1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* Copyright 2014-2016 Freescale Semiconductor Inc. 3 * Copyright 2016-2020 NXP 4 */ 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/platform_device.h> 8 #include <linux/etherdevice.h> 9 #include <linux/of_net.h> 10 #include <linux/interrupt.h> 11 #include <linux/msi.h> 12 #include <linux/kthread.h> 13 #include <linux/iommu.h> 14 #include <linux/fsl/mc.h> 15 #include <linux/bpf.h> 16 #include <linux/bpf_trace.h> 17 #include <linux/fsl/ptp_qoriq.h> 18 #include <linux/ptp_classify.h> 19 #include <net/pkt_cls.h> 20 #include <net/sock.h> 21 22 #include "dpaa2-eth.h" 23 24 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files 25 * using trace events only need to #include <trace/events/sched.h> 26 */ 27 #define CREATE_TRACE_POINTS 28 #include "dpaa2-eth-trace.h" 29 30 MODULE_LICENSE("Dual BSD/GPL"); 31 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 32 MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver"); 33 34 struct ptp_qoriq *dpaa2_ptp; 35 EXPORT_SYMBOL(dpaa2_ptp); 36 37 static void *dpaa2_iova_to_virt(struct iommu_domain *domain, 38 dma_addr_t iova_addr) 39 { 40 phys_addr_t phys_addr; 41 42 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 43 44 return phys_to_virt(phys_addr); 45 } 46 47 static void dpaa2_eth_validate_rx_csum(struct dpaa2_eth_priv *priv, 48 u32 fd_status, 49 struct sk_buff *skb) 50 { 51 skb_checksum_none_assert(skb); 52 53 /* HW checksum validation is disabled, nothing to do here */ 54 if (!(priv->net_dev->features & NETIF_F_RXCSUM)) 55 return; 56 57 /* Read checksum validation bits */ 58 if (!((fd_status & DPAA2_FAS_L3CV) && 59 (fd_status & DPAA2_FAS_L4CV))) 60 return; 61 62 /* Inform the stack there's no need to compute L3/L4 csum anymore */ 63 skb->ip_summed = CHECKSUM_UNNECESSARY; 64 } 65 66 /* Free a received FD. 67 * Not to be used for Tx conf FDs or on any other paths. 68 */ 69 static void dpaa2_eth_free_rx_fd(struct dpaa2_eth_priv *priv, 70 const struct dpaa2_fd *fd, 71 void *vaddr) 72 { 73 struct device *dev = priv->net_dev->dev.parent; 74 dma_addr_t addr = dpaa2_fd_get_addr(fd); 75 u8 fd_format = dpaa2_fd_get_format(fd); 76 struct dpaa2_sg_entry *sgt; 77 void *sg_vaddr; 78 int i; 79 80 /* If single buffer frame, just free the data buffer */ 81 if (fd_format == dpaa2_fd_single) 82 goto free_buf; 83 else if (fd_format != dpaa2_fd_sg) 84 /* We don't support any other format */ 85 return; 86 87 /* For S/G frames, we first need to free all SG entries 88 * except the first one, which was taken care of already 89 */ 90 sgt = vaddr + dpaa2_fd_get_offset(fd); 91 for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 92 addr = dpaa2_sg_get_addr(&sgt[i]); 93 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 94 dma_unmap_page(dev, addr, priv->rx_buf_size, 95 DMA_BIDIRECTIONAL); 96 97 free_pages((unsigned long)sg_vaddr, 0); 98 if (dpaa2_sg_is_final(&sgt[i])) 99 break; 100 } 101 102 free_buf: 103 free_pages((unsigned long)vaddr, 0); 104 } 105 106 /* Build a linear skb based on a single-buffer frame descriptor */ 107 static struct sk_buff *dpaa2_eth_build_linear_skb(struct dpaa2_eth_channel *ch, 108 const struct dpaa2_fd *fd, 109 void *fd_vaddr) 110 { 111 struct sk_buff *skb = NULL; 112 u16 fd_offset = dpaa2_fd_get_offset(fd); 113 u32 fd_length = dpaa2_fd_get_len(fd); 114 115 ch->buf_count--; 116 117 skb = build_skb(fd_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 118 if (unlikely(!skb)) 119 return NULL; 120 121 skb_reserve(skb, fd_offset); 122 skb_put(skb, fd_length); 123 124 return skb; 125 } 126 127 /* Build a non linear (fragmented) skb based on a S/G table */ 128 static struct sk_buff *dpaa2_eth_build_frag_skb(struct dpaa2_eth_priv *priv, 129 struct dpaa2_eth_channel *ch, 130 struct dpaa2_sg_entry *sgt) 131 { 132 struct sk_buff *skb = NULL; 133 struct device *dev = priv->net_dev->dev.parent; 134 void *sg_vaddr; 135 dma_addr_t sg_addr; 136 u16 sg_offset; 137 u32 sg_length; 138 struct page *page, *head_page; 139 int page_offset; 140 int i; 141 142 for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 143 struct dpaa2_sg_entry *sge = &sgt[i]; 144 145 /* NOTE: We only support SG entries in dpaa2_sg_single format, 146 * but this is the only format we may receive from HW anyway 147 */ 148 149 /* Get the address and length from the S/G entry */ 150 sg_addr = dpaa2_sg_get_addr(sge); 151 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr); 152 dma_unmap_page(dev, sg_addr, priv->rx_buf_size, 153 DMA_BIDIRECTIONAL); 154 155 sg_length = dpaa2_sg_get_len(sge); 156 157 if (i == 0) { 158 /* We build the skb around the first data buffer */ 159 skb = build_skb(sg_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 160 if (unlikely(!skb)) { 161 /* Free the first SG entry now, since we already 162 * unmapped it and obtained the virtual address 163 */ 164 free_pages((unsigned long)sg_vaddr, 0); 165 166 /* We still need to subtract the buffers used 167 * by this FD from our software counter 168 */ 169 while (!dpaa2_sg_is_final(&sgt[i]) && 170 i < DPAA2_ETH_MAX_SG_ENTRIES) 171 i++; 172 break; 173 } 174 175 sg_offset = dpaa2_sg_get_offset(sge); 176 skb_reserve(skb, sg_offset); 177 skb_put(skb, sg_length); 178 } else { 179 /* Rest of the data buffers are stored as skb frags */ 180 page = virt_to_page(sg_vaddr); 181 head_page = virt_to_head_page(sg_vaddr); 182 183 /* Offset in page (which may be compound). 184 * Data in subsequent SG entries is stored from the 185 * beginning of the buffer, so we don't need to add the 186 * sg_offset. 187 */ 188 page_offset = ((unsigned long)sg_vaddr & 189 (PAGE_SIZE - 1)) + 190 (page_address(page) - page_address(head_page)); 191 192 skb_add_rx_frag(skb, i - 1, head_page, page_offset, 193 sg_length, priv->rx_buf_size); 194 } 195 196 if (dpaa2_sg_is_final(sge)) 197 break; 198 } 199 200 WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT"); 201 202 /* Count all data buffers + SG table buffer */ 203 ch->buf_count -= i + 2; 204 205 return skb; 206 } 207 208 /* Free buffers acquired from the buffer pool or which were meant to 209 * be released in the pool 210 */ 211 static void dpaa2_eth_free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, 212 int count) 213 { 214 struct device *dev = priv->net_dev->dev.parent; 215 void *vaddr; 216 int i; 217 218 for (i = 0; i < count; i++) { 219 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]); 220 dma_unmap_page(dev, buf_array[i], priv->rx_buf_size, 221 DMA_BIDIRECTIONAL); 222 free_pages((unsigned long)vaddr, 0); 223 } 224 } 225 226 static void dpaa2_eth_xdp_release_buf(struct dpaa2_eth_priv *priv, 227 struct dpaa2_eth_channel *ch, 228 dma_addr_t addr) 229 { 230 int retries = 0; 231 int err; 232 233 ch->xdp.drop_bufs[ch->xdp.drop_cnt++] = addr; 234 if (ch->xdp.drop_cnt < DPAA2_ETH_BUFS_PER_CMD) 235 return; 236 237 while ((err = dpaa2_io_service_release(ch->dpio, priv->bpid, 238 ch->xdp.drop_bufs, 239 ch->xdp.drop_cnt)) == -EBUSY) { 240 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 241 break; 242 cpu_relax(); 243 } 244 245 if (err) { 246 dpaa2_eth_free_bufs(priv, ch->xdp.drop_bufs, ch->xdp.drop_cnt); 247 ch->buf_count -= ch->xdp.drop_cnt; 248 } 249 250 ch->xdp.drop_cnt = 0; 251 } 252 253 static int dpaa2_eth_xdp_flush(struct dpaa2_eth_priv *priv, 254 struct dpaa2_eth_fq *fq, 255 struct dpaa2_eth_xdp_fds *xdp_fds) 256 { 257 int total_enqueued = 0, retries = 0, enqueued; 258 struct dpaa2_eth_drv_stats *percpu_extras; 259 int num_fds, err, max_retries; 260 struct dpaa2_fd *fds; 261 262 percpu_extras = this_cpu_ptr(priv->percpu_extras); 263 264 /* try to enqueue all the FDs until the max number of retries is hit */ 265 fds = xdp_fds->fds; 266 num_fds = xdp_fds->num; 267 max_retries = num_fds * DPAA2_ETH_ENQUEUE_RETRIES; 268 while (total_enqueued < num_fds && retries < max_retries) { 269 err = priv->enqueue(priv, fq, &fds[total_enqueued], 270 0, num_fds - total_enqueued, &enqueued); 271 if (err == -EBUSY) { 272 percpu_extras->tx_portal_busy += ++retries; 273 continue; 274 } 275 total_enqueued += enqueued; 276 } 277 xdp_fds->num = 0; 278 279 return total_enqueued; 280 } 281 282 static void dpaa2_eth_xdp_tx_flush(struct dpaa2_eth_priv *priv, 283 struct dpaa2_eth_channel *ch, 284 struct dpaa2_eth_fq *fq) 285 { 286 struct rtnl_link_stats64 *percpu_stats; 287 struct dpaa2_fd *fds; 288 int enqueued, i; 289 290 percpu_stats = this_cpu_ptr(priv->percpu_stats); 291 292 // enqueue the array of XDP_TX frames 293 enqueued = dpaa2_eth_xdp_flush(priv, fq, &fq->xdp_tx_fds); 294 295 /* update statistics */ 296 percpu_stats->tx_packets += enqueued; 297 fds = fq->xdp_tx_fds.fds; 298 for (i = 0; i < enqueued; i++) { 299 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fds[i]); 300 ch->stats.xdp_tx++; 301 } 302 for (i = enqueued; i < fq->xdp_tx_fds.num; i++) { 303 dpaa2_eth_xdp_release_buf(priv, ch, dpaa2_fd_get_addr(&fds[i])); 304 percpu_stats->tx_errors++; 305 ch->stats.xdp_tx_err++; 306 } 307 fq->xdp_tx_fds.num = 0; 308 } 309 310 static void dpaa2_eth_xdp_enqueue(struct dpaa2_eth_priv *priv, 311 struct dpaa2_eth_channel *ch, 312 struct dpaa2_fd *fd, 313 void *buf_start, u16 queue_id) 314 { 315 struct dpaa2_faead *faead; 316 struct dpaa2_fd *dest_fd; 317 struct dpaa2_eth_fq *fq; 318 u32 ctrl, frc; 319 320 /* Mark the egress frame hardware annotation area as valid */ 321 frc = dpaa2_fd_get_frc(fd); 322 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 323 dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL); 324 325 /* Instruct hardware to release the FD buffer directly into 326 * the buffer pool once transmission is completed, instead of 327 * sending a Tx confirmation frame to us 328 */ 329 ctrl = DPAA2_FAEAD_A4V | DPAA2_FAEAD_A2V | DPAA2_FAEAD_EBDDV; 330 faead = dpaa2_get_faead(buf_start, false); 331 faead->ctrl = cpu_to_le32(ctrl); 332 faead->conf_fqid = 0; 333 334 fq = &priv->fq[queue_id]; 335 dest_fd = &fq->xdp_tx_fds.fds[fq->xdp_tx_fds.num++]; 336 memcpy(dest_fd, fd, sizeof(*dest_fd)); 337 338 if (fq->xdp_tx_fds.num < DEV_MAP_BULK_SIZE) 339 return; 340 341 dpaa2_eth_xdp_tx_flush(priv, ch, fq); 342 } 343 344 static u32 dpaa2_eth_run_xdp(struct dpaa2_eth_priv *priv, 345 struct dpaa2_eth_channel *ch, 346 struct dpaa2_eth_fq *rx_fq, 347 struct dpaa2_fd *fd, void *vaddr) 348 { 349 dma_addr_t addr = dpaa2_fd_get_addr(fd); 350 struct bpf_prog *xdp_prog; 351 struct xdp_buff xdp; 352 u32 xdp_act = XDP_PASS; 353 int err; 354 355 rcu_read_lock(); 356 357 xdp_prog = READ_ONCE(ch->xdp.prog); 358 if (!xdp_prog) 359 goto out; 360 361 xdp.data = vaddr + dpaa2_fd_get_offset(fd); 362 xdp.data_end = xdp.data + dpaa2_fd_get_len(fd); 363 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; 364 xdp_set_data_meta_invalid(&xdp); 365 xdp.rxq = &ch->xdp_rxq; 366 367 xdp.frame_sz = DPAA2_ETH_RX_BUF_RAW_SIZE - 368 (dpaa2_fd_get_offset(fd) - XDP_PACKET_HEADROOM); 369 370 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 371 372 /* xdp.data pointer may have changed */ 373 dpaa2_fd_set_offset(fd, xdp.data - vaddr); 374 dpaa2_fd_set_len(fd, xdp.data_end - xdp.data); 375 376 switch (xdp_act) { 377 case XDP_PASS: 378 break; 379 case XDP_TX: 380 dpaa2_eth_xdp_enqueue(priv, ch, fd, vaddr, rx_fq->flowid); 381 break; 382 default: 383 bpf_warn_invalid_xdp_action(xdp_act); 384 fallthrough; 385 case XDP_ABORTED: 386 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 387 fallthrough; 388 case XDP_DROP: 389 dpaa2_eth_xdp_release_buf(priv, ch, addr); 390 ch->stats.xdp_drop++; 391 break; 392 case XDP_REDIRECT: 393 dma_unmap_page(priv->net_dev->dev.parent, addr, 394 priv->rx_buf_size, DMA_BIDIRECTIONAL); 395 ch->buf_count--; 396 397 /* Allow redirect use of full headroom */ 398 xdp.data_hard_start = vaddr; 399 xdp.frame_sz = DPAA2_ETH_RX_BUF_RAW_SIZE; 400 401 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 402 if (unlikely(err)) 403 ch->stats.xdp_drop++; 404 else 405 ch->stats.xdp_redirect++; 406 break; 407 } 408 409 ch->xdp.res |= xdp_act; 410 out: 411 rcu_read_unlock(); 412 return xdp_act; 413 } 414 415 /* Main Rx frame processing routine */ 416 static void dpaa2_eth_rx(struct dpaa2_eth_priv *priv, 417 struct dpaa2_eth_channel *ch, 418 const struct dpaa2_fd *fd, 419 struct dpaa2_eth_fq *fq) 420 { 421 dma_addr_t addr = dpaa2_fd_get_addr(fd); 422 u8 fd_format = dpaa2_fd_get_format(fd); 423 void *vaddr; 424 struct sk_buff *skb; 425 struct rtnl_link_stats64 *percpu_stats; 426 struct dpaa2_eth_drv_stats *percpu_extras; 427 struct device *dev = priv->net_dev->dev.parent; 428 struct dpaa2_fas *fas; 429 void *buf_data; 430 u32 status = 0; 431 u32 xdp_act; 432 433 /* Tracing point */ 434 trace_dpaa2_rx_fd(priv->net_dev, fd); 435 436 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 437 dma_sync_single_for_cpu(dev, addr, priv->rx_buf_size, 438 DMA_BIDIRECTIONAL); 439 440 fas = dpaa2_get_fas(vaddr, false); 441 prefetch(fas); 442 buf_data = vaddr + dpaa2_fd_get_offset(fd); 443 prefetch(buf_data); 444 445 percpu_stats = this_cpu_ptr(priv->percpu_stats); 446 percpu_extras = this_cpu_ptr(priv->percpu_extras); 447 448 if (fd_format == dpaa2_fd_single) { 449 xdp_act = dpaa2_eth_run_xdp(priv, ch, fq, (struct dpaa2_fd *)fd, vaddr); 450 if (xdp_act != XDP_PASS) { 451 percpu_stats->rx_packets++; 452 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 453 return; 454 } 455 456 dma_unmap_page(dev, addr, priv->rx_buf_size, 457 DMA_BIDIRECTIONAL); 458 skb = dpaa2_eth_build_linear_skb(ch, fd, vaddr); 459 } else if (fd_format == dpaa2_fd_sg) { 460 WARN_ON(priv->xdp_prog); 461 462 dma_unmap_page(dev, addr, priv->rx_buf_size, 463 DMA_BIDIRECTIONAL); 464 skb = dpaa2_eth_build_frag_skb(priv, ch, buf_data); 465 free_pages((unsigned long)vaddr, 0); 466 percpu_extras->rx_sg_frames++; 467 percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd); 468 } else { 469 /* We don't support any other format */ 470 goto err_frame_format; 471 } 472 473 if (unlikely(!skb)) 474 goto err_build_skb; 475 476 prefetch(skb->data); 477 478 /* Get the timestamp value */ 479 if (priv->rx_tstamp) { 480 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 481 __le64 *ts = dpaa2_get_ts(vaddr, false); 482 u64 ns; 483 484 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 485 486 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 487 shhwtstamps->hwtstamp = ns_to_ktime(ns); 488 } 489 490 /* Check if we need to validate the L4 csum */ 491 if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) { 492 status = le32_to_cpu(fas->status); 493 dpaa2_eth_validate_rx_csum(priv, status, skb); 494 } 495 496 skb->protocol = eth_type_trans(skb, priv->net_dev); 497 skb_record_rx_queue(skb, fq->flowid); 498 499 percpu_stats->rx_packets++; 500 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 501 502 list_add_tail(&skb->list, ch->rx_list); 503 504 return; 505 506 err_build_skb: 507 dpaa2_eth_free_rx_fd(priv, fd, vaddr); 508 err_frame_format: 509 percpu_stats->rx_dropped++; 510 } 511 512 /* Consume all frames pull-dequeued into the store. This is the simplest way to 513 * make sure we don't accidentally issue another volatile dequeue which would 514 * overwrite (leak) frames already in the store. 515 * 516 * Observance of NAPI budget is not our concern, leaving that to the caller. 517 */ 518 static int dpaa2_eth_consume_frames(struct dpaa2_eth_channel *ch, 519 struct dpaa2_eth_fq **src) 520 { 521 struct dpaa2_eth_priv *priv = ch->priv; 522 struct dpaa2_eth_fq *fq = NULL; 523 struct dpaa2_dq *dq; 524 const struct dpaa2_fd *fd; 525 int cleaned = 0, retries = 0; 526 int is_last; 527 528 do { 529 dq = dpaa2_io_store_next(ch->store, &is_last); 530 if (unlikely(!dq)) { 531 /* If we're here, we *must* have placed a 532 * volatile dequeue comnmand, so keep reading through 533 * the store until we get some sort of valid response 534 * token (either a valid frame or an "empty dequeue") 535 */ 536 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) { 537 netdev_err_once(priv->net_dev, 538 "Unable to read a valid dequeue response\n"); 539 return -ETIMEDOUT; 540 } 541 continue; 542 } 543 544 fd = dpaa2_dq_fd(dq); 545 fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq); 546 547 fq->consume(priv, ch, fd, fq); 548 cleaned++; 549 retries = 0; 550 } while (!is_last); 551 552 if (!cleaned) 553 return 0; 554 555 fq->stats.frames += cleaned; 556 ch->stats.frames += cleaned; 557 558 /* A dequeue operation only pulls frames from a single queue 559 * into the store. Return the frame queue as an out param. 560 */ 561 if (src) 562 *src = fq; 563 564 return cleaned; 565 } 566 567 static int dpaa2_eth_ptp_parse(struct sk_buff *skb, 568 u8 *msgtype, u8 *twostep, u8 *udp, 569 u16 *correction_offset, 570 u16 *origintimestamp_offset) 571 { 572 unsigned int ptp_class; 573 struct ptp_header *hdr; 574 unsigned int type; 575 u8 *base; 576 577 ptp_class = ptp_classify_raw(skb); 578 if (ptp_class == PTP_CLASS_NONE) 579 return -EINVAL; 580 581 hdr = ptp_parse_header(skb, ptp_class); 582 if (!hdr) 583 return -EINVAL; 584 585 *msgtype = ptp_get_msgtype(hdr, ptp_class); 586 *twostep = hdr->flag_field[0] & 0x2; 587 588 type = ptp_class & PTP_CLASS_PMASK; 589 if (type == PTP_CLASS_IPV4 || 590 type == PTP_CLASS_IPV6) 591 *udp = 1; 592 else 593 *udp = 0; 594 595 base = skb_mac_header(skb); 596 *correction_offset = (u8 *)&hdr->correction - base; 597 *origintimestamp_offset = (u8 *)hdr + sizeof(struct ptp_header) - base; 598 599 return 0; 600 } 601 602 /* Configure the egress frame annotation for timestamp update */ 603 static void dpaa2_eth_enable_tx_tstamp(struct dpaa2_eth_priv *priv, 604 struct dpaa2_fd *fd, 605 void *buf_start, 606 struct sk_buff *skb) 607 { 608 struct ptp_tstamp origin_timestamp; 609 struct dpni_single_step_cfg cfg; 610 u8 msgtype, twostep, udp; 611 struct dpaa2_faead *faead; 612 struct dpaa2_fas *fas; 613 struct timespec64 ts; 614 u16 offset1, offset2; 615 u32 ctrl, frc; 616 __le64 *ns; 617 u8 *data; 618 619 /* Mark the egress frame annotation area as valid */ 620 frc = dpaa2_fd_get_frc(fd); 621 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 622 623 /* Set hardware annotation size */ 624 ctrl = dpaa2_fd_get_ctrl(fd); 625 dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL); 626 627 /* enable UPD (update prepanded data) bit in FAEAD field of 628 * hardware frame annotation area 629 */ 630 ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD; 631 faead = dpaa2_get_faead(buf_start, true); 632 faead->ctrl = cpu_to_le32(ctrl); 633 634 if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { 635 if (dpaa2_eth_ptp_parse(skb, &msgtype, &twostep, &udp, 636 &offset1, &offset2) || 637 msgtype != 0 || twostep) { 638 WARN_ONCE(1, "Bad packet for one-step timestamping\n"); 639 return; 640 } 641 642 /* Mark the frame annotation status as valid */ 643 frc = dpaa2_fd_get_frc(fd); 644 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FASV); 645 646 /* Mark the PTP flag for one step timestamping */ 647 fas = dpaa2_get_fas(buf_start, true); 648 fas->status = cpu_to_le32(DPAA2_FAS_PTP); 649 650 dpaa2_ptp->caps.gettime64(&dpaa2_ptp->caps, &ts); 651 ns = dpaa2_get_ts(buf_start, true); 652 *ns = cpu_to_le64(timespec64_to_ns(&ts) / 653 DPAA2_PTP_CLK_PERIOD_NS); 654 655 /* Update current time to PTP message originTimestamp field */ 656 ns_to_ptp_tstamp(&origin_timestamp, le64_to_cpup(ns)); 657 data = skb_mac_header(skb); 658 *(__be16 *)(data + offset2) = htons(origin_timestamp.sec_msb); 659 *(__be32 *)(data + offset2 + 2) = 660 htonl(origin_timestamp.sec_lsb); 661 *(__be32 *)(data + offset2 + 6) = htonl(origin_timestamp.nsec); 662 663 cfg.en = 1; 664 cfg.ch_update = udp; 665 cfg.offset = offset1; 666 cfg.peer_delay = 0; 667 668 if (dpni_set_single_step_cfg(priv->mc_io, 0, priv->mc_token, 669 &cfg)) 670 WARN_ONCE(1, "Failed to set single step register"); 671 } 672 } 673 674 /* Create a frame descriptor based on a fragmented skb */ 675 static int dpaa2_eth_build_sg_fd(struct dpaa2_eth_priv *priv, 676 struct sk_buff *skb, 677 struct dpaa2_fd *fd, 678 void **swa_addr) 679 { 680 struct device *dev = priv->net_dev->dev.parent; 681 void *sgt_buf = NULL; 682 dma_addr_t addr; 683 int nr_frags = skb_shinfo(skb)->nr_frags; 684 struct dpaa2_sg_entry *sgt; 685 int i, err; 686 int sgt_buf_size; 687 struct scatterlist *scl, *crt_scl; 688 int num_sg; 689 int num_dma_bufs; 690 struct dpaa2_eth_swa *swa; 691 692 /* Create and map scatterlist. 693 * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have 694 * to go beyond nr_frags+1. 695 * Note: We don't support chained scatterlists 696 */ 697 if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1)) 698 return -EINVAL; 699 700 scl = kmalloc_array(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC); 701 if (unlikely(!scl)) 702 return -ENOMEM; 703 704 sg_init_table(scl, nr_frags + 1); 705 num_sg = skb_to_sgvec(skb, scl, 0, skb->len); 706 if (unlikely(num_sg < 0)) { 707 err = -ENOMEM; 708 goto dma_map_sg_failed; 709 } 710 num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 711 if (unlikely(!num_dma_bufs)) { 712 err = -ENOMEM; 713 goto dma_map_sg_failed; 714 } 715 716 /* Prepare the HW SGT structure */ 717 sgt_buf_size = priv->tx_data_offset + 718 sizeof(struct dpaa2_sg_entry) * num_dma_bufs; 719 sgt_buf = napi_alloc_frag(sgt_buf_size + DPAA2_ETH_TX_BUF_ALIGN); 720 if (unlikely(!sgt_buf)) { 721 err = -ENOMEM; 722 goto sgt_buf_alloc_failed; 723 } 724 sgt_buf = PTR_ALIGN(sgt_buf, DPAA2_ETH_TX_BUF_ALIGN); 725 memset(sgt_buf, 0, sgt_buf_size); 726 727 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 728 729 /* Fill in the HW SGT structure. 730 * 731 * sgt_buf is zeroed out, so the following fields are implicit 732 * in all sgt entries: 733 * - offset is 0 734 * - format is 'dpaa2_sg_single' 735 */ 736 for_each_sg(scl, crt_scl, num_dma_bufs, i) { 737 dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl)); 738 dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl)); 739 } 740 dpaa2_sg_set_final(&sgt[i - 1], true); 741 742 /* Store the skb backpointer in the SGT buffer. 743 * Fit the scatterlist and the number of buffers alongside the 744 * skb backpointer in the software annotation area. We'll need 745 * all of them on Tx Conf. 746 */ 747 *swa_addr = (void *)sgt_buf; 748 swa = (struct dpaa2_eth_swa *)sgt_buf; 749 swa->type = DPAA2_ETH_SWA_SG; 750 swa->sg.skb = skb; 751 swa->sg.scl = scl; 752 swa->sg.num_sg = num_sg; 753 swa->sg.sgt_size = sgt_buf_size; 754 755 /* Separately map the SGT buffer */ 756 addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 757 if (unlikely(dma_mapping_error(dev, addr))) { 758 err = -ENOMEM; 759 goto dma_map_single_failed; 760 } 761 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 762 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 763 dpaa2_fd_set_addr(fd, addr); 764 dpaa2_fd_set_len(fd, skb->len); 765 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 766 767 return 0; 768 769 dma_map_single_failed: 770 skb_free_frag(sgt_buf); 771 sgt_buf_alloc_failed: 772 dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 773 dma_map_sg_failed: 774 kfree(scl); 775 return err; 776 } 777 778 /* Create a SG frame descriptor based on a linear skb. 779 * 780 * This function is used on the Tx path when the skb headroom is not large 781 * enough for the HW requirements, thus instead of realloc-ing the skb we 782 * create a SG frame descriptor with only one entry. 783 */ 784 static int dpaa2_eth_build_sg_fd_single_buf(struct dpaa2_eth_priv *priv, 785 struct sk_buff *skb, 786 struct dpaa2_fd *fd, 787 void **swa_addr) 788 { 789 struct device *dev = priv->net_dev->dev.parent; 790 struct dpaa2_eth_sgt_cache *sgt_cache; 791 struct dpaa2_sg_entry *sgt; 792 struct dpaa2_eth_swa *swa; 793 dma_addr_t addr, sgt_addr; 794 void *sgt_buf = NULL; 795 int sgt_buf_size; 796 int err; 797 798 /* Prepare the HW SGT structure */ 799 sgt_cache = this_cpu_ptr(priv->sgt_cache); 800 sgt_buf_size = priv->tx_data_offset + sizeof(struct dpaa2_sg_entry); 801 802 if (sgt_cache->count == 0) 803 sgt_buf = kzalloc(sgt_buf_size + DPAA2_ETH_TX_BUF_ALIGN, 804 GFP_ATOMIC); 805 else 806 sgt_buf = sgt_cache->buf[--sgt_cache->count]; 807 if (unlikely(!sgt_buf)) 808 return -ENOMEM; 809 810 sgt_buf = PTR_ALIGN(sgt_buf, DPAA2_ETH_TX_BUF_ALIGN); 811 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 812 813 addr = dma_map_single(dev, skb->data, skb->len, DMA_BIDIRECTIONAL); 814 if (unlikely(dma_mapping_error(dev, addr))) { 815 err = -ENOMEM; 816 goto data_map_failed; 817 } 818 819 /* Fill in the HW SGT structure */ 820 dpaa2_sg_set_addr(sgt, addr); 821 dpaa2_sg_set_len(sgt, skb->len); 822 dpaa2_sg_set_final(sgt, true); 823 824 /* Store the skb backpointer in the SGT buffer */ 825 *swa_addr = (void *)sgt_buf; 826 swa = (struct dpaa2_eth_swa *)sgt_buf; 827 swa->type = DPAA2_ETH_SWA_SINGLE; 828 swa->single.skb = skb; 829 swa->sg.sgt_size = sgt_buf_size; 830 831 /* Separately map the SGT buffer */ 832 sgt_addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 833 if (unlikely(dma_mapping_error(dev, sgt_addr))) { 834 err = -ENOMEM; 835 goto sgt_map_failed; 836 } 837 838 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 839 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 840 dpaa2_fd_set_addr(fd, sgt_addr); 841 dpaa2_fd_set_len(fd, skb->len); 842 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 843 844 return 0; 845 846 sgt_map_failed: 847 dma_unmap_single(dev, addr, skb->len, DMA_BIDIRECTIONAL); 848 data_map_failed: 849 if (sgt_cache->count >= DPAA2_ETH_SGT_CACHE_SIZE) 850 kfree(sgt_buf); 851 else 852 sgt_cache->buf[sgt_cache->count++] = sgt_buf; 853 854 return err; 855 } 856 857 /* Create a frame descriptor based on a linear skb */ 858 static int dpaa2_eth_build_single_fd(struct dpaa2_eth_priv *priv, 859 struct sk_buff *skb, 860 struct dpaa2_fd *fd, 861 void **swa_addr) 862 { 863 struct device *dev = priv->net_dev->dev.parent; 864 u8 *buffer_start, *aligned_start; 865 struct dpaa2_eth_swa *swa; 866 dma_addr_t addr; 867 868 buffer_start = skb->data - dpaa2_eth_needed_headroom(skb); 869 870 /* If there's enough room to align the FD address, do it. 871 * It will help hardware optimize accesses. 872 */ 873 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 874 DPAA2_ETH_TX_BUF_ALIGN); 875 if (aligned_start >= skb->head) 876 buffer_start = aligned_start; 877 878 /* Store a backpointer to the skb at the beginning of the buffer 879 * (in the private data area) such that we can release it 880 * on Tx confirm 881 */ 882 *swa_addr = (void *)buffer_start; 883 swa = (struct dpaa2_eth_swa *)buffer_start; 884 swa->type = DPAA2_ETH_SWA_SINGLE; 885 swa->single.skb = skb; 886 887 addr = dma_map_single(dev, buffer_start, 888 skb_tail_pointer(skb) - buffer_start, 889 DMA_BIDIRECTIONAL); 890 if (unlikely(dma_mapping_error(dev, addr))) 891 return -ENOMEM; 892 893 dpaa2_fd_set_addr(fd, addr); 894 dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start)); 895 dpaa2_fd_set_len(fd, skb->len); 896 dpaa2_fd_set_format(fd, dpaa2_fd_single); 897 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 898 899 return 0; 900 } 901 902 /* FD freeing routine on the Tx path 903 * 904 * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb 905 * back-pointed to is also freed. 906 * This can be called either from dpaa2_eth_tx_conf() or on the error path of 907 * dpaa2_eth_tx(). 908 */ 909 static void dpaa2_eth_free_tx_fd(struct dpaa2_eth_priv *priv, 910 struct dpaa2_eth_fq *fq, 911 const struct dpaa2_fd *fd, bool in_napi) 912 { 913 struct device *dev = priv->net_dev->dev.parent; 914 dma_addr_t fd_addr, sg_addr; 915 struct sk_buff *skb = NULL; 916 unsigned char *buffer_start; 917 struct dpaa2_eth_swa *swa; 918 u8 fd_format = dpaa2_fd_get_format(fd); 919 u32 fd_len = dpaa2_fd_get_len(fd); 920 921 struct dpaa2_eth_sgt_cache *sgt_cache; 922 struct dpaa2_sg_entry *sgt; 923 924 fd_addr = dpaa2_fd_get_addr(fd); 925 buffer_start = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr); 926 swa = (struct dpaa2_eth_swa *)buffer_start; 927 928 if (fd_format == dpaa2_fd_single) { 929 if (swa->type == DPAA2_ETH_SWA_SINGLE) { 930 skb = swa->single.skb; 931 /* Accessing the skb buffer is safe before dma unmap, 932 * because we didn't map the actual skb shell. 933 */ 934 dma_unmap_single(dev, fd_addr, 935 skb_tail_pointer(skb) - buffer_start, 936 DMA_BIDIRECTIONAL); 937 } else { 938 WARN_ONCE(swa->type != DPAA2_ETH_SWA_XDP, "Wrong SWA type"); 939 dma_unmap_single(dev, fd_addr, swa->xdp.dma_size, 940 DMA_BIDIRECTIONAL); 941 } 942 } else if (fd_format == dpaa2_fd_sg) { 943 if (swa->type == DPAA2_ETH_SWA_SG) { 944 skb = swa->sg.skb; 945 946 /* Unmap the scatterlist */ 947 dma_unmap_sg(dev, swa->sg.scl, swa->sg.num_sg, 948 DMA_BIDIRECTIONAL); 949 kfree(swa->sg.scl); 950 951 /* Unmap the SGT buffer */ 952 dma_unmap_single(dev, fd_addr, swa->sg.sgt_size, 953 DMA_BIDIRECTIONAL); 954 } else { 955 skb = swa->single.skb; 956 957 /* Unmap the SGT Buffer */ 958 dma_unmap_single(dev, fd_addr, swa->single.sgt_size, 959 DMA_BIDIRECTIONAL); 960 961 sgt = (struct dpaa2_sg_entry *)(buffer_start + 962 priv->tx_data_offset); 963 sg_addr = dpaa2_sg_get_addr(sgt); 964 dma_unmap_single(dev, sg_addr, skb->len, DMA_BIDIRECTIONAL); 965 } 966 } else { 967 netdev_dbg(priv->net_dev, "Invalid FD format\n"); 968 return; 969 } 970 971 if (swa->type != DPAA2_ETH_SWA_XDP && in_napi) { 972 fq->dq_frames++; 973 fq->dq_bytes += fd_len; 974 } 975 976 if (swa->type == DPAA2_ETH_SWA_XDP) { 977 xdp_return_frame(swa->xdp.xdpf); 978 return; 979 } 980 981 /* Get the timestamp value */ 982 if (skb->cb[0] == TX_TSTAMP) { 983 struct skb_shared_hwtstamps shhwtstamps; 984 __le64 *ts = dpaa2_get_ts(buffer_start, true); 985 u64 ns; 986 987 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 988 989 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 990 shhwtstamps.hwtstamp = ns_to_ktime(ns); 991 skb_tstamp_tx(skb, &shhwtstamps); 992 } else if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { 993 mutex_unlock(&priv->onestep_tstamp_lock); 994 } 995 996 /* Free SGT buffer allocated on tx */ 997 if (fd_format != dpaa2_fd_single) { 998 sgt_cache = this_cpu_ptr(priv->sgt_cache); 999 if (swa->type == DPAA2_ETH_SWA_SG) { 1000 skb_free_frag(buffer_start); 1001 } else { 1002 if (sgt_cache->count >= DPAA2_ETH_SGT_CACHE_SIZE) 1003 kfree(buffer_start); 1004 else 1005 sgt_cache->buf[sgt_cache->count++] = buffer_start; 1006 } 1007 } 1008 1009 /* Move on with skb release */ 1010 napi_consume_skb(skb, in_napi); 1011 } 1012 1013 static netdev_tx_t __dpaa2_eth_tx(struct sk_buff *skb, 1014 struct net_device *net_dev) 1015 { 1016 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1017 struct dpaa2_fd fd; 1018 struct rtnl_link_stats64 *percpu_stats; 1019 struct dpaa2_eth_drv_stats *percpu_extras; 1020 struct dpaa2_eth_fq *fq; 1021 struct netdev_queue *nq; 1022 u16 queue_mapping; 1023 unsigned int needed_headroom; 1024 u32 fd_len; 1025 u8 prio = 0; 1026 int err, i; 1027 void *swa; 1028 1029 percpu_stats = this_cpu_ptr(priv->percpu_stats); 1030 percpu_extras = this_cpu_ptr(priv->percpu_extras); 1031 1032 needed_headroom = dpaa2_eth_needed_headroom(skb); 1033 1034 /* We'll be holding a back-reference to the skb until Tx Confirmation; 1035 * we don't want that overwritten by a concurrent Tx with a cloned skb. 1036 */ 1037 skb = skb_unshare(skb, GFP_ATOMIC); 1038 if (unlikely(!skb)) { 1039 /* skb_unshare() has already freed the skb */ 1040 percpu_stats->tx_dropped++; 1041 return NETDEV_TX_OK; 1042 } 1043 1044 /* Setup the FD fields */ 1045 memset(&fd, 0, sizeof(fd)); 1046 1047 if (skb_is_nonlinear(skb)) { 1048 err = dpaa2_eth_build_sg_fd(priv, skb, &fd, &swa); 1049 percpu_extras->tx_sg_frames++; 1050 percpu_extras->tx_sg_bytes += skb->len; 1051 } else if (skb_headroom(skb) < needed_headroom) { 1052 err = dpaa2_eth_build_sg_fd_single_buf(priv, skb, &fd, &swa); 1053 percpu_extras->tx_sg_frames++; 1054 percpu_extras->tx_sg_bytes += skb->len; 1055 percpu_extras->tx_converted_sg_frames++; 1056 percpu_extras->tx_converted_sg_bytes += skb->len; 1057 } else { 1058 err = dpaa2_eth_build_single_fd(priv, skb, &fd, &swa); 1059 } 1060 1061 if (unlikely(err)) { 1062 percpu_stats->tx_dropped++; 1063 goto err_build_fd; 1064 } 1065 1066 if (skb->cb[0]) 1067 dpaa2_eth_enable_tx_tstamp(priv, &fd, swa, skb); 1068 1069 /* Tracing point */ 1070 trace_dpaa2_tx_fd(net_dev, &fd); 1071 1072 /* TxConf FQ selection relies on queue id from the stack. 1073 * In case of a forwarded frame from another DPNI interface, we choose 1074 * a queue affined to the same core that processed the Rx frame 1075 */ 1076 queue_mapping = skb_get_queue_mapping(skb); 1077 1078 if (net_dev->num_tc) { 1079 prio = netdev_txq_to_tc(net_dev, queue_mapping); 1080 /* Hardware interprets priority level 0 as being the highest, 1081 * so we need to do a reverse mapping to the netdev tc index 1082 */ 1083 prio = net_dev->num_tc - prio - 1; 1084 /* We have only one FQ array entry for all Tx hardware queues 1085 * with the same flow id (but different priority levels) 1086 */ 1087 queue_mapping %= dpaa2_eth_queue_count(priv); 1088 } 1089 fq = &priv->fq[queue_mapping]; 1090 1091 fd_len = dpaa2_fd_get_len(&fd); 1092 nq = netdev_get_tx_queue(net_dev, queue_mapping); 1093 netdev_tx_sent_queue(nq, fd_len); 1094 1095 /* Everything that happens after this enqueues might race with 1096 * the Tx confirmation callback for this frame 1097 */ 1098 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 1099 err = priv->enqueue(priv, fq, &fd, prio, 1, NULL); 1100 if (err != -EBUSY) 1101 break; 1102 } 1103 percpu_extras->tx_portal_busy += i; 1104 if (unlikely(err < 0)) { 1105 percpu_stats->tx_errors++; 1106 /* Clean up everything, including freeing the skb */ 1107 dpaa2_eth_free_tx_fd(priv, fq, &fd, false); 1108 netdev_tx_completed_queue(nq, 1, fd_len); 1109 } else { 1110 percpu_stats->tx_packets++; 1111 percpu_stats->tx_bytes += fd_len; 1112 } 1113 1114 return NETDEV_TX_OK; 1115 1116 err_build_fd: 1117 dev_kfree_skb(skb); 1118 1119 return NETDEV_TX_OK; 1120 } 1121 1122 static void dpaa2_eth_tx_onestep_tstamp(struct work_struct *work) 1123 { 1124 struct dpaa2_eth_priv *priv = container_of(work, struct dpaa2_eth_priv, 1125 tx_onestep_tstamp); 1126 struct sk_buff *skb; 1127 1128 while (true) { 1129 skb = skb_dequeue(&priv->tx_skbs); 1130 if (!skb) 1131 return; 1132 1133 /* Lock just before TX one-step timestamping packet, 1134 * and release the lock in dpaa2_eth_free_tx_fd when 1135 * confirm the packet has been sent on hardware, or 1136 * when clean up during transmit failure. 1137 */ 1138 mutex_lock(&priv->onestep_tstamp_lock); 1139 __dpaa2_eth_tx(skb, priv->net_dev); 1140 } 1141 } 1142 1143 static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) 1144 { 1145 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1146 u8 msgtype, twostep, udp; 1147 u16 offset1, offset2; 1148 1149 /* Utilize skb->cb[0] for timestamping request per skb */ 1150 skb->cb[0] = 0; 1151 1152 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && dpaa2_ptp) { 1153 if (priv->tx_tstamp_type == HWTSTAMP_TX_ON) 1154 skb->cb[0] = TX_TSTAMP; 1155 else if (priv->tx_tstamp_type == HWTSTAMP_TX_ONESTEP_SYNC) 1156 skb->cb[0] = TX_TSTAMP_ONESTEP_SYNC; 1157 } 1158 1159 /* TX for one-step timestamping PTP Sync packet */ 1160 if (skb->cb[0] == TX_TSTAMP_ONESTEP_SYNC) { 1161 if (!dpaa2_eth_ptp_parse(skb, &msgtype, &twostep, &udp, 1162 &offset1, &offset2)) 1163 if (msgtype == 0 && twostep == 0) { 1164 skb_queue_tail(&priv->tx_skbs, skb); 1165 queue_work(priv->dpaa2_ptp_wq, 1166 &priv->tx_onestep_tstamp); 1167 return NETDEV_TX_OK; 1168 } 1169 /* Use two-step timestamping if not one-step timestamping 1170 * PTP Sync packet 1171 */ 1172 skb->cb[0] = TX_TSTAMP; 1173 } 1174 1175 /* TX for other packets */ 1176 return __dpaa2_eth_tx(skb, net_dev); 1177 } 1178 1179 /* Tx confirmation frame processing routine */ 1180 static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv, 1181 struct dpaa2_eth_channel *ch __always_unused, 1182 const struct dpaa2_fd *fd, 1183 struct dpaa2_eth_fq *fq) 1184 { 1185 struct rtnl_link_stats64 *percpu_stats; 1186 struct dpaa2_eth_drv_stats *percpu_extras; 1187 u32 fd_len = dpaa2_fd_get_len(fd); 1188 u32 fd_errors; 1189 1190 /* Tracing point */ 1191 trace_dpaa2_tx_conf_fd(priv->net_dev, fd); 1192 1193 percpu_extras = this_cpu_ptr(priv->percpu_extras); 1194 percpu_extras->tx_conf_frames++; 1195 percpu_extras->tx_conf_bytes += fd_len; 1196 1197 /* Check frame errors in the FD field */ 1198 fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK; 1199 dpaa2_eth_free_tx_fd(priv, fq, fd, true); 1200 1201 if (likely(!fd_errors)) 1202 return; 1203 1204 if (net_ratelimit()) 1205 netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n", 1206 fd_errors); 1207 1208 percpu_stats = this_cpu_ptr(priv->percpu_stats); 1209 /* Tx-conf logically pertains to the egress path. */ 1210 percpu_stats->tx_errors++; 1211 } 1212 1213 static int dpaa2_eth_set_rx_csum(struct dpaa2_eth_priv *priv, bool enable) 1214 { 1215 int err; 1216 1217 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1218 DPNI_OFF_RX_L3_CSUM, enable); 1219 if (err) { 1220 netdev_err(priv->net_dev, 1221 "dpni_set_offload(RX_L3_CSUM) failed\n"); 1222 return err; 1223 } 1224 1225 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1226 DPNI_OFF_RX_L4_CSUM, enable); 1227 if (err) { 1228 netdev_err(priv->net_dev, 1229 "dpni_set_offload(RX_L4_CSUM) failed\n"); 1230 return err; 1231 } 1232 1233 return 0; 1234 } 1235 1236 static int dpaa2_eth_set_tx_csum(struct dpaa2_eth_priv *priv, bool enable) 1237 { 1238 int err; 1239 1240 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1241 DPNI_OFF_TX_L3_CSUM, enable); 1242 if (err) { 1243 netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n"); 1244 return err; 1245 } 1246 1247 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 1248 DPNI_OFF_TX_L4_CSUM, enable); 1249 if (err) { 1250 netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n"); 1251 return err; 1252 } 1253 1254 return 0; 1255 } 1256 1257 /* Perform a single release command to add buffers 1258 * to the specified buffer pool 1259 */ 1260 static int dpaa2_eth_add_bufs(struct dpaa2_eth_priv *priv, 1261 struct dpaa2_eth_channel *ch, u16 bpid) 1262 { 1263 struct device *dev = priv->net_dev->dev.parent; 1264 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1265 struct page *page; 1266 dma_addr_t addr; 1267 int retries = 0; 1268 int i, err; 1269 1270 for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) { 1271 /* Allocate buffer visible to WRIOP + skb shared info + 1272 * alignment padding 1273 */ 1274 /* allocate one page for each Rx buffer. WRIOP sees 1275 * the entire page except for a tailroom reserved for 1276 * skb shared info 1277 */ 1278 page = dev_alloc_pages(0); 1279 if (!page) 1280 goto err_alloc; 1281 1282 addr = dma_map_page(dev, page, 0, priv->rx_buf_size, 1283 DMA_BIDIRECTIONAL); 1284 if (unlikely(dma_mapping_error(dev, addr))) 1285 goto err_map; 1286 1287 buf_array[i] = addr; 1288 1289 /* tracing point */ 1290 trace_dpaa2_eth_buf_seed(priv->net_dev, 1291 page, DPAA2_ETH_RX_BUF_RAW_SIZE, 1292 addr, priv->rx_buf_size, 1293 bpid); 1294 } 1295 1296 release_bufs: 1297 /* In case the portal is busy, retry until successful */ 1298 while ((err = dpaa2_io_service_release(ch->dpio, bpid, 1299 buf_array, i)) == -EBUSY) { 1300 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 1301 break; 1302 cpu_relax(); 1303 } 1304 1305 /* If release command failed, clean up and bail out; 1306 * not much else we can do about it 1307 */ 1308 if (err) { 1309 dpaa2_eth_free_bufs(priv, buf_array, i); 1310 return 0; 1311 } 1312 1313 return i; 1314 1315 err_map: 1316 __free_pages(page, 0); 1317 err_alloc: 1318 /* If we managed to allocate at least some buffers, 1319 * release them to hardware 1320 */ 1321 if (i) 1322 goto release_bufs; 1323 1324 return 0; 1325 } 1326 1327 static int dpaa2_eth_seed_pool(struct dpaa2_eth_priv *priv, u16 bpid) 1328 { 1329 int i, j; 1330 int new_count; 1331 1332 for (j = 0; j < priv->num_channels; j++) { 1333 for (i = 0; i < DPAA2_ETH_NUM_BUFS; 1334 i += DPAA2_ETH_BUFS_PER_CMD) { 1335 new_count = dpaa2_eth_add_bufs(priv, priv->channel[j], bpid); 1336 priv->channel[j]->buf_count += new_count; 1337 1338 if (new_count < DPAA2_ETH_BUFS_PER_CMD) { 1339 return -ENOMEM; 1340 } 1341 } 1342 } 1343 1344 return 0; 1345 } 1346 1347 /* 1348 * Drain the specified number of buffers from the DPNI's private buffer pool. 1349 * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD 1350 */ 1351 static void dpaa2_eth_drain_bufs(struct dpaa2_eth_priv *priv, int count) 1352 { 1353 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1354 int retries = 0; 1355 int ret; 1356 1357 do { 1358 ret = dpaa2_io_service_acquire(NULL, priv->bpid, 1359 buf_array, count); 1360 if (ret < 0) { 1361 if (ret == -EBUSY && 1362 retries++ < DPAA2_ETH_SWP_BUSY_RETRIES) 1363 continue; 1364 netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n"); 1365 return; 1366 } 1367 dpaa2_eth_free_bufs(priv, buf_array, ret); 1368 retries = 0; 1369 } while (ret); 1370 } 1371 1372 static void dpaa2_eth_drain_pool(struct dpaa2_eth_priv *priv) 1373 { 1374 int i; 1375 1376 dpaa2_eth_drain_bufs(priv, DPAA2_ETH_BUFS_PER_CMD); 1377 dpaa2_eth_drain_bufs(priv, 1); 1378 1379 for (i = 0; i < priv->num_channels; i++) 1380 priv->channel[i]->buf_count = 0; 1381 } 1382 1383 /* Function is called from softirq context only, so we don't need to guard 1384 * the access to percpu count 1385 */ 1386 static int dpaa2_eth_refill_pool(struct dpaa2_eth_priv *priv, 1387 struct dpaa2_eth_channel *ch, 1388 u16 bpid) 1389 { 1390 int new_count; 1391 1392 if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH)) 1393 return 0; 1394 1395 do { 1396 new_count = dpaa2_eth_add_bufs(priv, ch, bpid); 1397 if (unlikely(!new_count)) { 1398 /* Out of memory; abort for now, we'll try later on */ 1399 break; 1400 } 1401 ch->buf_count += new_count; 1402 } while (ch->buf_count < DPAA2_ETH_NUM_BUFS); 1403 1404 if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS)) 1405 return -ENOMEM; 1406 1407 return 0; 1408 } 1409 1410 static void dpaa2_eth_sgt_cache_drain(struct dpaa2_eth_priv *priv) 1411 { 1412 struct dpaa2_eth_sgt_cache *sgt_cache; 1413 u16 count; 1414 int k, i; 1415 1416 for_each_possible_cpu(k) { 1417 sgt_cache = per_cpu_ptr(priv->sgt_cache, k); 1418 count = sgt_cache->count; 1419 1420 for (i = 0; i < count; i++) 1421 kfree(sgt_cache->buf[i]); 1422 sgt_cache->count = 0; 1423 } 1424 } 1425 1426 static int dpaa2_eth_pull_channel(struct dpaa2_eth_channel *ch) 1427 { 1428 int err; 1429 int dequeues = -1; 1430 1431 /* Retry while portal is busy */ 1432 do { 1433 err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id, 1434 ch->store); 1435 dequeues++; 1436 cpu_relax(); 1437 } while (err == -EBUSY && dequeues < DPAA2_ETH_SWP_BUSY_RETRIES); 1438 1439 ch->stats.dequeue_portal_busy += dequeues; 1440 if (unlikely(err)) 1441 ch->stats.pull_err++; 1442 1443 return err; 1444 } 1445 1446 /* NAPI poll routine 1447 * 1448 * Frames are dequeued from the QMan channel associated with this NAPI context. 1449 * Rx, Tx confirmation and (if configured) Rx error frames all count 1450 * towards the NAPI budget. 1451 */ 1452 static int dpaa2_eth_poll(struct napi_struct *napi, int budget) 1453 { 1454 struct dpaa2_eth_channel *ch; 1455 struct dpaa2_eth_priv *priv; 1456 int rx_cleaned = 0, txconf_cleaned = 0; 1457 struct dpaa2_eth_fq *fq, *txc_fq = NULL; 1458 struct netdev_queue *nq; 1459 int store_cleaned, work_done; 1460 struct list_head rx_list; 1461 int retries = 0; 1462 u16 flowid; 1463 int err; 1464 1465 ch = container_of(napi, struct dpaa2_eth_channel, napi); 1466 ch->xdp.res = 0; 1467 priv = ch->priv; 1468 1469 INIT_LIST_HEAD(&rx_list); 1470 ch->rx_list = &rx_list; 1471 1472 do { 1473 err = dpaa2_eth_pull_channel(ch); 1474 if (unlikely(err)) 1475 break; 1476 1477 /* Refill pool if appropriate */ 1478 dpaa2_eth_refill_pool(priv, ch, priv->bpid); 1479 1480 store_cleaned = dpaa2_eth_consume_frames(ch, &fq); 1481 if (store_cleaned <= 0) 1482 break; 1483 if (fq->type == DPAA2_RX_FQ) { 1484 rx_cleaned += store_cleaned; 1485 flowid = fq->flowid; 1486 } else { 1487 txconf_cleaned += store_cleaned; 1488 /* We have a single Tx conf FQ on this channel */ 1489 txc_fq = fq; 1490 } 1491 1492 /* If we either consumed the whole NAPI budget with Rx frames 1493 * or we reached the Tx confirmations threshold, we're done. 1494 */ 1495 if (rx_cleaned >= budget || 1496 txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI) { 1497 work_done = budget; 1498 goto out; 1499 } 1500 } while (store_cleaned); 1501 1502 /* We didn't consume the entire budget, so finish napi and 1503 * re-enable data availability notifications 1504 */ 1505 napi_complete_done(napi, rx_cleaned); 1506 do { 1507 err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx); 1508 cpu_relax(); 1509 } while (err == -EBUSY && retries++ < DPAA2_ETH_SWP_BUSY_RETRIES); 1510 WARN_ONCE(err, "CDAN notifications rearm failed on core %d", 1511 ch->nctx.desired_cpu); 1512 1513 work_done = max(rx_cleaned, 1); 1514 1515 out: 1516 netif_receive_skb_list(ch->rx_list); 1517 1518 if (txc_fq && txc_fq->dq_frames) { 1519 nq = netdev_get_tx_queue(priv->net_dev, txc_fq->flowid); 1520 netdev_tx_completed_queue(nq, txc_fq->dq_frames, 1521 txc_fq->dq_bytes); 1522 txc_fq->dq_frames = 0; 1523 txc_fq->dq_bytes = 0; 1524 } 1525 1526 if (ch->xdp.res & XDP_REDIRECT) 1527 xdp_do_flush_map(); 1528 else if (rx_cleaned && ch->xdp.res & XDP_TX) 1529 dpaa2_eth_xdp_tx_flush(priv, ch, &priv->fq[flowid]); 1530 1531 return work_done; 1532 } 1533 1534 static void dpaa2_eth_enable_ch_napi(struct dpaa2_eth_priv *priv) 1535 { 1536 struct dpaa2_eth_channel *ch; 1537 int i; 1538 1539 for (i = 0; i < priv->num_channels; i++) { 1540 ch = priv->channel[i]; 1541 napi_enable(&ch->napi); 1542 } 1543 } 1544 1545 static void dpaa2_eth_disable_ch_napi(struct dpaa2_eth_priv *priv) 1546 { 1547 struct dpaa2_eth_channel *ch; 1548 int i; 1549 1550 for (i = 0; i < priv->num_channels; i++) { 1551 ch = priv->channel[i]; 1552 napi_disable(&ch->napi); 1553 } 1554 } 1555 1556 void dpaa2_eth_set_rx_taildrop(struct dpaa2_eth_priv *priv, 1557 bool tx_pause, bool pfc) 1558 { 1559 struct dpni_taildrop td = {0}; 1560 struct dpaa2_eth_fq *fq; 1561 int i, err; 1562 1563 /* FQ taildrop: threshold is in bytes, per frame queue. Enabled if 1564 * flow control is disabled (as it might interfere with either the 1565 * buffer pool depletion trigger for pause frames or with the group 1566 * congestion trigger for PFC frames) 1567 */ 1568 td.enable = !tx_pause; 1569 if (priv->rx_fqtd_enabled == td.enable) 1570 goto set_cgtd; 1571 1572 td.threshold = DPAA2_ETH_FQ_TAILDROP_THRESH; 1573 td.units = DPNI_CONGESTION_UNIT_BYTES; 1574 1575 for (i = 0; i < priv->num_fqs; i++) { 1576 fq = &priv->fq[i]; 1577 if (fq->type != DPAA2_RX_FQ) 1578 continue; 1579 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, 1580 DPNI_CP_QUEUE, DPNI_QUEUE_RX, 1581 fq->tc, fq->flowid, &td); 1582 if (err) { 1583 netdev_err(priv->net_dev, 1584 "dpni_set_taildrop(FQ) failed\n"); 1585 return; 1586 } 1587 } 1588 1589 priv->rx_fqtd_enabled = td.enable; 1590 1591 set_cgtd: 1592 /* Congestion group taildrop: threshold is in frames, per group 1593 * of FQs belonging to the same traffic class 1594 * Enabled if general Tx pause disabled or if PFCs are enabled 1595 * (congestion group threhsold for PFC generation is lower than the 1596 * CG taildrop threshold, so it won't interfere with it; we also 1597 * want frames in non-PFC enabled traffic classes to be kept in check) 1598 */ 1599 td.enable = !tx_pause || (tx_pause && pfc); 1600 if (priv->rx_cgtd_enabled == td.enable) 1601 return; 1602 1603 td.threshold = DPAA2_ETH_CG_TAILDROP_THRESH(priv); 1604 td.units = DPNI_CONGESTION_UNIT_FRAMES; 1605 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 1606 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, 1607 DPNI_CP_GROUP, DPNI_QUEUE_RX, 1608 i, 0, &td); 1609 if (err) { 1610 netdev_err(priv->net_dev, 1611 "dpni_set_taildrop(CG) failed\n"); 1612 return; 1613 } 1614 } 1615 1616 priv->rx_cgtd_enabled = td.enable; 1617 } 1618 1619 static int dpaa2_eth_link_state_update(struct dpaa2_eth_priv *priv) 1620 { 1621 struct dpni_link_state state = {0}; 1622 bool tx_pause; 1623 int err; 1624 1625 err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state); 1626 if (unlikely(err)) { 1627 netdev_err(priv->net_dev, 1628 "dpni_get_link_state() failed\n"); 1629 return err; 1630 } 1631 1632 /* If Tx pause frame settings have changed, we need to update 1633 * Rx FQ taildrop configuration as well. We configure taildrop 1634 * only when pause frame generation is disabled. 1635 */ 1636 tx_pause = dpaa2_eth_tx_pause_enabled(state.options); 1637 dpaa2_eth_set_rx_taildrop(priv, tx_pause, priv->pfc_enabled); 1638 1639 /* When we manage the MAC/PHY using phylink there is no need 1640 * to manually update the netif_carrier. 1641 */ 1642 if (priv->mac) 1643 goto out; 1644 1645 /* Chech link state; speed / duplex changes are not treated yet */ 1646 if (priv->link_state.up == state.up) 1647 goto out; 1648 1649 if (state.up) { 1650 netif_carrier_on(priv->net_dev); 1651 netif_tx_start_all_queues(priv->net_dev); 1652 } else { 1653 netif_tx_stop_all_queues(priv->net_dev); 1654 netif_carrier_off(priv->net_dev); 1655 } 1656 1657 netdev_info(priv->net_dev, "Link Event: state %s\n", 1658 state.up ? "up" : "down"); 1659 1660 out: 1661 priv->link_state = state; 1662 1663 return 0; 1664 } 1665 1666 static int dpaa2_eth_open(struct net_device *net_dev) 1667 { 1668 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1669 int err; 1670 1671 err = dpaa2_eth_seed_pool(priv, priv->bpid); 1672 if (err) { 1673 /* Not much to do; the buffer pool, though not filled up, 1674 * may still contain some buffers which would enable us 1675 * to limp on. 1676 */ 1677 netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n", 1678 priv->dpbp_dev->obj_desc.id, priv->bpid); 1679 } 1680 1681 if (!priv->mac) { 1682 /* We'll only start the txqs when the link is actually ready; 1683 * make sure we don't race against the link up notification, 1684 * which may come immediately after dpni_enable(); 1685 */ 1686 netif_tx_stop_all_queues(net_dev); 1687 1688 /* Also, explicitly set carrier off, otherwise 1689 * netif_carrier_ok() will return true and cause 'ip link show' 1690 * to report the LOWER_UP flag, even though the link 1691 * notification wasn't even received. 1692 */ 1693 netif_carrier_off(net_dev); 1694 } 1695 dpaa2_eth_enable_ch_napi(priv); 1696 1697 err = dpni_enable(priv->mc_io, 0, priv->mc_token); 1698 if (err < 0) { 1699 netdev_err(net_dev, "dpni_enable() failed\n"); 1700 goto enable_err; 1701 } 1702 1703 if (priv->mac) 1704 phylink_start(priv->mac->phylink); 1705 1706 return 0; 1707 1708 enable_err: 1709 dpaa2_eth_disable_ch_napi(priv); 1710 dpaa2_eth_drain_pool(priv); 1711 return err; 1712 } 1713 1714 /* Total number of in-flight frames on ingress queues */ 1715 static u32 dpaa2_eth_ingress_fq_count(struct dpaa2_eth_priv *priv) 1716 { 1717 struct dpaa2_eth_fq *fq; 1718 u32 fcnt = 0, bcnt = 0, total = 0; 1719 int i, err; 1720 1721 for (i = 0; i < priv->num_fqs; i++) { 1722 fq = &priv->fq[i]; 1723 err = dpaa2_io_query_fq_count(NULL, fq->fqid, &fcnt, &bcnt); 1724 if (err) { 1725 netdev_warn(priv->net_dev, "query_fq_count failed"); 1726 break; 1727 } 1728 total += fcnt; 1729 } 1730 1731 return total; 1732 } 1733 1734 static void dpaa2_eth_wait_for_ingress_fq_empty(struct dpaa2_eth_priv *priv) 1735 { 1736 int retries = 10; 1737 u32 pending; 1738 1739 do { 1740 pending = dpaa2_eth_ingress_fq_count(priv); 1741 if (pending) 1742 msleep(100); 1743 } while (pending && --retries); 1744 } 1745 1746 #define DPNI_TX_PENDING_VER_MAJOR 7 1747 #define DPNI_TX_PENDING_VER_MINOR 13 1748 static void dpaa2_eth_wait_for_egress_fq_empty(struct dpaa2_eth_priv *priv) 1749 { 1750 union dpni_statistics stats; 1751 int retries = 10; 1752 int err; 1753 1754 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_TX_PENDING_VER_MAJOR, 1755 DPNI_TX_PENDING_VER_MINOR) < 0) 1756 goto out; 1757 1758 do { 1759 err = dpni_get_statistics(priv->mc_io, 0, priv->mc_token, 6, 1760 &stats); 1761 if (err) 1762 goto out; 1763 if (stats.page_6.tx_pending_frames == 0) 1764 return; 1765 } while (--retries); 1766 1767 out: 1768 msleep(500); 1769 } 1770 1771 static int dpaa2_eth_stop(struct net_device *net_dev) 1772 { 1773 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1774 int dpni_enabled = 0; 1775 int retries = 10; 1776 1777 if (!priv->mac) { 1778 netif_tx_stop_all_queues(net_dev); 1779 netif_carrier_off(net_dev); 1780 } else { 1781 phylink_stop(priv->mac->phylink); 1782 } 1783 1784 /* On dpni_disable(), the MC firmware will: 1785 * - stop MAC Rx and wait for all Rx frames to be enqueued to software 1786 * - cut off WRIOP dequeues from egress FQs and wait until transmission 1787 * of all in flight Tx frames is finished (and corresponding Tx conf 1788 * frames are enqueued back to software) 1789 * 1790 * Before calling dpni_disable(), we wait for all Tx frames to arrive 1791 * on WRIOP. After it finishes, wait until all remaining frames on Rx 1792 * and Tx conf queues are consumed on NAPI poll. 1793 */ 1794 dpaa2_eth_wait_for_egress_fq_empty(priv); 1795 1796 do { 1797 dpni_disable(priv->mc_io, 0, priv->mc_token); 1798 dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled); 1799 if (dpni_enabled) 1800 /* Allow the hardware some slack */ 1801 msleep(100); 1802 } while (dpni_enabled && --retries); 1803 if (!retries) { 1804 netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n"); 1805 /* Must go on and disable NAPI nonetheless, so we don't crash at 1806 * the next "ifconfig up" 1807 */ 1808 } 1809 1810 dpaa2_eth_wait_for_ingress_fq_empty(priv); 1811 dpaa2_eth_disable_ch_napi(priv); 1812 1813 /* Empty the buffer pool */ 1814 dpaa2_eth_drain_pool(priv); 1815 1816 /* Empty the Scatter-Gather Buffer cache */ 1817 dpaa2_eth_sgt_cache_drain(priv); 1818 1819 return 0; 1820 } 1821 1822 static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr) 1823 { 1824 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1825 struct device *dev = net_dev->dev.parent; 1826 int err; 1827 1828 err = eth_mac_addr(net_dev, addr); 1829 if (err < 0) { 1830 dev_err(dev, "eth_mac_addr() failed (%d)\n", err); 1831 return err; 1832 } 1833 1834 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 1835 net_dev->dev_addr); 1836 if (err) { 1837 dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err); 1838 return err; 1839 } 1840 1841 return 0; 1842 } 1843 1844 /** Fill in counters maintained by the GPP driver. These may be different from 1845 * the hardware counters obtained by ethtool. 1846 */ 1847 static void dpaa2_eth_get_stats(struct net_device *net_dev, 1848 struct rtnl_link_stats64 *stats) 1849 { 1850 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1851 struct rtnl_link_stats64 *percpu_stats; 1852 u64 *cpustats; 1853 u64 *netstats = (u64 *)stats; 1854 int i, j; 1855 int num = sizeof(struct rtnl_link_stats64) / sizeof(u64); 1856 1857 for_each_possible_cpu(i) { 1858 percpu_stats = per_cpu_ptr(priv->percpu_stats, i); 1859 cpustats = (u64 *)percpu_stats; 1860 for (j = 0; j < num; j++) 1861 netstats[j] += cpustats[j]; 1862 } 1863 } 1864 1865 /* Copy mac unicast addresses from @net_dev to @priv. 1866 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1867 */ 1868 static void dpaa2_eth_add_uc_hw_addr(const struct net_device *net_dev, 1869 struct dpaa2_eth_priv *priv) 1870 { 1871 struct netdev_hw_addr *ha; 1872 int err; 1873 1874 netdev_for_each_uc_addr(ha, net_dev) { 1875 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1876 ha->addr); 1877 if (err) 1878 netdev_warn(priv->net_dev, 1879 "Could not add ucast MAC %pM to the filtering table (err %d)\n", 1880 ha->addr, err); 1881 } 1882 } 1883 1884 /* Copy mac multicast addresses from @net_dev to @priv 1885 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1886 */ 1887 static void dpaa2_eth_add_mc_hw_addr(const struct net_device *net_dev, 1888 struct dpaa2_eth_priv *priv) 1889 { 1890 struct netdev_hw_addr *ha; 1891 int err; 1892 1893 netdev_for_each_mc_addr(ha, net_dev) { 1894 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1895 ha->addr); 1896 if (err) 1897 netdev_warn(priv->net_dev, 1898 "Could not add mcast MAC %pM to the filtering table (err %d)\n", 1899 ha->addr, err); 1900 } 1901 } 1902 1903 static void dpaa2_eth_set_rx_mode(struct net_device *net_dev) 1904 { 1905 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1906 int uc_count = netdev_uc_count(net_dev); 1907 int mc_count = netdev_mc_count(net_dev); 1908 u8 max_mac = priv->dpni_attrs.mac_filter_entries; 1909 u32 options = priv->dpni_attrs.options; 1910 u16 mc_token = priv->mc_token; 1911 struct fsl_mc_io *mc_io = priv->mc_io; 1912 int err; 1913 1914 /* Basic sanity checks; these probably indicate a misconfiguration */ 1915 if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0) 1916 netdev_info(net_dev, 1917 "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n", 1918 max_mac); 1919 1920 /* Force promiscuous if the uc or mc counts exceed our capabilities. */ 1921 if (uc_count > max_mac) { 1922 netdev_info(net_dev, 1923 "Unicast addr count reached %d, max allowed is %d; forcing promisc\n", 1924 uc_count, max_mac); 1925 goto force_promisc; 1926 } 1927 if (mc_count + uc_count > max_mac) { 1928 netdev_info(net_dev, 1929 "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n", 1930 uc_count + mc_count, max_mac); 1931 goto force_mc_promisc; 1932 } 1933 1934 /* Adjust promisc settings due to flag combinations */ 1935 if (net_dev->flags & IFF_PROMISC) 1936 goto force_promisc; 1937 if (net_dev->flags & IFF_ALLMULTI) { 1938 /* First, rebuild unicast filtering table. This should be done 1939 * in promisc mode, in order to avoid frame loss while we 1940 * progressively add entries to the table. 1941 * We don't know whether we had been in promisc already, and 1942 * making an MC call to find out is expensive; so set uc promisc 1943 * nonetheless. 1944 */ 1945 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1946 if (err) 1947 netdev_warn(net_dev, "Can't set uc promisc\n"); 1948 1949 /* Actual uc table reconstruction. */ 1950 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0); 1951 if (err) 1952 netdev_warn(net_dev, "Can't clear uc filters\n"); 1953 dpaa2_eth_add_uc_hw_addr(net_dev, priv); 1954 1955 /* Finally, clear uc promisc and set mc promisc as requested. */ 1956 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1957 if (err) 1958 netdev_warn(net_dev, "Can't clear uc promisc\n"); 1959 goto force_mc_promisc; 1960 } 1961 1962 /* Neither unicast, nor multicast promisc will be on... eventually. 1963 * For now, rebuild mac filtering tables while forcing both of them on. 1964 */ 1965 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1966 if (err) 1967 netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err); 1968 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1969 if (err) 1970 netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err); 1971 1972 /* Actual mac filtering tables reconstruction */ 1973 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1); 1974 if (err) 1975 netdev_warn(net_dev, "Can't clear mac filters\n"); 1976 dpaa2_eth_add_mc_hw_addr(net_dev, priv); 1977 dpaa2_eth_add_uc_hw_addr(net_dev, priv); 1978 1979 /* Now we can clear both ucast and mcast promisc, without risking 1980 * to drop legitimate frames anymore. 1981 */ 1982 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1983 if (err) 1984 netdev_warn(net_dev, "Can't clear ucast promisc\n"); 1985 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0); 1986 if (err) 1987 netdev_warn(net_dev, "Can't clear mcast promisc\n"); 1988 1989 return; 1990 1991 force_promisc: 1992 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1993 if (err) 1994 netdev_warn(net_dev, "Can't set ucast promisc\n"); 1995 force_mc_promisc: 1996 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1997 if (err) 1998 netdev_warn(net_dev, "Can't set mcast promisc\n"); 1999 } 2000 2001 static int dpaa2_eth_set_features(struct net_device *net_dev, 2002 netdev_features_t features) 2003 { 2004 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2005 netdev_features_t changed = features ^ net_dev->features; 2006 bool enable; 2007 int err; 2008 2009 if (changed & NETIF_F_RXCSUM) { 2010 enable = !!(features & NETIF_F_RXCSUM); 2011 err = dpaa2_eth_set_rx_csum(priv, enable); 2012 if (err) 2013 return err; 2014 } 2015 2016 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 2017 enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 2018 err = dpaa2_eth_set_tx_csum(priv, enable); 2019 if (err) 2020 return err; 2021 } 2022 2023 return 0; 2024 } 2025 2026 static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2027 { 2028 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2029 struct hwtstamp_config config; 2030 2031 if (!dpaa2_ptp) 2032 return -EINVAL; 2033 2034 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 2035 return -EFAULT; 2036 2037 switch (config.tx_type) { 2038 case HWTSTAMP_TX_OFF: 2039 case HWTSTAMP_TX_ON: 2040 case HWTSTAMP_TX_ONESTEP_SYNC: 2041 priv->tx_tstamp_type = config.tx_type; 2042 break; 2043 default: 2044 return -ERANGE; 2045 } 2046 2047 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 2048 priv->rx_tstamp = false; 2049 } else { 2050 priv->rx_tstamp = true; 2051 /* TS is set for all frame types, not only those requested */ 2052 config.rx_filter = HWTSTAMP_FILTER_ALL; 2053 } 2054 2055 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 2056 -EFAULT : 0; 2057 } 2058 2059 static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2060 { 2061 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2062 2063 if (cmd == SIOCSHWTSTAMP) 2064 return dpaa2_eth_ts_ioctl(dev, rq, cmd); 2065 2066 if (priv->mac) 2067 return phylink_mii_ioctl(priv->mac->phylink, rq, cmd); 2068 2069 return -EOPNOTSUPP; 2070 } 2071 2072 static bool xdp_mtu_valid(struct dpaa2_eth_priv *priv, int mtu) 2073 { 2074 int mfl, linear_mfl; 2075 2076 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 2077 linear_mfl = priv->rx_buf_size - DPAA2_ETH_RX_HWA_SIZE - 2078 dpaa2_eth_rx_head_room(priv) - XDP_PACKET_HEADROOM; 2079 2080 if (mfl > linear_mfl) { 2081 netdev_warn(priv->net_dev, "Maximum MTU for XDP is %d\n", 2082 linear_mfl - VLAN_ETH_HLEN); 2083 return false; 2084 } 2085 2086 return true; 2087 } 2088 2089 static int dpaa2_eth_set_rx_mfl(struct dpaa2_eth_priv *priv, int mtu, bool has_xdp) 2090 { 2091 int mfl, err; 2092 2093 /* We enforce a maximum Rx frame length based on MTU only if we have 2094 * an XDP program attached (in order to avoid Rx S/G frames). 2095 * Otherwise, we accept all incoming frames as long as they are not 2096 * larger than maximum size supported in hardware 2097 */ 2098 if (has_xdp) 2099 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 2100 else 2101 mfl = DPAA2_ETH_MFL; 2102 2103 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, mfl); 2104 if (err) { 2105 netdev_err(priv->net_dev, "dpni_set_max_frame_length failed\n"); 2106 return err; 2107 } 2108 2109 return 0; 2110 } 2111 2112 static int dpaa2_eth_change_mtu(struct net_device *dev, int new_mtu) 2113 { 2114 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2115 int err; 2116 2117 if (!priv->xdp_prog) 2118 goto out; 2119 2120 if (!xdp_mtu_valid(priv, new_mtu)) 2121 return -EINVAL; 2122 2123 err = dpaa2_eth_set_rx_mfl(priv, new_mtu, true); 2124 if (err) 2125 return err; 2126 2127 out: 2128 dev->mtu = new_mtu; 2129 return 0; 2130 } 2131 2132 static int dpaa2_eth_update_rx_buffer_headroom(struct dpaa2_eth_priv *priv, bool has_xdp) 2133 { 2134 struct dpni_buffer_layout buf_layout = {0}; 2135 int err; 2136 2137 err = dpni_get_buffer_layout(priv->mc_io, 0, priv->mc_token, 2138 DPNI_QUEUE_RX, &buf_layout); 2139 if (err) { 2140 netdev_err(priv->net_dev, "dpni_get_buffer_layout failed\n"); 2141 return err; 2142 } 2143 2144 /* Reserve extra headroom for XDP header size changes */ 2145 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv) + 2146 (has_xdp ? XDP_PACKET_HEADROOM : 0); 2147 buf_layout.options = DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM; 2148 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2149 DPNI_QUEUE_RX, &buf_layout); 2150 if (err) { 2151 netdev_err(priv->net_dev, "dpni_set_buffer_layout failed\n"); 2152 return err; 2153 } 2154 2155 return 0; 2156 } 2157 2158 static int dpaa2_eth_setup_xdp(struct net_device *dev, struct bpf_prog *prog) 2159 { 2160 struct dpaa2_eth_priv *priv = netdev_priv(dev); 2161 struct dpaa2_eth_channel *ch; 2162 struct bpf_prog *old; 2163 bool up, need_update; 2164 int i, err; 2165 2166 if (prog && !xdp_mtu_valid(priv, dev->mtu)) 2167 return -EINVAL; 2168 2169 if (prog) 2170 bpf_prog_add(prog, priv->num_channels); 2171 2172 up = netif_running(dev); 2173 need_update = (!!priv->xdp_prog != !!prog); 2174 2175 if (up) 2176 dpaa2_eth_stop(dev); 2177 2178 /* While in xdp mode, enforce a maximum Rx frame size based on MTU. 2179 * Also, when switching between xdp/non-xdp modes we need to reconfigure 2180 * our Rx buffer layout. Buffer pool was drained on dpaa2_eth_stop, 2181 * so we are sure no old format buffers will be used from now on. 2182 */ 2183 if (need_update) { 2184 err = dpaa2_eth_set_rx_mfl(priv, dev->mtu, !!prog); 2185 if (err) 2186 goto out_err; 2187 err = dpaa2_eth_update_rx_buffer_headroom(priv, !!prog); 2188 if (err) 2189 goto out_err; 2190 } 2191 2192 old = xchg(&priv->xdp_prog, prog); 2193 if (old) 2194 bpf_prog_put(old); 2195 2196 for (i = 0; i < priv->num_channels; i++) { 2197 ch = priv->channel[i]; 2198 old = xchg(&ch->xdp.prog, prog); 2199 if (old) 2200 bpf_prog_put(old); 2201 } 2202 2203 if (up) { 2204 err = dpaa2_eth_open(dev); 2205 if (err) 2206 return err; 2207 } 2208 2209 return 0; 2210 2211 out_err: 2212 if (prog) 2213 bpf_prog_sub(prog, priv->num_channels); 2214 if (up) 2215 dpaa2_eth_open(dev); 2216 2217 return err; 2218 } 2219 2220 static int dpaa2_eth_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2221 { 2222 switch (xdp->command) { 2223 case XDP_SETUP_PROG: 2224 return dpaa2_eth_setup_xdp(dev, xdp->prog); 2225 default: 2226 return -EINVAL; 2227 } 2228 2229 return 0; 2230 } 2231 2232 static int dpaa2_eth_xdp_create_fd(struct net_device *net_dev, 2233 struct xdp_frame *xdpf, 2234 struct dpaa2_fd *fd) 2235 { 2236 struct device *dev = net_dev->dev.parent; 2237 unsigned int needed_headroom; 2238 struct dpaa2_eth_swa *swa; 2239 void *buffer_start, *aligned_start; 2240 dma_addr_t addr; 2241 2242 /* We require a minimum headroom to be able to transmit the frame. 2243 * Otherwise return an error and let the original net_device handle it 2244 */ 2245 needed_headroom = dpaa2_eth_needed_headroom(NULL); 2246 if (xdpf->headroom < needed_headroom) 2247 return -EINVAL; 2248 2249 /* Setup the FD fields */ 2250 memset(fd, 0, sizeof(*fd)); 2251 2252 /* Align FD address, if possible */ 2253 buffer_start = xdpf->data - needed_headroom; 2254 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 2255 DPAA2_ETH_TX_BUF_ALIGN); 2256 if (aligned_start >= xdpf->data - xdpf->headroom) 2257 buffer_start = aligned_start; 2258 2259 swa = (struct dpaa2_eth_swa *)buffer_start; 2260 /* fill in necessary fields here */ 2261 swa->type = DPAA2_ETH_SWA_XDP; 2262 swa->xdp.dma_size = xdpf->data + xdpf->len - buffer_start; 2263 swa->xdp.xdpf = xdpf; 2264 2265 addr = dma_map_single(dev, buffer_start, 2266 swa->xdp.dma_size, 2267 DMA_BIDIRECTIONAL); 2268 if (unlikely(dma_mapping_error(dev, addr))) 2269 return -ENOMEM; 2270 2271 dpaa2_fd_set_addr(fd, addr); 2272 dpaa2_fd_set_offset(fd, xdpf->data - buffer_start); 2273 dpaa2_fd_set_len(fd, xdpf->len); 2274 dpaa2_fd_set_format(fd, dpaa2_fd_single); 2275 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 2276 2277 return 0; 2278 } 2279 2280 static int dpaa2_eth_xdp_xmit(struct net_device *net_dev, int n, 2281 struct xdp_frame **frames, u32 flags) 2282 { 2283 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2284 struct dpaa2_eth_xdp_fds *xdp_redirect_fds; 2285 struct rtnl_link_stats64 *percpu_stats; 2286 struct dpaa2_eth_fq *fq; 2287 struct dpaa2_fd *fds; 2288 int enqueued, i, err; 2289 2290 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2291 return -EINVAL; 2292 2293 if (!netif_running(net_dev)) 2294 return -ENETDOWN; 2295 2296 fq = &priv->fq[smp_processor_id()]; 2297 xdp_redirect_fds = &fq->xdp_redirect_fds; 2298 fds = xdp_redirect_fds->fds; 2299 2300 percpu_stats = this_cpu_ptr(priv->percpu_stats); 2301 2302 /* create a FD for each xdp_frame in the list received */ 2303 for (i = 0; i < n; i++) { 2304 err = dpaa2_eth_xdp_create_fd(net_dev, frames[i], &fds[i]); 2305 if (err) 2306 break; 2307 } 2308 xdp_redirect_fds->num = i; 2309 2310 /* enqueue all the frame descriptors */ 2311 enqueued = dpaa2_eth_xdp_flush(priv, fq, xdp_redirect_fds); 2312 2313 /* update statistics */ 2314 percpu_stats->tx_packets += enqueued; 2315 for (i = 0; i < enqueued; i++) 2316 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fds[i]); 2317 for (i = enqueued; i < n; i++) 2318 xdp_return_frame_rx_napi(frames[i]); 2319 2320 return enqueued; 2321 } 2322 2323 static int update_xps(struct dpaa2_eth_priv *priv) 2324 { 2325 struct net_device *net_dev = priv->net_dev; 2326 struct cpumask xps_mask; 2327 struct dpaa2_eth_fq *fq; 2328 int i, num_queues, netdev_queues; 2329 int err = 0; 2330 2331 num_queues = dpaa2_eth_queue_count(priv); 2332 netdev_queues = (net_dev->num_tc ? : 1) * num_queues; 2333 2334 /* The first <num_queues> entries in priv->fq array are Tx/Tx conf 2335 * queues, so only process those 2336 */ 2337 for (i = 0; i < netdev_queues; i++) { 2338 fq = &priv->fq[i % num_queues]; 2339 2340 cpumask_clear(&xps_mask); 2341 cpumask_set_cpu(fq->target_cpu, &xps_mask); 2342 2343 err = netif_set_xps_queue(net_dev, &xps_mask, i); 2344 if (err) { 2345 netdev_warn_once(net_dev, "Error setting XPS queue\n"); 2346 break; 2347 } 2348 } 2349 2350 return err; 2351 } 2352 2353 static int dpaa2_eth_setup_mqprio(struct net_device *net_dev, 2354 struct tc_mqprio_qopt *mqprio) 2355 { 2356 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2357 u8 num_tc, num_queues; 2358 int i; 2359 2360 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 2361 num_queues = dpaa2_eth_queue_count(priv); 2362 num_tc = mqprio->num_tc; 2363 2364 if (num_tc == net_dev->num_tc) 2365 return 0; 2366 2367 if (num_tc > dpaa2_eth_tc_count(priv)) { 2368 netdev_err(net_dev, "Max %d traffic classes supported\n", 2369 dpaa2_eth_tc_count(priv)); 2370 return -EOPNOTSUPP; 2371 } 2372 2373 if (!num_tc) { 2374 netdev_reset_tc(net_dev); 2375 netif_set_real_num_tx_queues(net_dev, num_queues); 2376 goto out; 2377 } 2378 2379 netdev_set_num_tc(net_dev, num_tc); 2380 netif_set_real_num_tx_queues(net_dev, num_tc * num_queues); 2381 2382 for (i = 0; i < num_tc; i++) 2383 netdev_set_tc_queue(net_dev, i, num_queues, i * num_queues); 2384 2385 out: 2386 update_xps(priv); 2387 2388 return 0; 2389 } 2390 2391 #define bps_to_mbits(rate) (div_u64((rate), 1000000) * 8) 2392 2393 static int dpaa2_eth_setup_tbf(struct net_device *net_dev, struct tc_tbf_qopt_offload *p) 2394 { 2395 struct tc_tbf_qopt_offload_replace_params *cfg = &p->replace_params; 2396 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2397 struct dpni_tx_shaping_cfg tx_cr_shaper = { 0 }; 2398 struct dpni_tx_shaping_cfg tx_er_shaper = { 0 }; 2399 int err; 2400 2401 if (p->command == TC_TBF_STATS) 2402 return -EOPNOTSUPP; 2403 2404 /* Only per port Tx shaping */ 2405 if (p->parent != TC_H_ROOT) 2406 return -EOPNOTSUPP; 2407 2408 if (p->command == TC_TBF_REPLACE) { 2409 if (cfg->max_size > DPAA2_ETH_MAX_BURST_SIZE) { 2410 netdev_err(net_dev, "burst size cannot be greater than %d\n", 2411 DPAA2_ETH_MAX_BURST_SIZE); 2412 return -EINVAL; 2413 } 2414 2415 tx_cr_shaper.max_burst_size = cfg->max_size; 2416 /* The TBF interface is in bytes/s, whereas DPAA2 expects the 2417 * rate in Mbits/s 2418 */ 2419 tx_cr_shaper.rate_limit = bps_to_mbits(cfg->rate.rate_bytes_ps); 2420 } 2421 2422 err = dpni_set_tx_shaping(priv->mc_io, 0, priv->mc_token, &tx_cr_shaper, 2423 &tx_er_shaper, 0); 2424 if (err) { 2425 netdev_err(net_dev, "dpni_set_tx_shaping() = %d\n", err); 2426 return err; 2427 } 2428 2429 return 0; 2430 } 2431 2432 static int dpaa2_eth_setup_tc(struct net_device *net_dev, 2433 enum tc_setup_type type, void *type_data) 2434 { 2435 switch (type) { 2436 case TC_SETUP_QDISC_MQPRIO: 2437 return dpaa2_eth_setup_mqprio(net_dev, type_data); 2438 case TC_SETUP_QDISC_TBF: 2439 return dpaa2_eth_setup_tbf(net_dev, type_data); 2440 default: 2441 return -EOPNOTSUPP; 2442 } 2443 } 2444 2445 static const struct net_device_ops dpaa2_eth_ops = { 2446 .ndo_open = dpaa2_eth_open, 2447 .ndo_start_xmit = dpaa2_eth_tx, 2448 .ndo_stop = dpaa2_eth_stop, 2449 .ndo_set_mac_address = dpaa2_eth_set_addr, 2450 .ndo_get_stats64 = dpaa2_eth_get_stats, 2451 .ndo_set_rx_mode = dpaa2_eth_set_rx_mode, 2452 .ndo_set_features = dpaa2_eth_set_features, 2453 .ndo_do_ioctl = dpaa2_eth_ioctl, 2454 .ndo_change_mtu = dpaa2_eth_change_mtu, 2455 .ndo_bpf = dpaa2_eth_xdp, 2456 .ndo_xdp_xmit = dpaa2_eth_xdp_xmit, 2457 .ndo_setup_tc = dpaa2_eth_setup_tc, 2458 }; 2459 2460 static void dpaa2_eth_cdan_cb(struct dpaa2_io_notification_ctx *ctx) 2461 { 2462 struct dpaa2_eth_channel *ch; 2463 2464 ch = container_of(ctx, struct dpaa2_eth_channel, nctx); 2465 2466 /* Update NAPI statistics */ 2467 ch->stats.cdan++; 2468 2469 napi_schedule(&ch->napi); 2470 } 2471 2472 /* Allocate and configure a DPCON object */ 2473 static struct fsl_mc_device *dpaa2_eth_setup_dpcon(struct dpaa2_eth_priv *priv) 2474 { 2475 struct fsl_mc_device *dpcon; 2476 struct device *dev = priv->net_dev->dev.parent; 2477 int err; 2478 2479 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), 2480 FSL_MC_POOL_DPCON, &dpcon); 2481 if (err) { 2482 if (err == -ENXIO) 2483 err = -EPROBE_DEFER; 2484 else 2485 dev_info(dev, "Not enough DPCONs, will go on as-is\n"); 2486 return ERR_PTR(err); 2487 } 2488 2489 err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle); 2490 if (err) { 2491 dev_err(dev, "dpcon_open() failed\n"); 2492 goto free; 2493 } 2494 2495 err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle); 2496 if (err) { 2497 dev_err(dev, "dpcon_reset() failed\n"); 2498 goto close; 2499 } 2500 2501 err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle); 2502 if (err) { 2503 dev_err(dev, "dpcon_enable() failed\n"); 2504 goto close; 2505 } 2506 2507 return dpcon; 2508 2509 close: 2510 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 2511 free: 2512 fsl_mc_object_free(dpcon); 2513 2514 return ERR_PTR(err); 2515 } 2516 2517 static void dpaa2_eth_free_dpcon(struct dpaa2_eth_priv *priv, 2518 struct fsl_mc_device *dpcon) 2519 { 2520 dpcon_disable(priv->mc_io, 0, dpcon->mc_handle); 2521 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 2522 fsl_mc_object_free(dpcon); 2523 } 2524 2525 static struct dpaa2_eth_channel *dpaa2_eth_alloc_channel(struct dpaa2_eth_priv *priv) 2526 { 2527 struct dpaa2_eth_channel *channel; 2528 struct dpcon_attr attr; 2529 struct device *dev = priv->net_dev->dev.parent; 2530 int err; 2531 2532 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 2533 if (!channel) 2534 return NULL; 2535 2536 channel->dpcon = dpaa2_eth_setup_dpcon(priv); 2537 if (IS_ERR(channel->dpcon)) { 2538 err = PTR_ERR(channel->dpcon); 2539 goto err_setup; 2540 } 2541 2542 err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle, 2543 &attr); 2544 if (err) { 2545 dev_err(dev, "dpcon_get_attributes() failed\n"); 2546 goto err_get_attr; 2547 } 2548 2549 channel->dpcon_id = attr.id; 2550 channel->ch_id = attr.qbman_ch_id; 2551 channel->priv = priv; 2552 2553 return channel; 2554 2555 err_get_attr: 2556 dpaa2_eth_free_dpcon(priv, channel->dpcon); 2557 err_setup: 2558 kfree(channel); 2559 return ERR_PTR(err); 2560 } 2561 2562 static void dpaa2_eth_free_channel(struct dpaa2_eth_priv *priv, 2563 struct dpaa2_eth_channel *channel) 2564 { 2565 dpaa2_eth_free_dpcon(priv, channel->dpcon); 2566 kfree(channel); 2567 } 2568 2569 /* DPIO setup: allocate and configure QBMan channels, setup core affinity 2570 * and register data availability notifications 2571 */ 2572 static int dpaa2_eth_setup_dpio(struct dpaa2_eth_priv *priv) 2573 { 2574 struct dpaa2_io_notification_ctx *nctx; 2575 struct dpaa2_eth_channel *channel; 2576 struct dpcon_notification_cfg dpcon_notif_cfg; 2577 struct device *dev = priv->net_dev->dev.parent; 2578 int i, err; 2579 2580 /* We want the ability to spread ingress traffic (RX, TX conf) to as 2581 * many cores as possible, so we need one channel for each core 2582 * (unless there's fewer queues than cores, in which case the extra 2583 * channels would be wasted). 2584 * Allocate one channel per core and register it to the core's 2585 * affine DPIO. If not enough channels are available for all cores 2586 * or if some cores don't have an affine DPIO, there will be no 2587 * ingress frame processing on those cores. 2588 */ 2589 cpumask_clear(&priv->dpio_cpumask); 2590 for_each_online_cpu(i) { 2591 /* Try to allocate a channel */ 2592 channel = dpaa2_eth_alloc_channel(priv); 2593 if (IS_ERR_OR_NULL(channel)) { 2594 err = PTR_ERR_OR_ZERO(channel); 2595 if (err != -EPROBE_DEFER) 2596 dev_info(dev, 2597 "No affine channel for cpu %d and above\n", i); 2598 goto err_alloc_ch; 2599 } 2600 2601 priv->channel[priv->num_channels] = channel; 2602 2603 nctx = &channel->nctx; 2604 nctx->is_cdan = 1; 2605 nctx->cb = dpaa2_eth_cdan_cb; 2606 nctx->id = channel->ch_id; 2607 nctx->desired_cpu = i; 2608 2609 /* Register the new context */ 2610 channel->dpio = dpaa2_io_service_select(i); 2611 err = dpaa2_io_service_register(channel->dpio, nctx, dev); 2612 if (err) { 2613 dev_dbg(dev, "No affine DPIO for cpu %d\n", i); 2614 /* If no affine DPIO for this core, there's probably 2615 * none available for next cores either. Signal we want 2616 * to retry later, in case the DPIO devices weren't 2617 * probed yet. 2618 */ 2619 err = -EPROBE_DEFER; 2620 goto err_service_reg; 2621 } 2622 2623 /* Register DPCON notification with MC */ 2624 dpcon_notif_cfg.dpio_id = nctx->dpio_id; 2625 dpcon_notif_cfg.priority = 0; 2626 dpcon_notif_cfg.user_ctx = nctx->qman64; 2627 err = dpcon_set_notification(priv->mc_io, 0, 2628 channel->dpcon->mc_handle, 2629 &dpcon_notif_cfg); 2630 if (err) { 2631 dev_err(dev, "dpcon_set_notification failed()\n"); 2632 goto err_set_cdan; 2633 } 2634 2635 /* If we managed to allocate a channel and also found an affine 2636 * DPIO for this core, add it to the final mask 2637 */ 2638 cpumask_set_cpu(i, &priv->dpio_cpumask); 2639 priv->num_channels++; 2640 2641 /* Stop if we already have enough channels to accommodate all 2642 * RX and TX conf queues 2643 */ 2644 if (priv->num_channels == priv->dpni_attrs.num_queues) 2645 break; 2646 } 2647 2648 return 0; 2649 2650 err_set_cdan: 2651 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 2652 err_service_reg: 2653 dpaa2_eth_free_channel(priv, channel); 2654 err_alloc_ch: 2655 if (err == -EPROBE_DEFER) { 2656 for (i = 0; i < priv->num_channels; i++) { 2657 channel = priv->channel[i]; 2658 nctx = &channel->nctx; 2659 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 2660 dpaa2_eth_free_channel(priv, channel); 2661 } 2662 priv->num_channels = 0; 2663 return err; 2664 } 2665 2666 if (cpumask_empty(&priv->dpio_cpumask)) { 2667 dev_err(dev, "No cpu with an affine DPIO/DPCON\n"); 2668 return -ENODEV; 2669 } 2670 2671 dev_info(dev, "Cores %*pbl available for processing ingress traffic\n", 2672 cpumask_pr_args(&priv->dpio_cpumask)); 2673 2674 return 0; 2675 } 2676 2677 static void dpaa2_eth_free_dpio(struct dpaa2_eth_priv *priv) 2678 { 2679 struct device *dev = priv->net_dev->dev.parent; 2680 struct dpaa2_eth_channel *ch; 2681 int i; 2682 2683 /* deregister CDAN notifications and free channels */ 2684 for (i = 0; i < priv->num_channels; i++) { 2685 ch = priv->channel[i]; 2686 dpaa2_io_service_deregister(ch->dpio, &ch->nctx, dev); 2687 dpaa2_eth_free_channel(priv, ch); 2688 } 2689 } 2690 2691 static struct dpaa2_eth_channel *dpaa2_eth_get_affine_channel(struct dpaa2_eth_priv *priv, 2692 int cpu) 2693 { 2694 struct device *dev = priv->net_dev->dev.parent; 2695 int i; 2696 2697 for (i = 0; i < priv->num_channels; i++) 2698 if (priv->channel[i]->nctx.desired_cpu == cpu) 2699 return priv->channel[i]; 2700 2701 /* We should never get here. Issue a warning and return 2702 * the first channel, because it's still better than nothing 2703 */ 2704 dev_warn(dev, "No affine channel found for cpu %d\n", cpu); 2705 2706 return priv->channel[0]; 2707 } 2708 2709 static void dpaa2_eth_set_fq_affinity(struct dpaa2_eth_priv *priv) 2710 { 2711 struct device *dev = priv->net_dev->dev.parent; 2712 struct dpaa2_eth_fq *fq; 2713 int rx_cpu, txc_cpu; 2714 int i; 2715 2716 /* For each FQ, pick one channel/CPU to deliver frames to. 2717 * This may well change at runtime, either through irqbalance or 2718 * through direct user intervention. 2719 */ 2720 rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask); 2721 2722 for (i = 0; i < priv->num_fqs; i++) { 2723 fq = &priv->fq[i]; 2724 switch (fq->type) { 2725 case DPAA2_RX_FQ: 2726 fq->target_cpu = rx_cpu; 2727 rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask); 2728 if (rx_cpu >= nr_cpu_ids) 2729 rx_cpu = cpumask_first(&priv->dpio_cpumask); 2730 break; 2731 case DPAA2_TX_CONF_FQ: 2732 fq->target_cpu = txc_cpu; 2733 txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask); 2734 if (txc_cpu >= nr_cpu_ids) 2735 txc_cpu = cpumask_first(&priv->dpio_cpumask); 2736 break; 2737 default: 2738 dev_err(dev, "Unknown FQ type: %d\n", fq->type); 2739 } 2740 fq->channel = dpaa2_eth_get_affine_channel(priv, fq->target_cpu); 2741 } 2742 2743 update_xps(priv); 2744 } 2745 2746 static void dpaa2_eth_setup_fqs(struct dpaa2_eth_priv *priv) 2747 { 2748 int i, j; 2749 2750 /* We have one TxConf FQ per Tx flow. 2751 * The number of Tx and Rx queues is the same. 2752 * Tx queues come first in the fq array. 2753 */ 2754 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2755 priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ; 2756 priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf; 2757 priv->fq[priv->num_fqs++].flowid = (u16)i; 2758 } 2759 2760 for (j = 0; j < dpaa2_eth_tc_count(priv); j++) { 2761 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2762 priv->fq[priv->num_fqs].type = DPAA2_RX_FQ; 2763 priv->fq[priv->num_fqs].consume = dpaa2_eth_rx; 2764 priv->fq[priv->num_fqs].tc = (u8)j; 2765 priv->fq[priv->num_fqs++].flowid = (u16)i; 2766 } 2767 } 2768 2769 /* For each FQ, decide on which core to process incoming frames */ 2770 dpaa2_eth_set_fq_affinity(priv); 2771 } 2772 2773 /* Allocate and configure one buffer pool for each interface */ 2774 static int dpaa2_eth_setup_dpbp(struct dpaa2_eth_priv *priv) 2775 { 2776 int err; 2777 struct fsl_mc_device *dpbp_dev; 2778 struct device *dev = priv->net_dev->dev.parent; 2779 struct dpbp_attr dpbp_attrs; 2780 2781 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, 2782 &dpbp_dev); 2783 if (err) { 2784 if (err == -ENXIO) 2785 err = -EPROBE_DEFER; 2786 else 2787 dev_err(dev, "DPBP device allocation failed\n"); 2788 return err; 2789 } 2790 2791 priv->dpbp_dev = dpbp_dev; 2792 2793 err = dpbp_open(priv->mc_io, 0, priv->dpbp_dev->obj_desc.id, 2794 &dpbp_dev->mc_handle); 2795 if (err) { 2796 dev_err(dev, "dpbp_open() failed\n"); 2797 goto err_open; 2798 } 2799 2800 err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle); 2801 if (err) { 2802 dev_err(dev, "dpbp_reset() failed\n"); 2803 goto err_reset; 2804 } 2805 2806 err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle); 2807 if (err) { 2808 dev_err(dev, "dpbp_enable() failed\n"); 2809 goto err_enable; 2810 } 2811 2812 err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle, 2813 &dpbp_attrs); 2814 if (err) { 2815 dev_err(dev, "dpbp_get_attributes() failed\n"); 2816 goto err_get_attr; 2817 } 2818 priv->bpid = dpbp_attrs.bpid; 2819 2820 return 0; 2821 2822 err_get_attr: 2823 dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle); 2824 err_enable: 2825 err_reset: 2826 dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle); 2827 err_open: 2828 fsl_mc_object_free(dpbp_dev); 2829 2830 return err; 2831 } 2832 2833 static void dpaa2_eth_free_dpbp(struct dpaa2_eth_priv *priv) 2834 { 2835 dpaa2_eth_drain_pool(priv); 2836 dpbp_disable(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2837 dpbp_close(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2838 fsl_mc_object_free(priv->dpbp_dev); 2839 } 2840 2841 static int dpaa2_eth_set_buffer_layout(struct dpaa2_eth_priv *priv) 2842 { 2843 struct device *dev = priv->net_dev->dev.parent; 2844 struct dpni_buffer_layout buf_layout = {0}; 2845 u16 rx_buf_align; 2846 int err; 2847 2848 /* We need to check for WRIOP version 1.0.0, but depending on the MC 2849 * version, this number is not always provided correctly on rev1. 2850 * We need to check for both alternatives in this situation. 2851 */ 2852 if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) || 2853 priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0)) 2854 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1; 2855 else 2856 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN; 2857 2858 /* We need to ensure that the buffer size seen by WRIOP is a multiple 2859 * of 64 or 256 bytes depending on the WRIOP version. 2860 */ 2861 priv->rx_buf_size = ALIGN_DOWN(DPAA2_ETH_RX_BUF_SIZE, rx_buf_align); 2862 2863 /* tx buffer */ 2864 buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE; 2865 buf_layout.pass_timestamp = true; 2866 buf_layout.pass_frame_status = true; 2867 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE | 2868 DPNI_BUF_LAYOUT_OPT_TIMESTAMP | 2869 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS; 2870 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2871 DPNI_QUEUE_TX, &buf_layout); 2872 if (err) { 2873 dev_err(dev, "dpni_set_buffer_layout(TX) failed\n"); 2874 return err; 2875 } 2876 2877 /* tx-confirm buffer */ 2878 buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP | 2879 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS; 2880 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2881 DPNI_QUEUE_TX_CONFIRM, &buf_layout); 2882 if (err) { 2883 dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n"); 2884 return err; 2885 } 2886 2887 /* Now that we've set our tx buffer layout, retrieve the minimum 2888 * required tx data offset. 2889 */ 2890 err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token, 2891 &priv->tx_data_offset); 2892 if (err) { 2893 dev_err(dev, "dpni_get_tx_data_offset() failed\n"); 2894 return err; 2895 } 2896 2897 if ((priv->tx_data_offset % 64) != 0) 2898 dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n", 2899 priv->tx_data_offset); 2900 2901 /* rx buffer */ 2902 buf_layout.pass_frame_status = true; 2903 buf_layout.pass_parser_result = true; 2904 buf_layout.data_align = rx_buf_align; 2905 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv); 2906 buf_layout.private_data_size = 0; 2907 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT | 2908 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | 2909 DPNI_BUF_LAYOUT_OPT_DATA_ALIGN | 2910 DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM | 2911 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2912 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2913 DPNI_QUEUE_RX, &buf_layout); 2914 if (err) { 2915 dev_err(dev, "dpni_set_buffer_layout(RX) failed\n"); 2916 return err; 2917 } 2918 2919 return 0; 2920 } 2921 2922 #define DPNI_ENQUEUE_FQID_VER_MAJOR 7 2923 #define DPNI_ENQUEUE_FQID_VER_MINOR 9 2924 2925 static inline int dpaa2_eth_enqueue_qd(struct dpaa2_eth_priv *priv, 2926 struct dpaa2_eth_fq *fq, 2927 struct dpaa2_fd *fd, u8 prio, 2928 u32 num_frames __always_unused, 2929 int *frames_enqueued) 2930 { 2931 int err; 2932 2933 err = dpaa2_io_service_enqueue_qd(fq->channel->dpio, 2934 priv->tx_qdid, prio, 2935 fq->tx_qdbin, fd); 2936 if (!err && frames_enqueued) 2937 *frames_enqueued = 1; 2938 return err; 2939 } 2940 2941 static inline int dpaa2_eth_enqueue_fq_multiple(struct dpaa2_eth_priv *priv, 2942 struct dpaa2_eth_fq *fq, 2943 struct dpaa2_fd *fd, 2944 u8 prio, u32 num_frames, 2945 int *frames_enqueued) 2946 { 2947 int err; 2948 2949 err = dpaa2_io_service_enqueue_multiple_fq(fq->channel->dpio, 2950 fq->tx_fqid[prio], 2951 fd, num_frames); 2952 2953 if (err == 0) 2954 return -EBUSY; 2955 2956 if (frames_enqueued) 2957 *frames_enqueued = err; 2958 return 0; 2959 } 2960 2961 static void dpaa2_eth_set_enqueue_mode(struct dpaa2_eth_priv *priv) 2962 { 2963 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 2964 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 2965 priv->enqueue = dpaa2_eth_enqueue_qd; 2966 else 2967 priv->enqueue = dpaa2_eth_enqueue_fq_multiple; 2968 } 2969 2970 static int dpaa2_eth_set_pause(struct dpaa2_eth_priv *priv) 2971 { 2972 struct device *dev = priv->net_dev->dev.parent; 2973 struct dpni_link_cfg link_cfg = {0}; 2974 int err; 2975 2976 /* Get the default link options so we don't override other flags */ 2977 err = dpni_get_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); 2978 if (err) { 2979 dev_err(dev, "dpni_get_link_cfg() failed\n"); 2980 return err; 2981 } 2982 2983 /* By default, enable both Rx and Tx pause frames */ 2984 link_cfg.options |= DPNI_LINK_OPT_PAUSE; 2985 link_cfg.options &= ~DPNI_LINK_OPT_ASYM_PAUSE; 2986 err = dpni_set_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); 2987 if (err) { 2988 dev_err(dev, "dpni_set_link_cfg() failed\n"); 2989 return err; 2990 } 2991 2992 priv->link_state.options = link_cfg.options; 2993 2994 return 0; 2995 } 2996 2997 static void dpaa2_eth_update_tx_fqids(struct dpaa2_eth_priv *priv) 2998 { 2999 struct dpni_queue_id qid = {0}; 3000 struct dpaa2_eth_fq *fq; 3001 struct dpni_queue queue; 3002 int i, j, err; 3003 3004 /* We only use Tx FQIDs for FQID-based enqueue, so check 3005 * if DPNI version supports it before updating FQIDs 3006 */ 3007 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 3008 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 3009 return; 3010 3011 for (i = 0; i < priv->num_fqs; i++) { 3012 fq = &priv->fq[i]; 3013 if (fq->type != DPAA2_TX_CONF_FQ) 3014 continue; 3015 for (j = 0; j < dpaa2_eth_tc_count(priv); j++) { 3016 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3017 DPNI_QUEUE_TX, j, fq->flowid, 3018 &queue, &qid); 3019 if (err) 3020 goto out_err; 3021 3022 fq->tx_fqid[j] = qid.fqid; 3023 if (fq->tx_fqid[j] == 0) 3024 goto out_err; 3025 } 3026 } 3027 3028 priv->enqueue = dpaa2_eth_enqueue_fq_multiple; 3029 3030 return; 3031 3032 out_err: 3033 netdev_info(priv->net_dev, 3034 "Error reading Tx FQID, fallback to QDID-based enqueue\n"); 3035 priv->enqueue = dpaa2_eth_enqueue_qd; 3036 } 3037 3038 /* Configure ingress classification based on VLAN PCP */ 3039 static int dpaa2_eth_set_vlan_qos(struct dpaa2_eth_priv *priv) 3040 { 3041 struct device *dev = priv->net_dev->dev.parent; 3042 struct dpkg_profile_cfg kg_cfg = {0}; 3043 struct dpni_qos_tbl_cfg qos_cfg = {0}; 3044 struct dpni_rule_cfg key_params; 3045 void *dma_mem, *key, *mask; 3046 u8 key_size = 2; /* VLAN TCI field */ 3047 int i, pcp, err; 3048 3049 /* VLAN-based classification only makes sense if we have multiple 3050 * traffic classes. 3051 * Also, we need to extract just the 3-bit PCP field from the VLAN 3052 * header and we can only do that by using a mask 3053 */ 3054 if (dpaa2_eth_tc_count(priv) == 1 || !dpaa2_eth_fs_mask_enabled(priv)) { 3055 dev_dbg(dev, "VLAN-based QoS classification not supported\n"); 3056 return -EOPNOTSUPP; 3057 } 3058 3059 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 3060 if (!dma_mem) 3061 return -ENOMEM; 3062 3063 kg_cfg.num_extracts = 1; 3064 kg_cfg.extracts[0].type = DPKG_EXTRACT_FROM_HDR; 3065 kg_cfg.extracts[0].extract.from_hdr.prot = NET_PROT_VLAN; 3066 kg_cfg.extracts[0].extract.from_hdr.type = DPKG_FULL_FIELD; 3067 kg_cfg.extracts[0].extract.from_hdr.field = NH_FLD_VLAN_TCI; 3068 3069 err = dpni_prepare_key_cfg(&kg_cfg, dma_mem); 3070 if (err) { 3071 dev_err(dev, "dpni_prepare_key_cfg failed\n"); 3072 goto out_free_tbl; 3073 } 3074 3075 /* set QoS table */ 3076 qos_cfg.default_tc = 0; 3077 qos_cfg.discard_on_miss = 0; 3078 qos_cfg.key_cfg_iova = dma_map_single(dev, dma_mem, 3079 DPAA2_CLASSIFIER_DMA_SIZE, 3080 DMA_TO_DEVICE); 3081 if (dma_mapping_error(dev, qos_cfg.key_cfg_iova)) { 3082 dev_err(dev, "QoS table DMA mapping failed\n"); 3083 err = -ENOMEM; 3084 goto out_free_tbl; 3085 } 3086 3087 err = dpni_set_qos_table(priv->mc_io, 0, priv->mc_token, &qos_cfg); 3088 if (err) { 3089 dev_err(dev, "dpni_set_qos_table failed\n"); 3090 goto out_unmap_tbl; 3091 } 3092 3093 /* Add QoS table entries */ 3094 key = kzalloc(key_size * 2, GFP_KERNEL); 3095 if (!key) { 3096 err = -ENOMEM; 3097 goto out_unmap_tbl; 3098 } 3099 mask = key + key_size; 3100 *(__be16 *)mask = cpu_to_be16(VLAN_PRIO_MASK); 3101 3102 key_params.key_iova = dma_map_single(dev, key, key_size * 2, 3103 DMA_TO_DEVICE); 3104 if (dma_mapping_error(dev, key_params.key_iova)) { 3105 dev_err(dev, "Qos table entry DMA mapping failed\n"); 3106 err = -ENOMEM; 3107 goto out_free_key; 3108 } 3109 3110 key_params.mask_iova = key_params.key_iova + key_size; 3111 key_params.key_size = key_size; 3112 3113 /* We add rules for PCP-based distribution starting with highest 3114 * priority (VLAN PCP = 7). If this DPNI doesn't have enough traffic 3115 * classes to accommodate all priority levels, the lowest ones end up 3116 * on TC 0 which was configured as default 3117 */ 3118 for (i = dpaa2_eth_tc_count(priv) - 1, pcp = 7; i >= 0; i--, pcp--) { 3119 *(__be16 *)key = cpu_to_be16(pcp << VLAN_PRIO_SHIFT); 3120 dma_sync_single_for_device(dev, key_params.key_iova, 3121 key_size * 2, DMA_TO_DEVICE); 3122 3123 err = dpni_add_qos_entry(priv->mc_io, 0, priv->mc_token, 3124 &key_params, i, i); 3125 if (err) { 3126 dev_err(dev, "dpni_add_qos_entry failed\n"); 3127 dpni_clear_qos_table(priv->mc_io, 0, priv->mc_token); 3128 goto out_unmap_key; 3129 } 3130 } 3131 3132 priv->vlan_cls_enabled = true; 3133 3134 /* Table and key memory is not persistent, clean everything up after 3135 * configuration is finished 3136 */ 3137 out_unmap_key: 3138 dma_unmap_single(dev, key_params.key_iova, key_size * 2, DMA_TO_DEVICE); 3139 out_free_key: 3140 kfree(key); 3141 out_unmap_tbl: 3142 dma_unmap_single(dev, qos_cfg.key_cfg_iova, DPAA2_CLASSIFIER_DMA_SIZE, 3143 DMA_TO_DEVICE); 3144 out_free_tbl: 3145 kfree(dma_mem); 3146 3147 return err; 3148 } 3149 3150 /* Configure the DPNI object this interface is associated with */ 3151 static int dpaa2_eth_setup_dpni(struct fsl_mc_device *ls_dev) 3152 { 3153 struct device *dev = &ls_dev->dev; 3154 struct dpaa2_eth_priv *priv; 3155 struct net_device *net_dev; 3156 int err; 3157 3158 net_dev = dev_get_drvdata(dev); 3159 priv = netdev_priv(net_dev); 3160 3161 /* get a handle for the DPNI object */ 3162 err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token); 3163 if (err) { 3164 dev_err(dev, "dpni_open() failed\n"); 3165 return err; 3166 } 3167 3168 /* Check if we can work with this DPNI object */ 3169 err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major, 3170 &priv->dpni_ver_minor); 3171 if (err) { 3172 dev_err(dev, "dpni_get_api_version() failed\n"); 3173 goto close; 3174 } 3175 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) { 3176 dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n", 3177 priv->dpni_ver_major, priv->dpni_ver_minor, 3178 DPNI_VER_MAJOR, DPNI_VER_MINOR); 3179 err = -ENOTSUPP; 3180 goto close; 3181 } 3182 3183 ls_dev->mc_io = priv->mc_io; 3184 ls_dev->mc_handle = priv->mc_token; 3185 3186 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 3187 if (err) { 3188 dev_err(dev, "dpni_reset() failed\n"); 3189 goto close; 3190 } 3191 3192 err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token, 3193 &priv->dpni_attrs); 3194 if (err) { 3195 dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err); 3196 goto close; 3197 } 3198 3199 err = dpaa2_eth_set_buffer_layout(priv); 3200 if (err) 3201 goto close; 3202 3203 dpaa2_eth_set_enqueue_mode(priv); 3204 3205 /* Enable pause frame support */ 3206 if (dpaa2_eth_has_pause_support(priv)) { 3207 err = dpaa2_eth_set_pause(priv); 3208 if (err) 3209 goto close; 3210 } 3211 3212 err = dpaa2_eth_set_vlan_qos(priv); 3213 if (err && err != -EOPNOTSUPP) 3214 goto close; 3215 3216 priv->cls_rules = devm_kcalloc(dev, dpaa2_eth_fs_count(priv), 3217 sizeof(struct dpaa2_eth_cls_rule), 3218 GFP_KERNEL); 3219 if (!priv->cls_rules) { 3220 err = -ENOMEM; 3221 goto close; 3222 } 3223 3224 return 0; 3225 3226 close: 3227 dpni_close(priv->mc_io, 0, priv->mc_token); 3228 3229 return err; 3230 } 3231 3232 static void dpaa2_eth_free_dpni(struct dpaa2_eth_priv *priv) 3233 { 3234 int err; 3235 3236 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 3237 if (err) 3238 netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n", 3239 err); 3240 3241 dpni_close(priv->mc_io, 0, priv->mc_token); 3242 } 3243 3244 static int dpaa2_eth_setup_rx_flow(struct dpaa2_eth_priv *priv, 3245 struct dpaa2_eth_fq *fq) 3246 { 3247 struct device *dev = priv->net_dev->dev.parent; 3248 struct dpni_queue queue; 3249 struct dpni_queue_id qid; 3250 int err; 3251 3252 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3253 DPNI_QUEUE_RX, fq->tc, fq->flowid, &queue, &qid); 3254 if (err) { 3255 dev_err(dev, "dpni_get_queue(RX) failed\n"); 3256 return err; 3257 } 3258 3259 fq->fqid = qid.fqid; 3260 3261 queue.destination.id = fq->channel->dpcon_id; 3262 queue.destination.type = DPNI_DEST_DPCON; 3263 queue.destination.priority = 1; 3264 queue.user_context = (u64)(uintptr_t)fq; 3265 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 3266 DPNI_QUEUE_RX, fq->tc, fq->flowid, 3267 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 3268 &queue); 3269 if (err) { 3270 dev_err(dev, "dpni_set_queue(RX) failed\n"); 3271 return err; 3272 } 3273 3274 /* xdp_rxq setup */ 3275 /* only once for each channel */ 3276 if (fq->tc > 0) 3277 return 0; 3278 3279 err = xdp_rxq_info_reg(&fq->channel->xdp_rxq, priv->net_dev, 3280 fq->flowid); 3281 if (err) { 3282 dev_err(dev, "xdp_rxq_info_reg failed\n"); 3283 return err; 3284 } 3285 3286 err = xdp_rxq_info_reg_mem_model(&fq->channel->xdp_rxq, 3287 MEM_TYPE_PAGE_ORDER0, NULL); 3288 if (err) { 3289 dev_err(dev, "xdp_rxq_info_reg_mem_model failed\n"); 3290 return err; 3291 } 3292 3293 return 0; 3294 } 3295 3296 static int dpaa2_eth_setup_tx_flow(struct dpaa2_eth_priv *priv, 3297 struct dpaa2_eth_fq *fq) 3298 { 3299 struct device *dev = priv->net_dev->dev.parent; 3300 struct dpni_queue queue; 3301 struct dpni_queue_id qid; 3302 int i, err; 3303 3304 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 3305 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3306 DPNI_QUEUE_TX, i, fq->flowid, 3307 &queue, &qid); 3308 if (err) { 3309 dev_err(dev, "dpni_get_queue(TX) failed\n"); 3310 return err; 3311 } 3312 fq->tx_fqid[i] = qid.fqid; 3313 } 3314 3315 /* All Tx queues belonging to the same flowid have the same qdbin */ 3316 fq->tx_qdbin = qid.qdbin; 3317 3318 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 3319 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 3320 &queue, &qid); 3321 if (err) { 3322 dev_err(dev, "dpni_get_queue(TX_CONF) failed\n"); 3323 return err; 3324 } 3325 3326 fq->fqid = qid.fqid; 3327 3328 queue.destination.id = fq->channel->dpcon_id; 3329 queue.destination.type = DPNI_DEST_DPCON; 3330 queue.destination.priority = 0; 3331 queue.user_context = (u64)(uintptr_t)fq; 3332 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 3333 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 3334 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 3335 &queue); 3336 if (err) { 3337 dev_err(dev, "dpni_set_queue(TX_CONF) failed\n"); 3338 return err; 3339 } 3340 3341 return 0; 3342 } 3343 3344 /* Supported header fields for Rx hash distribution key */ 3345 static const struct dpaa2_eth_dist_fields dist_fields[] = { 3346 { 3347 /* L2 header */ 3348 .rxnfc_field = RXH_L2DA, 3349 .cls_prot = NET_PROT_ETH, 3350 .cls_field = NH_FLD_ETH_DA, 3351 .id = DPAA2_ETH_DIST_ETHDST, 3352 .size = 6, 3353 }, { 3354 .cls_prot = NET_PROT_ETH, 3355 .cls_field = NH_FLD_ETH_SA, 3356 .id = DPAA2_ETH_DIST_ETHSRC, 3357 .size = 6, 3358 }, { 3359 /* This is the last ethertype field parsed: 3360 * depending on frame format, it can be the MAC ethertype 3361 * or the VLAN etype. 3362 */ 3363 .cls_prot = NET_PROT_ETH, 3364 .cls_field = NH_FLD_ETH_TYPE, 3365 .id = DPAA2_ETH_DIST_ETHTYPE, 3366 .size = 2, 3367 }, { 3368 /* VLAN header */ 3369 .rxnfc_field = RXH_VLAN, 3370 .cls_prot = NET_PROT_VLAN, 3371 .cls_field = NH_FLD_VLAN_TCI, 3372 .id = DPAA2_ETH_DIST_VLAN, 3373 .size = 2, 3374 }, { 3375 /* IP header */ 3376 .rxnfc_field = RXH_IP_SRC, 3377 .cls_prot = NET_PROT_IP, 3378 .cls_field = NH_FLD_IP_SRC, 3379 .id = DPAA2_ETH_DIST_IPSRC, 3380 .size = 4, 3381 }, { 3382 .rxnfc_field = RXH_IP_DST, 3383 .cls_prot = NET_PROT_IP, 3384 .cls_field = NH_FLD_IP_DST, 3385 .id = DPAA2_ETH_DIST_IPDST, 3386 .size = 4, 3387 }, { 3388 .rxnfc_field = RXH_L3_PROTO, 3389 .cls_prot = NET_PROT_IP, 3390 .cls_field = NH_FLD_IP_PROTO, 3391 .id = DPAA2_ETH_DIST_IPPROTO, 3392 .size = 1, 3393 }, { 3394 /* Using UDP ports, this is functionally equivalent to raw 3395 * byte pairs from L4 header. 3396 */ 3397 .rxnfc_field = RXH_L4_B_0_1, 3398 .cls_prot = NET_PROT_UDP, 3399 .cls_field = NH_FLD_UDP_PORT_SRC, 3400 .id = DPAA2_ETH_DIST_L4SRC, 3401 .size = 2, 3402 }, { 3403 .rxnfc_field = RXH_L4_B_2_3, 3404 .cls_prot = NET_PROT_UDP, 3405 .cls_field = NH_FLD_UDP_PORT_DST, 3406 .id = DPAA2_ETH_DIST_L4DST, 3407 .size = 2, 3408 }, 3409 }; 3410 3411 /* Configure the Rx hash key using the legacy API */ 3412 static int dpaa2_eth_config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 3413 { 3414 struct device *dev = priv->net_dev->dev.parent; 3415 struct dpni_rx_tc_dist_cfg dist_cfg; 3416 int i, err = 0; 3417 3418 memset(&dist_cfg, 0, sizeof(dist_cfg)); 3419 3420 dist_cfg.key_cfg_iova = key; 3421 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 3422 dist_cfg.dist_mode = DPNI_DIST_MODE_HASH; 3423 3424 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 3425 err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 3426 i, &dist_cfg); 3427 if (err) { 3428 dev_err(dev, "dpni_set_rx_tc_dist failed\n"); 3429 break; 3430 } 3431 } 3432 3433 return err; 3434 } 3435 3436 /* Configure the Rx hash key using the new API */ 3437 static int dpaa2_eth_config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 3438 { 3439 struct device *dev = priv->net_dev->dev.parent; 3440 struct dpni_rx_dist_cfg dist_cfg; 3441 int i, err = 0; 3442 3443 memset(&dist_cfg, 0, sizeof(dist_cfg)); 3444 3445 dist_cfg.key_cfg_iova = key; 3446 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 3447 dist_cfg.enable = 1; 3448 3449 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 3450 dist_cfg.tc = i; 3451 err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, 3452 &dist_cfg); 3453 if (err) { 3454 dev_err(dev, "dpni_set_rx_hash_dist failed\n"); 3455 break; 3456 } 3457 3458 /* If the flow steering / hashing key is shared between all 3459 * traffic classes, install it just once 3460 */ 3461 if (priv->dpni_attrs.options & DPNI_OPT_SHARED_FS) 3462 break; 3463 } 3464 3465 return err; 3466 } 3467 3468 /* Configure the Rx flow classification key */ 3469 static int dpaa2_eth_config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 3470 { 3471 struct device *dev = priv->net_dev->dev.parent; 3472 struct dpni_rx_dist_cfg dist_cfg; 3473 int i, err = 0; 3474 3475 memset(&dist_cfg, 0, sizeof(dist_cfg)); 3476 3477 dist_cfg.key_cfg_iova = key; 3478 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 3479 dist_cfg.enable = 1; 3480 3481 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 3482 dist_cfg.tc = i; 3483 err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, 3484 &dist_cfg); 3485 if (err) { 3486 dev_err(dev, "dpni_set_rx_fs_dist failed\n"); 3487 break; 3488 } 3489 3490 /* If the flow steering / hashing key is shared between all 3491 * traffic classes, install it just once 3492 */ 3493 if (priv->dpni_attrs.options & DPNI_OPT_SHARED_FS) 3494 break; 3495 } 3496 3497 return err; 3498 } 3499 3500 /* Size of the Rx flow classification key */ 3501 int dpaa2_eth_cls_key_size(u64 fields) 3502 { 3503 int i, size = 0; 3504 3505 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 3506 if (!(fields & dist_fields[i].id)) 3507 continue; 3508 size += dist_fields[i].size; 3509 } 3510 3511 return size; 3512 } 3513 3514 /* Offset of header field in Rx classification key */ 3515 int dpaa2_eth_cls_fld_off(int prot, int field) 3516 { 3517 int i, off = 0; 3518 3519 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 3520 if (dist_fields[i].cls_prot == prot && 3521 dist_fields[i].cls_field == field) 3522 return off; 3523 off += dist_fields[i].size; 3524 } 3525 3526 WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n"); 3527 return 0; 3528 } 3529 3530 /* Prune unused fields from the classification rule. 3531 * Used when masking is not supported 3532 */ 3533 void dpaa2_eth_cls_trim_rule(void *key_mem, u64 fields) 3534 { 3535 int off = 0, new_off = 0; 3536 int i, size; 3537 3538 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 3539 size = dist_fields[i].size; 3540 if (dist_fields[i].id & fields) { 3541 memcpy(key_mem + new_off, key_mem + off, size); 3542 new_off += size; 3543 } 3544 off += size; 3545 } 3546 } 3547 3548 /* Set Rx distribution (hash or flow classification) key 3549 * flags is a combination of RXH_ bits 3550 */ 3551 static int dpaa2_eth_set_dist_key(struct net_device *net_dev, 3552 enum dpaa2_eth_rx_dist type, u64 flags) 3553 { 3554 struct device *dev = net_dev->dev.parent; 3555 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3556 struct dpkg_profile_cfg cls_cfg; 3557 u32 rx_hash_fields = 0; 3558 dma_addr_t key_iova; 3559 u8 *dma_mem; 3560 int i; 3561 int err = 0; 3562 3563 memset(&cls_cfg, 0, sizeof(cls_cfg)); 3564 3565 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 3566 struct dpkg_extract *key = 3567 &cls_cfg.extracts[cls_cfg.num_extracts]; 3568 3569 /* For both Rx hashing and classification keys 3570 * we set only the selected fields. 3571 */ 3572 if (!(flags & dist_fields[i].id)) 3573 continue; 3574 if (type == DPAA2_ETH_RX_DIST_HASH) 3575 rx_hash_fields |= dist_fields[i].rxnfc_field; 3576 3577 if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) { 3578 dev_err(dev, "error adding key extraction rule, too many rules?\n"); 3579 return -E2BIG; 3580 } 3581 3582 key->type = DPKG_EXTRACT_FROM_HDR; 3583 key->extract.from_hdr.prot = dist_fields[i].cls_prot; 3584 key->extract.from_hdr.type = DPKG_FULL_FIELD; 3585 key->extract.from_hdr.field = dist_fields[i].cls_field; 3586 cls_cfg.num_extracts++; 3587 } 3588 3589 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 3590 if (!dma_mem) 3591 return -ENOMEM; 3592 3593 err = dpni_prepare_key_cfg(&cls_cfg, dma_mem); 3594 if (err) { 3595 dev_err(dev, "dpni_prepare_key_cfg error %d\n", err); 3596 goto free_key; 3597 } 3598 3599 /* Prepare for setting the rx dist */ 3600 key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, 3601 DMA_TO_DEVICE); 3602 if (dma_mapping_error(dev, key_iova)) { 3603 dev_err(dev, "DMA mapping failed\n"); 3604 err = -ENOMEM; 3605 goto free_key; 3606 } 3607 3608 if (type == DPAA2_ETH_RX_DIST_HASH) { 3609 if (dpaa2_eth_has_legacy_dist(priv)) 3610 err = dpaa2_eth_config_legacy_hash_key(priv, key_iova); 3611 else 3612 err = dpaa2_eth_config_hash_key(priv, key_iova); 3613 } else { 3614 err = dpaa2_eth_config_cls_key(priv, key_iova); 3615 } 3616 3617 dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE, 3618 DMA_TO_DEVICE); 3619 if (!err && type == DPAA2_ETH_RX_DIST_HASH) 3620 priv->rx_hash_fields = rx_hash_fields; 3621 3622 free_key: 3623 kfree(dma_mem); 3624 return err; 3625 } 3626 3627 int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags) 3628 { 3629 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3630 u64 key = 0; 3631 int i; 3632 3633 if (!dpaa2_eth_hash_enabled(priv)) 3634 return -EOPNOTSUPP; 3635 3636 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) 3637 if (dist_fields[i].rxnfc_field & flags) 3638 key |= dist_fields[i].id; 3639 3640 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, key); 3641 } 3642 3643 int dpaa2_eth_set_cls(struct net_device *net_dev, u64 flags) 3644 { 3645 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_CLS, flags); 3646 } 3647 3648 static int dpaa2_eth_set_default_cls(struct dpaa2_eth_priv *priv) 3649 { 3650 struct device *dev = priv->net_dev->dev.parent; 3651 int err; 3652 3653 /* Check if we actually support Rx flow classification */ 3654 if (dpaa2_eth_has_legacy_dist(priv)) { 3655 dev_dbg(dev, "Rx cls not supported by current MC version\n"); 3656 return -EOPNOTSUPP; 3657 } 3658 3659 if (!dpaa2_eth_fs_enabled(priv)) { 3660 dev_dbg(dev, "Rx cls disabled in DPNI options\n"); 3661 return -EOPNOTSUPP; 3662 } 3663 3664 if (!dpaa2_eth_hash_enabled(priv)) { 3665 dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n"); 3666 return -EOPNOTSUPP; 3667 } 3668 3669 /* If there is no support for masking in the classification table, 3670 * we don't set a default key, as it will depend on the rules 3671 * added by the user at runtime. 3672 */ 3673 if (!dpaa2_eth_fs_mask_enabled(priv)) 3674 goto out; 3675 3676 err = dpaa2_eth_set_cls(priv->net_dev, DPAA2_ETH_DIST_ALL); 3677 if (err) 3678 return err; 3679 3680 out: 3681 priv->rx_cls_enabled = 1; 3682 3683 return 0; 3684 } 3685 3686 /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs, 3687 * frame queues and channels 3688 */ 3689 static int dpaa2_eth_bind_dpni(struct dpaa2_eth_priv *priv) 3690 { 3691 struct net_device *net_dev = priv->net_dev; 3692 struct device *dev = net_dev->dev.parent; 3693 struct dpni_pools_cfg pools_params; 3694 struct dpni_error_cfg err_cfg; 3695 int err = 0; 3696 int i; 3697 3698 pools_params.num_dpbp = 1; 3699 pools_params.pools[0].dpbp_id = priv->dpbp_dev->obj_desc.id; 3700 pools_params.pools[0].backup_pool = 0; 3701 pools_params.pools[0].buffer_size = priv->rx_buf_size; 3702 err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params); 3703 if (err) { 3704 dev_err(dev, "dpni_set_pools() failed\n"); 3705 return err; 3706 } 3707 3708 /* have the interface implicitly distribute traffic based on 3709 * the default hash key 3710 */ 3711 err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT); 3712 if (err && err != -EOPNOTSUPP) 3713 dev_err(dev, "Failed to configure hashing\n"); 3714 3715 /* Configure the flow classification key; it includes all 3716 * supported header fields and cannot be modified at runtime 3717 */ 3718 err = dpaa2_eth_set_default_cls(priv); 3719 if (err && err != -EOPNOTSUPP) 3720 dev_err(dev, "Failed to configure Rx classification key\n"); 3721 3722 /* Configure handling of error frames */ 3723 err_cfg.errors = DPAA2_FAS_RX_ERR_MASK; 3724 err_cfg.set_frame_annotation = 1; 3725 err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD; 3726 err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token, 3727 &err_cfg); 3728 if (err) { 3729 dev_err(dev, "dpni_set_errors_behavior failed\n"); 3730 return err; 3731 } 3732 3733 /* Configure Rx and Tx conf queues to generate CDANs */ 3734 for (i = 0; i < priv->num_fqs; i++) { 3735 switch (priv->fq[i].type) { 3736 case DPAA2_RX_FQ: 3737 err = dpaa2_eth_setup_rx_flow(priv, &priv->fq[i]); 3738 break; 3739 case DPAA2_TX_CONF_FQ: 3740 err = dpaa2_eth_setup_tx_flow(priv, &priv->fq[i]); 3741 break; 3742 default: 3743 dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type); 3744 return -EINVAL; 3745 } 3746 if (err) 3747 return err; 3748 } 3749 3750 err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token, 3751 DPNI_QUEUE_TX, &priv->tx_qdid); 3752 if (err) { 3753 dev_err(dev, "dpni_get_qdid() failed\n"); 3754 return err; 3755 } 3756 3757 return 0; 3758 } 3759 3760 /* Allocate rings for storing incoming frame descriptors */ 3761 static int dpaa2_eth_alloc_rings(struct dpaa2_eth_priv *priv) 3762 { 3763 struct net_device *net_dev = priv->net_dev; 3764 struct device *dev = net_dev->dev.parent; 3765 int i; 3766 3767 for (i = 0; i < priv->num_channels; i++) { 3768 priv->channel[i]->store = 3769 dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev); 3770 if (!priv->channel[i]->store) { 3771 netdev_err(net_dev, "dpaa2_io_store_create() failed\n"); 3772 goto err_ring; 3773 } 3774 } 3775 3776 return 0; 3777 3778 err_ring: 3779 for (i = 0; i < priv->num_channels; i++) { 3780 if (!priv->channel[i]->store) 3781 break; 3782 dpaa2_io_store_destroy(priv->channel[i]->store); 3783 } 3784 3785 return -ENOMEM; 3786 } 3787 3788 static void dpaa2_eth_free_rings(struct dpaa2_eth_priv *priv) 3789 { 3790 int i; 3791 3792 for (i = 0; i < priv->num_channels; i++) 3793 dpaa2_io_store_destroy(priv->channel[i]->store); 3794 } 3795 3796 static int dpaa2_eth_set_mac_addr(struct dpaa2_eth_priv *priv) 3797 { 3798 struct net_device *net_dev = priv->net_dev; 3799 struct device *dev = net_dev->dev.parent; 3800 u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN]; 3801 int err; 3802 3803 /* Get firmware address, if any */ 3804 err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); 3805 if (err) { 3806 dev_err(dev, "dpni_get_port_mac_addr() failed\n"); 3807 return err; 3808 } 3809 3810 /* Get DPNI attributes address, if any */ 3811 err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 3812 dpni_mac_addr); 3813 if (err) { 3814 dev_err(dev, "dpni_get_primary_mac_addr() failed\n"); 3815 return err; 3816 } 3817 3818 /* First check if firmware has any address configured by bootloader */ 3819 if (!is_zero_ether_addr(mac_addr)) { 3820 /* If the DPMAC addr != DPNI addr, update it */ 3821 if (!ether_addr_equal(mac_addr, dpni_mac_addr)) { 3822 err = dpni_set_primary_mac_addr(priv->mc_io, 0, 3823 priv->mc_token, 3824 mac_addr); 3825 if (err) { 3826 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 3827 return err; 3828 } 3829 } 3830 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len); 3831 } else if (is_zero_ether_addr(dpni_mac_addr)) { 3832 /* No MAC address configured, fill in net_dev->dev_addr 3833 * with a random one 3834 */ 3835 eth_hw_addr_random(net_dev); 3836 dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); 3837 3838 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 3839 net_dev->dev_addr); 3840 if (err) { 3841 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 3842 return err; 3843 } 3844 3845 /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all 3846 * practical purposes, this will be our "permanent" mac address, 3847 * at least until the next reboot. This move will also permit 3848 * register_netdevice() to properly fill up net_dev->perm_addr. 3849 */ 3850 net_dev->addr_assign_type = NET_ADDR_PERM; 3851 } else { 3852 /* NET_ADDR_PERM is default, all we have to do is 3853 * fill in the device addr. 3854 */ 3855 memcpy(net_dev->dev_addr, dpni_mac_addr, net_dev->addr_len); 3856 } 3857 3858 return 0; 3859 } 3860 3861 static int dpaa2_eth_netdev_init(struct net_device *net_dev) 3862 { 3863 struct device *dev = net_dev->dev.parent; 3864 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3865 u32 options = priv->dpni_attrs.options; 3866 u64 supported = 0, not_supported = 0; 3867 u8 bcast_addr[ETH_ALEN]; 3868 u8 num_queues; 3869 int err; 3870 3871 net_dev->netdev_ops = &dpaa2_eth_ops; 3872 net_dev->ethtool_ops = &dpaa2_ethtool_ops; 3873 3874 err = dpaa2_eth_set_mac_addr(priv); 3875 if (err) 3876 return err; 3877 3878 /* Explicitly add the broadcast address to the MAC filtering table */ 3879 eth_broadcast_addr(bcast_addr); 3880 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr); 3881 if (err) { 3882 dev_err(dev, "dpni_add_mac_addr() failed\n"); 3883 return err; 3884 } 3885 3886 /* Set MTU upper limit; lower limit is 68B (default value) */ 3887 net_dev->max_mtu = DPAA2_ETH_MAX_MTU; 3888 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, 3889 DPAA2_ETH_MFL); 3890 if (err) { 3891 dev_err(dev, "dpni_set_max_frame_length() failed\n"); 3892 return err; 3893 } 3894 3895 /* Set actual number of queues in the net device */ 3896 num_queues = dpaa2_eth_queue_count(priv); 3897 err = netif_set_real_num_tx_queues(net_dev, num_queues); 3898 if (err) { 3899 dev_err(dev, "netif_set_real_num_tx_queues() failed\n"); 3900 return err; 3901 } 3902 err = netif_set_real_num_rx_queues(net_dev, num_queues); 3903 if (err) { 3904 dev_err(dev, "netif_set_real_num_rx_queues() failed\n"); 3905 return err; 3906 } 3907 3908 /* Capabilities listing */ 3909 supported |= IFF_LIVE_ADDR_CHANGE; 3910 3911 if (options & DPNI_OPT_NO_MAC_FILTER) 3912 not_supported |= IFF_UNICAST_FLT; 3913 else 3914 supported |= IFF_UNICAST_FLT; 3915 3916 net_dev->priv_flags |= supported; 3917 net_dev->priv_flags &= ~not_supported; 3918 3919 /* Features */ 3920 net_dev->features = NETIF_F_RXCSUM | 3921 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3922 NETIF_F_SG | NETIF_F_HIGHDMA | 3923 NETIF_F_LLTX | NETIF_F_HW_TC; 3924 net_dev->hw_features = net_dev->features; 3925 3926 return 0; 3927 } 3928 3929 static int dpaa2_eth_poll_link_state(void *arg) 3930 { 3931 struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg; 3932 int err; 3933 3934 while (!kthread_should_stop()) { 3935 err = dpaa2_eth_link_state_update(priv); 3936 if (unlikely(err)) 3937 return err; 3938 3939 msleep(DPAA2_ETH_LINK_STATE_REFRESH); 3940 } 3941 3942 return 0; 3943 } 3944 3945 static int dpaa2_eth_connect_mac(struct dpaa2_eth_priv *priv) 3946 { 3947 struct fsl_mc_device *dpni_dev, *dpmac_dev; 3948 struct dpaa2_mac *mac; 3949 int err; 3950 3951 dpni_dev = to_fsl_mc_device(priv->net_dev->dev.parent); 3952 dpmac_dev = fsl_mc_get_endpoint(dpni_dev); 3953 if (IS_ERR_OR_NULL(dpmac_dev) || dpmac_dev->dev.type != &fsl_mc_bus_dpmac_type) 3954 return 0; 3955 3956 if (dpaa2_mac_is_type_fixed(dpmac_dev, priv->mc_io)) 3957 return 0; 3958 3959 mac = kzalloc(sizeof(struct dpaa2_mac), GFP_KERNEL); 3960 if (!mac) 3961 return -ENOMEM; 3962 3963 mac->mc_dev = dpmac_dev; 3964 mac->mc_io = priv->mc_io; 3965 mac->net_dev = priv->net_dev; 3966 3967 err = dpaa2_mac_connect(mac); 3968 if (err) { 3969 netdev_err(priv->net_dev, "Error connecting to the MAC endpoint\n"); 3970 kfree(mac); 3971 return err; 3972 } 3973 priv->mac = mac; 3974 3975 return 0; 3976 } 3977 3978 static void dpaa2_eth_disconnect_mac(struct dpaa2_eth_priv *priv) 3979 { 3980 if (!priv->mac) 3981 return; 3982 3983 dpaa2_mac_disconnect(priv->mac); 3984 kfree(priv->mac); 3985 priv->mac = NULL; 3986 } 3987 3988 static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg) 3989 { 3990 u32 status = ~0; 3991 struct device *dev = (struct device *)arg; 3992 struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev); 3993 struct net_device *net_dev = dev_get_drvdata(dev); 3994 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3995 int err; 3996 3997 err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, 3998 DPNI_IRQ_INDEX, &status); 3999 if (unlikely(err)) { 4000 netdev_err(net_dev, "Can't get irq status (err %d)\n", err); 4001 return IRQ_HANDLED; 4002 } 4003 4004 if (status & DPNI_IRQ_EVENT_LINK_CHANGED) 4005 dpaa2_eth_link_state_update(netdev_priv(net_dev)); 4006 4007 if (status & DPNI_IRQ_EVENT_ENDPOINT_CHANGED) { 4008 dpaa2_eth_set_mac_addr(netdev_priv(net_dev)); 4009 dpaa2_eth_update_tx_fqids(priv); 4010 4011 rtnl_lock(); 4012 if (priv->mac) 4013 dpaa2_eth_disconnect_mac(priv); 4014 else 4015 dpaa2_eth_connect_mac(priv); 4016 rtnl_unlock(); 4017 } 4018 4019 return IRQ_HANDLED; 4020 } 4021 4022 static int dpaa2_eth_setup_irqs(struct fsl_mc_device *ls_dev) 4023 { 4024 int err = 0; 4025 struct fsl_mc_device_irq *irq; 4026 4027 err = fsl_mc_allocate_irqs(ls_dev); 4028 if (err) { 4029 dev_err(&ls_dev->dev, "MC irqs allocation failed\n"); 4030 return err; 4031 } 4032 4033 irq = ls_dev->irqs[0]; 4034 err = devm_request_threaded_irq(&ls_dev->dev, irq->msi_desc->irq, 4035 NULL, dpni_irq0_handler_thread, 4036 IRQF_NO_SUSPEND | IRQF_ONESHOT, 4037 dev_name(&ls_dev->dev), &ls_dev->dev); 4038 if (err < 0) { 4039 dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err); 4040 goto free_mc_irq; 4041 } 4042 4043 err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle, 4044 DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED | 4045 DPNI_IRQ_EVENT_ENDPOINT_CHANGED); 4046 if (err < 0) { 4047 dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err); 4048 goto free_irq; 4049 } 4050 4051 err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle, 4052 DPNI_IRQ_INDEX, 1); 4053 if (err < 0) { 4054 dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err); 4055 goto free_irq; 4056 } 4057 4058 return 0; 4059 4060 free_irq: 4061 devm_free_irq(&ls_dev->dev, irq->msi_desc->irq, &ls_dev->dev); 4062 free_mc_irq: 4063 fsl_mc_free_irqs(ls_dev); 4064 4065 return err; 4066 } 4067 4068 static void dpaa2_eth_add_ch_napi(struct dpaa2_eth_priv *priv) 4069 { 4070 int i; 4071 struct dpaa2_eth_channel *ch; 4072 4073 for (i = 0; i < priv->num_channels; i++) { 4074 ch = priv->channel[i]; 4075 /* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */ 4076 netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll, 4077 NAPI_POLL_WEIGHT); 4078 } 4079 } 4080 4081 static void dpaa2_eth_del_ch_napi(struct dpaa2_eth_priv *priv) 4082 { 4083 int i; 4084 struct dpaa2_eth_channel *ch; 4085 4086 for (i = 0; i < priv->num_channels; i++) { 4087 ch = priv->channel[i]; 4088 netif_napi_del(&ch->napi); 4089 } 4090 } 4091 4092 static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev) 4093 { 4094 struct device *dev; 4095 struct net_device *net_dev = NULL; 4096 struct dpaa2_eth_priv *priv = NULL; 4097 int err = 0; 4098 4099 dev = &dpni_dev->dev; 4100 4101 /* Net device */ 4102 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_NETDEV_QUEUES); 4103 if (!net_dev) { 4104 dev_err(dev, "alloc_etherdev_mq() failed\n"); 4105 return -ENOMEM; 4106 } 4107 4108 SET_NETDEV_DEV(net_dev, dev); 4109 dev_set_drvdata(dev, net_dev); 4110 4111 priv = netdev_priv(net_dev); 4112 priv->net_dev = net_dev; 4113 4114 priv->iommu_domain = iommu_get_domain_for_dev(dev); 4115 4116 priv->tx_tstamp_type = HWTSTAMP_TX_OFF; 4117 priv->rx_tstamp = false; 4118 4119 priv->dpaa2_ptp_wq = alloc_workqueue("dpaa2_ptp_wq", 0, 0); 4120 if (!priv->dpaa2_ptp_wq) { 4121 err = -ENOMEM; 4122 goto err_wq_alloc; 4123 } 4124 4125 INIT_WORK(&priv->tx_onestep_tstamp, dpaa2_eth_tx_onestep_tstamp); 4126 4127 skb_queue_head_init(&priv->tx_skbs); 4128 4129 /* Obtain a MC portal */ 4130 err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, 4131 &priv->mc_io); 4132 if (err) { 4133 if (err == -ENXIO) 4134 err = -EPROBE_DEFER; 4135 else 4136 dev_err(dev, "MC portal allocation failed\n"); 4137 goto err_portal_alloc; 4138 } 4139 4140 /* MC objects initialization and configuration */ 4141 err = dpaa2_eth_setup_dpni(dpni_dev); 4142 if (err) 4143 goto err_dpni_setup; 4144 4145 err = dpaa2_eth_setup_dpio(priv); 4146 if (err) 4147 goto err_dpio_setup; 4148 4149 dpaa2_eth_setup_fqs(priv); 4150 4151 err = dpaa2_eth_setup_dpbp(priv); 4152 if (err) 4153 goto err_dpbp_setup; 4154 4155 err = dpaa2_eth_bind_dpni(priv); 4156 if (err) 4157 goto err_bind; 4158 4159 /* Add a NAPI context for each channel */ 4160 dpaa2_eth_add_ch_napi(priv); 4161 4162 /* Percpu statistics */ 4163 priv->percpu_stats = alloc_percpu(*priv->percpu_stats); 4164 if (!priv->percpu_stats) { 4165 dev_err(dev, "alloc_percpu(percpu_stats) failed\n"); 4166 err = -ENOMEM; 4167 goto err_alloc_percpu_stats; 4168 } 4169 priv->percpu_extras = alloc_percpu(*priv->percpu_extras); 4170 if (!priv->percpu_extras) { 4171 dev_err(dev, "alloc_percpu(percpu_extras) failed\n"); 4172 err = -ENOMEM; 4173 goto err_alloc_percpu_extras; 4174 } 4175 4176 priv->sgt_cache = alloc_percpu(*priv->sgt_cache); 4177 if (!priv->sgt_cache) { 4178 dev_err(dev, "alloc_percpu(sgt_cache) failed\n"); 4179 err = -ENOMEM; 4180 goto err_alloc_sgt_cache; 4181 } 4182 4183 err = dpaa2_eth_netdev_init(net_dev); 4184 if (err) 4185 goto err_netdev_init; 4186 4187 /* Configure checksum offload based on current interface flags */ 4188 err = dpaa2_eth_set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM)); 4189 if (err) 4190 goto err_csum; 4191 4192 err = dpaa2_eth_set_tx_csum(priv, 4193 !!(net_dev->features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))); 4194 if (err) 4195 goto err_csum; 4196 4197 err = dpaa2_eth_alloc_rings(priv); 4198 if (err) 4199 goto err_alloc_rings; 4200 4201 #ifdef CONFIG_FSL_DPAA2_ETH_DCB 4202 if (dpaa2_eth_has_pause_support(priv) && priv->vlan_cls_enabled) { 4203 priv->dcbx_mode = DCB_CAP_DCBX_HOST | DCB_CAP_DCBX_VER_IEEE; 4204 net_dev->dcbnl_ops = &dpaa2_eth_dcbnl_ops; 4205 } else { 4206 dev_dbg(dev, "PFC not supported\n"); 4207 } 4208 #endif 4209 4210 err = dpaa2_eth_setup_irqs(dpni_dev); 4211 if (err) { 4212 netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n"); 4213 priv->poll_thread = kthread_run(dpaa2_eth_poll_link_state, priv, 4214 "%s_poll_link", net_dev->name); 4215 if (IS_ERR(priv->poll_thread)) { 4216 dev_err(dev, "Error starting polling thread\n"); 4217 goto err_poll_thread; 4218 } 4219 priv->do_link_poll = true; 4220 } 4221 4222 err = dpaa2_eth_connect_mac(priv); 4223 if (err) 4224 goto err_connect_mac; 4225 4226 err = register_netdev(net_dev); 4227 if (err < 0) { 4228 dev_err(dev, "register_netdev() failed\n"); 4229 goto err_netdev_reg; 4230 } 4231 4232 #ifdef CONFIG_DEBUG_FS 4233 dpaa2_dbg_add(priv); 4234 #endif 4235 4236 dev_info(dev, "Probed interface %s\n", net_dev->name); 4237 return 0; 4238 4239 err_netdev_reg: 4240 dpaa2_eth_disconnect_mac(priv); 4241 err_connect_mac: 4242 if (priv->do_link_poll) 4243 kthread_stop(priv->poll_thread); 4244 else 4245 fsl_mc_free_irqs(dpni_dev); 4246 err_poll_thread: 4247 dpaa2_eth_free_rings(priv); 4248 err_alloc_rings: 4249 err_csum: 4250 err_netdev_init: 4251 free_percpu(priv->sgt_cache); 4252 err_alloc_sgt_cache: 4253 free_percpu(priv->percpu_extras); 4254 err_alloc_percpu_extras: 4255 free_percpu(priv->percpu_stats); 4256 err_alloc_percpu_stats: 4257 dpaa2_eth_del_ch_napi(priv); 4258 err_bind: 4259 dpaa2_eth_free_dpbp(priv); 4260 err_dpbp_setup: 4261 dpaa2_eth_free_dpio(priv); 4262 err_dpio_setup: 4263 dpaa2_eth_free_dpni(priv); 4264 err_dpni_setup: 4265 fsl_mc_portal_free(priv->mc_io); 4266 err_portal_alloc: 4267 destroy_workqueue(priv->dpaa2_ptp_wq); 4268 err_wq_alloc: 4269 dev_set_drvdata(dev, NULL); 4270 free_netdev(net_dev); 4271 4272 return err; 4273 } 4274 4275 static int dpaa2_eth_remove(struct fsl_mc_device *ls_dev) 4276 { 4277 struct device *dev; 4278 struct net_device *net_dev; 4279 struct dpaa2_eth_priv *priv; 4280 4281 dev = &ls_dev->dev; 4282 net_dev = dev_get_drvdata(dev); 4283 priv = netdev_priv(net_dev); 4284 4285 #ifdef CONFIG_DEBUG_FS 4286 dpaa2_dbg_remove(priv); 4287 #endif 4288 rtnl_lock(); 4289 dpaa2_eth_disconnect_mac(priv); 4290 rtnl_unlock(); 4291 4292 unregister_netdev(net_dev); 4293 4294 if (priv->do_link_poll) 4295 kthread_stop(priv->poll_thread); 4296 else 4297 fsl_mc_free_irqs(ls_dev); 4298 4299 dpaa2_eth_free_rings(priv); 4300 free_percpu(priv->sgt_cache); 4301 free_percpu(priv->percpu_stats); 4302 free_percpu(priv->percpu_extras); 4303 4304 dpaa2_eth_del_ch_napi(priv); 4305 dpaa2_eth_free_dpbp(priv); 4306 dpaa2_eth_free_dpio(priv); 4307 dpaa2_eth_free_dpni(priv); 4308 4309 fsl_mc_portal_free(priv->mc_io); 4310 4311 free_netdev(net_dev); 4312 4313 dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name); 4314 4315 return 0; 4316 } 4317 4318 static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = { 4319 { 4320 .vendor = FSL_MC_VENDOR_FREESCALE, 4321 .obj_type = "dpni", 4322 }, 4323 { .vendor = 0x0 } 4324 }; 4325 MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table); 4326 4327 static struct fsl_mc_driver dpaa2_eth_driver = { 4328 .driver = { 4329 .name = KBUILD_MODNAME, 4330 .owner = THIS_MODULE, 4331 }, 4332 .probe = dpaa2_eth_probe, 4333 .remove = dpaa2_eth_remove, 4334 .match_id_table = dpaa2_eth_match_id_table 4335 }; 4336 4337 static int __init dpaa2_eth_driver_init(void) 4338 { 4339 int err; 4340 4341 dpaa2_eth_dbg_init(); 4342 err = fsl_mc_driver_register(&dpaa2_eth_driver); 4343 if (err) { 4344 dpaa2_eth_dbg_exit(); 4345 return err; 4346 } 4347 4348 return 0; 4349 } 4350 4351 static void __exit dpaa2_eth_driver_exit(void) 4352 { 4353 dpaa2_eth_dbg_exit(); 4354 fsl_mc_driver_unregister(&dpaa2_eth_driver); 4355 } 4356 4357 module_init(dpaa2_eth_driver_init); 4358 module_exit(dpaa2_eth_driver_exit); 4359