fq = &priv->fq[i]; 2011 switch (fq->type) { 2012 case DPAA2_RX_FQ: 2013 fq->target_cpu = rx_cpu; 2014 rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask); 2015 if (rx_cpu >= nr_cpu_ids) 2016 rx_cpu = cpumask_first(&priv->dpio_cpumask); 2017 break; 2018 case DPAA2_TX_CONF_FQ: 2019 fq->target_cpu = txc_cpu; 2020 2021 /* Tell the stack to affine to txc_cpu the Tx queue 2022 * associated with the confirmation one 2023 */ 2024 cpumask_clear(&xps_mask); 2025 cpumask_set_cpu(txc_cpu, &xps_mask); 2026 err = netif_set_xps_queue(priv->net_dev, &xps_mask, 2027 fq->flowid); 2028 if (err) 2029 dev_err(dev, "Error setting XPS queue\n"); 2030 2031 txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask); 2032 if (txc_cpu >= nr_cpu_ids) 2033 txc_cpu = cpumask_first(&priv->dpio_cpumask); 2034 break; 2035 default: 2036 dev_err(dev, "Unknown FQ type: %d\n", fq->type); 2037 } 2038 fq->channel = get_affine_channel(priv, fq->target_cpu); 2039 } 2040 } 2041 2042 static void setup_fqs(struct dpaa2_eth_priv *priv) 2043 { 2044 int i; 2045 2046 /* We have one TxConf FQ per Tx flow. 2047 * The number of Tx and Rx queues is the same. 2048 * Tx queues come first in the fq array. 2049 */ 2050 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2051 priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ; 2052 priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf; 2053 priv->fq[priv->num_fqs++].flowid = (u16)i; 2054 } 2055 2056 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2057 priv->fq[priv->num_fqs].type = DPAA2_RX_FQ; 2058 priv->fq[priv->num_fqs].consume = dpaa2_eth_rx; 2059 priv->fq[priv->num_fqs++].flowid = (u16)i; 2060 } 2061 2062 /* For each FQ, decide on which core to process incoming frames */ 2063 set_fq_affinity(priv); 2064 } 2065 2066 /* Allocate and configure one buffer pool for each interface */ 2067 static int setup_dpbp(struct dpaa2_eth_priv *priv) 2068 { 2069 int err; 2070 struct fsl_mc_device *dpbp_dev; 2071 struct device *dev = priv->net_dev->dev.parent; 2072 struct dpbp_attr dpbp_attrs; 2073 2074 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, 2075 &dpbp_dev); 2076 if (err) { 2077 if (err == -ENXIO) 2078 err = -EPROBE_DEFER; 2079 else 2080 dev_err(dev, "DPBP device allocation failed\n"); 2081 return err; 2082 } 2083 2084 priv->dpbp_dev = dpbp_dev; 2085 2086 err = dpbp_open(priv->mc_io, 0, priv->dpbp_dev->obj_desc.id, 2087 &dpbp_dev->mc_handle); 2088 if (err) { 2089 dev_err(dev, "dpbp_open() failed\n"); 2090 goto err_open; 2091 } 2092 2093 err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle); 2094 if (err) { 2095 dev_err(dev, "dpbp_reset() failed\n"); 2096 goto err_reset; 2097 } 2098 2099 err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle); 2100 if (err) { 2101 dev_err(dev, "dpbp_enable() failed\n"); 2102 goto err_enable; 2103 } 2104 2105 err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle, 2106 &dpbp_attrs); 2107 if (err) { 2108 dev_err(dev, "dpbp_get_attributes() failed\n"); 2109 goto err_get_attr; 2110 } 2111 priv->bpid = dpbp_attrs.bpid; 2112 2113 return 0; 2114 2115 err_get_attr: 2116 dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle); 2117 err_enable: 2118 err_reset: 2119 dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle); 2120 err_open: 2121 fsl_mc_object_free(dpbp_dev); 2122 2123 return err; 2124 } 2125 2126 static void free_dpbp(struct dpaa2_eth_priv *priv) 2127 { 2128 drain_pool(priv); 2129 dpbp_disable(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2130 dpbp_close(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2131 fsl_mc_object_free(priv->dpbp_dev); 2132 } 2133 2134 static int set_buffer_layout(struct dpaa2_eth_priv *priv) 2135 { 2136 struct device *dev = priv->net_dev->dev.parent; 2137 struct dpni_buffer_layout buf_layout = {0}; 2138 int err; 2139 2140 /* We need to check for WRIOP version 1.0.0, but depending on the MC 2141 * version, this number is not always provided correctly on rev1. 2142 * We need to check for both alternatives in this situation. 2143 */ 2144 if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) || 2145 priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0)) 2146 priv->rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1; 2147 else 2148 priv->rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN; 2149 2150 /* tx buffer */ 2151 buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE; 2152 buf_layout.pass_timestamp = true; 2153 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE | 2154 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2155 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2156 DPNI_QUEUE_TX, &buf_layout); 2157 if (err) { 2158 dev_err(dev, "dpni_set_buffer_layout(TX) failed\n"); 2159 return err; 2160 } 2161 2162 /* tx-confirm buffer */ 2163 buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2164 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2165 DPNI_QUEUE_TX_CONFIRM, &buf_layout); 2166 if (err) { 2167 dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n"); 2168 return err; 2169 } 2170 2171 /* Now that we've set our tx buffer layout, retrieve the minimum 2172 * required tx data offset. 2173 */ 2174 err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token, 2175 &priv->tx_data_offset); 2176 if (err) { 2177 dev_err(dev, "dpni_get_tx_data_offset() failed\n"); 2178 return err; 2179 } 2180 2181 if ((priv->tx_data_offset % 64) != 0) 2182 dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n", 2183 priv->tx_data_offset); 2184 2185 /* rx buffer */ 2186 buf_layout.pass_frame_status = true; 2187 buf_layout.pass_parser_result = true; 2188 buf_layout.data_align = priv->rx_buf_align; 2189 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv); 2190 buf_layout.private_data_size = 0; 2191 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT | 2192 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | 2193 DPNI_BUF_LAYOUT_OPT_DATA_ALIGN | 2194 DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM | 2195 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2196 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2197 DPNI_QUEUE_RX, &buf_layout); 2198 if (err) { 2199 dev_err(dev, "dpni_set_buffer_layout(RX) failed\n"); 2200 return err; 2201 } 2202 2203 return 0; 2204 } 2205 2206 /* Configure the DPNI object this interface is associated with */ 2207 static int setup_dpni(struct fsl_mc_device *ls_dev) 2208 { 2209 struct device *dev = &ls_dev->dev; 2210 struct dpaa2_eth_priv *priv; 2211 struct net_device *net_dev; 2212 int err; 2213 2214 net_dev = dev_get_drvdata(dev); 2215 priv = netdev_priv(net_dev); 2216 2217 /* get a handle for the DPNI object */ 2218 err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token); 2219 if (err) { 2220 dev_err(dev, "dpni_open() failed\n"); 2221 return err; 2222 } 2223 2224 /* Check if we can work with this DPNI object */ 2225 err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major, 2226 &priv->dpni_ver_minor); 2227 if (err) { 2228 dev_err(dev, "dpni_get_api_version() failed\n"); 2229 goto close; 2230 } 2231 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) { 2232 dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n", 2233 priv->dpni_ver_major, priv->dpni_ver_minor, 2234 DPNI_VER_MAJOR, DPNI_VER_MINOR); 2235 err = -ENOTSUPP; 2236 goto close; 2237 } 2238 2239 ls_dev->mc_io = priv->mc_io; 2240 ls_dev->mc_handle = priv->mc_token; 2241 2242 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2243 if (err) { 2244 dev_err(dev, "dpni_reset() failed\n"); 2245 goto close; 2246 } 2247 2248 err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token, 2249 &priv->dpni_attrs); 2250 if (err) { 2251 dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err); 2252 goto close; 2253 } 2254 2255 err = set_buffer_layout(priv); 2256 if (err) 2257 goto close; 2258 2259 priv->cls_rules = devm_kzalloc(dev, sizeof(struct dpaa2_eth_cls_rule) * 2260 dpaa2_eth_fs_count(priv), GFP_KERNEL); 2261 if (!priv->cls_rules) 2262 goto close; 2263 2264 return 0; 2265 2266 close: 2267 dpni_close(priv->mc_io, 0, priv->mc_token); 2268 2269 return err; 2270 } 2271 2272 static void free_dpni(struct dpaa2_eth_priv *priv) 2273 { 2274 int err; 2275 2276 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2277 if (err) 2278 netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n", 2279 err); 2280 2281 dpni_close(priv->mc_io, 0, priv->mc_token); 2282 } 2283 2284 static int setup_rx_flow(struct dpaa2_eth_priv *priv, 2285 struct dpaa2_eth_fq *fq) 2286 { 2287 struct device *dev = priv->net_dev->dev.parent; 2288 struct dpni_queue queue; 2289 struct dpni_queue_id qid; 2290 struct dpni_taildrop td; 2291 int err; 2292 2293 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2294 DPNI_QUEUE_RX, 0, fq->flowid, &queue, &qid); 2295 if (err) { 2296 dev_err(dev, "dpni_get_queue(RX) failed\n"); 2297 return err; 2298 } 2299 2300 fq->fqid = qid.fqid; 2301 2302 queue.destination.id = fq->channel->dpcon_id; 2303 queue.destination.type = DPNI_DEST_DPCON; 2304 queue.destination.priority = 1; 2305 queue.user_context = (u64)(uintptr_t)fq; 2306 queue.flc.stash_control = 1; 2307 queue.flc.value &= 0xFFFFFFFFFFFFFFC0; 2308 /* 01 01 00 - data, annotation, flow context */ 2309 queue.flc.value |= 0x14; 2310 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2311 DPNI_QUEUE_RX, 0, fq->flowid, 2312 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST | 2313 DPNI_QUEUE_OPT_FLC, 2314 &queue); 2315 if (err) { 2316 dev_err(dev, "dpni_set_queue(RX) failed\n"); 2317 return err; 2318 } 2319 2320 td.enable = 1; 2321 td.threshold = DPAA2_ETH_TAILDROP_THRESH; 2322 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, DPNI_CP_QUEUE, 2323 DPNI_QUEUE_RX, 0, fq->flowid, &td); 2324 if (err) { 2325 dev_err(dev, "dpni_set_threshold() failed\n"); 2326 return err; 2327 } 2328 2329 return 0; 2330 } 2331 2332 static int setup_tx_flow(struct dpaa2_eth_priv *priv, 2333 struct dpaa2_eth_fq *fq) 2334 { 2335 struct device *dev = priv->net_dev->dev.parent; 2336 struct dpni_queue queue; 2337 struct dpni_queue_id qid; 2338 int err; 2339 2340 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2341 DPNI_QUEUE_TX, 0, fq->flowid, &queue, &qid); 2342 if (err) { 2343 dev_err(dev, "dpni_get_queue(TX) failed\n"); 2344 return err; 2345 } 2346 2347 fq->tx_qdbin = qid.qdbin; 2348 2349 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2350 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 2351 &queue, &qid); 2352 if (err) { 2353 dev_err(dev, "dpni_get_queue(TX_CONF) failed\n"); 2354 return err; 2355 } 2356 2357 fq->fqid = qid.fqid; 2358 2359 queue.destination.id = fq->channel->dpcon_id; 2360 queue.destination.type = DPNI_DEST_DPCON; 2361 queue.destination.priority = 0; 2362 queue.user_context = (u64)(uintptr_t)fq; 2363 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2364 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 2365 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 2366 &queue); 2367 if (err) { 2368 dev_err(dev, "dpni_set_queue(TX_CONF) failed\n"); 2369 return err; 2370 } 2371 2372 return 0; 2373 } 2374 2375 /* Supported header fields for Rx hash distribution key */ 2376 static const struct dpaa2_eth_dist_fields dist_fields[] = { 2377 { 2378 /* L2 header */ 2379 .rxnfc_field = RXH_L2DA, 2380 .cls_prot = NET_PROT_ETH, 2381 .cls_field = NH_FLD_ETH_DA, 2382 .size = 6, 2383 }, { 2384 .cls_prot = NET_PROT_ETH, 2385 .cls_field = NH_FLD_ETH_SA, 2386 .size = 6, 2387 }, { 2388 /* This is the last ethertype field parsed: 2389 * depending on frame format, it can be the MAC ethertype 2390 * or the VLAN etype. 2391 */ 2392 .cls_prot = NET_PROT_ETH, 2393 .cls_field = NH_FLD_ETH_TYPE, 2394 .size = 2, 2395 }, { 2396 /* VLAN header */ 2397 .rxnfc_field = RXH_VLAN, 2398 .cls_prot = NET_PROT_VLAN, 2399 .cls_field = NH_FLD_VLAN_TCI, 2400 .size = 2, 2401 }, { 2402 /* IP header */ 2403 .rxnfc_field = RXH_IP_SRC, 2404 .cls_prot = NET_PROT_IP, 2405 .cls_field = NH_FLD_IP_SRC, 2406 .size = 4, 2407 }, { 2408 .rxnfc_field = RXH_IP_DST, 2409 .cls_prot = NET_PROT_IP, 2410 .cls_field = NH_FLD_IP_DST, 2411 .size = 4, 2412 }, { 2413 .rxnfc_field = RXH_L3_PROTO, 2414 .cls_prot = NET_PROT_IP, 2415 .cls_field = NH_FLD_IP_PROTO, 2416 .size = 1, 2417 }, { 2418 /* Using UDP ports, this is functionally equivalent to raw 2419 * byte pairs from L4 header. 2420 */ 2421 .rxnfc_field = RXH_L4_B_0_1, 2422 .cls_prot = NET_PROT_UDP, 2423 .cls_field = NH_FLD_UDP_PORT_SRC, 2424 .size = 2, 2425 }, { 2426 .rxnfc_field = RXH_L4_B_2_3, 2427 .cls_prot = NET_PROT_UDP, 2428 .cls_field = NH_FLD_UDP_PORT_DST, 2429 .size = 2, 2430 }, 2431 }; 2432 2433 /* Configure the Rx hash key using the legacy API */ 2434 static int config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2435 { 2436 struct device *dev = priv->net_dev->dev.parent; 2437 struct dpni_rx_tc_dist_cfg dist_cfg; 2438 int err; 2439 2440 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2441 2442 dist_cfg.key_cfg_iova = key; 2443 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2444 dist_cfg.dist_mode = DPNI_DIST_MODE_HASH; 2445 2446 err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 0, &dist_cfg); 2447 if (err) 2448 dev_err(dev, "dpni_set_rx_tc_dist failed\n"); 2449 2450 return err; 2451 } 2452 2453 /* Configure the Rx hash key using the new API */ 2454 static int config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2455 { 2456 struct device *dev = priv->net_dev->dev.parent; 2457 struct dpni_rx_dist_cfg dist_cfg; 2458 int err; 2459 2460 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2461 2462 dist_cfg.key_cfg_iova = key; 2463 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2464 dist_cfg.enable = 1; 2465 2466 err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2467 if (err) 2468 dev_err(dev, "dpni_set_rx_hash_dist failed\n"); 2469 2470 return err; 2471 } 2472 2473 /* Configure the Rx flow classification key */ 2474 static int config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2475 { 2476 struct device *dev = priv->net_dev->dev.parent; 2477 struct dpni_rx_dist_cfg dist_cfg; 2478 int err; 2479 2480 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2481 2482 dist_cfg.key_cfg_iova = key; 2483 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2484 dist_cfg.enable = 1; 2485 2486 err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2487 if (err) 2488 dev_err(dev, "dpni_set_rx_fs_dist failed\n"); 2489 2490 return err; 2491 } 2492 2493 /* Size of the Rx flow classification key */ 2494 int dpaa2_eth_cls_key_size(void) 2495 { 2496 int i, size = 0; 2497 2498 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) 2499 size += dist_fields[i].size; 2500 2501 return size; 2502 } 2503 2504 /* Offset of header field in Rx classification key */ 2505 int dpaa2_eth_cls_fld_off(int prot, int field) 2506 { 2507 int i, off = 0; 2508 2509 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2510 if (dist_fields[i].cls_prot == prot && 2511 dist_fields[i].cls_field == field) 2512 return off; 2513 off += dist_fields[i].size; 2514 } 2515 2516 WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n"); 2517 return 0; 2518 } 2519 2520 /* Set Rx distribution (hash or flow classification) key 2521 * flags is a combination of RXH_ bits 2522 */ 2523 static int dpaa2_eth_set_dist_key(struct net_device *net_dev, 2524 enum dpaa2_eth_rx_dist type, u64 flags) 2525 { 2526 struct device *dev = net_dev->dev.parent; 2527 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2528 struct dpkg_profile_cfg cls_cfg; 2529 u32 rx_hash_fields = 0; 2530 dma_addr_t key_iova; 2531 u8 *dma_mem; 2532 int i; 2533 int err = 0; 2534 2535 memset(&cls_cfg, 0, sizeof(cls_cfg)); 2536 2537 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2538 struct dpkg_extract *key = 2539 &cls_cfg.extracts[cls_cfg.num_extracts]; 2540 2541 /* For Rx hashing key we set only the selected fields. 2542 * For Rx flow classification key we set all supported fields 2543 */ 2544 if (type == DPAA2_ETH_RX_DIST_HASH) { 2545 if (!(flags & dist_fields[i].rxnfc_field)) 2546 continue; 2547 rx_hash_fields |= dist_fields[i].rxnfc_field; 2548 } 2549 2550 if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) { 2551 dev_err(dev, "error adding key extraction rule, too many rules?\n"); 2552 return -E2BIG; 2553 } 2554 2555 key->type = DPKG_EXTRACT_FROM_HDR; 2556 key->extract.from_hdr.prot = dist_fields[i].cls_prot; 2557 key->extract.from_hdr.type = DPKG_FULL_FIELD; 2558 key->extract.from_hdr.field = dist_fields[i].cls_field; 2559 cls_cfg.num_extracts++; 2560 } 2561 2562 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 2563 if (!dma_mem) 2564 return -ENOMEM; 2565 2566 err = dpni_prepare_key_cfg(&cls_cfg, dma_mem); 2567 if (err) { 2568 dev_err(dev, "dpni_prepare_key_cfg error %d\n", err); 2569 goto free_key; 2570 } 2571 2572 /* Prepare for setting the rx dist */ 2573 key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, 2574 DMA_TO_DEVICE); 2575 if (dma_mapping_error(dev, key_iova)) { 2576 dev_err(dev, "DMA mapping failed\n"); 2577 err = -ENOMEM; 2578 goto free_key; 2579 } 2580 2581 if (type == DPAA2_ETH_RX_DIST_HASH) { 2582 if (dpaa2_eth_has_legacy_dist(priv)) 2583 err = config_legacy_hash_key(priv, key_iova); 2584 else 2585 err = config_hash_key(priv, key_iova); 2586 } else { 2587 err = config_cls_key(priv, key_iova); 2588 } 2589 2590 dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE, 2591 DMA_TO_DEVICE); 2592 if (!err && type == DPAA2_ETH_RX_DIST_HASH) 2593 priv->rx_hash_fields = rx_hash_fields; 2594 2595 free_key: 2596 kfree(dma_mem); 2597 return err; 2598 } 2599 2600 int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags) 2601 { 2602 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2603 2604 if (!dpaa2_eth_hash_enabled(priv)) 2605 return -EOPNOTSUPP; 2606 2607 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, flags); 2608 } 2609 2610 static int dpaa2_eth_set_cls(struct dpaa2_eth_priv *priv) 2611 { 2612 struct device *dev = priv->net_dev->dev.parent; 2613 2614 /* Check if we actually support Rx flow classification */ 2615 if (dpaa2_eth_has_legacy_dist(priv)) { 2616 dev_dbg(dev, "Rx cls not supported by current MC version\n"); 2617 return -EOPNOTSUPP; 2618 } 2619 2620 if (priv->dpni_attrs.options & DPNI_OPT_NO_FS || 2621 !(priv->dpni_attrs.options & DPNI_OPT_HAS_KEY_MASKING)) { 2622 dev_dbg(dev, "Rx cls disabled in DPNI options\n"); 2623 return -EOPNOTSUPP; 2624 } 2625 2626 if (!dpaa2_eth_hash_enabled(priv)) { 2627 dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n"); 2628 return -EOPNOTSUPP; 2629 } 2630 2631 priv->rx_cls_enabled = 1; 2632 2633 return dpaa2_eth_set_dist_key(priv->net_dev, DPAA2_ETH_RX_DIST_CLS, 0); 2634 } 2635 2636 /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs, 2637 * frame queues and channels 2638 */ 2639 static int bind_dpni(struct dpaa2_eth_priv *priv) 2640 { 2641 struct net_device *net_dev = priv->net_dev; 2642 struct device *dev = net_dev->dev.parent; 2643 struct dpni_pools_cfg pools_params; 2644 struct dpni_error_cfg err_cfg; 2645 int err = 0; 2646 int i; 2647 2648 pools_params.num_dpbp = 1; 2649 pools_params.pools[0].dpbp_id = priv->dpbp_dev->obj_desc.id; 2650 pools_params.pools[0].backup_pool = 0; 2651 pools_params.pools[0].buffer_size = DPAA2_ETH_RX_BUF_SIZE; 2652 err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params); 2653 if (err) { 2654 dev_err(dev, "dpni_set_pools() failed\n"); 2655 return err; 2656 } 2657 2658 /* have the interface implicitly distribute traffic based on 2659 * the default hash key 2660 */ 2661 err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT); 2662 if (err && err != -EOPNOTSUPP) 2663 dev_err(dev, "Failed to configure hashing\n"); 2664 2665 /* Configure the flow classification key; it includes all 2666 * supported header fields and cannot be modified at runtime 2667 */ 2668 err = dpaa2_eth_set_cls(priv); 2669 if (err && err != -EOPNOTSUPP) 2670 dev_err(dev, "Failed to configure Rx classification key\n"); 2671 2672 /* Configure handling of error frames */ 2673 err_cfg.errors = DPAA2_FAS_RX_ERR_MASK; 2674 err_cfg.set_frame_annotation = 1; 2675 err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD; 2676 err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token, 2677 &err_cfg); 2678 if (err) { 2679 dev_err(dev, "dpni_set_errors_behavior failed\n"); 2680 return err; 2681 } 2682 2683 /* Configure Rx and Tx conf queues to generate CDANs */ 2684 for (i = 0; i < priv->num_fqs; i++) { 2685 switch (priv->fq[i].type) { 2686 case DPAA2_RX_FQ: 2687 err = setup_rx_flow(priv, &priv->fq[i]); 2688 break; 2689 case DPAA2_TX_CONF_FQ: 2690 err = setup_tx_flow(priv, &priv->fq[i]); 2691 break; 2692 default: 2693 dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type); 2694 return -EINVAL; 2695 } 2696 if (err) 2697 return err; 2698 } 2699 2700 err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token, 2701 DPNI_QUEUE_TX, &priv->tx_qdid); 2702 if (err) { 2703 dev_err(dev, "dpni_get_qdid() failed\n"); 2704 return err; 2705 } 2706 2707 return 0; 2708 } 2709 2710 /* Allocate rings for storing incoming frame descriptors */ 2711 static int alloc_rings(struct dpaa2_eth_priv *priv) 2712 { 2713 struct net_device *net_dev = priv->net_dev; 2714 struct device *dev = net_dev->dev.parent; 2715 int i; 2716 2717 for (i = 0; i < priv->num_channels; i++) { 2718 priv->channel[i]->store = 2719 dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev); 2720 if (!priv->channel[i]->store) { 2721 netdev_err(net_dev, "dpaa2_io_store_create() failed\n"); 2722 goto err_ring; 2723 } 2724 } 2725 2726 return 0; 2727 2728 err_ring: 2729 for (i = 0; i < priv->num_channels; i++) { 2730 if (!priv->channel[i]->store) 2731 break; 2732 dpaa2_io_store_destroy(priv->channel[i]->store); 2733 } 2734 2735 return -ENOMEM; 2736 } 2737 2738 static void free_rings(struct dpaa2_eth_priv *priv) 2739 { 2740 int i; 2741 2742 for (i = 0; i < priv->num_channels; i++) 2743 dpaa2_io_store_destroy(priv->channel[i]->store); 2744 } 2745 2746 static int set_mac_addr(struct dpaa2_eth_priv *priv) 2747 { 2748 struct net_device *net_dev = priv->net_dev; 2749 struct device *dev = net_dev->dev.parent; 2750 u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN]; 2751 int err; 2752 2753 /* Get firmware address, if any */ 2754 err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); 2755 if (err) { 2756 dev_err(dev, "dpni_get_port_mac_addr() failed\n"); 2757 return err; 2758 } 2759 2760 /* Get DPNI attributes address, if any */ 2761 err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 2762 dpni_mac_addr); 2763 if (err) { 2764 dev_err(dev, "dpni_get_primary_mac_addr() failed\n"); 2765 return err; 2766 } 2767 2768 /* First check if firmware has any address configured by bootloader */ 2769 if (!is_zero_ether_addr(mac_addr)) { 2770 /* If the DPMAC addr != DPNI addr, update it */ 2771 if (!ether_addr_equal(mac_addr, dpni_mac_addr)) { 2772 err = dpni_set_primary_mac_addr(priv->mc_io, 0, 2773 priv->mc_token, 2774 mac_addr); 2775 if (err) { 2776 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 2777 return err; 2778 } 2779 } 2780 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len); 2781 } else if (is_zero_ether_addr(dpni_mac_addr)) { 2782 /* No MAC address configured, fill in net_dev->dev_addr 2783 * with a random one 2784 */ 2785 eth_hw_addr_random(net_dev); 2786 dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); 2787 2788 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 2789 net_dev->dev_addr); 2790 if (err) { 2791 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 2792 return err; 2793 } 2794 2795 /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all 2796 * practical purposes, this will be our "permanent" mac address, 2797 * at least until the next reboot. This move will also permit 2798 * register_netdevice() to properly fill up net_dev->perm_addr. 2799 */ 2800 net_dev->addr_assign_type = NET_ADDR_PERM; 2801 } else { 2802 /* NET_ADDR_PERM is default, all we have to do is 2803 * fill in the device addr. 2804 */ 2805 memcpy(net_dev->dev_addr, dpni_mac_addr, net_dev->addr_len); 2806 } 2807 2808 return 0; 2809 } 2810 2811 static int netdev_init(struct net_device *net_dev) 2812 { 2813 struct device *dev = net_dev->dev.parent; 2814 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2815 u32 options = priv->dpni_attrs.options; 2816 u64 supported = 0, not_supported = 0; 2817 u8 bcast_addr[ETH_ALEN]; 2818 u8 num_queues; 2819 int err; 2820 2821 net_dev->netdev_ops = &dpaa2_eth_ops; 2822 net_dev->ethtool_ops = &dpaa2_ethtool_ops; 2823 2824 err = set_mac_addr(priv); 2825 if (err) 2826 return err; 2827 2828 /* Explicitly add the broadcast address to the MAC filtering table */ 2829 eth_broadcast_addr(bcast_addr); 2830 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr); 2831 if (err) { 2832 dev_err(dev, "dpni_add_mac_addr() failed\n"); 2833 return err; 2834 } 2835 2836 /* Set MTU upper limit; lower limit is 68B (default value) */ 2837 net_dev->max_mtu = DPAA2_ETH_MAX_MTU; 2838 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, 2839 DPAA2_ETH_MFL); 2840 if (err) { 2841 dev_err(dev, "dpni_set_max_frame_length() failed\n"); 2842 return err; 2843 } 2844 2845 /* Set actual number of queues in the net device */ 2846 num_queues = dpaa2_eth_queue_count(priv); 2847 err = netif_set_real_num_tx_queues(net_dev, num_queues); 2848 if (err) { 2849 dev_err(dev, "netif_set_real_num_tx_queues() failed\n"); 2850 return err; 2851 } 2852 err = netif_set_real_num_rx_queues(net_dev, num_queues); 2853 if (err) { 2854 dev_err(dev, "netif_set_real_num_rx_queues() failed\n"); 2855 return err; 2856 } 2857 2858 /* Capabilities listing */ 2859 supported |= IFF_LIVE_ADDR_CHANGE; 2860 2861 if (options & DPNI_OPT_NO_MAC_FILTER) 2862 not_supported |= IFF_UNICAST_FLT; 2863 else 2864 supported |= IFF_UNICAST_FLT; 2865 2866 net_dev->priv_flags |= supported; 2867 net_dev->priv_flags &= ~not_supported; 2868 2869 /* Features */ 2870 net_dev->features = NETIF_F_RXCSUM | 2871 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2872 NETIF_F_SG | NETIF_F_HIGHDMA | 2873 NETIF_F_LLTX; 2874 net_dev->hw_features = net_dev->features; 2875 2876 return 0; 2877 } 2878 2879 static int poll_link_state(void *arg) 2880 { 2881 struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg; 2882 int err; 2883 2884 while (!kthread_should_stop()) { 2885 err = link_state_update(priv); 2886 if (unlikely(err)) 2887 return err; 2888 2889 msleep(DPAA2_ETH_LINK_STATE_REFRESH); 2890 } 2891 2892 return 0; 2893 } 2894 2895 static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg) 2896 { 2897 u32 status = ~0; 2898 struct device *dev = (struct device *)arg; 2899 struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev); 2900 struct net_device *net_dev = dev_get_drvdata(dev); 2901 int err; 2902 2903 err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, 2904 DPNI_IRQ_INDEX, &status); 2905 if (unlikely(err)) { 2906 netdev_err(net_dev, "Can't get irq status (err %d)\n", err); 2907 return IRQ_HANDLED; 2908 } 2909 2910 if (status & DPNI_IRQ_EVENT_LINK_CHANGED) 2911 link_state_update(netdev_priv(net_dev)); 2912 2913 return IRQ_HANDLED; 2914 } 2915 2916 static int setup_irqs(struct fsl_mc_device *ls_dev) 2917 { 2918 int err = 0; 2919 struct fsl_mc_device_irq *irq; 2920 2921 err = fsl_mc_allocate_irqs(ls_dev); 2922 if (err) { 2923 dev_err(&ls_dev->dev, "MC irqs allocation failed\n"); 2924 return err; 2925 } 2926 2927 irq = ls_dev->irqs[0]; 2928 err = devm_request_threaded_irq(&ls_dev->dev, irq->msi_desc->irq, 2929 NULL, dpni_irq0_handler_thread, 2930 IRQF_NO_SUSPEND | IRQF_ONESHOT, 2931 dev_name(&ls_dev->dev), &ls_dev->dev); 2932 if (err < 0) { 2933 dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err); 2934 goto free_mc_irq; 2935 } 2936 2937 err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle, 2938 DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED); 2939 if (err < 0) { 2940 dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err); 2941 goto free_irq; 2942 } 2943 2944 err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle, 2945 DPNI_IRQ_INDEX, 1); 2946 if (err < 0) { 2947 dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err); 2948 goto free_irq; 2949 } 2950 2951 return 0; 2952 2953 free_irq: 2954 devm_free_irq(&ls_dev->dev, irq->msi_desc->irq, &ls_dev->dev); 2955 free_mc_irq: 2956 fsl_mc_free_irqs(ls_dev); 2957 2958 return err; 2959 } 2960 2961 static void add_ch_napi(struct dpaa2_eth_priv *priv) 2962 { 2963 int i; 2964 struct dpaa2_eth_channel *ch; 2965 2966 for (i = 0; i < priv->num_channels; i++) { 2967 ch = priv->channel[i]; 2968 /* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */ 2969 netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll, 2970 NAPI_POLL_WEIGHT); 2971 } 2972 } 2973 2974 static void del_ch_napi(struct dpaa2_eth_priv *priv) 2975 { 2976 int i; 2977 struct dpaa2_eth_channel *ch; 2978 2979 for (i = 0; i < priv->num_channels; i++) { 2980 ch = priv->channel[i]; 2981 netif_napi_del(&ch->napi); 2982 } 2983 } 2984 2985 static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev) 2986 { 2987 struct device *dev; 2988 struct net_device *net_dev = NULL; 2989 struct dpaa2_eth_priv *priv = NULL; 2990 int err = 0; 2991 2992 dev = &dpni_dev->dev; 2993 2994 /* Net device */ 2995 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_TX_QUEUES); 2996 if (!net_dev) { 2997 dev_err(dev, "alloc_etherdev_mq() failed\n"); 2998 return -ENOMEM; 2999 } 3000 3001 SET_NETDEV_DEV(net_dev, dev); 3002 dev_set_drvdata(dev, net_dev); 3003 3004 priv = netdev_priv(net_dev); 3005 priv->net_dev = net_dev; 3006 3007 priv->iommu_domain = iommu_get_domain_for_dev(dev); 3008 3009 /* Obtain a MC portal */ 3010 err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, 3011 &priv->mc_io); 3012 if (err) { 3013 if (err == -ENXIO) 3014 err = -EPROBE_DEFER; 3015 else 3016 dev_err(dev, "MC portal allocation failed\n"); 3017 goto err_portal_alloc; 3018 } 3019 3020 /* MC objects initialization and configuration */ 3021 err = setup_dpni(dpni_dev); 3022 if (err) 3023 goto err_dpni_setup; 3024 3025 err = setup_dpio(priv); 3026 if (err) 3027 goto err_dpio_setup; 3028 3029 setup_fqs(priv); 3030 3031 err = setup_dpbp(priv); 3032 if (err) 3033 goto err_dpbp_setup; 3034 3035 err = bind_dpni(priv); 3036 if (err) 3037 goto err_bind; 3038 3039 /* Add a NAPI context for each channel */ 3040 add_ch_napi(priv); 3041 3042 /* Percpu statistics */ 3043 priv->percpu_stats = alloc_percpu(*priv->percpu_stats); 3044 if (!priv->percpu_stats) { 3045 dev_err(dev, "alloc_percpu(percpu_stats) failed\n"); 3046 err = -ENOMEM; 3047 goto err_alloc_percpu_stats; 3048 } 3049 priv->percpu_extras = alloc_percpu(*priv->percpu_extras); 3050 if (!priv->percpu_extras) { 3051 dev_err(dev, "alloc_percpu(percpu_extras) failed\n"); 3052 err = -ENOMEM; 3053 goto err_alloc_percpu_extras; 3054 } 3055 3056 err = netdev_init(net_dev); 3057 if (err) 3058 goto err_netdev_init; 3059 3060 /* Configure checksum offload based on current interface flags */ 3061 err = set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM)); 3062 if (err) 3063 goto err_csum; 3064 3065 err = set_tx_csum(priv, !!(net_dev->features & 3066 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))); 3067 if (err) 3068 goto err_csum; 3069 3070 err = alloc_rings(priv); 3071 if (err) 3072 goto err_alloc_rings; 3073 3074 err = setup_irqs(dpni_dev); 3075 if (err) { 3076 netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n"); 3077 priv->poll_thread = kthread_run(poll_link_state, priv, 3078 "%s_poll_link", net_dev->name); 3079 if (IS_ERR(priv->poll_thread)) { 3080 dev_err(dev, "Error starting polling thread\n"); 3081 goto err_poll_thread; 3082 } 3083 priv->do_link_poll = true; 3084 } 3085 3086 err = register_netdev(net_dev); 3087 if (err < 0) { 3088 dev_err(dev, "register_netdev() failed\n"); 3089 goto err_netdev_reg; 3090 } 3091 3092 dev_info(dev, "Probed interface %s\n", net_dev->name); 3093 return 0; 3094 3095 err_netdev_reg: 3096 if (priv->do_link_poll) 3097 kthread_stop(priv->poll_thread); 3098 else 3099 fsl_mc_free_irqs(dpni_dev); 3100 err_poll_thread: 3101 free_rings(priv); 3102 err_alloc_rings: 3103 err_csum: 3104 err_netdev_init: 3105 free_percpu(priv->percpu_extras); 3106 err_alloc_percpu_extras: 3107 free_percpu(priv->percpu_stats); 3108 err_alloc_percpu_stats: 3109 del_ch_napi(priv); 3110 err_bind: 3111 free_dpbp(priv); 3112 err_dpbp_setup: 3113 free_dpio(priv); 3114 err_dpio_setup: 3115 free_dpni(priv); 3116 err_dpni_setup: 3117 fsl_mc_portal_free(priv->mc_io); 3118 err_portal_alloc: 3119 dev_set_drvdata(dev, NULL); 3120 free_netdev(net_dev); 3121 3122 return err; 3123 } 3124 3125 static int dpaa2_eth_remove(struct fsl_mc_device *ls_dev) 3126 { 3127 struct device *dev; 3128 struct net_device *net_dev; 3129 struct dpaa2_eth_priv *priv; 3130 3131 dev = &ls_dev->dev; 3132 net_dev = dev_get_drvdata(dev); 3133 priv = netdev_priv(net_dev); 3134 3135 unregister_netdev(net_dev); 3136 3137 if (priv->do_link_poll) 3138 kthread_stop(priv->poll_thread); 3139 else 3140 fsl_mc_free_irqs(ls_dev); 3141 3142 free_rings(priv); 3143 free_percpu(priv->percpu_stats); 3144 free_percpu(priv->percpu_extras); 3145 3146 del_ch_napi(priv); 3147 free_dpbp(priv); 3148 free_dpio(priv); 3149 free_dpni(priv); 3150 3151 fsl_mc_portal_free(priv->mc_io); 3152 3153 free_netdev(net_dev); 3154 3155 dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name); 3156 3157 return 0; 3158 } 3159 3160 static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = { 3161 { 3162 .vendor = FSL_MC_VENDOR_FREESCALE, 3163 .obj_type = "dpni", 3164 }, 3165 { .vendor = 0x0 } 3166 }; 3167 MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table); 3168 3169 static struct fsl_mc_driver dpaa2_eth_driver = { 3170 .driver = { 3171 .name = KBUILD_MODNAME, 3172 .owner = THIS_MODULE, 3173 }, 3174 .probe = dpaa2_eth_probe, 3175 .remove = dpaa2_eth_remove, 3176 .match_id_table = dpaa2_eth_match_id_table 3177 }; 3178 3179 module_fsl_mc_driver(dpaa2_eth_driver); 3180