1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* Copyright 2014-2016 Freescale Semiconductor Inc. 3 * Copyright 2016-2017 NXP 4 */ 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/platform_device.h> 8 #include <linux/etherdevice.h> 9 #include <linux/of_net.h> 10 #include <linux/interrupt.h> 11 #include <linux/msi.h> 12 #include <linux/kthread.h> 13 #include <linux/iommu.h> 14 #include <linux/net_tstamp.h> 15 #include <linux/fsl/mc.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_trace.h> 18 #include <net/sock.h> 19 20 #include "dpaa2-eth.h" 21 22 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files 23 * using trace events only need to #include <trace/events/sched.h> 24 */ 25 #define CREATE_TRACE_POINTS 26 #include "dpaa2-eth-trace.h" 27 28 MODULE_LICENSE("Dual BSD/GPL"); 29 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 30 MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver"); 31 32 static void *dpaa2_iova_to_virt(struct iommu_domain *domain, 33 dma_addr_t iova_addr) 34 { 35 phys_addr_t phys_addr; 36 37 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 38 39 return phys_to_virt(phys_addr); 40 } 41 42 static void validate_rx_csum(struct dpaa2_eth_priv *priv, 43 u32 fd_status, 44 struct sk_buff *skb) 45 { 46 skb_checksum_none_assert(skb); 47 48 /* HW checksum validation is disabled, nothing to do here */ 49 if (!(priv->net_dev->features & NETIF_F_RXCSUM)) 50 return; 51 52 /* Read checksum validation bits */ 53 if (!((fd_status & DPAA2_FAS_L3CV) && 54 (fd_status & DPAA2_FAS_L4CV))) 55 return; 56 57 /* Inform the stack there's no need to compute L3/L4 csum anymore */ 58 skb->ip_summed = CHECKSUM_UNNECESSARY; 59 } 60 61 /* Free a received FD. 62 * Not to be used for Tx conf FDs or on any other paths. 63 */ 64 static void free_rx_fd(struct dpaa2_eth_priv *priv, 65 const struct dpaa2_fd *fd, 66 void *vaddr) 67 { 68 struct device *dev = priv->net_dev->dev.parent; 69 dma_addr_t addr = dpaa2_fd_get_addr(fd); 70 u8 fd_format = dpaa2_fd_get_format(fd); 71 struct dpaa2_sg_entry *sgt; 72 void *sg_vaddr; 73 int i; 74 75 /* If single buffer frame, just free the data buffer */ 76 if (fd_format == dpaa2_fd_single) 77 goto free_buf; 78 else if (fd_format != dpaa2_fd_sg) 79 /* We don't support any other format */ 80 return; 81 82 /* For S/G frames, we first need to free all SG entries 83 * except the first one, which was taken care of already 84 */ 85 sgt = vaddr + dpaa2_fd_get_offset(fd); 86 for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 87 addr = dpaa2_sg_get_addr(&sgt[i]); 88 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 89 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 90 DMA_BIDIRECTIONAL); 91 92 free_pages((unsigned long)sg_vaddr, 0); 93 if (dpaa2_sg_is_final(&sgt[i])) 94 break; 95 } 96 97 free_buf: 98 free_pages((unsigned long)vaddr, 0); 99 } 100 101 /* Build a linear skb based on a single-buffer frame descriptor */ 102 static struct sk_buff *build_linear_skb(struct dpaa2_eth_channel *ch, 103 const struct dpaa2_fd *fd, 104 void *fd_vaddr) 105 { 106 struct sk_buff *skb = NULL; 107 u16 fd_offset = dpaa2_fd_get_offset(fd); 108 u32 fd_length = dpaa2_fd_get_len(fd); 109 110 ch->buf_count--; 111 112 skb = build_skb(fd_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 113 if (unlikely(!skb)) 114 return NULL; 115 116 skb_reserve(skb, fd_offset); 117 skb_put(skb, fd_length); 118 119 return skb; 120 } 121 122 /* Build a non linear (fragmented) skb based on a S/G table */ 123 static struct sk_buff *build_frag_skb(struct dpaa2_eth_priv *priv, 124 struct dpaa2_eth_channel *ch, 125 struct dpaa2_sg_entry *sgt) 126 { 127 struct sk_buff *skb = NULL; 128 struct device *dev = priv->net_dev->dev.parent; 129 void *sg_vaddr; 130 dma_addr_t sg_addr; 131 u16 sg_offset; 132 u32 sg_length; 133 struct page *page, *head_page; 134 int page_offset; 135 int i; 136 137 for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 138 struct dpaa2_sg_entry *sge = &sgt[i]; 139 140 /* NOTE: We only support SG entries in dpaa2_sg_single format, 141 * but this is the only format we may receive from HW anyway 142 */ 143 144 /* Get the address and length from the S/G entry */ 145 sg_addr = dpaa2_sg_get_addr(sge); 146 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr); 147 dma_unmap_page(dev, sg_addr, DPAA2_ETH_RX_BUF_SIZE, 148 DMA_BIDIRECTIONAL); 149 150 sg_length = dpaa2_sg_get_len(sge); 151 152 if (i == 0) { 153 /* We build the skb around the first data buffer */ 154 skb = build_skb(sg_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 155 if (unlikely(!skb)) { 156 /* Free the first SG entry now, since we already 157 * unmapped it and obtained the virtual address 158 */ 159 free_pages((unsigned long)sg_vaddr, 0); 160 161 /* We still need to subtract the buffers used 162 * by this FD from our software counter 163 */ 164 while (!dpaa2_sg_is_final(&sgt[i]) && 165 i < DPAA2_ETH_MAX_SG_ENTRIES) 166 i++; 167 break; 168 } 169 170 sg_offset = dpaa2_sg_get_offset(sge); 171 skb_reserve(skb, sg_offset); 172 skb_put(skb, sg_length); 173 } else { 174 /* Rest of the data buffers are stored as skb frags */ 175 page = virt_to_page(sg_vaddr); 176 head_page = virt_to_head_page(sg_vaddr); 177 178 /* Offset in page (which may be compound). 179 * Data in subsequent SG entries is stored from the 180 * beginning of the buffer, so we don't need to add the 181 * sg_offset. 182 */ 183 page_offset = ((unsigned long)sg_vaddr & 184 (PAGE_SIZE - 1)) + 185 (page_address(page) - page_address(head_page)); 186 187 skb_add_rx_frag(skb, i - 1, head_page, page_offset, 188 sg_length, DPAA2_ETH_RX_BUF_SIZE); 189 } 190 191 if (dpaa2_sg_is_final(sge)) 192 break; 193 } 194 195 WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT"); 196 197 /* Count all data buffers + SG table buffer */ 198 ch->buf_count -= i + 2; 199 200 return skb; 201 } 202 203 /* Free buffers acquired from the buffer pool or which were meant to 204 * be released in the pool 205 */ 206 static void free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, int count) 207 { 208 struct device *dev = priv->net_dev->dev.parent; 209 void *vaddr; 210 int i; 211 212 for (i = 0; i < count; i++) { 213 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]); 214 dma_unmap_page(dev, buf_array[i], DPAA2_ETH_RX_BUF_SIZE, 215 DMA_BIDIRECTIONAL); 216 free_pages((unsigned long)vaddr, 0); 217 } 218 } 219 220 static void xdp_release_buf(struct dpaa2_eth_priv *priv, 221 struct dpaa2_eth_channel *ch, 222 dma_addr_t addr) 223 { 224 int err; 225 226 ch->xdp.drop_bufs[ch->xdp.drop_cnt++] = addr; 227 if (ch->xdp.drop_cnt < DPAA2_ETH_BUFS_PER_CMD) 228 return; 229 230 while ((err = dpaa2_io_service_release(ch->dpio, priv->bpid, 231 ch->xdp.drop_bufs, 232 ch->xdp.drop_cnt)) == -EBUSY) 233 cpu_relax(); 234 235 if (err) { 236 free_bufs(priv, ch->xdp.drop_bufs, ch->xdp.drop_cnt); 237 ch->buf_count -= ch->xdp.drop_cnt; 238 } 239 240 ch->xdp.drop_cnt = 0; 241 } 242 243 static int xdp_enqueue(struct dpaa2_eth_priv *priv, struct dpaa2_fd *fd, 244 void *buf_start, u16 queue_id) 245 { 246 struct dpaa2_eth_fq *fq; 247 struct dpaa2_faead *faead; 248 u32 ctrl, frc; 249 int i, err; 250 251 /* Mark the egress frame hardware annotation area as valid */ 252 frc = dpaa2_fd_get_frc(fd); 253 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 254 dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL); 255 256 /* Instruct hardware to release the FD buffer directly into 257 * the buffer pool once transmission is completed, instead of 258 * sending a Tx confirmation frame to us 259 */ 260 ctrl = DPAA2_FAEAD_A4V | DPAA2_FAEAD_A2V | DPAA2_FAEAD_EBDDV; 261 faead = dpaa2_get_faead(buf_start, false); 262 faead->ctrl = cpu_to_le32(ctrl); 263 faead->conf_fqid = 0; 264 265 fq = &priv->fq[queue_id]; 266 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 267 err = priv->enqueue(priv, fq, fd, 0); 268 if (err != -EBUSY) 269 break; 270 } 271 272 return err; 273 } 274 275 static u32 run_xdp(struct dpaa2_eth_priv *priv, 276 struct dpaa2_eth_channel *ch, 277 struct dpaa2_eth_fq *rx_fq, 278 struct dpaa2_fd *fd, void *vaddr) 279 { 280 dma_addr_t addr = dpaa2_fd_get_addr(fd); 281 struct rtnl_link_stats64 *percpu_stats; 282 struct bpf_prog *xdp_prog; 283 struct xdp_buff xdp; 284 u32 xdp_act = XDP_PASS; 285 int err; 286 287 percpu_stats = this_cpu_ptr(priv->percpu_stats); 288 289 rcu_read_lock(); 290 291 xdp_prog = READ_ONCE(ch->xdp.prog); 292 if (!xdp_prog) 293 goto out; 294 295 xdp.data = vaddr + dpaa2_fd_get_offset(fd); 296 xdp.data_end = xdp.data + dpaa2_fd_get_len(fd); 297 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; 298 xdp_set_data_meta_invalid(&xdp); 299 xdp.rxq = &ch->xdp_rxq; 300 301 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 302 303 /* xdp.data pointer may have changed */ 304 dpaa2_fd_set_offset(fd, xdp.data - vaddr); 305 dpaa2_fd_set_len(fd, xdp.data_end - xdp.data); 306 307 switch (xdp_act) { 308 case XDP_PASS: 309 break; 310 case XDP_TX: 311 err = xdp_enqueue(priv, fd, vaddr, rx_fq->flowid); 312 if (err) { 313 xdp_release_buf(priv, ch, addr); 314 percpu_stats->tx_errors++; 315 ch->stats.xdp_tx_err++; 316 } else { 317 percpu_stats->tx_packets++; 318 percpu_stats->tx_bytes += dpaa2_fd_get_len(fd); 319 ch->stats.xdp_tx++; 320 } 321 break; 322 default: 323 bpf_warn_invalid_xdp_action(xdp_act); 324 /* fall through */ 325 case XDP_ABORTED: 326 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 327 /* fall through */ 328 case XDP_DROP: 329 xdp_release_buf(priv, ch, addr); 330 ch->stats.xdp_drop++; 331 break; 332 case XDP_REDIRECT: 333 dma_unmap_page(priv->net_dev->dev.parent, addr, 334 DPAA2_ETH_RX_BUF_SIZE, DMA_BIDIRECTIONAL); 335 ch->buf_count--; 336 xdp.data_hard_start = vaddr; 337 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 338 if (unlikely(err)) 339 ch->stats.xdp_drop++; 340 else 341 ch->stats.xdp_redirect++; 342 break; 343 } 344 345 ch->xdp.res |= xdp_act; 346 out: 347 rcu_read_unlock(); 348 return xdp_act; 349 } 350 351 /* Main Rx frame processing routine */ 352 static void dpaa2_eth_rx(struct dpaa2_eth_priv *priv, 353 struct dpaa2_eth_channel *ch, 354 const struct dpaa2_fd *fd, 355 struct dpaa2_eth_fq *fq) 356 { 357 dma_addr_t addr = dpaa2_fd_get_addr(fd); 358 u8 fd_format = dpaa2_fd_get_format(fd); 359 void *vaddr; 360 struct sk_buff *skb; 361 struct rtnl_link_stats64 *percpu_stats; 362 struct dpaa2_eth_drv_stats *percpu_extras; 363 struct device *dev = priv->net_dev->dev.parent; 364 struct dpaa2_fas *fas; 365 void *buf_data; 366 u32 status = 0; 367 u32 xdp_act; 368 369 /* Tracing point */ 370 trace_dpaa2_rx_fd(priv->net_dev, fd); 371 372 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 373 dma_sync_single_for_cpu(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 374 DMA_BIDIRECTIONAL); 375 376 fas = dpaa2_get_fas(vaddr, false); 377 prefetch(fas); 378 buf_data = vaddr + dpaa2_fd_get_offset(fd); 379 prefetch(buf_data); 380 381 percpu_stats = this_cpu_ptr(priv->percpu_stats); 382 percpu_extras = this_cpu_ptr(priv->percpu_extras); 383 384 if (fd_format == dpaa2_fd_single) { 385 xdp_act = run_xdp(priv, ch, fq, (struct dpaa2_fd *)fd, vaddr); 386 if (xdp_act != XDP_PASS) { 387 percpu_stats->rx_packets++; 388 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 389 return; 390 } 391 392 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 393 DMA_BIDIRECTIONAL); 394 skb = build_linear_skb(ch, fd, vaddr); 395 } else if (fd_format == dpaa2_fd_sg) { 396 WARN_ON(priv->xdp_prog); 397 398 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 399 DMA_BIDIRECTIONAL); 400 skb = build_frag_skb(priv, ch, buf_data); 401 free_pages((unsigned long)vaddr, 0); 402 percpu_extras->rx_sg_frames++; 403 percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd); 404 } else { 405 /* We don't support any other format */ 406 goto err_frame_format; 407 } 408 409 if (unlikely(!skb)) 410 goto err_build_skb; 411 412 prefetch(skb->data); 413 414 /* Get the timestamp value */ 415 if (priv->rx_tstamp) { 416 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 417 __le64 *ts = dpaa2_get_ts(vaddr, false); 418 u64 ns; 419 420 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 421 422 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 423 shhwtstamps->hwtstamp = ns_to_ktime(ns); 424 } 425 426 /* Check if we need to validate the L4 csum */ 427 if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) { 428 status = le32_to_cpu(fas->status); 429 validate_rx_csum(priv, status, skb); 430 } 431 432 skb->protocol = eth_type_trans(skb, priv->net_dev); 433 skb_record_rx_queue(skb, fq->flowid); 434 435 percpu_stats->rx_packets++; 436 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 437 438 list_add_tail(&skb->list, ch->rx_list); 439 440 return; 441 442 err_build_skb: 443 free_rx_fd(priv, fd, vaddr); 444 err_frame_format: 445 percpu_stats->rx_dropped++; 446 } 447 448 /* Consume all frames pull-dequeued into the store. This is the simplest way to 449 * make sure we don't accidentally issue another volatile dequeue which would 450 * overwrite (leak) frames already in the store. 451 * 452 * Observance of NAPI budget is not our concern, leaving that to the caller. 453 */ 454 static int consume_frames(struct dpaa2_eth_channel *ch, 455 struct dpaa2_eth_fq **src) 456 { 457 struct dpaa2_eth_priv *priv = ch->priv; 458 struct dpaa2_eth_fq *fq = NULL; 459 struct dpaa2_dq *dq; 460 const struct dpaa2_fd *fd; 461 int cleaned = 0; 462 int is_last; 463 464 do { 465 dq = dpaa2_io_store_next(ch->store, &is_last); 466 if (unlikely(!dq)) { 467 /* If we're here, we *must* have placed a 468 * volatile dequeue comnmand, so keep reading through 469 * the store until we get some sort of valid response 470 * token (either a valid frame or an "empty dequeue") 471 */ 472 continue; 473 } 474 475 fd = dpaa2_dq_fd(dq); 476 fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq); 477 478 fq->consume(priv, ch, fd, fq); 479 cleaned++; 480 } while (!is_last); 481 482 if (!cleaned) 483 return 0; 484 485 fq->stats.frames += cleaned; 486 487 /* A dequeue operation only pulls frames from a single queue 488 * into the store. Return the frame queue as an out param. 489 */ 490 if (src) 491 *src = fq; 492 493 return cleaned; 494 } 495 496 /* Configure the egress frame annotation for timestamp update */ 497 static void enable_tx_tstamp(struct dpaa2_fd *fd, void *buf_start) 498 { 499 struct dpaa2_faead *faead; 500 u32 ctrl, frc; 501 502 /* Mark the egress frame annotation area as valid */ 503 frc = dpaa2_fd_get_frc(fd); 504 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 505 506 /* Set hardware annotation size */ 507 ctrl = dpaa2_fd_get_ctrl(fd); 508 dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL); 509 510 /* enable UPD (update prepanded data) bit in FAEAD field of 511 * hardware frame annotation area 512 */ 513 ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD; 514 faead = dpaa2_get_faead(buf_start, true); 515 faead->ctrl = cpu_to_le32(ctrl); 516 } 517 518 /* Create a frame descriptor based on a fragmented skb */ 519 static int build_sg_fd(struct dpaa2_eth_priv *priv, 520 struct sk_buff *skb, 521 struct dpaa2_fd *fd) 522 { 523 struct device *dev = priv->net_dev->dev.parent; 524 void *sgt_buf = NULL; 525 dma_addr_t addr; 526 int nr_frags = skb_shinfo(skb)->nr_frags; 527 struct dpaa2_sg_entry *sgt; 528 int i, err; 529 int sgt_buf_size; 530 struct scatterlist *scl, *crt_scl; 531 int num_sg; 532 int num_dma_bufs; 533 struct dpaa2_eth_swa *swa; 534 535 /* Create and map scatterlist. 536 * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have 537 * to go beyond nr_frags+1. 538 * Note: We don't support chained scatterlists 539 */ 540 if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1)) 541 return -EINVAL; 542 543 scl = kcalloc(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC); 544 if (unlikely(!scl)) 545 return -ENOMEM; 546 547 sg_init_table(scl, nr_frags + 1); 548 num_sg = skb_to_sgvec(skb, scl, 0, skb->len); 549 num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 550 if (unlikely(!num_dma_bufs)) { 551 err = -ENOMEM; 552 goto dma_map_sg_failed; 553 } 554 555 /* Prepare the HW SGT structure */ 556 sgt_buf_size = priv->tx_data_offset + 557 sizeof(struct dpaa2_sg_entry) * num_dma_bufs; 558 sgt_buf = napi_alloc_frag(sgt_buf_size + DPAA2_ETH_TX_BUF_ALIGN); 559 if (unlikely(!sgt_buf)) { 560 err = -ENOMEM; 561 goto sgt_buf_alloc_failed; 562 } 563 sgt_buf = PTR_ALIGN(sgt_buf, DPAA2_ETH_TX_BUF_ALIGN); 564 memset(sgt_buf, 0, sgt_buf_size); 565 566 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 567 568 /* Fill in the HW SGT structure. 569 * 570 * sgt_buf is zeroed out, so the following fields are implicit 571 * in all sgt entries: 572 * - offset is 0 573 * - format is 'dpaa2_sg_single' 574 */ 575 for_each_sg(scl, crt_scl, num_dma_bufs, i) { 576 dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl)); 577 dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl)); 578 } 579 dpaa2_sg_set_final(&sgt[i - 1], true); 580 581 /* Store the skb backpointer in the SGT buffer. 582 * Fit the scatterlist and the number of buffers alongside the 583 * skb backpointer in the software annotation area. We'll need 584 * all of them on Tx Conf. 585 */ 586 swa = (struct dpaa2_eth_swa *)sgt_buf; 587 swa->type = DPAA2_ETH_SWA_SG; 588 swa->sg.skb = skb; 589 swa->sg.scl = scl; 590 swa->sg.num_sg = num_sg; 591 swa->sg.sgt_size = sgt_buf_size; 592 593 /* Separately map the SGT buffer */ 594 addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 595 if (unlikely(dma_mapping_error(dev, addr))) { 596 err = -ENOMEM; 597 goto dma_map_single_failed; 598 } 599 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 600 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 601 dpaa2_fd_set_addr(fd, addr); 602 dpaa2_fd_set_len(fd, skb->len); 603 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 604 605 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 606 enable_tx_tstamp(fd, sgt_buf); 607 608 return 0; 609 610 dma_map_single_failed: 611 skb_free_frag(sgt_buf); 612 sgt_buf_alloc_failed: 613 dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 614 dma_map_sg_failed: 615 kfree(scl); 616 return err; 617 } 618 619 /* Create a frame descriptor based on a linear skb */ 620 static int build_single_fd(struct dpaa2_eth_priv *priv, 621 struct sk_buff *skb, 622 struct dpaa2_fd *fd) 623 { 624 struct device *dev = priv->net_dev->dev.parent; 625 u8 *buffer_start, *aligned_start; 626 struct dpaa2_eth_swa *swa; 627 dma_addr_t addr; 628 629 buffer_start = skb->data - dpaa2_eth_needed_headroom(priv, skb); 630 631 /* If there's enough room to align the FD address, do it. 632 * It will help hardware optimize accesses. 633 */ 634 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 635 DPAA2_ETH_TX_BUF_ALIGN); 636 if (aligned_start >= skb->head) 637 buffer_start = aligned_start; 638 639 /* Store a backpointer to the skb at the beginning of the buffer 640 * (in the private data area) such that we can release it 641 * on Tx confirm 642 */ 643 swa = (struct dpaa2_eth_swa *)buffer_start; 644 swa->type = DPAA2_ETH_SWA_SINGLE; 645 swa->single.skb = skb; 646 647 addr = dma_map_single(dev, buffer_start, 648 skb_tail_pointer(skb) - buffer_start, 649 DMA_BIDIRECTIONAL); 650 if (unlikely(dma_mapping_error(dev, addr))) 651 return -ENOMEM; 652 653 dpaa2_fd_set_addr(fd, addr); 654 dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start)); 655 dpaa2_fd_set_len(fd, skb->len); 656 dpaa2_fd_set_format(fd, dpaa2_fd_single); 657 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 658 659 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 660 enable_tx_tstamp(fd, buffer_start); 661 662 return 0; 663 } 664 665 /* FD freeing routine on the Tx path 666 * 667 * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb 668 * back-pointed to is also freed. 669 * This can be called either from dpaa2_eth_tx_conf() or on the error path of 670 * dpaa2_eth_tx(). 671 */ 672 static void free_tx_fd(const struct dpaa2_eth_priv *priv, 673 struct dpaa2_eth_fq *fq, 674 const struct dpaa2_fd *fd, bool in_napi) 675 { 676 struct device *dev = priv->net_dev->dev.parent; 677 dma_addr_t fd_addr; 678 struct sk_buff *skb = NULL; 679 unsigned char *buffer_start; 680 struct dpaa2_eth_swa *swa; 681 u8 fd_format = dpaa2_fd_get_format(fd); 682 u32 fd_len = dpaa2_fd_get_len(fd); 683 684 fd_addr = dpaa2_fd_get_addr(fd); 685 buffer_start = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr); 686 swa = (struct dpaa2_eth_swa *)buffer_start; 687 688 if (fd_format == dpaa2_fd_single) { 689 if (swa->type == DPAA2_ETH_SWA_SINGLE) { 690 skb = swa->single.skb; 691 /* Accessing the skb buffer is safe before dma unmap, 692 * because we didn't map the actual skb shell. 693 */ 694 dma_unmap_single(dev, fd_addr, 695 skb_tail_pointer(skb) - buffer_start, 696 DMA_BIDIRECTIONAL); 697 } else { 698 WARN_ONCE(swa->type != DPAA2_ETH_SWA_XDP, "Wrong SWA type"); 699 dma_unmap_single(dev, fd_addr, swa->xdp.dma_size, 700 DMA_BIDIRECTIONAL); 701 } 702 } else if (fd_format == dpaa2_fd_sg) { 703 skb = swa->sg.skb; 704 705 /* Unmap the scatterlist */ 706 dma_unmap_sg(dev, swa->sg.scl, swa->sg.num_sg, 707 DMA_BIDIRECTIONAL); 708 kfree(swa->sg.scl); 709 710 /* Unmap the SGT buffer */ 711 dma_unmap_single(dev, fd_addr, swa->sg.sgt_size, 712 DMA_BIDIRECTIONAL); 713 } else { 714 netdev_dbg(priv->net_dev, "Invalid FD format\n"); 715 return; 716 } 717 718 if (swa->type != DPAA2_ETH_SWA_XDP && in_napi) { 719 fq->dq_frames++; 720 fq->dq_bytes += fd_len; 721 } 722 723 if (swa->type == DPAA2_ETH_SWA_XDP) { 724 xdp_return_frame(swa->xdp.xdpf); 725 return; 726 } 727 728 /* Get the timestamp value */ 729 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 730 struct skb_shared_hwtstamps shhwtstamps; 731 __le64 *ts = dpaa2_get_ts(buffer_start, true); 732 u64 ns; 733 734 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 735 736 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 737 shhwtstamps.hwtstamp = ns_to_ktime(ns); 738 skb_tstamp_tx(skb, &shhwtstamps); 739 } 740 741 /* Free SGT buffer allocated on tx */ 742 if (fd_format != dpaa2_fd_single) 743 skb_free_frag(buffer_start); 744 745 /* Move on with skb release */ 746 napi_consume_skb(skb, in_napi); 747 } 748 749 static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) 750 { 751 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 752 struct dpaa2_fd fd; 753 struct rtnl_link_stats64 *percpu_stats; 754 struct dpaa2_eth_drv_stats *percpu_extras; 755 struct dpaa2_eth_fq *fq; 756 struct netdev_queue *nq; 757 u16 queue_mapping; 758 unsigned int needed_headroom; 759 u32 fd_len; 760 u8 prio = 0; 761 int err, i; 762 763 percpu_stats = this_cpu_ptr(priv->percpu_stats); 764 percpu_extras = this_cpu_ptr(priv->percpu_extras); 765 766 needed_headroom = dpaa2_eth_needed_headroom(priv, skb); 767 if (skb_headroom(skb) < needed_headroom) { 768 struct sk_buff *ns; 769 770 ns = skb_realloc_headroom(skb, needed_headroom); 771 if (unlikely(!ns)) { 772 percpu_stats->tx_dropped++; 773 goto err_alloc_headroom; 774 } 775 percpu_extras->tx_reallocs++; 776 777 if (skb->sk) 778 skb_set_owner_w(ns, skb->sk); 779 780 dev_kfree_skb(skb); 781 skb = ns; 782 } 783 784 /* We'll be holding a back-reference to the skb until Tx Confirmation; 785 * we don't want that overwritten by a concurrent Tx with a cloned skb. 786 */ 787 skb = skb_unshare(skb, GFP_ATOMIC); 788 if (unlikely(!skb)) { 789 /* skb_unshare() has already freed the skb */ 790 percpu_stats->tx_dropped++; 791 return NETDEV_TX_OK; 792 } 793 794 /* Setup the FD fields */ 795 memset(&fd, 0, sizeof(fd)); 796 797 if (skb_is_nonlinear(skb)) { 798 err = build_sg_fd(priv, skb, &fd); 799 percpu_extras->tx_sg_frames++; 800 percpu_extras->tx_sg_bytes += skb->len; 801 } else { 802 err = build_single_fd(priv, skb, &fd); 803 } 804 805 if (unlikely(err)) { 806 percpu_stats->tx_dropped++; 807 goto err_build_fd; 808 } 809 810 /* Tracing point */ 811 trace_dpaa2_tx_fd(net_dev, &fd); 812 813 /* TxConf FQ selection relies on queue id from the stack. 814 * In case of a forwarded frame from another DPNI interface, we choose 815 * a queue affined to the same core that processed the Rx frame 816 */ 817 queue_mapping = skb_get_queue_mapping(skb); 818 819 if (net_dev->num_tc) { 820 prio = netdev_txq_to_tc(net_dev, queue_mapping); 821 /* Hardware interprets priority level 0 as being the highest, 822 * so we need to do a reverse mapping to the netdev tc index 823 */ 824 prio = net_dev->num_tc - prio - 1; 825 /* We have only one FQ array entry for all Tx hardware queues 826 * with the same flow id (but different priority levels) 827 */ 828 queue_mapping %= dpaa2_eth_queue_count(priv); 829 } 830 fq = &priv->fq[queue_mapping]; 831 832 fd_len = dpaa2_fd_get_len(&fd); 833 nq = netdev_get_tx_queue(net_dev, queue_mapping); 834 netdev_tx_sent_queue(nq, fd_len); 835 836 /* Everything that happens after this enqueues might race with 837 * the Tx confirmation callback for this frame 838 */ 839 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 840 err = priv->enqueue(priv, fq, &fd, prio); 841 if (err != -EBUSY) 842 break; 843 } 844 percpu_extras->tx_portal_busy += i; 845 if (unlikely(err < 0)) { 846 percpu_stats->tx_errors++; 847 /* Clean up everything, including freeing the skb */ 848 free_tx_fd(priv, fq, &fd, false); 849 netdev_tx_completed_queue(nq, 1, fd_len); 850 } else { 851 percpu_stats->tx_packets++; 852 percpu_stats->tx_bytes += fd_len; 853 } 854 855 return NETDEV_TX_OK; 856 857 err_build_fd: 858 err_alloc_headroom: 859 dev_kfree_skb(skb); 860 861 return NETDEV_TX_OK; 862 } 863 864 /* Tx confirmation frame processing routine */ 865 static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv, 866 struct dpaa2_eth_channel *ch __always_unused, 867 const struct dpaa2_fd *fd, 868 struct dpaa2_eth_fq *fq) 869 { 870 struct rtnl_link_stats64 *percpu_stats; 871 struct dpaa2_eth_drv_stats *percpu_extras; 872 u32 fd_len = dpaa2_fd_get_len(fd); 873 u32 fd_errors; 874 875 /* Tracing point */ 876 trace_dpaa2_tx_conf_fd(priv->net_dev, fd); 877 878 percpu_extras = this_cpu_ptr(priv->percpu_extras); 879 percpu_extras->tx_conf_frames++; 880 percpu_extras->tx_conf_bytes += fd_len; 881 882 /* Check frame errors in the FD field */ 883 fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK; 884 free_tx_fd(priv, fq, fd, true); 885 886 if (likely(!fd_errors)) 887 return; 888 889 if (net_ratelimit()) 890 netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n", 891 fd_errors); 892 893 percpu_stats = this_cpu_ptr(priv->percpu_stats); 894 /* Tx-conf logically pertains to the egress path. */ 895 percpu_stats->tx_errors++; 896 } 897 898 static int set_rx_csum(struct dpaa2_eth_priv *priv, bool enable) 899 { 900 int err; 901 902 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 903 DPNI_OFF_RX_L3_CSUM, enable); 904 if (err) { 905 netdev_err(priv->net_dev, 906 "dpni_set_offload(RX_L3_CSUM) failed\n"); 907 return err; 908 } 909 910 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 911 DPNI_OFF_RX_L4_CSUM, enable); 912 if (err) { 913 netdev_err(priv->net_dev, 914 "dpni_set_offload(RX_L4_CSUM) failed\n"); 915 return err; 916 } 917 918 return 0; 919 } 920 921 static int set_tx_csum(struct dpaa2_eth_priv *priv, bool enable) 922 { 923 int err; 924 925 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 926 DPNI_OFF_TX_L3_CSUM, enable); 927 if (err) { 928 netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n"); 929 return err; 930 } 931 932 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 933 DPNI_OFF_TX_L4_CSUM, enable); 934 if (err) { 935 netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n"); 936 return err; 937 } 938 939 return 0; 940 } 941 942 /* Perform a single release command to add buffers 943 * to the specified buffer pool 944 */ 945 static int add_bufs(struct dpaa2_eth_priv *priv, 946 struct dpaa2_eth_channel *ch, u16 bpid) 947 { 948 struct device *dev = priv->net_dev->dev.parent; 949 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 950 struct page *page; 951 dma_addr_t addr; 952 int i, err; 953 954 for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) { 955 /* Allocate buffer visible to WRIOP + skb shared info + 956 * alignment padding 957 */ 958 /* allocate one page for each Rx buffer. WRIOP sees 959 * the entire page except for a tailroom reserved for 960 * skb shared info 961 */ 962 page = dev_alloc_pages(0); 963 if (!page) 964 goto err_alloc; 965 966 addr = dma_map_page(dev, page, 0, DPAA2_ETH_RX_BUF_SIZE, 967 DMA_BIDIRECTIONAL); 968 if (unlikely(dma_mapping_error(dev, addr))) 969 goto err_map; 970 971 buf_array[i] = addr; 972 973 /* tracing point */ 974 trace_dpaa2_eth_buf_seed(priv->net_dev, 975 page, DPAA2_ETH_RX_BUF_RAW_SIZE, 976 addr, DPAA2_ETH_RX_BUF_SIZE, 977 bpid); 978 } 979 980 release_bufs: 981 /* In case the portal is busy, retry until successful */ 982 while ((err = dpaa2_io_service_release(ch->dpio, bpid, 983 buf_array, i)) == -EBUSY) 984 cpu_relax(); 985 986 /* If release command failed, clean up and bail out; 987 * not much else we can do about it 988 */ 989 if (err) { 990 free_bufs(priv, buf_array, i); 991 return 0; 992 } 993 994 return i; 995 996 err_map: 997 __free_pages(page, 0); 998 err_alloc: 999 /* If we managed to allocate at least some buffers, 1000 * release them to hardware 1001 */ 1002 if (i) 1003 goto release_bufs; 1004 1005 return 0; 1006 } 1007 1008 static int seed_pool(struct dpaa2_eth_priv *priv, u16 bpid) 1009 { 1010 int i, j; 1011 int new_count; 1012 1013 for (j = 0; j < priv->num_channels; j++) { 1014 for (i = 0; i < DPAA2_ETH_NUM_BUFS; 1015 i += DPAA2_ETH_BUFS_PER_CMD) { 1016 new_count = add_bufs(priv, priv->channel[j], bpid); 1017 priv->channel[j]->buf_count += new_count; 1018 1019 if (new_count < DPAA2_ETH_BUFS_PER_CMD) { 1020 return -ENOMEM; 1021 } 1022 } 1023 } 1024 1025 return 0; 1026 } 1027 1028 /** 1029 * Drain the specified number of buffers from the DPNI's private buffer pool. 1030 * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD 1031 */ 1032 static void drain_bufs(struct dpaa2_eth_priv *priv, int count) 1033 { 1034 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1035 int ret; 1036 1037 do { 1038 ret = dpaa2_io_service_acquire(NULL, priv->bpid, 1039 buf_array, count); 1040 if (ret < 0) { 1041 netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n"); 1042 return; 1043 } 1044 free_bufs(priv, buf_array, ret); 1045 } while (ret); 1046 } 1047 1048 static void drain_pool(struct dpaa2_eth_priv *priv) 1049 { 1050 int i; 1051 1052 drain_bufs(priv, DPAA2_ETH_BUFS_PER_CMD); 1053 drain_bufs(priv, 1); 1054 1055 for (i = 0; i < priv->num_channels; i++) 1056 priv->channel[i]->buf_count = 0; 1057 } 1058 1059 /* Function is called from softirq context only, so we don't need to guard 1060 * the access to percpu count 1061 */ 1062 static int refill_pool(struct dpaa2_eth_priv *priv, 1063 struct dpaa2_eth_channel *ch, 1064 u16 bpid) 1065 { 1066 int new_count; 1067 1068 if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH)) 1069 return 0; 1070 1071 do { 1072 new_count = add_bufs(priv, ch, bpid); 1073 if (unlikely(!new_count)) { 1074 /* Out of memory; abort for now, we'll try later on */ 1075 break; 1076 } 1077 ch->buf_count += new_count; 1078 } while (ch->buf_count < DPAA2_ETH_NUM_BUFS); 1079 1080 if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS)) 1081 return -ENOMEM; 1082 1083 return 0; 1084 } 1085 1086 static int pull_channel(struct dpaa2_eth_channel *ch) 1087 { 1088 int err; 1089 int dequeues = -1; 1090 1091 /* Retry while portal is busy */ 1092 do { 1093 err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id, 1094 ch->store); 1095 dequeues++; 1096 cpu_relax(); 1097 } while (err == -EBUSY); 1098 1099 ch->stats.dequeue_portal_busy += dequeues; 1100 if (unlikely(err)) 1101 ch->stats.pull_err++; 1102 1103 return err; 1104 } 1105 1106 /* NAPI poll routine 1107 * 1108 * Frames are dequeued from the QMan channel associated with this NAPI context. 1109 * Rx, Tx confirmation and (if configured) Rx error frames all count 1110 * towards the NAPI budget. 1111 */ 1112 static int dpaa2_eth_poll(struct napi_struct *napi, int budget) 1113 { 1114 struct dpaa2_eth_channel *ch; 1115 struct dpaa2_eth_priv *priv; 1116 int rx_cleaned = 0, txconf_cleaned = 0; 1117 struct dpaa2_eth_fq *fq, *txc_fq = NULL; 1118 struct netdev_queue *nq; 1119 int store_cleaned, work_done; 1120 struct list_head rx_list; 1121 int err; 1122 1123 ch = container_of(napi, struct dpaa2_eth_channel, napi); 1124 ch->xdp.res = 0; 1125 priv = ch->priv; 1126 1127 INIT_LIST_HEAD(&rx_list); 1128 ch->rx_list = &rx_list; 1129 1130 do { 1131 err = pull_channel(ch); 1132 if (unlikely(err)) 1133 break; 1134 1135 /* Refill pool if appropriate */ 1136 refill_pool(priv, ch, priv->bpid); 1137 1138 store_cleaned = consume_frames(ch, &fq); 1139 if (!store_cleaned) 1140 break; 1141 if (fq->type == DPAA2_RX_FQ) { 1142 rx_cleaned += store_cleaned; 1143 } else { 1144 txconf_cleaned += store_cleaned; 1145 /* We have a single Tx conf FQ on this channel */ 1146 txc_fq = fq; 1147 } 1148 1149 /* If we either consumed the whole NAPI budget with Rx frames 1150 * or we reached the Tx confirmations threshold, we're done. 1151 */ 1152 if (rx_cleaned >= budget || 1153 txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI) { 1154 work_done = budget; 1155 goto out; 1156 } 1157 } while (store_cleaned); 1158 1159 /* We didn't consume the entire budget, so finish napi and 1160 * re-enable data availability notifications 1161 */ 1162 napi_complete_done(napi, rx_cleaned); 1163 do { 1164 err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx); 1165 cpu_relax(); 1166 } while (err == -EBUSY); 1167 WARN_ONCE(err, "CDAN notifications rearm failed on core %d", 1168 ch->nctx.desired_cpu); 1169 1170 work_done = max(rx_cleaned, 1); 1171 1172 out: 1173 netif_receive_skb_list(ch->rx_list); 1174 1175 if (txc_fq && txc_fq->dq_frames) { 1176 nq = netdev_get_tx_queue(priv->net_dev, txc_fq->flowid); 1177 netdev_tx_completed_queue(nq, txc_fq->dq_frames, 1178 txc_fq->dq_bytes); 1179 txc_fq->dq_frames = 0; 1180 txc_fq->dq_bytes = 0; 1181 } 1182 1183 if (ch->xdp.res & XDP_REDIRECT) 1184 xdp_do_flush_map(); 1185 1186 return work_done; 1187 } 1188 1189 static void enable_ch_napi(struct dpaa2_eth_priv *priv) 1190 { 1191 struct dpaa2_eth_channel *ch; 1192 int i; 1193 1194 for (i = 0; i < priv->num_channels; i++) { 1195 ch = priv->channel[i]; 1196 napi_enable(&ch->napi); 1197 } 1198 } 1199 1200 static void disable_ch_napi(struct dpaa2_eth_priv *priv) 1201 { 1202 struct dpaa2_eth_channel *ch; 1203 int i; 1204 1205 for (i = 0; i < priv->num_channels; i++) { 1206 ch = priv->channel[i]; 1207 napi_disable(&ch->napi); 1208 } 1209 } 1210 1211 static int link_state_update(struct dpaa2_eth_priv *priv) 1212 { 1213 struct dpni_link_state state = {0}; 1214 int err; 1215 1216 err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state); 1217 if (unlikely(err)) { 1218 netdev_err(priv->net_dev, 1219 "dpni_get_link_state() failed\n"); 1220 return err; 1221 } 1222 1223 /* Chech link state; speed / duplex changes are not treated yet */ 1224 if (priv->link_state.up == state.up) 1225 return 0; 1226 1227 priv->link_state = state; 1228 if (state.up) { 1229 netif_carrier_on(priv->net_dev); 1230 netif_tx_start_all_queues(priv->net_dev); 1231 } else { 1232 netif_tx_stop_all_queues(priv->net_dev); 1233 netif_carrier_off(priv->net_dev); 1234 } 1235 1236 netdev_info(priv->net_dev, "Link Event: state %s\n", 1237 state.up ? "up" : "down"); 1238 1239 return 0; 1240 } 1241 1242 static int dpaa2_eth_open(struct net_device *net_dev) 1243 { 1244 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1245 int err; 1246 1247 err = seed_pool(priv, priv->bpid); 1248 if (err) { 1249 /* Not much to do; the buffer pool, though not filled up, 1250 * may still contain some buffers which would enable us 1251 * to limp on. 1252 */ 1253 netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n", 1254 priv->dpbp_dev->obj_desc.id, priv->bpid); 1255 } 1256 1257 /* We'll only start the txqs when the link is actually ready; make sure 1258 * we don't race against the link up notification, which may come 1259 * immediately after dpni_enable(); 1260 */ 1261 netif_tx_stop_all_queues(net_dev); 1262 enable_ch_napi(priv); 1263 /* Also, explicitly set carrier off, otherwise netif_carrier_ok() will 1264 * return true and cause 'ip link show' to report the LOWER_UP flag, 1265 * even though the link notification wasn't even received. 1266 */ 1267 netif_carrier_off(net_dev); 1268 1269 err = dpni_enable(priv->mc_io, 0, priv->mc_token); 1270 if (err < 0) { 1271 netdev_err(net_dev, "dpni_enable() failed\n"); 1272 goto enable_err; 1273 } 1274 1275 /* If the DPMAC object has already processed the link up interrupt, 1276 * we have to learn the link state ourselves. 1277 */ 1278 err = link_state_update(priv); 1279 if (err < 0) { 1280 netdev_err(net_dev, "Can't update link state\n"); 1281 goto link_state_err; 1282 } 1283 1284 return 0; 1285 1286 link_state_err: 1287 enable_err: 1288 disable_ch_napi(priv); 1289 drain_pool(priv); 1290 return err; 1291 } 1292 1293 /* Total number of in-flight frames on ingress queues */ 1294 static u32 ingress_fq_count(struct dpaa2_eth_priv *priv) 1295 { 1296 struct dpaa2_eth_fq *fq; 1297 u32 fcnt = 0, bcnt = 0, total = 0; 1298 int i, err; 1299 1300 for (i = 0; i < priv->num_fqs; i++) { 1301 fq = &priv->fq[i]; 1302 err = dpaa2_io_query_fq_count(NULL, fq->fqid, &fcnt, &bcnt); 1303 if (err) { 1304 netdev_warn(priv->net_dev, "query_fq_count failed"); 1305 break; 1306 } 1307 total += fcnt; 1308 } 1309 1310 return total; 1311 } 1312 1313 static void wait_for_fq_empty(struct dpaa2_eth_priv *priv) 1314 { 1315 int retries = 10; 1316 u32 pending; 1317 1318 do { 1319 pending = ingress_fq_count(priv); 1320 if (pending) 1321 msleep(100); 1322 } while (pending && --retries); 1323 } 1324 1325 static int dpaa2_eth_stop(struct net_device *net_dev) 1326 { 1327 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1328 int dpni_enabled = 0; 1329 int retries = 10; 1330 1331 netif_tx_stop_all_queues(net_dev); 1332 netif_carrier_off(net_dev); 1333 1334 /* On dpni_disable(), the MC firmware will: 1335 * - stop MAC Rx and wait for all Rx frames to be enqueued to software 1336 * - cut off WRIOP dequeues from egress FQs and wait until transmission 1337 * of all in flight Tx frames is finished (and corresponding Tx conf 1338 * frames are enqueued back to software) 1339 * 1340 * Before calling dpni_disable(), we wait for all Tx frames to arrive 1341 * on WRIOP. After it finishes, wait until all remaining frames on Rx 1342 * and Tx conf queues are consumed on NAPI poll. 1343 */ 1344 msleep(500); 1345 1346 do { 1347 dpni_disable(priv->mc_io, 0, priv->mc_token); 1348 dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled); 1349 if (dpni_enabled) 1350 /* Allow the hardware some slack */ 1351 msleep(100); 1352 } while (dpni_enabled && --retries); 1353 if (!retries) { 1354 netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n"); 1355 /* Must go on and disable NAPI nonetheless, so we don't crash at 1356 * the next "ifconfig up" 1357 */ 1358 } 1359 1360 wait_for_fq_empty(priv); 1361 disable_ch_napi(priv); 1362 1363 /* Empty the buffer pool */ 1364 drain_pool(priv); 1365 1366 return 0; 1367 } 1368 1369 static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr) 1370 { 1371 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1372 struct device *dev = net_dev->dev.parent; 1373 int err; 1374 1375 err = eth_mac_addr(net_dev, addr); 1376 if (err < 0) { 1377 dev_err(dev, "eth_mac_addr() failed (%d)\n", err); 1378 return err; 1379 } 1380 1381 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 1382 net_dev->dev_addr); 1383 if (err) { 1384 dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err); 1385 return err; 1386 } 1387 1388 return 0; 1389 } 1390 1391 /** Fill in counters maintained by the GPP driver. These may be different from 1392 * the hardware counters obtained by ethtool. 1393 */ 1394 static void dpaa2_eth_get_stats(struct net_device *net_dev, 1395 struct rtnl_link_stats64 *stats) 1396 { 1397 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1398 struct rtnl_link_stats64 *percpu_stats; 1399 u64 *cpustats; 1400 u64 *netstats = (u64 *)stats; 1401 int i, j; 1402 int num = sizeof(struct rtnl_link_stats64) / sizeof(u64); 1403 1404 for_each_possible_cpu(i) { 1405 percpu_stats = per_cpu_ptr(priv->percpu_stats, i); 1406 cpustats = (u64 *)percpu_stats; 1407 for (j = 0; j < num; j++) 1408 netstats[j] += cpustats[j]; 1409 } 1410 } 1411 1412 /* Copy mac unicast addresses from @net_dev to @priv. 1413 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1414 */ 1415 static void add_uc_hw_addr(const struct net_device *net_dev, 1416 struct dpaa2_eth_priv *priv) 1417 { 1418 struct netdev_hw_addr *ha; 1419 int err; 1420 1421 netdev_for_each_uc_addr(ha, net_dev) { 1422 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1423 ha->addr); 1424 if (err) 1425 netdev_warn(priv->net_dev, 1426 "Could not add ucast MAC %pM to the filtering table (err %d)\n", 1427 ha->addr, err); 1428 } 1429 } 1430 1431 /* Copy mac multicast addresses from @net_dev to @priv 1432 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1433 */ 1434 static void add_mc_hw_addr(const struct net_device *net_dev, 1435 struct dpaa2_eth_priv *priv) 1436 { 1437 struct netdev_hw_addr *ha; 1438 int err; 1439 1440 netdev_for_each_mc_addr(ha, net_dev) { 1441 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1442 ha->addr); 1443 if (err) 1444 netdev_warn(priv->net_dev, 1445 "Could not add mcast MAC %pM to the filtering table (err %d)\n", 1446 ha->addr, err); 1447 } 1448 } 1449 1450 static void dpaa2_eth_set_rx_mode(struct net_device *net_dev) 1451 { 1452 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1453 int uc_count = netdev_uc_count(net_dev); 1454 int mc_count = netdev_mc_count(net_dev); 1455 u8 max_mac = priv->dpni_attrs.mac_filter_entries; 1456 u32 options = priv->dpni_attrs.options; 1457 u16 mc_token = priv->mc_token; 1458 struct fsl_mc_io *mc_io = priv->mc_io; 1459 int err; 1460 1461 /* Basic sanity checks; these probably indicate a misconfiguration */ 1462 if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0) 1463 netdev_info(net_dev, 1464 "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n", 1465 max_mac); 1466 1467 /* Force promiscuous if the uc or mc counts exceed our capabilities. */ 1468 if (uc_count > max_mac) { 1469 netdev_info(net_dev, 1470 "Unicast addr count reached %d, max allowed is %d; forcing promisc\n", 1471 uc_count, max_mac); 1472 goto force_promisc; 1473 } 1474 if (mc_count + uc_count > max_mac) { 1475 netdev_info(net_dev, 1476 "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n", 1477 uc_count + mc_count, max_mac); 1478 goto force_mc_promisc; 1479 } 1480 1481 /* Adjust promisc settings due to flag combinations */ 1482 if (net_dev->flags & IFF_PROMISC) 1483 goto force_promisc; 1484 if (net_dev->flags & IFF_ALLMULTI) { 1485 /* First, rebuild unicast filtering table. This should be done 1486 * in promisc mode, in order to avoid frame loss while we 1487 * progressively add entries to the table. 1488 * We don't know whether we had been in promisc already, and 1489 * making an MC call to find out is expensive; so set uc promisc 1490 * nonetheless. 1491 */ 1492 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1493 if (err) 1494 netdev_warn(net_dev, "Can't set uc promisc\n"); 1495 1496 /* Actual uc table reconstruction. */ 1497 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0); 1498 if (err) 1499 netdev_warn(net_dev, "Can't clear uc filters\n"); 1500 add_uc_hw_addr(net_dev, priv); 1501 1502 /* Finally, clear uc promisc and set mc promisc as requested. */ 1503 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1504 if (err) 1505 netdev_warn(net_dev, "Can't clear uc promisc\n"); 1506 goto force_mc_promisc; 1507 } 1508 1509 /* Neither unicast, nor multicast promisc will be on... eventually. 1510 * For now, rebuild mac filtering tables while forcing both of them on. 1511 */ 1512 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1513 if (err) 1514 netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err); 1515 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1516 if (err) 1517 netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err); 1518 1519 /* Actual mac filtering tables reconstruction */ 1520 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1); 1521 if (err) 1522 netdev_warn(net_dev, "Can't clear mac filters\n"); 1523 add_mc_hw_addr(net_dev, priv); 1524 add_uc_hw_addr(net_dev, priv); 1525 1526 /* Now we can clear both ucast and mcast promisc, without risking 1527 * to drop legitimate frames anymore. 1528 */ 1529 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1530 if (err) 1531 netdev_warn(net_dev, "Can't clear ucast promisc\n"); 1532 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0); 1533 if (err) 1534 netdev_warn(net_dev, "Can't clear mcast promisc\n"); 1535 1536 return; 1537 1538 force_promisc: 1539 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1540 if (err) 1541 netdev_warn(net_dev, "Can't set ucast promisc\n"); 1542 force_mc_promisc: 1543 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1544 if (err) 1545 netdev_warn(net_dev, "Can't set mcast promisc\n"); 1546 } 1547 1548 static int dpaa2_eth_set_features(struct net_device *net_dev, 1549 netdev_features_t features) 1550 { 1551 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1552 netdev_features_t changed = features ^ net_dev->features; 1553 bool enable; 1554 int err; 1555 1556 if (changed & NETIF_F_RXCSUM) { 1557 enable = !!(features & NETIF_F_RXCSUM); 1558 err = set_rx_csum(priv, enable); 1559 if (err) 1560 return err; 1561 } 1562 1563 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 1564 enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 1565 err = set_tx_csum(priv, enable); 1566 if (err) 1567 return err; 1568 } 1569 1570 return 0; 1571 } 1572 1573 static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1574 { 1575 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1576 struct hwtstamp_config config; 1577 1578 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 1579 return -EFAULT; 1580 1581 switch (config.tx_type) { 1582 case HWTSTAMP_TX_OFF: 1583 priv->tx_tstamp = false; 1584 break; 1585 case HWTSTAMP_TX_ON: 1586 priv->tx_tstamp = true; 1587 break; 1588 default: 1589 return -ERANGE; 1590 } 1591 1592 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 1593 priv->rx_tstamp = false; 1594 } else { 1595 priv->rx_tstamp = true; 1596 /* TS is set for all frame types, not only those requested */ 1597 config.rx_filter = HWTSTAMP_FILTER_ALL; 1598 } 1599 1600 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 1601 -EFAULT : 0; 1602 } 1603 1604 static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1605 { 1606 if (cmd == SIOCSHWTSTAMP) 1607 return dpaa2_eth_ts_ioctl(dev, rq, cmd); 1608 1609 return -EINVAL; 1610 } 1611 1612 static bool xdp_mtu_valid(struct dpaa2_eth_priv *priv, int mtu) 1613 { 1614 int mfl, linear_mfl; 1615 1616 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1617 linear_mfl = DPAA2_ETH_RX_BUF_SIZE - DPAA2_ETH_RX_HWA_SIZE - 1618 dpaa2_eth_rx_head_room(priv) - XDP_PACKET_HEADROOM; 1619 1620 if (mfl > linear_mfl) { 1621 netdev_warn(priv->net_dev, "Maximum MTU for XDP is %d\n", 1622 linear_mfl - VLAN_ETH_HLEN); 1623 return false; 1624 } 1625 1626 return true; 1627 } 1628 1629 static int set_rx_mfl(struct dpaa2_eth_priv *priv, int mtu, bool has_xdp) 1630 { 1631 int mfl, err; 1632 1633 /* We enforce a maximum Rx frame length based on MTU only if we have 1634 * an XDP program attached (in order to avoid Rx S/G frames). 1635 * Otherwise, we accept all incoming frames as long as they are not 1636 * larger than maximum size supported in hardware 1637 */ 1638 if (has_xdp) 1639 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1640 else 1641 mfl = DPAA2_ETH_MFL; 1642 1643 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, mfl); 1644 if (err) { 1645 netdev_err(priv->net_dev, "dpni_set_max_frame_length failed\n"); 1646 return err; 1647 } 1648 1649 return 0; 1650 } 1651 1652 static int dpaa2_eth_change_mtu(struct net_device *dev, int new_mtu) 1653 { 1654 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1655 int err; 1656 1657 if (!priv->xdp_prog) 1658 goto out; 1659 1660 if (!xdp_mtu_valid(priv, new_mtu)) 1661 return -EINVAL; 1662 1663 err = set_rx_mfl(priv, new_mtu, true); 1664 if (err) 1665 return err; 1666 1667 out: 1668 dev->mtu = new_mtu; 1669 return 0; 1670 } 1671 1672 static int update_rx_buffer_headroom(struct dpaa2_eth_priv *priv, bool has_xdp) 1673 { 1674 struct dpni_buffer_layout buf_layout = {0}; 1675 int err; 1676 1677 err = dpni_get_buffer_layout(priv->mc_io, 0, priv->mc_token, 1678 DPNI_QUEUE_RX, &buf_layout); 1679 if (err) { 1680 netdev_err(priv->net_dev, "dpni_get_buffer_layout failed\n"); 1681 return err; 1682 } 1683 1684 /* Reserve extra headroom for XDP header size changes */ 1685 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv) + 1686 (has_xdp ? XDP_PACKET_HEADROOM : 0); 1687 buf_layout.options = DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM; 1688 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 1689 DPNI_QUEUE_RX, &buf_layout); 1690 if (err) { 1691 netdev_err(priv->net_dev, "dpni_set_buffer_layout failed\n"); 1692 return err; 1693 } 1694 1695 return 0; 1696 } 1697 1698 static int setup_xdp(struct net_device *dev, struct bpf_prog *prog) 1699 { 1700 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1701 struct dpaa2_eth_channel *ch; 1702 struct bpf_prog *old; 1703 bool up, need_update; 1704 int i, err; 1705 1706 if (prog && !xdp_mtu_valid(priv, dev->mtu)) 1707 return -EINVAL; 1708 1709 if (prog) { 1710 prog = bpf_prog_add(prog, priv->num_channels); 1711 if (IS_ERR(prog)) 1712 return PTR_ERR(prog); 1713 } 1714 1715 up = netif_running(dev); 1716 need_update = (!!priv->xdp_prog != !!prog); 1717 1718 if (up) 1719 dpaa2_eth_stop(dev); 1720 1721 /* While in xdp mode, enforce a maximum Rx frame size based on MTU. 1722 * Also, when switching between xdp/non-xdp modes we need to reconfigure 1723 * our Rx buffer layout. Buffer pool was drained on dpaa2_eth_stop, 1724 * so we are sure no old format buffers will be used from now on. 1725 */ 1726 if (need_update) { 1727 err = set_rx_mfl(priv, dev->mtu, !!prog); 1728 if (err) 1729 goto out_err; 1730 err = update_rx_buffer_headroom(priv, !!prog); 1731 if (err) 1732 goto out_err; 1733 } 1734 1735 old = xchg(&priv->xdp_prog, prog); 1736 if (old) 1737 bpf_prog_put(old); 1738 1739 for (i = 0; i < priv->num_channels; i++) { 1740 ch = priv->channel[i]; 1741 old = xchg(&ch->xdp.prog, prog); 1742 if (old) 1743 bpf_prog_put(old); 1744 } 1745 1746 if (up) { 1747 err = dpaa2_eth_open(dev); 1748 if (err) 1749 return err; 1750 } 1751 1752 return 0; 1753 1754 out_err: 1755 if (prog) 1756 bpf_prog_sub(prog, priv->num_channels); 1757 if (up) 1758 dpaa2_eth_open(dev); 1759 1760 return err; 1761 } 1762 1763 static int dpaa2_eth_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1764 { 1765 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1766 1767 switch (xdp->command) { 1768 case XDP_SETUP_PROG: 1769 return setup_xdp(dev, xdp->prog); 1770 case XDP_QUERY_PROG: 1771 xdp->prog_id = priv->xdp_prog ? priv->xdp_prog->aux->id : 0; 1772 break; 1773 default: 1774 return -EINVAL; 1775 } 1776 1777 return 0; 1778 } 1779 1780 static int dpaa2_eth_xdp_xmit_frame(struct net_device *net_dev, 1781 struct xdp_frame *xdpf) 1782 { 1783 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1784 struct device *dev = net_dev->dev.parent; 1785 struct rtnl_link_stats64 *percpu_stats; 1786 struct dpaa2_eth_drv_stats *percpu_extras; 1787 unsigned int needed_headroom; 1788 struct dpaa2_eth_swa *swa; 1789 struct dpaa2_eth_fq *fq; 1790 struct dpaa2_fd fd; 1791 void *buffer_start, *aligned_start; 1792 dma_addr_t addr; 1793 int err, i; 1794 1795 /* We require a minimum headroom to be able to transmit the frame. 1796 * Otherwise return an error and let the original net_device handle it 1797 */ 1798 needed_headroom = dpaa2_eth_needed_headroom(priv, NULL); 1799 if (xdpf->headroom < needed_headroom) 1800 return -EINVAL; 1801 1802 percpu_stats = this_cpu_ptr(priv->percpu_stats); 1803 percpu_extras = this_cpu_ptr(priv->percpu_extras); 1804 1805 /* Setup the FD fields */ 1806 memset(&fd, 0, sizeof(fd)); 1807 1808 /* Align FD address, if possible */ 1809 buffer_start = xdpf->data - needed_headroom; 1810 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 1811 DPAA2_ETH_TX_BUF_ALIGN); 1812 if (aligned_start >= xdpf->data - xdpf->headroom) 1813 buffer_start = aligned_start; 1814 1815 swa = (struct dpaa2_eth_swa *)buffer_start; 1816 /* fill in necessary fields here */ 1817 swa->type = DPAA2_ETH_SWA_XDP; 1818 swa->xdp.dma_size = xdpf->data + xdpf->len - buffer_start; 1819 swa->xdp.xdpf = xdpf; 1820 1821 addr = dma_map_single(dev, buffer_start, 1822 swa->xdp.dma_size, 1823 DMA_BIDIRECTIONAL); 1824 if (unlikely(dma_mapping_error(dev, addr))) { 1825 percpu_stats->tx_dropped++; 1826 return -ENOMEM; 1827 } 1828 1829 dpaa2_fd_set_addr(&fd, addr); 1830 dpaa2_fd_set_offset(&fd, xdpf->data - buffer_start); 1831 dpaa2_fd_set_len(&fd, xdpf->len); 1832 dpaa2_fd_set_format(&fd, dpaa2_fd_single); 1833 dpaa2_fd_set_ctrl(&fd, FD_CTRL_PTA); 1834 1835 fq = &priv->fq[smp_processor_id() % dpaa2_eth_queue_count(priv)]; 1836 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 1837 err = priv->enqueue(priv, fq, &fd, 0); 1838 if (err != -EBUSY) 1839 break; 1840 } 1841 percpu_extras->tx_portal_busy += i; 1842 if (unlikely(err < 0)) { 1843 percpu_stats->tx_errors++; 1844 /* let the Rx device handle the cleanup */ 1845 return err; 1846 } 1847 1848 percpu_stats->tx_packets++; 1849 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fd); 1850 1851 return 0; 1852 } 1853 1854 static int dpaa2_eth_xdp_xmit(struct net_device *net_dev, int n, 1855 struct xdp_frame **frames, u32 flags) 1856 { 1857 int drops = 0; 1858 int i, err; 1859 1860 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 1861 return -EINVAL; 1862 1863 if (!netif_running(net_dev)) 1864 return -ENETDOWN; 1865 1866 for (i = 0; i < n; i++) { 1867 struct xdp_frame *xdpf = frames[i]; 1868 1869 err = dpaa2_eth_xdp_xmit_frame(net_dev, xdpf); 1870 if (err) { 1871 xdp_return_frame_rx_napi(xdpf); 1872 drops++; 1873 } 1874 } 1875 1876 return n - drops; 1877 } 1878 1879 static int update_xps(struct dpaa2_eth_priv *priv) 1880 { 1881 struct net_device *net_dev = priv->net_dev; 1882 struct cpumask xps_mask; 1883 struct dpaa2_eth_fq *fq; 1884 int i, num_queues, netdev_queues; 1885 int err = 0; 1886 1887 num_queues = dpaa2_eth_queue_count(priv); 1888 netdev_queues = (net_dev->num_tc ? : 1) * num_queues; 1889 1890 /* The first <num_queues> entries in priv->fq array are Tx/Tx conf 1891 * queues, so only process those 1892 */ 1893 for (i = 0; i < netdev_queues; i++) { 1894 fq = &priv->fq[i % num_queues]; 1895 1896 cpumask_clear(&xps_mask); 1897 cpumask_set_cpu(fq->target_cpu, &xps_mask); 1898 1899 err = netif_set_xps_queue(net_dev, &xps_mask, i); 1900 if (err) { 1901 netdev_warn_once(net_dev, "Error setting XPS queue\n"); 1902 break; 1903 } 1904 } 1905 1906 return err; 1907 } 1908 1909 static int dpaa2_eth_setup_tc(struct net_device *net_dev, 1910 enum tc_setup_type type, void *type_data) 1911 { 1912 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1913 struct tc_mqprio_qopt *mqprio = type_data; 1914 u8 num_tc, num_queues; 1915 int i; 1916 1917 if (type != TC_SETUP_QDISC_MQPRIO) 1918 return -EINVAL; 1919 1920 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 1921 num_queues = dpaa2_eth_queue_count(priv); 1922 num_tc = mqprio->num_tc; 1923 1924 if (num_tc == net_dev->num_tc) 1925 return 0; 1926 1927 if (num_tc > dpaa2_eth_tc_count(priv)) { 1928 netdev_err(net_dev, "Max %d traffic classes supported\n", 1929 dpaa2_eth_tc_count(priv)); 1930 return -EINVAL; 1931 } 1932 1933 if (!num_tc) { 1934 netdev_reset_tc(net_dev); 1935 netif_set_real_num_tx_queues(net_dev, num_queues); 1936 goto out; 1937 } 1938 1939 netdev_set_num_tc(net_dev, num_tc); 1940 netif_set_real_num_tx_queues(net_dev, num_tc * num_queues); 1941 1942 for (i = 0; i < num_tc; i++) 1943 netdev_set_tc_queue(net_dev, i, num_queues, i * num_queues); 1944 1945 out: 1946 update_xps(priv); 1947 1948 return 0; 1949 } 1950 1951 static const struct net_device_ops dpaa2_eth_ops = { 1952 .ndo_open = dpaa2_eth_open, 1953 .ndo_start_xmit = dpaa2_eth_tx, 1954 .ndo_stop = dpaa2_eth_stop, 1955 .ndo_set_mac_address = dpaa2_eth_set_addr, 1956 .ndo_get_stats64 = dpaa2_eth_get_stats, 1957 .ndo_set_rx_mode = dpaa2_eth_set_rx_mode, 1958 .ndo_set_features = dpaa2_eth_set_features, 1959 .ndo_do_ioctl = dpaa2_eth_ioctl, 1960 .ndo_change_mtu = dpaa2_eth_change_mtu, 1961 .ndo_bpf = dpaa2_eth_xdp, 1962 .ndo_xdp_xmit = dpaa2_eth_xdp_xmit, 1963 .ndo_setup_tc = dpaa2_eth_setup_tc, 1964 }; 1965 1966 static void cdan_cb(struct dpaa2_io_notification_ctx *ctx) 1967 { 1968 struct dpaa2_eth_channel *ch; 1969 1970 ch = container_of(ctx, struct dpaa2_eth_channel, nctx); 1971 1972 /* Update NAPI statistics */ 1973 ch->stats.cdan++; 1974 1975 napi_schedule_irqoff(&ch->napi); 1976 } 1977 1978 /* Allocate and configure a DPCON object */ 1979 static struct fsl_mc_device *setup_dpcon(struct dpaa2_eth_priv *priv) 1980 { 1981 struct fsl_mc_device *dpcon; 1982 struct device *dev = priv->net_dev->dev.parent; 1983 struct dpcon_attr attrs; 1984 int err; 1985 1986 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), 1987 FSL_MC_POOL_DPCON, &dpcon); 1988 if (err) { 1989 if (err == -ENXIO) 1990 err = -EPROBE_DEFER; 1991 else 1992 dev_info(dev, "Not enough DPCONs, will go on as-is\n"); 1993 return ERR_PTR(err); 1994 } 1995 1996 err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle); 1997 if (err) { 1998 dev_err(dev, "dpcon_open() failed\n"); 1999 goto free; 2000 } 2001 2002 err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle); 2003 if (err) { 2004 dev_err(dev, "dpcon_reset() failed\n"); 2005 goto close; 2006 } 2007 2008 err = dpcon_get_attributes(priv->mc_io, 0, dpcon->mc_handle, &attrs); 2009 if (err) { 2010 dev_err(dev, "dpcon_get_attributes() failed\n"); 2011 goto close; 2012 } 2013 2014 err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle); 2015 if (err) { 2016 dev_err(dev, "dpcon_enable() failed\n"); 2017 goto close; 2018 } 2019 2020 return dpcon; 2021 2022 close: 2023 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 2024 free: 2025 fsl_mc_object_free(dpcon); 2026 2027 return NULL; 2028 } 2029 2030 static void free_dpcon(struct dpaa2_eth_priv *priv, 2031 struct fsl_mc_device *dpcon) 2032 { 2033 dpcon_disable(priv->mc_io, 0, dpcon->mc_handle); 2034 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 2035 fsl_mc_object_free(dpcon); 2036 } 2037 2038 static struct dpaa2_eth_channel * 2039 alloc_channel(struct dpaa2_eth_priv *priv) 2040 { 2041 struct dpaa2_eth_channel *channel; 2042 struct dpcon_attr attr; 2043 struct device *dev = priv->net_dev->dev.parent; 2044 int err; 2045 2046 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 2047 if (!channel) 2048 return NULL; 2049 2050 channel->dpcon = setup_dpcon(priv); 2051 if (IS_ERR_OR_NULL(channel->dpcon)) { 2052 err = PTR_ERR_OR_ZERO(channel->dpcon); 2053 goto err_setup; 2054 } 2055 2056 err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle, 2057 &attr); 2058 if (err) { 2059 dev_err(dev, "dpcon_get_attributes() failed\n"); 2060 goto err_get_attr; 2061 } 2062 2063 channel->dpcon_id = attr.id; 2064 channel->ch_id = attr.qbman_ch_id; 2065 channel->priv = priv; 2066 2067 return channel; 2068 2069 err_get_attr: 2070 free_dpcon(priv, channel->dpcon); 2071 err_setup: 2072 kfree(channel); 2073 return ERR_PTR(err); 2074 } 2075 2076 static void free_channel(struct dpaa2_eth_priv *priv, 2077 struct dpaa2_eth_channel *channel) 2078 { 2079 free_dpcon(priv, channel->dpcon); 2080 kfree(channel); 2081 } 2082 2083 /* DPIO setup: allocate and configure QBMan channels, setup core affinity 2084 * and register data availability notifications 2085 */ 2086 static int setup_dpio(struct dpaa2_eth_priv *priv) 2087 { 2088 struct dpaa2_io_notification_ctx *nctx; 2089 struct dpaa2_eth_channel *channel; 2090 struct dpcon_notification_cfg dpcon_notif_cfg; 2091 struct device *dev = priv->net_dev->dev.parent; 2092 int i, err; 2093 2094 /* We want the ability to spread ingress traffic (RX, TX conf) to as 2095 * many cores as possible, so we need one channel for each core 2096 * (unless there's fewer queues than cores, in which case the extra 2097 * channels would be wasted). 2098 * Allocate one channel per core and register it to the core's 2099 * affine DPIO. If not enough channels are available for all cores 2100 * or if some cores don't have an affine DPIO, there will be no 2101 * ingress frame processing on those cores. 2102 */ 2103 cpumask_clear(&priv->dpio_cpumask); 2104 for_each_online_cpu(i) { 2105 /* Try to allocate a channel */ 2106 channel = alloc_channel(priv); 2107 if (IS_ERR_OR_NULL(channel)) { 2108 err = PTR_ERR_OR_ZERO(channel); 2109 if (err != -EPROBE_DEFER) 2110 dev_info(dev, 2111 "No affine channel for cpu %d and above\n", i); 2112 goto err_alloc_ch; 2113 } 2114 2115 priv->channel[priv->num_channels] = channel; 2116 2117 nctx = &channel->nctx; 2118 nctx->is_cdan = 1; 2119 nctx->cb = cdan_cb; 2120 nctx->id = channel->ch_id; 2121 nctx->desired_cpu = i; 2122 2123 /* Register the new context */ 2124 channel->dpio = dpaa2_io_service_select(i); 2125 err = dpaa2_io_service_register(channel->dpio, nctx, dev); 2126 if (err) { 2127 dev_dbg(dev, "No affine DPIO for cpu %d\n", i); 2128 /* If no affine DPIO for this core, there's probably 2129 * none available for next cores either. Signal we want 2130 * to retry later, in case the DPIO devices weren't 2131 * probed yet. 2132 */ 2133 err = -EPROBE_DEFER; 2134 goto err_service_reg; 2135 } 2136 2137 /* Register DPCON notification with MC */ 2138 dpcon_notif_cfg.dpio_id = nctx->dpio_id; 2139 dpcon_notif_cfg.priority = 0; 2140 dpcon_notif_cfg.user_ctx = nctx->qman64; 2141 err = dpcon_set_notification(priv->mc_io, 0, 2142 channel->dpcon->mc_handle, 2143 &dpcon_notif_cfg); 2144 if (err) { 2145 dev_err(dev, "dpcon_set_notification failed()\n"); 2146 goto err_set_cdan; 2147 } 2148 2149 /* If we managed to allocate a channel and also found an affine 2150 * DPIO for this core, add it to the final mask 2151 */ 2152 cpumask_set_cpu(i, &priv->dpio_cpumask); 2153 priv->num_channels++; 2154 2155 /* Stop if we already have enough channels to accommodate all 2156 * RX and TX conf queues 2157 */ 2158 if (priv->num_channels == priv->dpni_attrs.num_queues) 2159 break; 2160 } 2161 2162 return 0; 2163 2164 err_set_cdan: 2165 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 2166 err_service_reg: 2167 free_channel(priv, channel); 2168 err_alloc_ch: 2169 if (err == -EPROBE_DEFER) 2170 return err; 2171 2172 if (cpumask_empty(&priv->dpio_cpumask)) { 2173 dev_err(dev, "No cpu with an affine DPIO/DPCON\n"); 2174 return -ENODEV; 2175 } 2176 2177 dev_info(dev, "Cores %*pbl available for processing ingress traffic\n", 2178 cpumask_pr_args(&priv->dpio_cpumask)); 2179 2180 return 0; 2181 } 2182 2183 static void free_dpio(struct dpaa2_eth_priv *priv) 2184 { 2185 struct device *dev = priv->net_dev->dev.parent; 2186 struct dpaa2_eth_channel *ch; 2187 int i; 2188 2189 /* deregister CDAN notifications and free channels */ 2190 for (i = 0; i < priv->num_channels; i++) { 2191 ch = priv->channel[i]; 2192 dpaa2_io_service_deregister(ch->dpio, &ch->nctx, dev); 2193 free_channel(priv, ch); 2194 } 2195 } 2196 2197 static struct dpaa2_eth_channel *get_affine_channel(struct dpaa2_eth_priv *priv, 2198 int cpu) 2199 { 2200 struct device *dev = priv->net_dev->dev.parent; 2201 int i; 2202 2203 for (i = 0; i < priv->num_channels; i++) 2204 if (priv->channel[i]->nctx.desired_cpu == cpu) 2205 return priv->channel[i]; 2206 2207 /* We should never get here. Issue a warning and return 2208 * the first channel, because it's still better than nothing 2209 */ 2210 dev_warn(dev, "No affine channel found for cpu %d\n", cpu); 2211 2212 return priv->channel[0]; 2213 } 2214 2215 static void set_fq_affinity(struct dpaa2_eth_priv *priv) 2216 { 2217 struct device *dev = priv->net_dev->dev.parent; 2218 struct dpaa2_eth_fq *fq; 2219 int rx_cpu, txc_cpu; 2220 int i; 2221 2222 /* For each FQ, pick one channel/CPU to deliver frames to. 2223 * This may well change at runtime, either through irqbalance or 2224 * through direct user intervention. 2225 */ 2226 rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask); 2227 2228 for (i = 0; i < priv->num_fqs; i++) { 2229 fq = &priv->fq[i]; 2230 switch (fq->type) { 2231 case DPAA2_RX_FQ: 2232 fq->target_cpu = rx_cpu; 2233 rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask); 2234 if (rx_cpu >= nr_cpu_ids) 2235 rx_cpu = cpumask_first(&priv->dpio_cpumask); 2236 break; 2237 case DPAA2_TX_CONF_FQ: 2238 fq->target_cpu = txc_cpu; 2239 txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask); 2240 if (txc_cpu >= nr_cpu_ids) 2241 txc_cpu = cpumask_first(&priv->dpio_cpumask); 2242 break; 2243 default: 2244 dev_err(dev, "Unknown FQ type: %d\n", fq->type); 2245 } 2246 fq->channel = get_affine_channel(priv, fq->target_cpu); 2247 } 2248 2249 update_xps(priv); 2250 } 2251 2252 static void setup_fqs(struct dpaa2_eth_priv *priv) 2253 { 2254 int i; 2255 2256 /* We have one TxConf FQ per Tx flow. 2257 * The number of Tx and Rx queues is the same. 2258 * Tx queues come first in the fq array. 2259 */ 2260 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2261 priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ; 2262 priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf; 2263 priv->fq[priv->num_fqs++].flowid = (u16)i; 2264 } 2265 2266 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2267 priv->fq[priv->num_fqs].type = DPAA2_RX_FQ; 2268 priv->fq[priv->num_fqs].consume = dpaa2_eth_rx; 2269 priv->fq[priv->num_fqs++].flowid = (u16)i; 2270 } 2271 2272 /* For each FQ, decide on which core to process incoming frames */ 2273 set_fq_affinity(priv); 2274 } 2275 2276 /* Allocate and configure one buffer pool for each interface */ 2277 static int setup_dpbp(struct dpaa2_eth_priv *priv) 2278 { 2279 int err; 2280 struct fsl_mc_device *dpbp_dev; 2281 struct device *dev = priv->net_dev->dev.parent; 2282 struct dpbp_attr dpbp_attrs; 2283 2284 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, 2285 &dpbp_dev); 2286 if (err) { 2287 if (err == -ENXIO) 2288 err = -EPROBE_DEFER; 2289 else 2290 dev_err(dev, "DPBP device allocation failed\n"); 2291 return err; 2292 } 2293 2294 priv->dpbp_dev = dpbp_dev; 2295 2296 err = dpbp_open(priv->mc_io, 0, priv->dpbp_dev->obj_desc.id, 2297 &dpbp_dev->mc_handle); 2298 if (err) { 2299 dev_err(dev, "dpbp_open() failed\n"); 2300 goto err_open; 2301 } 2302 2303 err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle); 2304 if (err) { 2305 dev_err(dev, "dpbp_reset() failed\n"); 2306 goto err_reset; 2307 } 2308 2309 err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle); 2310 if (err) { 2311 dev_err(dev, "dpbp_enable() failed\n"); 2312 goto err_enable; 2313 } 2314 2315 err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle, 2316 &dpbp_attrs); 2317 if (err) { 2318 dev_err(dev, "dpbp_get_attributes() failed\n"); 2319 goto err_get_attr; 2320 } 2321 priv->bpid = dpbp_attrs.bpid; 2322 2323 return 0; 2324 2325 err_get_attr: 2326 dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle); 2327 err_enable: 2328 err_reset: 2329 dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle); 2330 err_open: 2331 fsl_mc_object_free(dpbp_dev); 2332 2333 return err; 2334 } 2335 2336 static void free_dpbp(struct dpaa2_eth_priv *priv) 2337 { 2338 drain_pool(priv); 2339 dpbp_disable(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2340 dpbp_close(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2341 fsl_mc_object_free(priv->dpbp_dev); 2342 } 2343 2344 static int set_buffer_layout(struct dpaa2_eth_priv *priv) 2345 { 2346 struct device *dev = priv->net_dev->dev.parent; 2347 struct dpni_buffer_layout buf_layout = {0}; 2348 u16 rx_buf_align; 2349 int err; 2350 2351 /* We need to check for WRIOP version 1.0.0, but depending on the MC 2352 * version, this number is not always provided correctly on rev1. 2353 * We need to check for both alternatives in this situation. 2354 */ 2355 if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) || 2356 priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0)) 2357 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1; 2358 else 2359 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN; 2360 2361 /* tx buffer */ 2362 buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE; 2363 buf_layout.pass_timestamp = true; 2364 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE | 2365 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2366 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2367 DPNI_QUEUE_TX, &buf_layout); 2368 if (err) { 2369 dev_err(dev, "dpni_set_buffer_layout(TX) failed\n"); 2370 return err; 2371 } 2372 2373 /* tx-confirm buffer */ 2374 buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2375 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2376 DPNI_QUEUE_TX_CONFIRM, &buf_layout); 2377 if (err) { 2378 dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n"); 2379 return err; 2380 } 2381 2382 /* Now that we've set our tx buffer layout, retrieve the minimum 2383 * required tx data offset. 2384 */ 2385 err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token, 2386 &priv->tx_data_offset); 2387 if (err) { 2388 dev_err(dev, "dpni_get_tx_data_offset() failed\n"); 2389 return err; 2390 } 2391 2392 if ((priv->tx_data_offset % 64) != 0) 2393 dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n", 2394 priv->tx_data_offset); 2395 2396 /* rx buffer */ 2397 buf_layout.pass_frame_status = true; 2398 buf_layout.pass_parser_result = true; 2399 buf_layout.data_align = rx_buf_align; 2400 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv); 2401 buf_layout.private_data_size = 0; 2402 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT | 2403 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | 2404 DPNI_BUF_LAYOUT_OPT_DATA_ALIGN | 2405 DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM | 2406 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2407 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2408 DPNI_QUEUE_RX, &buf_layout); 2409 if (err) { 2410 dev_err(dev, "dpni_set_buffer_layout(RX) failed\n"); 2411 return err; 2412 } 2413 2414 return 0; 2415 } 2416 2417 #define DPNI_ENQUEUE_FQID_VER_MAJOR 7 2418 #define DPNI_ENQUEUE_FQID_VER_MINOR 9 2419 2420 static inline int dpaa2_eth_enqueue_qd(struct dpaa2_eth_priv *priv, 2421 struct dpaa2_eth_fq *fq, 2422 struct dpaa2_fd *fd, u8 prio) 2423 { 2424 return dpaa2_io_service_enqueue_qd(fq->channel->dpio, 2425 priv->tx_qdid, prio, 2426 fq->tx_qdbin, fd); 2427 } 2428 2429 static inline int dpaa2_eth_enqueue_fq(struct dpaa2_eth_priv *priv, 2430 struct dpaa2_eth_fq *fq, 2431 struct dpaa2_fd *fd, u8 prio) 2432 { 2433 return dpaa2_io_service_enqueue_fq(fq->channel->dpio, 2434 fq->tx_fqid[prio], fd); 2435 } 2436 2437 static void set_enqueue_mode(struct dpaa2_eth_priv *priv) 2438 { 2439 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 2440 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 2441 priv->enqueue = dpaa2_eth_enqueue_qd; 2442 else 2443 priv->enqueue = dpaa2_eth_enqueue_fq; 2444 } 2445 2446 /* Configure the DPNI object this interface is associated with */ 2447 static int setup_dpni(struct fsl_mc_device *ls_dev) 2448 { 2449 struct device *dev = &ls_dev->dev; 2450 struct dpaa2_eth_priv *priv; 2451 struct net_device *net_dev; 2452 int err; 2453 2454 net_dev = dev_get_drvdata(dev); 2455 priv = netdev_priv(net_dev); 2456 2457 /* get a handle for the DPNI object */ 2458 err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token); 2459 if (err) { 2460 dev_err(dev, "dpni_open() failed\n"); 2461 return err; 2462 } 2463 2464 /* Check if we can work with this DPNI object */ 2465 err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major, 2466 &priv->dpni_ver_minor); 2467 if (err) { 2468 dev_err(dev, "dpni_get_api_version() failed\n"); 2469 goto close; 2470 } 2471 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) { 2472 dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n", 2473 priv->dpni_ver_major, priv->dpni_ver_minor, 2474 DPNI_VER_MAJOR, DPNI_VER_MINOR); 2475 err = -ENOTSUPP; 2476 goto close; 2477 } 2478 2479 ls_dev->mc_io = priv->mc_io; 2480 ls_dev->mc_handle = priv->mc_token; 2481 2482 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2483 if (err) { 2484 dev_err(dev, "dpni_reset() failed\n"); 2485 goto close; 2486 } 2487 2488 err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token, 2489 &priv->dpni_attrs); 2490 if (err) { 2491 dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err); 2492 goto close; 2493 } 2494 2495 err = set_buffer_layout(priv); 2496 if (err) 2497 goto close; 2498 2499 set_enqueue_mode(priv); 2500 2501 priv->cls_rules = devm_kzalloc(dev, sizeof(struct dpaa2_eth_cls_rule) * 2502 dpaa2_eth_fs_count(priv), GFP_KERNEL); 2503 if (!priv->cls_rules) 2504 goto close; 2505 2506 return 0; 2507 2508 close: 2509 dpni_close(priv->mc_io, 0, priv->mc_token); 2510 2511 return err; 2512 } 2513 2514 static void free_dpni(struct dpaa2_eth_priv *priv) 2515 { 2516 int err; 2517 2518 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2519 if (err) 2520 netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n", 2521 err); 2522 2523 dpni_close(priv->mc_io, 0, priv->mc_token); 2524 } 2525 2526 static int setup_rx_flow(struct dpaa2_eth_priv *priv, 2527 struct dpaa2_eth_fq *fq) 2528 { 2529 struct device *dev = priv->net_dev->dev.parent; 2530 struct dpni_queue queue; 2531 struct dpni_queue_id qid; 2532 struct dpni_taildrop td; 2533 int err; 2534 2535 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2536 DPNI_QUEUE_RX, 0, fq->flowid, &queue, &qid); 2537 if (err) { 2538 dev_err(dev, "dpni_get_queue(RX) failed\n"); 2539 return err; 2540 } 2541 2542 fq->fqid = qid.fqid; 2543 2544 queue.destination.id = fq->channel->dpcon_id; 2545 queue.destination.type = DPNI_DEST_DPCON; 2546 queue.destination.priority = 1; 2547 queue.user_context = (u64)(uintptr_t)fq; 2548 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2549 DPNI_QUEUE_RX, 0, fq->flowid, 2550 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 2551 &queue); 2552 if (err) { 2553 dev_err(dev, "dpni_set_queue(RX) failed\n"); 2554 return err; 2555 } 2556 2557 td.enable = 1; 2558 td.threshold = DPAA2_ETH_TAILDROP_THRESH; 2559 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, DPNI_CP_QUEUE, 2560 DPNI_QUEUE_RX, 0, fq->flowid, &td); 2561 if (err) { 2562 dev_err(dev, "dpni_set_threshold() failed\n"); 2563 return err; 2564 } 2565 2566 /* xdp_rxq setup */ 2567 err = xdp_rxq_info_reg(&fq->channel->xdp_rxq, priv->net_dev, 2568 fq->flowid); 2569 if (err) { 2570 dev_err(dev, "xdp_rxq_info_reg failed\n"); 2571 return err; 2572 } 2573 2574 err = xdp_rxq_info_reg_mem_model(&fq->channel->xdp_rxq, 2575 MEM_TYPE_PAGE_ORDER0, NULL); 2576 if (err) { 2577 dev_err(dev, "xdp_rxq_info_reg_mem_model failed\n"); 2578 return err; 2579 } 2580 2581 return 0; 2582 } 2583 2584 static int setup_tx_flow(struct dpaa2_eth_priv *priv, 2585 struct dpaa2_eth_fq *fq) 2586 { 2587 struct device *dev = priv->net_dev->dev.parent; 2588 struct dpni_queue queue; 2589 struct dpni_queue_id qid; 2590 int i, err; 2591 2592 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 2593 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2594 DPNI_QUEUE_TX, i, fq->flowid, 2595 &queue, &qid); 2596 if (err) { 2597 dev_err(dev, "dpni_get_queue(TX) failed\n"); 2598 return err; 2599 } 2600 fq->tx_fqid[i] = qid.fqid; 2601 } 2602 2603 /* All Tx queues belonging to the same flowid have the same qdbin */ 2604 fq->tx_qdbin = qid.qdbin; 2605 2606 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2607 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 2608 &queue, &qid); 2609 if (err) { 2610 dev_err(dev, "dpni_get_queue(TX_CONF) failed\n"); 2611 return err; 2612 } 2613 2614 fq->fqid = qid.fqid; 2615 2616 queue.destination.id = fq->channel->dpcon_id; 2617 queue.destination.type = DPNI_DEST_DPCON; 2618 queue.destination.priority = 0; 2619 queue.user_context = (u64)(uintptr_t)fq; 2620 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2621 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 2622 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 2623 &queue); 2624 if (err) { 2625 dev_err(dev, "dpni_set_queue(TX_CONF) failed\n"); 2626 return err; 2627 } 2628 2629 return 0; 2630 } 2631 2632 /* Supported header fields for Rx hash distribution key */ 2633 static const struct dpaa2_eth_dist_fields dist_fields[] = { 2634 { 2635 /* L2 header */ 2636 .rxnfc_field = RXH_L2DA, 2637 .cls_prot = NET_PROT_ETH, 2638 .cls_field = NH_FLD_ETH_DA, 2639 .id = DPAA2_ETH_DIST_ETHDST, 2640 .size = 6, 2641 }, { 2642 .cls_prot = NET_PROT_ETH, 2643 .cls_field = NH_FLD_ETH_SA, 2644 .id = DPAA2_ETH_DIST_ETHSRC, 2645 .size = 6, 2646 }, { 2647 /* This is the last ethertype field parsed: 2648 * depending on frame format, it can be the MAC ethertype 2649 * or the VLAN etype. 2650 */ 2651 .cls_prot = NET_PROT_ETH, 2652 .cls_field = NH_FLD_ETH_TYPE, 2653 .id = DPAA2_ETH_DIST_ETHTYPE, 2654 .size = 2, 2655 }, { 2656 /* VLAN header */ 2657 .rxnfc_field = RXH_VLAN, 2658 .cls_prot = NET_PROT_VLAN, 2659 .cls_field = NH_FLD_VLAN_TCI, 2660 .id = DPAA2_ETH_DIST_VLAN, 2661 .size = 2, 2662 }, { 2663 /* IP header */ 2664 .rxnfc_field = RXH_IP_SRC, 2665 .cls_prot = NET_PROT_IP, 2666 .cls_field = NH_FLD_IP_SRC, 2667 .id = DPAA2_ETH_DIST_IPSRC, 2668 .size = 4, 2669 }, { 2670 .rxnfc_field = RXH_IP_DST, 2671 .cls_prot = NET_PROT_IP, 2672 .cls_field = NH_FLD_IP_DST, 2673 .id = DPAA2_ETH_DIST_IPDST, 2674 .size = 4, 2675 }, { 2676 .rxnfc_field = RXH_L3_PROTO, 2677 .cls_prot = NET_PROT_IP, 2678 .cls_field = NH_FLD_IP_PROTO, 2679 .id = DPAA2_ETH_DIST_IPPROTO, 2680 .size = 1, 2681 }, { 2682 /* Using UDP ports, this is functionally equivalent to raw 2683 * byte pairs from L4 header. 2684 */ 2685 .rxnfc_field = RXH_L4_B_0_1, 2686 .cls_prot = NET_PROT_UDP, 2687 .cls_field = NH_FLD_UDP_PORT_SRC, 2688 .id = DPAA2_ETH_DIST_L4SRC, 2689 .size = 2, 2690 }, { 2691 .rxnfc_field = RXH_L4_B_2_3, 2692 .cls_prot = NET_PROT_UDP, 2693 .cls_field = NH_FLD_UDP_PORT_DST, 2694 .id = DPAA2_ETH_DIST_L4DST, 2695 .size = 2, 2696 }, 2697 }; 2698 2699 /* Configure the Rx hash key using the legacy API */ 2700 static int config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2701 { 2702 struct device *dev = priv->net_dev->dev.parent; 2703 struct dpni_rx_tc_dist_cfg dist_cfg; 2704 int err; 2705 2706 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2707 2708 dist_cfg.key_cfg_iova = key; 2709 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2710 dist_cfg.dist_mode = DPNI_DIST_MODE_HASH; 2711 2712 err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 0, &dist_cfg); 2713 if (err) 2714 dev_err(dev, "dpni_set_rx_tc_dist failed\n"); 2715 2716 return err; 2717 } 2718 2719 /* Configure the Rx hash key using the new API */ 2720 static int config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2721 { 2722 struct device *dev = priv->net_dev->dev.parent; 2723 struct dpni_rx_dist_cfg dist_cfg; 2724 int err; 2725 2726 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2727 2728 dist_cfg.key_cfg_iova = key; 2729 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2730 dist_cfg.enable = 1; 2731 2732 err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2733 if (err) 2734 dev_err(dev, "dpni_set_rx_hash_dist failed\n"); 2735 2736 return err; 2737 } 2738 2739 /* Configure the Rx flow classification key */ 2740 static int config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2741 { 2742 struct device *dev = priv->net_dev->dev.parent; 2743 struct dpni_rx_dist_cfg dist_cfg; 2744 int err; 2745 2746 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2747 2748 dist_cfg.key_cfg_iova = key; 2749 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2750 dist_cfg.enable = 1; 2751 2752 err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2753 if (err) 2754 dev_err(dev, "dpni_set_rx_fs_dist failed\n"); 2755 2756 return err; 2757 } 2758 2759 /* Size of the Rx flow classification key */ 2760 int dpaa2_eth_cls_key_size(u64 fields) 2761 { 2762 int i, size = 0; 2763 2764 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2765 if (!(fields & dist_fields[i].id)) 2766 continue; 2767 size += dist_fields[i].size; 2768 } 2769 2770 return size; 2771 } 2772 2773 /* Offset of header field in Rx classification key */ 2774 int dpaa2_eth_cls_fld_off(int prot, int field) 2775 { 2776 int i, off = 0; 2777 2778 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2779 if (dist_fields[i].cls_prot == prot && 2780 dist_fields[i].cls_field == field) 2781 return off; 2782 off += dist_fields[i].size; 2783 } 2784 2785 WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n"); 2786 return 0; 2787 } 2788 2789 /* Prune unused fields from the classification rule. 2790 * Used when masking is not supported 2791 */ 2792 void dpaa2_eth_cls_trim_rule(void *key_mem, u64 fields) 2793 { 2794 int off = 0, new_off = 0; 2795 int i, size; 2796 2797 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2798 size = dist_fields[i].size; 2799 if (dist_fields[i].id & fields) { 2800 memcpy(key_mem + new_off, key_mem + off, size); 2801 new_off += size; 2802 } 2803 off += size; 2804 } 2805 } 2806 2807 /* Set Rx distribution (hash or flow classification) key 2808 * flags is a combination of RXH_ bits 2809 */ 2810 static int dpaa2_eth_set_dist_key(struct net_device *net_dev, 2811 enum dpaa2_eth_rx_dist type, u64 flags) 2812 { 2813 struct device *dev = net_dev->dev.parent; 2814 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2815 struct dpkg_profile_cfg cls_cfg; 2816 u32 rx_hash_fields = 0; 2817 dma_addr_t key_iova; 2818 u8 *dma_mem; 2819 int i; 2820 int err = 0; 2821 2822 memset(&cls_cfg, 0, sizeof(cls_cfg)); 2823 2824 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2825 struct dpkg_extract *key = 2826 &cls_cfg.extracts[cls_cfg.num_extracts]; 2827 2828 /* For both Rx hashing and classification keys 2829 * we set only the selected fields. 2830 */ 2831 if (!(flags & dist_fields[i].id)) 2832 continue; 2833 if (type == DPAA2_ETH_RX_DIST_HASH) 2834 rx_hash_fields |= dist_fields[i].rxnfc_field; 2835 2836 if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) { 2837 dev_err(dev, "error adding key extraction rule, too many rules?\n"); 2838 return -E2BIG; 2839 } 2840 2841 key->type = DPKG_EXTRACT_FROM_HDR; 2842 key->extract.from_hdr.prot = dist_fields[i].cls_prot; 2843 key->extract.from_hdr.type = DPKG_FULL_FIELD; 2844 key->extract.from_hdr.field = dist_fields[i].cls_field; 2845 cls_cfg.num_extracts++; 2846 } 2847 2848 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 2849 if (!dma_mem) 2850 return -ENOMEM; 2851 2852 err = dpni_prepare_key_cfg(&cls_cfg, dma_mem); 2853 if (err) { 2854 dev_err(dev, "dpni_prepare_key_cfg error %d\n", err); 2855 goto free_key; 2856 } 2857 2858 /* Prepare for setting the rx dist */ 2859 key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, 2860 DMA_TO_DEVICE); 2861 if (dma_mapping_error(dev, key_iova)) { 2862 dev_err(dev, "DMA mapping failed\n"); 2863 err = -ENOMEM; 2864 goto free_key; 2865 } 2866 2867 if (type == DPAA2_ETH_RX_DIST_HASH) { 2868 if (dpaa2_eth_has_legacy_dist(priv)) 2869 err = config_legacy_hash_key(priv, key_iova); 2870 else 2871 err = config_hash_key(priv, key_iova); 2872 } else { 2873 err = config_cls_key(priv, key_iova); 2874 } 2875 2876 dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE, 2877 DMA_TO_DEVICE); 2878 if (!err && type == DPAA2_ETH_RX_DIST_HASH) 2879 priv->rx_hash_fields = rx_hash_fields; 2880 2881 free_key: 2882 kfree(dma_mem); 2883 return err; 2884 } 2885 2886 int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags) 2887 { 2888 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2889 u64 key = 0; 2890 int i; 2891 2892 if (!dpaa2_eth_hash_enabled(priv)) 2893 return -EOPNOTSUPP; 2894 2895 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) 2896 if (dist_fields[i].rxnfc_field & flags) 2897 key |= dist_fields[i].id; 2898 2899 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, key); 2900 } 2901 2902 int dpaa2_eth_set_cls(struct net_device *net_dev, u64 flags) 2903 { 2904 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_CLS, flags); 2905 } 2906 2907 static int dpaa2_eth_set_default_cls(struct dpaa2_eth_priv *priv) 2908 { 2909 struct device *dev = priv->net_dev->dev.parent; 2910 int err; 2911 2912 /* Check if we actually support Rx flow classification */ 2913 if (dpaa2_eth_has_legacy_dist(priv)) { 2914 dev_dbg(dev, "Rx cls not supported by current MC version\n"); 2915 return -EOPNOTSUPP; 2916 } 2917 2918 if (!dpaa2_eth_fs_enabled(priv)) { 2919 dev_dbg(dev, "Rx cls disabled in DPNI options\n"); 2920 return -EOPNOTSUPP; 2921 } 2922 2923 if (!dpaa2_eth_hash_enabled(priv)) { 2924 dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n"); 2925 return -EOPNOTSUPP; 2926 } 2927 2928 /* If there is no support for masking in the classification table, 2929 * we don't set a default key, as it will depend on the rules 2930 * added by the user at runtime. 2931 */ 2932 if (!dpaa2_eth_fs_mask_enabled(priv)) 2933 goto out; 2934 2935 err = dpaa2_eth_set_cls(priv->net_dev, DPAA2_ETH_DIST_ALL); 2936 if (err) 2937 return err; 2938 2939 out: 2940 priv->rx_cls_enabled = 1; 2941 2942 return 0; 2943 } 2944 2945 /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs, 2946 * frame queues and channels 2947 */ 2948 static int bind_dpni(struct dpaa2_eth_priv *priv) 2949 { 2950 struct net_device *net_dev = priv->net_dev; 2951 struct device *dev = net_dev->dev.parent; 2952 struct dpni_pools_cfg pools_params; 2953 struct dpni_error_cfg err_cfg; 2954 int err = 0; 2955 int i; 2956 2957 pools_params.num_dpbp = 1; 2958 pools_params.pools[0].dpbp_id = priv->dpbp_dev->obj_desc.id; 2959 pools_params.pools[0].backup_pool = 0; 2960 pools_params.pools[0].buffer_size = DPAA2_ETH_RX_BUF_SIZE; 2961 err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params); 2962 if (err) { 2963 dev_err(dev, "dpni_set_pools() failed\n"); 2964 return err; 2965 } 2966 2967 /* have the interface implicitly distribute traffic based on 2968 * the default hash key 2969 */ 2970 err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT); 2971 if (err && err != -EOPNOTSUPP) 2972 dev_err(dev, "Failed to configure hashing\n"); 2973 2974 /* Configure the flow classification key; it includes all 2975 * supported header fields and cannot be modified at runtime 2976 */ 2977 err = dpaa2_eth_set_default_cls(priv); 2978 if (err && err != -EOPNOTSUPP) 2979 dev_err(dev, "Failed to configure Rx classification key\n"); 2980 2981 /* Configure handling of error frames */ 2982 err_cfg.errors = DPAA2_FAS_RX_ERR_MASK; 2983 err_cfg.set_frame_annotation = 1; 2984 err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD; 2985 err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token, 2986 &err_cfg); 2987 if (err) { 2988 dev_err(dev, "dpni_set_errors_behavior failed\n"); 2989 return err; 2990 } 2991 2992 /* Configure Rx and Tx conf queues to generate CDANs */ 2993 for (i = 0; i < priv->num_fqs; i++) { 2994 switch (priv->fq[i].type) { 2995 case DPAA2_RX_FQ: 2996 err = setup_rx_flow(priv, &priv->fq[i]); 2997 break; 2998 case DPAA2_TX_CONF_FQ: 2999 err = setup_tx_flow(priv, &priv->fq[i]); 3000 break; 3001 default: 3002 dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type); 3003 return -EINVAL; 3004 } 3005 if (err) 3006 return err; 3007 } 3008 3009 err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token, 3010 DPNI_QUEUE_TX, &priv->tx_qdid); 3011 if (err) { 3012 dev_err(dev, "dpni_get_qdid() failed\n"); 3013 return err; 3014 } 3015 3016 return 0; 3017 } 3018 3019 /* Allocate rings for storing incoming frame descriptors */ 3020 static int alloc_rings(struct dpaa2_eth_priv *priv) 3021 { 3022 struct net_device *net_dev = priv->net_dev; 3023 struct device *dev = net_dev->dev.parent; 3024 int i; 3025 3026 for (i = 0; i < priv->num_channels; i++) { 3027 priv->channel[i]->store = 3028 dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev); 3029 if (!priv->channel[i]->store) { 3030 netdev_err(net_dev, "dpaa2_io_store_create() failed\n"); 3031 goto err_ring; 3032 } 3033 } 3034 3035 return 0; 3036 3037 err_ring: 3038 for (i = 0; i < priv->num_channels; i++) { 3039 if (!priv->channel[i]->store) 3040 break; 3041 dpaa2_io_store_destroy(priv->channel[i]->store); 3042 } 3043 3044 return -ENOMEM; 3045 } 3046 3047 static void free_rings(struct dpaa2_eth_priv *priv) 3048 { 3049 int i; 3050 3051 for (i = 0; i < priv->num_channels; i++) 3052 dpaa2_io_store_destroy(priv->channel[i]->store); 3053 } 3054 3055 static int set_mac_addr(struct dpaa2_eth_priv *priv) 3056 { 3057 struct net_device *net_dev = priv->net_dev; 3058 struct device *dev = net_dev->dev.parent; 3059 u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN]; 3060 int err; 3061 3062 /* Get firmware address, if any */ 3063 err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); 3064 if (err) { 3065 dev_err(dev, "dpni_get_port_mac_addr() failed\n"); 3066 return err; 3067 } 3068 3069 /* Get DPNI attributes address, if any */ 3070 err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 3071 dpni_mac_addr); 3072 if (err) { 3073 dev_err(dev, "dpni_get_primary_mac_addr() failed\n"); 3074 return err; 3075 } 3076 3077 /* First check if firmware has any address configured by bootloader */ 3078 if (!is_zero_ether_addr(mac_addr)) { 3079 /* If the DPMAC addr != DPNI addr, update it */ 3080 if (!ether_addr_equal(mac_addr, dpni_mac_addr)) { 3081 err = dpni_set_primary_mac_addr(priv->mc_io, 0, 3082 priv->mc_token, 3083 mac_addr); 3084 if (err) { 3085 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 3086 return err; 3087 } 3088 } 3089 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len); 3090 } else if (is_zero_ether_addr(dpni_mac_addr)) { 3091 /* No MAC address configured, fill in net_dev->dev_addr 3092 * with a random one 3093 */ 3094 eth_hw_addr_random(net_dev); 3095 dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); 3096 3097 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 3098 net_dev->dev_addr); 3099 if (err) { 3100 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 3101 return err; 3102 } 3103 3104 /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all 3105 * practical purposes, this will be our "permanent" mac address, 3106 * at least until the next reboot. This move will also permit 3107 * register_netdevice() to properly fill up net_dev->perm_addr. 3108 */ 3109 net_dev->addr_assign_type = NET_ADDR_PERM; 3110 } else { 3111 /* NET_ADDR_PERM is default, all we have to do is 3112 * fill in the device addr. 3113 */ 3114 memcpy(net_dev->dev_addr, dpni_mac_addr, net_dev->addr_len); 3115 } 3116 3117 return 0; 3118 } 3119 3120 static int netdev_init(struct net_device *net_dev) 3121 { 3122 struct device *dev = net_dev->dev.parent; 3123 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3124 u32 options = priv->dpni_attrs.options; 3125 u64 supported = 0, not_supported = 0; 3126 u8 bcast_addr[ETH_ALEN]; 3127 u8 num_queues; 3128 int err; 3129 3130 net_dev->netdev_ops = &dpaa2_eth_ops; 3131 net_dev->ethtool_ops = &dpaa2_ethtool_ops; 3132 3133 err = set_mac_addr(priv); 3134 if (err) 3135 return err; 3136 3137 /* Explicitly add the broadcast address to the MAC filtering table */ 3138 eth_broadcast_addr(bcast_addr); 3139 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr); 3140 if (err) { 3141 dev_err(dev, "dpni_add_mac_addr() failed\n"); 3142 return err; 3143 } 3144 3145 /* Set MTU upper limit; lower limit is 68B (default value) */ 3146 net_dev->max_mtu = DPAA2_ETH_MAX_MTU; 3147 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, 3148 DPAA2_ETH_MFL); 3149 if (err) { 3150 dev_err(dev, "dpni_set_max_frame_length() failed\n"); 3151 return err; 3152 } 3153 3154 /* Set actual number of queues in the net device */ 3155 num_queues = dpaa2_eth_queue_count(priv); 3156 err = netif_set_real_num_tx_queues(net_dev, num_queues); 3157 if (err) { 3158 dev_err(dev, "netif_set_real_num_tx_queues() failed\n"); 3159 return err; 3160 } 3161 err = netif_set_real_num_rx_queues(net_dev, num_queues); 3162 if (err) { 3163 dev_err(dev, "netif_set_real_num_rx_queues() failed\n"); 3164 return err; 3165 } 3166 3167 /* Capabilities listing */ 3168 supported |= IFF_LIVE_ADDR_CHANGE; 3169 3170 if (options & DPNI_OPT_NO_MAC_FILTER) 3171 not_supported |= IFF_UNICAST_FLT; 3172 else 3173 supported |= IFF_UNICAST_FLT; 3174 3175 net_dev->priv_flags |= supported; 3176 net_dev->priv_flags &= ~not_supported; 3177 3178 /* Features */ 3179 net_dev->features = NETIF_F_RXCSUM | 3180 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3181 NETIF_F_SG | NETIF_F_HIGHDMA | 3182 NETIF_F_LLTX; 3183 net_dev->hw_features = net_dev->features; 3184 3185 return 0; 3186 } 3187 3188 static int poll_link_state(void *arg) 3189 { 3190 struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg; 3191 int err; 3192 3193 while (!kthread_should_stop()) { 3194 err = link_state_update(priv); 3195 if (unlikely(err)) 3196 return err; 3197 3198 msleep(DPAA2_ETH_LINK_STATE_REFRESH); 3199 } 3200 3201 return 0; 3202 } 3203 3204 static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg) 3205 { 3206 u32 status = ~0; 3207 struct device *dev = (struct device *)arg; 3208 struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev); 3209 struct net_device *net_dev = dev_get_drvdata(dev); 3210 int err; 3211 3212 err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, 3213 DPNI_IRQ_INDEX, &status); 3214 if (unlikely(err)) { 3215 netdev_err(net_dev, "Can't get irq status (err %d)\n", err); 3216 return IRQ_HANDLED; 3217 } 3218 3219 if (status & DPNI_IRQ_EVENT_LINK_CHANGED) 3220 link_state_update(netdev_priv(net_dev)); 3221 3222 return IRQ_HANDLED; 3223 } 3224 3225 static int setup_irqs(struct fsl_mc_device *ls_dev) 3226 { 3227 int err = 0; 3228 struct fsl_mc_device_irq *irq; 3229 3230 err = fsl_mc_allocate_irqs(ls_dev); 3231 if (err) { 3232 dev_err(&ls_dev->dev, "MC irqs allocation failed\n"); 3233 return err; 3234 } 3235 3236 irq = ls_dev->irqs[0]; 3237 err = devm_request_threaded_irq(&ls_dev->dev, irq->msi_desc->irq, 3238 NULL, dpni_irq0_handler_thread, 3239 IRQF_NO_SUSPEND | IRQF_ONESHOT, 3240 dev_name(&ls_dev->dev), &ls_dev->dev); 3241 if (err < 0) { 3242 dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err); 3243 goto free_mc_irq; 3244 } 3245 3246 err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle, 3247 DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED); 3248 if (err < 0) { 3249 dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err); 3250 goto free_irq; 3251 } 3252 3253 err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle, 3254 DPNI_IRQ_INDEX, 1); 3255 if (err < 0) { 3256 dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err); 3257 goto free_irq; 3258 } 3259 3260 return 0; 3261 3262 free_irq: 3263 devm_free_irq(&ls_dev->dev, irq->msi_desc->irq, &ls_dev->dev); 3264 free_mc_irq: 3265 fsl_mc_free_irqs(ls_dev); 3266 3267 return err; 3268 } 3269 3270 static void add_ch_napi(struct dpaa2_eth_priv *priv) 3271 { 3272 int i; 3273 struct dpaa2_eth_channel *ch; 3274 3275 for (i = 0; i < priv->num_channels; i++) { 3276 ch = priv->channel[i]; 3277 /* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */ 3278 netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll, 3279 NAPI_POLL_WEIGHT); 3280 } 3281 } 3282 3283 static void del_ch_napi(struct dpaa2_eth_priv *priv) 3284 { 3285 int i; 3286 struct dpaa2_eth_channel *ch; 3287 3288 for (i = 0; i < priv->num_channels; i++) { 3289 ch = priv->channel[i]; 3290 netif_napi_del(&ch->napi); 3291 } 3292 } 3293 3294 static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev) 3295 { 3296 struct device *dev; 3297 struct net_device *net_dev = NULL; 3298 struct dpaa2_eth_priv *priv = NULL; 3299 int err = 0; 3300 3301 dev = &dpni_dev->dev; 3302 3303 /* Net device */ 3304 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_NETDEV_QUEUES); 3305 if (!net_dev) { 3306 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3307 return -ENOMEM; 3308 } 3309 3310 SET_NETDEV_DEV(net_dev, dev); 3311 dev_set_drvdata(dev, net_dev); 3312 3313 priv = netdev_priv(net_dev); 3314 priv->net_dev = net_dev; 3315 3316 priv->iommu_domain = iommu_get_domain_for_dev(dev); 3317 3318 /* Obtain a MC portal */ 3319 err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, 3320 &priv->mc_io); 3321 if (err) { 3322 if (err == -ENXIO) 3323 err = -EPROBE_DEFER; 3324 else 3325 dev_err(dev, "MC portal allocation failed\n"); 3326 goto err_portal_alloc; 3327 } 3328 3329 /* MC objects initialization and configuration */ 3330 err = setup_dpni(dpni_dev); 3331 if (err) 3332 goto err_dpni_setup; 3333 3334 err = setup_dpio(priv); 3335 if (err) 3336 goto err_dpio_setup; 3337 3338 setup_fqs(priv); 3339 3340 err = setup_dpbp(priv); 3341 if (err) 3342 goto err_dpbp_setup; 3343 3344 err = bind_dpni(priv); 3345 if (err) 3346 goto err_bind; 3347 3348 /* Add a NAPI context for each channel */ 3349 add_ch_napi(priv); 3350 3351 /* Percpu statistics */ 3352 priv->percpu_stats = alloc_percpu(*priv->percpu_stats); 3353 if (!priv->percpu_stats) { 3354 dev_err(dev, "alloc_percpu(percpu_stats) failed\n"); 3355 err = -ENOMEM; 3356 goto err_alloc_percpu_stats; 3357 } 3358 priv->percpu_extras = alloc_percpu(*priv->percpu_extras); 3359 if (!priv->percpu_extras) { 3360 dev_err(dev, "alloc_percpu(percpu_extras) failed\n"); 3361 err = -ENOMEM; 3362 goto err_alloc_percpu_extras; 3363 } 3364 3365 err = netdev_init(net_dev); 3366 if (err) 3367 goto err_netdev_init; 3368 3369 /* Configure checksum offload based on current interface flags */ 3370 err = set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM)); 3371 if (err) 3372 goto err_csum; 3373 3374 err = set_tx_csum(priv, !!(net_dev->features & 3375 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))); 3376 if (err) 3377 goto err_csum; 3378 3379 err = alloc_rings(priv); 3380 if (err) 3381 goto err_alloc_rings; 3382 3383 err = setup_irqs(dpni_dev); 3384 if (err) { 3385 netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n"); 3386 priv->poll_thread = kthread_run(poll_link_state, priv, 3387 "%s_poll_link", net_dev->name); 3388 if (IS_ERR(priv->poll_thread)) { 3389 dev_err(dev, "Error starting polling thread\n"); 3390 goto err_poll_thread; 3391 } 3392 priv->do_link_poll = true; 3393 } 3394 3395 err = register_netdev(net_dev); 3396 if (err < 0) { 3397 dev_err(dev, "register_netdev() failed\n"); 3398 goto err_netdev_reg; 3399 } 3400 3401 #ifdef CONFIG_DEBUG_FS 3402 dpaa2_dbg_add(priv); 3403 #endif 3404 3405 dev_info(dev, "Probed interface %s\n", net_dev->name); 3406 return 0; 3407 3408 err_netdev_reg: 3409 if (priv->do_link_poll) 3410 kthread_stop(priv->poll_thread); 3411 else 3412 fsl_mc_free_irqs(dpni_dev); 3413 err_poll_thread: 3414 free_rings(priv); 3415 err_alloc_rings: 3416 err_csum: 3417 err_netdev_init: 3418 free_percpu(priv->percpu_extras); 3419 err_alloc_percpu_extras: 3420 free_percpu(priv->percpu_stats); 3421 err_alloc_percpu_stats: 3422 del_ch_napi(priv); 3423 err_bind: 3424 free_dpbp(priv); 3425 err_dpbp_setup: 3426 free_dpio(priv); 3427 err_dpio_setup: 3428 free_dpni(priv); 3429 err_dpni_setup: 3430 fsl_mc_portal_free(priv->mc_io); 3431 err_portal_alloc: 3432 dev_set_drvdata(dev, NULL); 3433 free_netdev(net_dev); 3434 3435 return err; 3436 } 3437 3438 static int dpaa2_eth_remove(struct fsl_mc_device *ls_dev) 3439 { 3440 struct device *dev; 3441 struct net_device *net_dev; 3442 struct dpaa2_eth_priv *priv; 3443 3444 dev = &ls_dev->dev; 3445 net_dev = dev_get_drvdata(dev); 3446 priv = netdev_priv(net_dev); 3447 3448 #ifdef CONFIG_DEBUG_FS 3449 dpaa2_dbg_remove(priv); 3450 #endif 3451 unregister_netdev(net_dev); 3452 3453 if (priv->do_link_poll) 3454 kthread_stop(priv->poll_thread); 3455 else 3456 fsl_mc_free_irqs(ls_dev); 3457 3458 free_rings(priv); 3459 free_percpu(priv->percpu_stats); 3460 free_percpu(priv->percpu_extras); 3461 3462 del_ch_napi(priv); 3463 free_dpbp(priv); 3464 free_dpio(priv); 3465 free_dpni(priv); 3466 3467 fsl_mc_portal_free(priv->mc_io); 3468 3469 free_netdev(net_dev); 3470 3471 dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name); 3472 3473 return 0; 3474 } 3475 3476 static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = { 3477 { 3478 .vendor = FSL_MC_VENDOR_FREESCALE, 3479 .obj_type = "dpni", 3480 }, 3481 { .vendor = 0x0 } 3482 }; 3483 MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table); 3484 3485 static struct fsl_mc_driver dpaa2_eth_driver = { 3486 .driver = { 3487 .name = KBUILD_MODNAME, 3488 .owner = THIS_MODULE, 3489 }, 3490 .probe = dpaa2_eth_probe, 3491 .remove = dpaa2_eth_remove, 3492 .match_id_table = dpaa2_eth_match_id_table 3493 }; 3494 3495 static int __init dpaa2_eth_driver_init(void) 3496 { 3497 int err; 3498 3499 dpaa2_eth_dbg_init(); 3500 err = fsl_mc_driver_register(&dpaa2_eth_driver); 3501 if (err) { 3502 dpaa2_eth_dbg_exit(); 3503 return err; 3504 } 3505 3506 return 0; 3507 } 3508 3509 static void __exit dpaa2_eth_driver_exit(void) 3510 { 3511 dpaa2_eth_dbg_exit(); 3512 fsl_mc_driver_unregister(&dpaa2_eth_driver); 3513 } 3514 3515 module_init(dpaa2_eth_driver_init); 3516 module_exit(dpaa2_eth_driver_exit); 3517