1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* Copyright 2014-2016 Freescale Semiconductor Inc. 3 * Copyright 2016-2022 NXP 4 */ 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/platform_device.h> 8 #include <linux/etherdevice.h> 9 #include <linux/of_net.h> 10 #include <linux/interrupt.h> 11 #include <linux/kthread.h> 12 #include <linux/iommu.h> 13 #include <linux/fsl/mc.h> 14 #include <linux/bpf.h> 15 #include <linux/bpf_trace.h> 16 #include <linux/fsl/ptp_qoriq.h> 17 #include <linux/ptp_classify.h> 18 #include <net/pkt_cls.h> 19 #include <net/sock.h> 20 #include <net/tso.h> 21 #include <net/xdp_sock_drv.h> 22 23 #include "dpaa2-eth.h" 24 25 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files 26 * using trace events only need to #include <trace/events/sched.h> 27 */ 28 #define CREATE_TRACE_POINTS 29 #include "dpaa2-eth-trace.h" 30 31 MODULE_LICENSE("Dual BSD/GPL"); 32 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 33 MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver"); 34 35 struct ptp_qoriq *dpaa2_ptp; 36 EXPORT_SYMBOL(dpaa2_ptp); 37 38 static void dpaa2_eth_detect_features(struct dpaa2_eth_priv *priv) 39 { 40 priv->features = 0; 41 42 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_PTP_ONESTEP_VER_MAJOR, 43 DPNI_PTP_ONESTEP_VER_MINOR) >= 0) 44 priv->features |= DPAA2_ETH_FEATURE_ONESTEP_CFG_DIRECT; 45 } 46 47 static void dpaa2_update_ptp_onestep_indirect(struct dpaa2_eth_priv *priv, 48 u32 offset, u8 udp) 49 { 50 struct dpni_single_step_cfg cfg; 51 52 cfg.en = 1; 53 cfg.ch_update = udp; 54 cfg.offset = offset; 55 cfg.peer_delay = 0; 56 57 if (dpni_set_single_step_cfg(priv->mc_io, 0, priv->mc_token, &cfg)) 58 WARN_ONCE(1, "Failed to set single step register"); 59 } 60 61 static void dpaa2_update_ptp_onestep_direct(struct dpaa2_eth_priv *priv, 62 u32 offset, u8 udp) 63 { 64 u32 val = 0; 65 66 val = DPAA2_PTP_SINGLE_STEP_ENABLE | 67 DPAA2_PTP_SINGLE_CORRECTION_OFF(offset); 68 69 if (udp) 70 val |= DPAA2_PTP_SINGLE_STEP_CH; 71 72 if (priv->onestep_reg_base) 73 writel(val, priv->onestep_reg_base); 74 } 75 76 static void dpaa2_ptp_onestep_reg_update_method(struct dpaa2_eth_priv *priv) 77 { 78 struct device *dev = priv->net_dev->dev.parent; 79 struct dpni_single_step_cfg ptp_cfg; 80 81 priv->dpaa2_set_onestep_params_cb = dpaa2_update_ptp_onestep_indirect; 82 83 if (!(priv->features & DPAA2_ETH_FEATURE_ONESTEP_CFG_DIRECT)) 84 return; 85 86 if (dpni_get_single_step_cfg(priv->mc_io, 0, 87 priv->mc_token, &ptp_cfg)) { 88 dev_err(dev, "dpni_get_single_step_cfg cannot retrieve onestep reg, falling back to indirect update\n"); 89 return; 90 } 91 92 if (!ptp_cfg.ptp_onestep_reg_base) { 93 dev_err(dev, "1588 onestep reg not available, falling back to indirect update\n"); 94 return; 95 } 96 97 priv->onestep_reg_base = ioremap(ptp_cfg.ptp_onestep_reg_base, 98 sizeof(u32)); 99 if (!priv->onestep_reg_base) { 100 dev_err(dev, "1588 onestep reg cannot be mapped, falling back to indirect update\n"); 101 return; 102 } 103 104 priv->dpaa2_set_onestep_params_cb = dpaa2_update_ptp_onestep_direct; 105 } 106 107 void *dpaa2_iova_to_virt(struct iommu_domain *domain, 108 dma_addr_t iova_addr) 109 { 110 phys_addr_t phys_addr; 111 112 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 113 114 return phys_to_virt(phys_addr); 115 } 116 117 static void dpaa2_eth_validate_rx_csum(struct dpaa2_eth_priv *priv, 118 u32 fd_status, 119 struct sk_buff *skb) 120 { 121 skb_checksum_none_assert(skb); 122 123 /* HW checksum validation is disabled, nothing to do here */ 124 if (!(priv->net_dev->features & NETIF_F_RXCSUM)) 125 return; 126 127 /* Read checksum validation bits */ 128 if (!((fd_status & DPAA2_FAS_L3CV) && 129 (fd_status & DPAA2_FAS_L4CV))) 130 return; 131 132 /* Inform the stack there's no need to compute L3/L4 csum anymore */ 133 skb->ip_summed = CHECKSUM_UNNECESSARY; 134 } 135 136 /* Free a received FD. 137 * Not to be used for Tx conf FDs or on any other paths. 138 */ 139 static void dpaa2_eth_free_rx_fd(struct dpaa2_eth_priv *priv, 140 const struct dpaa2_fd *fd, 141 void *vaddr) 142 { 143 struct device *dev = priv->net_dev->dev.parent; 144 dma_addr_t addr = dpaa2_fd_get_addr(fd); 145 u8 fd_format = dpaa2_fd_get_format(fd); 146 struct dpaa2_sg_entry *sgt; 147 void *sg_vaddr; 148 int i; 149 150 /* If single buffer frame, just free the data buffer */ 151 if (fd_format == dpaa2_fd_single) 152 goto free_buf; 153 else if (fd_format != dpaa2_fd_sg) 154 /* We don't support any other format */ 155 return; 156 157 /* For S/G frames, we first need to free all SG entries 158 * except the first one, which was taken care of already 159 */ 160 sgt = vaddr + dpaa2_fd_get_offset(fd); 161 for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 162 addr = dpaa2_sg_get_addr(&sgt[i]); 163 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 164 dma_unmap_page(dev, addr, priv->rx_buf_size, 165 DMA_BIDIRECTIONAL); 166 167 free_pages((unsigned long)sg_vaddr, 0); 168 if (dpaa2_sg_is_final(&sgt[i])) 169 break; 170 } 171 172 free_buf: 173 free_pages((unsigned long)vaddr, 0); 174 } 175 176 /* Build a linear skb based on a single-buffer frame descriptor */ 177 static struct sk_buff *dpaa2_eth_build_linear_skb(struct dpaa2_eth_channel *ch, 178 const struct dpaa2_fd *fd, 179 void *fd_vaddr) 180 { 181 struct sk_buff *skb = NULL; 182 u16 fd_offset = dpaa2_fd_get_offset(fd); 183 u32 fd_length = dpaa2_fd_get_len(fd); 184 185 ch->buf_count--; 186 187 skb = build_skb(fd_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 188 if (unlikely(!skb)) 189 return NULL; 190 191 skb_reserve(skb, fd_offset); 192 skb_put(skb, fd_length); 193 194 return skb; 195 } 196 197 /* Build a non linear (fragmented) skb based on a S/G table */ 198 static struct sk_buff *dpaa2_eth_build_frag_skb(struct dpaa2_eth_priv *priv, 199 struct dpaa2_eth_channel *ch, 200 struct dpaa2_sg_entry *sgt) 201 { 202 struct sk_buff *skb = NULL; 203 struct device *dev = priv->net_dev->dev.parent; 204 void *sg_vaddr; 205 dma_addr_t sg_addr; 206 u16 sg_offset; 207 u32 sg_length; 208 struct page *page, *head_page; 209 int page_offset; 210 int i; 211 212 for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 213 struct dpaa2_sg_entry *sge = &sgt[i]; 214 215 /* NOTE: We only support SG entries in dpaa2_sg_single format, 216 * but this is the only format we may receive from HW anyway 217 */ 218 219 /* Get the address and length from the S/G entry */ 220 sg_addr = dpaa2_sg_get_addr(sge); 221 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr); 222 dma_unmap_page(dev, sg_addr, priv->rx_buf_size, 223 DMA_BIDIRECTIONAL); 224 225 sg_length = dpaa2_sg_get_len(sge); 226 227 if (i == 0) { 228 /* We build the skb around the first data buffer */ 229 skb = build_skb(sg_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 230 if (unlikely(!skb)) { 231 /* Free the first SG entry now, since we already 232 * unmapped it and obtained the virtual address 233 */ 234 free_pages((unsigned long)sg_vaddr, 0); 235 236 /* We still need to subtract the buffers used 237 * by this FD from our software counter 238 */ 239 while (!dpaa2_sg_is_final(&sgt[i]) && 240 i < DPAA2_ETH_MAX_SG_ENTRIES) 241 i++; 242 break; 243 } 244 245 sg_offset = dpaa2_sg_get_offset(sge); 246 skb_reserve(skb, sg_offset); 247 skb_put(skb, sg_length); 248 } else { 249 /* Rest of the data buffers are stored as skb frags */ 250 page = virt_to_page(sg_vaddr); 251 head_page = virt_to_head_page(sg_vaddr); 252 253 /* Offset in page (which may be compound). 254 * Data in subsequent SG entries is stored from the 255 * beginning of the buffer, so we don't need to add the 256 * sg_offset. 257 */ 258 page_offset = ((unsigned long)sg_vaddr & 259 (PAGE_SIZE - 1)) + 260 (page_address(page) - page_address(head_page)); 261 262 skb_add_rx_frag(skb, i - 1, head_page, page_offset, 263 sg_length, priv->rx_buf_size); 264 } 265 266 if (dpaa2_sg_is_final(sge)) 267 break; 268 } 269 270 WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT"); 271 272 /* Count all data buffers + SG table buffer */ 273 ch->buf_count -= i + 2; 274 275 return skb; 276 } 277 278 /* Free buffers acquired from the buffer pool or which were meant to 279 * be released in the pool 280 */ 281 static void dpaa2_eth_free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, 282 int count, bool xsk_zc) 283 { 284 struct device *dev = priv->net_dev->dev.parent; 285 struct dpaa2_eth_swa *swa; 286 struct xdp_buff *xdp_buff; 287 void *vaddr; 288 int i; 289 290 for (i = 0; i < count; i++) { 291 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]); 292 293 if (!xsk_zc) { 294 dma_unmap_page(dev, buf_array[i], priv->rx_buf_size, 295 DMA_BIDIRECTIONAL); 296 free_pages((unsigned long)vaddr, 0); 297 } else { 298 swa = (struct dpaa2_eth_swa *) 299 (vaddr + DPAA2_ETH_RX_HWA_SIZE); 300 xdp_buff = swa->xsk.xdp_buff; 301 xsk_buff_free(xdp_buff); 302 } 303 } 304 } 305 306 void dpaa2_eth_recycle_buf(struct dpaa2_eth_priv *priv, 307 struct dpaa2_eth_channel *ch, 308 dma_addr_t addr) 309 { 310 int retries = 0; 311 int err; 312 313 ch->recycled_bufs[ch->recycled_bufs_cnt++] = addr; 314 if (ch->recycled_bufs_cnt < DPAA2_ETH_BUFS_PER_CMD) 315 return; 316 317 while ((err = dpaa2_io_service_release(ch->dpio, ch->bp->bpid, 318 ch->recycled_bufs, 319 ch->recycled_bufs_cnt)) == -EBUSY) { 320 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 321 break; 322 cpu_relax(); 323 } 324 325 if (err) { 326 dpaa2_eth_free_bufs(priv, ch->recycled_bufs, 327 ch->recycled_bufs_cnt, ch->xsk_zc); 328 ch->buf_count -= ch->recycled_bufs_cnt; 329 } 330 331 ch->recycled_bufs_cnt = 0; 332 } 333 334 static int dpaa2_eth_xdp_flush(struct dpaa2_eth_priv *priv, 335 struct dpaa2_eth_fq *fq, 336 struct dpaa2_eth_xdp_fds *xdp_fds) 337 { 338 int total_enqueued = 0, retries = 0, enqueued; 339 struct dpaa2_eth_drv_stats *percpu_extras; 340 int num_fds, err, max_retries; 341 struct dpaa2_fd *fds; 342 343 percpu_extras = this_cpu_ptr(priv->percpu_extras); 344 345 /* try to enqueue all the FDs until the max number of retries is hit */ 346 fds = xdp_fds->fds; 347 num_fds = xdp_fds->num; 348 max_retries = num_fds * DPAA2_ETH_ENQUEUE_RETRIES; 349 while (total_enqueued < num_fds && retries < max_retries) { 350 err = priv->enqueue(priv, fq, &fds[total_enqueued], 351 0, num_fds - total_enqueued, &enqueued); 352 if (err == -EBUSY) { 353 percpu_extras->tx_portal_busy += ++retries; 354 continue; 355 } 356 total_enqueued += enqueued; 357 } 358 xdp_fds->num = 0; 359 360 return total_enqueued; 361 } 362 363 static void dpaa2_eth_xdp_tx_flush(struct dpaa2_eth_priv *priv, 364 struct dpaa2_eth_channel *ch, 365 struct dpaa2_eth_fq *fq) 366 { 367 struct rtnl_link_stats64 *percpu_stats; 368 struct dpaa2_fd *fds; 369 int enqueued, i; 370 371 percpu_stats = this_cpu_ptr(priv->percpu_stats); 372 373 // enqueue the array of XDP_TX frames 374 enqueued = dpaa2_eth_xdp_flush(priv, fq, &fq->xdp_tx_fds); 375 376 /* update statistics */ 377 percpu_stats->tx_packets += enqueued; 378 fds = fq->xdp_tx_fds.fds; 379 for (i = 0; i < enqueued; i++) { 380 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fds[i]); 381 ch->stats.xdp_tx++; 382 } 383 for (i = enqueued; i < fq->xdp_tx_fds.num; i++) { 384 dpaa2_eth_recycle_buf(priv, ch, dpaa2_fd_get_addr(&fds[i])); 385 percpu_stats->tx_errors++; 386 ch->stats.xdp_tx_err++; 387 } 388 fq->xdp_tx_fds.num = 0; 389 } 390 391 void dpaa2_eth_xdp_enqueue(struct dpaa2_eth_priv *priv, 392 struct dpaa2_eth_channel *ch, 393 struct dpaa2_fd *fd, 394 void *buf_start, u16 queue_id) 395 { 396 struct dpaa2_faead *faead; 397 struct dpaa2_fd *dest_fd; 398 struct dpaa2_eth_fq *fq; 399 u32 ctrl, frc; 400 401 /* Mark the egress frame hardware annotation area as valid */ 402 frc = dpaa2_fd_get_frc(fd); 403 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 404 dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL); 405 406 /* Instruct hardware to release the FD buffer directly into 407 * the buffer pool once transmission is completed, instead of 408 * sending a Tx confirmation frame to us 409 */ 410 ctrl = DPAA2_FAEAD_A4V | DPAA2_FAEAD_A2V | DPAA2_FAEAD_EBDDV; 411 faead = dpaa2_get_faead(buf_start, false); 412 faead->ctrl = cpu_to_le32(ctrl); 413 faead->conf_fqid = 0; 414 415 fq = &priv->fq[queue_id]; 416 dest_fd = &fq->xdp_tx_fds.fds[fq->xdp_tx_fds.num++]; 417 memcpy(dest_fd, fd, sizeof(*dest_fd)); 418 419 if (fq->xdp_tx_fds.num < DEV_MAP_BULK_SIZE) 420 return; 421 422 dpaa2_eth_xdp_tx_flush(priv, ch, fq); 423 } 424 425 static u32 dpaa2_eth_run_xdp(struct dpaa2_eth_priv *priv, 426 struct dpaa2_eth_channel *ch, 427 struct dpaa2_eth_fq *rx_fq, 428 struct dpaa2_fd *fd, void *vaddr) 429 { 430 dma_addr_t addr = dpaa2_fd_get_addr(fd); 431 struct bpf_prog *xdp_prog; 432 struct xdp_buff xdp; 433 u32 xdp_act = XDP_PASS; 434 int err, offset; 435 436 xdp_prog = READ_ONCE(ch->xdp.prog); 437 if (!xdp_prog) 438 goto out; 439 440 offset = dpaa2_fd_get_offset(fd) - XDP_PACKET_HEADROOM; 441 xdp_init_buff(&xdp, DPAA2_ETH_RX_BUF_RAW_SIZE - offset, &ch->xdp_rxq); 442 xdp_prepare_buff(&xdp, vaddr + offset, XDP_PACKET_HEADROOM, 443 dpaa2_fd_get_len(fd), false); 444 445 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 446 447 /* xdp.data pointer may have changed */ 448 dpaa2_fd_set_offset(fd, xdp.data - vaddr); 449 dpaa2_fd_set_len(fd, xdp.data_end - xdp.data); 450 451 switch (xdp_act) { 452 case XDP_PASS: 453 break; 454 case XDP_TX: 455 dpaa2_eth_xdp_enqueue(priv, ch, fd, vaddr, rx_fq->flowid); 456 break; 457 default: 458 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act); 459 fallthrough; 460 case XDP_ABORTED: 461 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 462 fallthrough; 463 case XDP_DROP: 464 dpaa2_eth_recycle_buf(priv, ch, addr); 465 ch->stats.xdp_drop++; 466 break; 467 case XDP_REDIRECT: 468 dma_unmap_page(priv->net_dev->dev.parent, addr, 469 priv->rx_buf_size, DMA_BIDIRECTIONAL); 470 ch->buf_count--; 471 472 /* Allow redirect use of full headroom */ 473 xdp.data_hard_start = vaddr; 474 xdp.frame_sz = DPAA2_ETH_RX_BUF_RAW_SIZE; 475 476 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 477 if (unlikely(err)) { 478 addr = dma_map_page(priv->net_dev->dev.parent, 479 virt_to_page(vaddr), 0, 480 priv->rx_buf_size, DMA_BIDIRECTIONAL); 481 if (unlikely(dma_mapping_error(priv->net_dev->dev.parent, addr))) { 482 free_pages((unsigned long)vaddr, 0); 483 } else { 484 ch->buf_count++; 485 dpaa2_eth_recycle_buf(priv, ch, addr); 486 } 487 ch->stats.xdp_drop++; 488 } else { 489 ch->stats.xdp_redirect++; 490 } 491 break; 492 } 493 494 ch->xdp.res |= xdp_act; 495 out: 496 return xdp_act; 497 } 498 499 struct sk_buff *dpaa2_eth_alloc_skb(struct dpaa2_eth_priv *priv, 500 struct dpaa2_eth_channel *ch, 501 const struct dpaa2_fd *fd, u32 fd_length, 502 void *fd_vaddr) 503 { 504 u16 fd_offset = dpaa2_fd_get_offset(fd); 505 struct sk_buff *skb = NULL; 506 unsigned int skb_len; 507 508 skb_len = fd_length + dpaa2_eth_needed_headroom(NULL); 509 510 skb = napi_alloc_skb(&ch->napi, skb_len); 511 if (!skb) 512 return NULL; 513 514 skb_reserve(skb, dpaa2_eth_needed_headroom(NULL)); 515 skb_put(skb, fd_length); 516 517 memcpy(skb->data, fd_vaddr + fd_offset, fd_length); 518 519 return skb; 520 } 521 522 static struct sk_buff *dpaa2_eth_copybreak(struct dpaa2_eth_channel *ch, 523 const struct dpaa2_fd *fd, 524 void *fd_vaddr) 525 { 526 struct dpaa2_eth_priv *priv = ch->priv; 527 u32 fd_length = dpaa2_fd_get_len(fd); 528 529 if (fd_length > priv->rx_copybreak) 530 return NULL; 531 532 return dpaa2_eth_alloc_skb(priv, ch, fd, fd_length, fd_vaddr); 533 } 534 535 void dpaa2_eth_receive_skb(struct dpaa2_eth_priv *priv, 536 struct dpaa2_eth_channel *ch, 537 const struct dpaa2_fd *fd, void *vaddr, 538 struct dpaa2_eth_fq *fq, 539 struct rtnl_link_stats64 *percpu_stats, 540 struct sk_buff *skb) 541 { 542 struct dpaa2_fas *fas; 543 u32 status = 0; 544 545 fas = dpaa2_get_fas(vaddr, false); 546 prefetch(fas); 547 prefetch(skb->data); 548 549 /* Get the timestamp value */ 550 if (priv->rx_tstamp) { 551 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 552 __le64 *ts = dpaa2_get_ts(vaddr, false); 553 u64 ns; 554 555 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 556 557 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 558 shhwtstamps->hwtstamp = ns_to_ktime(ns); 559 } 560 561 /* Check if we need to validate the L4 csum */ 562 if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) { 563 status = le32_to_cpu(fas->status); 564 dpaa2_eth_validate_rx_csum(priv, status, skb); 565 } 566 567 skb->protocol = eth_type_trans(skb, priv->net_dev); 568 skb_record_rx_queue(skb, fq->flowid); 569 570 percpu_stats->rx_packets++; 571 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 572 ch->stats.bytes_per_cdan += dpaa2_fd_get_len(fd); 573 574 list_add_tail(&skb->list, ch->rx_list); 575 } 576 577 /* Main Rx frame processing routine */ 578 void dpaa2_eth_rx(struct dpaa2_eth_priv *priv, 579 struct dpaa2_eth_channel *ch, 580 const struct dpaa2_fd *fd, 581 struct dpaa2_eth_fq *fq) 582 { 583 dma_addr_t addr = dpaa2_fd_get_addr(fd); 584 u8 fd_format = dpaa2_fd_get_format(fd); 585 void *vaddr; 586 struct sk_buff *skb; 587 struct rtnl_link_stats64 *percpu_stats; 588 struct dpaa2_eth_drv_stats *percpu_extras; 589 struct device *dev = priv->net_dev->dev.parent; 590 bool recycle_rx_buf = false; 591 void *buf_data; 592 u32 xdp_act; 593 594 /* Tracing point */ 595 trace_dpaa2_rx_fd(priv->net_dev, fd); 596 597 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 598 dma_sync_single_for_cpu(dev, addr, priv->rx_buf_size, 599 DMA_BIDIRECTIONAL); 600 601 buf_data = vaddr + dpaa2_fd_get_offset(fd); 602 prefetch(buf_data); 603 604 percpu_stats = this_cpu_ptr(priv->percpu_stats); 605 percpu_extras = this_cpu_ptr(priv->percpu_extras); 606 607 if (fd_format == dpaa2_fd_single) { 608 xdp_act = dpaa2_eth_run_xdp(priv, ch, fq, (struct dpaa2_fd *)fd, vaddr); 609 if (xdp_act != XDP_PASS) { 610 percpu_stats->rx_packets++; 611 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 612 return; 613 } 614 615 skb = dpaa2_eth_copybreak(ch, fd, vaddr); 616 if (!skb) { 617 dma_unmap_page(dev, addr, priv->rx_buf_size, 618 DMA_BIDIRECTIONAL); 619 skb = dpaa2_eth_build_linear_skb(ch, fd, vaddr); 620 } else { 621 recycle_rx_buf = true; 622 } 623 } else if (fd_format == dpaa2_fd_sg) { 624 WARN_ON(priv->xdp_prog); 625 626 dma_unmap_page(dev, addr, priv->rx_buf_size, 627 DMA_BIDIRECTIONAL); 628 skb = dpaa2_eth_build_frag_skb(priv, ch, buf_data); 629 free_pages((unsigned long)vaddr, 0); 630 percpu_extras->rx_sg_frames++; 631 percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd); 632 } else { 633 /* We don't support any other format */ 634 goto err_frame_format; 635 } 636 637 if (unlikely(!skb)) 638 goto err_build_skb; 639 640 dpaa2_eth_receive_skb(priv, ch, fd, vaddr, fq, percpu_stats, skb); 641 642 if (recycle_rx_buf) 643 dpaa2_eth_recycle_buf(priv, ch, dpaa2_fd_get_addr(fd)); 644 return; 645 646 err_build_skb: 647 dpaa2_eth_free_rx_fd(priv, fd, vaddr); 648 err_frame_format: 649 percpu_stats->rx_dropped++; 650 } 651 652 /* Processing of Rx frames received on the error FQ 653 * We check and print the error bits and then free the frame 654 */ 655 static void dpaa2_eth_rx_err(struct dpaa2_eth_priv *priv, 656 struct dpaa2_eth_channel *ch, 657 const struct dpaa2_fd *fd, 658 struct dpaa2_eth_fq *fq __always_unused) 659 { 660 struct device *dev = priv->net_dev->dev.parent; 661 dma_addr_t addr = dpaa2_fd_get_addr(fd); 662 u8 fd_format = dpaa2_fd_get_format(fd); 663 struct rtnl_link_stats64 *percpu_stats; 664 struct dpaa2_eth_trap_item *trap_item; 665 struct dpaa2_fapr *fapr; 666 struct sk_buff *skb; 667 void *buf_data; 668 void *vaddr; 669 670 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 671 dma_sync_single_for_cpu(dev, addr, priv->rx_buf_size, 672 DMA_BIDIRECTIONAL); 673 674 buf_data = vaddr + dpaa2_fd_get_offset(fd); 675 676 if (fd_format == dpaa2_fd_single) { 677 dma_unmap_page(dev, addr, priv->rx_buf_size, 678 DMA_BIDIRECTIONAL); 679 skb = dpaa2_eth_build_linear_skb(ch, fd, vaddr); 680 } else if (fd_format == dpaa2_fd_sg) { 681 dma_unmap_page(dev, addr, priv->rx_buf_size, 682 DMA_BIDIRECTIONAL); 683 skb = dpaa2_eth_build_frag_skb(priv, ch, buf_data); 684 free_pages((unsigned long)vaddr, 0); 685 } else { 686 /* We don't support any other format */ 687 dpaa2_eth_free_rx_fd(priv, fd, vaddr); 688 goto err_frame_format; 689 } 690 691 fapr = dpaa2_get_fapr(vaddr, false); 692 trap_item = dpaa2_eth_dl_get_trap(priv, fapr); 693 if (trap_item) 694 devlink_trap_report(priv->devlink, skb, trap_item->trap_ctx, 695 &priv->devlink_port, NULL); 696 consume_skb(skb); 697 698 err_frame_format: 699 percpu_stats = this_cpu_ptr(priv->percpu_stats); 700 percpu_stats->rx_errors++; 701 ch->buf_count--; 702 } 703 704 /* Consume all frames pull-dequeued into the store. This is the simplest way to 705 * make sure we don't accidentally issue another volatile dequeue which would 706 * overwrite (leak) frames already in the store. 707 * 708 * Observance of NAPI budget is not our concern, leaving that to the caller. 709 */ 710 static int dpaa2_eth_consume_frames(struct dpaa2_eth_channel *ch, 711 struct dpaa2_eth_fq **src) 712 { 713 struct dpaa2_eth_priv *priv = ch->priv; 714 struct dpaa2_eth_fq *fq = NULL; 715 struct dpaa2_dq *dq; 716 const struct dpaa2_fd *fd; 717 int cleaned = 0, retries = 0; 718 int is_last; 719 720 do { 721 dq = dpaa2_io_store_next(ch->store, &is_last); 722 if (unlikely(!dq)) { 723 /* If we're here, we *must* have placed a 724 * volatile dequeue comnmand, so keep reading through 725 * the store until we get some sort of valid response 726 * token (either a valid frame or an "empty dequeue") 727 */ 728 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) { 729 netdev_err_once(priv->net_dev, 730 "Unable to read a valid dequeue response\n"); 731 return -ETIMEDOUT; 732 } 733 continue; 734 } 735 736 fd = dpaa2_dq_fd(dq); 737 fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq); 738 739 fq->consume(priv, ch, fd, fq); 740 cleaned++; 741 retries = 0; 742 } while (!is_last); 743 744 if (!cleaned) 745 return 0; 746 747 fq->stats.frames += cleaned; 748 ch->stats.frames += cleaned; 749 ch->stats.frames_per_cdan += cleaned; 750 751 /* A dequeue operation only pulls frames from a single queue 752 * into the store. Return the frame queue as an out param. 753 */ 754 if (src) 755 *src = fq; 756 757 return cleaned; 758 } 759 760 static int dpaa2_eth_ptp_parse(struct sk_buff *skb, 761 u8 *msgtype, u8 *twostep, u8 *udp, 762 u16 *correction_offset, 763 u16 *origintimestamp_offset) 764 { 765 unsigned int ptp_class; 766 struct ptp_header *hdr; 767 unsigned int type; 768 u8 *base; 769 770 ptp_class = ptp_classify_raw(skb); 771 if (ptp_class == PTP_CLASS_NONE) 772 return -EINVAL; 773 774 hdr = ptp_parse_header(skb, ptp_class); 775 if (!hdr) 776 return -EINVAL; 777 778 *msgtype = ptp_get_msgtype(hdr, ptp_class); 779 *twostep = hdr->flag_field[0] & 0x2; 780 781 type = ptp_class & PTP_CLASS_PMASK; 782 if (type == PTP_CLASS_IPV4 || 783 type == PTP_CLASS_IPV6) 784 *udp = 1; 785 else 786 *udp = 0; 787 788 base = skb_mac_header(skb); 789 *correction_offset = (u8 *)&hdr->correction - base; 790 *origintimestamp_offset = (u8 *)hdr + sizeof(struct ptp_header) - base; 791 792 return 0; 793 } 794 795 /* Configure the egress frame annotation for timestamp update */ 796 static void dpaa2_eth_enable_tx_tstamp(struct dpaa2_eth_priv *priv, 797 struct dpaa2_fd *fd, 798 void *buf_start, 799 struct sk_buff *skb) 800 { 801 struct ptp_tstamp origin_timestamp; 802 u8 msgtype, twostep, udp; 803 struct dpaa2_faead *faead; 804 struct dpaa2_fas *fas; 805 struct timespec64 ts; 806 u16 offset1, offset2; 807 u32 ctrl, frc; 808 __le64 *ns; 809 u8 *data; 810 811 /* Mark the egress frame annotation area as valid */ 812 frc = dpaa2_fd_get_frc(fd); 813 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 814 815 /* Set hardware annotation size */ 816 ctrl = dpaa2_fd_get_ctrl(fd); 817 dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL); 818 819 /* enable UPD (update prepanded data) bit in FAEAD field of 820 * hardware frame annotation area 821 */ 822 ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD; 823 faead = dpaa2_get_faead(buf_start, true); 824 faead->ctrl = cpu_to_le32(ctrl); 825 826 if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { 827 if (dpaa2_eth_ptp_parse(skb, &msgtype, &twostep, &udp, 828 &offset1, &offset2) || 829 msgtype != PTP_MSGTYPE_SYNC || twostep) { 830 WARN_ONCE(1, "Bad packet for one-step timestamping\n"); 831 return; 832 } 833 834 /* Mark the frame annotation status as valid */ 835 frc = dpaa2_fd_get_frc(fd); 836 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FASV); 837 838 /* Mark the PTP flag for one step timestamping */ 839 fas = dpaa2_get_fas(buf_start, true); 840 fas->status = cpu_to_le32(DPAA2_FAS_PTP); 841 842 dpaa2_ptp->caps.gettime64(&dpaa2_ptp->caps, &ts); 843 ns = dpaa2_get_ts(buf_start, true); 844 *ns = cpu_to_le64(timespec64_to_ns(&ts) / 845 DPAA2_PTP_CLK_PERIOD_NS); 846 847 /* Update current time to PTP message originTimestamp field */ 848 ns_to_ptp_tstamp(&origin_timestamp, le64_to_cpup(ns)); 849 data = skb_mac_header(skb); 850 *(__be16 *)(data + offset2) = htons(origin_timestamp.sec_msb); 851 *(__be32 *)(data + offset2 + 2) = 852 htonl(origin_timestamp.sec_lsb); 853 *(__be32 *)(data + offset2 + 6) = htonl(origin_timestamp.nsec); 854 855 if (priv->ptp_correction_off == offset1) 856 return; 857 858 priv->dpaa2_set_onestep_params_cb(priv, offset1, udp); 859 priv->ptp_correction_off = offset1; 860 861 } 862 } 863 864 void *dpaa2_eth_sgt_get(struct dpaa2_eth_priv *priv) 865 { 866 struct dpaa2_eth_sgt_cache *sgt_cache; 867 void *sgt_buf = NULL; 868 int sgt_buf_size; 869 870 sgt_cache = this_cpu_ptr(priv->sgt_cache); 871 sgt_buf_size = priv->tx_data_offset + 872 DPAA2_ETH_SG_ENTRIES_MAX * sizeof(struct dpaa2_sg_entry); 873 874 if (sgt_cache->count == 0) 875 sgt_buf = napi_alloc_frag_align(sgt_buf_size, DPAA2_ETH_TX_BUF_ALIGN); 876 else 877 sgt_buf = sgt_cache->buf[--sgt_cache->count]; 878 if (!sgt_buf) 879 return NULL; 880 881 memset(sgt_buf, 0, sgt_buf_size); 882 883 return sgt_buf; 884 } 885 886 void dpaa2_eth_sgt_recycle(struct dpaa2_eth_priv *priv, void *sgt_buf) 887 { 888 struct dpaa2_eth_sgt_cache *sgt_cache; 889 890 sgt_cache = this_cpu_ptr(priv->sgt_cache); 891 if (sgt_cache->count >= DPAA2_ETH_SGT_CACHE_SIZE) 892 skb_free_frag(sgt_buf); 893 else 894 sgt_cache->buf[sgt_cache->count++] = sgt_buf; 895 } 896 897 /* Create a frame descriptor based on a fragmented skb */ 898 static int dpaa2_eth_build_sg_fd(struct dpaa2_eth_priv *priv, 899 struct sk_buff *skb, 900 struct dpaa2_fd *fd, 901 void **swa_addr) 902 { 903 struct device *dev = priv->net_dev->dev.parent; 904 void *sgt_buf = NULL; 905 dma_addr_t addr; 906 int nr_frags = skb_shinfo(skb)->nr_frags; 907 struct dpaa2_sg_entry *sgt; 908 int i, err; 909 int sgt_buf_size; 910 struct scatterlist *scl, *crt_scl; 911 int num_sg; 912 int num_dma_bufs; 913 struct dpaa2_eth_swa *swa; 914 915 /* Create and map scatterlist. 916 * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have 917 * to go beyond nr_frags+1. 918 * Note: We don't support chained scatterlists 919 */ 920 if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1)) 921 return -EINVAL; 922 923 scl = kmalloc_array(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC); 924 if (unlikely(!scl)) 925 return -ENOMEM; 926 927 sg_init_table(scl, nr_frags + 1); 928 num_sg = skb_to_sgvec(skb, scl, 0, skb->len); 929 if (unlikely(num_sg < 0)) { 930 err = -ENOMEM; 931 goto dma_map_sg_failed; 932 } 933 num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 934 if (unlikely(!num_dma_bufs)) { 935 err = -ENOMEM; 936 goto dma_map_sg_failed; 937 } 938 939 /* Prepare the HW SGT structure */ 940 sgt_buf_size = priv->tx_data_offset + 941 sizeof(struct dpaa2_sg_entry) * num_dma_bufs; 942 sgt_buf = dpaa2_eth_sgt_get(priv); 943 if (unlikely(!sgt_buf)) { 944 err = -ENOMEM; 945 goto sgt_buf_alloc_failed; 946 } 947 948 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 949 950 /* Fill in the HW SGT structure. 951 * 952 * sgt_buf is zeroed out, so the following fields are implicit 953 * in all sgt entries: 954 * - offset is 0 955 * - format is 'dpaa2_sg_single' 956 */ 957 for_each_sg(scl, crt_scl, num_dma_bufs, i) { 958 dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl)); 959 dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl)); 960 } 961 dpaa2_sg_set_final(&sgt[i - 1], true); 962 963 /* Store the skb backpointer in the SGT buffer. 964 * Fit the scatterlist and the number of buffers alongside the 965 * skb backpointer in the software annotation area. We'll need 966 * all of them on Tx Conf. 967 */ 968 *swa_addr = (void *)sgt_buf; 969 swa = (struct dpaa2_eth_swa *)sgt_buf; 970 swa->type = DPAA2_ETH_SWA_SG; 971 swa->sg.skb = skb; 972 swa->sg.scl = scl; 973 swa->sg.num_sg = num_sg; 974 swa->sg.sgt_size = sgt_buf_size; 975 976 /* Separately map the SGT buffer */ 977 addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 978 if (unlikely(dma_mapping_error(dev, addr))) { 979 err = -ENOMEM; 980 goto dma_map_single_failed; 981 } 982 memset(fd, 0, sizeof(struct dpaa2_fd)); 983 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 984 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 985 dpaa2_fd_set_addr(fd, addr); 986 dpaa2_fd_set_len(fd, skb->len); 987 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 988 989 return 0; 990 991 dma_map_single_failed: 992 dpaa2_eth_sgt_recycle(priv, sgt_buf); 993 sgt_buf_alloc_failed: 994 dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 995 dma_map_sg_failed: 996 kfree(scl); 997 return err; 998 } 999 1000 /* Create a SG frame descriptor based on a linear skb. 1001 * 1002 * This function is used on the Tx path when the skb headroom is not large 1003 * enough for the HW requirements, thus instead of realloc-ing the skb we 1004 * create a SG frame descriptor with only one entry. 1005 */ 1006 static int dpaa2_eth_build_sg_fd_single_buf(struct dpaa2_eth_priv *priv, 1007 struct sk_buff *skb, 1008 struct dpaa2_fd *fd, 1009 void **swa_addr) 1010 { 1011 struct device *dev = priv->net_dev->dev.parent; 1012 struct dpaa2_sg_entry *sgt; 1013 struct dpaa2_eth_swa *swa; 1014 dma_addr_t addr, sgt_addr; 1015 void *sgt_buf = NULL; 1016 int sgt_buf_size; 1017 int err; 1018 1019 /* Prepare the HW SGT structure */ 1020 sgt_buf_size = priv->tx_data_offset + sizeof(struct dpaa2_sg_entry); 1021 sgt_buf = dpaa2_eth_sgt_get(priv); 1022 if (unlikely(!sgt_buf)) 1023 return -ENOMEM; 1024 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 1025 1026 addr = dma_map_single(dev, skb->data, skb->len, DMA_BIDIRECTIONAL); 1027 if (unlikely(dma_mapping_error(dev, addr))) { 1028 err = -ENOMEM; 1029 goto data_map_failed; 1030 } 1031 1032 /* Fill in the HW SGT structure */ 1033 dpaa2_sg_set_addr(sgt, addr); 1034 dpaa2_sg_set_len(sgt, skb->len); 1035 dpaa2_sg_set_final(sgt, true); 1036 1037 /* Store the skb backpointer in the SGT buffer */ 1038 *swa_addr = (void *)sgt_buf; 1039 swa = (struct dpaa2_eth_swa *)sgt_buf; 1040 swa->type = DPAA2_ETH_SWA_SINGLE; 1041 swa->single.skb = skb; 1042 swa->single.sgt_size = sgt_buf_size; 1043 1044 /* Separately map the SGT buffer */ 1045 sgt_addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 1046 if (unlikely(dma_mapping_error(dev, sgt_addr))) { 1047 err = -ENOMEM; 1048 goto sgt_map_failed; 1049 } 1050 1051 memset(fd, 0, sizeof(struct dpaa2_fd)); 1052 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 1053 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 1054 dpaa2_fd_set_addr(fd, sgt_addr); 1055 dpaa2_fd_set_len(fd, skb->len); 1056 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 1057 1058 return 0; 1059 1060 sgt_map_failed: 1061 dma_unmap_single(dev, addr, skb->len, DMA_BIDIRECTIONAL); 1062 data_map_failed: 1063 dpaa2_eth_sgt_recycle(priv, sgt_buf); 1064 1065 return err; 1066 } 1067 1068 /* Create a frame descriptor based on a linear skb */ 1069 static int dpaa2_eth_build_single_fd(struct dpaa2_eth_priv *priv, 1070 struct sk_buff *skb, 1071 struct dpaa2_fd *fd, 1072 void **swa_addr) 1073 { 1074 struct device *dev = priv->net_dev->dev.parent; 1075 u8 *buffer_start, *aligned_start; 1076 struct dpaa2_eth_swa *swa; 1077 dma_addr_t addr; 1078 1079 buffer_start = skb->data - dpaa2_eth_needed_headroom(skb); 1080 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 1081 DPAA2_ETH_TX_BUF_ALIGN); 1082 if (aligned_start >= skb->head) 1083 buffer_start = aligned_start; 1084 else 1085 return -ENOMEM; 1086 1087 /* Store a backpointer to the skb at the beginning of the buffer 1088 * (in the private data area) such that we can release it 1089 * on Tx confirm 1090 */ 1091 *swa_addr = (void *)buffer_start; 1092 swa = (struct dpaa2_eth_swa *)buffer_start; 1093 swa->type = DPAA2_ETH_SWA_SINGLE; 1094 swa->single.skb = skb; 1095 1096 addr = dma_map_single(dev, buffer_start, 1097 skb_tail_pointer(skb) - buffer_start, 1098 DMA_BIDIRECTIONAL); 1099 if (unlikely(dma_mapping_error(dev, addr))) 1100 return -ENOMEM; 1101 1102 memset(fd, 0, sizeof(struct dpaa2_fd)); 1103 dpaa2_fd_set_addr(fd, addr); 1104 dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start)); 1105 dpaa2_fd_set_len(fd, skb->len); 1106 dpaa2_fd_set_format(fd, dpaa2_fd_single); 1107 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 1108 1109 return 0; 1110 } 1111 1112 /* FD freeing routine on the Tx path 1113 * 1114 * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb 1115 * back-pointed to is also freed. 1116 * This can be called either from dpaa2_eth_tx_conf() or on the error path of 1117 * dpaa2_eth_tx(). 1118 */ 1119 void dpaa2_eth_free_tx_fd(struct dpaa2_eth_priv *priv, 1120 struct dpaa2_eth_channel *ch, 1121 struct dpaa2_eth_fq *fq, 1122 const struct dpaa2_fd *fd, bool in_napi) 1123 { 1124 struct device *dev = priv->net_dev->dev.parent; 1125 dma_addr_t fd_addr, sg_addr; 1126 struct sk_buff *skb = NULL; 1127 unsigned char *buffer_start; 1128 struct dpaa2_eth_swa *swa; 1129 u8 fd_format = dpaa2_fd_get_format(fd); 1130 u32 fd_len = dpaa2_fd_get_len(fd); 1131 struct dpaa2_sg_entry *sgt; 1132 int should_free_skb = 1; 1133 void *tso_hdr; 1134 int i; 1135 1136 fd_addr = dpaa2_fd_get_addr(fd); 1137 buffer_start = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr); 1138 swa = (struct dpaa2_eth_swa *)buffer_start; 1139 1140 if (fd_format == dpaa2_fd_single) { 1141 if (swa->type == DPAA2_ETH_SWA_SINGLE) { 1142 skb = swa->single.skb; 1143 /* Accessing the skb buffer is safe before dma unmap, 1144 * because we didn't map the actual skb shell. 1145 */ 1146 dma_unmap_single(dev, fd_addr, 1147 skb_tail_pointer(skb) - buffer_start, 1148 DMA_BIDIRECTIONAL); 1149 } else { 1150 WARN_ONCE(swa->type != DPAA2_ETH_SWA_XDP, "Wrong SWA type"); 1151 dma_unmap_single(dev, fd_addr, swa->xdp.dma_size, 1152 DMA_BIDIRECTIONAL); 1153 } 1154 } else if (fd_format == dpaa2_fd_sg) { 1155 if (swa->type == DPAA2_ETH_SWA_SG) { 1156 skb = swa->sg.skb; 1157 1158 /* Unmap the scatterlist */ 1159 dma_unmap_sg(dev, swa->sg.scl, swa->sg.num_sg, 1160 DMA_BIDIRECTIONAL); 1161 kfree(swa->sg.scl); 1162 1163 /* Unmap the SGT buffer */ 1164 dma_unmap_single(dev, fd_addr, swa->sg.sgt_size, 1165 DMA_BIDIRECTIONAL); 1166 } else if (swa->type == DPAA2_ETH_SWA_SW_TSO) { 1167 skb = swa->tso.skb; 1168 1169 sgt = (struct dpaa2_sg_entry *)(buffer_start + 1170 priv->tx_data_offset); 1171 1172 /* Unmap the SGT buffer */ 1173 dma_unmap_single(dev, fd_addr, swa->tso.sgt_size, 1174 DMA_BIDIRECTIONAL); 1175 1176 /* Unmap and free the header */ 1177 tso_hdr = dpaa2_iova_to_virt(priv->iommu_domain, dpaa2_sg_get_addr(sgt)); 1178 dma_unmap_single(dev, dpaa2_sg_get_addr(sgt), TSO_HEADER_SIZE, 1179 DMA_TO_DEVICE); 1180 kfree(tso_hdr); 1181 1182 /* Unmap the other SG entries for the data */ 1183 for (i = 1; i < swa->tso.num_sg; i++) 1184 dma_unmap_single(dev, dpaa2_sg_get_addr(&sgt[i]), 1185 dpaa2_sg_get_len(&sgt[i]), DMA_TO_DEVICE); 1186 1187 if (!swa->tso.is_last_fd) 1188 should_free_skb = 0; 1189 } else if (swa->type == DPAA2_ETH_SWA_XSK) { 1190 /* Unmap the SGT Buffer */ 1191 dma_unmap_single(dev, fd_addr, swa->xsk.sgt_size, 1192 DMA_BIDIRECTIONAL); 1193 } else { 1194 skb = swa->single.skb; 1195 1196 /* Unmap the SGT Buffer */ 1197 dma_unmap_single(dev, fd_addr, swa->single.sgt_size, 1198 DMA_BIDIRECTIONAL); 1199 1200 sgt = (struct dpaa2_sg_entry *)(buffer_start + 1201 priv->tx_data_offset); 1202 sg_addr = dpaa2_sg_get_addr(sgt); 1203 dma_unmap_single(dev, sg_addr, skb->len, DMA_BIDIRECTIONAL); 1204 } 1205 } else { 1206 netdev_dbg(priv->net_dev, "Invalid FD format\n"); 1207 return; 1208 } 1209 1210 if (swa->type == DPAA2_ETH_SWA_XSK) { 1211 ch->xsk_tx_pkts_sent++; 1212 dpaa2_eth_sgt_recycle(priv, buffer_start); 1213 return; 1214 } 1215 1216 if (swa->type != DPAA2_ETH_SWA_XDP && in_napi) { 1217 fq->dq_frames++; 1218 fq->dq_bytes += fd_len; 1219 } 1220 1221 if (swa->type == DPAA2_ETH_SWA_XDP) { 1222 xdp_return_frame(swa->xdp.xdpf); 1223 return; 1224 } 1225 1226 /* Get the timestamp value */ 1227 if (swa->type != DPAA2_ETH_SWA_SW_TSO) { 1228 if (skb->cb[0] == TX_TSTAMP) { 1229 struct skb_shared_hwtstamps shhwtstamps; 1230 __le64 *ts = dpaa2_get_ts(buffer_start, true); 1231 u64 ns; 1232 1233 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 1234 1235 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 1236 shhwtstamps.hwtstamp = ns_to_ktime(ns); 1237 skb_tstamp_tx(skb, &shhwtstamps); 1238 } else if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { 1239 mutex_unlock(&priv->onestep_tstamp_lock); 1240 } 1241 } 1242 1243 /* Free SGT buffer allocated on tx */ 1244 if (fd_format != dpaa2_fd_single) 1245 dpaa2_eth_sgt_recycle(priv, buffer_start); 1246 1247 /* Move on with skb release. If we are just confirming multiple FDs 1248 * from the same TSO skb then only the last one will need to free the 1249 * skb. 1250 */ 1251 if (should_free_skb) 1252 napi_consume_skb(skb, in_napi); 1253 } 1254 1255 static int dpaa2_eth_build_gso_fd(struct dpaa2_eth_priv *priv, 1256 struct sk_buff *skb, struct dpaa2_fd *fd, 1257 int *num_fds, u32 *total_fds_len) 1258 { 1259 struct device *dev = priv->net_dev->dev.parent; 1260 int hdr_len, total_len, data_left, fd_len; 1261 int num_sge, err, i, sgt_buf_size; 1262 struct dpaa2_fd *fd_start = fd; 1263 struct dpaa2_sg_entry *sgt; 1264 struct dpaa2_eth_swa *swa; 1265 dma_addr_t sgt_addr, addr; 1266 dma_addr_t tso_hdr_dma; 1267 unsigned int index = 0; 1268 struct tso_t tso; 1269 char *tso_hdr; 1270 void *sgt_buf; 1271 1272 /* Initialize the TSO handler, and prepare the first payload */ 1273 hdr_len = tso_start(skb, &tso); 1274 *total_fds_len = 0; 1275 1276 total_len = skb->len - hdr_len; 1277 while (total_len > 0) { 1278 /* Prepare the HW SGT structure for this frame */ 1279 sgt_buf = dpaa2_eth_sgt_get(priv); 1280 if (unlikely(!sgt_buf)) { 1281 netdev_err(priv->net_dev, "dpaa2_eth_sgt_get() failed\n"); 1282 err = -ENOMEM; 1283 goto err_sgt_get; 1284 } 1285 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 1286 1287 /* Determine the data length of this frame */ 1288 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 1289 total_len -= data_left; 1290 fd_len = data_left + hdr_len; 1291 1292 /* Prepare packet headers: MAC + IP + TCP */ 1293 tso_hdr = kmalloc(TSO_HEADER_SIZE, GFP_ATOMIC); 1294 if (!tso_hdr) { 1295 err = -ENOMEM; 1296 goto err_alloc_tso_hdr; 1297 } 1298 1299 tso_build_hdr(skb, tso_hdr, &tso, data_left, total_len == 0); 1300 tso_hdr_dma = dma_map_single(dev, tso_hdr, TSO_HEADER_SIZE, DMA_TO_DEVICE); 1301 if (dma_mapping_error(dev, tso_hdr_dma)) { 1302 netdev_err(priv->net_dev, "dma_map_single(tso_hdr) failed\n"); 1303 err = -ENOMEM; 1304 goto err_map_tso_hdr; 1305 } 1306 1307 /* Setup the SG entry for the header */ 1308 dpaa2_sg_set_addr(sgt, tso_hdr_dma); 1309 dpaa2_sg_set_len(sgt, hdr_len); 1310 dpaa2_sg_set_final(sgt, data_left <= 0); 1311 1312 /* Compose the SG entries for each fragment of data */ 1313 num_sge = 1; 1314 while (data_left > 0) { 1315 int size; 1316 1317 /* Move to the next SG entry */ 1318 sgt++; 1319 size = min_t(int, tso.size, data_left); 1320 1321 addr = dma_map_single(dev, tso.data, size, DMA_TO_DEVICE); 1322 if (dma_mapping_error(dev, addr)) { 1323 netdev_err(priv->net_dev, "dma_map_single(tso.data) failed\n"); 1324 err = -ENOMEM; 1325 goto err_map_data; 1326 } 1327 dpaa2_sg_set_addr(sgt, addr); 1328 dpaa2_sg_set_len(sgt, size); 1329 dpaa2_sg_set_final(sgt, size == data_left); 1330 1331 num_sge++; 1332 1333 /* Build the data for the __next__ fragment */ 1334 data_left -= size; 1335 tso_build_data(skb, &tso, size); 1336 } 1337 1338 /* Store the skb backpointer in the SGT buffer */ 1339 sgt_buf_size = priv->tx_data_offset + num_sge * sizeof(struct dpaa2_sg_entry); 1340 swa = (struct dpaa2_eth_swa *)sgt_buf; 1341 swa->type = DPAA2_ETH_SWA_SW_TSO; 1342 swa->tso.skb = skb; 1343 swa->tso.num_sg = num_sge; 1344 swa->tso.sgt_size = sgt_buf_size; 1345 swa->tso.is_last_fd = total_len == 0 ? 1 : 0; 1346 1347 /* Separately map the SGT buffer */ 1348 sgt_addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 1349 if (unlikely(dma_mapping_error(dev, sgt_addr))) { 1350 netdev_err(priv->net_dev, "dma_map_single(sgt_buf) failed\n"); 1351 err = -ENOMEM; 1352 goto err_map_sgt; 1353 } 1354 1355 /* Setup the frame descriptor */ 1356 memset(fd, 0, sizeof(struct dpaa2_fd)); 1357 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 1358 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 1359 dpaa2_fd_set_addr(fd, sgt_addr); 1360 dpaa2_fd_set_len(fd, fd_len); 1361 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 1362 1363 *total_fds_len += fd_len; 1364 /* Advance to the next frame descriptor */ 1365 fd++; 1366 index++; 1367 } 1368 1369 *num_fds = index; 1370 1371 return 0; 1372 1373 err_map_sgt: 1374 err_map_data: 1375 /* Unmap all the data S/G entries for the current FD */ 1376 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 1377 for (i = 1; i < num_sge; i++) 1378 dma_unmap_single(dev, dpaa2_sg_get_addr(&sgt[i]), 1379 dpaa2_sg_get_len(&sgt[i]), DMA_TO_DEVICE); 1380 1381 /* Unmap the header entry */ 1382 dma_unmap_single(dev, tso_hdr_dma, TSO_HEADER_SIZE, DMA_TO_DEVICE); 1383 err_map_tso_hdr: 1384 kfree(tso_hdr); 1385 err_alloc_tso_hdr: 1386 dpaa2_eth_sgt_recycle(priv, sgt_buf); 1387 err_sgt_get: 1388 /* Free all the other FDs that were already fully created */ 1389 for (i = 0; i < index; i++) 1390 dpaa2_eth_free_tx_fd(priv, NULL, NULL, &fd_start[i], false); 1391 1392 return err; 1393 } 1394 1395 static netdev_tx_t __dpaa2_eth_tx(struct sk_buff *skb, 1396 struct net_device *net_dev) 1397 { 1398 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1399 int total_enqueued = 0, retries = 0, enqueued; 1400 struct dpaa2_eth_drv_stats *percpu_extras; 1401 struct rtnl_link_stats64 *percpu_stats; 1402 unsigned int needed_headroom; 1403 int num_fds = 1, max_retries; 1404 struct dpaa2_eth_fq *fq; 1405 struct netdev_queue *nq; 1406 struct dpaa2_fd *fd; 1407 u16 queue_mapping; 1408 void *swa = NULL; 1409 u8 prio = 0; 1410 int err, i; 1411 u32 fd_len; 1412 1413 percpu_stats = this_cpu_ptr(priv->percpu_stats); 1414 percpu_extras = this_cpu_ptr(priv->percpu_extras); 1415 fd = (this_cpu_ptr(priv->fd))->array; 1416 1417 needed_headroom = dpaa2_eth_needed_headroom(skb); 1418 1419 /* We'll be holding a back-reference to the skb until Tx Confirmation; 1420 * we don't want that overwritten by a concurrent Tx with a cloned skb. 1421 */ 1422 skb = skb_unshare(skb, GFP_ATOMIC); 1423 if (unlikely(!skb)) { 1424 /* skb_unshare() has already freed the skb */ 1425 percpu_stats->tx_dropped++; 1426 return NETDEV_TX_OK; 1427 } 1428 1429 /* Setup the FD fields */ 1430 1431 if (skb_is_gso(skb)) { 1432 err = dpaa2_eth_build_gso_fd(priv, skb, fd, &num_fds, &fd_len); 1433 percpu_extras->tx_sg_frames += num_fds; 1434 percpu_extras->tx_sg_bytes += fd_len; 1435 percpu_extras->tx_tso_frames += num_fds; 1436 percpu_extras->tx_tso_bytes += fd_len; 1437 } else if (skb_is_nonlinear(skb)) { 1438 err = dpaa2_eth_build_sg_fd(priv, skb, fd, &swa); 1439 percpu_extras->tx_sg_frames++; 1440 percpu_extras->tx_sg_bytes += skb->len; 1441 fd_len = dpaa2_fd_get_len(fd); 1442 } else if (skb_headroom(skb) < needed_headroom) { 1443 err = dpaa2_eth_build_sg_fd_single_buf(priv, skb, fd, &swa); 1444 percpu_extras->tx_sg_frames++; 1445 percpu_extras->tx_sg_bytes += skb->len; 1446 percpu_extras->tx_converted_sg_frames++; 1447 percpu_extras->tx_converted_sg_bytes += skb->len; 1448 fd_len = dpaa2_fd_get_len(fd); 1449 } else { 1450 err = dpaa2_eth_build_single_fd(priv, skb, fd, &swa); 1451 fd_len = dpaa2_fd_get_len(fd); 1452 } 1453 1454 if (unlikely(err)) { 1455 percpu_stats->tx_dropped++; 1456 goto err_build_fd; 1457 } 1458 1459 if (swa && skb->cb[0]) 1460 dpaa2_eth_enable_tx_tstamp(priv, fd, swa, skb); 1461 1462 /* Tracing point */ 1463 for (i = 0; i < num_fds; i++) 1464 trace_dpaa2_tx_fd(net_dev, &fd[i]); 1465 1466 /* TxConf FQ selection relies on queue id from the stack. 1467 * In case of a forwarded frame from another DPNI interface, we choose 1468 * a queue affined to the same core that processed the Rx frame 1469 */ 1470 queue_mapping = skb_get_queue_mapping(skb); 1471 1472 if (net_dev->num_tc) { 1473 prio = netdev_txq_to_tc(net_dev, queue_mapping); 1474 /* Hardware interprets priority level 0 as being the highest, 1475 * so we need to do a reverse mapping to the netdev tc index 1476 */ 1477 prio = net_dev->num_tc - prio - 1; 1478 /* We have only one FQ array entry for all Tx hardware queues 1479 * with the same flow id (but different priority levels) 1480 */ 1481 queue_mapping %= dpaa2_eth_queue_count(priv); 1482 } 1483 fq = &priv->fq[queue_mapping]; 1484 nq = netdev_get_tx_queue(net_dev, queue_mapping); 1485 netdev_tx_sent_queue(nq, fd_len); 1486 1487 /* Everything that happens after this enqueues might race with 1488 * the Tx confirmation callback for this frame 1489 */ 1490 max_retries = num_fds * DPAA2_ETH_ENQUEUE_RETRIES; 1491 while (total_enqueued < num_fds && retries < max_retries) { 1492 err = priv->enqueue(priv, fq, &fd[total_enqueued], 1493 prio, num_fds - total_enqueued, &enqueued); 1494 if (err == -EBUSY) { 1495 retries++; 1496 continue; 1497 } 1498 1499 total_enqueued += enqueued; 1500 } 1501 percpu_extras->tx_portal_busy += retries; 1502 1503 if (unlikely(err < 0)) { 1504 percpu_stats->tx_errors++; 1505 /* Clean up everything, including freeing the skb */ 1506 dpaa2_eth_free_tx_fd(priv, NULL, fq, fd, false); 1507 netdev_tx_completed_queue(nq, 1, fd_len); 1508 } else { 1509 percpu_stats->tx_packets += total_enqueued; 1510 percpu_stats->tx_bytes += fd_len; 1511 } 1512 1513 return NETDEV_TX_OK; 1514 1515 err_build_fd: 1516 dev_kfree_skb(skb); 1517 1518 return NETDEV_TX_OK; 1519 } 1520 1521 static void dpaa2_eth_tx_onestep_tstamp(struct work_struct *work) 1522 { 1523 struct dpaa2_eth_priv *priv = container_of(work, struct dpaa2_eth_priv, 1524 tx_onestep_tstamp); 1525 struct sk_buff *skb; 1526 1527 while (true) { 1528 skb = skb_dequeue(&priv->tx_skbs); 1529 if (!skb) 1530 return; 1531 1532 /* Lock just before TX one-step timestamping packet, 1533 * and release the lock in dpaa2_eth_free_tx_fd when 1534 * confirm the packet has been sent on hardware, or 1535 * when clean up during transmit failure. 1536 */ 1537 mutex_lock(&priv->onestep_tstamp_lock); 1538 __dpaa2_eth_tx(skb, priv->net_dev); 1539 } 1540 } 1541 1542 static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) 1543 { 1544 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1545 u8 msgtype, twostep, udp; 1546 u16 offset1, offset2; 1547 1548 /* Utilize skb->cb[0] for timestamping request per skb */ 1549 skb->cb[0] = 0; 1550 1551 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && dpaa2_ptp) { 1552 if (priv->tx_tstamp_type == HWTSTAMP_TX_ON) 1553 skb->cb[0] = TX_TSTAMP; 1554 else if (priv->tx_tstamp_type == HWTSTAMP_TX_ONESTEP_SYNC) 1555 skb->cb[0] = TX_TSTAMP_ONESTEP_SYNC; 1556 } 1557 1558 /* TX for one-step timestamping PTP Sync packet */ 1559 if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { 1560 if (!dpaa2_eth_ptp_parse(skb, &msgtype, &twostep, &udp, 1561 &offset1, &offset2)) 1562 if (msgtype == PTP_MSGTYPE_SYNC && twostep == 0) { 1563 skb_queue_tail(&priv->tx_skbs, skb); 1564 queue_work(priv->dpaa2_ptp_wq, 1565 &priv->tx_onestep_tstamp); 1566 return NETDEV_TX_OK; 1567 } 1568 /* Use two-step timestamping if not one-step timestamping 1569 * PTP Sync packet 1570 */ 1571 skb->cb[0] = TX_TSTAMP; 1572 } 1573 1574 /* TX for other packets */ 1575 return __dpaa2_eth_tx(skb, net_dev); 1576 } 1577 1578 /* Tx confirmation frame processing routine */ 1579 static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv, 1580 struct dpaa2_eth_channel *ch, 1581 const struct dpaa2_fd *fd, 1582 struct dpaa2_eth_fq *fq) 1583 { 1584 struct rtnl_link_stats64 *percpu_stats; 1585 struct dpaa2_eth_drv_stats *percpu_extras; 1586 u32 fd_len = dpaa2_fd_get_len(fd); 1587 u32 fd_errors; 1588 1589 /* Tracing point */ 1590 trace_dpaa2_tx_conf_fd(priv->net_dev, fd); 1591 1592 percpu_extras = this_cpu_ptr(priv->percpu_extras); 1593 percpu_extras->tx_conf_frames++; 1594 percpu_extras->tx_conf_bytes += fd_len; 1595 ch->stats.bytes_per_cdan += fd_len; 1596 1597 /* Check frame errors in the FD field */ 1598 fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK; 1599 dpaa2_eth_free_tx_fd(priv, ch, fq, fd, true); 1600 1601 if (likely(!fd_errors)) 1602 return; 1603 1604 if (net_ratelimit()) 1605 netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n", 1606 fd_errors); 1607 1608 percpu_stats = this_cpu_ptr(priv->percpu_stats); 1609 /* Tx-conf logically pertains to the egress path. */ 1610 percpu_stats->tx_errors++; 1611 } 1612 1613 static int dpaa2_eth_set_rx_vlan_filtering(struct dpaa2_eth_priv *priv, 1614 bool enable) 1615 { 1616 int err; 1617 1618 err = dpni_enable_vlan_filter(priv->mc_io, 0, priv->mc_token, enable); 1619 1620 if (err) { 1621 netdev_err(priv->net_dev, 1622 "dpni_enable_vlan_filter failed\n"); 1623 return err; 1624 } 1625 1626 return 0; 1627 } 1628 1629 static int dpaa2_eth_set_rx_csum(struct dpaa2_eth_priv *priv, bool enable) 1630 { 1631 int err; 1632 1633 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1634 DPNI_OFF_RX_L3_CSUM, enable); 1635 if (err) { 1636 netdev_err(priv->net_dev, 1637 "dpni_set_offload(RX_L3_CSUM) failed\n"); 1638 return err; 1639 } 1640 1641 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1642 DPNI_OFF_RX_L4_CSUM, enable); 1643 if (err) { 1644 netdev_err(priv->net_dev, 1645 "dpni_set_offload(RX_L4_CSUM) failed\n"); 1646 return err; 1647 } 1648 1649 return 0; 1650 } 1651 1652 static int dpaa2_eth_set_tx_csum(struct dpaa2_eth_priv *priv, bool enable) 1653 { 1654 int err; 1655 1656 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1657 DPNI_OFF_TX_L3_CSUM, enable); 1658 if (err) { 1659 netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n"); 1660 return err; 1661 } 1662 1663 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1664 DPNI_OFF_TX_L4_CSUM, enable); 1665 if (err) { 1666 netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n"); 1667 return err; 1668 } 1669 1670 return 0; 1671 } 1672 1673 /* Perform a single release command to add buffers 1674 * to the specified buffer pool 1675 */ 1676 static int dpaa2_eth_add_bufs(struct dpaa2_eth_priv *priv, 1677 struct dpaa2_eth_channel *ch) 1678 { 1679 struct xdp_buff *xdp_buffs[DPAA2_ETH_BUFS_PER_CMD]; 1680 struct device *dev = priv->net_dev->dev.parent; 1681 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1682 struct dpaa2_eth_swa *swa; 1683 struct page *page; 1684 dma_addr_t addr; 1685 int retries = 0; 1686 int i = 0, err; 1687 u32 batch; 1688 1689 /* Allocate buffers visible to WRIOP */ 1690 if (!ch->xsk_zc) { 1691 for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) { 1692 /* Also allocate skb shared info and alignment padding. 1693 * There is one page for each Rx buffer. WRIOP sees 1694 * the entire page except for a tailroom reserved for 1695 * skb shared info 1696 */ 1697 page = dev_alloc_pages(0); 1698 if (!page) 1699 goto err_alloc; 1700 1701 addr = dma_map_page(dev, page, 0, priv->rx_buf_size, 1702 DMA_BIDIRECTIONAL); 1703 if (unlikely(dma_mapping_error(dev, addr))) 1704 goto err_map; 1705 1706 buf_array[i] = addr; 1707 1708 /* tracing point */ 1709 trace_dpaa2_eth_buf_seed(priv->net_dev, 1710 page_address(page), 1711 DPAA2_ETH_RX_BUF_RAW_SIZE, 1712 addr, priv->rx_buf_size, 1713 ch->bp->bpid); 1714 } 1715 } else if (xsk_buff_can_alloc(ch->xsk_pool, DPAA2_ETH_BUFS_PER_CMD)) { 1716 /* Allocate XSK buffers for AF_XDP fast path in batches 1717 * of DPAA2_ETH_BUFS_PER_CMD. Bail out if the UMEM cannot 1718 * provide enough buffers at the moment 1719 */ 1720 batch = xsk_buff_alloc_batch(ch->xsk_pool, xdp_buffs, 1721 DPAA2_ETH_BUFS_PER_CMD); 1722 if (!batch) 1723 goto err_alloc; 1724 1725 for (i = 0; i < batch; i++) { 1726 swa = (struct dpaa2_eth_swa *)(xdp_buffs[i]->data_hard_start + 1727 DPAA2_ETH_RX_HWA_SIZE); 1728 swa->xsk.xdp_buff = xdp_buffs[i]; 1729 1730 addr = xsk_buff_xdp_get_frame_dma(xdp_buffs[i]); 1731 if (unlikely(dma_mapping_error(dev, addr))) 1732 goto err_map; 1733 1734 buf_array[i] = addr; 1735 1736 trace_dpaa2_xsk_buf_seed(priv->net_dev, 1737 xdp_buffs[i]->data_hard_start, 1738 DPAA2_ETH_RX_BUF_RAW_SIZE, 1739 addr, priv->rx_buf_size, 1740 ch->bp->bpid); 1741 } 1742 } 1743 1744 release_bufs: 1745 /* In case the portal is busy, retry until successful */ 1746 while ((err = dpaa2_io_service_release(ch->dpio, ch->bp->bpid, 1747 buf_array, i)) == -EBUSY) { 1748 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 1749 break; 1750 cpu_relax(); 1751 } 1752 1753 /* If release command failed, clean up and bail out; 1754 * not much else we can do about it 1755 */ 1756 if (err) { 1757 dpaa2_eth_free_bufs(priv, buf_array, i, ch->xsk_zc); 1758 return 0; 1759 } 1760 1761 return i; 1762 1763 err_map: 1764 if (!ch->xsk_zc) { 1765 __free_pages(page, 0); 1766 } else { 1767 for (; i < batch; i++) 1768 xsk_buff_free(xdp_buffs[i]); 1769 } 1770 err_alloc: 1771 /* If we managed to allocate at least some buffers, 1772 * release them to hardware 1773 */ 1774 if (i) 1775 goto release_bufs; 1776 1777 return 0; 1778 } 1779 1780 static int dpaa2_eth_seed_pool(struct dpaa2_eth_priv *priv, 1781 struct dpaa2_eth_channel *ch) 1782 { 1783 int i; 1784 int new_count; 1785 1786 for (i = 0; i < DPAA2_ETH_NUM_BUFS; i += DPAA2_ETH_BUFS_PER_CMD) { 1787 new_count = dpaa2_eth_add_bufs(priv, ch); 1788 ch->buf_count += new_count; 1789 1790 if (new_count < DPAA2_ETH_BUFS_PER_CMD) 1791 return -ENOMEM; 1792 } 1793 1794 return 0; 1795 } 1796 1797 static void dpaa2_eth_seed_pools(struct dpaa2_eth_priv *priv) 1798 { 1799 struct net_device *net_dev = priv->net_dev; 1800 struct dpaa2_eth_channel *channel; 1801 int i, err = 0; 1802 1803 for (i = 0; i < priv->num_channels; i++) { 1804 channel = priv->channel[i]; 1805 1806 err = dpaa2_eth_seed_pool(priv, channel); 1807 1808 /* Not much to do; the buffer pool, though not filled up, 1809 * may still contain some buffers which would enable us 1810 * to limp on. 1811 */ 1812 if (err) 1813 netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n", 1814 channel->bp->dev->obj_desc.id, 1815 channel->bp->bpid); 1816 } 1817 } 1818 1819 /* 1820 * Drain the specified number of buffers from one of the DPNI's private buffer 1821 * pools. 1822 * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD 1823 */ 1824 static void dpaa2_eth_drain_bufs(struct dpaa2_eth_priv *priv, int bpid, 1825 int count) 1826 { 1827 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1828 bool xsk_zc = false; 1829 int retries = 0; 1830 int i, ret; 1831 1832 for (i = 0; i < priv->num_channels; i++) 1833 if (priv->channel[i]->bp->bpid == bpid) 1834 xsk_zc = priv->channel[i]->xsk_zc; 1835 1836 do { 1837 ret = dpaa2_io_service_acquire(NULL, bpid, buf_array, count); 1838 if (ret < 0) { 1839 if (ret == -EBUSY && 1840 retries++ < DPAA2_ETH_SWP_BUSY_RETRIES) 1841 continue; 1842 netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n"); 1843 return; 1844 } 1845 dpaa2_eth_free_bufs(priv, buf_array, ret, xsk_zc); 1846 retries = 0; 1847 } while (ret); 1848 } 1849 1850 static void dpaa2_eth_drain_pool(struct dpaa2_eth_priv *priv, int bpid) 1851 { 1852 int i; 1853 1854 /* Drain the buffer pool */ 1855 dpaa2_eth_drain_bufs(priv, bpid, DPAA2_ETH_BUFS_PER_CMD); 1856 dpaa2_eth_drain_bufs(priv, bpid, 1); 1857 1858 /* Setup to zero the buffer count of all channels which were 1859 * using this buffer pool. 1860 */ 1861 for (i = 0; i < priv->num_channels; i++) 1862 if (priv->channel[i]->bp->bpid == bpid) 1863 priv->channel[i]->buf_count = 0; 1864 } 1865 1866 static void dpaa2_eth_drain_pools(struct dpaa2_eth_priv *priv) 1867 { 1868 int i; 1869 1870 for (i = 0; i < priv->num_bps; i++) 1871 dpaa2_eth_drain_pool(priv, priv->bp[i]->bpid); 1872 } 1873 1874 /* Function is called from softirq context only, so we don't need to guard 1875 * the access to percpu count 1876 */ 1877 static int dpaa2_eth_refill_pool(struct dpaa2_eth_priv *priv, 1878 struct dpaa2_eth_channel *ch) 1879 { 1880 int new_count; 1881 1882 if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH)) 1883 return 0; 1884 1885 do { 1886 new_count = dpaa2_eth_add_bufs(priv, ch); 1887 if (unlikely(!new_count)) { 1888 /* Out of memory; abort for now, we'll try later on */ 1889 break; 1890 } 1891 ch->buf_count += new_count; 1892 } while (ch->buf_count < DPAA2_ETH_NUM_BUFS); 1893 1894 if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS)) 1895 return -ENOMEM; 1896 1897 return 0; 1898 } 1899 1900 static void dpaa2_eth_sgt_cache_drain(struct dpaa2_eth_priv *priv) 1901 { 1902 struct dpaa2_eth_sgt_cache *sgt_cache; 1903 u16 count; 1904 int k, i; 1905 1906 for_each_possible_cpu(k) { 1907 sgt_cache = per_cpu_ptr(priv->sgt_cache, k); 1908 count = sgt_cache->count; 1909 1910 for (i = 0; i < count; i++) 1911 skb_free_frag(sgt_cache->buf[i]); 1912 sgt_cache->count = 0; 1913 } 1914 } 1915 1916 static int dpaa2_eth_pull_channel(struct dpaa2_eth_channel *ch) 1917 { 1918 int err; 1919 int dequeues = -1; 1920 1921 /* Retry while portal is busy */ 1922 do { 1923 err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id, 1924 ch->store); 1925 dequeues++; 1926 cpu_relax(); 1927 } while (err == -EBUSY && dequeues < DPAA2_ETH_SWP_BUSY_RETRIES); 1928 1929 ch->stats.dequeue_portal_busy += dequeues; 1930 if (unlikely(err)) 1931 ch->stats.pull_err++; 1932 1933 return err; 1934 } 1935 1936 /* NAPI poll routine 1937 * 1938 * Frames are dequeued from the QMan channel associated with this NAPI context. 1939 * Rx, Tx confirmation and (if configured) Rx error frames all count 1940 * towards the NAPI budget. 1941 */ 1942 static int dpaa2_eth_poll(struct napi_struct *napi, int budget) 1943 { 1944 struct dpaa2_eth_channel *ch; 1945 struct dpaa2_eth_priv *priv; 1946 int rx_cleaned = 0, txconf_cleaned = 0; 1947 struct dpaa2_eth_fq *fq, *txc_fq = NULL; 1948 struct netdev_queue *nq; 1949 int store_cleaned, work_done; 1950 bool work_done_zc = false; 1951 struct list_head rx_list; 1952 int retries = 0; 1953 u16 flowid; 1954 int err; 1955 1956 ch = container_of(napi, struct dpaa2_eth_channel, napi); 1957 ch->xdp.res = 0; 1958 priv = ch->priv; 1959 1960 INIT_LIST_HEAD(&rx_list); 1961 ch->rx_list = &rx_list; 1962 1963 if (ch->xsk_zc) { 1964 work_done_zc = dpaa2_xsk_tx(priv, ch); 1965 /* If we reached the XSK Tx per NAPI threshold, we're done */ 1966 if (work_done_zc) { 1967 work_done = budget; 1968 goto out; 1969 } 1970 } 1971 1972 do { 1973 err = dpaa2_eth_pull_channel(ch); 1974 if (unlikely(err)) 1975 break; 1976 1977 /* Refill pool if appropriate */ 1978 dpaa2_eth_refill_pool(priv, ch); 1979 1980 store_cleaned = dpaa2_eth_consume_frames(ch, &fq); 1981 if (store_cleaned <= 0) 1982 break; 1983 if (fq->type == DPAA2_RX_FQ) { 1984 rx_cleaned += store_cleaned; 1985 flowid = fq->flowid; 1986 } else { 1987 txconf_cleaned += store_cleaned; 1988 /* We have a single Tx conf FQ on this channel */ 1989 txc_fq = fq; 1990 } 1991 1992 /* If we either consumed the whole NAPI budget with Rx frames 1993 * or we reached the Tx confirmations threshold, we're done. 1994 */ 1995 if (rx_cleaned >= budget || 1996 txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI) { 1997 work_done = budget; 1998 if (ch->xdp.res & XDP_REDIRECT) 1999 xdp_do_flush(); 2000 goto out; 2001 } 2002 } while (store_cleaned); 2003 2004 if (ch->xdp.res & XDP_REDIRECT) 2005 xdp_do_flush(); 2006 2007 /* Update NET DIM with the values for this CDAN */ 2008 dpaa2_io_update_net_dim(ch->dpio, ch->stats.frames_per_cdan, 2009 ch->stats.bytes_per_cdan); 2010 ch->stats.frames_per_cdan = 0; 2011 ch->stats.bytes_per_cdan = 0; 2012 2013 /* We didn't consume the entire budget, so finish napi and 2014 * re-enable data availability notifications 2015 */ 2016 napi_complete_done(napi, rx_cleaned); 2017 do { 2018 err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx); 2019 cpu_relax(); 2020 } while (err == -EBUSY && retries++ < DPAA2_ETH_SWP_BUSY_RETRIES); 2021 WARN_ONCE(err, "CDAN notifications rearm failed on core %d", 2022 ch->nctx.desired_cpu); 2023 2024 work_done = max(rx_cleaned, 1); 2025 2026 out: 2027 netif_receive_skb_list(ch->rx_list); 2028 2029 if (ch->xsk_tx_pkts_sent) { 2030 xsk_tx_completed(ch->xsk_pool, ch->xsk_tx_pkts_sent); 2031 ch->xsk_tx_pkts_sent = 0; 2032 } 2033 2034 if (txc_fq && txc_fq->dq_frames) { 2035 nq = netdev_get_tx_queue(priv->net_dev, txc_fq->flowid); 2036 netdev_tx_completed_queue(nq, txc_fq->dq_frames, 2037 txc_fq->dq_bytes); 2038 txc_fq->dq_frames = 0; 2039 txc_fq->dq_bytes = 0; 2040 } 2041 2042 if (rx_cleaned && ch->xdp.res & XDP_TX) 2043 dpaa2_eth_xdp_tx_flush(priv, ch, &priv->fq[flowid]); 2044 2045 return work_done; 2046 } 2047 2048 static void dpaa2_eth_enable_ch_napi(struct dpaa2_eth_priv *priv) 2049 { 2050 struct dpaa2_eth_channel *ch; 2051 int i; 2052 2053 for (i = 0; i < priv->num_channels; i++) { 2054 ch = priv->channel[i]; 2055 napi_enable(&ch->napi); 2056 } 2057 } 2058 2059 static void dpaa2_eth_disable_ch_napi(struct dpaa2_eth_priv *priv) 2060 { 2061 struct dpaa2_eth_channel *ch; 2062 int i; 2063 2064 for (i = 0; i < priv->num_channels; i++) { 2065 ch = priv->channel[i]; 2066 napi_disable(&ch->napi); 2067 } 2068 } 2069 2070 void dpaa2_eth_set_rx_taildrop(struct dpaa2_eth_priv *priv, 2071 bool tx_pause, bool pfc) 2072 { 2073 struct dpni_taildrop td = {0}; 2074 struct dpaa2_eth_fq *fq; 2075 int i, err; 2076 2077 /* FQ taildrop: threshold is in bytes, per frame queue. Enabled if 2078 * flow control is disabled (as it might interfere with either the 2079 * buffer pool depletion trigger for pause frames or with the group 2080 * congestion trigger for PFC frames) 2081 */ 2082 td.enable = !tx_pause; 2083 if (priv->rx_fqtd_enabled == td.enable) 2084 goto set_cgtd; 2085 2086 td.threshold = DPAA2_ETH_FQ_TAILDROP_THRESH; 2087 td.units = DPNI_CONGESTION_UNIT_BYTES; 2088 2089 for (i = 0; i < priv->num_fqs; i++) { 2090 fq = &priv->fq[i]; 2091 if (fq->type != DPAA2_RX_FQ) 2092 continue; 2093 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, 2094 DPNI_CP_QUEUE, DPNI_QUEUE_RX, 2095 fq->tc, fq->flowid, &td); 2096 if (err) { 2097 netdev_err(priv->net_dev, 2098 "dpni_set_taildrop(FQ) failed\n"); 2099 return; 2100 } 2101 } 2102 2103 priv->rx_fqtd_enabled = td.enable; 2104 2105 set_cgtd: 2106 /* Congestion group taildrop: threshold is in frames, per group 2107 * of FQs belonging to the same traffic class 2108 * Enabled if general Tx pause disabled or if PFCs are enabled 2109 * (congestion group threhsold for PFC generation is lower than the 2110 * CG taildrop threshold, so it won't interfere with it; we also 2111 * want frames in non-PFC enabled traffic classes to be kept in check) 2112 */ 2113 td.enable = !tx_pause || pfc; 2114 if (priv->rx_cgtd_enabled == td.enable) 2115 return; 2116 2117 td.threshold = DPAA2_ETH_CG_TAILDROP_THRESH(priv); 2118 td.units = DPNI_CONGESTION_UNIT_FRAMES; 2119 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 2120 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, 2121 DPNI_CP_GROUP, DPNI_QUEUE_RX, 2122 i, 0, &td); 2123 if (err) { 2124 netdev_err(priv->net_dev, 2125 "dpni_set_taildrop(CG) failed\n"); 2126 return; 2127 } 2128 } 2129 2130 priv->rx_cgtd_enabled = td.enable; 2131 } 2132 2133 static int dpaa2_eth_link_state_update(struct dpaa2_eth_priv *priv) 2134 { 2135 struct dpni_link_state state = {0}; 2136 bool tx_pause; 2137 int err; 2138 2139 err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state); 2140 if (unlikely(err)) { 2141 netdev_err(priv->net_dev, 2142 "dpni_get_link_state() failed\n"); 2143 return err; 2144 } 2145 2146 /* If Tx pause frame settings have changed, we need to update 2147 * Rx FQ taildrop configuration as well. We configure taildrop 2148 * only when pause frame generation is disabled. 2149 */ 2150 tx_pause = dpaa2_eth_tx_pause_enabled(state.options); 2151 dpaa2_eth_set_rx_taildrop(priv, tx_pause, priv->pfc_enabled); 2152 2153 /* When we manage the MAC/PHY using phylink there is no need 2154 * to manually update the netif_carrier. 2155 * We can avoid locking because we are called from the "link changed" 2156 * IRQ handler, which is the same as the "endpoint changed" IRQ handler 2157 * (the writer to priv->mac), so we cannot race with it. 2158 */ 2159 if (dpaa2_mac_is_type_phy(priv->mac)) 2160 goto out; 2161 2162 /* Chech link state; speed / duplex changes are not treated yet */ 2163 if (priv->link_state.up == state.up) 2164 goto out; 2165 2166 if (state.up) { 2167 netif_carrier_on(priv->net_dev); 2168 netif_tx_start_all_queues(priv->net_dev); 2169 } else { 2170 netif_tx_stop_all_queues(priv->net_dev); 2171 netif_carrier_off(priv->net_dev); 2172 } 2173 2174 netdev_info(priv->net_dev, "Link Event: state %s\n", 2175 state.up ? "up" : "down"); 2176 2177 out: 2178 priv->link_state = state; 2179 2180 return 0; 2181 } 2182 2183 static int dpaa2_eth_open(struct net_device *net_dev) 2184 { 2185 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2186 int err; 2187 2188 dpaa2_eth_seed_pools(priv); 2189 2190 mutex_lock(&priv->mac_lock); 2191 2192 if (!dpaa2_eth_is_type_phy(priv)) { 2193 /* We'll only start the txqs when the link is actually ready; 2194 * make sure we don't race against the link up notification, 2195 * which may come immediately after dpni_enable(); 2196 */ 2197 netif_tx_stop_all_queues(net_dev); 2198 2199 /* Also, explicitly set carrier off, otherwise 2200 * netif_carrier_ok() will return true and cause 'ip link show' 2201 * to report the LOWER_UP flag, even though the link 2202 * notification wasn't even received. 2203 */ 2204 netif_carrier_off(net_dev); 2205 } 2206 dpaa2_eth_enable_ch_napi(priv); 2207 2208 err = dpni_enable(priv->mc_io, 0, priv->mc_token); 2209 if (err < 0) { 2210 mutex_unlock(&priv->mac_lock); 2211 netdev_err(net_dev, "dpni_enable() failed\n"); 2212 goto enable_err; 2213 } 2214 2215 if (dpaa2_eth_is_type_phy(priv)) 2216 dpaa2_mac_start(priv->mac); 2217 2218 mutex_unlock(&priv->mac_lock); 2219 2220 return 0; 2221 2222 enable_err: 2223 dpaa2_eth_disable_ch_napi(priv); 2224 dpaa2_eth_drain_pools(priv); 2225 return err; 2226 } 2227 2228 /* Total number of in-flight frames on ingress queues */ 2229 static u32 dpaa2_eth_ingress_fq_count(struct dpaa2_eth_priv *priv) 2230 { 2231 struct dpaa2_eth_fq *fq; 2232 u32 fcnt = 0, bcnt = 0, total = 0; 2233 int i, err; 2234 2235 for (i = 0; i < priv->num_fqs; i++) { 2236 fq = &priv->fq[i]; 2237 err = dpaa2_io_query_fq_count(NULL, fq->fqid, &fcnt, &bcnt); 2238 if (err) { 2239 netdev_warn(priv->net_dev, "query_fq_count failed"); 2240 break; 2241 } 2242 total += fcnt; 2243 } 2244 2245 return total; 2246 } 2247 2248 static void dpaa2_eth_wait_for_ingress_fq_empty(struct dpaa2_eth_priv *priv) 2249 { 2250 int retries = 10; 2251 u32 pending; 2252 2253 do { 2254 pending = dpaa2_eth_ingress_fq_count(priv); 2255 if (pending) 2256 msleep(100); 2257 } while (pending && --retries); 2258 } 2259 2260 #define DPNI_TX_PENDING_VER_MAJOR 7 2261 #define DPNI_TX_PENDING_VER_MINOR 13 2262 static void dpaa2_eth_wait_for_egress_fq_empty(struct dpaa2_eth_priv *priv) 2263 { 2264 union dpni_statistics stats; 2265 int retries = 10; 2266 int err; 2267 2268 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_TX_PENDING_VER_MAJOR, 2269 DPNI_TX_PENDING_VER_MINOR) < 0) 2270 goto out; 2271 2272 do { 2273 err = dpni_get_statistics(priv->mc_io, 0, priv->mc_token, 6, 2274 &stats); 2275 if (err) 2276 goto out; 2277 if (stats.page_6.tx_pending_frames == 0) 2278 return; 2279 } while (--retries); 2280 2281 out: 2282 msleep(500); 2283 } 2284 2285 static int dpaa2_eth_stop(struct net_device *net_dev) 2286 { 2287 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2288 int dpni_enabled = 0; 2289 int retries = 10; 2290 2291 mutex_lock(&priv->mac_lock); 2292 2293 if (dpaa2_eth_is_type_phy(priv)) { 2294 dpaa2_mac_stop(priv->mac); 2295 } else { 2296 netif_tx_stop_all_queues(net_dev); 2297 netif_carrier_off(net_dev); 2298 } 2299 2300 mutex_unlock(&priv->mac_lock); 2301 2302 /* On dpni_disable(), the MC firmware will: 2303 * - stop MAC Rx and wait for all Rx frames to be enqueued to software 2304 * - cut off WRIOP dequeues from egress FQs and wait until transmission 2305 * of all in flight Tx frames is finished (and corresponding Tx conf 2306 * frames are enqueued back to software) 2307 * 2308 * Before calling dpni_disable(), we wait for all Tx frames to arrive 2309 * on WRIOP. After it finishes, wait until all remaining frames on Rx 2310 * and Tx conf queues are consumed on NAPI poll. 2311 */ 2312 dpaa2_eth_wait_for_egress_fq_empty(priv); 2313 2314 do { 2315 dpni_disable(priv->mc_io, 0, priv->mc_token); 2316 dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled); 2317 if (dpni_enabled) 2318 /* Allow the hardware some slack */ 2319 msleep(100); 2320 } while (dpni_enabled && --retries); 2321 if (!retries) { 2322 netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n"); 2323 /* Must go on and disable NAPI nonetheless, so we don't crash at 2324 * the next "ifconfig up" 2325 */ 2326 } 2327 2328 dpaa2_eth_wait_for_ingress_fq_empty(priv); 2329 dpaa2_eth_disable_ch_napi(priv); 2330 2331 /* Empty the buffer pool */ 2332 dpaa2_eth_drain_pools(priv); 2333 2334 /* Empty the Scatter-Gather Buffer cache */ 2335 dpaa2_eth_sgt_cache_drain(priv); 2336 2337 return 0; 2338 } 2339 2340 static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr) 2341 { 2342 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2343 struct device *dev = net_dev->dev.parent; 2344 int err; 2345 2346 err = eth_mac_addr(net_dev, addr); 2347 if (err < 0) { 2348 dev_err(dev, "eth_mac_addr() failed (%d)\n", err); 2349 return err; 2350 } 2351 2352 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 2353 net_dev->dev_addr); 2354 if (err) { 2355 dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err); 2356 return err; 2357 } 2358 2359 return 0; 2360 } 2361 2362 /** Fill in counters maintained by the GPP driver. These may be different from 2363 * the hardware counters obtained by ethtool. 2364 */ 2365 static void dpaa2_eth_get_stats(struct net_device *net_dev, 2366 struct rtnl_link_stats64 *stats) 2367 { 2368 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2369 struct rtnl_link_stats64 *percpu_stats; 2370 u64 *cpustats; 2371 u64 *netstats = (u64 *)stats; 2372 int i, j; 2373 int num = sizeof(struct rtnl_link_stats64) / sizeof(u64); 2374 2375 for_each_possible_cpu(i) { 2376 percpu_stats = per_cpu_ptr(priv->percpu_stats, i); 2377 cpustats = (u64 *)percpu_stats; 2378 for (j = 0; j < num; j++) 2379 netstats[j] += cpustats[j]; 2380 } 2381 } 2382 2383 /* Copy mac unicast addresses from @net_dev to @priv. 2384 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 2385 */ 2386 static void dpaa2_eth_add_uc_hw_addr(const struct net_device *net_dev, 2387 struct dpaa2_eth_priv *priv) 2388 { 2389 struct netdev_hw_addr *ha; 2390 int err; 2391 2392 netdev_for_each_uc_addr(ha, net_dev) { 2393 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 2394 ha->addr); 2395 if (err) 2396 netdev_warn(priv->net_dev, 2397 "Could not add ucast MAC %pM to the filtering table (err %d)\n", 2398 ha->addr, err); 2399 } 2400 } 2401 2402 /* Copy mac multicast addresses from @net_dev to @priv 2403 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 2404 */ 2405 static void dpaa2_eth_add_mc_hw_addr(const struct net_device *net_dev, 2406 struct dpaa2_eth_priv *priv) 2407 { 2408 struct netdev_hw_addr *ha; 2409 int err; 2410 2411 netdev_for_each_mc_addr(ha, net_dev) { 2412 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 2413 ha->addr); 2414 if (err) 2415 netdev_warn(priv->net_dev, 2416 "Could not add mcast MAC %pM to the filtering table (err %d)\n", 2417 ha->addr, err); 2418 } 2419 } 2420 2421 static int dpaa2_eth_rx_add_vid(struct net_device *net_dev, 2422 __be16 vlan_proto, u16 vid) 2423 { 2424 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2425 int err; 2426 2427 err = dpni_add_vlan_id(priv->mc_io, 0, priv->mc_token, 2428 vid, 0, 0, 0); 2429 2430 if (err) { 2431 netdev_warn(priv->net_dev, 2432 "Could not add the vlan id %u\n", 2433 vid); 2434 return err; 2435 } 2436 2437 return 0; 2438 } 2439 2440 static int dpaa2_eth_rx_kill_vid(struct net_device *net_dev, 2441 __be16 vlan_proto, u16 vid) 2442 { 2443 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2444 int err; 2445 2446 err = dpni_remove_vlan_id(priv->mc_io, 0, priv->mc_token, vid); 2447 2448 if (err) { 2449 netdev_warn(priv->net_dev, 2450 "Could not remove the vlan id %u\n", 2451 vid); 2452 return err; 2453 } 2454 2455 return 0; 2456 } 2457 2458 static void dpaa2_eth_set_rx_mode(struct net_device *net_dev) 2459 { 2460 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2461 int uc_count = netdev_uc_count(net_dev); 2462 int mc_count = netdev_mc_count(net_dev); 2463 u8 max_mac = priv->dpni_attrs.mac_filter_entries; 2464 u32 options = priv->dpni_attrs.options; 2465 u16 mc_token = priv->mc_token; 2466 struct fsl_mc_io *mc_io = priv->mc_io; 2467 int err; 2468 2469 /* Basic sanity checks; these probably indicate a misconfiguration */ 2470 if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0) 2471 netdev_info(net_dev, 2472 "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n", 2473 max_mac); 2474 2475 /* Force promiscuous if the uc or mc counts exceed our capabilities. */ 2476 if (uc_count > max_mac) { 2477 netdev_info(net_dev, 2478 "Unicast addr count reached %d, max allowed is %d; forcing promisc\n", 2479 uc_count, max_mac); 2480 goto force_promisc; 2481 } 2482 if (mc_count + uc_count > max_mac) { 2483 netdev_info(net_dev, 2484 "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n", 2485 uc_count + mc_count, max_mac); 2486 goto force_mc_promisc; 2487 } 2488 2489 /* Adjust promisc settings due to flag combinations */ 2490 if (net_dev->flags & IFF_PROMISC) 2491 goto force_promisc; 2492 if (net_dev->flags & IFF_ALLMULTI) { 2493 /* First, rebuild unicast filtering table. This should be done 2494 * in promisc mode, in order to avoid frame loss while we 2495 * progressively add entries to the table. 2496 * We don't know whether we had been in promisc already, and 2497 * making an MC call to find out is expensive; so set uc promisc 2498 * nonetheless. 2499 */ 2500 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 2501 if (err) 2502 netdev_warn(net_dev, "Can't set uc promisc\n"); 2503 2504 /* Actual uc table reconstruction. */ 2505 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0); 2506 if (err) 2507 netdev_warn(net_dev, "Can't clear uc filters\n"); 2508 dpaa2_eth_add_uc_hw_addr(net_dev, priv); 2509 2510 /* Finally, clear uc promisc and set mc promisc as requested. */ 2511 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 2512 if (err) 2513 netdev_warn(net_dev, "Can't clear uc promisc\n"); 2514 goto force_mc_promisc; 2515 } 2516 2517 /* Neither unicast, nor multicast promisc will be on... eventually. 2518 * For now, rebuild mac filtering tables while forcing both of them on. 2519 */ 2520 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 2521 if (err) 2522 netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err); 2523 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 2524 if (err) 2525 netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err); 2526 2527 /* Actual mac filtering tables reconstruction */ 2528 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1); 2529 if (err) 2530 netdev_warn(net_dev, "Can't clear mac filters\n"); 2531 dpaa2_eth_add_mc_hw_addr(net_dev, priv); 2532 dpaa2_eth_add_uc_hw_addr(net_dev, priv); 2533 2534 /* Now we can clear both ucast and mcast promisc, without risking 2535 * to drop legitimate frames anymore. 2536 */ 2537 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 2538 if (err) 2539 netdev_warn(net_dev, "Can't clear ucast promisc\n"); 2540 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0); 2541 if (err) 2542 netdev_warn(net_dev, "Can't clear mcast promisc\n"); 2543 2544 return; 2545 2546 force_promisc: 2547 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 2548 if (err) 2549 netdev_warn(net_dev, "Can't set ucast promisc\n"); 2550 force_mc_promisc: 2551 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 2552 if (err) 2553 netdev_warn(net_dev, "Can't set mcast promisc\n"); 2554 } 2555 2556 static int dpaa2_eth_set_features(struct net_device *net_dev, 2557 netdev_features_t features) 2558 { 2559 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2560 netdev_features_t changed = features ^ net_dev->features; 2561 bool enable; 2562 int err; 2563 2564 if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { 2565 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER); 2566 err = dpaa2_eth_set_rx_vlan_filtering(priv, enable); 2567 if (err) 2568 return err; 2569 } 2570 2571 if (changed & NETIF_F_RXCSUM) { 2572 enable = !!(features & NETIF_F_RXCSUM); 2573 err = dpaa2_eth_set_rx_csum(priv, enable); 2574 if (err) 2575 return err; 2576 } 2577 2578 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 2579 enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 2580 err = dpaa2_eth_set_tx_csum(priv, enable); 2581 if (err) 2582 return err; 2583 } 2584 2585 return 0; 2586 } 2587 2588 static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2589 { 2590 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2591 struct hwtstamp_config config; 2592 2593 if (!dpaa2_ptp) 2594 return -EINVAL; 2595 2596 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 2597 return -EFAULT; 2598 2599 switch (config.tx_type) { 2600 case HWTSTAMP_TX_OFF: 2601 case HWTSTAMP_TX_ON: 2602 case HWTSTAMP_TX_ONESTEP_SYNC: 2603 priv->tx_tstamp_type = config.tx_type; 2604 break; 2605 default: 2606 return -ERANGE; 2607 } 2608 2609 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 2610 priv->rx_tstamp = false; 2611 } else { 2612 priv->rx_tstamp = true; 2613 /* TS is set for all frame types, not only those requested */ 2614 config.rx_filter = HWTSTAMP_FILTER_ALL; 2615 } 2616 2617 if (priv->tx_tstamp_type == HWTSTAMP_TX_ONESTEP_SYNC) 2618 dpaa2_ptp_onestep_reg_update_method(priv); 2619 2620 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 2621 -EFAULT : 0; 2622 } 2623 2624 static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2625 { 2626 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2627 int err; 2628 2629 if (cmd == SIOCSHWTSTAMP) 2630 return dpaa2_eth_ts_ioctl(dev, rq, cmd); 2631 2632 mutex_lock(&priv->mac_lock); 2633 2634 if (dpaa2_eth_is_type_phy(priv)) { 2635 err = phylink_mii_ioctl(priv->mac->phylink, rq, cmd); 2636 mutex_unlock(&priv->mac_lock); 2637 return err; 2638 } 2639 2640 mutex_unlock(&priv->mac_lock); 2641 2642 return -EOPNOTSUPP; 2643 } 2644 2645 static bool xdp_mtu_valid(struct dpaa2_eth_priv *priv, int mtu) 2646 { 2647 int mfl, linear_mfl; 2648 2649 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 2650 linear_mfl = priv->rx_buf_size - DPAA2_ETH_RX_HWA_SIZE - 2651 dpaa2_eth_rx_head_room(priv) - XDP_PACKET_HEADROOM; 2652 2653 if (mfl > linear_mfl) { 2654 netdev_warn(priv->net_dev, "Maximum MTU for XDP is %d\n", 2655 linear_mfl - VLAN_ETH_HLEN); 2656 return false; 2657 } 2658 2659 return true; 2660 } 2661 2662 static int dpaa2_eth_set_rx_mfl(struct dpaa2_eth_priv *priv, int mtu, bool has_xdp) 2663 { 2664 int mfl, err; 2665 2666 /* We enforce a maximum Rx frame length based on MTU only if we have 2667 * an XDP program attached (in order to avoid Rx S/G frames). 2668 * Otherwise, we accept all incoming frames as long as they are not 2669 * larger than maximum size supported in hardware 2670 */ 2671 if (has_xdp) 2672 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 2673 else 2674 mfl = DPAA2_ETH_MFL; 2675 2676 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, mfl); 2677 if (err) { 2678 netdev_err(priv->net_dev, "dpni_set_max_frame_length failed\n"); 2679 return err; 2680 } 2681 2682 return 0; 2683 } 2684 2685 static int dpaa2_eth_change_mtu(struct net_device *dev, int new_mtu) 2686 { 2687 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2688 int err; 2689 2690 if (!priv->xdp_prog) 2691 goto out; 2692 2693 if (!xdp_mtu_valid(priv, new_mtu)) 2694 return -EINVAL; 2695 2696 err = dpaa2_eth_set_rx_mfl(priv, new_mtu, true); 2697 if (err) 2698 return err; 2699 2700 out: 2701 dev->mtu = new_mtu; 2702 return 0; 2703 } 2704 2705 static int dpaa2_eth_update_rx_buffer_headroom(struct dpaa2_eth_priv *priv, bool has_xdp) 2706 { 2707 struct dpni_buffer_layout buf_layout = {0}; 2708 int err; 2709 2710 err = dpni_get_buffer_layout(priv->mc_io, 0, priv->mc_token, 2711 DPNI_QUEUE_RX, &buf_layout); 2712 if (err) { 2713 netdev_err(priv->net_dev, "dpni_get_buffer_layout failed\n"); 2714 return err; 2715 } 2716 2717 /* Reserve extra headroom for XDP header size changes */ 2718 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv) + 2719 (has_xdp ? XDP_PACKET_HEADROOM : 0); 2720 buf_layout.options = DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM; 2721 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2722 DPNI_QUEUE_RX, &buf_layout); 2723 if (err) { 2724 netdev_err(priv->net_dev, "dpni_set_buffer_layout failed\n"); 2725 return err; 2726 } 2727 2728 return 0; 2729 } 2730 2731 static int dpaa2_eth_setup_xdp(struct net_device *dev, struct bpf_prog *prog) 2732 { 2733 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2734 struct dpaa2_eth_channel *ch; 2735 struct bpf_prog *old; 2736 bool up, need_update; 2737 int i, err; 2738 2739 if (prog && !xdp_mtu_valid(priv, dev->mtu)) 2740 return -EINVAL; 2741 2742 if (prog) 2743 bpf_prog_add(prog, priv->num_channels); 2744 2745 up = netif_running(dev); 2746 need_update = (!!priv->xdp_prog != !!prog); 2747 2748 if (up) 2749 dev_close(dev); 2750 2751 /* While in xdp mode, enforce a maximum Rx frame size based on MTU. 2752 * Also, when switching between xdp/non-xdp modes we need to reconfigure 2753 * our Rx buffer layout. Buffer pool was drained on dpaa2_eth_stop, 2754 * so we are sure no old format buffers will be used from now on. 2755 */ 2756 if (need_update) { 2757 err = dpaa2_eth_set_rx_mfl(priv, dev->mtu, !!prog); 2758 if (err) 2759 goto out_err; 2760 err = dpaa2_eth_update_rx_buffer_headroom(priv, !!prog); 2761 if (err) 2762 goto out_err; 2763 } 2764 2765 old = xchg(&priv->xdp_prog, prog); 2766 if (old) 2767 bpf_prog_put(old); 2768 2769 for (i = 0; i < priv->num_channels; i++) { 2770 ch = priv->channel[i]; 2771 old = xchg(&ch->xdp.prog, prog); 2772 if (old) 2773 bpf_prog_put(old); 2774 } 2775 2776 if (up) { 2777 err = dev_open(dev, NULL); 2778 if (err) 2779 return err; 2780 } 2781 2782 return 0; 2783 2784 out_err: 2785 if (prog) 2786 bpf_prog_sub(prog, priv->num_channels); 2787 if (up) 2788 dev_open(dev, NULL); 2789 2790 return err; 2791 } 2792 2793 static int dpaa2_eth_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2794 { 2795 switch (xdp->command) { 2796 case XDP_SETUP_PROG: 2797 return dpaa2_eth_setup_xdp(dev, xdp->prog); 2798 case XDP_SETUP_XSK_POOL: 2799 return dpaa2_xsk_setup_pool(dev, xdp->xsk.pool, xdp->xsk.queue_id); 2800 default: 2801 return -EINVAL; 2802 } 2803 2804 return 0; 2805 } 2806 2807 static int dpaa2_eth_xdp_create_fd(struct net_device *net_dev, 2808 struct xdp_frame *xdpf, 2809 struct dpaa2_fd *fd) 2810 { 2811 struct device *dev = net_dev->dev.parent; 2812 unsigned int needed_headroom; 2813 struct dpaa2_eth_swa *swa; 2814 void *buffer_start, *aligned_start; 2815 dma_addr_t addr; 2816 2817 /* We require a minimum headroom to be able to transmit the frame. 2818 * Otherwise return an error and let the original net_device handle it 2819 */ 2820 needed_headroom = dpaa2_eth_needed_headroom(NULL); 2821 if (xdpf->headroom < needed_headroom) 2822 return -EINVAL; 2823 2824 /* Setup the FD fields */ 2825 memset(fd, 0, sizeof(*fd)); 2826 2827 /* Align FD address, if possible */ 2828 buffer_start = xdpf->data - needed_headroom; 2829 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 2830 DPAA2_ETH_TX_BUF_ALIGN); 2831 if (aligned_start >= xdpf->data - xdpf->headroom) 2832 buffer_start = aligned_start; 2833 2834 swa = (struct dpaa2_eth_swa *)buffer_start; 2835 /* fill in necessary fields here */ 2836 swa->type = DPAA2_ETH_SWA_XDP; 2837 swa->xdp.dma_size = xdpf->data + xdpf->len - buffer_start; 2838 swa->xdp.xdpf = xdpf; 2839 2840 addr = dma_map_single(dev, buffer_start, 2841 swa->xdp.dma_size, 2842 DMA_BIDIRECTIONAL); 2843 if (unlikely(dma_mapping_error(dev, addr))) 2844 return -ENOMEM; 2845 2846 dpaa2_fd_set_addr(fd, addr); 2847 dpaa2_fd_set_offset(fd, xdpf->data - buffer_start); 2848 dpaa2_fd_set_len(fd, xdpf->len); 2849 dpaa2_fd_set_format(fd, dpaa2_fd_single); 2850 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 2851 2852 return 0; 2853 } 2854 2855 static int dpaa2_eth_xdp_xmit(struct net_device *net_dev, int n, 2856 struct xdp_frame **frames, u32 flags) 2857 { 2858 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2859 struct dpaa2_eth_xdp_fds *xdp_redirect_fds; 2860 struct rtnl_link_stats64 *percpu_stats; 2861 struct dpaa2_eth_fq *fq; 2862 struct dpaa2_fd *fds; 2863 int enqueued, i, err; 2864 2865 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2866 return -EINVAL; 2867 2868 if (!netif_running(net_dev)) 2869 return -ENETDOWN; 2870 2871 fq = &priv->fq[smp_processor_id()]; 2872 xdp_redirect_fds = &fq->xdp_redirect_fds; 2873 fds = xdp_redirect_fds->fds; 2874 2875 percpu_stats = this_cpu_ptr(priv->percpu_stats); 2876 2877 /* create a FD for each xdp_frame in the list received */ 2878 for (i = 0; i < n; i++) { 2879 err = dpaa2_eth_xdp_create_fd(net_dev, frames[i], &fds[i]); 2880 if (err) 2881 break; 2882 } 2883 xdp_redirect_fds->num = i; 2884 2885 /* enqueue all the frame descriptors */ 2886 enqueued = dpaa2_eth_xdp_flush(priv, fq, xdp_redirect_fds); 2887 2888 /* update statistics */ 2889 percpu_stats->tx_packets += enqueued; 2890 for (i = 0; i < enqueued; i++) 2891 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fds[i]); 2892 2893 return enqueued; 2894 } 2895 2896 static int update_xps(struct dpaa2_eth_priv *priv) 2897 { 2898 struct net_device *net_dev = priv->net_dev; 2899 struct cpumask xps_mask; 2900 struct dpaa2_eth_fq *fq; 2901 int i, num_queues, netdev_queues; 2902 int err = 0; 2903 2904 num_queues = dpaa2_eth_queue_count(priv); 2905 netdev_queues = (net_dev->num_tc ? : 1) * num_queues; 2906 2907 /* The first <num_queues> entries in priv->fq array are Tx/Tx conf 2908 * queues, so only process those 2909 */ 2910 for (i = 0; i < netdev_queues; i++) { 2911 fq = &priv->fq[i % num_queues]; 2912 2913 cpumask_clear(&xps_mask); 2914 cpumask_set_cpu(fq->target_cpu, &xps_mask); 2915 2916 err = netif_set_xps_queue(net_dev, &xps_mask, i); 2917 if (err) { 2918 netdev_warn_once(net_dev, "Error setting XPS queue\n"); 2919 break; 2920 } 2921 } 2922 2923 return err; 2924 } 2925 2926 static int dpaa2_eth_setup_mqprio(struct net_device *net_dev, 2927 struct tc_mqprio_qopt *mqprio) 2928 { 2929 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2930 u8 num_tc, num_queues; 2931 int i; 2932 2933 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 2934 num_queues = dpaa2_eth_queue_count(priv); 2935 num_tc = mqprio->num_tc; 2936 2937 if (num_tc == net_dev->num_tc) 2938 return 0; 2939 2940 if (num_tc > dpaa2_eth_tc_count(priv)) { 2941 netdev_err(net_dev, "Max %d traffic classes supported\n", 2942 dpaa2_eth_tc_count(priv)); 2943 return -EOPNOTSUPP; 2944 } 2945 2946 if (!num_tc) { 2947 netdev_reset_tc(net_dev); 2948 netif_set_real_num_tx_queues(net_dev, num_queues); 2949 goto out; 2950 } 2951 2952 netdev_set_num_tc(net_dev, num_tc); 2953 netif_set_real_num_tx_queues(net_dev, num_tc * num_queues); 2954 2955 for (i = 0; i < num_tc; i++) 2956 netdev_set_tc_queue(net_dev, i, num_queues, i * num_queues); 2957 2958 out: 2959 update_xps(priv); 2960 2961 return 0; 2962 } 2963 2964 #define bps_to_mbits(rate) (div_u64((rate), 1000000) * 8) 2965 2966 static int dpaa2_eth_setup_tbf(struct net_device *net_dev, struct tc_tbf_qopt_offload *p) 2967 { 2968 struct tc_tbf_qopt_offload_replace_params *cfg = &p->replace_params; 2969 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2970 struct dpni_tx_shaping_cfg tx_cr_shaper = { 0 }; 2971 struct dpni_tx_shaping_cfg tx_er_shaper = { 0 }; 2972 int err; 2973 2974 if (p->command == TC_TBF_STATS) 2975 return -EOPNOTSUPP; 2976 2977 /* Only per port Tx shaping */ 2978 if (p->parent != TC_H_ROOT) 2979 return -EOPNOTSUPP; 2980 2981 if (p->command == TC_TBF_REPLACE) { 2982 if (cfg->max_size > DPAA2_ETH_MAX_BURST_SIZE) { 2983 netdev_err(net_dev, "burst size cannot be greater than %d\n", 2984 DPAA2_ETH_MAX_BURST_SIZE); 2985 return -EINVAL; 2986 } 2987 2988 tx_cr_shaper.max_burst_size = cfg->max_size; 2989 /* The TBF interface is in bytes/s, whereas DPAA2 expects the 2990 * rate in Mbits/s 2991 */ 2992 tx_cr_shaper.rate_limit = bps_to_mbits(cfg->rate.rate_bytes_ps); 2993 } 2994 2995 err = dpni_set_tx_shaping(priv->mc_io, 0, priv->mc_token, &tx_cr_shaper, 2996 &tx_er_shaper, 0); 2997 if (err) { 2998 netdev_err(net_dev, "dpni_set_tx_shaping() = %d\n", err); 2999 return err; 3000 } 3001 3002 return 0; 3003 } 3004 3005 static int dpaa2_eth_setup_tc(struct net_device *net_dev, 3006 enum tc_setup_type type, void *type_data) 3007 { 3008 switch (type) { 3009 case TC_SETUP_QDISC_MQPRIO: 3010 return dpaa2_eth_setup_mqprio(net_dev, type_data); 3011 case TC_SETUP_QDISC_TBF: 3012 return dpaa2_eth_setup_tbf(net_dev, type_data); 3013 default: 3014 return -EOPNOTSUPP; 3015 } 3016 } 3017 3018 static const struct net_device_ops dpaa2_eth_ops = { 3019 .ndo_open = dpaa2_eth_open, 3020 .ndo_start_xmit = dpaa2_eth_tx, 3021 .ndo_stop = dpaa2_eth_stop, 3022 .ndo_set_mac_address = dpaa2_eth_set_addr, 3023 .ndo_get_stats64 = dpaa2_eth_get_stats, 3024 .ndo_set_rx_mode = dpaa2_eth_set_rx_mode, 3025 .ndo_set_features = dpaa2_eth_set_features, 3026 .ndo_eth_ioctl = dpaa2_eth_ioctl, 3027 .ndo_change_mtu = dpaa2_eth_change_mtu, 3028 .ndo_bpf = dpaa2_eth_xdp, 3029 .ndo_xdp_xmit = dpaa2_eth_xdp_xmit, 3030 .ndo_xsk_wakeup = dpaa2_xsk_wakeup, 3031 .ndo_setup_tc = dpaa2_eth_setup_tc, 3032 .ndo_vlan_rx_add_vid = dpaa2_eth_rx_add_vid, 3033 .ndo_vlan_rx_kill_vid = dpaa2_eth_rx_kill_vid 3034 }; 3035 3036 static void dpaa2_eth_cdan_cb(struct dpaa2_io_notification_ctx *ctx) 3037 { 3038 struct dpaa2_eth_channel *ch; 3039 3040 ch = container_of(ctx, struct dpaa2_eth_channel, nctx); 3041 3042 /* Update NAPI statistics */ 3043 ch->stats.cdan++; 3044 3045 /* NAPI can also be scheduled from the AF_XDP Tx path. Mark a missed 3046 * so that it can be rescheduled again. 3047 */ 3048 if (!napi_if_scheduled_mark_missed(&ch->napi)) 3049 napi_schedule(&ch->napi); 3050 } 3051 3052 /* Allocate and configure a DPCON object */ 3053 static struct fsl_mc_device *dpaa2_eth_setup_dpcon(struct dpaa2_eth_priv *priv) 3054 { 3055 struct fsl_mc_device *dpcon; 3056 struct device *dev = priv->net_dev->dev.parent; 3057 int err; 3058 3059 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), 3060 FSL_MC_POOL_DPCON, &dpcon); 3061 if (err) { 3062 if (err == -ENXIO) { 3063 dev_dbg(dev, "Waiting for DPCON\n"); 3064 err = -EPROBE_DEFER; 3065 } else { 3066 dev_info(dev, "Not enough DPCONs, will go on as-is\n"); 3067 } 3068 return ERR_PTR(err); 3069 } 3070 3071 err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle); 3072 if (err) { 3073 dev_err(dev, "dpcon_open() failed\n"); 3074 goto free; 3075 } 3076 3077 err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle); 3078 if (err) { 3079 dev_err(dev, "dpcon_reset() failed\n"); 3080 goto close; 3081 } 3082 3083 err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle); 3084 if (err) { 3085 dev_err(dev, "dpcon_enable() failed\n"); 3086 goto close; 3087 } 3088 3089 return dpcon; 3090 3091 close: 3092 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 3093 free: 3094 fsl_mc_object_free(dpcon); 3095 3096 return ERR_PTR(err); 3097 } 3098 3099 static void dpaa2_eth_free_dpcon(struct dpaa2_eth_priv *priv, 3100 struct fsl_mc_device *dpcon) 3101 { 3102 dpcon_disable(priv->mc_io, 0, dpcon->mc_handle); 3103 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 3104 fsl_mc_object_free(dpcon); 3105 } 3106 3107 static struct dpaa2_eth_channel *dpaa2_eth_alloc_channel(struct dpaa2_eth_priv *priv) 3108 { 3109 struct dpaa2_eth_channel *channel; 3110 struct dpcon_attr attr; 3111 struct device *dev = priv->net_dev->dev.parent; 3112 int err; 3113 3114 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 3115 if (!channel) 3116 return NULL; 3117 3118 channel->dpcon = dpaa2_eth_setup_dpcon(priv); 3119 if (IS_ERR(channel->dpcon)) { 3120 err = PTR_ERR(channel->dpcon); 3121 goto err_setup; 3122 } 3123 3124 err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle, 3125 &attr); 3126 if (err) { 3127 dev_err(dev, "dpcon_get_attributes() failed\n"); 3128 goto err_get_attr; 3129 } 3130 3131 channel->dpcon_id = attr.id; 3132 channel->ch_id = attr.qbman_ch_id; 3133 channel->priv = priv; 3134 3135 return channel; 3136 3137 err_get_attr: 3138 dpaa2_eth_free_dpcon(priv, channel->dpcon); 3139 err_setup: 3140 kfree(channel); 3141 return ERR_PTR(err); 3142 } 3143 3144 static void dpaa2_eth_free_channel(struct dpaa2_eth_priv *priv, 3145 struct dpaa2_eth_channel *channel) 3146 { 3147 dpaa2_eth_free_dpcon(priv, channel->dpcon); 3148 kfree(channel); 3149 } 3150 3151 /* DPIO setup: allocate and configure QBMan channels, setup core affinity 3152 * and register data availability notifications 3153 */ 3154 static int dpaa2_eth_setup_dpio(struct dpaa2_eth_priv *priv) 3155 { 3156 struct dpaa2_io_notification_ctx *nctx; 3157 struct dpaa2_eth_channel *channel; 3158 struct dpcon_notification_cfg dpcon_notif_cfg; 3159 struct device *dev = priv->net_dev->dev.parent; 3160 int i, err; 3161 3162 /* We want the ability to spread ingress traffic (RX, TX conf) to as 3163 * many cores as possible, so we need one channel for each core 3164 * (unless there's fewer queues than cores, in which case the extra 3165 * channels would be wasted). 3166 * Allocate one channel per core and register it to the core's 3167 * affine DPIO. If not enough channels are available for all cores 3168 * or if some cores don't have an affine DPIO, there will be no 3169 * ingress frame processing on those cores. 3170 */ 3171 cpumask_clear(&priv->dpio_cpumask); 3172 for_each_online_cpu(i) { 3173 /* Try to allocate a channel */ 3174 channel = dpaa2_eth_alloc_channel(priv); 3175 if (IS_ERR_OR_NULL(channel)) { 3176 err = PTR_ERR_OR_ZERO(channel); 3177 if (err == -EPROBE_DEFER) 3178 dev_dbg(dev, "waiting for affine channel\n"); 3179 else 3180 dev_info(dev, 3181 "No affine channel for cpu %d and above\n", i); 3182 goto err_alloc_ch; 3183 } 3184 3185 priv->channel[priv->num_channels] = channel; 3186 3187 nctx = &channel->nctx; 3188 nctx->is_cdan = 1; 3189 nctx->cb = dpaa2_eth_cdan_cb; 3190 nctx->id = channel->ch_id; 3191 nctx->desired_cpu = i; 3192 3193 /* Register the new context */ 3194 channel->dpio = dpaa2_io_service_select(i); 3195 err = dpaa2_io_service_register(channel->dpio, nctx, dev); 3196 if (err) { 3197 dev_dbg(dev, "No affine DPIO for cpu %d\n", i); 3198 /* If no affine DPIO for this core, there's probably 3199 * none available for next cores either. Signal we want 3200 * to retry later, in case the DPIO devices weren't 3201 * probed yet. 3202 */ 3203 err = -EPROBE_DEFER; 3204 goto err_service_reg; 3205 } 3206 3207 /* Register DPCON notification with MC */ 3208 dpcon_notif_cfg.dpio_id = nctx->dpio_id; 3209 dpcon_notif_cfg.priority = 0; 3210 dpcon_notif_cfg.user_ctx = nctx->qman64; 3211 err = dpcon_set_notification(priv->mc_io, 0, 3212 channel->dpcon->mc_handle, 3213 &dpcon_notif_cfg); 3214 if (err) { 3215 dev_err(dev, "dpcon_set_notification failed()\n"); 3216 goto err_set_cdan; 3217 } 3218 3219 /* If we managed to allocate a channel and also found an affine 3220 * DPIO for this core, add it to the final mask 3221 */ 3222 cpumask_set_cpu(i, &priv->dpio_cpumask); 3223 priv->num_channels++; 3224 3225 /* Stop if we already have enough channels to accommodate all 3226 * RX and TX conf queues 3227 */ 3228 if (priv->num_channels == priv->dpni_attrs.num_queues) 3229 break; 3230 } 3231 3232 return 0; 3233 3234 err_set_cdan: 3235 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 3236 err_service_reg: 3237 dpaa2_eth_free_channel(priv, channel); 3238 err_alloc_ch: 3239 if (err == -EPROBE_DEFER) { 3240 for (i = 0; i < priv->num_channels; i++) { 3241 channel = priv->channel[i]; 3242 nctx = &channel->nctx; 3243 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 3244 dpaa2_eth_free_channel(priv, channel); 3245 } 3246 priv->num_channels = 0; 3247 return err; 3248 } 3249 3250 if (cpumask_empty(&priv->dpio_cpumask)) { 3251 dev_err(dev, "No cpu with an affine DPIO/DPCON\n"); 3252 return -ENODEV; 3253 } 3254 3255 dev_info(dev, "Cores %*pbl available for processing ingress traffic\n", 3256 cpumask_pr_args(&priv->dpio_cpumask)); 3257 3258 return 0; 3259 } 3260 3261 static void dpaa2_eth_free_dpio(struct dpaa2_eth_priv *priv) 3262 { 3263 struct device *dev = priv->net_dev->dev.parent; 3264 struct dpaa2_eth_channel *ch; 3265 int i; 3266 3267 /* deregister CDAN notifications and free channels */ 3268 for (i = 0; i < priv->num_channels; i++) { 3269 ch = priv->channel[i]; 3270 dpaa2_io_service_deregister(ch->dpio, &ch->nctx, dev); 3271 dpaa2_eth_free_channel(priv, ch); 3272 } 3273 } 3274 3275 static struct dpaa2_eth_channel *dpaa2_eth_get_affine_channel(struct dpaa2_eth_priv *priv, 3276 int cpu) 3277 { 3278 struct device *dev = priv->net_dev->dev.parent; 3279 int i; 3280 3281 for (i = 0; i < priv->num_channels; i++) 3282 if (priv->channel[i]->nctx.desired_cpu == cpu) 3283 return priv->channel[i]; 3284 3285 /* We should never get here. Issue a warning and return 3286 * the first channel, because it's still better than nothing 3287 */ 3288 dev_warn(dev, "No affine channel found for cpu %d\n", cpu); 3289 3290 return priv->channel[0]; 3291 } 3292 3293 static void dpaa2_eth_set_fq_affinity(struct dpaa2_eth_priv *priv) 3294 { 3295 struct device *dev = priv->net_dev->dev.parent; 3296 struct dpaa2_eth_fq *fq; 3297 int rx_cpu, txc_cpu; 3298 int i; 3299 3300 /* For each FQ, pick one channel/CPU to deliver frames to. 3301 * This may well change at runtime, either through irqbalance or 3302 * through direct user intervention. 3303 */ 3304 rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask); 3305 3306 for (i = 0; i < priv->num_fqs; i++) { 3307 fq = &priv->fq[i]; 3308 switch (fq->type) { 3309 case DPAA2_RX_FQ: 3310 case DPAA2_RX_ERR_FQ: 3311 fq->target_cpu = rx_cpu; 3312 rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask); 3313 if (rx_cpu >= nr_cpu_ids) 3314 rx_cpu = cpumask_first(&priv->dpio_cpumask); 3315 break; 3316 case DPAA2_TX_CONF_FQ: 3317 fq->target_cpu = txc_cpu; 3318 txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask); 3319 if (txc_cpu >= nr_cpu_ids) 3320 txc_cpu = cpumask_first(&priv->dpio_cpumask); 3321 break; 3322 default: 3323 dev_err(dev, "Unknown FQ type: %d\n", fq->type); 3324 } 3325 fq->channel = dpaa2_eth_get_affine_channel(priv, fq->target_cpu); 3326 } 3327 3328 update_xps(priv); 3329 } 3330 3331 static void dpaa2_eth_setup_fqs(struct dpaa2_eth_priv *priv) 3332 { 3333 int i, j; 3334 3335 /* We have one TxConf FQ per Tx flow. 3336 * The number of Tx and Rx queues is the same. 3337 * Tx queues come first in the fq array. 3338 */ 3339 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 3340 priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ; 3341 priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf; 3342 priv->fq[priv->num_fqs++].flowid = (u16)i; 3343 } 3344 3345 for (j = 0; j < dpaa2_eth_tc_count(priv); j++) { 3346 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 3347 priv->fq[priv->num_fqs].type = DPAA2_RX_FQ; 3348 priv->fq[priv->num_fqs].consume = dpaa2_eth_rx; 3349 priv->fq[priv->num_fqs].tc = (u8)j; 3350 priv->fq[priv->num_fqs++].flowid = (u16)i; 3351 } 3352 } 3353 3354 /* We have exactly one Rx error queue per DPNI */ 3355 priv->fq[priv->num_fqs].type = DPAA2_RX_ERR_FQ; 3356 priv->fq[priv->num_fqs++].consume = dpaa2_eth_rx_err; 3357 3358 /* For each FQ, decide on which core to process incoming frames */ 3359 dpaa2_eth_set_fq_affinity(priv); 3360 } 3361 3362 /* Allocate and configure a buffer pool */ 3363 struct dpaa2_eth_bp *dpaa2_eth_allocate_dpbp(struct dpaa2_eth_priv *priv) 3364 { 3365 struct device *dev = priv->net_dev->dev.parent; 3366 struct fsl_mc_device *dpbp_dev; 3367 struct dpbp_attr dpbp_attrs; 3368 struct dpaa2_eth_bp *bp; 3369 int err; 3370 3371 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, 3372 &dpbp_dev); 3373 if (err) { 3374 if (err == -ENXIO) 3375 err = -EPROBE_DEFER; 3376 else 3377 dev_err(dev, "DPBP device allocation failed\n"); 3378 return ERR_PTR(err); 3379 } 3380 3381 bp = kzalloc(sizeof(*bp), GFP_KERNEL); 3382 if (!bp) { 3383 err = -ENOMEM; 3384 goto err_alloc; 3385 } 3386 3387 err = dpbp_open(priv->mc_io, 0, dpbp_dev->obj_desc.id, 3388 &dpbp_dev->mc_handle); 3389 if (err) { 3390 dev_err(dev, "dpbp_open() failed\n"); 3391 goto err_open; 3392 } 3393 3394 err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle); 3395 if (err) { 3396 dev_err(dev, "dpbp_reset() failed\n"); 3397 goto err_reset; 3398 } 3399 3400 err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle); 3401 if (err) { 3402 dev_err(dev, "dpbp_enable() failed\n"); 3403 goto err_enable; 3404 } 3405 3406 err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle, 3407 &dpbp_attrs); 3408 if (err) { 3409 dev_err(dev, "dpbp_get_attributes() failed\n"); 3410 goto err_get_attr; 3411 } 3412 3413 bp->dev = dpbp_dev; 3414 bp->bpid = dpbp_attrs.bpid; 3415 3416 return bp; 3417 3418 err_get_attr: 3419 dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle); 3420 err_enable: 3421 err_reset: 3422 dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle); 3423 err_open: 3424 kfree(bp); 3425 err_alloc: 3426 fsl_mc_object_free(dpbp_dev); 3427 3428 return ERR_PTR(err); 3429 } 3430 3431 static int dpaa2_eth_setup_default_dpbp(struct dpaa2_eth_priv *priv) 3432 { 3433 struct dpaa2_eth_bp *bp; 3434 int i; 3435 3436 bp = dpaa2_eth_allocate_dpbp(priv); 3437 if (IS_ERR(bp)) 3438 return PTR_ERR(bp); 3439 3440 priv->bp[DPAA2_ETH_DEFAULT_BP_IDX] = bp; 3441 priv->num_bps++; 3442 3443 for (i = 0; i < priv->num_channels; i++) 3444 priv->channel[i]->bp = bp; 3445 3446 return 0; 3447 } 3448 3449 void dpaa2_eth_free_dpbp(struct dpaa2_eth_priv *priv, struct dpaa2_eth_bp *bp) 3450 { 3451 int idx_bp; 3452 3453 /* Find the index at which this BP is stored */ 3454 for (idx_bp = 0; idx_bp < priv->num_bps; idx_bp++) 3455 if (priv->bp[idx_bp] == bp) 3456 break; 3457 3458 /* Drain the pool and disable the associated MC object */ 3459 dpaa2_eth_drain_pool(priv, bp->bpid); 3460 dpbp_disable(priv->mc_io, 0, bp->dev->mc_handle); 3461 dpbp_close(priv->mc_io, 0, bp->dev->mc_handle); 3462 fsl_mc_object_free(bp->dev); 3463 kfree(bp); 3464 3465 /* Move the last in use DPBP over in this position */ 3466 priv->bp[idx_bp] = priv->bp[priv->num_bps - 1]; 3467 priv->num_bps--; 3468 } 3469 3470 static void dpaa2_eth_free_dpbps(struct dpaa2_eth_priv *priv) 3471 { 3472 int i; 3473 3474 for (i = 0; i < priv->num_bps; i++) 3475 dpaa2_eth_free_dpbp(priv, priv->bp[i]); 3476 } 3477 3478 static int dpaa2_eth_set_buffer_layout(struct dpaa2_eth_priv *priv) 3479 { 3480 struct device *dev = priv->net_dev->dev.parent; 3481 struct dpni_buffer_layout buf_layout = {0}; 3482 u16 rx_buf_align; 3483 int err; 3484 3485 /* We need to check for WRIOP version 1.0.0, but depending on the MC 3486 * version, this number is not always provided correctly on rev1. 3487 * We need to check for both alternatives in this situation. 3488 */ 3489 if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) || 3490 priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0)) 3491 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1; 3492 else 3493 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN; 3494 3495 /* We need to ensure that the buffer size seen by WRIOP is a multiple 3496 * of 64 or 256 bytes depending on the WRIOP version. 3497 */ 3498 priv->rx_buf_size = ALIGN_DOWN(DPAA2_ETH_RX_BUF_SIZE, rx_buf_align); 3499 3500 /* tx buffer */ 3501 buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE; 3502 buf_layout.pass_timestamp = true; 3503 buf_layout.pass_frame_status = true; 3504 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE | 3505 DPNI_BUF_LAYOUT_OPT_TIMESTAMP | 3506 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS; 3507 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 3508 DPNI_QUEUE_TX, &buf_layout); 3509 if (err) { 3510 dev_err(dev, "dpni_set_buffer_layout(TX) failed\n"); 3511 return err; 3512 } 3513 3514 /* tx-confirm buffer */ 3515 buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP | 3516 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS; 3517 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 3518 DPNI_QUEUE_TX_CONFIRM, &buf_layout); 3519 if (err) { 3520 dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n"); 3521 return err; 3522 } 3523 3524 /* Now that we've set our tx buffer layout, retrieve the minimum 3525 * required tx data offset. 3526 */ 3527 err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token, 3528 &priv->tx_data_offset); 3529 if (err) { 3530 dev_err(dev, "dpni_get_tx_data_offset() failed\n"); 3531 return err; 3532 } 3533 3534 if ((priv->tx_data_offset % 64) != 0) 3535 dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n", 3536 priv->tx_data_offset); 3537 3538 /* rx buffer */ 3539 buf_layout.pass_frame_status = true; 3540 buf_layout.pass_parser_result = true; 3541 buf_layout.data_align = rx_buf_align; 3542 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv); 3543 buf_layout.private_data_size = 0; 3544 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT | 3545 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | 3546 DPNI_BUF_LAYOUT_OPT_DATA_ALIGN | 3547 DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM | 3548 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 3549 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 3550 DPNI_QUEUE_RX, &buf_layout); 3551 if (err) { 3552 dev_err(dev, "dpni_set_buffer_layout(RX) failed\n"); 3553 return err; 3554 } 3555 3556 return 0; 3557 } 3558 3559 #define DPNI_ENQUEUE_FQID_VER_MAJOR 7 3560 #define DPNI_ENQUEUE_FQID_VER_MINOR 9 3561 3562 static inline int dpaa2_eth_enqueue_qd(struct dpaa2_eth_priv *priv, 3563 struct dpaa2_eth_fq *fq, 3564 struct dpaa2_fd *fd, u8 prio, 3565 u32 num_frames __always_unused, 3566 int *frames_enqueued) 3567 { 3568 int err; 3569 3570 err = dpaa2_io_service_enqueue_qd(fq->channel->dpio, 3571 priv->tx_qdid, prio, 3572 fq->tx_qdbin, fd); 3573 if (!err && frames_enqueued) 3574 *frames_enqueued = 1; 3575 return err; 3576 } 3577 3578 static inline int dpaa2_eth_enqueue_fq_multiple(struct dpaa2_eth_priv *priv, 3579 struct dpaa2_eth_fq *fq, 3580 struct dpaa2_fd *fd, 3581 u8 prio, u32 num_frames, 3582 int *frames_enqueued) 3583 { 3584 int err; 3585 3586 err = dpaa2_io_service_enqueue_multiple_fq(fq->channel->dpio, 3587 fq->tx_fqid[prio], 3588 fd, num_frames); 3589 3590 if (err == 0) 3591 return -EBUSY; 3592 3593 if (frames_enqueued) 3594 *frames_enqueued = err; 3595 return 0; 3596 } 3597 3598 static void dpaa2_eth_set_enqueue_mode(struct dpaa2_eth_priv *priv) 3599 { 3600 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 3601 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 3602 priv->enqueue = dpaa2_eth_enqueue_qd; 3603 else 3604 priv->enqueue = dpaa2_eth_enqueue_fq_multiple; 3605 } 3606 3607 static int dpaa2_eth_set_pause(struct dpaa2_eth_priv *priv) 3608 { 3609 struct device *dev = priv->net_dev->dev.parent; 3610 struct dpni_link_cfg link_cfg = {0}; 3611 int err; 3612 3613 /* Get the default link options so we don't override other flags */ 3614 err = dpni_get_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); 3615 if (err) { 3616 dev_err(dev, "dpni_get_link_cfg() failed\n"); 3617 return err; 3618 } 3619 3620 /* By default, enable both Rx and Tx pause frames */ 3621 link_cfg.options |= DPNI_LINK_OPT_PAUSE; 3622 link_cfg.options &= ~DPNI_LINK_OPT_ASYM_PAUSE; 3623 err = dpni_set_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); 3624 if (err) { 3625 dev_err(dev, "dpni_set_link_cfg() failed\n"); 3626 return err; 3627 } 3628 3629 priv->link_state.options = link_cfg.options; 3630 3631 return 0; 3632 } 3633 3634 static void dpaa2_eth_update_tx_fqids(struct dpaa2_eth_priv *priv) 3635 { 3636 struct dpni_queue_id qid = {0}; 3637 struct dpaa2_eth_fq *fq; 3638 struct dpni_queue queue; 3639 int i, j, err; 3640 3641 /* We only use Tx FQIDs for FQID-based enqueue, so check 3642 * if DPNI version supports it before updating FQIDs 3643 */ 3644 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 3645 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 3646 return; 3647 3648 for (i = 0; i < priv->num_fqs; i++) { 3649 fq = &priv->fq[i]; 3650 if (fq->type != DPAA2_TX_CONF_FQ) 3651 continue; 3652 for (j = 0; j < dpaa2_eth_tc_count(priv); j++) { 3653 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3654 DPNI_QUEUE_TX, j, fq->flowid, 3655 &queue, &qid); 3656 if (err) 3657 goto out_err; 3658 3659 fq->tx_fqid[j] = qid.fqid; 3660 if (fq->tx_fqid[j] == 0) 3661 goto out_err; 3662 } 3663 } 3664 3665 priv->enqueue = dpaa2_eth_enqueue_fq_multiple; 3666 3667 return; 3668 3669 out_err: 3670 netdev_info(priv->net_dev, 3671 "Error reading Tx FQID, fallback to QDID-based enqueue\n"); 3672 priv->enqueue = dpaa2_eth_enqueue_qd; 3673 } 3674 3675 /* Configure ingress classification based on VLAN PCP */ 3676 static int dpaa2_eth_set_vlan_qos(struct dpaa2_eth_priv *priv) 3677 { 3678 struct device *dev = priv->net_dev->dev.parent; 3679 struct dpkg_profile_cfg kg_cfg = {0}; 3680 struct dpni_qos_tbl_cfg qos_cfg = {0}; 3681 struct dpni_rule_cfg key_params; 3682 void *dma_mem, *key, *mask; 3683 u8 key_size = 2; /* VLAN TCI field */ 3684 int i, pcp, err; 3685 3686 /* VLAN-based classification only makes sense if we have multiple 3687 * traffic classes. 3688 * Also, we need to extract just the 3-bit PCP field from the VLAN 3689 * header and we can only do that by using a mask 3690 */ 3691 if (dpaa2_eth_tc_count(priv) == 1 || !dpaa2_eth_fs_mask_enabled(priv)) { 3692 dev_dbg(dev, "VLAN-based QoS classification not supported\n"); 3693 return -EOPNOTSUPP; 3694 } 3695 3696 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 3697 if (!dma_mem) 3698 return -ENOMEM; 3699 3700 kg_cfg.num_extracts = 1; 3701 kg_cfg.extracts[0].type = DPKG_EXTRACT_FROM_HDR; 3702 kg_cfg.extracts[0].extract.from_hdr.prot = NET_PROT_VLAN; 3703 kg_cfg.extracts[0].extract.from_hdr.type = DPKG_FULL_FIELD; 3704 kg_cfg.extracts[0].extract.from_hdr.field = NH_FLD_VLAN_TCI; 3705 3706 err = dpni_prepare_key_cfg(&kg_cfg, dma_mem); 3707 if (err) { 3708 dev_err(dev, "dpni_prepare_key_cfg failed\n"); 3709 goto out_free_tbl; 3710 } 3711 3712 /* set QoS table */ 3713 qos_cfg.default_tc = 0; 3714 qos_cfg.discard_on_miss = 0; 3715 qos_cfg.key_cfg_iova = dma_map_single(dev, dma_mem, 3716 DPAA2_CLASSIFIER_DMA_SIZE, 3717 DMA_TO_DEVICE); 3718 if (dma_mapping_error(dev, qos_cfg.key_cfg_iova)) { 3719 dev_err(dev, "QoS table DMA mapping failed\n"); 3720 err = -ENOMEM; 3721 goto out_free_tbl; 3722 } 3723 3724 err = dpni_set_qos_table(priv->mc_io, 0, priv->mc_token, &qos_cfg); 3725 if (err) { 3726 dev_err(dev, "dpni_set_qos_table failed\n"); 3727 goto out_unmap_tbl; 3728 } 3729 3730 /* Add QoS table entries */ 3731 key = kzalloc(key_size * 2, GFP_KERNEL); 3732 if (!key) { 3733 err = -ENOMEM; 3734 goto out_unmap_tbl; 3735 } 3736 mask = key + key_size; 3737 *(__be16 *)mask = cpu_to_be16(VLAN_PRIO_MASK); 3738 3739 key_params.key_iova = dma_map_single(dev, key, key_size * 2, 3740 DMA_TO_DEVICE); 3741 if (dma_mapping_error(dev, key_params.key_iova)) { 3742 dev_err(dev, "Qos table entry DMA mapping failed\n"); 3743 err = -ENOMEM; 3744 goto out_free_key; 3745 } 3746 3747 key_params.mask_iova = key_params.key_iova + key_size; 3748 key_params.key_size = key_size; 3749 3750 /* We add rules for PCP-based distribution starting with highest 3751 * priority (VLAN PCP = 7). If this DPNI doesn't have enough traffic 3752 * classes to accommodate all priority levels, the lowest ones end up 3753 * on TC 0 which was configured as default 3754 */ 3755 for (i = dpaa2_eth_tc_count(priv) - 1, pcp = 7; i >= 0; i--, pcp--) { 3756 *(__be16 *)key = cpu_to_be16(pcp << VLAN_PRIO_SHIFT); 3757 dma_sync_single_for_device(dev, key_params.key_iova, 3758 key_size * 2, DMA_TO_DEVICE); 3759 3760 err = dpni_add_qos_entry(priv->mc_io, 0, priv->mc_token, 3761 &key_params, i, i); 3762 if (err) { 3763 dev_err(dev, "dpni_add_qos_entry failed\n"); 3764 dpni_clear_qos_table(priv->mc_io, 0, priv->mc_token); 3765 goto out_unmap_key; 3766 } 3767 } 3768 3769 priv->vlan_cls_enabled = true; 3770 3771 /* Table and key memory is not persistent, clean everything up after 3772 * configuration is finished 3773 */ 3774 out_unmap_key: 3775 dma_unmap_single(dev, key_params.key_iova, key_size * 2, DMA_TO_DEVICE); 3776 out_free_key: 3777 kfree(key); 3778 out_unmap_tbl: 3779 dma_unmap_single(dev, qos_cfg.key_cfg_iova, DPAA2_CLASSIFIER_DMA_SIZE, 3780 DMA_TO_DEVICE); 3781 out_free_tbl: 3782 kfree(dma_mem); 3783 3784 return err; 3785 } 3786 3787 /* Configure the DPNI object this interface is associated with */ 3788 static int dpaa2_eth_setup_dpni(struct fsl_mc_device *ls_dev) 3789 { 3790 struct device *dev = &ls_dev->dev; 3791 struct dpaa2_eth_priv *priv; 3792 struct net_device *net_dev; 3793 int err; 3794 3795 net_dev = dev_get_drvdata(dev); 3796 priv = netdev_priv(net_dev); 3797 3798 /* get a handle for the DPNI object */ 3799 err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token); 3800 if (err) { 3801 dev_err(dev, "dpni_open() failed\n"); 3802 return err; 3803 } 3804 3805 /* Check if we can work with this DPNI object */ 3806 err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major, 3807 &priv->dpni_ver_minor); 3808 if (err) { 3809 dev_err(dev, "dpni_get_api_version() failed\n"); 3810 goto close; 3811 } 3812 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) { 3813 dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n", 3814 priv->dpni_ver_major, priv->dpni_ver_minor, 3815 DPNI_VER_MAJOR, DPNI_VER_MINOR); 3816 err = -EOPNOTSUPP; 3817 goto close; 3818 } 3819 3820 ls_dev->mc_io = priv->mc_io; 3821 ls_dev->mc_handle = priv->mc_token; 3822 3823 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 3824 if (err) { 3825 dev_err(dev, "dpni_reset() failed\n"); 3826 goto close; 3827 } 3828 3829 err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token, 3830 &priv->dpni_attrs); 3831 if (err) { 3832 dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err); 3833 goto close; 3834 } 3835 3836 err = dpaa2_eth_set_buffer_layout(priv); 3837 if (err) 3838 goto close; 3839 3840 dpaa2_eth_set_enqueue_mode(priv); 3841 3842 /* Enable pause frame support */ 3843 if (dpaa2_eth_has_pause_support(priv)) { 3844 err = dpaa2_eth_set_pause(priv); 3845 if (err) 3846 goto close; 3847 } 3848 3849 err = dpaa2_eth_set_vlan_qos(priv); 3850 if (err && err != -EOPNOTSUPP) 3851 goto close; 3852 3853 priv->cls_rules = devm_kcalloc(dev, dpaa2_eth_fs_count(priv), 3854 sizeof(struct dpaa2_eth_cls_rule), 3855 GFP_KERNEL); 3856 if (!priv->cls_rules) { 3857 err = -ENOMEM; 3858 goto close; 3859 } 3860 3861 return 0; 3862 3863 close: 3864 dpni_close(priv->mc_io, 0, priv->mc_token); 3865 3866 return err; 3867 } 3868 3869 static void dpaa2_eth_free_dpni(struct dpaa2_eth_priv *priv) 3870 { 3871 int err; 3872 3873 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 3874 if (err) 3875 netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n", 3876 err); 3877 3878 dpni_close(priv->mc_io, 0, priv->mc_token); 3879 } 3880 3881 static int dpaa2_eth_setup_rx_flow(struct dpaa2_eth_priv *priv, 3882 struct dpaa2_eth_fq *fq) 3883 { 3884 struct device *dev = priv->net_dev->dev.parent; 3885 struct dpni_queue queue; 3886 struct dpni_queue_id qid; 3887 int err; 3888 3889 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3890 DPNI_QUEUE_RX, fq->tc, fq->flowid, &queue, &qid); 3891 if (err) { 3892 dev_err(dev, "dpni_get_queue(RX) failed\n"); 3893 return err; 3894 } 3895 3896 fq->fqid = qid.fqid; 3897 3898 queue.destination.id = fq->channel->dpcon_id; 3899 queue.destination.type = DPNI_DEST_DPCON; 3900 queue.destination.priority = 1; 3901 queue.user_context = (u64)(uintptr_t)fq; 3902 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 3903 DPNI_QUEUE_RX, fq->tc, fq->flowid, 3904 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 3905 &queue); 3906 if (err) { 3907 dev_err(dev, "dpni_set_queue(RX) failed\n"); 3908 return err; 3909 } 3910 3911 /* xdp_rxq setup */ 3912 /* only once for each channel */ 3913 if (fq->tc > 0) 3914 return 0; 3915 3916 err = xdp_rxq_info_reg(&fq->channel->xdp_rxq, priv->net_dev, 3917 fq->flowid, 0); 3918 if (err) { 3919 dev_err(dev, "xdp_rxq_info_reg failed\n"); 3920 return err; 3921 } 3922 3923 err = xdp_rxq_info_reg_mem_model(&fq->channel->xdp_rxq, 3924 MEM_TYPE_PAGE_ORDER0, NULL); 3925 if (err) { 3926 dev_err(dev, "xdp_rxq_info_reg_mem_model failed\n"); 3927 return err; 3928 } 3929 3930 return 0; 3931 } 3932 3933 static int dpaa2_eth_setup_tx_flow(struct dpaa2_eth_priv *priv, 3934 struct dpaa2_eth_fq *fq) 3935 { 3936 struct device *dev = priv->net_dev->dev.parent; 3937 struct dpni_queue queue; 3938 struct dpni_queue_id qid; 3939 int i, err; 3940 3941 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 3942 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3943 DPNI_QUEUE_TX, i, fq->flowid, 3944 &queue, &qid); 3945 if (err) { 3946 dev_err(dev, "dpni_get_queue(TX) failed\n"); 3947 return err; 3948 } 3949 fq->tx_fqid[i] = qid.fqid; 3950 } 3951 3952 /* All Tx queues belonging to the same flowid have the same qdbin */ 3953 fq->tx_qdbin = qid.qdbin; 3954 3955 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3956 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 3957 &queue, &qid); 3958 if (err) { 3959 dev_err(dev, "dpni_get_queue(TX_CONF) failed\n"); 3960 return err; 3961 } 3962 3963 fq->fqid = qid.fqid; 3964 3965 queue.destination.id = fq->channel->dpcon_id; 3966 queue.destination.type = DPNI_DEST_DPCON; 3967 queue.destination.priority = 0; 3968 queue.user_context = (u64)(uintptr_t)fq; 3969 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 3970 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 3971 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 3972 &queue); 3973 if (err) { 3974 dev_err(dev, "dpni_set_queue(TX_CONF) failed\n"); 3975 return err; 3976 } 3977 3978 return 0; 3979 } 3980 3981 static int setup_rx_err_flow(struct dpaa2_eth_priv *priv, 3982 struct dpaa2_eth_fq *fq) 3983 { 3984 struct device *dev = priv->net_dev->dev.parent; 3985 struct dpni_queue q = { { 0 } }; 3986 struct dpni_queue_id qid; 3987 u8 q_opt = DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST; 3988 int err; 3989 3990 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3991 DPNI_QUEUE_RX_ERR, 0, 0, &q, &qid); 3992 if (err) { 3993 dev_err(dev, "dpni_get_queue() failed (%d)\n", err); 3994 return err; 3995 } 3996 3997 fq->fqid = qid.fqid; 3998 3999 q.destination.id = fq->channel->dpcon_id; 4000 q.destination.type = DPNI_DEST_DPCON; 4001 q.destination.priority = 1; 4002 q.user_context = (u64)(uintptr_t)fq; 4003 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 4004 DPNI_QUEUE_RX_ERR, 0, 0, q_opt, &q); 4005 if (err) { 4006 dev_err(dev, "dpni_set_queue() failed (%d)\n", err); 4007 return err; 4008 } 4009 4010 return 0; 4011 } 4012 4013 /* Supported header fields for Rx hash distribution key */ 4014 static const struct dpaa2_eth_dist_fields dist_fields[] = { 4015 { 4016 /* L2 header */ 4017 .rxnfc_field = RXH_L2DA, 4018 .cls_prot = NET_PROT_ETH, 4019 .cls_field = NH_FLD_ETH_DA, 4020 .id = DPAA2_ETH_DIST_ETHDST, 4021 .size = 6, 4022 }, { 4023 .cls_prot = NET_PROT_ETH, 4024 .cls_field = NH_FLD_ETH_SA, 4025 .id = DPAA2_ETH_DIST_ETHSRC, 4026 .size = 6, 4027 }, { 4028 /* This is the last ethertype field parsed: 4029 * depending on frame format, it can be the MAC ethertype 4030 * or the VLAN etype. 4031 */ 4032 .cls_prot = NET_PROT_ETH, 4033 .cls_field = NH_FLD_ETH_TYPE, 4034 .id = DPAA2_ETH_DIST_ETHTYPE, 4035 .size = 2, 4036 }, { 4037 /* VLAN header */ 4038 .rxnfc_field = RXH_VLAN, 4039 .cls_prot = NET_PROT_VLAN, 4040 .cls_field = NH_FLD_VLAN_TCI, 4041 .id = DPAA2_ETH_DIST_VLAN, 4042 .size = 2, 4043 }, { 4044 /* IP header */ 4045 .rxnfc_field = RXH_IP_SRC, 4046 .cls_prot = NET_PROT_IP, 4047 .cls_field = NH_FLD_IP_SRC, 4048 .id = DPAA2_ETH_DIST_IPSRC, 4049 .size = 4, 4050 }, { 4051 .rxnfc_field = RXH_IP_DST, 4052 .cls_prot = NET_PROT_IP, 4053 .cls_field = NH_FLD_IP_DST, 4054 .id = DPAA2_ETH_DIST_IPDST, 4055 .size = 4, 4056 }, { 4057 .rxnfc_field = RXH_L3_PROTO, 4058 .cls_prot = NET_PROT_IP, 4059 .cls_field = NH_FLD_IP_PROTO, 4060 .id = DPAA2_ETH_DIST_IPPROTO, 4061 .size = 1, 4062 }, { 4063 /* Using UDP ports, this is functionally equivalent to raw 4064 * byte pairs from L4 header. 4065 */ 4066 .rxnfc_field = RXH_L4_B_0_1, 4067 .cls_prot = NET_PROT_UDP, 4068 .cls_field = NH_FLD_UDP_PORT_SRC, 4069 .id = DPAA2_ETH_DIST_L4SRC, 4070 .size = 2, 4071 }, { 4072 .rxnfc_field = RXH_L4_B_2_3, 4073 .cls_prot = NET_PROT_UDP, 4074 .cls_field = NH_FLD_UDP_PORT_DST, 4075 .id = DPAA2_ETH_DIST_L4DST, 4076 .size = 2, 4077 }, 4078 }; 4079 4080 /* Configure the Rx hash key using the legacy API */ 4081 static int dpaa2_eth_config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 4082 { 4083 struct device *dev = priv->net_dev->dev.parent; 4084 struct dpni_rx_tc_dist_cfg dist_cfg; 4085 int i, err = 0; 4086 4087 memset(&dist_cfg, 0, sizeof(dist_cfg)); 4088 4089 dist_cfg.key_cfg_iova = key; 4090 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 4091 dist_cfg.dist_mode = DPNI_DIST_MODE_HASH; 4092 4093 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 4094 err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 4095 i, &dist_cfg); 4096 if (err) { 4097 dev_err(dev, "dpni_set_rx_tc_dist failed\n"); 4098 break; 4099 } 4100 } 4101 4102 return err; 4103 } 4104 4105 /* Configure the Rx hash key using the new API */ 4106 static int dpaa2_eth_config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 4107 { 4108 struct device *dev = priv->net_dev->dev.parent; 4109 struct dpni_rx_dist_cfg dist_cfg; 4110 int i, err = 0; 4111 4112 memset(&dist_cfg, 0, sizeof(dist_cfg)); 4113 4114 dist_cfg.key_cfg_iova = key; 4115 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 4116 dist_cfg.enable = 1; 4117 4118 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 4119 dist_cfg.tc = i; 4120 err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, 4121 &dist_cfg); 4122 if (err) { 4123 dev_err(dev, "dpni_set_rx_hash_dist failed\n"); 4124 break; 4125 } 4126 4127 /* If the flow steering / hashing key is shared between all 4128 * traffic classes, install it just once 4129 */ 4130 if (priv->dpni_attrs.options & DPNI_OPT_SHARED_FS) 4131 break; 4132 } 4133 4134 return err; 4135 } 4136 4137 /* Configure the Rx flow classification key */ 4138 static int dpaa2_eth_config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 4139 { 4140 struct device *dev = priv->net_dev->dev.parent; 4141 struct dpni_rx_dist_cfg dist_cfg; 4142 int i, err = 0; 4143 4144 memset(&dist_cfg, 0, sizeof(dist_cfg)); 4145 4146 dist_cfg.key_cfg_iova = key; 4147 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 4148 dist_cfg.enable = 1; 4149 4150 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 4151 dist_cfg.tc = i; 4152 err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, 4153 &dist_cfg); 4154 if (err) { 4155 dev_err(dev, "dpni_set_rx_fs_dist failed\n"); 4156 break; 4157 } 4158 4159 /* If the flow steering / hashing key is shared between all 4160 * traffic classes, install it just once 4161 */ 4162 if (priv->dpni_attrs.options & DPNI_OPT_SHARED_FS) 4163 break; 4164 } 4165 4166 return err; 4167 } 4168 4169 /* Size of the Rx flow classification key */ 4170 int dpaa2_eth_cls_key_size(u64 fields) 4171 { 4172 int i, size = 0; 4173 4174 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 4175 if (!(fields & dist_fields[i].id)) 4176 continue; 4177 size += dist_fields[i].size; 4178 } 4179 4180 return size; 4181 } 4182 4183 /* Offset of header field in Rx classification key */ 4184 int dpaa2_eth_cls_fld_off(int prot, int field) 4185 { 4186 int i, off = 0; 4187 4188 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 4189 if (dist_fields[i].cls_prot == prot && 4190 dist_fields[i].cls_field == field) 4191 return off; 4192 off += dist_fields[i].size; 4193 } 4194 4195 WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n"); 4196 return 0; 4197 } 4198 4199 /* Prune unused fields from the classification rule. 4200 * Used when masking is not supported 4201 */ 4202 void dpaa2_eth_cls_trim_rule(void *key_mem, u64 fields) 4203 { 4204 int off = 0, new_off = 0; 4205 int i, size; 4206 4207 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 4208 size = dist_fields[i].size; 4209 if (dist_fields[i].id & fields) { 4210 memcpy(key_mem + new_off, key_mem + off, size); 4211 new_off += size; 4212 } 4213 off += size; 4214 } 4215 } 4216 4217 /* Set Rx distribution (hash or flow classification) key 4218 * flags is a combination of RXH_ bits 4219 */ 4220 static int dpaa2_eth_set_dist_key(struct net_device *net_dev, 4221 enum dpaa2_eth_rx_dist type, u64 flags) 4222 { 4223 struct device *dev = net_dev->dev.parent; 4224 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 4225 struct dpkg_profile_cfg cls_cfg; 4226 u32 rx_hash_fields = 0; 4227 dma_addr_t key_iova; 4228 u8 *dma_mem; 4229 int i; 4230 int err = 0; 4231 4232 memset(&cls_cfg, 0, sizeof(cls_cfg)); 4233 4234 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 4235 struct dpkg_extract *key = 4236 &cls_cfg.extracts[cls_cfg.num_extracts]; 4237 4238 /* For both Rx hashing and classification keys 4239 * we set only the selected fields. 4240 */ 4241 if (!(flags & dist_fields[i].id)) 4242 continue; 4243 if (type == DPAA2_ETH_RX_DIST_HASH) 4244 rx_hash_fields |= dist_fields[i].rxnfc_field; 4245 4246 if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) { 4247 dev_err(dev, "error adding key extraction rule, too many rules?\n"); 4248 return -E2BIG; 4249 } 4250 4251 key->type = DPKG_EXTRACT_FROM_HDR; 4252 key->extract.from_hdr.prot = dist_fields[i].cls_prot; 4253 key->extract.from_hdr.type = DPKG_FULL_FIELD; 4254 key->extract.from_hdr.field = dist_fields[i].cls_field; 4255 cls_cfg.num_extracts++; 4256 } 4257 4258 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 4259 if (!dma_mem) 4260 return -ENOMEM; 4261 4262 err = dpni_prepare_key_cfg(&cls_cfg, dma_mem); 4263 if (err) { 4264 dev_err(dev, "dpni_prepare_key_cfg error %d\n", err); 4265 goto free_key; 4266 } 4267 4268 /* Prepare for setting the rx dist */ 4269 key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, 4270 DMA_TO_DEVICE); 4271 if (dma_mapping_error(dev, key_iova)) { 4272 dev_err(dev, "DMA mapping failed\n"); 4273 err = -ENOMEM; 4274 goto free_key; 4275 } 4276 4277 if (type == DPAA2_ETH_RX_DIST_HASH) { 4278 if (dpaa2_eth_has_legacy_dist(priv)) 4279 err = dpaa2_eth_config_legacy_hash_key(priv, key_iova); 4280 else 4281 err = dpaa2_eth_config_hash_key(priv, key_iova); 4282 } else { 4283 err = dpaa2_eth_config_cls_key(priv, key_iova); 4284 } 4285 4286 dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE, 4287 DMA_TO_DEVICE); 4288 if (!err && type == DPAA2_ETH_RX_DIST_HASH) 4289 priv->rx_hash_fields = rx_hash_fields; 4290 4291 free_key: 4292 kfree(dma_mem); 4293 return err; 4294 } 4295 4296 int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags) 4297 { 4298 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 4299 u64 key = 0; 4300 int i; 4301 4302 if (!dpaa2_eth_hash_enabled(priv)) 4303 return -EOPNOTSUPP; 4304 4305 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) 4306 if (dist_fields[i].rxnfc_field & flags) 4307 key |= dist_fields[i].id; 4308 4309 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, key); 4310 } 4311 4312 int dpaa2_eth_set_cls(struct net_device *net_dev, u64 flags) 4313 { 4314 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_CLS, flags); 4315 } 4316 4317 static int dpaa2_eth_set_default_cls(struct dpaa2_eth_priv *priv) 4318 { 4319 struct device *dev = priv->net_dev->dev.parent; 4320 int err; 4321 4322 /* Check if we actually support Rx flow classification */ 4323 if (dpaa2_eth_has_legacy_dist(priv)) { 4324 dev_dbg(dev, "Rx cls not supported by current MC version\n"); 4325 return -EOPNOTSUPP; 4326 } 4327 4328 if (!dpaa2_eth_fs_enabled(priv)) { 4329 dev_dbg(dev, "Rx cls disabled in DPNI options\n"); 4330 return -EOPNOTSUPP; 4331 } 4332 4333 if (!dpaa2_eth_hash_enabled(priv)) { 4334 dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n"); 4335 return -EOPNOTSUPP; 4336 } 4337 4338 /* If there is no support for masking in the classification table, 4339 * we don't set a default key, as it will depend on the rules 4340 * added by the user at runtime. 4341 */ 4342 if (!dpaa2_eth_fs_mask_enabled(priv)) 4343 goto out; 4344 4345 err = dpaa2_eth_set_cls(priv->net_dev, DPAA2_ETH_DIST_ALL); 4346 if (err) 4347 return err; 4348 4349 out: 4350 priv->rx_cls_enabled = 1; 4351 4352 return 0; 4353 } 4354 4355 /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs, 4356 * frame queues and channels 4357 */ 4358 static int dpaa2_eth_bind_dpni(struct dpaa2_eth_priv *priv) 4359 { 4360 struct dpaa2_eth_bp *bp = priv->bp[DPAA2_ETH_DEFAULT_BP_IDX]; 4361 struct net_device *net_dev = priv->net_dev; 4362 struct dpni_pools_cfg pools_params = { 0 }; 4363 struct device *dev = net_dev->dev.parent; 4364 struct dpni_error_cfg err_cfg; 4365 int err = 0; 4366 int i; 4367 4368 pools_params.num_dpbp = 1; 4369 pools_params.pools[0].dpbp_id = bp->dev->obj_desc.id; 4370 pools_params.pools[0].backup_pool = 0; 4371 pools_params.pools[0].buffer_size = priv->rx_buf_size; 4372 err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params); 4373 if (err) { 4374 dev_err(dev, "dpni_set_pools() failed\n"); 4375 return err; 4376 } 4377 4378 /* have the interface implicitly distribute traffic based on 4379 * the default hash key 4380 */ 4381 err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT); 4382 if (err && err != -EOPNOTSUPP) 4383 dev_err(dev, "Failed to configure hashing\n"); 4384 4385 /* Configure the flow classification key; it includes all 4386 * supported header fields and cannot be modified at runtime 4387 */ 4388 err = dpaa2_eth_set_default_cls(priv); 4389 if (err && err != -EOPNOTSUPP) 4390 dev_err(dev, "Failed to configure Rx classification key\n"); 4391 4392 /* Configure handling of error frames */ 4393 err_cfg.errors = DPAA2_FAS_RX_ERR_MASK; 4394 err_cfg.set_frame_annotation = 1; 4395 err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD; 4396 err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token, 4397 &err_cfg); 4398 if (err) { 4399 dev_err(dev, "dpni_set_errors_behavior failed\n"); 4400 return err; 4401 } 4402 4403 /* Configure Rx and Tx conf queues to generate CDANs */ 4404 for (i = 0; i < priv->num_fqs; i++) { 4405 switch (priv->fq[i].type) { 4406 case DPAA2_RX_FQ: 4407 err = dpaa2_eth_setup_rx_flow(priv, &priv->fq[i]); 4408 break; 4409 case DPAA2_TX_CONF_FQ: 4410 err = dpaa2_eth_setup_tx_flow(priv, &priv->fq[i]); 4411 break; 4412 case DPAA2_RX_ERR_FQ: 4413 err = setup_rx_err_flow(priv, &priv->fq[i]); 4414 break; 4415 default: 4416 dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type); 4417 return -EINVAL; 4418 } 4419 if (err) 4420 return err; 4421 } 4422 4423 err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token, 4424 DPNI_QUEUE_TX, &priv->tx_qdid); 4425 if (err) { 4426 dev_err(dev, "dpni_get_qdid() failed\n"); 4427 return err; 4428 } 4429 4430 return 0; 4431 } 4432 4433 /* Allocate rings for storing incoming frame descriptors */ 4434 static int dpaa2_eth_alloc_rings(struct dpaa2_eth_priv *priv) 4435 { 4436 struct net_device *net_dev = priv->net_dev; 4437 struct device *dev = net_dev->dev.parent; 4438 int i; 4439 4440 for (i = 0; i < priv->num_channels; i++) { 4441 priv->channel[i]->store = 4442 dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev); 4443 if (!priv->channel[i]->store) { 4444 netdev_err(net_dev, "dpaa2_io_store_create() failed\n"); 4445 goto err_ring; 4446 } 4447 } 4448 4449 return 0; 4450 4451 err_ring: 4452 for (i = 0; i < priv->num_channels; i++) { 4453 if (!priv->channel[i]->store) 4454 break; 4455 dpaa2_io_store_destroy(priv->channel[i]->store); 4456 } 4457 4458 return -ENOMEM; 4459 } 4460 4461 static void dpaa2_eth_free_rings(struct dpaa2_eth_priv *priv) 4462 { 4463 int i; 4464 4465 for (i = 0; i < priv->num_channels; i++) 4466 dpaa2_io_store_destroy(priv->channel[i]->store); 4467 } 4468 4469 static int dpaa2_eth_set_mac_addr(struct dpaa2_eth_priv *priv) 4470 { 4471 struct net_device *net_dev = priv->net_dev; 4472 struct device *dev = net_dev->dev.parent; 4473 u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN]; 4474 int err; 4475 4476 /* Get firmware address, if any */ 4477 err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); 4478 if (err) { 4479 dev_err(dev, "dpni_get_port_mac_addr() failed\n"); 4480 return err; 4481 } 4482 4483 /* Get DPNI attributes address, if any */ 4484 err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 4485 dpni_mac_addr); 4486 if (err) { 4487 dev_err(dev, "dpni_get_primary_mac_addr() failed\n"); 4488 return err; 4489 } 4490 4491 /* First check if firmware has any address configured by bootloader */ 4492 if (!is_zero_ether_addr(mac_addr)) { 4493 /* If the DPMAC addr != DPNI addr, update it */ 4494 if (!ether_addr_equal(mac_addr, dpni_mac_addr)) { 4495 err = dpni_set_primary_mac_addr(priv->mc_io, 0, 4496 priv->mc_token, 4497 mac_addr); 4498 if (err) { 4499 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 4500 return err; 4501 } 4502 } 4503 eth_hw_addr_set(net_dev, mac_addr); 4504 } else if (is_zero_ether_addr(dpni_mac_addr)) { 4505 /* No MAC address configured, fill in net_dev->dev_addr 4506 * with a random one 4507 */ 4508 eth_hw_addr_random(net_dev); 4509 dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); 4510 4511 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 4512 net_dev->dev_addr); 4513 if (err) { 4514 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 4515 return err; 4516 } 4517 4518 /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all 4519 * practical purposes, this will be our "permanent" mac address, 4520 * at least until the next reboot. This move will also permit 4521 * register_netdevice() to properly fill up net_dev->perm_addr. 4522 */ 4523 net_dev->addr_assign_type = NET_ADDR_PERM; 4524 } else { 4525 /* NET_ADDR_PERM is default, all we have to do is 4526 * fill in the device addr. 4527 */ 4528 eth_hw_addr_set(net_dev, dpni_mac_addr); 4529 } 4530 4531 return 0; 4532 } 4533 4534 static int dpaa2_eth_netdev_init(struct net_device *net_dev) 4535 { 4536 struct device *dev = net_dev->dev.parent; 4537 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 4538 u32 options = priv->dpni_attrs.options; 4539 u64 supported = 0, not_supported = 0; 4540 u8 bcast_addr[ETH_ALEN]; 4541 u8 num_queues; 4542 int err; 4543 4544 net_dev->netdev_ops = &dpaa2_eth_ops; 4545 net_dev->ethtool_ops = &dpaa2_ethtool_ops; 4546 4547 err = dpaa2_eth_set_mac_addr(priv); 4548 if (err) 4549 return err; 4550 4551 /* Explicitly add the broadcast address to the MAC filtering table */ 4552 eth_broadcast_addr(bcast_addr); 4553 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr); 4554 if (err) { 4555 dev_err(dev, "dpni_add_mac_addr() failed\n"); 4556 return err; 4557 } 4558 4559 /* Set MTU upper limit; lower limit is 68B (default value) */ 4560 net_dev->max_mtu = DPAA2_ETH_MAX_MTU; 4561 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, 4562 DPAA2_ETH_MFL); 4563 if (err) { 4564 dev_err(dev, "dpni_set_max_frame_length() failed\n"); 4565 return err; 4566 } 4567 4568 /* Set actual number of queues in the net device */ 4569 num_queues = dpaa2_eth_queue_count(priv); 4570 err = netif_set_real_num_tx_queues(net_dev, num_queues); 4571 if (err) { 4572 dev_err(dev, "netif_set_real_num_tx_queues() failed\n"); 4573 return err; 4574 } 4575 err = netif_set_real_num_rx_queues(net_dev, num_queues); 4576 if (err) { 4577 dev_err(dev, "netif_set_real_num_rx_queues() failed\n"); 4578 return err; 4579 } 4580 4581 dpaa2_eth_detect_features(priv); 4582 4583 /* Capabilities listing */ 4584 supported |= IFF_LIVE_ADDR_CHANGE; 4585 4586 if (options & DPNI_OPT_NO_MAC_FILTER) 4587 not_supported |= IFF_UNICAST_FLT; 4588 else 4589 supported |= IFF_UNICAST_FLT; 4590 4591 net_dev->priv_flags |= supported; 4592 net_dev->priv_flags &= ~not_supported; 4593 4594 /* Features */ 4595 net_dev->features = NETIF_F_RXCSUM | 4596 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4597 NETIF_F_SG | NETIF_F_HIGHDMA | 4598 NETIF_F_LLTX | NETIF_F_HW_TC | NETIF_F_TSO; 4599 net_dev->gso_max_segs = DPAA2_ETH_ENQUEUE_MAX_FDS; 4600 net_dev->hw_features = net_dev->features; 4601 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC | 4602 NETDEV_XDP_ACT_REDIRECT | 4603 NETDEV_XDP_ACT_NDO_XMIT; 4604 if (priv->dpni_attrs.wriop_version >= DPAA2_WRIOP_VERSION(3, 0, 0) && 4605 priv->dpni_attrs.num_queues <= 8) 4606 net_dev->xdp_features |= NETDEV_XDP_ACT_XSK_ZEROCOPY; 4607 4608 if (priv->dpni_attrs.vlan_filter_entries) 4609 net_dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4610 4611 return 0; 4612 } 4613 4614 static int dpaa2_eth_poll_link_state(void *arg) 4615 { 4616 struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg; 4617 int err; 4618 4619 while (!kthread_should_stop()) { 4620 err = dpaa2_eth_link_state_update(priv); 4621 if (unlikely(err)) 4622 return err; 4623 4624 msleep(DPAA2_ETH_LINK_STATE_REFRESH); 4625 } 4626 4627 return 0; 4628 } 4629 4630 static int dpaa2_eth_connect_mac(struct dpaa2_eth_priv *priv) 4631 { 4632 struct fsl_mc_device *dpni_dev, *dpmac_dev; 4633 struct dpaa2_mac *mac; 4634 int err; 4635 4636 dpni_dev = to_fsl_mc_device(priv->net_dev->dev.parent); 4637 dpmac_dev = fsl_mc_get_endpoint(dpni_dev, 0); 4638 4639 if (PTR_ERR(dpmac_dev) == -EPROBE_DEFER) { 4640 netdev_dbg(priv->net_dev, "waiting for mac\n"); 4641 return PTR_ERR(dpmac_dev); 4642 } 4643 4644 if (IS_ERR(dpmac_dev) || dpmac_dev->dev.type != &fsl_mc_bus_dpmac_type) 4645 return 0; 4646 4647 mac = kzalloc(sizeof(struct dpaa2_mac), GFP_KERNEL); 4648 if (!mac) 4649 return -ENOMEM; 4650 4651 mac->mc_dev = dpmac_dev; 4652 mac->mc_io = priv->mc_io; 4653 mac->net_dev = priv->net_dev; 4654 4655 err = dpaa2_mac_open(mac); 4656 if (err) 4657 goto err_free_mac; 4658 4659 if (dpaa2_mac_is_type_phy(mac)) { 4660 err = dpaa2_mac_connect(mac); 4661 if (err) { 4662 if (err == -EPROBE_DEFER) 4663 netdev_dbg(priv->net_dev, 4664 "could not connect to MAC\n"); 4665 else 4666 netdev_err(priv->net_dev, 4667 "Error connecting to the MAC endpoint: %pe", 4668 ERR_PTR(err)); 4669 goto err_close_mac; 4670 } 4671 } 4672 4673 mutex_lock(&priv->mac_lock); 4674 priv->mac = mac; 4675 mutex_unlock(&priv->mac_lock); 4676 4677 return 0; 4678 4679 err_close_mac: 4680 dpaa2_mac_close(mac); 4681 err_free_mac: 4682 kfree(mac); 4683 return err; 4684 } 4685 4686 static void dpaa2_eth_disconnect_mac(struct dpaa2_eth_priv *priv) 4687 { 4688 struct dpaa2_mac *mac; 4689 4690 mutex_lock(&priv->mac_lock); 4691 mac = priv->mac; 4692 priv->mac = NULL; 4693 mutex_unlock(&priv->mac_lock); 4694 4695 if (!mac) 4696 return; 4697 4698 if (dpaa2_mac_is_type_phy(mac)) 4699 dpaa2_mac_disconnect(mac); 4700 4701 dpaa2_mac_close(mac); 4702 kfree(mac); 4703 } 4704 4705 static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg) 4706 { 4707 u32 status = ~0; 4708 struct device *dev = (struct device *)arg; 4709 struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev); 4710 struct net_device *net_dev = dev_get_drvdata(dev); 4711 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 4712 bool had_mac; 4713 int err; 4714 4715 err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, 4716 DPNI_IRQ_INDEX, &status); 4717 if (unlikely(err)) { 4718 netdev_err(net_dev, "Can't get irq status (err %d)\n", err); 4719 return IRQ_HANDLED; 4720 } 4721 4722 if (status & DPNI_IRQ_EVENT_LINK_CHANGED) 4723 dpaa2_eth_link_state_update(netdev_priv(net_dev)); 4724 4725 if (status & DPNI_IRQ_EVENT_ENDPOINT_CHANGED) { 4726 dpaa2_eth_set_mac_addr(netdev_priv(net_dev)); 4727 dpaa2_eth_update_tx_fqids(priv); 4728 4729 /* We can avoid locking because the "endpoint changed" IRQ 4730 * handler is the only one who changes priv->mac at runtime, 4731 * so we are not racing with anyone. 4732 */ 4733 had_mac = !!priv->mac; 4734 if (had_mac) 4735 dpaa2_eth_disconnect_mac(priv); 4736 else 4737 dpaa2_eth_connect_mac(priv); 4738 } 4739 4740 return IRQ_HANDLED; 4741 } 4742 4743 static int dpaa2_eth_setup_irqs(struct fsl_mc_device *ls_dev) 4744 { 4745 int err = 0; 4746 struct fsl_mc_device_irq *irq; 4747 4748 err = fsl_mc_allocate_irqs(ls_dev); 4749 if (err) { 4750 dev_err(&ls_dev->dev, "MC irqs allocation failed\n"); 4751 return err; 4752 } 4753 4754 irq = ls_dev->irqs[0]; 4755 err = devm_request_threaded_irq(&ls_dev->dev, irq->virq, 4756 NULL, dpni_irq0_handler_thread, 4757 IRQF_NO_SUSPEND | IRQF_ONESHOT, 4758 dev_name(&ls_dev->dev), &ls_dev->dev); 4759 if (err < 0) { 4760 dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err); 4761 goto free_mc_irq; 4762 } 4763 4764 err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle, 4765 DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED | 4766 DPNI_IRQ_EVENT_ENDPOINT_CHANGED); 4767 if (err < 0) { 4768 dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err); 4769 goto free_irq; 4770 } 4771 4772 err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle, 4773 DPNI_IRQ_INDEX, 1); 4774 if (err < 0) { 4775 dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err); 4776 goto free_irq; 4777 } 4778 4779 return 0; 4780 4781 free_irq: 4782 devm_free_irq(&ls_dev->dev, irq->virq, &ls_dev->dev); 4783 free_mc_irq: 4784 fsl_mc_free_irqs(ls_dev); 4785 4786 return err; 4787 } 4788 4789 static void dpaa2_eth_add_ch_napi(struct dpaa2_eth_priv *priv) 4790 { 4791 int i; 4792 struct dpaa2_eth_channel *ch; 4793 4794 for (i = 0; i < priv->num_channels; i++) { 4795 ch = priv->channel[i]; 4796 /* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */ 4797 netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll); 4798 } 4799 } 4800 4801 static void dpaa2_eth_del_ch_napi(struct dpaa2_eth_priv *priv) 4802 { 4803 int i; 4804 struct dpaa2_eth_channel *ch; 4805 4806 for (i = 0; i < priv->num_channels; i++) { 4807 ch = priv->channel[i]; 4808 netif_napi_del(&ch->napi); 4809 } 4810 } 4811 4812 static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev) 4813 { 4814 struct device *dev; 4815 struct net_device *net_dev = NULL; 4816 struct dpaa2_eth_priv *priv = NULL; 4817 int err = 0; 4818 4819 dev = &dpni_dev->dev; 4820 4821 /* Net device */ 4822 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_NETDEV_QUEUES); 4823 if (!net_dev) { 4824 dev_err(dev, "alloc_etherdev_mq() failed\n"); 4825 return -ENOMEM; 4826 } 4827 4828 SET_NETDEV_DEV(net_dev, dev); 4829 dev_set_drvdata(dev, net_dev); 4830 4831 priv = netdev_priv(net_dev); 4832 priv->net_dev = net_dev; 4833 SET_NETDEV_DEVLINK_PORT(net_dev, &priv->devlink_port); 4834 4835 mutex_init(&priv->mac_lock); 4836 4837 priv->iommu_domain = iommu_get_domain_for_dev(dev); 4838 4839 priv->tx_tstamp_type = HWTSTAMP_TX_OFF; 4840 priv->rx_tstamp = false; 4841 4842 priv->dpaa2_ptp_wq = alloc_workqueue("dpaa2_ptp_wq", 0, 0); 4843 if (!priv->dpaa2_ptp_wq) { 4844 err = -ENOMEM; 4845 goto err_wq_alloc; 4846 } 4847 4848 INIT_WORK(&priv->tx_onestep_tstamp, dpaa2_eth_tx_onestep_tstamp); 4849 mutex_init(&priv->onestep_tstamp_lock); 4850 skb_queue_head_init(&priv->tx_skbs); 4851 4852 priv->rx_copybreak = DPAA2_ETH_DEFAULT_COPYBREAK; 4853 4854 /* Obtain a MC portal */ 4855 err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, 4856 &priv->mc_io); 4857 if (err) { 4858 if (err == -ENXIO) { 4859 dev_dbg(dev, "waiting for MC portal\n"); 4860 err = -EPROBE_DEFER; 4861 } else { 4862 dev_err(dev, "MC portal allocation failed\n"); 4863 } 4864 goto err_portal_alloc; 4865 } 4866 4867 /* MC objects initialization and configuration */ 4868 err = dpaa2_eth_setup_dpni(dpni_dev); 4869 if (err) 4870 goto err_dpni_setup; 4871 4872 err = dpaa2_eth_setup_dpio(priv); 4873 if (err) 4874 goto err_dpio_setup; 4875 4876 dpaa2_eth_setup_fqs(priv); 4877 4878 err = dpaa2_eth_setup_default_dpbp(priv); 4879 if (err) 4880 goto err_dpbp_setup; 4881 4882 err = dpaa2_eth_bind_dpni(priv); 4883 if (err) 4884 goto err_bind; 4885 4886 /* Add a NAPI context for each channel */ 4887 dpaa2_eth_add_ch_napi(priv); 4888 4889 /* Percpu statistics */ 4890 priv->percpu_stats = alloc_percpu(*priv->percpu_stats); 4891 if (!priv->percpu_stats) { 4892 dev_err(dev, "alloc_percpu(percpu_stats) failed\n"); 4893 err = -ENOMEM; 4894 goto err_alloc_percpu_stats; 4895 } 4896 priv->percpu_extras = alloc_percpu(*priv->percpu_extras); 4897 if (!priv->percpu_extras) { 4898 dev_err(dev, "alloc_percpu(percpu_extras) failed\n"); 4899 err = -ENOMEM; 4900 goto err_alloc_percpu_extras; 4901 } 4902 4903 priv->sgt_cache = alloc_percpu(*priv->sgt_cache); 4904 if (!priv->sgt_cache) { 4905 dev_err(dev, "alloc_percpu(sgt_cache) failed\n"); 4906 err = -ENOMEM; 4907 goto err_alloc_sgt_cache; 4908 } 4909 4910 priv->fd = alloc_percpu(*priv->fd); 4911 if (!priv->fd) { 4912 dev_err(dev, "alloc_percpu(fds) failed\n"); 4913 err = -ENOMEM; 4914 goto err_alloc_fds; 4915 } 4916 4917 err = dpaa2_eth_netdev_init(net_dev); 4918 if (err) 4919 goto err_netdev_init; 4920 4921 /* Configure checksum offload based on current interface flags */ 4922 err = dpaa2_eth_set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM)); 4923 if (err) 4924 goto err_csum; 4925 4926 err = dpaa2_eth_set_tx_csum(priv, 4927 !!(net_dev->features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))); 4928 if (err) 4929 goto err_csum; 4930 4931 err = dpaa2_eth_alloc_rings(priv); 4932 if (err) 4933 goto err_alloc_rings; 4934 4935 #ifdef CONFIG_FSL_DPAA2_ETH_DCB 4936 if (dpaa2_eth_has_pause_support(priv) && priv->vlan_cls_enabled) { 4937 priv->dcbx_mode = DCB_CAP_DCBX_HOST | DCB_CAP_DCBX_VER_IEEE; 4938 net_dev->dcbnl_ops = &dpaa2_eth_dcbnl_ops; 4939 } else { 4940 dev_dbg(dev, "PFC not supported\n"); 4941 } 4942 #endif 4943 4944 err = dpaa2_eth_connect_mac(priv); 4945 if (err) 4946 goto err_connect_mac; 4947 4948 err = dpaa2_eth_setup_irqs(dpni_dev); 4949 if (err) { 4950 netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n"); 4951 priv->poll_thread = kthread_run(dpaa2_eth_poll_link_state, priv, 4952 "%s_poll_link", net_dev->name); 4953 if (IS_ERR(priv->poll_thread)) { 4954 dev_err(dev, "Error starting polling thread\n"); 4955 goto err_poll_thread; 4956 } 4957 priv->do_link_poll = true; 4958 } 4959 4960 err = dpaa2_eth_dl_alloc(priv); 4961 if (err) 4962 goto err_dl_register; 4963 4964 err = dpaa2_eth_dl_traps_register(priv); 4965 if (err) 4966 goto err_dl_trap_register; 4967 4968 err = dpaa2_eth_dl_port_add(priv); 4969 if (err) 4970 goto err_dl_port_add; 4971 4972 net_dev->needed_headroom = DPAA2_ETH_SWA_SIZE + DPAA2_ETH_TX_BUF_ALIGN; 4973 4974 err = register_netdev(net_dev); 4975 if (err < 0) { 4976 dev_err(dev, "register_netdev() failed\n"); 4977 goto err_netdev_reg; 4978 } 4979 4980 #ifdef CONFIG_DEBUG_FS 4981 dpaa2_dbg_add(priv); 4982 #endif 4983 4984 dpaa2_eth_dl_register(priv); 4985 dev_info(dev, "Probed interface %s\n", net_dev->name); 4986 return 0; 4987 4988 err_netdev_reg: 4989 dpaa2_eth_dl_port_del(priv); 4990 err_dl_port_add: 4991 dpaa2_eth_dl_traps_unregister(priv); 4992 err_dl_trap_register: 4993 dpaa2_eth_dl_free(priv); 4994 err_dl_register: 4995 if (priv->do_link_poll) 4996 kthread_stop(priv->poll_thread); 4997 else 4998 fsl_mc_free_irqs(dpni_dev); 4999 err_poll_thread: 5000 dpaa2_eth_disconnect_mac(priv); 5001 err_connect_mac: 5002 dpaa2_eth_free_rings(priv); 5003 err_alloc_rings: 5004 err_csum: 5005 err_netdev_init: 5006 free_percpu(priv->fd); 5007 err_alloc_fds: 5008 free_percpu(priv->sgt_cache); 5009 err_alloc_sgt_cache: 5010 free_percpu(priv->percpu_extras); 5011 err_alloc_percpu_extras: 5012 free_percpu(priv->percpu_stats); 5013 err_alloc_percpu_stats: 5014 dpaa2_eth_del_ch_napi(priv); 5015 err_bind: 5016 dpaa2_eth_free_dpbps(priv); 5017 err_dpbp_setup: 5018 dpaa2_eth_free_dpio(priv); 5019 err_dpio_setup: 5020 dpaa2_eth_free_dpni(priv); 5021 err_dpni_setup: 5022 fsl_mc_portal_free(priv->mc_io); 5023 err_portal_alloc: 5024 destroy_workqueue(priv->dpaa2_ptp_wq); 5025 err_wq_alloc: 5026 dev_set_drvdata(dev, NULL); 5027 free_netdev(net_dev); 5028 5029 return err; 5030 } 5031 5032 static void dpaa2_eth_remove(struct fsl_mc_device *ls_dev) 5033 { 5034 struct device *dev; 5035 struct net_device *net_dev; 5036 struct dpaa2_eth_priv *priv; 5037 5038 dev = &ls_dev->dev; 5039 net_dev = dev_get_drvdata(dev); 5040 priv = netdev_priv(net_dev); 5041 5042 dpaa2_eth_dl_unregister(priv); 5043 5044 #ifdef CONFIG_DEBUG_FS 5045 dpaa2_dbg_remove(priv); 5046 #endif 5047 5048 unregister_netdev(net_dev); 5049 5050 dpaa2_eth_dl_port_del(priv); 5051 dpaa2_eth_dl_traps_unregister(priv); 5052 dpaa2_eth_dl_free(priv); 5053 5054 if (priv->do_link_poll) 5055 kthread_stop(priv->poll_thread); 5056 else 5057 fsl_mc_free_irqs(ls_dev); 5058 5059 dpaa2_eth_disconnect_mac(priv); 5060 dpaa2_eth_free_rings(priv); 5061 free_percpu(priv->fd); 5062 free_percpu(priv->sgt_cache); 5063 free_percpu(priv->percpu_stats); 5064 free_percpu(priv->percpu_extras); 5065 5066 dpaa2_eth_del_ch_napi(priv); 5067 dpaa2_eth_free_dpbps(priv); 5068 dpaa2_eth_free_dpio(priv); 5069 dpaa2_eth_free_dpni(priv); 5070 if (priv->onestep_reg_base) 5071 iounmap(priv->onestep_reg_base); 5072 5073 fsl_mc_portal_free(priv->mc_io); 5074 5075 destroy_workqueue(priv->dpaa2_ptp_wq); 5076 5077 dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name); 5078 5079 free_netdev(net_dev); 5080 } 5081 5082 static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = { 5083 { 5084 .vendor = FSL_MC_VENDOR_FREESCALE, 5085 .obj_type = "dpni", 5086 }, 5087 { .vendor = 0x0 } 5088 }; 5089 MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table); 5090 5091 static struct fsl_mc_driver dpaa2_eth_driver = { 5092 .driver = { 5093 .name = KBUILD_MODNAME, 5094 }, 5095 .probe = dpaa2_eth_probe, 5096 .remove = dpaa2_eth_remove, 5097 .match_id_table = dpaa2_eth_match_id_table 5098 }; 5099 5100 static int __init dpaa2_eth_driver_init(void) 5101 { 5102 int err; 5103 5104 dpaa2_eth_dbg_init(); 5105 err = fsl_mc_driver_register(&dpaa2_eth_driver); 5106 if (err) { 5107 dpaa2_eth_dbg_exit(); 5108 return err; 5109 } 5110 5111 return 0; 5112 } 5113 5114 static void __exit dpaa2_eth_driver_exit(void) 5115 { 5116 dpaa2_eth_dbg_exit(); 5117 fsl_mc_driver_unregister(&dpaa2_eth_driver); 5118 } 5119 5120 module_init(dpaa2_eth_driver_init); 5121 module_exit(dpaa2_eth_driver_exit); 5122