1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* Copyright 2014-2016 Freescale Semiconductor Inc. 3 * Copyright 2016-2017 NXP 4 */ 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/platform_device.h> 8 #include <linux/etherdevice.h> 9 #include <linux/of_net.h> 10 #include <linux/interrupt.h> 11 #include <linux/msi.h> 12 #include <linux/kthread.h> 13 #include <linux/iommu.h> 14 #include <linux/net_tstamp.h> 15 #include <linux/fsl/mc.h> 16 17 #include <net/sock.h> 18 19 #include "dpaa2-eth.h" 20 21 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files 22 * using trace events only need to #include <trace/events/sched.h> 23 */ 24 #define CREATE_TRACE_POINTS 25 #include "dpaa2-eth-trace.h" 26 27 MODULE_LICENSE("Dual BSD/GPL"); 28 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 29 MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver"); 30 31 static void *dpaa2_iova_to_virt(struct iommu_domain *domain, 32 dma_addr_t iova_addr) 33 { 34 phys_addr_t phys_addr; 35 36 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 37 38 return phys_to_virt(phys_addr); 39 } 40 41 static void validate_rx_csum(struct dpaa2_eth_priv *priv, 42 u32 fd_status, 43 struct sk_buff *skb) 44 { 45 skb_checksum_none_assert(skb); 46 47 /* HW checksum validation is disabled, nothing to do here */ 48 if (!(priv->net_dev->features & NETIF_F_RXCSUM)) 49 return; 50 51 /* Read checksum validation bits */ 52 if (!((fd_status & DPAA2_FAS_L3CV) && 53 (fd_status & DPAA2_FAS_L4CV))) 54 return; 55 56 /* Inform the stack there's no need to compute L3/L4 csum anymore */ 57 skb->ip_summed = CHECKSUM_UNNECESSARY; 58 } 59 60 /* Free a received FD. 61 * Not to be used for Tx conf FDs or on any other paths. 62 */ 63 static void free_rx_fd(struct dpaa2_eth_priv *priv, 64 const struct dpaa2_fd *fd, 65 void *vaddr) 66 { 67 struct device *dev = priv->net_dev->dev.parent; 68 dma_addr_t addr = dpaa2_fd_get_addr(fd); 69 u8 fd_format = dpaa2_fd_get_format(fd); 70 struct dpaa2_sg_entry *sgt; 71 void *sg_vaddr; 72 int i; 73 74 /* If single buffer frame, just free the data buffer */ 75 if (fd_format == dpaa2_fd_single) 76 goto free_buf; 77 else if (fd_format != dpaa2_fd_sg) 78 /* We don't support any other format */ 79 return; 80 81 /* For S/G frames, we first need to free all SG entries 82 * except the first one, which was taken care of already 83 */ 84 sgt = vaddr + dpaa2_fd_get_offset(fd); 85 for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 86 addr = dpaa2_sg_get_addr(&sgt[i]); 87 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 88 dma_unmap_single(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 89 DMA_FROM_DEVICE); 90 91 skb_free_frag(sg_vaddr); 92 if (dpaa2_sg_is_final(&sgt[i])) 93 break; 94 } 95 96 free_buf: 97 skb_free_frag(vaddr); 98 } 99 100 /* Build a linear skb based on a single-buffer frame descriptor */ 101 static struct sk_buff *build_linear_skb(struct dpaa2_eth_priv *priv, 102 struct dpaa2_eth_channel *ch, 103 const struct dpaa2_fd *fd, 104 void *fd_vaddr) 105 { 106 struct sk_buff *skb = NULL; 107 u16 fd_offset = dpaa2_fd_get_offset(fd); 108 u32 fd_length = dpaa2_fd_get_len(fd); 109 110 ch->buf_count--; 111 112 skb = build_skb(fd_vaddr, DPAA2_ETH_SKB_SIZE); 113 if (unlikely(!skb)) 114 return NULL; 115 116 skb_reserve(skb, fd_offset); 117 skb_put(skb, fd_length); 118 119 return skb; 120 } 121 122 /* Build a non linear (fragmented) skb based on a S/G table */ 123 static struct sk_buff *build_frag_skb(struct dpaa2_eth_priv *priv, 124 struct dpaa2_eth_channel *ch, 125 struct dpaa2_sg_entry *sgt) 126 { 127 struct sk_buff *skb = NULL; 128 struct device *dev = priv->net_dev->dev.parent; 129 void *sg_vaddr; 130 dma_addr_t sg_addr; 131 u16 sg_offset; 132 u32 sg_length; 133 struct page *page, *head_page; 134 int page_offset; 135 int i; 136 137 for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 138 struct dpaa2_sg_entry *sge = &sgt[i]; 139 140 /* NOTE: We only support SG entries in dpaa2_sg_single format, 141 * but this is the only format we may receive from HW anyway 142 */ 143 144 /* Get the address and length from the S/G entry */ 145 sg_addr = dpaa2_sg_get_addr(sge); 146 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr); 147 dma_unmap_single(dev, sg_addr, DPAA2_ETH_RX_BUF_SIZE, 148 DMA_FROM_DEVICE); 149 150 sg_length = dpaa2_sg_get_len(sge); 151 152 if (i == 0) { 153 /* We build the skb around the first data buffer */ 154 skb = build_skb(sg_vaddr, DPAA2_ETH_SKB_SIZE); 155 if (unlikely(!skb)) { 156 /* Free the first SG entry now, since we already 157 * unmapped it and obtained the virtual address 158 */ 159 skb_free_frag(sg_vaddr); 160 161 /* We still need to subtract the buffers used 162 * by this FD from our software counter 163 */ 164 while (!dpaa2_sg_is_final(&sgt[i]) && 165 i < DPAA2_ETH_MAX_SG_ENTRIES) 166 i++; 167 break; 168 } 169 170 sg_offset = dpaa2_sg_get_offset(sge); 171 skb_reserve(skb, sg_offset); 172 skb_put(skb, sg_length); 173 } else { 174 /* Rest of the data buffers are stored as skb frags */ 175 page = virt_to_page(sg_vaddr); 176 head_page = virt_to_head_page(sg_vaddr); 177 178 /* Offset in page (which may be compound). 179 * Data in subsequent SG entries is stored from the 180 * beginning of the buffer, so we don't need to add the 181 * sg_offset. 182 */ 183 page_offset = ((unsigned long)sg_vaddr & 184 (PAGE_SIZE - 1)) + 185 (page_address(page) - page_address(head_page)); 186 187 skb_add_rx_frag(skb, i - 1, head_page, page_offset, 188 sg_length, DPAA2_ETH_RX_BUF_SIZE); 189 } 190 191 if (dpaa2_sg_is_final(sge)) 192 break; 193 } 194 195 WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT"); 196 197 /* Count all data buffers + SG table buffer */ 198 ch->buf_count -= i + 2; 199 200 return skb; 201 } 202 203 /* Main Rx frame processing routine */ 204 static void dpaa2_eth_rx(struct dpaa2_eth_priv *priv, 205 struct dpaa2_eth_channel *ch, 206 const struct dpaa2_fd *fd, 207 struct napi_struct *napi, 208 u16 queue_id) 209 { 210 dma_addr_t addr = dpaa2_fd_get_addr(fd); 211 u8 fd_format = dpaa2_fd_get_format(fd); 212 void *vaddr; 213 struct sk_buff *skb; 214 struct rtnl_link_stats64 *percpu_stats; 215 struct dpaa2_eth_drv_stats *percpu_extras; 216 struct device *dev = priv->net_dev->dev.parent; 217 struct dpaa2_fas *fas; 218 void *buf_data; 219 u32 status = 0; 220 221 /* Tracing point */ 222 trace_dpaa2_rx_fd(priv->net_dev, fd); 223 224 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 225 dma_unmap_single(dev, addr, DPAA2_ETH_RX_BUF_SIZE, DMA_FROM_DEVICE); 226 227 fas = dpaa2_get_fas(vaddr, false); 228 prefetch(fas); 229 buf_data = vaddr + dpaa2_fd_get_offset(fd); 230 prefetch(buf_data); 231 232 percpu_stats = this_cpu_ptr(priv->percpu_stats); 233 percpu_extras = this_cpu_ptr(priv->percpu_extras); 234 235 if (fd_format == dpaa2_fd_single) { 236 skb = build_linear_skb(priv, ch, fd, vaddr); 237 } else if (fd_format == dpaa2_fd_sg) { 238 skb = build_frag_skb(priv, ch, buf_data); 239 skb_free_frag(vaddr); 240 percpu_extras->rx_sg_frames++; 241 percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd); 242 } else { 243 /* We don't support any other format */ 244 goto err_frame_format; 245 } 246 247 if (unlikely(!skb)) 248 goto err_build_skb; 249 250 prefetch(skb->data); 251 252 /* Get the timestamp value */ 253 if (priv->rx_tstamp) { 254 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 255 __le64 *ts = dpaa2_get_ts(vaddr, false); 256 u64 ns; 257 258 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 259 260 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 261 shhwtstamps->hwtstamp = ns_to_ktime(ns); 262 } 263 264 /* Check if we need to validate the L4 csum */ 265 if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) { 266 status = le32_to_cpu(fas->status); 267 validate_rx_csum(priv, status, skb); 268 } 269 270 skb->protocol = eth_type_trans(skb, priv->net_dev); 271 skb_record_rx_queue(skb, queue_id); 272 273 percpu_stats->rx_packets++; 274 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 275 276 napi_gro_receive(napi, skb); 277 278 return; 279 280 err_build_skb: 281 free_rx_fd(priv, fd, vaddr); 282 err_frame_format: 283 percpu_stats->rx_dropped++; 284 } 285 286 /* Consume all frames pull-dequeued into the store. This is the simplest way to 287 * make sure we don't accidentally issue another volatile dequeue which would 288 * overwrite (leak) frames already in the store. 289 * 290 * Observance of NAPI budget is not our concern, leaving that to the caller. 291 */ 292 static int consume_frames(struct dpaa2_eth_channel *ch) 293 { 294 struct dpaa2_eth_priv *priv = ch->priv; 295 struct dpaa2_eth_fq *fq; 296 struct dpaa2_dq *dq; 297 const struct dpaa2_fd *fd; 298 int cleaned = 0; 299 int is_last; 300 301 do { 302 dq = dpaa2_io_store_next(ch->store, &is_last); 303 if (unlikely(!dq)) { 304 /* If we're here, we *must* have placed a 305 * volatile dequeue comnmand, so keep reading through 306 * the store until we get some sort of valid response 307 * token (either a valid frame or an "empty dequeue") 308 */ 309 continue; 310 } 311 312 fd = dpaa2_dq_fd(dq); 313 fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq); 314 fq->stats.frames++; 315 316 fq->consume(priv, ch, fd, &ch->napi, fq->flowid); 317 cleaned++; 318 } while (!is_last); 319 320 return cleaned; 321 } 322 323 /* Configure the egress frame annotation for timestamp update */ 324 static void enable_tx_tstamp(struct dpaa2_fd *fd, void *buf_start) 325 { 326 struct dpaa2_faead *faead; 327 u32 ctrl, frc; 328 329 /* Mark the egress frame annotation area as valid */ 330 frc = dpaa2_fd_get_frc(fd); 331 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 332 333 /* Set hardware annotation size */ 334 ctrl = dpaa2_fd_get_ctrl(fd); 335 dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL); 336 337 /* enable UPD (update prepanded data) bit in FAEAD field of 338 * hardware frame annotation area 339 */ 340 ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD; 341 faead = dpaa2_get_faead(buf_start, true); 342 faead->ctrl = cpu_to_le32(ctrl); 343 } 344 345 /* Create a frame descriptor based on a fragmented skb */ 346 static int build_sg_fd(struct dpaa2_eth_priv *priv, 347 struct sk_buff *skb, 348 struct dpaa2_fd *fd) 349 { 350 struct device *dev = priv->net_dev->dev.parent; 351 void *sgt_buf = NULL; 352 dma_addr_t addr; 353 int nr_frags = skb_shinfo(skb)->nr_frags; 354 struct dpaa2_sg_entry *sgt; 355 int i, err; 356 int sgt_buf_size; 357 struct scatterlist *scl, *crt_scl; 358 int num_sg; 359 int num_dma_bufs; 360 struct dpaa2_eth_swa *swa; 361 362 /* Create and map scatterlist. 363 * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have 364 * to go beyond nr_frags+1. 365 * Note: We don't support chained scatterlists 366 */ 367 if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1)) 368 return -EINVAL; 369 370 scl = kcalloc(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC); 371 if (unlikely(!scl)) 372 return -ENOMEM; 373 374 sg_init_table(scl, nr_frags + 1); 375 num_sg = skb_to_sgvec(skb, scl, 0, skb->len); 376 num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 377 if (unlikely(!num_dma_bufs)) { 378 err = -ENOMEM; 379 goto dma_map_sg_failed; 380 } 381 382 /* Prepare the HW SGT structure */ 383 sgt_buf_size = priv->tx_data_offset + 384 sizeof(struct dpaa2_sg_entry) * num_dma_bufs; 385 sgt_buf = netdev_alloc_frag(sgt_buf_size + DPAA2_ETH_TX_BUF_ALIGN); 386 if (unlikely(!sgt_buf)) { 387 err = -ENOMEM; 388 goto sgt_buf_alloc_failed; 389 } 390 sgt_buf = PTR_ALIGN(sgt_buf, DPAA2_ETH_TX_BUF_ALIGN); 391 memset(sgt_buf, 0, sgt_buf_size); 392 393 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 394 395 /* Fill in the HW SGT structure. 396 * 397 * sgt_buf is zeroed out, so the following fields are implicit 398 * in all sgt entries: 399 * - offset is 0 400 * - format is 'dpaa2_sg_single' 401 */ 402 for_each_sg(scl, crt_scl, num_dma_bufs, i) { 403 dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl)); 404 dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl)); 405 } 406 dpaa2_sg_set_final(&sgt[i - 1], true); 407 408 /* Store the skb backpointer in the SGT buffer. 409 * Fit the scatterlist and the number of buffers alongside the 410 * skb backpointer in the software annotation area. We'll need 411 * all of them on Tx Conf. 412 */ 413 swa = (struct dpaa2_eth_swa *)sgt_buf; 414 swa->skb = skb; 415 swa->scl = scl; 416 swa->num_sg = num_sg; 417 swa->sgt_size = sgt_buf_size; 418 419 /* Separately map the SGT buffer */ 420 addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 421 if (unlikely(dma_mapping_error(dev, addr))) { 422 err = -ENOMEM; 423 goto dma_map_single_failed; 424 } 425 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 426 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 427 dpaa2_fd_set_addr(fd, addr); 428 dpaa2_fd_set_len(fd, skb->len); 429 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA | FD_CTRL_PTV1); 430 431 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 432 enable_tx_tstamp(fd, sgt_buf); 433 434 return 0; 435 436 dma_map_single_failed: 437 skb_free_frag(sgt_buf); 438 sgt_buf_alloc_failed: 439 dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 440 dma_map_sg_failed: 441 kfree(scl); 442 return err; 443 } 444 445 /* Create a frame descriptor based on a linear skb */ 446 static int build_single_fd(struct dpaa2_eth_priv *priv, 447 struct sk_buff *skb, 448 struct dpaa2_fd *fd) 449 { 450 struct device *dev = priv->net_dev->dev.parent; 451 u8 *buffer_start, *aligned_start; 452 struct sk_buff **skbh; 453 dma_addr_t addr; 454 455 buffer_start = skb->data - dpaa2_eth_needed_headroom(priv, skb); 456 457 /* If there's enough room to align the FD address, do it. 458 * It will help hardware optimize accesses. 459 */ 460 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 461 DPAA2_ETH_TX_BUF_ALIGN); 462 if (aligned_start >= skb->head) 463 buffer_start = aligned_start; 464 465 /* Store a backpointer to the skb at the beginning of the buffer 466 * (in the private data area) such that we can release it 467 * on Tx confirm 468 */ 469 skbh = (struct sk_buff **)buffer_start; 470 *skbh = skb; 471 472 addr = dma_map_single(dev, buffer_start, 473 skb_tail_pointer(skb) - buffer_start, 474 DMA_BIDIRECTIONAL); 475 if (unlikely(dma_mapping_error(dev, addr))) 476 return -ENOMEM; 477 478 dpaa2_fd_set_addr(fd, addr); 479 dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start)); 480 dpaa2_fd_set_len(fd, skb->len); 481 dpaa2_fd_set_format(fd, dpaa2_fd_single); 482 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA | FD_CTRL_PTV1); 483 484 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 485 enable_tx_tstamp(fd, buffer_start); 486 487 return 0; 488 } 489 490 /* FD freeing routine on the Tx path 491 * 492 * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb 493 * back-pointed to is also freed. 494 * This can be called either from dpaa2_eth_tx_conf() or on the error path of 495 * dpaa2_eth_tx(). 496 */ 497 static void free_tx_fd(const struct dpaa2_eth_priv *priv, 498 const struct dpaa2_fd *fd) 499 { 500 struct device *dev = priv->net_dev->dev.parent; 501 dma_addr_t fd_addr; 502 struct sk_buff **skbh, *skb; 503 unsigned char *buffer_start; 504 struct dpaa2_eth_swa *swa; 505 u8 fd_format = dpaa2_fd_get_format(fd); 506 507 fd_addr = dpaa2_fd_get_addr(fd); 508 skbh = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr); 509 510 if (fd_format == dpaa2_fd_single) { 511 skb = *skbh; 512 buffer_start = (unsigned char *)skbh; 513 /* Accessing the skb buffer is safe before dma unmap, because 514 * we didn't map the actual skb shell. 515 */ 516 dma_unmap_single(dev, fd_addr, 517 skb_tail_pointer(skb) - buffer_start, 518 DMA_BIDIRECTIONAL); 519 } else if (fd_format == dpaa2_fd_sg) { 520 swa = (struct dpaa2_eth_swa *)skbh; 521 skb = swa->skb; 522 523 /* Unmap the scatterlist */ 524 dma_unmap_sg(dev, swa->scl, swa->num_sg, DMA_BIDIRECTIONAL); 525 kfree(swa->scl); 526 527 /* Unmap the SGT buffer */ 528 dma_unmap_single(dev, fd_addr, swa->sgt_size, 529 DMA_BIDIRECTIONAL); 530 } else { 531 netdev_dbg(priv->net_dev, "Invalid FD format\n"); 532 return; 533 } 534 535 /* Get the timestamp value */ 536 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 537 struct skb_shared_hwtstamps shhwtstamps; 538 __le64 *ts = dpaa2_get_ts(skbh, true); 539 u64 ns; 540 541 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 542 543 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 544 shhwtstamps.hwtstamp = ns_to_ktime(ns); 545 skb_tstamp_tx(skb, &shhwtstamps); 546 } 547 548 /* Free SGT buffer allocated on tx */ 549 if (fd_format != dpaa2_fd_single) 550 skb_free_frag(skbh); 551 552 /* Move on with skb release */ 553 dev_kfree_skb(skb); 554 } 555 556 static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) 557 { 558 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 559 struct dpaa2_fd fd; 560 struct rtnl_link_stats64 *percpu_stats; 561 struct dpaa2_eth_drv_stats *percpu_extras; 562 struct dpaa2_eth_fq *fq; 563 u16 queue_mapping; 564 unsigned int needed_headroom; 565 int err, i; 566 567 percpu_stats = this_cpu_ptr(priv->percpu_stats); 568 percpu_extras = this_cpu_ptr(priv->percpu_extras); 569 570 needed_headroom = dpaa2_eth_needed_headroom(priv, skb); 571 if (skb_headroom(skb) < needed_headroom) { 572 struct sk_buff *ns; 573 574 ns = skb_realloc_headroom(skb, needed_headroom); 575 if (unlikely(!ns)) { 576 percpu_stats->tx_dropped++; 577 goto err_alloc_headroom; 578 } 579 percpu_extras->tx_reallocs++; 580 581 if (skb->sk) 582 skb_set_owner_w(ns, skb->sk); 583 584 dev_kfree_skb(skb); 585 skb = ns; 586 } 587 588 /* We'll be holding a back-reference to the skb until Tx Confirmation; 589 * we don't want that overwritten by a concurrent Tx with a cloned skb. 590 */ 591 skb = skb_unshare(skb, GFP_ATOMIC); 592 if (unlikely(!skb)) { 593 /* skb_unshare() has already freed the skb */ 594 percpu_stats->tx_dropped++; 595 return NETDEV_TX_OK; 596 } 597 598 /* Setup the FD fields */ 599 memset(&fd, 0, sizeof(fd)); 600 601 if (skb_is_nonlinear(skb)) { 602 err = build_sg_fd(priv, skb, &fd); 603 percpu_extras->tx_sg_frames++; 604 percpu_extras->tx_sg_bytes += skb->len; 605 } else { 606 err = build_single_fd(priv, skb, &fd); 607 } 608 609 if (unlikely(err)) { 610 percpu_stats->tx_dropped++; 611 goto err_build_fd; 612 } 613 614 /* Tracing point */ 615 trace_dpaa2_tx_fd(net_dev, &fd); 616 617 /* TxConf FQ selection relies on queue id from the stack. 618 * In case of a forwarded frame from another DPNI interface, we choose 619 * a queue affined to the same core that processed the Rx frame 620 */ 621 queue_mapping = skb_get_queue_mapping(skb); 622 fq = &priv->fq[queue_mapping]; 623 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 624 err = dpaa2_io_service_enqueue_qd(fq->channel->dpio, 625 priv->tx_qdid, 0, 626 fq->tx_qdbin, &fd); 627 if (err != -EBUSY) 628 break; 629 } 630 percpu_extras->tx_portal_busy += i; 631 if (unlikely(err < 0)) { 632 percpu_stats->tx_errors++; 633 /* Clean up everything, including freeing the skb */ 634 free_tx_fd(priv, &fd); 635 } else { 636 percpu_stats->tx_packets++; 637 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fd); 638 } 639 640 return NETDEV_TX_OK; 641 642 err_build_fd: 643 err_alloc_headroom: 644 dev_kfree_skb(skb); 645 646 return NETDEV_TX_OK; 647 } 648 649 /* Tx confirmation frame processing routine */ 650 static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv, 651 struct dpaa2_eth_channel *ch, 652 const struct dpaa2_fd *fd, 653 struct napi_struct *napi __always_unused, 654 u16 queue_id __always_unused) 655 { 656 struct rtnl_link_stats64 *percpu_stats; 657 struct dpaa2_eth_drv_stats *percpu_extras; 658 u32 fd_errors; 659 660 /* Tracing point */ 661 trace_dpaa2_tx_conf_fd(priv->net_dev, fd); 662 663 percpu_extras = this_cpu_ptr(priv->percpu_extras); 664 percpu_extras->tx_conf_frames++; 665 percpu_extras->tx_conf_bytes += dpaa2_fd_get_len(fd); 666 667 /* Check frame errors in the FD field */ 668 fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK; 669 free_tx_fd(priv, fd); 670 671 if (likely(!fd_errors)) 672 return; 673 674 if (net_ratelimit()) 675 netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n", 676 fd_errors); 677 678 percpu_stats = this_cpu_ptr(priv->percpu_stats); 679 /* Tx-conf logically pertains to the egress path. */ 680 percpu_stats->tx_errors++; 681 } 682 683 static int set_rx_csum(struct dpaa2_eth_priv *priv, bool enable) 684 { 685 int err; 686 687 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 688 DPNI_OFF_RX_L3_CSUM, enable); 689 if (err) { 690 netdev_err(priv->net_dev, 691 "dpni_set_offload(RX_L3_CSUM) failed\n"); 692 return err; 693 } 694 695 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 696 DPNI_OFF_RX_L4_CSUM, enable); 697 if (err) { 698 netdev_err(priv->net_dev, 699 "dpni_set_offload(RX_L4_CSUM) failed\n"); 700 return err; 701 } 702 703 return 0; 704 } 705 706 static int set_tx_csum(struct dpaa2_eth_priv *priv, bool enable) 707 { 708 int err; 709 710 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 711 DPNI_OFF_TX_L3_CSUM, enable); 712 if (err) { 713 netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n"); 714 return err; 715 } 716 717 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 718 DPNI_OFF_TX_L4_CSUM, enable); 719 if (err) { 720 netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n"); 721 return err; 722 } 723 724 return 0; 725 } 726 727 /* Free buffers acquired from the buffer pool or which were meant to 728 * be released in the pool 729 */ 730 static void free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, int count) 731 { 732 struct device *dev = priv->net_dev->dev.parent; 733 void *vaddr; 734 int i; 735 736 for (i = 0; i < count; i++) { 737 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]); 738 dma_unmap_single(dev, buf_array[i], DPAA2_ETH_RX_BUF_SIZE, 739 DMA_FROM_DEVICE); 740 skb_free_frag(vaddr); 741 } 742 } 743 744 /* Perform a single release command to add buffers 745 * to the specified buffer pool 746 */ 747 static int add_bufs(struct dpaa2_eth_priv *priv, 748 struct dpaa2_eth_channel *ch, u16 bpid) 749 { 750 struct device *dev = priv->net_dev->dev.parent; 751 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 752 void *buf; 753 dma_addr_t addr; 754 int i, err; 755 756 for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) { 757 /* Allocate buffer visible to WRIOP + skb shared info + 758 * alignment padding 759 */ 760 buf = napi_alloc_frag(dpaa2_eth_buf_raw_size(priv)); 761 if (unlikely(!buf)) 762 goto err_alloc; 763 764 buf = PTR_ALIGN(buf, priv->rx_buf_align); 765 766 addr = dma_map_single(dev, buf, DPAA2_ETH_RX_BUF_SIZE, 767 DMA_FROM_DEVICE); 768 if (unlikely(dma_mapping_error(dev, addr))) 769 goto err_map; 770 771 buf_array[i] = addr; 772 773 /* tracing point */ 774 trace_dpaa2_eth_buf_seed(priv->net_dev, 775 buf, dpaa2_eth_buf_raw_size(priv), 776 addr, DPAA2_ETH_RX_BUF_SIZE, 777 bpid); 778 } 779 780 release_bufs: 781 /* In case the portal is busy, retry until successful */ 782 while ((err = dpaa2_io_service_release(ch->dpio, bpid, 783 buf_array, i)) == -EBUSY) 784 cpu_relax(); 785 786 /* If release command failed, clean up and bail out; 787 * not much else we can do about it 788 */ 789 if (err) { 790 free_bufs(priv, buf_array, i); 791 return 0; 792 } 793 794 return i; 795 796 err_map: 797 skb_free_frag(buf); 798 err_alloc: 799 /* If we managed to allocate at least some buffers, 800 * release them to hardware 801 */ 802 if (i) 803 goto release_bufs; 804 805 return 0; 806 } 807 808 static int seed_pool(struct dpaa2_eth_priv *priv, u16 bpid) 809 { 810 int i, j; 811 int new_count; 812 813 /* This is the lazy seeding of Rx buffer pools. 814 * dpaa2_add_bufs() is also used on the Rx hotpath and calls 815 * napi_alloc_frag(). The trouble with that is that it in turn ends up 816 * calling this_cpu_ptr(), which mandates execution in atomic context. 817 * Rather than splitting up the code, do a one-off preempt disable. 818 */ 819 preempt_disable(); 820 for (j = 0; j < priv->num_channels; j++) { 821 for (i = 0; i < DPAA2_ETH_NUM_BUFS; 822 i += DPAA2_ETH_BUFS_PER_CMD) { 823 new_count = add_bufs(priv, priv->channel[j], bpid); 824 priv->channel[j]->buf_count += new_count; 825 826 if (new_count < DPAA2_ETH_BUFS_PER_CMD) { 827 preempt_enable(); 828 return -ENOMEM; 829 } 830 } 831 } 832 preempt_enable(); 833 834 return 0; 835 } 836 837 /** 838 * Drain the specified number of buffers from the DPNI's private buffer pool. 839 * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD 840 */ 841 static void drain_bufs(struct dpaa2_eth_priv *priv, int count) 842 { 843 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 844 int ret; 845 846 do { 847 ret = dpaa2_io_service_acquire(NULL, priv->bpid, 848 buf_array, count); 849 if (ret < 0) { 850 netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n"); 851 return; 852 } 853 free_bufs(priv, buf_array, ret); 854 } while (ret); 855 } 856 857 static void drain_pool(struct dpaa2_eth_priv *priv) 858 { 859 int i; 860 861 drain_bufs(priv, DPAA2_ETH_BUFS_PER_CMD); 862 drain_bufs(priv, 1); 863 864 for (i = 0; i < priv->num_channels; i++) 865 priv->channel[i]->buf_count = 0; 866 } 867 868 /* Function is called from softirq context only, so we don't need to guard 869 * the access to percpu count 870 */ 871 static int refill_pool(struct dpaa2_eth_priv *priv, 872 struct dpaa2_eth_channel *ch, 873 u16 bpid) 874 { 875 int new_count; 876 877 if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH)) 878 return 0; 879 880 do { 881 new_count = add_bufs(priv, ch, bpid); 882 if (unlikely(!new_count)) { 883 /* Out of memory; abort for now, we'll try later on */ 884 break; 885 } 886 ch->buf_count += new_count; 887 } while (ch->buf_count < DPAA2_ETH_NUM_BUFS); 888 889 if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS)) 890 return -ENOMEM; 891 892 return 0; 893 } 894 895 static int pull_channel(struct dpaa2_eth_channel *ch) 896 { 897 int err; 898 int dequeues = -1; 899 900 /* Retry while portal is busy */ 901 do { 902 err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id, 903 ch->store); 904 dequeues++; 905 cpu_relax(); 906 } while (err == -EBUSY); 907 908 ch->stats.dequeue_portal_busy += dequeues; 909 if (unlikely(err)) 910 ch->stats.pull_err++; 911 912 return err; 913 } 914 915 /* NAPI poll routine 916 * 917 * Frames are dequeued from the QMan channel associated with this NAPI context. 918 * Rx, Tx confirmation and (if configured) Rx error frames all count 919 * towards the NAPI budget. 920 */ 921 static int dpaa2_eth_poll(struct napi_struct *napi, int budget) 922 { 923 struct dpaa2_eth_channel *ch; 924 int cleaned = 0, store_cleaned; 925 struct dpaa2_eth_priv *priv; 926 int err; 927 928 ch = container_of(napi, struct dpaa2_eth_channel, napi); 929 priv = ch->priv; 930 931 while (cleaned < budget) { 932 err = pull_channel(ch); 933 if (unlikely(err)) 934 break; 935 936 /* Refill pool if appropriate */ 937 refill_pool(priv, ch, priv->bpid); 938 939 store_cleaned = consume_frames(ch); 940 cleaned += store_cleaned; 941 942 /* If we have enough budget left for a full store, 943 * try a new pull dequeue, otherwise we're done here 944 */ 945 if (store_cleaned == 0 || 946 cleaned > budget - DPAA2_ETH_STORE_SIZE) 947 break; 948 } 949 950 if (cleaned < budget && napi_complete_done(napi, cleaned)) { 951 /* Re-enable data available notifications */ 952 do { 953 err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx); 954 cpu_relax(); 955 } while (err == -EBUSY); 956 WARN_ONCE(err, "CDAN notifications rearm failed on core %d", 957 ch->nctx.desired_cpu); 958 } 959 960 ch->stats.frames += cleaned; 961 962 return cleaned; 963 } 964 965 static void enable_ch_napi(struct dpaa2_eth_priv *priv) 966 { 967 struct dpaa2_eth_channel *ch; 968 int i; 969 970 for (i = 0; i < priv->num_channels; i++) { 971 ch = priv->channel[i]; 972 napi_enable(&ch->napi); 973 } 974 } 975 976 static void disable_ch_napi(struct dpaa2_eth_priv *priv) 977 { 978 struct dpaa2_eth_channel *ch; 979 int i; 980 981 for (i = 0; i < priv->num_channels; i++) { 982 ch = priv->channel[i]; 983 napi_disable(&ch->napi); 984 } 985 } 986 987 static int link_state_update(struct dpaa2_eth_priv *priv) 988 { 989 struct dpni_link_state state; 990 int err; 991 992 err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state); 993 if (unlikely(err)) { 994 netdev_err(priv->net_dev, 995 "dpni_get_link_state() failed\n"); 996 return err; 997 } 998 999 /* Chech link state; speed / duplex changes are not treated yet */ 1000 if (priv->link_state.up == state.up) 1001 return 0; 1002 1003 priv->link_state = state; 1004 if (state.up) { 1005 netif_carrier_on(priv->net_dev); 1006 netif_tx_start_all_queues(priv->net_dev); 1007 } else { 1008 netif_tx_stop_all_queues(priv->net_dev); 1009 netif_carrier_off(priv->net_dev); 1010 } 1011 1012 netdev_info(priv->net_dev, "Link Event: state %s\n", 1013 state.up ? "up" : "down"); 1014 1015 return 0; 1016 } 1017 1018 static int dpaa2_eth_open(struct net_device *net_dev) 1019 { 1020 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1021 int err; 1022 1023 err = seed_pool(priv, priv->bpid); 1024 if (err) { 1025 /* Not much to do; the buffer pool, though not filled up, 1026 * may still contain some buffers which would enable us 1027 * to limp on. 1028 */ 1029 netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n", 1030 priv->dpbp_dev->obj_desc.id, priv->bpid); 1031 } 1032 1033 /* We'll only start the txqs when the link is actually ready; make sure 1034 * we don't race against the link up notification, which may come 1035 * immediately after dpni_enable(); 1036 */ 1037 netif_tx_stop_all_queues(net_dev); 1038 enable_ch_napi(priv); 1039 /* Also, explicitly set carrier off, otherwise netif_carrier_ok() will 1040 * return true and cause 'ip link show' to report the LOWER_UP flag, 1041 * even though the link notification wasn't even received. 1042 */ 1043 netif_carrier_off(net_dev); 1044 1045 err = dpni_enable(priv->mc_io, 0, priv->mc_token); 1046 if (err < 0) { 1047 netdev_err(net_dev, "dpni_enable() failed\n"); 1048 goto enable_err; 1049 } 1050 1051 /* If the DPMAC object has already processed the link up interrupt, 1052 * we have to learn the link state ourselves. 1053 */ 1054 err = link_state_update(priv); 1055 if (err < 0) { 1056 netdev_err(net_dev, "Can't update link state\n"); 1057 goto link_state_err; 1058 } 1059 1060 return 0; 1061 1062 link_state_err: 1063 enable_err: 1064 disable_ch_napi(priv); 1065 drain_pool(priv); 1066 return err; 1067 } 1068 1069 /* The DPIO store must be empty when we call this, 1070 * at the end of every NAPI cycle. 1071 */ 1072 static u32 drain_channel(struct dpaa2_eth_priv *priv, 1073 struct dpaa2_eth_channel *ch) 1074 { 1075 u32 drained = 0, total = 0; 1076 1077 do { 1078 pull_channel(ch); 1079 drained = consume_frames(ch); 1080 total += drained; 1081 } while (drained); 1082 1083 return total; 1084 } 1085 1086 static u32 drain_ingress_frames(struct dpaa2_eth_priv *priv) 1087 { 1088 struct dpaa2_eth_channel *ch; 1089 int i; 1090 u32 drained = 0; 1091 1092 for (i = 0; i < priv->num_channels; i++) { 1093 ch = priv->channel[i]; 1094 drained += drain_channel(priv, ch); 1095 } 1096 1097 return drained; 1098 } 1099 1100 static int dpaa2_eth_stop(struct net_device *net_dev) 1101 { 1102 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1103 int dpni_enabled; 1104 int retries = 10; 1105 u32 drained; 1106 1107 netif_tx_stop_all_queues(net_dev); 1108 netif_carrier_off(net_dev); 1109 1110 /* Loop while dpni_disable() attempts to drain the egress FQs 1111 * and confirm them back to us. 1112 */ 1113 do { 1114 dpni_disable(priv->mc_io, 0, priv->mc_token); 1115 dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled); 1116 if (dpni_enabled) 1117 /* Allow the hardware some slack */ 1118 msleep(100); 1119 } while (dpni_enabled && --retries); 1120 if (!retries) { 1121 netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n"); 1122 /* Must go on and disable NAPI nonetheless, so we don't crash at 1123 * the next "ifconfig up" 1124 */ 1125 } 1126 1127 /* Wait for NAPI to complete on every core and disable it. 1128 * In particular, this will also prevent NAPI from being rescheduled if 1129 * a new CDAN is serviced, effectively discarding the CDAN. We therefore 1130 * don't even need to disarm the channels, except perhaps for the case 1131 * of a huge coalescing value. 1132 */ 1133 disable_ch_napi(priv); 1134 1135 /* Manually drain the Rx and TxConf queues */ 1136 drained = drain_ingress_frames(priv); 1137 if (drained) 1138 netdev_dbg(net_dev, "Drained %d frames.\n", drained); 1139 1140 /* Empty the buffer pool */ 1141 drain_pool(priv); 1142 1143 return 0; 1144 } 1145 1146 static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr) 1147 { 1148 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1149 struct device *dev = net_dev->dev.parent; 1150 int err; 1151 1152 err = eth_mac_addr(net_dev, addr); 1153 if (err < 0) { 1154 dev_err(dev, "eth_mac_addr() failed (%d)\n", err); 1155 return err; 1156 } 1157 1158 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 1159 net_dev->dev_addr); 1160 if (err) { 1161 dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err); 1162 return err; 1163 } 1164 1165 return 0; 1166 } 1167 1168 /** Fill in counters maintained by the GPP driver. These may be different from 1169 * the hardware counters obtained by ethtool. 1170 */ 1171 static void dpaa2_eth_get_stats(struct net_device *net_dev, 1172 struct rtnl_link_stats64 *stats) 1173 { 1174 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1175 struct rtnl_link_stats64 *percpu_stats; 1176 u64 *cpustats; 1177 u64 *netstats = (u64 *)stats; 1178 int i, j; 1179 int num = sizeof(struct rtnl_link_stats64) / sizeof(u64); 1180 1181 for_each_possible_cpu(i) { 1182 percpu_stats = per_cpu_ptr(priv->percpu_stats, i); 1183 cpustats = (u64 *)percpu_stats; 1184 for (j = 0; j < num; j++) 1185 netstats[j] += cpustats[j]; 1186 } 1187 } 1188 1189 /* Copy mac unicast addresses from @net_dev to @priv. 1190 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1191 */ 1192 static void add_uc_hw_addr(const struct net_device *net_dev, 1193 struct dpaa2_eth_priv *priv) 1194 { 1195 struct netdev_hw_addr *ha; 1196 int err; 1197 1198 netdev_for_each_uc_addr(ha, net_dev) { 1199 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1200 ha->addr); 1201 if (err) 1202 netdev_warn(priv->net_dev, 1203 "Could not add ucast MAC %pM to the filtering table (err %d)\n", 1204 ha->addr, err); 1205 } 1206 } 1207 1208 /* Copy mac multicast addresses from @net_dev to @priv 1209 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1210 */ 1211 static void add_mc_hw_addr(const struct net_device *net_dev, 1212 struct dpaa2_eth_priv *priv) 1213 { 1214 struct netdev_hw_addr *ha; 1215 int err; 1216 1217 netdev_for_each_mc_addr(ha, net_dev) { 1218 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1219 ha->addr); 1220 if (err) 1221 netdev_warn(priv->net_dev, 1222 "Could not add mcast MAC %pM to the filtering table (err %d)\n", 1223 ha->addr, err); 1224 } 1225 } 1226 1227 static void dpaa2_eth_set_rx_mode(struct net_device *net_dev) 1228 { 1229 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1230 int uc_count = netdev_uc_count(net_dev); 1231 int mc_count = netdev_mc_count(net_dev); 1232 u8 max_mac = priv->dpni_attrs.mac_filter_entries; 1233 u32 options = priv->dpni_attrs.options; 1234 u16 mc_token = priv->mc_token; 1235 struct fsl_mc_io *mc_io = priv->mc_io; 1236 int err; 1237 1238 /* Basic sanity checks; these probably indicate a misconfiguration */ 1239 if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0) 1240 netdev_info(net_dev, 1241 "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n", 1242 max_mac); 1243 1244 /* Force promiscuous if the uc or mc counts exceed our capabilities. */ 1245 if (uc_count > max_mac) { 1246 netdev_info(net_dev, 1247 "Unicast addr count reached %d, max allowed is %d; forcing promisc\n", 1248 uc_count, max_mac); 1249 goto force_promisc; 1250 } 1251 if (mc_count + uc_count > max_mac) { 1252 netdev_info(net_dev, 1253 "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n", 1254 uc_count + mc_count, max_mac); 1255 goto force_mc_promisc; 1256 } 1257 1258 /* Adjust promisc settings due to flag combinations */ 1259 if (net_dev->flags & IFF_PROMISC) 1260 goto force_promisc; 1261 if (net_dev->flags & IFF_ALLMULTI) { 1262 /* First, rebuild unicast filtering table. This should be done 1263 * in promisc mode, in order to avoid frame loss while we 1264 * progressively add entries to the table. 1265 * We don't know whether we had been in promisc already, and 1266 * making an MC call to find out is expensive; so set uc promisc 1267 * nonetheless. 1268 */ 1269 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1270 if (err) 1271 netdev_warn(net_dev, "Can't set uc promisc\n"); 1272 1273 /* Actual uc table reconstruction. */ 1274 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0); 1275 if (err) 1276 netdev_warn(net_dev, "Can't clear uc filters\n"); 1277 add_uc_hw_addr(net_dev, priv); 1278 1279 /* Finally, clear uc promisc and set mc promisc as requested. */ 1280 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1281 if (err) 1282 netdev_warn(net_dev, "Can't clear uc promisc\n"); 1283 goto force_mc_promisc; 1284 } 1285 1286 /* Neither unicast, nor multicast promisc will be on... eventually. 1287 * For now, rebuild mac filtering tables while forcing both of them on. 1288 */ 1289 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1290 if (err) 1291 netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err); 1292 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1293 if (err) 1294 netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err); 1295 1296 /* Actual mac filtering tables reconstruction */ 1297 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1); 1298 if (err) 1299 netdev_warn(net_dev, "Can't clear mac filters\n"); 1300 add_mc_hw_addr(net_dev, priv); 1301 add_uc_hw_addr(net_dev, priv); 1302 1303 /* Now we can clear both ucast and mcast promisc, without risking 1304 * to drop legitimate frames anymore. 1305 */ 1306 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1307 if (err) 1308 netdev_warn(net_dev, "Can't clear ucast promisc\n"); 1309 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0); 1310 if (err) 1311 netdev_warn(net_dev, "Can't clear mcast promisc\n"); 1312 1313 return; 1314 1315 force_promisc: 1316 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1317 if (err) 1318 netdev_warn(net_dev, "Can't set ucast promisc\n"); 1319 force_mc_promisc: 1320 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1321 if (err) 1322 netdev_warn(net_dev, "Can't set mcast promisc\n"); 1323 } 1324 1325 static int dpaa2_eth_set_features(struct net_device *net_dev, 1326 netdev_features_t features) 1327 { 1328 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1329 netdev_features_t changed = features ^ net_dev->features; 1330 bool enable; 1331 int err; 1332 1333 if (changed & NETIF_F_RXCSUM) { 1334 enable = !!(features & NETIF_F_RXCSUM); 1335 err = set_rx_csum(priv, enable); 1336 if (err) 1337 return err; 1338 } 1339 1340 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 1341 enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 1342 err = set_tx_csum(priv, enable); 1343 if (err) 1344 return err; 1345 } 1346 1347 return 0; 1348 } 1349 1350 static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1351 { 1352 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1353 struct hwtstamp_config config; 1354 1355 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 1356 return -EFAULT; 1357 1358 switch (config.tx_type) { 1359 case HWTSTAMP_TX_OFF: 1360 priv->tx_tstamp = false; 1361 break; 1362 case HWTSTAMP_TX_ON: 1363 priv->tx_tstamp = true; 1364 break; 1365 default: 1366 return -ERANGE; 1367 } 1368 1369 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 1370 priv->rx_tstamp = false; 1371 } else { 1372 priv->rx_tstamp = true; 1373 /* TS is set for all frame types, not only those requested */ 1374 config.rx_filter = HWTSTAMP_FILTER_ALL; 1375 } 1376 1377 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 1378 -EFAULT : 0; 1379 } 1380 1381 static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1382 { 1383 if (cmd == SIOCSHWTSTAMP) 1384 return dpaa2_eth_ts_ioctl(dev, rq, cmd); 1385 1386 return -EINVAL; 1387 } 1388 1389 static const struct net_device_ops dpaa2_eth_ops = { 1390 .ndo_open = dpaa2_eth_open, 1391 .ndo_start_xmit = dpaa2_eth_tx, 1392 .ndo_stop = dpaa2_eth_stop, 1393 .ndo_set_mac_address = dpaa2_eth_set_addr, 1394 .ndo_get_stats64 = dpaa2_eth_get_stats, 1395 .ndo_set_rx_mode = dpaa2_eth_set_rx_mode, 1396 .ndo_set_features = dpaa2_eth_set_features, 1397 .ndo_do_ioctl = dpaa2_eth_ioctl, 1398 }; 1399 1400 static void cdan_cb(struct dpaa2_io_notification_ctx *ctx) 1401 { 1402 struct dpaa2_eth_channel *ch; 1403 1404 ch = container_of(ctx, struct dpaa2_eth_channel, nctx); 1405 1406 /* Update NAPI statistics */ 1407 ch->stats.cdan++; 1408 1409 napi_schedule_irqoff(&ch->napi); 1410 } 1411 1412 /* Allocate and configure a DPCON object */ 1413 static struct fsl_mc_device *setup_dpcon(struct dpaa2_eth_priv *priv) 1414 { 1415 struct fsl_mc_device *dpcon; 1416 struct device *dev = priv->net_dev->dev.parent; 1417 struct dpcon_attr attrs; 1418 int err; 1419 1420 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), 1421 FSL_MC_POOL_DPCON, &dpcon); 1422 if (err) { 1423 dev_info(dev, "Not enough DPCONs, will go on as-is\n"); 1424 return NULL; 1425 } 1426 1427 err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle); 1428 if (err) { 1429 dev_err(dev, "dpcon_open() failed\n"); 1430 goto free; 1431 } 1432 1433 err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle); 1434 if (err) { 1435 dev_err(dev, "dpcon_reset() failed\n"); 1436 goto close; 1437 } 1438 1439 err = dpcon_get_attributes(priv->mc_io, 0, dpcon->mc_handle, &attrs); 1440 if (err) { 1441 dev_err(dev, "dpcon_get_attributes() failed\n"); 1442 goto close; 1443 } 1444 1445 err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle); 1446 if (err) { 1447 dev_err(dev, "dpcon_enable() failed\n"); 1448 goto close; 1449 } 1450 1451 return dpcon; 1452 1453 close: 1454 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 1455 free: 1456 fsl_mc_object_free(dpcon); 1457 1458 return NULL; 1459 } 1460 1461 static void free_dpcon(struct dpaa2_eth_priv *priv, 1462 struct fsl_mc_device *dpcon) 1463 { 1464 dpcon_disable(priv->mc_io, 0, dpcon->mc_handle); 1465 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 1466 fsl_mc_object_free(dpcon); 1467 } 1468 1469 static struct dpaa2_eth_channel * 1470 alloc_channel(struct dpaa2_eth_priv *priv) 1471 { 1472 struct dpaa2_eth_channel *channel; 1473 struct dpcon_attr attr; 1474 struct device *dev = priv->net_dev->dev.parent; 1475 int err; 1476 1477 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 1478 if (!channel) 1479 return NULL; 1480 1481 channel->dpcon = setup_dpcon(priv); 1482 if (!channel->dpcon) 1483 goto err_setup; 1484 1485 err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle, 1486 &attr); 1487 if (err) { 1488 dev_err(dev, "dpcon_get_attributes() failed\n"); 1489 goto err_get_attr; 1490 } 1491 1492 channel->dpcon_id = attr.id; 1493 channel->ch_id = attr.qbman_ch_id; 1494 channel->priv = priv; 1495 1496 return channel; 1497 1498 err_get_attr: 1499 free_dpcon(priv, channel->dpcon); 1500 err_setup: 1501 kfree(channel); 1502 return NULL; 1503 } 1504 1505 static void free_channel(struct dpaa2_eth_priv *priv, 1506 struct dpaa2_eth_channel *channel) 1507 { 1508 free_dpcon(priv, channel->dpcon); 1509 kfree(channel); 1510 } 1511 1512 /* DPIO setup: allocate and configure QBMan channels, setup core affinity 1513 * and register data availability notifications 1514 */ 1515 static int setup_dpio(struct dpaa2_eth_priv *priv) 1516 { 1517 struct dpaa2_io_notification_ctx *nctx; 1518 struct dpaa2_eth_channel *channel; 1519 struct dpcon_notification_cfg dpcon_notif_cfg; 1520 struct device *dev = priv->net_dev->dev.parent; 1521 int i, err; 1522 1523 /* We want the ability to spread ingress traffic (RX, TX conf) to as 1524 * many cores as possible, so we need one channel for each core 1525 * (unless there's fewer queues than cores, in which case the extra 1526 * channels would be wasted). 1527 * Allocate one channel per core and register it to the core's 1528 * affine DPIO. If not enough channels are available for all cores 1529 * or if some cores don't have an affine DPIO, there will be no 1530 * ingress frame processing on those cores. 1531 */ 1532 cpumask_clear(&priv->dpio_cpumask); 1533 for_each_online_cpu(i) { 1534 /* Try to allocate a channel */ 1535 channel = alloc_channel(priv); 1536 if (!channel) { 1537 dev_info(dev, 1538 "No affine channel for cpu %d and above\n", i); 1539 err = -ENODEV; 1540 goto err_alloc_ch; 1541 } 1542 1543 priv->channel[priv->num_channels] = channel; 1544 1545 nctx = &channel->nctx; 1546 nctx->is_cdan = 1; 1547 nctx->cb = cdan_cb; 1548 nctx->id = channel->ch_id; 1549 nctx->desired_cpu = i; 1550 1551 /* Register the new context */ 1552 channel->dpio = dpaa2_io_service_select(i); 1553 err = dpaa2_io_service_register(channel->dpio, nctx); 1554 if (err) { 1555 dev_dbg(dev, "No affine DPIO for cpu %d\n", i); 1556 /* If no affine DPIO for this core, there's probably 1557 * none available for next cores either. Signal we want 1558 * to retry later, in case the DPIO devices weren't 1559 * probed yet. 1560 */ 1561 err = -EPROBE_DEFER; 1562 goto err_service_reg; 1563 } 1564 1565 /* Register DPCON notification with MC */ 1566 dpcon_notif_cfg.dpio_id = nctx->dpio_id; 1567 dpcon_notif_cfg.priority = 0; 1568 dpcon_notif_cfg.user_ctx = nctx->qman64; 1569 err = dpcon_set_notification(priv->mc_io, 0, 1570 channel->dpcon->mc_handle, 1571 &dpcon_notif_cfg); 1572 if (err) { 1573 dev_err(dev, "dpcon_set_notification failed()\n"); 1574 goto err_set_cdan; 1575 } 1576 1577 /* If we managed to allocate a channel and also found an affine 1578 * DPIO for this core, add it to the final mask 1579 */ 1580 cpumask_set_cpu(i, &priv->dpio_cpumask); 1581 priv->num_channels++; 1582 1583 /* Stop if we already have enough channels to accommodate all 1584 * RX and TX conf queues 1585 */ 1586 if (priv->num_channels == dpaa2_eth_queue_count(priv)) 1587 break; 1588 } 1589 1590 return 0; 1591 1592 err_set_cdan: 1593 dpaa2_io_service_deregister(channel->dpio, nctx); 1594 err_service_reg: 1595 free_channel(priv, channel); 1596 err_alloc_ch: 1597 if (cpumask_empty(&priv->dpio_cpumask)) { 1598 dev_err(dev, "No cpu with an affine DPIO/DPCON\n"); 1599 return err; 1600 } 1601 1602 dev_info(dev, "Cores %*pbl available for processing ingress traffic\n", 1603 cpumask_pr_args(&priv->dpio_cpumask)); 1604 1605 return 0; 1606 } 1607 1608 static void free_dpio(struct dpaa2_eth_priv *priv) 1609 { 1610 int i; 1611 struct dpaa2_eth_channel *ch; 1612 1613 /* deregister CDAN notifications and free channels */ 1614 for (i = 0; i < priv->num_channels; i++) { 1615 ch = priv->channel[i]; 1616 dpaa2_io_service_deregister(ch->dpio, &ch->nctx); 1617 free_channel(priv, ch); 1618 } 1619 } 1620 1621 static struct dpaa2_eth_channel *get_affine_channel(struct dpaa2_eth_priv *priv, 1622 int cpu) 1623 { 1624 struct device *dev = priv->net_dev->dev.parent; 1625 int i; 1626 1627 for (i = 0; i < priv->num_channels; i++) 1628 if (priv->channel[i]->nctx.desired_cpu == cpu) 1629 return priv->channel[i]; 1630 1631 /* We should never get here. Issue a warning and return 1632 * the first channel, because it's still better than nothing 1633 */ 1634 dev_warn(dev, "No affine channel found for cpu %d\n", cpu); 1635 1636 return priv->channel[0]; 1637 } 1638 1639 static void set_fq_affinity(struct dpaa2_eth_priv *priv) 1640 { 1641 struct device *dev = priv->net_dev->dev.parent; 1642 struct cpumask xps_mask; 1643 struct dpaa2_eth_fq *fq; 1644 int rx_cpu, txc_cpu; 1645 int i, err; 1646 1647 /* For each FQ, pick one channel/CPU to deliver frames to. 1648 * This may well change at runtime, either through irqbalance or 1649 * through direct user intervention. 1650 */ 1651 rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask); 1652 1653 for (i = 0; i < priv->num_fqs; i++) { 1654 fq = &priv->fq[i]; 1655 switch (fq->type) { 1656 case DPAA2_RX_FQ: 1657 fq->target_cpu = rx_cpu; 1658 rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask); 1659 if (rx_cpu >= nr_cpu_ids) 1660 rx_cpu = cpumask_first(&priv->dpio_cpumask); 1661 break; 1662 case DPAA2_TX_CONF_FQ: 1663 fq->target_cpu = txc_cpu; 1664 1665 /* Tell the stack to affine to txc_cpu the Tx queue 1666 * associated with the confirmation one 1667 */ 1668 cpumask_clear(&xps_mask); 1669 cpumask_set_cpu(txc_cpu, &xps_mask); 1670 err = netif_set_xps_queue(priv->net_dev, &xps_mask, 1671 fq->flowid); 1672 if (err) 1673 dev_err(dev, "Error setting XPS queue\n"); 1674 1675 txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask); 1676 if (txc_cpu >= nr_cpu_ids) 1677 txc_cpu = cpumask_first(&priv->dpio_cpumask); 1678 break; 1679 default: 1680 dev_err(dev, "Unknown FQ type: %d\n", fq->type); 1681 } 1682 fq->channel = get_affine_channel(priv, fq->target_cpu); 1683 } 1684 } 1685 1686 static void setup_fqs(struct dpaa2_eth_priv *priv) 1687 { 1688 int i; 1689 1690 /* We have one TxConf FQ per Tx flow. 1691 * The number of Tx and Rx queues is the same. 1692 * Tx queues come first in the fq array. 1693 */ 1694 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 1695 priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ; 1696 priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf; 1697 priv->fq[priv->num_fqs++].flowid = (u16)i; 1698 } 1699 1700 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 1701 priv->fq[priv->num_fqs].type = DPAA2_RX_FQ; 1702 priv->fq[priv->num_fqs].consume = dpaa2_eth_rx; 1703 priv->fq[priv->num_fqs++].flowid = (u16)i; 1704 } 1705 1706 /* For each FQ, decide on which core to process incoming frames */ 1707 set_fq_affinity(priv); 1708 } 1709 1710 /* Allocate and configure one buffer pool for each interface */ 1711 static int setup_dpbp(struct dpaa2_eth_priv *priv) 1712 { 1713 int err; 1714 struct fsl_mc_device *dpbp_dev; 1715 struct device *dev = priv->net_dev->dev.parent; 1716 struct dpbp_attr dpbp_attrs; 1717 1718 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, 1719 &dpbp_dev); 1720 if (err) { 1721 dev_err(dev, "DPBP device allocation failed\n"); 1722 return err; 1723 } 1724 1725 priv->dpbp_dev = dpbp_dev; 1726 1727 err = dpbp_open(priv->mc_io, 0, priv->dpbp_dev->obj_desc.id, 1728 &dpbp_dev->mc_handle); 1729 if (err) { 1730 dev_err(dev, "dpbp_open() failed\n"); 1731 goto err_open; 1732 } 1733 1734 err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle); 1735 if (err) { 1736 dev_err(dev, "dpbp_reset() failed\n"); 1737 goto err_reset; 1738 } 1739 1740 err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle); 1741 if (err) { 1742 dev_err(dev, "dpbp_enable() failed\n"); 1743 goto err_enable; 1744 } 1745 1746 err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle, 1747 &dpbp_attrs); 1748 if (err) { 1749 dev_err(dev, "dpbp_get_attributes() failed\n"); 1750 goto err_get_attr; 1751 } 1752 priv->bpid = dpbp_attrs.bpid; 1753 1754 return 0; 1755 1756 err_get_attr: 1757 dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle); 1758 err_enable: 1759 err_reset: 1760 dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle); 1761 err_open: 1762 fsl_mc_object_free(dpbp_dev); 1763 1764 return err; 1765 } 1766 1767 static void free_dpbp(struct dpaa2_eth_priv *priv) 1768 { 1769 drain_pool(priv); 1770 dpbp_disable(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 1771 dpbp_close(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 1772 fsl_mc_object_free(priv->dpbp_dev); 1773 } 1774 1775 static int set_buffer_layout(struct dpaa2_eth_priv *priv) 1776 { 1777 struct device *dev = priv->net_dev->dev.parent; 1778 struct dpni_buffer_layout buf_layout = {0}; 1779 int err; 1780 1781 /* We need to check for WRIOP version 1.0.0, but depending on the MC 1782 * version, this number is not always provided correctly on rev1. 1783 * We need to check for both alternatives in this situation. 1784 */ 1785 if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) || 1786 priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0)) 1787 priv->rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1; 1788 else 1789 priv->rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN; 1790 1791 /* tx buffer */ 1792 buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE; 1793 buf_layout.pass_timestamp = true; 1794 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE | 1795 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 1796 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 1797 DPNI_QUEUE_TX, &buf_layout); 1798 if (err) { 1799 dev_err(dev, "dpni_set_buffer_layout(TX) failed\n"); 1800 return err; 1801 } 1802 1803 /* tx-confirm buffer */ 1804 buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 1805 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 1806 DPNI_QUEUE_TX_CONFIRM, &buf_layout); 1807 if (err) { 1808 dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n"); 1809 return err; 1810 } 1811 1812 /* Now that we've set our tx buffer layout, retrieve the minimum 1813 * required tx data offset. 1814 */ 1815 err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token, 1816 &priv->tx_data_offset); 1817 if (err) { 1818 dev_err(dev, "dpni_get_tx_data_offset() failed\n"); 1819 return err; 1820 } 1821 1822 if ((priv->tx_data_offset % 64) != 0) 1823 dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n", 1824 priv->tx_data_offset); 1825 1826 /* rx buffer */ 1827 buf_layout.pass_frame_status = true; 1828 buf_layout.pass_parser_result = true; 1829 buf_layout.data_align = priv->rx_buf_align; 1830 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv); 1831 buf_layout.private_data_size = 0; 1832 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT | 1833 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | 1834 DPNI_BUF_LAYOUT_OPT_DATA_ALIGN | 1835 DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM | 1836 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 1837 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 1838 DPNI_QUEUE_RX, &buf_layout); 1839 if (err) { 1840 dev_err(dev, "dpni_set_buffer_layout(RX) failed\n"); 1841 return err; 1842 } 1843 1844 return 0; 1845 } 1846 1847 /* Configure the DPNI object this interface is associated with */ 1848 static int setup_dpni(struct fsl_mc_device *ls_dev) 1849 { 1850 struct device *dev = &ls_dev->dev; 1851 struct dpaa2_eth_priv *priv; 1852 struct net_device *net_dev; 1853 int err; 1854 1855 net_dev = dev_get_drvdata(dev); 1856 priv = netdev_priv(net_dev); 1857 1858 /* get a handle for the DPNI object */ 1859 err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token); 1860 if (err) { 1861 dev_err(dev, "dpni_open() failed\n"); 1862 return err; 1863 } 1864 1865 /* Check if we can work with this DPNI object */ 1866 err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major, 1867 &priv->dpni_ver_minor); 1868 if (err) { 1869 dev_err(dev, "dpni_get_api_version() failed\n"); 1870 goto close; 1871 } 1872 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) { 1873 dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n", 1874 priv->dpni_ver_major, priv->dpni_ver_minor, 1875 DPNI_VER_MAJOR, DPNI_VER_MINOR); 1876 err = -ENOTSUPP; 1877 goto close; 1878 } 1879 1880 ls_dev->mc_io = priv->mc_io; 1881 ls_dev->mc_handle = priv->mc_token; 1882 1883 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 1884 if (err) { 1885 dev_err(dev, "dpni_reset() failed\n"); 1886 goto close; 1887 } 1888 1889 err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token, 1890 &priv->dpni_attrs); 1891 if (err) { 1892 dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err); 1893 goto close; 1894 } 1895 1896 err = set_buffer_layout(priv); 1897 if (err) 1898 goto close; 1899 1900 priv->cls_rules = devm_kzalloc(dev, sizeof(struct dpaa2_eth_cls_rule) * 1901 dpaa2_eth_fs_count(priv), GFP_KERNEL); 1902 if (!priv->cls_rules) 1903 goto close; 1904 1905 return 0; 1906 1907 close: 1908 dpni_close(priv->mc_io, 0, priv->mc_token); 1909 1910 return err; 1911 } 1912 1913 static void free_dpni(struct dpaa2_eth_priv *priv) 1914 { 1915 int err; 1916 1917 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 1918 if (err) 1919 netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n", 1920 err); 1921 1922 dpni_close(priv->mc_io, 0, priv->mc_token); 1923 } 1924 1925 static int setup_rx_flow(struct dpaa2_eth_priv *priv, 1926 struct dpaa2_eth_fq *fq) 1927 { 1928 struct device *dev = priv->net_dev->dev.parent; 1929 struct dpni_queue queue; 1930 struct dpni_queue_id qid; 1931 struct dpni_taildrop td; 1932 int err; 1933 1934 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 1935 DPNI_QUEUE_RX, 0, fq->flowid, &queue, &qid); 1936 if (err) { 1937 dev_err(dev, "dpni_get_queue(RX) failed\n"); 1938 return err; 1939 } 1940 1941 fq->fqid = qid.fqid; 1942 1943 queue.destination.id = fq->channel->dpcon_id; 1944 queue.destination.type = DPNI_DEST_DPCON; 1945 queue.destination.priority = 1; 1946 queue.user_context = (u64)(uintptr_t)fq; 1947 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 1948 DPNI_QUEUE_RX, 0, fq->flowid, 1949 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 1950 &queue); 1951 if (err) { 1952 dev_err(dev, "dpni_set_queue(RX) failed\n"); 1953 return err; 1954 } 1955 1956 td.enable = 1; 1957 td.threshold = DPAA2_ETH_TAILDROP_THRESH; 1958 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, DPNI_CP_QUEUE, 1959 DPNI_QUEUE_RX, 0, fq->flowid, &td); 1960 if (err) { 1961 dev_err(dev, "dpni_set_threshold() failed\n"); 1962 return err; 1963 } 1964 1965 return 0; 1966 } 1967 1968 static int setup_tx_flow(struct dpaa2_eth_priv *priv, 1969 struct dpaa2_eth_fq *fq) 1970 { 1971 struct device *dev = priv->net_dev->dev.parent; 1972 struct dpni_queue queue; 1973 struct dpni_queue_id qid; 1974 int err; 1975 1976 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 1977 DPNI_QUEUE_TX, 0, fq->flowid, &queue, &qid); 1978 if (err) { 1979 dev_err(dev, "dpni_get_queue(TX) failed\n"); 1980 return err; 1981 } 1982 1983 fq->tx_qdbin = qid.qdbin; 1984 1985 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 1986 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 1987 &queue, &qid); 1988 if (err) { 1989 dev_err(dev, "dpni_get_queue(TX_CONF) failed\n"); 1990 return err; 1991 } 1992 1993 fq->fqid = qid.fqid; 1994 1995 queue.destination.id = fq->channel->dpcon_id; 1996 queue.destination.type = DPNI_DEST_DPCON; 1997 queue.destination.priority = 0; 1998 queue.user_context = (u64)(uintptr_t)fq; 1999 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2000 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 2001 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 2002 &queue); 2003 if (err) { 2004 dev_err(dev, "dpni_set_queue(TX_CONF) failed\n"); 2005 return err; 2006 } 2007 2008 return 0; 2009 } 2010 2011 /* Supported header fields for Rx hash distribution key */ 2012 static const struct dpaa2_eth_dist_fields dist_fields[] = { 2013 { 2014 /* L2 header */ 2015 .rxnfc_field = RXH_L2DA, 2016 .cls_prot = NET_PROT_ETH, 2017 .cls_field = NH_FLD_ETH_DA, 2018 .size = 6, 2019 }, { 2020 .cls_prot = NET_PROT_ETH, 2021 .cls_field = NH_FLD_ETH_SA, 2022 .size = 6, 2023 }, { 2024 /* This is the last ethertype field parsed: 2025 * depending on frame format, it can be the MAC ethertype 2026 * or the VLAN etype. 2027 */ 2028 .cls_prot = NET_PROT_ETH, 2029 .cls_field = NH_FLD_ETH_TYPE, 2030 .size = 2, 2031 }, { 2032 /* VLAN header */ 2033 .rxnfc_field = RXH_VLAN, 2034 .cls_prot = NET_PROT_VLAN, 2035 .cls_field = NH_FLD_VLAN_TCI, 2036 .size = 2, 2037 }, { 2038 /* IP header */ 2039 .rxnfc_field = RXH_IP_SRC, 2040 .cls_prot = NET_PROT_IP, 2041 .cls_field = NH_FLD_IP_SRC, 2042 .size = 4, 2043 }, { 2044 .rxnfc_field = RXH_IP_DST, 2045 .cls_prot = NET_PROT_IP, 2046 .cls_field = NH_FLD_IP_DST, 2047 .size = 4, 2048 }, { 2049 .rxnfc_field = RXH_L3_PROTO, 2050 .cls_prot = NET_PROT_IP, 2051 .cls_field = NH_FLD_IP_PROTO, 2052 .size = 1, 2053 }, { 2054 /* Using UDP ports, this is functionally equivalent to raw 2055 * byte pairs from L4 header. 2056 */ 2057 .rxnfc_field = RXH_L4_B_0_1, 2058 .cls_prot = NET_PROT_UDP, 2059 .cls_field = NH_FLD_UDP_PORT_SRC, 2060 .size = 2, 2061 }, { 2062 .rxnfc_field = RXH_L4_B_2_3, 2063 .cls_prot = NET_PROT_UDP, 2064 .cls_field = NH_FLD_UDP_PORT_DST, 2065 .size = 2, 2066 }, 2067 }; 2068 2069 /* Configure the Rx hash key using the legacy API */ 2070 static int config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2071 { 2072 struct device *dev = priv->net_dev->dev.parent; 2073 struct dpni_rx_tc_dist_cfg dist_cfg; 2074 int err; 2075 2076 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2077 2078 dist_cfg.key_cfg_iova = key; 2079 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2080 dist_cfg.dist_mode = DPNI_DIST_MODE_HASH; 2081 2082 err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 0, &dist_cfg); 2083 if (err) 2084 dev_err(dev, "dpni_set_rx_tc_dist failed\n"); 2085 2086 return err; 2087 } 2088 2089 /* Configure the Rx hash key using the new API */ 2090 static int config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2091 { 2092 struct device *dev = priv->net_dev->dev.parent; 2093 struct dpni_rx_dist_cfg dist_cfg; 2094 int err; 2095 2096 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2097 2098 dist_cfg.key_cfg_iova = key; 2099 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2100 dist_cfg.enable = 1; 2101 2102 err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2103 if (err) 2104 dev_err(dev, "dpni_set_rx_hash_dist failed\n"); 2105 2106 return err; 2107 } 2108 2109 /* Configure the Rx flow classification key */ 2110 static int config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2111 { 2112 struct device *dev = priv->net_dev->dev.parent; 2113 struct dpni_rx_dist_cfg dist_cfg; 2114 int err; 2115 2116 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2117 2118 dist_cfg.key_cfg_iova = key; 2119 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2120 dist_cfg.enable = 1; 2121 2122 err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2123 if (err) 2124 dev_err(dev, "dpni_set_rx_fs_dist failed\n"); 2125 2126 return err; 2127 } 2128 2129 /* Size of the Rx flow classification key */ 2130 int dpaa2_eth_cls_key_size(void) 2131 { 2132 int i, size = 0; 2133 2134 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) 2135 size += dist_fields[i].size; 2136 2137 return size; 2138 } 2139 2140 /* Offset of header field in Rx classification key */ 2141 int dpaa2_eth_cls_fld_off(int prot, int field) 2142 { 2143 int i, off = 0; 2144 2145 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2146 if (dist_fields[i].cls_prot == prot && 2147 dist_fields[i].cls_field == field) 2148 return off; 2149 off += dist_fields[i].size; 2150 } 2151 2152 WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n"); 2153 return 0; 2154 } 2155 2156 /* Set Rx distribution (hash or flow classification) key 2157 * flags is a combination of RXH_ bits 2158 */ 2159 int dpaa2_eth_set_dist_key(struct net_device *net_dev, 2160 enum dpaa2_eth_rx_dist type, u64 flags) 2161 { 2162 struct device *dev = net_dev->dev.parent; 2163 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2164 struct dpkg_profile_cfg cls_cfg; 2165 u32 rx_hash_fields = 0; 2166 dma_addr_t key_iova; 2167 u8 *dma_mem; 2168 int i; 2169 int err = 0; 2170 2171 memset(&cls_cfg, 0, sizeof(cls_cfg)); 2172 2173 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2174 struct dpkg_extract *key = 2175 &cls_cfg.extracts[cls_cfg.num_extracts]; 2176 2177 /* For Rx hashing key we set only the selected fields. 2178 * For Rx flow classification key we set all supported fields 2179 */ 2180 if (type == DPAA2_ETH_RX_DIST_HASH) { 2181 if (!(flags & dist_fields[i].rxnfc_field)) 2182 continue; 2183 rx_hash_fields |= dist_fields[i].rxnfc_field; 2184 } 2185 2186 if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) { 2187 dev_err(dev, "error adding key extraction rule, too many rules?\n"); 2188 return -E2BIG; 2189 } 2190 2191 key->type = DPKG_EXTRACT_FROM_HDR; 2192 key->extract.from_hdr.prot = dist_fields[i].cls_prot; 2193 key->extract.from_hdr.type = DPKG_FULL_FIELD; 2194 key->extract.from_hdr.field = dist_fields[i].cls_field; 2195 cls_cfg.num_extracts++; 2196 } 2197 2198 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 2199 if (!dma_mem) 2200 return -ENOMEM; 2201 2202 err = dpni_prepare_key_cfg(&cls_cfg, dma_mem); 2203 if (err) { 2204 dev_err(dev, "dpni_prepare_key_cfg error %d\n", err); 2205 goto free_key; 2206 } 2207 2208 /* Prepare for setting the rx dist */ 2209 key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, 2210 DMA_TO_DEVICE); 2211 if (dma_mapping_error(dev, key_iova)) { 2212 dev_err(dev, "DMA mapping failed\n"); 2213 err = -ENOMEM; 2214 goto free_key; 2215 } 2216 2217 if (type == DPAA2_ETH_RX_DIST_HASH) { 2218 if (dpaa2_eth_has_legacy_dist(priv)) 2219 err = config_legacy_hash_key(priv, key_iova); 2220 else 2221 err = config_hash_key(priv, key_iova); 2222 } else { 2223 err = config_cls_key(priv, key_iova); 2224 } 2225 2226 dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE, 2227 DMA_TO_DEVICE); 2228 if (!err && type == DPAA2_ETH_RX_DIST_HASH) 2229 priv->rx_hash_fields = rx_hash_fields; 2230 2231 free_key: 2232 kfree(dma_mem); 2233 return err; 2234 } 2235 2236 int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags) 2237 { 2238 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2239 2240 if (!dpaa2_eth_hash_enabled(priv)) 2241 return -EOPNOTSUPP; 2242 2243 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, flags); 2244 } 2245 2246 static int dpaa2_eth_set_cls(struct dpaa2_eth_priv *priv) 2247 { 2248 struct device *dev = priv->net_dev->dev.parent; 2249 2250 /* Check if we actually support Rx flow classification */ 2251 if (dpaa2_eth_has_legacy_dist(priv)) { 2252 dev_dbg(dev, "Rx cls not supported by current MC version\n"); 2253 return -EOPNOTSUPP; 2254 } 2255 2256 if (priv->dpni_attrs.options & DPNI_OPT_NO_FS || 2257 !(priv->dpni_attrs.options & DPNI_OPT_HAS_KEY_MASKING)) { 2258 dev_dbg(dev, "Rx cls disabled in DPNI options\n"); 2259 return -EOPNOTSUPP; 2260 } 2261 2262 if (!dpaa2_eth_hash_enabled(priv)) { 2263 dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n"); 2264 return -EOPNOTSUPP; 2265 } 2266 2267 priv->rx_cls_enabled = 1; 2268 2269 return dpaa2_eth_set_dist_key(priv->net_dev, DPAA2_ETH_RX_DIST_CLS, 0); 2270 } 2271 2272 /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs, 2273 * frame queues and channels 2274 */ 2275 static int bind_dpni(struct dpaa2_eth_priv *priv) 2276 { 2277 struct net_device *net_dev = priv->net_dev; 2278 struct device *dev = net_dev->dev.parent; 2279 struct dpni_pools_cfg pools_params; 2280 struct dpni_error_cfg err_cfg; 2281 int err = 0; 2282 int i; 2283 2284 pools_params.num_dpbp = 1; 2285 pools_params.pools[0].dpbp_id = priv->dpbp_dev->obj_desc.id; 2286 pools_params.pools[0].backup_pool = 0; 2287 pools_params.pools[0].buffer_size = DPAA2_ETH_RX_BUF_SIZE; 2288 err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params); 2289 if (err) { 2290 dev_err(dev, "dpni_set_pools() failed\n"); 2291 return err; 2292 } 2293 2294 /* have the interface implicitly distribute traffic based on 2295 * the default hash key 2296 */ 2297 err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT); 2298 if (err && err != -EOPNOTSUPP) 2299 dev_err(dev, "Failed to configure hashing\n"); 2300 2301 /* Configure the flow classification key; it includes all 2302 * supported header fields and cannot be modified at runtime 2303 */ 2304 err = dpaa2_eth_set_cls(priv); 2305 if (err && err != -EOPNOTSUPP) 2306 dev_err(dev, "Failed to configure Rx classification key\n"); 2307 2308 /* Configure handling of error frames */ 2309 err_cfg.errors = DPAA2_FAS_RX_ERR_MASK; 2310 err_cfg.set_frame_annotation = 1; 2311 err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD; 2312 err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token, 2313 &err_cfg); 2314 if (err) { 2315 dev_err(dev, "dpni_set_errors_behavior failed\n"); 2316 return err; 2317 } 2318 2319 /* Configure Rx and Tx conf queues to generate CDANs */ 2320 for (i = 0; i < priv->num_fqs; i++) { 2321 switch (priv->fq[i].type) { 2322 case DPAA2_RX_FQ: 2323 err = setup_rx_flow(priv, &priv->fq[i]); 2324 break; 2325 case DPAA2_TX_CONF_FQ: 2326 err = setup_tx_flow(priv, &priv->fq[i]); 2327 break; 2328 default: 2329 dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type); 2330 return -EINVAL; 2331 } 2332 if (err) 2333 return err; 2334 } 2335 2336 err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token, 2337 DPNI_QUEUE_TX, &priv->tx_qdid); 2338 if (err) { 2339 dev_err(dev, "dpni_get_qdid() failed\n"); 2340 return err; 2341 } 2342 2343 return 0; 2344 } 2345 2346 /* Allocate rings for storing incoming frame descriptors */ 2347 static int alloc_rings(struct dpaa2_eth_priv *priv) 2348 { 2349 struct net_device *net_dev = priv->net_dev; 2350 struct device *dev = net_dev->dev.parent; 2351 int i; 2352 2353 for (i = 0; i < priv->num_channels; i++) { 2354 priv->channel[i]->store = 2355 dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev); 2356 if (!priv->channel[i]->store) { 2357 netdev_err(net_dev, "dpaa2_io_store_create() failed\n"); 2358 goto err_ring; 2359 } 2360 } 2361 2362 return 0; 2363 2364 err_ring: 2365 for (i = 0; i < priv->num_channels; i++) { 2366 if (!priv->channel[i]->store) 2367 break; 2368 dpaa2_io_store_destroy(priv->channel[i]->store); 2369 } 2370 2371 return -ENOMEM; 2372 } 2373 2374 static void free_rings(struct dpaa2_eth_priv *priv) 2375 { 2376 int i; 2377 2378 for (i = 0; i < priv->num_channels; i++) 2379 dpaa2_io_store_destroy(priv->channel[i]->store); 2380 } 2381 2382 static int set_mac_addr(struct dpaa2_eth_priv *priv) 2383 { 2384 struct net_device *net_dev = priv->net_dev; 2385 struct device *dev = net_dev->dev.parent; 2386 u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN]; 2387 int err; 2388 2389 /* Get firmware address, if any */ 2390 err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); 2391 if (err) { 2392 dev_err(dev, "dpni_get_port_mac_addr() failed\n"); 2393 return err; 2394 } 2395 2396 /* Get DPNI attributes address, if any */ 2397 err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 2398 dpni_mac_addr); 2399 if (err) { 2400 dev_err(dev, "dpni_get_primary_mac_addr() failed\n"); 2401 return err; 2402 } 2403 2404 /* First check if firmware has any address configured by bootloader */ 2405 if (!is_zero_ether_addr(mac_addr)) { 2406 /* If the DPMAC addr != DPNI addr, update it */ 2407 if (!ether_addr_equal(mac_addr, dpni_mac_addr)) { 2408 err = dpni_set_primary_mac_addr(priv->mc_io, 0, 2409 priv->mc_token, 2410 mac_addr); 2411 if (err) { 2412 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 2413 return err; 2414 } 2415 } 2416 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len); 2417 } else if (is_zero_ether_addr(dpni_mac_addr)) { 2418 /* No MAC address configured, fill in net_dev->dev_addr 2419 * with a random one 2420 */ 2421 eth_hw_addr_random(net_dev); 2422 dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); 2423 2424 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 2425 net_dev->dev_addr); 2426 if (err) { 2427 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 2428 return err; 2429 } 2430 2431 /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all 2432 * practical purposes, this will be our "permanent" mac address, 2433 * at least until the next reboot. This move will also permit 2434 * register_netdevice() to properly fill up net_dev->perm_addr. 2435 */ 2436 net_dev->addr_assign_type = NET_ADDR_PERM; 2437 } else { 2438 /* NET_ADDR_PERM is default, all we have to do is 2439 * fill in the device addr. 2440 */ 2441 memcpy(net_dev->dev_addr, dpni_mac_addr, net_dev->addr_len); 2442 } 2443 2444 return 0; 2445 } 2446 2447 static int netdev_init(struct net_device *net_dev) 2448 { 2449 struct device *dev = net_dev->dev.parent; 2450 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2451 u32 options = priv->dpni_attrs.options; 2452 u64 supported = 0, not_supported = 0; 2453 u8 bcast_addr[ETH_ALEN]; 2454 u8 num_queues; 2455 int err; 2456 2457 net_dev->netdev_ops = &dpaa2_eth_ops; 2458 net_dev->ethtool_ops = &dpaa2_ethtool_ops; 2459 2460 err = set_mac_addr(priv); 2461 if (err) 2462 return err; 2463 2464 /* Explicitly add the broadcast address to the MAC filtering table */ 2465 eth_broadcast_addr(bcast_addr); 2466 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr); 2467 if (err) { 2468 dev_err(dev, "dpni_add_mac_addr() failed\n"); 2469 return err; 2470 } 2471 2472 /* Set MTU upper limit; lower limit is 68B (default value) */ 2473 net_dev->max_mtu = DPAA2_ETH_MAX_MTU; 2474 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, 2475 DPAA2_ETH_MFL); 2476 if (err) { 2477 dev_err(dev, "dpni_set_max_frame_length() failed\n"); 2478 return err; 2479 } 2480 2481 /* Set actual number of queues in the net device */ 2482 num_queues = dpaa2_eth_queue_count(priv); 2483 err = netif_set_real_num_tx_queues(net_dev, num_queues); 2484 if (err) { 2485 dev_err(dev, "netif_set_real_num_tx_queues() failed\n"); 2486 return err; 2487 } 2488 err = netif_set_real_num_rx_queues(net_dev, num_queues); 2489 if (err) { 2490 dev_err(dev, "netif_set_real_num_rx_queues() failed\n"); 2491 return err; 2492 } 2493 2494 /* Capabilities listing */ 2495 supported |= IFF_LIVE_ADDR_CHANGE; 2496 2497 if (options & DPNI_OPT_NO_MAC_FILTER) 2498 not_supported |= IFF_UNICAST_FLT; 2499 else 2500 supported |= IFF_UNICAST_FLT; 2501 2502 net_dev->priv_flags |= supported; 2503 net_dev->priv_flags &= ~not_supported; 2504 2505 /* Features */ 2506 net_dev->features = NETIF_F_RXCSUM | 2507 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2508 NETIF_F_SG | NETIF_F_HIGHDMA | 2509 NETIF_F_LLTX; 2510 net_dev->hw_features = net_dev->features; 2511 2512 return 0; 2513 } 2514 2515 static int poll_link_state(void *arg) 2516 { 2517 struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg; 2518 int err; 2519 2520 while (!kthread_should_stop()) { 2521 err = link_state_update(priv); 2522 if (unlikely(err)) 2523 return err; 2524 2525 msleep(DPAA2_ETH_LINK_STATE_REFRESH); 2526 } 2527 2528 return 0; 2529 } 2530 2531 static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg) 2532 { 2533 u32 status = ~0; 2534 struct device *dev = (struct device *)arg; 2535 struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev); 2536 struct net_device *net_dev = dev_get_drvdata(dev); 2537 int err; 2538 2539 err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, 2540 DPNI_IRQ_INDEX, &status); 2541 if (unlikely(err)) { 2542 netdev_err(net_dev, "Can't get irq status (err %d)\n", err); 2543 return IRQ_HANDLED; 2544 } 2545 2546 if (status & DPNI_IRQ_EVENT_LINK_CHANGED) 2547 link_state_update(netdev_priv(net_dev)); 2548 2549 return IRQ_HANDLED; 2550 } 2551 2552 static int setup_irqs(struct fsl_mc_device *ls_dev) 2553 { 2554 int err = 0; 2555 struct fsl_mc_device_irq *irq; 2556 2557 err = fsl_mc_allocate_irqs(ls_dev); 2558 if (err) { 2559 dev_err(&ls_dev->dev, "MC irqs allocation failed\n"); 2560 return err; 2561 } 2562 2563 irq = ls_dev->irqs[0]; 2564 err = devm_request_threaded_irq(&ls_dev->dev, irq->msi_desc->irq, 2565 NULL, dpni_irq0_handler_thread, 2566 IRQF_NO_SUSPEND | IRQF_ONESHOT, 2567 dev_name(&ls_dev->dev), &ls_dev->dev); 2568 if (err < 0) { 2569 dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err); 2570 goto free_mc_irq; 2571 } 2572 2573 err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle, 2574 DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED); 2575 if (err < 0) { 2576 dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err); 2577 goto free_irq; 2578 } 2579 2580 err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle, 2581 DPNI_IRQ_INDEX, 1); 2582 if (err < 0) { 2583 dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err); 2584 goto free_irq; 2585 } 2586 2587 return 0; 2588 2589 free_irq: 2590 devm_free_irq(&ls_dev->dev, irq->msi_desc->irq, &ls_dev->dev); 2591 free_mc_irq: 2592 fsl_mc_free_irqs(ls_dev); 2593 2594 return err; 2595 } 2596 2597 static void add_ch_napi(struct dpaa2_eth_priv *priv) 2598 { 2599 int i; 2600 struct dpaa2_eth_channel *ch; 2601 2602 for (i = 0; i < priv->num_channels; i++) { 2603 ch = priv->channel[i]; 2604 /* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */ 2605 netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll, 2606 NAPI_POLL_WEIGHT); 2607 } 2608 } 2609 2610 static void del_ch_napi(struct dpaa2_eth_priv *priv) 2611 { 2612 int i; 2613 struct dpaa2_eth_channel *ch; 2614 2615 for (i = 0; i < priv->num_channels; i++) { 2616 ch = priv->channel[i]; 2617 netif_napi_del(&ch->napi); 2618 } 2619 } 2620 2621 static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev) 2622 { 2623 struct device *dev; 2624 struct net_device *net_dev = NULL; 2625 struct dpaa2_eth_priv *priv = NULL; 2626 int err = 0; 2627 2628 dev = &dpni_dev->dev; 2629 2630 /* Net device */ 2631 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_TX_QUEUES); 2632 if (!net_dev) { 2633 dev_err(dev, "alloc_etherdev_mq() failed\n"); 2634 return -ENOMEM; 2635 } 2636 2637 SET_NETDEV_DEV(net_dev, dev); 2638 dev_set_drvdata(dev, net_dev); 2639 2640 priv = netdev_priv(net_dev); 2641 priv->net_dev = net_dev; 2642 2643 priv->iommu_domain = iommu_get_domain_for_dev(dev); 2644 2645 /* Obtain a MC portal */ 2646 err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, 2647 &priv->mc_io); 2648 if (err) { 2649 if (err == -ENXIO) 2650 err = -EPROBE_DEFER; 2651 else 2652 dev_err(dev, "MC portal allocation failed\n"); 2653 goto err_portal_alloc; 2654 } 2655 2656 /* MC objects initialization and configuration */ 2657 err = setup_dpni(dpni_dev); 2658 if (err) 2659 goto err_dpni_setup; 2660 2661 err = setup_dpio(priv); 2662 if (err) 2663 goto err_dpio_setup; 2664 2665 setup_fqs(priv); 2666 2667 err = setup_dpbp(priv); 2668 if (err) 2669 goto err_dpbp_setup; 2670 2671 err = bind_dpni(priv); 2672 if (err) 2673 goto err_bind; 2674 2675 /* Add a NAPI context for each channel */ 2676 add_ch_napi(priv); 2677 2678 /* Percpu statistics */ 2679 priv->percpu_stats = alloc_percpu(*priv->percpu_stats); 2680 if (!priv->percpu_stats) { 2681 dev_err(dev, "alloc_percpu(percpu_stats) failed\n"); 2682 err = -ENOMEM; 2683 goto err_alloc_percpu_stats; 2684 } 2685 priv->percpu_extras = alloc_percpu(*priv->percpu_extras); 2686 if (!priv->percpu_extras) { 2687 dev_err(dev, "alloc_percpu(percpu_extras) failed\n"); 2688 err = -ENOMEM; 2689 goto err_alloc_percpu_extras; 2690 } 2691 2692 err = netdev_init(net_dev); 2693 if (err) 2694 goto err_netdev_init; 2695 2696 /* Configure checksum offload based on current interface flags */ 2697 err = set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM)); 2698 if (err) 2699 goto err_csum; 2700 2701 err = set_tx_csum(priv, !!(net_dev->features & 2702 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))); 2703 if (err) 2704 goto err_csum; 2705 2706 err = alloc_rings(priv); 2707 if (err) 2708 goto err_alloc_rings; 2709 2710 err = setup_irqs(dpni_dev); 2711 if (err) { 2712 netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n"); 2713 priv->poll_thread = kthread_run(poll_link_state, priv, 2714 "%s_poll_link", net_dev->name); 2715 if (IS_ERR(priv->poll_thread)) { 2716 dev_err(dev, "Error starting polling thread\n"); 2717 goto err_poll_thread; 2718 } 2719 priv->do_link_poll = true; 2720 } 2721 2722 err = register_netdev(net_dev); 2723 if (err < 0) { 2724 dev_err(dev, "register_netdev() failed\n"); 2725 goto err_netdev_reg; 2726 } 2727 2728 dev_info(dev, "Probed interface %s\n", net_dev->name); 2729 return 0; 2730 2731 err_netdev_reg: 2732 if (priv->do_link_poll) 2733 kthread_stop(priv->poll_thread); 2734 else 2735 fsl_mc_free_irqs(dpni_dev); 2736 err_poll_thread: 2737 free_rings(priv); 2738 err_alloc_rings: 2739 err_csum: 2740 err_netdev_init: 2741 free_percpu(priv->percpu_extras); 2742 err_alloc_percpu_extras: 2743 free_percpu(priv->percpu_stats); 2744 err_alloc_percpu_stats: 2745 del_ch_napi(priv); 2746 err_bind: 2747 free_dpbp(priv); 2748 err_dpbp_setup: 2749 free_dpio(priv); 2750 err_dpio_setup: 2751 free_dpni(priv); 2752 err_dpni_setup: 2753 fsl_mc_portal_free(priv->mc_io); 2754 err_portal_alloc: 2755 dev_set_drvdata(dev, NULL); 2756 free_netdev(net_dev); 2757 2758 return err; 2759 } 2760 2761 static int dpaa2_eth_remove(struct fsl_mc_device *ls_dev) 2762 { 2763 struct device *dev; 2764 struct net_device *net_dev; 2765 struct dpaa2_eth_priv *priv; 2766 2767 dev = &ls_dev->dev; 2768 net_dev = dev_get_drvdata(dev); 2769 priv = netdev_priv(net_dev); 2770 2771 unregister_netdev(net_dev); 2772 2773 if (priv->do_link_poll) 2774 kthread_stop(priv->poll_thread); 2775 else 2776 fsl_mc_free_irqs(ls_dev); 2777 2778 free_rings(priv); 2779 free_percpu(priv->percpu_stats); 2780 free_percpu(priv->percpu_extras); 2781 2782 del_ch_napi(priv); 2783 free_dpbp(priv); 2784 free_dpio(priv); 2785 free_dpni(priv); 2786 2787 fsl_mc_portal_free(priv->mc_io); 2788 2789 free_netdev(net_dev); 2790 2791 dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name); 2792 2793 return 0; 2794 } 2795 2796 static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = { 2797 { 2798 .vendor = FSL_MC_VENDOR_FREESCALE, 2799 .obj_type = "dpni", 2800 }, 2801 { .vendor = 0x0 } 2802 }; 2803 MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table); 2804 2805 static struct fsl_mc_driver dpaa2_eth_driver = { 2806 .driver = { 2807 .name = KBUILD_MODNAME, 2808 .owner = THIS_MODULE, 2809 }, 2810 .probe = dpaa2_eth_probe, 2811 .remove = dpaa2_eth_remove, 2812 .match_id_table = dpaa2_eth_match_id_table 2813 }; 2814 2815 module_fsl_mc_driver(dpaa2_eth_driver); 2816