1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* Copyright 2014-2016 Freescale Semiconductor Inc. 3 * Copyright 2016-2017 NXP 4 */ 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/platform_device.h> 8 #include <linux/etherdevice.h> 9 #include <linux/of_net.h> 10 #include <linux/interrupt.h> 11 #include <linux/msi.h> 12 #include <linux/kthread.h> 13 #include <linux/iommu.h> 14 #include <linux/net_tstamp.h> 15 #include <linux/fsl/mc.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_trace.h> 18 #include <net/sock.h> 19 20 #include "dpaa2-eth.h" 21 22 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files 23 * using trace events only need to #include <trace/events/sched.h> 24 */ 25 #define CREATE_TRACE_POINTS 26 #include "dpaa2-eth-trace.h" 27 28 MODULE_LICENSE("Dual BSD/GPL"); 29 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 30 MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver"); 31 32 static void *dpaa2_iova_to_virt(struct iommu_domain *domain, 33 dma_addr_t iova_addr) 34 { 35 phys_addr_t phys_addr; 36 37 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 38 39 return phys_to_virt(phys_addr); 40 } 41 42 static void validate_rx_csum(struct dpaa2_eth_priv *priv, 43 u32 fd_status, 44 struct sk_buff *skb) 45 { 46 skb_checksum_none_assert(skb); 47 48 /* HW checksum validation is disabled, nothing to do here */ 49 if (!(priv->net_dev->features & NETIF_F_RXCSUM)) 50 return; 51 52 /* Read checksum validation bits */ 53 if (!((fd_status & DPAA2_FAS_L3CV) && 54 (fd_status & DPAA2_FAS_L4CV))) 55 return; 56 57 /* Inform the stack there's no need to compute L3/L4 csum anymore */ 58 skb->ip_summed = CHECKSUM_UNNECESSARY; 59 } 60 61 /* Free a received FD. 62 * Not to be used for Tx conf FDs or on any other paths. 63 */ 64 static void free_rx_fd(struct dpaa2_eth_priv *priv, 65 const struct dpaa2_fd *fd, 66 void *vaddr) 67 { 68 struct device *dev = priv->net_dev->dev.parent; 69 dma_addr_t addr = dpaa2_fd_get_addr(fd); 70 u8 fd_format = dpaa2_fd_get_format(fd); 71 struct dpaa2_sg_entry *sgt; 72 void *sg_vaddr; 73 int i; 74 75 /* If single buffer frame, just free the data buffer */ 76 if (fd_format == dpaa2_fd_single) 77 goto free_buf; 78 else if (fd_format != dpaa2_fd_sg) 79 /* We don't support any other format */ 80 return; 81 82 /* For S/G frames, we first need to free all SG entries 83 * except the first one, which was taken care of already 84 */ 85 sgt = vaddr + dpaa2_fd_get_offset(fd); 86 for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 87 addr = dpaa2_sg_get_addr(&sgt[i]); 88 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 89 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 90 DMA_BIDIRECTIONAL); 91 92 free_pages((unsigned long)sg_vaddr, 0); 93 if (dpaa2_sg_is_final(&sgt[i])) 94 break; 95 } 96 97 free_buf: 98 free_pages((unsigned long)vaddr, 0); 99 } 100 101 /* Build a linear skb based on a single-buffer frame descriptor */ 102 static struct sk_buff *build_linear_skb(struct dpaa2_eth_channel *ch, 103 const struct dpaa2_fd *fd, 104 void *fd_vaddr) 105 { 106 struct sk_buff *skb = NULL; 107 u16 fd_offset = dpaa2_fd_get_offset(fd); 108 u32 fd_length = dpaa2_fd_get_len(fd); 109 110 ch->buf_count--; 111 112 skb = build_skb(fd_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 113 if (unlikely(!skb)) 114 return NULL; 115 116 skb_reserve(skb, fd_offset); 117 skb_put(skb, fd_length); 118 119 return skb; 120 } 121 122 /* Build a non linear (fragmented) skb based on a S/G table */ 123 static struct sk_buff *build_frag_skb(struct dpaa2_eth_priv *priv, 124 struct dpaa2_eth_channel *ch, 125 struct dpaa2_sg_entry *sgt) 126 { 127 struct sk_buff *skb = NULL; 128 struct device *dev = priv->net_dev->dev.parent; 129 void *sg_vaddr; 130 dma_addr_t sg_addr; 131 u16 sg_offset; 132 u32 sg_length; 133 struct page *page, *head_page; 134 int page_offset; 135 int i; 136 137 for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 138 struct dpaa2_sg_entry *sge = &sgt[i]; 139 140 /* NOTE: We only support SG entries in dpaa2_sg_single format, 141 * but this is the only format we may receive from HW anyway 142 */ 143 144 /* Get the address and length from the S/G entry */ 145 sg_addr = dpaa2_sg_get_addr(sge); 146 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr); 147 dma_unmap_page(dev, sg_addr, DPAA2_ETH_RX_BUF_SIZE, 148 DMA_BIDIRECTIONAL); 149 150 sg_length = dpaa2_sg_get_len(sge); 151 152 if (i == 0) { 153 /* We build the skb around the first data buffer */ 154 skb = build_skb(sg_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 155 if (unlikely(!skb)) { 156 /* Free the first SG entry now, since we already 157 * unmapped it and obtained the virtual address 158 */ 159 free_pages((unsigned long)sg_vaddr, 0); 160 161 /* We still need to subtract the buffers used 162 * by this FD from our software counter 163 */ 164 while (!dpaa2_sg_is_final(&sgt[i]) && 165 i < DPAA2_ETH_MAX_SG_ENTRIES) 166 i++; 167 break; 168 } 169 170 sg_offset = dpaa2_sg_get_offset(sge); 171 skb_reserve(skb, sg_offset); 172 skb_put(skb, sg_length); 173 } else { 174 /* Rest of the data buffers are stored as skb frags */ 175 page = virt_to_page(sg_vaddr); 176 head_page = virt_to_head_page(sg_vaddr); 177 178 /* Offset in page (which may be compound). 179 * Data in subsequent SG entries is stored from the 180 * beginning of the buffer, so we don't need to add the 181 * sg_offset. 182 */ 183 page_offset = ((unsigned long)sg_vaddr & 184 (PAGE_SIZE - 1)) + 185 (page_address(page) - page_address(head_page)); 186 187 skb_add_rx_frag(skb, i - 1, head_page, page_offset, 188 sg_length, DPAA2_ETH_RX_BUF_SIZE); 189 } 190 191 if (dpaa2_sg_is_final(sge)) 192 break; 193 } 194 195 WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT"); 196 197 /* Count all data buffers + SG table buffer */ 198 ch->buf_count -= i + 2; 199 200 return skb; 201 } 202 203 /* Free buffers acquired from the buffer pool or which were meant to 204 * be released in the pool 205 */ 206 static void free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, int count) 207 { 208 struct device *dev = priv->net_dev->dev.parent; 209 void *vaddr; 210 int i; 211 212 for (i = 0; i < count; i++) { 213 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]); 214 dma_unmap_page(dev, buf_array[i], DPAA2_ETH_RX_BUF_SIZE, 215 DMA_BIDIRECTIONAL); 216 free_pages((unsigned long)vaddr, 0); 217 } 218 } 219 220 static void xdp_release_buf(struct dpaa2_eth_priv *priv, 221 struct dpaa2_eth_channel *ch, 222 dma_addr_t addr) 223 { 224 int err; 225 226 ch->xdp.drop_bufs[ch->xdp.drop_cnt++] = addr; 227 if (ch->xdp.drop_cnt < DPAA2_ETH_BUFS_PER_CMD) 228 return; 229 230 while ((err = dpaa2_io_service_release(ch->dpio, priv->bpid, 231 ch->xdp.drop_bufs, 232 ch->xdp.drop_cnt)) == -EBUSY) 233 cpu_relax(); 234 235 if (err) { 236 free_bufs(priv, ch->xdp.drop_bufs, ch->xdp.drop_cnt); 237 ch->buf_count -= ch->xdp.drop_cnt; 238 } 239 240 ch->xdp.drop_cnt = 0; 241 } 242 243 static int xdp_enqueue(struct dpaa2_eth_priv *priv, struct dpaa2_fd *fd, 244 void *buf_start, u16 queue_id) 245 { 246 struct dpaa2_eth_fq *fq; 247 struct dpaa2_faead *faead; 248 u32 ctrl, frc; 249 int i, err; 250 251 /* Mark the egress frame hardware annotation area as valid */ 252 frc = dpaa2_fd_get_frc(fd); 253 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 254 dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL); 255 256 /* Instruct hardware to release the FD buffer directly into 257 * the buffer pool once transmission is completed, instead of 258 * sending a Tx confirmation frame to us 259 */ 260 ctrl = DPAA2_FAEAD_A4V | DPAA2_FAEAD_A2V | DPAA2_FAEAD_EBDDV; 261 faead = dpaa2_get_faead(buf_start, false); 262 faead->ctrl = cpu_to_le32(ctrl); 263 faead->conf_fqid = 0; 264 265 fq = &priv->fq[queue_id]; 266 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 267 err = priv->enqueue(priv, fq, fd, 0); 268 if (err != -EBUSY) 269 break; 270 } 271 272 return err; 273 } 274 275 static u32 run_xdp(struct dpaa2_eth_priv *priv, 276 struct dpaa2_eth_channel *ch, 277 struct dpaa2_eth_fq *rx_fq, 278 struct dpaa2_fd *fd, void *vaddr) 279 { 280 dma_addr_t addr = dpaa2_fd_get_addr(fd); 281 struct rtnl_link_stats64 *percpu_stats; 282 struct bpf_prog *xdp_prog; 283 struct xdp_buff xdp; 284 u32 xdp_act = XDP_PASS; 285 int err; 286 287 percpu_stats = this_cpu_ptr(priv->percpu_stats); 288 289 rcu_read_lock(); 290 291 xdp_prog = READ_ONCE(ch->xdp.prog); 292 if (!xdp_prog) 293 goto out; 294 295 xdp.data = vaddr + dpaa2_fd_get_offset(fd); 296 xdp.data_end = xdp.data + dpaa2_fd_get_len(fd); 297 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; 298 xdp_set_data_meta_invalid(&xdp); 299 xdp.rxq = &ch->xdp_rxq; 300 301 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 302 303 /* xdp.data pointer may have changed */ 304 dpaa2_fd_set_offset(fd, xdp.data - vaddr); 305 dpaa2_fd_set_len(fd, xdp.data_end - xdp.data); 306 307 switch (xdp_act) { 308 case XDP_PASS: 309 break; 310 case XDP_TX: 311 err = xdp_enqueue(priv, fd, vaddr, rx_fq->flowid); 312 if (err) { 313 xdp_release_buf(priv, ch, addr); 314 percpu_stats->tx_errors++; 315 ch->stats.xdp_tx_err++; 316 } else { 317 percpu_stats->tx_packets++; 318 percpu_stats->tx_bytes += dpaa2_fd_get_len(fd); 319 ch->stats.xdp_tx++; 320 } 321 break; 322 default: 323 bpf_warn_invalid_xdp_action(xdp_act); 324 /* fall through */ 325 case XDP_ABORTED: 326 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 327 /* fall through */ 328 case XDP_DROP: 329 xdp_release_buf(priv, ch, addr); 330 ch->stats.xdp_drop++; 331 break; 332 case XDP_REDIRECT: 333 dma_unmap_page(priv->net_dev->dev.parent, addr, 334 DPAA2_ETH_RX_BUF_SIZE, DMA_BIDIRECTIONAL); 335 ch->buf_count--; 336 xdp.data_hard_start = vaddr; 337 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 338 if (unlikely(err)) 339 ch->stats.xdp_drop++; 340 else 341 ch->stats.xdp_redirect++; 342 break; 343 } 344 345 ch->xdp.res |= xdp_act; 346 out: 347 rcu_read_unlock(); 348 return xdp_act; 349 } 350 351 /* Main Rx frame processing routine */ 352 static void dpaa2_eth_rx(struct dpaa2_eth_priv *priv, 353 struct dpaa2_eth_channel *ch, 354 const struct dpaa2_fd *fd, 355 struct dpaa2_eth_fq *fq) 356 { 357 dma_addr_t addr = dpaa2_fd_get_addr(fd); 358 u8 fd_format = dpaa2_fd_get_format(fd); 359 void *vaddr; 360 struct sk_buff *skb; 361 struct rtnl_link_stats64 *percpu_stats; 362 struct dpaa2_eth_drv_stats *percpu_extras; 363 struct device *dev = priv->net_dev->dev.parent; 364 struct dpaa2_fas *fas; 365 void *buf_data; 366 u32 status = 0; 367 u32 xdp_act; 368 369 /* Tracing point */ 370 trace_dpaa2_rx_fd(priv->net_dev, fd); 371 372 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 373 dma_sync_single_for_cpu(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 374 DMA_BIDIRECTIONAL); 375 376 fas = dpaa2_get_fas(vaddr, false); 377 prefetch(fas); 378 buf_data = vaddr + dpaa2_fd_get_offset(fd); 379 prefetch(buf_data); 380 381 percpu_stats = this_cpu_ptr(priv->percpu_stats); 382 percpu_extras = this_cpu_ptr(priv->percpu_extras); 383 384 if (fd_format == dpaa2_fd_single) { 385 xdp_act = run_xdp(priv, ch, fq, (struct dpaa2_fd *)fd, vaddr); 386 if (xdp_act != XDP_PASS) { 387 percpu_stats->rx_packets++; 388 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 389 return; 390 } 391 392 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 393 DMA_BIDIRECTIONAL); 394 skb = build_linear_skb(ch, fd, vaddr); 395 } else if (fd_format == dpaa2_fd_sg) { 396 WARN_ON(priv->xdp_prog); 397 398 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 399 DMA_BIDIRECTIONAL); 400 skb = build_frag_skb(priv, ch, buf_data); 401 free_pages((unsigned long)vaddr, 0); 402 percpu_extras->rx_sg_frames++; 403 percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd); 404 } else { 405 /* We don't support any other format */ 406 goto err_frame_format; 407 } 408 409 if (unlikely(!skb)) 410 goto err_build_skb; 411 412 prefetch(skb->data); 413 414 /* Get the timestamp value */ 415 if (priv->rx_tstamp) { 416 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 417 __le64 *ts = dpaa2_get_ts(vaddr, false); 418 u64 ns; 419 420 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 421 422 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 423 shhwtstamps->hwtstamp = ns_to_ktime(ns); 424 } 425 426 /* Check if we need to validate the L4 csum */ 427 if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) { 428 status = le32_to_cpu(fas->status); 429 validate_rx_csum(priv, status, skb); 430 } 431 432 skb->protocol = eth_type_trans(skb, priv->net_dev); 433 skb_record_rx_queue(skb, fq->flowid); 434 435 percpu_stats->rx_packets++; 436 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 437 438 list_add_tail(&skb->list, ch->rx_list); 439 440 return; 441 442 err_build_skb: 443 free_rx_fd(priv, fd, vaddr); 444 err_frame_format: 445 percpu_stats->rx_dropped++; 446 } 447 448 /* Consume all frames pull-dequeued into the store. This is the simplest way to 449 * make sure we don't accidentally issue another volatile dequeue which would 450 * overwrite (leak) frames already in the store. 451 * 452 * Observance of NAPI budget is not our concern, leaving that to the caller. 453 */ 454 static int consume_frames(struct dpaa2_eth_channel *ch, 455 struct dpaa2_eth_fq **src) 456 { 457 struct dpaa2_eth_priv *priv = ch->priv; 458 struct dpaa2_eth_fq *fq = NULL; 459 struct dpaa2_dq *dq; 460 const struct dpaa2_fd *fd; 461 int cleaned = 0; 462 int is_last; 463 464 do { 465 dq = dpaa2_io_store_next(ch->store, &is_last); 466 if (unlikely(!dq)) { 467 /* If we're here, we *must* have placed a 468 * volatile dequeue comnmand, so keep reading through 469 * the store until we get some sort of valid response 470 * token (either a valid frame or an "empty dequeue") 471 */ 472 continue; 473 } 474 475 fd = dpaa2_dq_fd(dq); 476 fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq); 477 478 fq->consume(priv, ch, fd, fq); 479 cleaned++; 480 } while (!is_last); 481 482 if (!cleaned) 483 return 0; 484 485 fq->stats.frames += cleaned; 486 487 /* A dequeue operation only pulls frames from a single queue 488 * into the store. Return the frame queue as an out param. 489 */ 490 if (src) 491 *src = fq; 492 493 return cleaned; 494 } 495 496 /* Configure the egress frame annotation for timestamp update */ 497 static void enable_tx_tstamp(struct dpaa2_fd *fd, void *buf_start) 498 { 499 struct dpaa2_faead *faead; 500 u32 ctrl, frc; 501 502 /* Mark the egress frame annotation area as valid */ 503 frc = dpaa2_fd_get_frc(fd); 504 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 505 506 /* Set hardware annotation size */ 507 ctrl = dpaa2_fd_get_ctrl(fd); 508 dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL); 509 510 /* enable UPD (update prepanded data) bit in FAEAD field of 511 * hardware frame annotation area 512 */ 513 ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD; 514 faead = dpaa2_get_faead(buf_start, true); 515 faead->ctrl = cpu_to_le32(ctrl); 516 } 517 518 /* Create a frame descriptor based on a fragmented skb */ 519 static int build_sg_fd(struct dpaa2_eth_priv *priv, 520 struct sk_buff *skb, 521 struct dpaa2_fd *fd) 522 { 523 struct device *dev = priv->net_dev->dev.parent; 524 void *sgt_buf = NULL; 525 dma_addr_t addr; 526 int nr_frags = skb_shinfo(skb)->nr_frags; 527 struct dpaa2_sg_entry *sgt; 528 int i, err; 529 int sgt_buf_size; 530 struct scatterlist *scl, *crt_scl; 531 int num_sg; 532 int num_dma_bufs; 533 struct dpaa2_eth_swa *swa; 534 535 /* Create and map scatterlist. 536 * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have 537 * to go beyond nr_frags+1. 538 * Note: We don't support chained scatterlists 539 */ 540 if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1)) 541 return -EINVAL; 542 543 scl = kcalloc(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC); 544 if (unlikely(!scl)) 545 return -ENOMEM; 546 547 sg_init_table(scl, nr_frags + 1); 548 num_sg = skb_to_sgvec(skb, scl, 0, skb->len); 549 num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 550 if (unlikely(!num_dma_bufs)) { 551 err = -ENOMEM; 552 goto dma_map_sg_failed; 553 } 554 555 /* Prepare the HW SGT structure */ 556 sgt_buf_size = priv->tx_data_offset + 557 sizeof(struct dpaa2_sg_entry) * num_dma_bufs; 558 sgt_buf = netdev_alloc_frag(sgt_buf_size + DPAA2_ETH_TX_BUF_ALIGN); 559 if (unlikely(!sgt_buf)) { 560 err = -ENOMEM; 561 goto sgt_buf_alloc_failed; 562 } 563 sgt_buf = PTR_ALIGN(sgt_buf, DPAA2_ETH_TX_BUF_ALIGN); 564 memset(sgt_buf, 0, sgt_buf_size); 565 566 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 567 568 /* Fill in the HW SGT structure. 569 * 570 * sgt_buf is zeroed out, so the following fields are implicit 571 * in all sgt entries: 572 * - offset is 0 573 * - format is 'dpaa2_sg_single' 574 */ 575 for_each_sg(scl, crt_scl, num_dma_bufs, i) { 576 dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl)); 577 dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl)); 578 } 579 dpaa2_sg_set_final(&sgt[i - 1], true); 580 581 /* Store the skb backpointer in the SGT buffer. 582 * Fit the scatterlist and the number of buffers alongside the 583 * skb backpointer in the software annotation area. We'll need 584 * all of them on Tx Conf. 585 */ 586 swa = (struct dpaa2_eth_swa *)sgt_buf; 587 swa->type = DPAA2_ETH_SWA_SG; 588 swa->sg.skb = skb; 589 swa->sg.scl = scl; 590 swa->sg.num_sg = num_sg; 591 swa->sg.sgt_size = sgt_buf_size; 592 593 /* Separately map the SGT buffer */ 594 addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 595 if (unlikely(dma_mapping_error(dev, addr))) { 596 err = -ENOMEM; 597 goto dma_map_single_failed; 598 } 599 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 600 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 601 dpaa2_fd_set_addr(fd, addr); 602 dpaa2_fd_set_len(fd, skb->len); 603 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 604 605 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 606 enable_tx_tstamp(fd, sgt_buf); 607 608 return 0; 609 610 dma_map_single_failed: 611 skb_free_frag(sgt_buf); 612 sgt_buf_alloc_failed: 613 dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 614 dma_map_sg_failed: 615 kfree(scl); 616 return err; 617 } 618 619 /* Create a frame descriptor based on a linear skb */ 620 static int build_single_fd(struct dpaa2_eth_priv *priv, 621 struct sk_buff *skb, 622 struct dpaa2_fd *fd) 623 { 624 struct device *dev = priv->net_dev->dev.parent; 625 u8 *buffer_start, *aligned_start; 626 struct dpaa2_eth_swa *swa; 627 dma_addr_t addr; 628 629 buffer_start = skb->data - dpaa2_eth_needed_headroom(priv, skb); 630 631 /* If there's enough room to align the FD address, do it. 632 * It will help hardware optimize accesses. 633 */ 634 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 635 DPAA2_ETH_TX_BUF_ALIGN); 636 if (aligned_start >= skb->head) 637 buffer_start = aligned_start; 638 639 /* Store a backpointer to the skb at the beginning of the buffer 640 * (in the private data area) such that we can release it 641 * on Tx confirm 642 */ 643 swa = (struct dpaa2_eth_swa *)buffer_start; 644 swa->type = DPAA2_ETH_SWA_SINGLE; 645 swa->single.skb = skb; 646 647 addr = dma_map_single(dev, buffer_start, 648 skb_tail_pointer(skb) - buffer_start, 649 DMA_BIDIRECTIONAL); 650 if (unlikely(dma_mapping_error(dev, addr))) 651 return -ENOMEM; 652 653 dpaa2_fd_set_addr(fd, addr); 654 dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start)); 655 dpaa2_fd_set_len(fd, skb->len); 656 dpaa2_fd_set_format(fd, dpaa2_fd_single); 657 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 658 659 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 660 enable_tx_tstamp(fd, buffer_start); 661 662 return 0; 663 } 664 665 /* FD freeing routine on the Tx path 666 * 667 * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb 668 * back-pointed to is also freed. 669 * This can be called either from dpaa2_eth_tx_conf() or on the error path of 670 * dpaa2_eth_tx(). 671 */ 672 static void free_tx_fd(const struct dpaa2_eth_priv *priv, 673 struct dpaa2_eth_fq *fq, 674 const struct dpaa2_fd *fd, bool in_napi) 675 { 676 struct device *dev = priv->net_dev->dev.parent; 677 dma_addr_t fd_addr; 678 struct sk_buff *skb = NULL; 679 unsigned char *buffer_start; 680 struct dpaa2_eth_swa *swa; 681 u8 fd_format = dpaa2_fd_get_format(fd); 682 u32 fd_len = dpaa2_fd_get_len(fd); 683 684 fd_addr = dpaa2_fd_get_addr(fd); 685 buffer_start = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr); 686 swa = (struct dpaa2_eth_swa *)buffer_start; 687 688 if (fd_format == dpaa2_fd_single) { 689 if (swa->type == DPAA2_ETH_SWA_SINGLE) { 690 skb = swa->single.skb; 691 /* Accessing the skb buffer is safe before dma unmap, 692 * because we didn't map the actual skb shell. 693 */ 694 dma_unmap_single(dev, fd_addr, 695 skb_tail_pointer(skb) - buffer_start, 696 DMA_BIDIRECTIONAL); 697 } else { 698 WARN_ONCE(swa->type != DPAA2_ETH_SWA_XDP, "Wrong SWA type"); 699 dma_unmap_single(dev, fd_addr, swa->xdp.dma_size, 700 DMA_BIDIRECTIONAL); 701 } 702 } else if (fd_format == dpaa2_fd_sg) { 703 skb = swa->sg.skb; 704 705 /* Unmap the scatterlist */ 706 dma_unmap_sg(dev, swa->sg.scl, swa->sg.num_sg, 707 DMA_BIDIRECTIONAL); 708 kfree(swa->sg.scl); 709 710 /* Unmap the SGT buffer */ 711 dma_unmap_single(dev, fd_addr, swa->sg.sgt_size, 712 DMA_BIDIRECTIONAL); 713 } else { 714 netdev_dbg(priv->net_dev, "Invalid FD format\n"); 715 return; 716 } 717 718 if (swa->type != DPAA2_ETH_SWA_XDP && in_napi) { 719 fq->dq_frames++; 720 fq->dq_bytes += fd_len; 721 } 722 723 if (swa->type == DPAA2_ETH_SWA_XDP) { 724 xdp_return_frame(swa->xdp.xdpf); 725 return; 726 } 727 728 /* Get the timestamp value */ 729 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 730 struct skb_shared_hwtstamps shhwtstamps; 731 __le64 *ts = dpaa2_get_ts(buffer_start, true); 732 u64 ns; 733 734 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 735 736 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 737 shhwtstamps.hwtstamp = ns_to_ktime(ns); 738 skb_tstamp_tx(skb, &shhwtstamps); 739 } 740 741 /* Free SGT buffer allocated on tx */ 742 if (fd_format != dpaa2_fd_single) 743 skb_free_frag(buffer_start); 744 745 /* Move on with skb release */ 746 napi_consume_skb(skb, in_napi); 747 } 748 749 static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) 750 { 751 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 752 struct dpaa2_fd fd; 753 struct rtnl_link_stats64 *percpu_stats; 754 struct dpaa2_eth_drv_stats *percpu_extras; 755 struct dpaa2_eth_fq *fq; 756 struct netdev_queue *nq; 757 u16 queue_mapping; 758 unsigned int needed_headroom; 759 u32 fd_len; 760 int err, i; 761 762 percpu_stats = this_cpu_ptr(priv->percpu_stats); 763 percpu_extras = this_cpu_ptr(priv->percpu_extras); 764 765 needed_headroom = dpaa2_eth_needed_headroom(priv, skb); 766 if (skb_headroom(skb) < needed_headroom) { 767 struct sk_buff *ns; 768 769 ns = skb_realloc_headroom(skb, needed_headroom); 770 if (unlikely(!ns)) { 771 percpu_stats->tx_dropped++; 772 goto err_alloc_headroom; 773 } 774 percpu_extras->tx_reallocs++; 775 776 if (skb->sk) 777 skb_set_owner_w(ns, skb->sk); 778 779 dev_kfree_skb(skb); 780 skb = ns; 781 } 782 783 /* We'll be holding a back-reference to the skb until Tx Confirmation; 784 * we don't want that overwritten by a concurrent Tx with a cloned skb. 785 */ 786 skb = skb_unshare(skb, GFP_ATOMIC); 787 if (unlikely(!skb)) { 788 /* skb_unshare() has already freed the skb */ 789 percpu_stats->tx_dropped++; 790 return NETDEV_TX_OK; 791 } 792 793 /* Setup the FD fields */ 794 memset(&fd, 0, sizeof(fd)); 795 796 if (skb_is_nonlinear(skb)) { 797 err = build_sg_fd(priv, skb, &fd); 798 percpu_extras->tx_sg_frames++; 799 percpu_extras->tx_sg_bytes += skb->len; 800 } else { 801 err = build_single_fd(priv, skb, &fd); 802 } 803 804 if (unlikely(err)) { 805 percpu_stats->tx_dropped++; 806 goto err_build_fd; 807 } 808 809 /* Tracing point */ 810 trace_dpaa2_tx_fd(net_dev, &fd); 811 812 /* TxConf FQ selection relies on queue id from the stack. 813 * In case of a forwarded frame from another DPNI interface, we choose 814 * a queue affined to the same core that processed the Rx frame 815 */ 816 queue_mapping = skb_get_queue_mapping(skb); 817 fq = &priv->fq[queue_mapping]; 818 819 fd_len = dpaa2_fd_get_len(&fd); 820 nq = netdev_get_tx_queue(net_dev, queue_mapping); 821 netdev_tx_sent_queue(nq, fd_len); 822 823 /* Everything that happens after this enqueues might race with 824 * the Tx confirmation callback for this frame 825 */ 826 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 827 err = priv->enqueue(priv, fq, &fd, 0); 828 if (err != -EBUSY) 829 break; 830 } 831 percpu_extras->tx_portal_busy += i; 832 if (unlikely(err < 0)) { 833 percpu_stats->tx_errors++; 834 /* Clean up everything, including freeing the skb */ 835 free_tx_fd(priv, fq, &fd, false); 836 netdev_tx_completed_queue(nq, 1, fd_len); 837 } else { 838 percpu_stats->tx_packets++; 839 percpu_stats->tx_bytes += fd_len; 840 } 841 842 return NETDEV_TX_OK; 843 844 err_build_fd: 845 err_alloc_headroom: 846 dev_kfree_skb(skb); 847 848 return NETDEV_TX_OK; 849 } 850 851 /* Tx confirmation frame processing routine */ 852 static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv, 853 struct dpaa2_eth_channel *ch __always_unused, 854 const struct dpaa2_fd *fd, 855 struct dpaa2_eth_fq *fq) 856 { 857 struct rtnl_link_stats64 *percpu_stats; 858 struct dpaa2_eth_drv_stats *percpu_extras; 859 u32 fd_len = dpaa2_fd_get_len(fd); 860 u32 fd_errors; 861 862 /* Tracing point */ 863 trace_dpaa2_tx_conf_fd(priv->net_dev, fd); 864 865 percpu_extras = this_cpu_ptr(priv->percpu_extras); 866 percpu_extras->tx_conf_frames++; 867 percpu_extras->tx_conf_bytes += fd_len; 868 869 /* Check frame errors in the FD field */ 870 fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK; 871 free_tx_fd(priv, fq, fd, true); 872 873 if (likely(!fd_errors)) 874 return; 875 876 if (net_ratelimit()) 877 netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n", 878 fd_errors); 879 880 percpu_stats = this_cpu_ptr(priv->percpu_stats); 881 /* Tx-conf logically pertains to the egress path. */ 882 percpu_stats->tx_errors++; 883 } 884 885 static int set_rx_csum(struct dpaa2_eth_priv *priv, bool enable) 886 { 887 int err; 888 889 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 890 DPNI_OFF_RX_L3_CSUM, enable); 891 if (err) { 892 netdev_err(priv->net_dev, 893 "dpni_set_offload(RX_L3_CSUM) failed\n"); 894 return err; 895 } 896 897 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 898 DPNI_OFF_RX_L4_CSUM, enable); 899 if (err) { 900 netdev_err(priv->net_dev, 901 "dpni_set_offload(RX_L4_CSUM) failed\n"); 902 return err; 903 } 904 905 return 0; 906 } 907 908 static int set_tx_csum(struct dpaa2_eth_priv *priv, bool enable) 909 { 910 int err; 911 912 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 913 DPNI_OFF_TX_L3_CSUM, enable); 914 if (err) { 915 netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n"); 916 return err; 917 } 918 919 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 920 DPNI_OFF_TX_L4_CSUM, enable); 921 if (err) { 922 netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n"); 923 return err; 924 } 925 926 return 0; 927 } 928 929 /* Perform a single release command to add buffers 930 * to the specified buffer pool 931 */ 932 static int add_bufs(struct dpaa2_eth_priv *priv, 933 struct dpaa2_eth_channel *ch, u16 bpid) 934 { 935 struct device *dev = priv->net_dev->dev.parent; 936 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 937 struct page *page; 938 dma_addr_t addr; 939 int i, err; 940 941 for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) { 942 /* Allocate buffer visible to WRIOP + skb shared info + 943 * alignment padding 944 */ 945 /* allocate one page for each Rx buffer. WRIOP sees 946 * the entire page except for a tailroom reserved for 947 * skb shared info 948 */ 949 page = dev_alloc_pages(0); 950 if (!page) 951 goto err_alloc; 952 953 addr = dma_map_page(dev, page, 0, DPAA2_ETH_RX_BUF_SIZE, 954 DMA_BIDIRECTIONAL); 955 if (unlikely(dma_mapping_error(dev, addr))) 956 goto err_map; 957 958 buf_array[i] = addr; 959 960 /* tracing point */ 961 trace_dpaa2_eth_buf_seed(priv->net_dev, 962 page, DPAA2_ETH_RX_BUF_RAW_SIZE, 963 addr, DPAA2_ETH_RX_BUF_SIZE, 964 bpid); 965 } 966 967 release_bufs: 968 /* In case the portal is busy, retry until successful */ 969 while ((err = dpaa2_io_service_release(ch->dpio, bpid, 970 buf_array, i)) == -EBUSY) 971 cpu_relax(); 972 973 /* If release command failed, clean up and bail out; 974 * not much else we can do about it 975 */ 976 if (err) { 977 free_bufs(priv, buf_array, i); 978 return 0; 979 } 980 981 return i; 982 983 err_map: 984 __free_pages(page, 0); 985 err_alloc: 986 /* If we managed to allocate at least some buffers, 987 * release them to hardware 988 */ 989 if (i) 990 goto release_bufs; 991 992 return 0; 993 } 994 995 static int seed_pool(struct dpaa2_eth_priv *priv, u16 bpid) 996 { 997 int i, j; 998 int new_count; 999 1000 /* This is the lazy seeding of Rx buffer pools. 1001 * dpaa2_add_bufs() is also used on the Rx hotpath and calls 1002 * napi_alloc_frag(). The trouble with that is that it in turn ends up 1003 * calling this_cpu_ptr(), which mandates execution in atomic context. 1004 * Rather than splitting up the code, do a one-off preempt disable. 1005 */ 1006 preempt_disable(); 1007 for (j = 0; j < priv->num_channels; j++) { 1008 for (i = 0; i < DPAA2_ETH_NUM_BUFS; 1009 i += DPAA2_ETH_BUFS_PER_CMD) { 1010 new_count = add_bufs(priv, priv->channel[j], bpid); 1011 priv->channel[j]->buf_count += new_count; 1012 1013 if (new_count < DPAA2_ETH_BUFS_PER_CMD) { 1014 preempt_enable(); 1015 return -ENOMEM; 1016 } 1017 } 1018 } 1019 preempt_enable(); 1020 1021 return 0; 1022 } 1023 1024 /** 1025 * Drain the specified number of buffers from the DPNI's private buffer pool. 1026 * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD 1027 */ 1028 static void drain_bufs(struct dpaa2_eth_priv *priv, int count) 1029 { 1030 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1031 int ret; 1032 1033 do { 1034 ret = dpaa2_io_service_acquire(NULL, priv->bpid, 1035 buf_array, count); 1036 if (ret < 0) { 1037 netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n"); 1038 return; 1039 } 1040 free_bufs(priv, buf_array, ret); 1041 } while (ret); 1042 } 1043 1044 static void drain_pool(struct dpaa2_eth_priv *priv) 1045 { 1046 int i; 1047 1048 drain_bufs(priv, DPAA2_ETH_BUFS_PER_CMD); 1049 drain_bufs(priv, 1); 1050 1051 for (i = 0; i < priv->num_channels; i++) 1052 priv->channel[i]->buf_count = 0; 1053 } 1054 1055 /* Function is called from softirq context only, so we don't need to guard 1056 * the access to percpu count 1057 */ 1058 static int refill_pool(struct dpaa2_eth_priv *priv, 1059 struct dpaa2_eth_channel *ch, 1060 u16 bpid) 1061 { 1062 int new_count; 1063 1064 if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH)) 1065 return 0; 1066 1067 do { 1068 new_count = add_bufs(priv, ch, bpid); 1069 if (unlikely(!new_count)) { 1070 /* Out of memory; abort for now, we'll try later on */ 1071 break; 1072 } 1073 ch->buf_count += new_count; 1074 } while (ch->buf_count < DPAA2_ETH_NUM_BUFS); 1075 1076 if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS)) 1077 return -ENOMEM; 1078 1079 return 0; 1080 } 1081 1082 static int pull_channel(struct dpaa2_eth_channel *ch) 1083 { 1084 int err; 1085 int dequeues = -1; 1086 1087 /* Retry while portal is busy */ 1088 do { 1089 err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id, 1090 ch->store); 1091 dequeues++; 1092 cpu_relax(); 1093 } while (err == -EBUSY); 1094 1095 ch->stats.dequeue_portal_busy += dequeues; 1096 if (unlikely(err)) 1097 ch->stats.pull_err++; 1098 1099 return err; 1100 } 1101 1102 /* NAPI poll routine 1103 * 1104 * Frames are dequeued from the QMan channel associated with this NAPI context. 1105 * Rx, Tx confirmation and (if configured) Rx error frames all count 1106 * towards the NAPI budget. 1107 */ 1108 static int dpaa2_eth_poll(struct napi_struct *napi, int budget) 1109 { 1110 struct dpaa2_eth_channel *ch; 1111 struct dpaa2_eth_priv *priv; 1112 int rx_cleaned = 0, txconf_cleaned = 0; 1113 struct dpaa2_eth_fq *fq, *txc_fq = NULL; 1114 struct netdev_queue *nq; 1115 int store_cleaned, work_done; 1116 struct list_head rx_list; 1117 int err; 1118 1119 ch = container_of(napi, struct dpaa2_eth_channel, napi); 1120 ch->xdp.res = 0; 1121 priv = ch->priv; 1122 1123 INIT_LIST_HEAD(&rx_list); 1124 ch->rx_list = &rx_list; 1125 1126 do { 1127 err = pull_channel(ch); 1128 if (unlikely(err)) 1129 break; 1130 1131 /* Refill pool if appropriate */ 1132 refill_pool(priv, ch, priv->bpid); 1133 1134 store_cleaned = consume_frames(ch, &fq); 1135 if (!store_cleaned) 1136 break; 1137 if (fq->type == DPAA2_RX_FQ) { 1138 rx_cleaned += store_cleaned; 1139 } else { 1140 txconf_cleaned += store_cleaned; 1141 /* We have a single Tx conf FQ on this channel */ 1142 txc_fq = fq; 1143 } 1144 1145 /* If we either consumed the whole NAPI budget with Rx frames 1146 * or we reached the Tx confirmations threshold, we're done. 1147 */ 1148 if (rx_cleaned >= budget || 1149 txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI) { 1150 work_done = budget; 1151 goto out; 1152 } 1153 } while (store_cleaned); 1154 1155 /* We didn't consume the entire budget, so finish napi and 1156 * re-enable data availability notifications 1157 */ 1158 napi_complete_done(napi, rx_cleaned); 1159 do { 1160 err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx); 1161 cpu_relax(); 1162 } while (err == -EBUSY); 1163 WARN_ONCE(err, "CDAN notifications rearm failed on core %d", 1164 ch->nctx.desired_cpu); 1165 1166 work_done = max(rx_cleaned, 1); 1167 1168 out: 1169 netif_receive_skb_list(ch->rx_list); 1170 1171 if (txc_fq && txc_fq->dq_frames) { 1172 nq = netdev_get_tx_queue(priv->net_dev, txc_fq->flowid); 1173 netdev_tx_completed_queue(nq, txc_fq->dq_frames, 1174 txc_fq->dq_bytes); 1175 txc_fq->dq_frames = 0; 1176 txc_fq->dq_bytes = 0; 1177 } 1178 1179 if (ch->xdp.res & XDP_REDIRECT) 1180 xdp_do_flush_map(); 1181 1182 return work_done; 1183 } 1184 1185 static void enable_ch_napi(struct dpaa2_eth_priv *priv) 1186 { 1187 struct dpaa2_eth_channel *ch; 1188 int i; 1189 1190 for (i = 0; i < priv->num_channels; i++) { 1191 ch = priv->channel[i]; 1192 napi_enable(&ch->napi); 1193 } 1194 } 1195 1196 static void disable_ch_napi(struct dpaa2_eth_priv *priv) 1197 { 1198 struct dpaa2_eth_channel *ch; 1199 int i; 1200 1201 for (i = 0; i < priv->num_channels; i++) { 1202 ch = priv->channel[i]; 1203 napi_disable(&ch->napi); 1204 } 1205 } 1206 1207 static int link_state_update(struct dpaa2_eth_priv *priv) 1208 { 1209 struct dpni_link_state state = {0}; 1210 int err; 1211 1212 err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state); 1213 if (unlikely(err)) { 1214 netdev_err(priv->net_dev, 1215 "dpni_get_link_state() failed\n"); 1216 return err; 1217 } 1218 1219 /* Chech link state; speed / duplex changes are not treated yet */ 1220 if (priv->link_state.up == state.up) 1221 return 0; 1222 1223 priv->link_state = state; 1224 if (state.up) { 1225 netif_carrier_on(priv->net_dev); 1226 netif_tx_start_all_queues(priv->net_dev); 1227 } else { 1228 netif_tx_stop_all_queues(priv->net_dev); 1229 netif_carrier_off(priv->net_dev); 1230 } 1231 1232 netdev_info(priv->net_dev, "Link Event: state %s\n", 1233 state.up ? "up" : "down"); 1234 1235 return 0; 1236 } 1237 1238 static int dpaa2_eth_open(struct net_device *net_dev) 1239 { 1240 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1241 int err; 1242 1243 err = seed_pool(priv, priv->bpid); 1244 if (err) { 1245 /* Not much to do; the buffer pool, though not filled up, 1246 * may still contain some buffers which would enable us 1247 * to limp on. 1248 */ 1249 netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n", 1250 priv->dpbp_dev->obj_desc.id, priv->bpid); 1251 } 1252 1253 /* We'll only start the txqs when the link is actually ready; make sure 1254 * we don't race against the link up notification, which may come 1255 * immediately after dpni_enable(); 1256 */ 1257 netif_tx_stop_all_queues(net_dev); 1258 enable_ch_napi(priv); 1259 /* Also, explicitly set carrier off, otherwise netif_carrier_ok() will 1260 * return true and cause 'ip link show' to report the LOWER_UP flag, 1261 * even though the link notification wasn't even received. 1262 */ 1263 netif_carrier_off(net_dev); 1264 1265 err = dpni_enable(priv->mc_io, 0, priv->mc_token); 1266 if (err < 0) { 1267 netdev_err(net_dev, "dpni_enable() failed\n"); 1268 goto enable_err; 1269 } 1270 1271 /* If the DPMAC object has already processed the link up interrupt, 1272 * we have to learn the link state ourselves. 1273 */ 1274 err = link_state_update(priv); 1275 if (err < 0) { 1276 netdev_err(net_dev, "Can't update link state\n"); 1277 goto link_state_err; 1278 } 1279 1280 return 0; 1281 1282 link_state_err: 1283 enable_err: 1284 disable_ch_napi(priv); 1285 drain_pool(priv); 1286 return err; 1287 } 1288 1289 /* Total number of in-flight frames on ingress queues */ 1290 static u32 ingress_fq_count(struct dpaa2_eth_priv *priv) 1291 { 1292 struct dpaa2_eth_fq *fq; 1293 u32 fcnt = 0, bcnt = 0, total = 0; 1294 int i, err; 1295 1296 for (i = 0; i < priv->num_fqs; i++) { 1297 fq = &priv->fq[i]; 1298 err = dpaa2_io_query_fq_count(NULL, fq->fqid, &fcnt, &bcnt); 1299 if (err) { 1300 netdev_warn(priv->net_dev, "query_fq_count failed"); 1301 break; 1302 } 1303 total += fcnt; 1304 } 1305 1306 return total; 1307 } 1308 1309 static void wait_for_fq_empty(struct dpaa2_eth_priv *priv) 1310 { 1311 int retries = 10; 1312 u32 pending; 1313 1314 do { 1315 pending = ingress_fq_count(priv); 1316 if (pending) 1317 msleep(100); 1318 } while (pending && --retries); 1319 } 1320 1321 static int dpaa2_eth_stop(struct net_device *net_dev) 1322 { 1323 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1324 int dpni_enabled = 0; 1325 int retries = 10; 1326 1327 netif_tx_stop_all_queues(net_dev); 1328 netif_carrier_off(net_dev); 1329 1330 /* On dpni_disable(), the MC firmware will: 1331 * - stop MAC Rx and wait for all Rx frames to be enqueued to software 1332 * - cut off WRIOP dequeues from egress FQs and wait until transmission 1333 * of all in flight Tx frames is finished (and corresponding Tx conf 1334 * frames are enqueued back to software) 1335 * 1336 * Before calling dpni_disable(), we wait for all Tx frames to arrive 1337 * on WRIOP. After it finishes, wait until all remaining frames on Rx 1338 * and Tx conf queues are consumed on NAPI poll. 1339 */ 1340 msleep(500); 1341 1342 do { 1343 dpni_disable(priv->mc_io, 0, priv->mc_token); 1344 dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled); 1345 if (dpni_enabled) 1346 /* Allow the hardware some slack */ 1347 msleep(100); 1348 } while (dpni_enabled && --retries); 1349 if (!retries) { 1350 netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n"); 1351 /* Must go on and disable NAPI nonetheless, so we don't crash at 1352 * the next "ifconfig up" 1353 */ 1354 } 1355 1356 wait_for_fq_empty(priv); 1357 disable_ch_napi(priv); 1358 1359 /* Empty the buffer pool */ 1360 drain_pool(priv); 1361 1362 return 0; 1363 } 1364 1365 static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr) 1366 { 1367 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1368 struct device *dev = net_dev->dev.parent; 1369 int err; 1370 1371 err = eth_mac_addr(net_dev, addr); 1372 if (err < 0) { 1373 dev_err(dev, "eth_mac_addr() failed (%d)\n", err); 1374 return err; 1375 } 1376 1377 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 1378 net_dev->dev_addr); 1379 if (err) { 1380 dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err); 1381 return err; 1382 } 1383 1384 return 0; 1385 } 1386 1387 /** Fill in counters maintained by the GPP driver. These may be different from 1388 * the hardware counters obtained by ethtool. 1389 */ 1390 static void dpaa2_eth_get_stats(struct net_device *net_dev, 1391 struct rtnl_link_stats64 *stats) 1392 { 1393 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1394 struct rtnl_link_stats64 *percpu_stats; 1395 u64 *cpustats; 1396 u64 *netstats = (u64 *)stats; 1397 int i, j; 1398 int num = sizeof(struct rtnl_link_stats64) / sizeof(u64); 1399 1400 for_each_possible_cpu(i) { 1401 percpu_stats = per_cpu_ptr(priv->percpu_stats, i); 1402 cpustats = (u64 *)percpu_stats; 1403 for (j = 0; j < num; j++) 1404 netstats[j] += cpustats[j]; 1405 } 1406 } 1407 1408 /* Copy mac unicast addresses from @net_dev to @priv. 1409 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1410 */ 1411 static void add_uc_hw_addr(const struct net_device *net_dev, 1412 struct dpaa2_eth_priv *priv) 1413 { 1414 struct netdev_hw_addr *ha; 1415 int err; 1416 1417 netdev_for_each_uc_addr(ha, net_dev) { 1418 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1419 ha->addr); 1420 if (err) 1421 netdev_warn(priv->net_dev, 1422 "Could not add ucast MAC %pM to the filtering table (err %d)\n", 1423 ha->addr, err); 1424 } 1425 } 1426 1427 /* Copy mac multicast addresses from @net_dev to @priv 1428 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1429 */ 1430 static void add_mc_hw_addr(const struct net_device *net_dev, 1431 struct dpaa2_eth_priv *priv) 1432 { 1433 struct netdev_hw_addr *ha; 1434 int err; 1435 1436 netdev_for_each_mc_addr(ha, net_dev) { 1437 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1438 ha->addr); 1439 if (err) 1440 netdev_warn(priv->net_dev, 1441 "Could not add mcast MAC %pM to the filtering table (err %d)\n", 1442 ha->addr, err); 1443 } 1444 } 1445 1446 static void dpaa2_eth_set_rx_mode(struct net_device *net_dev) 1447 { 1448 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1449 int uc_count = netdev_uc_count(net_dev); 1450 int mc_count = netdev_mc_count(net_dev); 1451 u8 max_mac = priv->dpni_attrs.mac_filter_entries; 1452 u32 options = priv->dpni_attrs.options; 1453 u16 mc_token = priv->mc_token; 1454 struct fsl_mc_io *mc_io = priv->mc_io; 1455 int err; 1456 1457 /* Basic sanity checks; these probably indicate a misconfiguration */ 1458 if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0) 1459 netdev_info(net_dev, 1460 "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n", 1461 max_mac); 1462 1463 /* Force promiscuous if the uc or mc counts exceed our capabilities. */ 1464 if (uc_count > max_mac) { 1465 netdev_info(net_dev, 1466 "Unicast addr count reached %d, max allowed is %d; forcing promisc\n", 1467 uc_count, max_mac); 1468 goto force_promisc; 1469 } 1470 if (mc_count + uc_count > max_mac) { 1471 netdev_info(net_dev, 1472 "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n", 1473 uc_count + mc_count, max_mac); 1474 goto force_mc_promisc; 1475 } 1476 1477 /* Adjust promisc settings due to flag combinations */ 1478 if (net_dev->flags & IFF_PROMISC) 1479 goto force_promisc; 1480 if (net_dev->flags & IFF_ALLMULTI) { 1481 /* First, rebuild unicast filtering table. This should be done 1482 * in promisc mode, in order to avoid frame loss while we 1483 * progressively add entries to the table. 1484 * We don't know whether we had been in promisc already, and 1485 * making an MC call to find out is expensive; so set uc promisc 1486 * nonetheless. 1487 */ 1488 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1489 if (err) 1490 netdev_warn(net_dev, "Can't set uc promisc\n"); 1491 1492 /* Actual uc table reconstruction. */ 1493 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0); 1494 if (err) 1495 netdev_warn(net_dev, "Can't clear uc filters\n"); 1496 add_uc_hw_addr(net_dev, priv); 1497 1498 /* Finally, clear uc promisc and set mc promisc as requested. */ 1499 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1500 if (err) 1501 netdev_warn(net_dev, "Can't clear uc promisc\n"); 1502 goto force_mc_promisc; 1503 } 1504 1505 /* Neither unicast, nor multicast promisc will be on... eventually. 1506 * For now, rebuild mac filtering tables while forcing both of them on. 1507 */ 1508 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1509 if (err) 1510 netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err); 1511 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1512 if (err) 1513 netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err); 1514 1515 /* Actual mac filtering tables reconstruction */ 1516 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1); 1517 if (err) 1518 netdev_warn(net_dev, "Can't clear mac filters\n"); 1519 add_mc_hw_addr(net_dev, priv); 1520 add_uc_hw_addr(net_dev, priv); 1521 1522 /* Now we can clear both ucast and mcast promisc, without risking 1523 * to drop legitimate frames anymore. 1524 */ 1525 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1526 if (err) 1527 netdev_warn(net_dev, "Can't clear ucast promisc\n"); 1528 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0); 1529 if (err) 1530 netdev_warn(net_dev, "Can't clear mcast promisc\n"); 1531 1532 return; 1533 1534 force_promisc: 1535 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1536 if (err) 1537 netdev_warn(net_dev, "Can't set ucast promisc\n"); 1538 force_mc_promisc: 1539 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1540 if (err) 1541 netdev_warn(net_dev, "Can't set mcast promisc\n"); 1542 } 1543 1544 static int dpaa2_eth_set_features(struct net_device *net_dev, 1545 netdev_features_t features) 1546 { 1547 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1548 netdev_features_t changed = features ^ net_dev->features; 1549 bool enable; 1550 int err; 1551 1552 if (changed & NETIF_F_RXCSUM) { 1553 enable = !!(features & NETIF_F_RXCSUM); 1554 err = set_rx_csum(priv, enable); 1555 if (err) 1556 return err; 1557 } 1558 1559 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 1560 enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 1561 err = set_tx_csum(priv, enable); 1562 if (err) 1563 return err; 1564 } 1565 1566 return 0; 1567 } 1568 1569 static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1570 { 1571 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1572 struct hwtstamp_config config; 1573 1574 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 1575 return -EFAULT; 1576 1577 switch (config.tx_type) { 1578 case HWTSTAMP_TX_OFF: 1579 priv->tx_tstamp = false; 1580 break; 1581 case HWTSTAMP_TX_ON: 1582 priv->tx_tstamp = true; 1583 break; 1584 default: 1585 return -ERANGE; 1586 } 1587 1588 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 1589 priv->rx_tstamp = false; 1590 } else { 1591 priv->rx_tstamp = true; 1592 /* TS is set for all frame types, not only those requested */ 1593 config.rx_filter = HWTSTAMP_FILTER_ALL; 1594 } 1595 1596 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 1597 -EFAULT : 0; 1598 } 1599 1600 static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1601 { 1602 if (cmd == SIOCSHWTSTAMP) 1603 return dpaa2_eth_ts_ioctl(dev, rq, cmd); 1604 1605 return -EINVAL; 1606 } 1607 1608 static bool xdp_mtu_valid(struct dpaa2_eth_priv *priv, int mtu) 1609 { 1610 int mfl, linear_mfl; 1611 1612 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1613 linear_mfl = DPAA2_ETH_RX_BUF_SIZE - DPAA2_ETH_RX_HWA_SIZE - 1614 dpaa2_eth_rx_head_room(priv) - XDP_PACKET_HEADROOM; 1615 1616 if (mfl > linear_mfl) { 1617 netdev_warn(priv->net_dev, "Maximum MTU for XDP is %d\n", 1618 linear_mfl - VLAN_ETH_HLEN); 1619 return false; 1620 } 1621 1622 return true; 1623 } 1624 1625 static int set_rx_mfl(struct dpaa2_eth_priv *priv, int mtu, bool has_xdp) 1626 { 1627 int mfl, err; 1628 1629 /* We enforce a maximum Rx frame length based on MTU only if we have 1630 * an XDP program attached (in order to avoid Rx S/G frames). 1631 * Otherwise, we accept all incoming frames as long as they are not 1632 * larger than maximum size supported in hardware 1633 */ 1634 if (has_xdp) 1635 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1636 else 1637 mfl = DPAA2_ETH_MFL; 1638 1639 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, mfl); 1640 if (err) { 1641 netdev_err(priv->net_dev, "dpni_set_max_frame_length failed\n"); 1642 return err; 1643 } 1644 1645 return 0; 1646 } 1647 1648 static int dpaa2_eth_change_mtu(struct net_device *dev, int new_mtu) 1649 { 1650 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1651 int err; 1652 1653 if (!priv->xdp_prog) 1654 goto out; 1655 1656 if (!xdp_mtu_valid(priv, new_mtu)) 1657 return -EINVAL; 1658 1659 err = set_rx_mfl(priv, new_mtu, true); 1660 if (err) 1661 return err; 1662 1663 out: 1664 dev->mtu = new_mtu; 1665 return 0; 1666 } 1667 1668 static int update_rx_buffer_headroom(struct dpaa2_eth_priv *priv, bool has_xdp) 1669 { 1670 struct dpni_buffer_layout buf_layout = {0}; 1671 int err; 1672 1673 err = dpni_get_buffer_layout(priv->mc_io, 0, priv->mc_token, 1674 DPNI_QUEUE_RX, &buf_layout); 1675 if (err) { 1676 netdev_err(priv->net_dev, "dpni_get_buffer_layout failed\n"); 1677 return err; 1678 } 1679 1680 /* Reserve extra headroom for XDP header size changes */ 1681 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv) + 1682 (has_xdp ? XDP_PACKET_HEADROOM : 0); 1683 buf_layout.options = DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM; 1684 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 1685 DPNI_QUEUE_RX, &buf_layout); 1686 if (err) { 1687 netdev_err(priv->net_dev, "dpni_set_buffer_layout failed\n"); 1688 return err; 1689 } 1690 1691 return 0; 1692 } 1693 1694 static int setup_xdp(struct net_device *dev, struct bpf_prog *prog) 1695 { 1696 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1697 struct dpaa2_eth_channel *ch; 1698 struct bpf_prog *old; 1699 bool up, need_update; 1700 int i, err; 1701 1702 if (prog && !xdp_mtu_valid(priv, dev->mtu)) 1703 return -EINVAL; 1704 1705 if (prog) { 1706 prog = bpf_prog_add(prog, priv->num_channels); 1707 if (IS_ERR(prog)) 1708 return PTR_ERR(prog); 1709 } 1710 1711 up = netif_running(dev); 1712 need_update = (!!priv->xdp_prog != !!prog); 1713 1714 if (up) 1715 dpaa2_eth_stop(dev); 1716 1717 /* While in xdp mode, enforce a maximum Rx frame size based on MTU. 1718 * Also, when switching between xdp/non-xdp modes we need to reconfigure 1719 * our Rx buffer layout. Buffer pool was drained on dpaa2_eth_stop, 1720 * so we are sure no old format buffers will be used from now on. 1721 */ 1722 if (need_update) { 1723 err = set_rx_mfl(priv, dev->mtu, !!prog); 1724 if (err) 1725 goto out_err; 1726 err = update_rx_buffer_headroom(priv, !!prog); 1727 if (err) 1728 goto out_err; 1729 } 1730 1731 old = xchg(&priv->xdp_prog, prog); 1732 if (old) 1733 bpf_prog_put(old); 1734 1735 for (i = 0; i < priv->num_channels; i++) { 1736 ch = priv->channel[i]; 1737 old = xchg(&ch->xdp.prog, prog); 1738 if (old) 1739 bpf_prog_put(old); 1740 } 1741 1742 if (up) { 1743 err = dpaa2_eth_open(dev); 1744 if (err) 1745 return err; 1746 } 1747 1748 return 0; 1749 1750 out_err: 1751 if (prog) 1752 bpf_prog_sub(prog, priv->num_channels); 1753 if (up) 1754 dpaa2_eth_open(dev); 1755 1756 return err; 1757 } 1758 1759 static int dpaa2_eth_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1760 { 1761 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1762 1763 switch (xdp->command) { 1764 case XDP_SETUP_PROG: 1765 return setup_xdp(dev, xdp->prog); 1766 case XDP_QUERY_PROG: 1767 xdp->prog_id = priv->xdp_prog ? priv->xdp_prog->aux->id : 0; 1768 break; 1769 default: 1770 return -EINVAL; 1771 } 1772 1773 return 0; 1774 } 1775 1776 static int dpaa2_eth_xdp_xmit_frame(struct net_device *net_dev, 1777 struct xdp_frame *xdpf) 1778 { 1779 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1780 struct device *dev = net_dev->dev.parent; 1781 struct rtnl_link_stats64 *percpu_stats; 1782 struct dpaa2_eth_drv_stats *percpu_extras; 1783 unsigned int needed_headroom; 1784 struct dpaa2_eth_swa *swa; 1785 struct dpaa2_eth_fq *fq; 1786 struct dpaa2_fd fd; 1787 void *buffer_start, *aligned_start; 1788 dma_addr_t addr; 1789 int err, i; 1790 1791 /* We require a minimum headroom to be able to transmit the frame. 1792 * Otherwise return an error and let the original net_device handle it 1793 */ 1794 needed_headroom = dpaa2_eth_needed_headroom(priv, NULL); 1795 if (xdpf->headroom < needed_headroom) 1796 return -EINVAL; 1797 1798 percpu_stats = this_cpu_ptr(priv->percpu_stats); 1799 percpu_extras = this_cpu_ptr(priv->percpu_extras); 1800 1801 /* Setup the FD fields */ 1802 memset(&fd, 0, sizeof(fd)); 1803 1804 /* Align FD address, if possible */ 1805 buffer_start = xdpf->data - needed_headroom; 1806 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 1807 DPAA2_ETH_TX_BUF_ALIGN); 1808 if (aligned_start >= xdpf->data - xdpf->headroom) 1809 buffer_start = aligned_start; 1810 1811 swa = (struct dpaa2_eth_swa *)buffer_start; 1812 /* fill in necessary fields here */ 1813 swa->type = DPAA2_ETH_SWA_XDP; 1814 swa->xdp.dma_size = xdpf->data + xdpf->len - buffer_start; 1815 swa->xdp.xdpf = xdpf; 1816 1817 addr = dma_map_single(dev, buffer_start, 1818 swa->xdp.dma_size, 1819 DMA_BIDIRECTIONAL); 1820 if (unlikely(dma_mapping_error(dev, addr))) { 1821 percpu_stats->tx_dropped++; 1822 return -ENOMEM; 1823 } 1824 1825 dpaa2_fd_set_addr(&fd, addr); 1826 dpaa2_fd_set_offset(&fd, xdpf->data - buffer_start); 1827 dpaa2_fd_set_len(&fd, xdpf->len); 1828 dpaa2_fd_set_format(&fd, dpaa2_fd_single); 1829 dpaa2_fd_set_ctrl(&fd, FD_CTRL_PTA); 1830 1831 fq = &priv->fq[smp_processor_id() % dpaa2_eth_queue_count(priv)]; 1832 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 1833 err = priv->enqueue(priv, fq, &fd, 0); 1834 if (err != -EBUSY) 1835 break; 1836 } 1837 percpu_extras->tx_portal_busy += i; 1838 if (unlikely(err < 0)) { 1839 percpu_stats->tx_errors++; 1840 /* let the Rx device handle the cleanup */ 1841 return err; 1842 } 1843 1844 percpu_stats->tx_packets++; 1845 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fd); 1846 1847 return 0; 1848 } 1849 1850 static int dpaa2_eth_xdp_xmit(struct net_device *net_dev, int n, 1851 struct xdp_frame **frames, u32 flags) 1852 { 1853 int drops = 0; 1854 int i, err; 1855 1856 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 1857 return -EINVAL; 1858 1859 if (!netif_running(net_dev)) 1860 return -ENETDOWN; 1861 1862 for (i = 0; i < n; i++) { 1863 struct xdp_frame *xdpf = frames[i]; 1864 1865 err = dpaa2_eth_xdp_xmit_frame(net_dev, xdpf); 1866 if (err) { 1867 xdp_return_frame_rx_napi(xdpf); 1868 drops++; 1869 } 1870 } 1871 1872 return n - drops; 1873 } 1874 1875 static const struct net_device_ops dpaa2_eth_ops = { 1876 .ndo_open = dpaa2_eth_open, 1877 .ndo_start_xmit = dpaa2_eth_tx, 1878 .ndo_stop = dpaa2_eth_stop, 1879 .ndo_set_mac_address = dpaa2_eth_set_addr, 1880 .ndo_get_stats64 = dpaa2_eth_get_stats, 1881 .ndo_set_rx_mode = dpaa2_eth_set_rx_mode, 1882 .ndo_set_features = dpaa2_eth_set_features, 1883 .ndo_do_ioctl = dpaa2_eth_ioctl, 1884 .ndo_change_mtu = dpaa2_eth_change_mtu, 1885 .ndo_bpf = dpaa2_eth_xdp, 1886 .ndo_xdp_xmit = dpaa2_eth_xdp_xmit, 1887 }; 1888 1889 static void cdan_cb(struct dpaa2_io_notification_ctx *ctx) 1890 { 1891 struct dpaa2_eth_channel *ch; 1892 1893 ch = container_of(ctx, struct dpaa2_eth_channel, nctx); 1894 1895 /* Update NAPI statistics */ 1896 ch->stats.cdan++; 1897 1898 napi_schedule_irqoff(&ch->napi); 1899 } 1900 1901 /* Allocate and configure a DPCON object */ 1902 static struct fsl_mc_device *setup_dpcon(struct dpaa2_eth_priv *priv) 1903 { 1904 struct fsl_mc_device *dpcon; 1905 struct device *dev = priv->net_dev->dev.parent; 1906 struct dpcon_attr attrs; 1907 int err; 1908 1909 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), 1910 FSL_MC_POOL_DPCON, &dpcon); 1911 if (err) { 1912 if (err == -ENXIO) 1913 err = -EPROBE_DEFER; 1914 else 1915 dev_info(dev, "Not enough DPCONs, will go on as-is\n"); 1916 return ERR_PTR(err); 1917 } 1918 1919 err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle); 1920 if (err) { 1921 dev_err(dev, "dpcon_open() failed\n"); 1922 goto free; 1923 } 1924 1925 err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle); 1926 if (err) { 1927 dev_err(dev, "dpcon_reset() failed\n"); 1928 goto close; 1929 } 1930 1931 err = dpcon_get_attributes(priv->mc_io, 0, dpcon->mc_handle, &attrs); 1932 if (err) { 1933 dev_err(dev, "dpcon_get_attributes() failed\n"); 1934 goto close; 1935 } 1936 1937 err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle); 1938 if (err) { 1939 dev_err(dev, "dpcon_enable() failed\n"); 1940 goto close; 1941 } 1942 1943 return dpcon; 1944 1945 close: 1946 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 1947 free: 1948 fsl_mc_object_free(dpcon); 1949 1950 return NULL; 1951 } 1952 1953 static void free_dpcon(struct dpaa2_eth_priv *priv, 1954 struct fsl_mc_device *dpcon) 1955 { 1956 dpcon_disable(priv->mc_io, 0, dpcon->mc_handle); 1957 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 1958 fsl_mc_object_free(dpcon); 1959 } 1960 1961 static struct dpaa2_eth_channel * 1962 alloc_channel(struct dpaa2_eth_priv *priv) 1963 { 1964 struct dpaa2_eth_channel *channel; 1965 struct dpcon_attr attr; 1966 struct device *dev = priv->net_dev->dev.parent; 1967 int err; 1968 1969 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 1970 if (!channel) 1971 return NULL; 1972 1973 channel->dpcon = setup_dpcon(priv); 1974 if (IS_ERR_OR_NULL(channel->dpcon)) { 1975 err = PTR_ERR_OR_ZERO(channel->dpcon); 1976 goto err_setup; 1977 } 1978 1979 err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle, 1980 &attr); 1981 if (err) { 1982 dev_err(dev, "dpcon_get_attributes() failed\n"); 1983 goto err_get_attr; 1984 } 1985 1986 channel->dpcon_id = attr.id; 1987 channel->ch_id = attr.qbman_ch_id; 1988 channel->priv = priv; 1989 1990 return channel; 1991 1992 err_get_attr: 1993 free_dpcon(priv, channel->dpcon); 1994 err_setup: 1995 kfree(channel); 1996 return ERR_PTR(err); 1997 } 1998 1999 static void free_channel(struct dpaa2_eth_priv *priv, 2000 struct dpaa2_eth_channel *channel) 2001 { 2002 free_dpcon(priv, channel->dpcon); 2003 kfree(channel); 2004 } 2005 2006 /* DPIO setup: allocate and configure QBMan channels, setup core affinity 2007 * and register data availability notifications 2008 */ 2009 static int setup_dpio(struct dpaa2_eth_priv *priv) 2010 { 2011 struct dpaa2_io_notification_ctx *nctx; 2012 struct dpaa2_eth_channel *channel; 2013 struct dpcon_notification_cfg dpcon_notif_cfg; 2014 struct device *dev = priv->net_dev->dev.parent; 2015 int i, err; 2016 2017 /* We want the ability to spread ingress traffic (RX, TX conf) to as 2018 * many cores as possible, so we need one channel for each core 2019 * (unless there's fewer queues than cores, in which case the extra 2020 * channels would be wasted). 2021 * Allocate one channel per core and register it to the core's 2022 * affine DPIO. If not enough channels are available for all cores 2023 * or if some cores don't have an affine DPIO, there will be no 2024 * ingress frame processing on those cores. 2025 */ 2026 cpumask_clear(&priv->dpio_cpumask); 2027 for_each_online_cpu(i) { 2028 /* Try to allocate a channel */ 2029 channel = alloc_channel(priv); 2030 if (IS_ERR_OR_NULL(channel)) { 2031 err = PTR_ERR_OR_ZERO(channel); 2032 if (err != -EPROBE_DEFER) 2033 dev_info(dev, 2034 "No affine channel for cpu %d and above\n", i); 2035 goto err_alloc_ch; 2036 } 2037 2038 priv->channel[priv->num_channels] = channel; 2039 2040 nctx = &channel->nctx; 2041 nctx->is_cdan = 1; 2042 nctx->cb = cdan_cb; 2043 nctx->id = channel->ch_id; 2044 nctx->desired_cpu = i; 2045 2046 /* Register the new context */ 2047 channel->dpio = dpaa2_io_service_select(i); 2048 err = dpaa2_io_service_register(channel->dpio, nctx, dev); 2049 if (err) { 2050 dev_dbg(dev, "No affine DPIO for cpu %d\n", i); 2051 /* If no affine DPIO for this core, there's probably 2052 * none available for next cores either. Signal we want 2053 * to retry later, in case the DPIO devices weren't 2054 * probed yet. 2055 */ 2056 err = -EPROBE_DEFER; 2057 goto err_service_reg; 2058 } 2059 2060 /* Register DPCON notification with MC */ 2061 dpcon_notif_cfg.dpio_id = nctx->dpio_id; 2062 dpcon_notif_cfg.priority = 0; 2063 dpcon_notif_cfg.user_ctx = nctx->qman64; 2064 err = dpcon_set_notification(priv->mc_io, 0, 2065 channel->dpcon->mc_handle, 2066 &dpcon_notif_cfg); 2067 if (err) { 2068 dev_err(dev, "dpcon_set_notification failed()\n"); 2069 goto err_set_cdan; 2070 } 2071 2072 /* If we managed to allocate a channel and also found an affine 2073 * DPIO for this core, add it to the final mask 2074 */ 2075 cpumask_set_cpu(i, &priv->dpio_cpumask); 2076 priv->num_channels++; 2077 2078 /* Stop if we already have enough channels to accommodate all 2079 * RX and TX conf queues 2080 */ 2081 if (priv->num_channels == priv->dpni_attrs.num_queues) 2082 break; 2083 } 2084 2085 return 0; 2086 2087 err_set_cdan: 2088 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 2089 err_service_reg: 2090 free_channel(priv, channel); 2091 err_alloc_ch: 2092 if (err == -EPROBE_DEFER) 2093 return err; 2094 2095 if (cpumask_empty(&priv->dpio_cpumask)) { 2096 dev_err(dev, "No cpu with an affine DPIO/DPCON\n"); 2097 return -ENODEV; 2098 } 2099 2100 dev_info(dev, "Cores %*pbl available for processing ingress traffic\n", 2101 cpumask_pr_args(&priv->dpio_cpumask)); 2102 2103 return 0; 2104 } 2105 2106 static void free_dpio(struct dpaa2_eth_priv *priv) 2107 { 2108 struct device *dev = priv->net_dev->dev.parent; 2109 struct dpaa2_eth_channel *ch; 2110 int i; 2111 2112 /* deregister CDAN notifications and free channels */ 2113 for (i = 0; i < priv->num_channels; i++) { 2114 ch = priv->channel[i]; 2115 dpaa2_io_service_deregister(ch->dpio, &ch->nctx, dev); 2116 free_channel(priv, ch); 2117 } 2118 } 2119 2120 static struct dpaa2_eth_channel *get_affine_channel(struct dpaa2_eth_priv *priv, 2121 int cpu) 2122 { 2123 struct device *dev = priv->net_dev->dev.parent; 2124 int i; 2125 2126 for (i = 0; i < priv->num_channels; i++) 2127 if (priv->channel[i]->nctx.desired_cpu == cpu) 2128 return priv->channel[i]; 2129 2130 /* We should never get here. Issue a warning and return 2131 * the first channel, because it's still better than nothing 2132 */ 2133 dev_warn(dev, "No affine channel found for cpu %d\n", cpu); 2134 2135 return priv->channel[0]; 2136 } 2137 2138 static void set_fq_affinity(struct dpaa2_eth_priv *priv) 2139 { 2140 struct device *dev = priv->net_dev->dev.parent; 2141 struct cpumask xps_mask; 2142 struct dpaa2_eth_fq *fq; 2143 int rx_cpu, txc_cpu; 2144 int i, err; 2145 2146 /* For each FQ, pick one channel/CPU to deliver frames to. 2147 * This may well change at runtime, either through irqbalance or 2148 * through direct user intervention. 2149 */ 2150 rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask); 2151 2152 for (i = 0; i < priv->num_fqs; i++) { 2153 fq = &priv->fq[i]; 2154 switch (fq->type) { 2155 case DPAA2_RX_FQ: 2156 fq->target_cpu = rx_cpu; 2157 rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask); 2158 if (rx_cpu >= nr_cpu_ids) 2159 rx_cpu = cpumask_first(&priv->dpio_cpumask); 2160 break; 2161 case DPAA2_TX_CONF_FQ: 2162 fq->target_cpu = txc_cpu; 2163 2164 /* Tell the stack to affine to txc_cpu the Tx queue 2165 * associated with the confirmation one 2166 */ 2167 cpumask_clear(&xps_mask); 2168 cpumask_set_cpu(txc_cpu, &xps_mask); 2169 err = netif_set_xps_queue(priv->net_dev, &xps_mask, 2170 fq->flowid); 2171 if (err) 2172 dev_err(dev, "Error setting XPS queue\n"); 2173 2174 txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask); 2175 if (txc_cpu >= nr_cpu_ids) 2176 txc_cpu = cpumask_first(&priv->dpio_cpumask); 2177 break; 2178 default: 2179 dev_err(dev, "Unknown FQ type: %d\n", fq->type); 2180 } 2181 fq->channel = get_affine_channel(priv, fq->target_cpu); 2182 } 2183 } 2184 2185 static void setup_fqs(struct dpaa2_eth_priv *priv) 2186 { 2187 int i; 2188 2189 /* We have one TxConf FQ per Tx flow. 2190 * The number of Tx and Rx queues is the same. 2191 * Tx queues come first in the fq array. 2192 */ 2193 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2194 priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ; 2195 priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf; 2196 priv->fq[priv->num_fqs++].flowid = (u16)i; 2197 } 2198 2199 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2200 priv->fq[priv->num_fqs].type = DPAA2_RX_FQ; 2201 priv->fq[priv->num_fqs].consume = dpaa2_eth_rx; 2202 priv->fq[priv->num_fqs++].flowid = (u16)i; 2203 } 2204 2205 /* For each FQ, decide on which core to process incoming frames */ 2206 set_fq_affinity(priv); 2207 } 2208 2209 /* Allocate and configure one buffer pool for each interface */ 2210 static int setup_dpbp(struct dpaa2_eth_priv *priv) 2211 { 2212 int err; 2213 struct fsl_mc_device *dpbp_dev; 2214 struct device *dev = priv->net_dev->dev.parent; 2215 struct dpbp_attr dpbp_attrs; 2216 2217 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, 2218 &dpbp_dev); 2219 if (err) { 2220 if (err == -ENXIO) 2221 err = -EPROBE_DEFER; 2222 else 2223 dev_err(dev, "DPBP device allocation failed\n"); 2224 return err; 2225 } 2226 2227 priv->dpbp_dev = dpbp_dev; 2228 2229 err = dpbp_open(priv->mc_io, 0, priv->dpbp_dev->obj_desc.id, 2230 &dpbp_dev->mc_handle); 2231 if (err) { 2232 dev_err(dev, "dpbp_open() failed\n"); 2233 goto err_open; 2234 } 2235 2236 err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle); 2237 if (err) { 2238 dev_err(dev, "dpbp_reset() failed\n"); 2239 goto err_reset; 2240 } 2241 2242 err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle); 2243 if (err) { 2244 dev_err(dev, "dpbp_enable() failed\n"); 2245 goto err_enable; 2246 } 2247 2248 err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle, 2249 &dpbp_attrs); 2250 if (err) { 2251 dev_err(dev, "dpbp_get_attributes() failed\n"); 2252 goto err_get_attr; 2253 } 2254 priv->bpid = dpbp_attrs.bpid; 2255 2256 return 0; 2257 2258 err_get_attr: 2259 dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle); 2260 err_enable: 2261 err_reset: 2262 dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle); 2263 err_open: 2264 fsl_mc_object_free(dpbp_dev); 2265 2266 return err; 2267 } 2268 2269 static void free_dpbp(struct dpaa2_eth_priv *priv) 2270 { 2271 drain_pool(priv); 2272 dpbp_disable(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2273 dpbp_close(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2274 fsl_mc_object_free(priv->dpbp_dev); 2275 } 2276 2277 static int set_buffer_layout(struct dpaa2_eth_priv *priv) 2278 { 2279 struct device *dev = priv->net_dev->dev.parent; 2280 struct dpni_buffer_layout buf_layout = {0}; 2281 u16 rx_buf_align; 2282 int err; 2283 2284 /* We need to check for WRIOP version 1.0.0, but depending on the MC 2285 * version, this number is not always provided correctly on rev1. 2286 * We need to check for both alternatives in this situation. 2287 */ 2288 if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) || 2289 priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0)) 2290 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1; 2291 else 2292 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN; 2293 2294 /* tx buffer */ 2295 buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE; 2296 buf_layout.pass_timestamp = true; 2297 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE | 2298 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2299 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2300 DPNI_QUEUE_TX, &buf_layout); 2301 if (err) { 2302 dev_err(dev, "dpni_set_buffer_layout(TX) failed\n"); 2303 return err; 2304 } 2305 2306 /* tx-confirm buffer */ 2307 buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2308 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2309 DPNI_QUEUE_TX_CONFIRM, &buf_layout); 2310 if (err) { 2311 dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n"); 2312 return err; 2313 } 2314 2315 /* Now that we've set our tx buffer layout, retrieve the minimum 2316 * required tx data offset. 2317 */ 2318 err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token, 2319 &priv->tx_data_offset); 2320 if (err) { 2321 dev_err(dev, "dpni_get_tx_data_offset() failed\n"); 2322 return err; 2323 } 2324 2325 if ((priv->tx_data_offset % 64) != 0) 2326 dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n", 2327 priv->tx_data_offset); 2328 2329 /* rx buffer */ 2330 buf_layout.pass_frame_status = true; 2331 buf_layout.pass_parser_result = true; 2332 buf_layout.data_align = rx_buf_align; 2333 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv); 2334 buf_layout.private_data_size = 0; 2335 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT | 2336 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | 2337 DPNI_BUF_LAYOUT_OPT_DATA_ALIGN | 2338 DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM | 2339 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2340 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2341 DPNI_QUEUE_RX, &buf_layout); 2342 if (err) { 2343 dev_err(dev, "dpni_set_buffer_layout(RX) failed\n"); 2344 return err; 2345 } 2346 2347 return 0; 2348 } 2349 2350 #define DPNI_ENQUEUE_FQID_VER_MAJOR 7 2351 #define DPNI_ENQUEUE_FQID_VER_MINOR 9 2352 2353 static inline int dpaa2_eth_enqueue_qd(struct dpaa2_eth_priv *priv, 2354 struct dpaa2_eth_fq *fq, 2355 struct dpaa2_fd *fd, u8 prio) 2356 { 2357 return dpaa2_io_service_enqueue_qd(fq->channel->dpio, 2358 priv->tx_qdid, prio, 2359 fq->tx_qdbin, fd); 2360 } 2361 2362 static inline int dpaa2_eth_enqueue_fq(struct dpaa2_eth_priv *priv, 2363 struct dpaa2_eth_fq *fq, 2364 struct dpaa2_fd *fd, 2365 u8 prio __always_unused) 2366 { 2367 return dpaa2_io_service_enqueue_fq(fq->channel->dpio, 2368 fq->tx_fqid, fd); 2369 } 2370 2371 static void set_enqueue_mode(struct dpaa2_eth_priv *priv) 2372 { 2373 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 2374 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 2375 priv->enqueue = dpaa2_eth_enqueue_qd; 2376 else 2377 priv->enqueue = dpaa2_eth_enqueue_fq; 2378 } 2379 2380 /* Configure the DPNI object this interface is associated with */ 2381 static int setup_dpni(struct fsl_mc_device *ls_dev) 2382 { 2383 struct device *dev = &ls_dev->dev; 2384 struct dpaa2_eth_priv *priv; 2385 struct net_device *net_dev; 2386 int err; 2387 2388 net_dev = dev_get_drvdata(dev); 2389 priv = netdev_priv(net_dev); 2390 2391 /* get a handle for the DPNI object */ 2392 err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token); 2393 if (err) { 2394 dev_err(dev, "dpni_open() failed\n"); 2395 return err; 2396 } 2397 2398 /* Check if we can work with this DPNI object */ 2399 err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major, 2400 &priv->dpni_ver_minor); 2401 if (err) { 2402 dev_err(dev, "dpni_get_api_version() failed\n"); 2403 goto close; 2404 } 2405 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) { 2406 dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n", 2407 priv->dpni_ver_major, priv->dpni_ver_minor, 2408 DPNI_VER_MAJOR, DPNI_VER_MINOR); 2409 err = -ENOTSUPP; 2410 goto close; 2411 } 2412 2413 ls_dev->mc_io = priv->mc_io; 2414 ls_dev->mc_handle = priv->mc_token; 2415 2416 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2417 if (err) { 2418 dev_err(dev, "dpni_reset() failed\n"); 2419 goto close; 2420 } 2421 2422 err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token, 2423 &priv->dpni_attrs); 2424 if (err) { 2425 dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err); 2426 goto close; 2427 } 2428 2429 err = set_buffer_layout(priv); 2430 if (err) 2431 goto close; 2432 2433 set_enqueue_mode(priv); 2434 2435 priv->cls_rules = devm_kzalloc(dev, sizeof(struct dpaa2_eth_cls_rule) * 2436 dpaa2_eth_fs_count(priv), GFP_KERNEL); 2437 if (!priv->cls_rules) 2438 goto close; 2439 2440 return 0; 2441 2442 close: 2443 dpni_close(priv->mc_io, 0, priv->mc_token); 2444 2445 return err; 2446 } 2447 2448 static void free_dpni(struct dpaa2_eth_priv *priv) 2449 { 2450 int err; 2451 2452 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2453 if (err) 2454 netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n", 2455 err); 2456 2457 dpni_close(priv->mc_io, 0, priv->mc_token); 2458 } 2459 2460 static int setup_rx_flow(struct dpaa2_eth_priv *priv, 2461 struct dpaa2_eth_fq *fq) 2462 { 2463 struct device *dev = priv->net_dev->dev.parent; 2464 struct dpni_queue queue; 2465 struct dpni_queue_id qid; 2466 struct dpni_taildrop td; 2467 int err; 2468 2469 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2470 DPNI_QUEUE_RX, 0, fq->flowid, &queue, &qid); 2471 if (err) { 2472 dev_err(dev, "dpni_get_queue(RX) failed\n"); 2473 return err; 2474 } 2475 2476 fq->fqid = qid.fqid; 2477 2478 queue.destination.id = fq->channel->dpcon_id; 2479 queue.destination.type = DPNI_DEST_DPCON; 2480 queue.destination.priority = 1; 2481 queue.user_context = (u64)(uintptr_t)fq; 2482 queue.flc.stash_control = 1; 2483 queue.flc.value &= 0xFFFFFFFFFFFFFFC0; 2484 /* 01 01 00 - data, annotation, flow context */ 2485 queue.flc.value |= 0x14; 2486 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2487 DPNI_QUEUE_RX, 0, fq->flowid, 2488 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST | 2489 DPNI_QUEUE_OPT_FLC, 2490 &queue); 2491 if (err) { 2492 dev_err(dev, "dpni_set_queue(RX) failed\n"); 2493 return err; 2494 } 2495 2496 td.enable = 1; 2497 td.threshold = DPAA2_ETH_TAILDROP_THRESH; 2498 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, DPNI_CP_QUEUE, 2499 DPNI_QUEUE_RX, 0, fq->flowid, &td); 2500 if (err) { 2501 dev_err(dev, "dpni_set_threshold() failed\n"); 2502 return err; 2503 } 2504 2505 /* xdp_rxq setup */ 2506 err = xdp_rxq_info_reg(&fq->channel->xdp_rxq, priv->net_dev, 2507 fq->flowid); 2508 if (err) { 2509 dev_err(dev, "xdp_rxq_info_reg failed\n"); 2510 return err; 2511 } 2512 2513 err = xdp_rxq_info_reg_mem_model(&fq->channel->xdp_rxq, 2514 MEM_TYPE_PAGE_ORDER0, NULL); 2515 if (err) { 2516 dev_err(dev, "xdp_rxq_info_reg_mem_model failed\n"); 2517 return err; 2518 } 2519 2520 return 0; 2521 } 2522 2523 static int setup_tx_flow(struct dpaa2_eth_priv *priv, 2524 struct dpaa2_eth_fq *fq) 2525 { 2526 struct device *dev = priv->net_dev->dev.parent; 2527 struct dpni_queue queue; 2528 struct dpni_queue_id qid; 2529 int err; 2530 2531 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2532 DPNI_QUEUE_TX, 0, fq->flowid, &queue, &qid); 2533 if (err) { 2534 dev_err(dev, "dpni_get_queue(TX) failed\n"); 2535 return err; 2536 } 2537 2538 fq->tx_qdbin = qid.qdbin; 2539 fq->tx_fqid = qid.fqid; 2540 2541 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2542 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 2543 &queue, &qid); 2544 if (err) { 2545 dev_err(dev, "dpni_get_queue(TX_CONF) failed\n"); 2546 return err; 2547 } 2548 2549 fq->fqid = qid.fqid; 2550 2551 queue.destination.id = fq->channel->dpcon_id; 2552 queue.destination.type = DPNI_DEST_DPCON; 2553 queue.destination.priority = 0; 2554 queue.user_context = (u64)(uintptr_t)fq; 2555 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2556 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 2557 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 2558 &queue); 2559 if (err) { 2560 dev_err(dev, "dpni_set_queue(TX_CONF) failed\n"); 2561 return err; 2562 } 2563 2564 return 0; 2565 } 2566 2567 /* Supported header fields for Rx hash distribution key */ 2568 static const struct dpaa2_eth_dist_fields dist_fields[] = { 2569 { 2570 /* L2 header */ 2571 .rxnfc_field = RXH_L2DA, 2572 .cls_prot = NET_PROT_ETH, 2573 .cls_field = NH_FLD_ETH_DA, 2574 .id = DPAA2_ETH_DIST_ETHDST, 2575 .size = 6, 2576 }, { 2577 .cls_prot = NET_PROT_ETH, 2578 .cls_field = NH_FLD_ETH_SA, 2579 .id = DPAA2_ETH_DIST_ETHSRC, 2580 .size = 6, 2581 }, { 2582 /* This is the last ethertype field parsed: 2583 * depending on frame format, it can be the MAC ethertype 2584 * or the VLAN etype. 2585 */ 2586 .cls_prot = NET_PROT_ETH, 2587 .cls_field = NH_FLD_ETH_TYPE, 2588 .id = DPAA2_ETH_DIST_ETHTYPE, 2589 .size = 2, 2590 }, { 2591 /* VLAN header */ 2592 .rxnfc_field = RXH_VLAN, 2593 .cls_prot = NET_PROT_VLAN, 2594 .cls_field = NH_FLD_VLAN_TCI, 2595 .id = DPAA2_ETH_DIST_VLAN, 2596 .size = 2, 2597 }, { 2598 /* IP header */ 2599 .rxnfc_field = RXH_IP_SRC, 2600 .cls_prot = NET_PROT_IP, 2601 .cls_field = NH_FLD_IP_SRC, 2602 .id = DPAA2_ETH_DIST_IPSRC, 2603 .size = 4, 2604 }, { 2605 .rxnfc_field = RXH_IP_DST, 2606 .cls_prot = NET_PROT_IP, 2607 .cls_field = NH_FLD_IP_DST, 2608 .id = DPAA2_ETH_DIST_IPDST, 2609 .size = 4, 2610 }, { 2611 .rxnfc_field = RXH_L3_PROTO, 2612 .cls_prot = NET_PROT_IP, 2613 .cls_field = NH_FLD_IP_PROTO, 2614 .id = DPAA2_ETH_DIST_IPPROTO, 2615 .size = 1, 2616 }, { 2617 /* Using UDP ports, this is functionally equivalent to raw 2618 * byte pairs from L4 header. 2619 */ 2620 .rxnfc_field = RXH_L4_B_0_1, 2621 .cls_prot = NET_PROT_UDP, 2622 .cls_field = NH_FLD_UDP_PORT_SRC, 2623 .id = DPAA2_ETH_DIST_L4SRC, 2624 .size = 2, 2625 }, { 2626 .rxnfc_field = RXH_L4_B_2_3, 2627 .cls_prot = NET_PROT_UDP, 2628 .cls_field = NH_FLD_UDP_PORT_DST, 2629 .id = DPAA2_ETH_DIST_L4DST, 2630 .size = 2, 2631 }, 2632 }; 2633 2634 /* Configure the Rx hash key using the legacy API */ 2635 static int config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2636 { 2637 struct device *dev = priv->net_dev->dev.parent; 2638 struct dpni_rx_tc_dist_cfg dist_cfg; 2639 int err; 2640 2641 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2642 2643 dist_cfg.key_cfg_iova = key; 2644 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2645 dist_cfg.dist_mode = DPNI_DIST_MODE_HASH; 2646 2647 err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 0, &dist_cfg); 2648 if (err) 2649 dev_err(dev, "dpni_set_rx_tc_dist failed\n"); 2650 2651 return err; 2652 } 2653 2654 /* Configure the Rx hash key using the new API */ 2655 static int config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2656 { 2657 struct device *dev = priv->net_dev->dev.parent; 2658 struct dpni_rx_dist_cfg dist_cfg; 2659 int err; 2660 2661 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2662 2663 dist_cfg.key_cfg_iova = key; 2664 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2665 dist_cfg.enable = 1; 2666 2667 err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2668 if (err) 2669 dev_err(dev, "dpni_set_rx_hash_dist failed\n"); 2670 2671 return err; 2672 } 2673 2674 /* Configure the Rx flow classification key */ 2675 static int config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2676 { 2677 struct device *dev = priv->net_dev->dev.parent; 2678 struct dpni_rx_dist_cfg dist_cfg; 2679 int err; 2680 2681 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2682 2683 dist_cfg.key_cfg_iova = key; 2684 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2685 dist_cfg.enable = 1; 2686 2687 err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2688 if (err) 2689 dev_err(dev, "dpni_set_rx_fs_dist failed\n"); 2690 2691 return err; 2692 } 2693 2694 /* Size of the Rx flow classification key */ 2695 int dpaa2_eth_cls_key_size(u64 fields) 2696 { 2697 int i, size = 0; 2698 2699 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2700 if (!(fields & dist_fields[i].id)) 2701 continue; 2702 size += dist_fields[i].size; 2703 } 2704 2705 return size; 2706 } 2707 2708 /* Offset of header field in Rx classification key */ 2709 int dpaa2_eth_cls_fld_off(int prot, int field) 2710 { 2711 int i, off = 0; 2712 2713 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2714 if (dist_fields[i].cls_prot == prot && 2715 dist_fields[i].cls_field == field) 2716 return off; 2717 off += dist_fields[i].size; 2718 } 2719 2720 WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n"); 2721 return 0; 2722 } 2723 2724 /* Prune unused fields from the classification rule. 2725 * Used when masking is not supported 2726 */ 2727 void dpaa2_eth_cls_trim_rule(void *key_mem, u64 fields) 2728 { 2729 int off = 0, new_off = 0; 2730 int i, size; 2731 2732 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2733 size = dist_fields[i].size; 2734 if (dist_fields[i].id & fields) { 2735 memcpy(key_mem + new_off, key_mem + off, size); 2736 new_off += size; 2737 } 2738 off += size; 2739 } 2740 } 2741 2742 /* Set Rx distribution (hash or flow classification) key 2743 * flags is a combination of RXH_ bits 2744 */ 2745 static int dpaa2_eth_set_dist_key(struct net_device *net_dev, 2746 enum dpaa2_eth_rx_dist type, u64 flags) 2747 { 2748 struct device *dev = net_dev->dev.parent; 2749 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2750 struct dpkg_profile_cfg cls_cfg; 2751 u32 rx_hash_fields = 0; 2752 dma_addr_t key_iova; 2753 u8 *dma_mem; 2754 int i; 2755 int err = 0; 2756 2757 memset(&cls_cfg, 0, sizeof(cls_cfg)); 2758 2759 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2760 struct dpkg_extract *key = 2761 &cls_cfg.extracts[cls_cfg.num_extracts]; 2762 2763 /* For both Rx hashing and classification keys 2764 * we set only the selected fields. 2765 */ 2766 if (!(flags & dist_fields[i].id)) 2767 continue; 2768 if (type == DPAA2_ETH_RX_DIST_HASH) 2769 rx_hash_fields |= dist_fields[i].rxnfc_field; 2770 2771 if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) { 2772 dev_err(dev, "error adding key extraction rule, too many rules?\n"); 2773 return -E2BIG; 2774 } 2775 2776 key->type = DPKG_EXTRACT_FROM_HDR; 2777 key->extract.from_hdr.prot = dist_fields[i].cls_prot; 2778 key->extract.from_hdr.type = DPKG_FULL_FIELD; 2779 key->extract.from_hdr.field = dist_fields[i].cls_field; 2780 cls_cfg.num_extracts++; 2781 } 2782 2783 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 2784 if (!dma_mem) 2785 return -ENOMEM; 2786 2787 err = dpni_prepare_key_cfg(&cls_cfg, dma_mem); 2788 if (err) { 2789 dev_err(dev, "dpni_prepare_key_cfg error %d\n", err); 2790 goto free_key; 2791 } 2792 2793 /* Prepare for setting the rx dist */ 2794 key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, 2795 DMA_TO_DEVICE); 2796 if (dma_mapping_error(dev, key_iova)) { 2797 dev_err(dev, "DMA mapping failed\n"); 2798 err = -ENOMEM; 2799 goto free_key; 2800 } 2801 2802 if (type == DPAA2_ETH_RX_DIST_HASH) { 2803 if (dpaa2_eth_has_legacy_dist(priv)) 2804 err = config_legacy_hash_key(priv, key_iova); 2805 else 2806 err = config_hash_key(priv, key_iova); 2807 } else { 2808 err = config_cls_key(priv, key_iova); 2809 } 2810 2811 dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE, 2812 DMA_TO_DEVICE); 2813 if (!err && type == DPAA2_ETH_RX_DIST_HASH) 2814 priv->rx_hash_fields = rx_hash_fields; 2815 2816 free_key: 2817 kfree(dma_mem); 2818 return err; 2819 } 2820 2821 int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags) 2822 { 2823 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2824 u64 key = 0; 2825 int i; 2826 2827 if (!dpaa2_eth_hash_enabled(priv)) 2828 return -EOPNOTSUPP; 2829 2830 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) 2831 if (dist_fields[i].rxnfc_field & flags) 2832 key |= dist_fields[i].id; 2833 2834 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, key); 2835 } 2836 2837 int dpaa2_eth_set_cls(struct net_device *net_dev, u64 flags) 2838 { 2839 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_CLS, flags); 2840 } 2841 2842 static int dpaa2_eth_set_default_cls(struct dpaa2_eth_priv *priv) 2843 { 2844 struct device *dev = priv->net_dev->dev.parent; 2845 int err; 2846 2847 /* Check if we actually support Rx flow classification */ 2848 if (dpaa2_eth_has_legacy_dist(priv)) { 2849 dev_dbg(dev, "Rx cls not supported by current MC version\n"); 2850 return -EOPNOTSUPP; 2851 } 2852 2853 if (!dpaa2_eth_fs_enabled(priv)) { 2854 dev_dbg(dev, "Rx cls disabled in DPNI options\n"); 2855 return -EOPNOTSUPP; 2856 } 2857 2858 if (!dpaa2_eth_hash_enabled(priv)) { 2859 dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n"); 2860 return -EOPNOTSUPP; 2861 } 2862 2863 /* If there is no support for masking in the classification table, 2864 * we don't set a default key, as it will depend on the rules 2865 * added by the user at runtime. 2866 */ 2867 if (!dpaa2_eth_fs_mask_enabled(priv)) 2868 goto out; 2869 2870 err = dpaa2_eth_set_cls(priv->net_dev, DPAA2_ETH_DIST_ALL); 2871 if (err) 2872 return err; 2873 2874 out: 2875 priv->rx_cls_enabled = 1; 2876 2877 return 0; 2878 } 2879 2880 /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs, 2881 * frame queues and channels 2882 */ 2883 static int bind_dpni(struct dpaa2_eth_priv *priv) 2884 { 2885 struct net_device *net_dev = priv->net_dev; 2886 struct device *dev = net_dev->dev.parent; 2887 struct dpni_pools_cfg pools_params; 2888 struct dpni_error_cfg err_cfg; 2889 int err = 0; 2890 int i; 2891 2892 pools_params.num_dpbp = 1; 2893 pools_params.pools[0].dpbp_id = priv->dpbp_dev->obj_desc.id; 2894 pools_params.pools[0].backup_pool = 0; 2895 pools_params.pools[0].buffer_size = DPAA2_ETH_RX_BUF_SIZE; 2896 err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params); 2897 if (err) { 2898 dev_err(dev, "dpni_set_pools() failed\n"); 2899 return err; 2900 } 2901 2902 /* have the interface implicitly distribute traffic based on 2903 * the default hash key 2904 */ 2905 err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT); 2906 if (err && err != -EOPNOTSUPP) 2907 dev_err(dev, "Failed to configure hashing\n"); 2908 2909 /* Configure the flow classification key; it includes all 2910 * supported header fields and cannot be modified at runtime 2911 */ 2912 err = dpaa2_eth_set_default_cls(priv); 2913 if (err && err != -EOPNOTSUPP) 2914 dev_err(dev, "Failed to configure Rx classification key\n"); 2915 2916 /* Configure handling of error frames */ 2917 err_cfg.errors = DPAA2_FAS_RX_ERR_MASK; 2918 err_cfg.set_frame_annotation = 1; 2919 err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD; 2920 err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token, 2921 &err_cfg); 2922 if (err) { 2923 dev_err(dev, "dpni_set_errors_behavior failed\n"); 2924 return err; 2925 } 2926 2927 /* Configure Rx and Tx conf queues to generate CDANs */ 2928 for (i = 0; i < priv->num_fqs; i++) { 2929 switch (priv->fq[i].type) { 2930 case DPAA2_RX_FQ: 2931 err = setup_rx_flow(priv, &priv->fq[i]); 2932 break; 2933 case DPAA2_TX_CONF_FQ: 2934 err = setup_tx_flow(priv, &priv->fq[i]); 2935 break; 2936 default: 2937 dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type); 2938 return -EINVAL; 2939 } 2940 if (err) 2941 return err; 2942 } 2943 2944 err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token, 2945 DPNI_QUEUE_TX, &priv->tx_qdid); 2946 if (err) { 2947 dev_err(dev, "dpni_get_qdid() failed\n"); 2948 return err; 2949 } 2950 2951 return 0; 2952 } 2953 2954 /* Allocate rings for storing incoming frame descriptors */ 2955 static int alloc_rings(struct dpaa2_eth_priv *priv) 2956 { 2957 struct net_device *net_dev = priv->net_dev; 2958 struct device *dev = net_dev->dev.parent; 2959 int i; 2960 2961 for (i = 0; i < priv->num_channels; i++) { 2962 priv->channel[i]->store = 2963 dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev); 2964 if (!priv->channel[i]->store) { 2965 netdev_err(net_dev, "dpaa2_io_store_create() failed\n"); 2966 goto err_ring; 2967 } 2968 } 2969 2970 return 0; 2971 2972 err_ring: 2973 for (i = 0; i < priv->num_channels; i++) { 2974 if (!priv->channel[i]->store) 2975 break; 2976 dpaa2_io_store_destroy(priv->channel[i]->store); 2977 } 2978 2979 return -ENOMEM; 2980 } 2981 2982 static void free_rings(struct dpaa2_eth_priv *priv) 2983 { 2984 int i; 2985 2986 for (i = 0; i < priv->num_channels; i++) 2987 dpaa2_io_store_destroy(priv->channel[i]->store); 2988 } 2989 2990 static int set_mac_addr(struct dpaa2_eth_priv *priv) 2991 { 2992 struct net_device *net_dev = priv->net_dev; 2993 struct device *dev = net_dev->dev.parent; 2994 u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN]; 2995 int err; 2996 2997 /* Get firmware address, if any */ 2998 err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); 2999 if (err) { 3000 dev_err(dev, "dpni_get_port_mac_addr() failed\n"); 3001 return err; 3002 } 3003 3004 /* Get DPNI attributes address, if any */ 3005 err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 3006 dpni_mac_addr); 3007 if (err) { 3008 dev_err(dev, "dpni_get_primary_mac_addr() failed\n"); 3009 return err; 3010 } 3011 3012 /* First check if firmware has any address configured by bootloader */ 3013 if (!is_zero_ether_addr(mac_addr)) { 3014 /* If the DPMAC addr != DPNI addr, update it */ 3015 if (!ether_addr_equal(mac_addr, dpni_mac_addr)) { 3016 err = dpni_set_primary_mac_addr(priv->mc_io, 0, 3017 priv->mc_token, 3018 mac_addr); 3019 if (err) { 3020 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 3021 return err; 3022 } 3023 } 3024 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len); 3025 } else if (is_zero_ether_addr(dpni_mac_addr)) { 3026 /* No MAC address configured, fill in net_dev->dev_addr 3027 * with a random one 3028 */ 3029 eth_hw_addr_random(net_dev); 3030 dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); 3031 3032 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 3033 net_dev->dev_addr); 3034 if (err) { 3035 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 3036 return err; 3037 } 3038 3039 /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all 3040 * practical purposes, this will be our "permanent" mac address, 3041 * at least until the next reboot. This move will also permit 3042 * register_netdevice() to properly fill up net_dev->perm_addr. 3043 */ 3044 net_dev->addr_assign_type = NET_ADDR_PERM; 3045 } else { 3046 /* NET_ADDR_PERM is default, all we have to do is 3047 * fill in the device addr. 3048 */ 3049 memcpy(net_dev->dev_addr, dpni_mac_addr, net_dev->addr_len); 3050 } 3051 3052 return 0; 3053 } 3054 3055 static int netdev_init(struct net_device *net_dev) 3056 { 3057 struct device *dev = net_dev->dev.parent; 3058 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3059 u32 options = priv->dpni_attrs.options; 3060 u64 supported = 0, not_supported = 0; 3061 u8 bcast_addr[ETH_ALEN]; 3062 u8 num_queues; 3063 int err; 3064 3065 net_dev->netdev_ops = &dpaa2_eth_ops; 3066 net_dev->ethtool_ops = &dpaa2_ethtool_ops; 3067 3068 err = set_mac_addr(priv); 3069 if (err) 3070 return err; 3071 3072 /* Explicitly add the broadcast address to the MAC filtering table */ 3073 eth_broadcast_addr(bcast_addr); 3074 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr); 3075 if (err) { 3076 dev_err(dev, "dpni_add_mac_addr() failed\n"); 3077 return err; 3078 } 3079 3080 /* Set MTU upper limit; lower limit is 68B (default value) */ 3081 net_dev->max_mtu = DPAA2_ETH_MAX_MTU; 3082 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, 3083 DPAA2_ETH_MFL); 3084 if (err) { 3085 dev_err(dev, "dpni_set_max_frame_length() failed\n"); 3086 return err; 3087 } 3088 3089 /* Set actual number of queues in the net device */ 3090 num_queues = dpaa2_eth_queue_count(priv); 3091 err = netif_set_real_num_tx_queues(net_dev, num_queues); 3092 if (err) { 3093 dev_err(dev, "netif_set_real_num_tx_queues() failed\n"); 3094 return err; 3095 } 3096 err = netif_set_real_num_rx_queues(net_dev, num_queues); 3097 if (err) { 3098 dev_err(dev, "netif_set_real_num_rx_queues() failed\n"); 3099 return err; 3100 } 3101 3102 /* Capabilities listing */ 3103 supported |= IFF_LIVE_ADDR_CHANGE; 3104 3105 if (options & DPNI_OPT_NO_MAC_FILTER) 3106 not_supported |= IFF_UNICAST_FLT; 3107 else 3108 supported |= IFF_UNICAST_FLT; 3109 3110 net_dev->priv_flags |= supported; 3111 net_dev->priv_flags &= ~not_supported; 3112 3113 /* Features */ 3114 net_dev->features = NETIF_F_RXCSUM | 3115 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3116 NETIF_F_SG | NETIF_F_HIGHDMA | 3117 NETIF_F_LLTX; 3118 net_dev->hw_features = net_dev->features; 3119 3120 return 0; 3121 } 3122 3123 static int poll_link_state(void *arg) 3124 { 3125 struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg; 3126 int err; 3127 3128 while (!kthread_should_stop()) { 3129 err = link_state_update(priv); 3130 if (unlikely(err)) 3131 return err; 3132 3133 msleep(DPAA2_ETH_LINK_STATE_REFRESH); 3134 } 3135 3136 return 0; 3137 } 3138 3139 static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg) 3140 { 3141 u32 status = ~0; 3142 struct device *dev = (struct device *)arg; 3143 struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev); 3144 struct net_device *net_dev = dev_get_drvdata(dev); 3145 int err; 3146 3147 err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, 3148 DPNI_IRQ_INDEX, &status); 3149 if (unlikely(err)) { 3150 netdev_err(net_dev, "Can't get irq status (err %d)\n", err); 3151 return IRQ_HANDLED; 3152 } 3153 3154 if (status & DPNI_IRQ_EVENT_LINK_CHANGED) 3155 link_state_update(netdev_priv(net_dev)); 3156 3157 return IRQ_HANDLED; 3158 } 3159 3160 static int setup_irqs(struct fsl_mc_device *ls_dev) 3161 { 3162 int err = 0; 3163 struct fsl_mc_device_irq *irq; 3164 3165 err = fsl_mc_allocate_irqs(ls_dev); 3166 if (err) { 3167 dev_err(&ls_dev->dev, "MC irqs allocation failed\n"); 3168 return err; 3169 } 3170 3171 irq = ls_dev->irqs[0]; 3172 err = devm_request_threaded_irq(&ls_dev->dev, irq->msi_desc->irq, 3173 NULL, dpni_irq0_handler_thread, 3174 IRQF_NO_SUSPEND | IRQF_ONESHOT, 3175 dev_name(&ls_dev->dev), &ls_dev->dev); 3176 if (err < 0) { 3177 dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err); 3178 goto free_mc_irq; 3179 } 3180 3181 err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle, 3182 DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED); 3183 if (err < 0) { 3184 dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err); 3185 goto free_irq; 3186 } 3187 3188 err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle, 3189 DPNI_IRQ_INDEX, 1); 3190 if (err < 0) { 3191 dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err); 3192 goto free_irq; 3193 } 3194 3195 return 0; 3196 3197 free_irq: 3198 devm_free_irq(&ls_dev->dev, irq->msi_desc->irq, &ls_dev->dev); 3199 free_mc_irq: 3200 fsl_mc_free_irqs(ls_dev); 3201 3202 return err; 3203 } 3204 3205 static void add_ch_napi(struct dpaa2_eth_priv *priv) 3206 { 3207 int i; 3208 struct dpaa2_eth_channel *ch; 3209 3210 for (i = 0; i < priv->num_channels; i++) { 3211 ch = priv->channel[i]; 3212 /* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */ 3213 netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll, 3214 NAPI_POLL_WEIGHT); 3215 } 3216 } 3217 3218 static void del_ch_napi(struct dpaa2_eth_priv *priv) 3219 { 3220 int i; 3221 struct dpaa2_eth_channel *ch; 3222 3223 for (i = 0; i < priv->num_channels; i++) { 3224 ch = priv->channel[i]; 3225 netif_napi_del(&ch->napi); 3226 } 3227 } 3228 3229 static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev) 3230 { 3231 struct device *dev; 3232 struct net_device *net_dev = NULL; 3233 struct dpaa2_eth_priv *priv = NULL; 3234 int err = 0; 3235 3236 dev = &dpni_dev->dev; 3237 3238 /* Net device */ 3239 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_TX_QUEUES); 3240 if (!net_dev) { 3241 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3242 return -ENOMEM; 3243 } 3244 3245 SET_NETDEV_DEV(net_dev, dev); 3246 dev_set_drvdata(dev, net_dev); 3247 3248 priv = netdev_priv(net_dev); 3249 priv->net_dev = net_dev; 3250 3251 priv->iommu_domain = iommu_get_domain_for_dev(dev); 3252 3253 /* Obtain a MC portal */ 3254 err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, 3255 &priv->mc_io); 3256 if (err) { 3257 if (err == -ENXIO) 3258 err = -EPROBE_DEFER; 3259 else 3260 dev_err(dev, "MC portal allocation failed\n"); 3261 goto err_portal_alloc; 3262 } 3263 3264 /* MC objects initialization and configuration */ 3265 err = setup_dpni(dpni_dev); 3266 if (err) 3267 goto err_dpni_setup; 3268 3269 err = setup_dpio(priv); 3270 if (err) 3271 goto err_dpio_setup; 3272 3273 setup_fqs(priv); 3274 3275 err = setup_dpbp(priv); 3276 if (err) 3277 goto err_dpbp_setup; 3278 3279 err = bind_dpni(priv); 3280 if (err) 3281 goto err_bind; 3282 3283 /* Add a NAPI context for each channel */ 3284 add_ch_napi(priv); 3285 3286 /* Percpu statistics */ 3287 priv->percpu_stats = alloc_percpu(*priv->percpu_stats); 3288 if (!priv->percpu_stats) { 3289 dev_err(dev, "alloc_percpu(percpu_stats) failed\n"); 3290 err = -ENOMEM; 3291 goto err_alloc_percpu_stats; 3292 } 3293 priv->percpu_extras = alloc_percpu(*priv->percpu_extras); 3294 if (!priv->percpu_extras) { 3295 dev_err(dev, "alloc_percpu(percpu_extras) failed\n"); 3296 err = -ENOMEM; 3297 goto err_alloc_percpu_extras; 3298 } 3299 3300 err = netdev_init(net_dev); 3301 if (err) 3302 goto err_netdev_init; 3303 3304 /* Configure checksum offload based on current interface flags */ 3305 err = set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM)); 3306 if (err) 3307 goto err_csum; 3308 3309 err = set_tx_csum(priv, !!(net_dev->features & 3310 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))); 3311 if (err) 3312 goto err_csum; 3313 3314 err = alloc_rings(priv); 3315 if (err) 3316 goto err_alloc_rings; 3317 3318 err = setup_irqs(dpni_dev); 3319 if (err) { 3320 netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n"); 3321 priv->poll_thread = kthread_run(poll_link_state, priv, 3322 "%s_poll_link", net_dev->name); 3323 if (IS_ERR(priv->poll_thread)) { 3324 dev_err(dev, "Error starting polling thread\n"); 3325 goto err_poll_thread; 3326 } 3327 priv->do_link_poll = true; 3328 } 3329 3330 err = register_netdev(net_dev); 3331 if (err < 0) { 3332 dev_err(dev, "register_netdev() failed\n"); 3333 goto err_netdev_reg; 3334 } 3335 3336 #ifdef CONFIG_DEBUG_FS 3337 dpaa2_dbg_add(priv); 3338 #endif 3339 3340 dev_info(dev, "Probed interface %s\n", net_dev->name); 3341 return 0; 3342 3343 err_netdev_reg: 3344 if (priv->do_link_poll) 3345 kthread_stop(priv->poll_thread); 3346 else 3347 fsl_mc_free_irqs(dpni_dev); 3348 err_poll_thread: 3349 free_rings(priv); 3350 err_alloc_rings: 3351 err_csum: 3352 err_netdev_init: 3353 free_percpu(priv->percpu_extras); 3354 err_alloc_percpu_extras: 3355 free_percpu(priv->percpu_stats); 3356 err_alloc_percpu_stats: 3357 del_ch_napi(priv); 3358 err_bind: 3359 free_dpbp(priv); 3360 err_dpbp_setup: 3361 free_dpio(priv); 3362 err_dpio_setup: 3363 free_dpni(priv); 3364 err_dpni_setup: 3365 fsl_mc_portal_free(priv->mc_io); 3366 err_portal_alloc: 3367 dev_set_drvdata(dev, NULL); 3368 free_netdev(net_dev); 3369 3370 return err; 3371 } 3372 3373 static int dpaa2_eth_remove(struct fsl_mc_device *ls_dev) 3374 { 3375 struct device *dev; 3376 struct net_device *net_dev; 3377 struct dpaa2_eth_priv *priv; 3378 3379 dev = &ls_dev->dev; 3380 net_dev = dev_get_drvdata(dev); 3381 priv = netdev_priv(net_dev); 3382 3383 #ifdef CONFIG_DEBUG_FS 3384 dpaa2_dbg_remove(priv); 3385 #endif 3386 unregister_netdev(net_dev); 3387 3388 if (priv->do_link_poll) 3389 kthread_stop(priv->poll_thread); 3390 else 3391 fsl_mc_free_irqs(ls_dev); 3392 3393 free_rings(priv); 3394 free_percpu(priv->percpu_stats); 3395 free_percpu(priv->percpu_extras); 3396 3397 del_ch_napi(priv); 3398 free_dpbp(priv); 3399 free_dpio(priv); 3400 free_dpni(priv); 3401 3402 fsl_mc_portal_free(priv->mc_io); 3403 3404 free_netdev(net_dev); 3405 3406 dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name); 3407 3408 return 0; 3409 } 3410 3411 static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = { 3412 { 3413 .vendor = FSL_MC_VENDOR_FREESCALE, 3414 .obj_type = "dpni", 3415 }, 3416 { .vendor = 0x0 } 3417 }; 3418 MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table); 3419 3420 static struct fsl_mc_driver dpaa2_eth_driver = { 3421 .driver = { 3422 .name = KBUILD_MODNAME, 3423 .owner = THIS_MODULE, 3424 }, 3425 .probe = dpaa2_eth_probe, 3426 .remove = dpaa2_eth_remove, 3427 .match_id_table = dpaa2_eth_match_id_table 3428 }; 3429 3430 static int __init dpaa2_eth_driver_init(void) 3431 { 3432 int err; 3433 3434 dpaa2_eth_dbg_init(); 3435 err = fsl_mc_driver_register(&dpaa2_eth_driver); 3436 if (err) { 3437 dpaa2_eth_dbg_exit(); 3438 return err; 3439 } 3440 3441 return 0; 3442 } 3443 3444 static void __exit dpaa2_eth_driver_exit(void) 3445 { 3446 dpaa2_eth_dbg_exit(); 3447 fsl_mc_driver_unregister(&dpaa2_eth_driver); 3448 } 3449 3450 module_init(dpaa2_eth_driver_init); 3451 module_exit(dpaa2_eth_driver_exit); 3452