1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* Copyright 2014-2016 Freescale Semiconductor Inc. 3 * Copyright 2016-2017 NXP 4 */ 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/platform_device.h> 8 #include <linux/etherdevice.h> 9 #include <linux/of_net.h> 10 #include <linux/interrupt.h> 11 #include <linux/msi.h> 12 #include <linux/kthread.h> 13 #include <linux/iommu.h> 14 #include <linux/net_tstamp.h> 15 #include <linux/fsl/mc.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_trace.h> 18 #include <net/sock.h> 19 20 #include "dpaa2-eth.h" 21 22 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files 23 * using trace events only need to #include <trace/events/sched.h> 24 */ 25 #define CREATE_TRACE_POINTS 26 #include "dpaa2-eth-trace.h" 27 28 MODULE_LICENSE("Dual BSD/GPL"); 29 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 30 MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver"); 31 32 static void *dpaa2_iova_to_virt(struct iommu_domain *domain, 33 dma_addr_t iova_addr) 34 { 35 phys_addr_t phys_addr; 36 37 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 38 39 return phys_to_virt(phys_addr); 40 } 41 42 static void validate_rx_csum(struct dpaa2_eth_priv *priv, 43 u32 fd_status, 44 struct sk_buff *skb) 45 { 46 skb_checksum_none_assert(skb); 47 48 /* HW checksum validation is disabled, nothing to do here */ 49 if (!(priv->net_dev->features & NETIF_F_RXCSUM)) 50 return; 51 52 /* Read checksum validation bits */ 53 if (!((fd_status & DPAA2_FAS_L3CV) && 54 (fd_status & DPAA2_FAS_L4CV))) 55 return; 56 57 /* Inform the stack there's no need to compute L3/L4 csum anymore */ 58 skb->ip_summed = CHECKSUM_UNNECESSARY; 59 } 60 61 /* Free a received FD. 62 * Not to be used for Tx conf FDs or on any other paths. 63 */ 64 static void free_rx_fd(struct dpaa2_eth_priv *priv, 65 const struct dpaa2_fd *fd, 66 void *vaddr) 67 { 68 struct device *dev = priv->net_dev->dev.parent; 69 dma_addr_t addr = dpaa2_fd_get_addr(fd); 70 u8 fd_format = dpaa2_fd_get_format(fd); 71 struct dpaa2_sg_entry *sgt; 72 void *sg_vaddr; 73 int i; 74 75 /* If single buffer frame, just free the data buffer */ 76 if (fd_format == dpaa2_fd_single) 77 goto free_buf; 78 else if (fd_format != dpaa2_fd_sg) 79 /* We don't support any other format */ 80 return; 81 82 /* For S/G frames, we first need to free all SG entries 83 * except the first one, which was taken care of already 84 */ 85 sgt = vaddr + dpaa2_fd_get_offset(fd); 86 for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 87 addr = dpaa2_sg_get_addr(&sgt[i]); 88 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 89 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 90 DMA_BIDIRECTIONAL); 91 92 free_pages((unsigned long)sg_vaddr, 0); 93 if (dpaa2_sg_is_final(&sgt[i])) 94 break; 95 } 96 97 free_buf: 98 free_pages((unsigned long)vaddr, 0); 99 } 100 101 /* Build a linear skb based on a single-buffer frame descriptor */ 102 static struct sk_buff *build_linear_skb(struct dpaa2_eth_channel *ch, 103 const struct dpaa2_fd *fd, 104 void *fd_vaddr) 105 { 106 struct sk_buff *skb = NULL; 107 u16 fd_offset = dpaa2_fd_get_offset(fd); 108 u32 fd_length = dpaa2_fd_get_len(fd); 109 110 ch->buf_count--; 111 112 skb = build_skb(fd_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 113 if (unlikely(!skb)) 114 return NULL; 115 116 skb_reserve(skb, fd_offset); 117 skb_put(skb, fd_length); 118 119 return skb; 120 } 121 122 /* Build a non linear (fragmented) skb based on a S/G table */ 123 static struct sk_buff *build_frag_skb(struct dpaa2_eth_priv *priv, 124 struct dpaa2_eth_channel *ch, 125 struct dpaa2_sg_entry *sgt) 126 { 127 struct sk_buff *skb = NULL; 128 struct device *dev = priv->net_dev->dev.parent; 129 void *sg_vaddr; 130 dma_addr_t sg_addr; 131 u16 sg_offset; 132 u32 sg_length; 133 struct page *page, *head_page; 134 int page_offset; 135 int i; 136 137 for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 138 struct dpaa2_sg_entry *sge = &sgt[i]; 139 140 /* NOTE: We only support SG entries in dpaa2_sg_single format, 141 * but this is the only format we may receive from HW anyway 142 */ 143 144 /* Get the address and length from the S/G entry */ 145 sg_addr = dpaa2_sg_get_addr(sge); 146 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr); 147 dma_unmap_page(dev, sg_addr, DPAA2_ETH_RX_BUF_SIZE, 148 DMA_BIDIRECTIONAL); 149 150 sg_length = dpaa2_sg_get_len(sge); 151 152 if (i == 0) { 153 /* We build the skb around the first data buffer */ 154 skb = build_skb(sg_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 155 if (unlikely(!skb)) { 156 /* Free the first SG entry now, since we already 157 * unmapped it and obtained the virtual address 158 */ 159 free_pages((unsigned long)sg_vaddr, 0); 160 161 /* We still need to subtract the buffers used 162 * by this FD from our software counter 163 */ 164 while (!dpaa2_sg_is_final(&sgt[i]) && 165 i < DPAA2_ETH_MAX_SG_ENTRIES) 166 i++; 167 break; 168 } 169 170 sg_offset = dpaa2_sg_get_offset(sge); 171 skb_reserve(skb, sg_offset); 172 skb_put(skb, sg_length); 173 } else { 174 /* Rest of the data buffers are stored as skb frags */ 175 page = virt_to_page(sg_vaddr); 176 head_page = virt_to_head_page(sg_vaddr); 177 178 /* Offset in page (which may be compound). 179 * Data in subsequent SG entries is stored from the 180 * beginning of the buffer, so we don't need to add the 181 * sg_offset. 182 */ 183 page_offset = ((unsigned long)sg_vaddr & 184 (PAGE_SIZE - 1)) + 185 (page_address(page) - page_address(head_page)); 186 187 skb_add_rx_frag(skb, i - 1, head_page, page_offset, 188 sg_length, DPAA2_ETH_RX_BUF_SIZE); 189 } 190 191 if (dpaa2_sg_is_final(sge)) 192 break; 193 } 194 195 WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT"); 196 197 /* Count all data buffers + SG table buffer */ 198 ch->buf_count -= i + 2; 199 200 return skb; 201 } 202 203 /* Free buffers acquired from the buffer pool or which were meant to 204 * be released in the pool 205 */ 206 static void free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, int count) 207 { 208 struct device *dev = priv->net_dev->dev.parent; 209 void *vaddr; 210 int i; 211 212 for (i = 0; i < count; i++) { 213 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]); 214 dma_unmap_page(dev, buf_array[i], DPAA2_ETH_RX_BUF_SIZE, 215 DMA_BIDIRECTIONAL); 216 free_pages((unsigned long)vaddr, 0); 217 } 218 } 219 220 static void xdp_release_buf(struct dpaa2_eth_priv *priv, 221 struct dpaa2_eth_channel *ch, 222 dma_addr_t addr) 223 { 224 int err; 225 226 ch->xdp.drop_bufs[ch->xdp.drop_cnt++] = addr; 227 if (ch->xdp.drop_cnt < DPAA2_ETH_BUFS_PER_CMD) 228 return; 229 230 while ((err = dpaa2_io_service_release(ch->dpio, priv->bpid, 231 ch->xdp.drop_bufs, 232 ch->xdp.drop_cnt)) == -EBUSY) 233 cpu_relax(); 234 235 if (err) { 236 free_bufs(priv, ch->xdp.drop_bufs, ch->xdp.drop_cnt); 237 ch->buf_count -= ch->xdp.drop_cnt; 238 } 239 240 ch->xdp.drop_cnt = 0; 241 } 242 243 static int xdp_enqueue(struct dpaa2_eth_priv *priv, struct dpaa2_fd *fd, 244 void *buf_start, u16 queue_id) 245 { 246 struct dpaa2_eth_fq *fq; 247 struct dpaa2_faead *faead; 248 u32 ctrl, frc; 249 int i, err; 250 251 /* Mark the egress frame hardware annotation area as valid */ 252 frc = dpaa2_fd_get_frc(fd); 253 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 254 dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL); 255 256 /* Instruct hardware to release the FD buffer directly into 257 * the buffer pool once transmission is completed, instead of 258 * sending a Tx confirmation frame to us 259 */ 260 ctrl = DPAA2_FAEAD_A4V | DPAA2_FAEAD_A2V | DPAA2_FAEAD_EBDDV; 261 faead = dpaa2_get_faead(buf_start, false); 262 faead->ctrl = cpu_to_le32(ctrl); 263 faead->conf_fqid = 0; 264 265 fq = &priv->fq[queue_id]; 266 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 267 err = priv->enqueue(priv, fq, fd, 0); 268 if (err != -EBUSY) 269 break; 270 } 271 272 return err; 273 } 274 275 static u32 run_xdp(struct dpaa2_eth_priv *priv, 276 struct dpaa2_eth_channel *ch, 277 struct dpaa2_eth_fq *rx_fq, 278 struct dpaa2_fd *fd, void *vaddr) 279 { 280 dma_addr_t addr = dpaa2_fd_get_addr(fd); 281 struct rtnl_link_stats64 *percpu_stats; 282 struct bpf_prog *xdp_prog; 283 struct xdp_buff xdp; 284 u32 xdp_act = XDP_PASS; 285 int err; 286 287 percpu_stats = this_cpu_ptr(priv->percpu_stats); 288 289 rcu_read_lock(); 290 291 xdp_prog = READ_ONCE(ch->xdp.prog); 292 if (!xdp_prog) 293 goto out; 294 295 xdp.data = vaddr + dpaa2_fd_get_offset(fd); 296 xdp.data_end = xdp.data + dpaa2_fd_get_len(fd); 297 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; 298 xdp_set_data_meta_invalid(&xdp); 299 xdp.rxq = &ch->xdp_rxq; 300 301 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 302 303 /* xdp.data pointer may have changed */ 304 dpaa2_fd_set_offset(fd, xdp.data - vaddr); 305 dpaa2_fd_set_len(fd, xdp.data_end - xdp.data); 306 307 switch (xdp_act) { 308 case XDP_PASS: 309 break; 310 case XDP_TX: 311 err = xdp_enqueue(priv, fd, vaddr, rx_fq->flowid); 312 if (err) { 313 xdp_release_buf(priv, ch, addr); 314 percpu_stats->tx_errors++; 315 ch->stats.xdp_tx_err++; 316 } else { 317 percpu_stats->tx_packets++; 318 percpu_stats->tx_bytes += dpaa2_fd_get_len(fd); 319 ch->stats.xdp_tx++; 320 } 321 break; 322 default: 323 bpf_warn_invalid_xdp_action(xdp_act); 324 /* fall through */ 325 case XDP_ABORTED: 326 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 327 /* fall through */ 328 case XDP_DROP: 329 xdp_release_buf(priv, ch, addr); 330 ch->stats.xdp_drop++; 331 break; 332 case XDP_REDIRECT: 333 dma_unmap_page(priv->net_dev->dev.parent, addr, 334 DPAA2_ETH_RX_BUF_SIZE, DMA_BIDIRECTIONAL); 335 ch->buf_count--; 336 xdp.data_hard_start = vaddr; 337 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 338 if (unlikely(err)) 339 ch->stats.xdp_drop++; 340 else 341 ch->stats.xdp_redirect++; 342 break; 343 } 344 345 ch->xdp.res |= xdp_act; 346 out: 347 rcu_read_unlock(); 348 return xdp_act; 349 } 350 351 /* Main Rx frame processing routine */ 352 static void dpaa2_eth_rx(struct dpaa2_eth_priv *priv, 353 struct dpaa2_eth_channel *ch, 354 const struct dpaa2_fd *fd, 355 struct dpaa2_eth_fq *fq) 356 { 357 dma_addr_t addr = dpaa2_fd_get_addr(fd); 358 u8 fd_format = dpaa2_fd_get_format(fd); 359 void *vaddr; 360 struct sk_buff *skb; 361 struct rtnl_link_stats64 *percpu_stats; 362 struct dpaa2_eth_drv_stats *percpu_extras; 363 struct device *dev = priv->net_dev->dev.parent; 364 struct dpaa2_fas *fas; 365 void *buf_data; 366 u32 status = 0; 367 u32 xdp_act; 368 369 /* Tracing point */ 370 trace_dpaa2_rx_fd(priv->net_dev, fd); 371 372 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 373 dma_sync_single_for_cpu(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 374 DMA_BIDIRECTIONAL); 375 376 fas = dpaa2_get_fas(vaddr, false); 377 prefetch(fas); 378 buf_data = vaddr + dpaa2_fd_get_offset(fd); 379 prefetch(buf_data); 380 381 percpu_stats = this_cpu_ptr(priv->percpu_stats); 382 percpu_extras = this_cpu_ptr(priv->percpu_extras); 383 384 if (fd_format == dpaa2_fd_single) { 385 xdp_act = run_xdp(priv, ch, fq, (struct dpaa2_fd *)fd, vaddr); 386 if (xdp_act != XDP_PASS) { 387 percpu_stats->rx_packets++; 388 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 389 return; 390 } 391 392 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 393 DMA_BIDIRECTIONAL); 394 skb = build_linear_skb(ch, fd, vaddr); 395 } else if (fd_format == dpaa2_fd_sg) { 396 WARN_ON(priv->xdp_prog); 397 398 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 399 DMA_BIDIRECTIONAL); 400 skb = build_frag_skb(priv, ch, buf_data); 401 free_pages((unsigned long)vaddr, 0); 402 percpu_extras->rx_sg_frames++; 403 percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd); 404 } else { 405 /* We don't support any other format */ 406 goto err_frame_format; 407 } 408 409 if (unlikely(!skb)) 410 goto err_build_skb; 411 412 prefetch(skb->data); 413 414 /* Get the timestamp value */ 415 if (priv->rx_tstamp) { 416 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 417 __le64 *ts = dpaa2_get_ts(vaddr, false); 418 u64 ns; 419 420 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 421 422 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 423 shhwtstamps->hwtstamp = ns_to_ktime(ns); 424 } 425 426 /* Check if we need to validate the L4 csum */ 427 if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) { 428 status = le32_to_cpu(fas->status); 429 validate_rx_csum(priv, status, skb); 430 } 431 432 skb->protocol = eth_type_trans(skb, priv->net_dev); 433 skb_record_rx_queue(skb, fq->flowid); 434 435 percpu_stats->rx_packets++; 436 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 437 438 napi_gro_receive(&ch->napi, skb); 439 440 return; 441 442 err_build_skb: 443 free_rx_fd(priv, fd, vaddr); 444 err_frame_format: 445 percpu_stats->rx_dropped++; 446 } 447 448 /* Consume all frames pull-dequeued into the store. This is the simplest way to 449 * make sure we don't accidentally issue another volatile dequeue which would 450 * overwrite (leak) frames already in the store. 451 * 452 * Observance of NAPI budget is not our concern, leaving that to the caller. 453 */ 454 static int consume_frames(struct dpaa2_eth_channel *ch, 455 struct dpaa2_eth_fq **src) 456 { 457 struct dpaa2_eth_priv *priv = ch->priv; 458 struct dpaa2_eth_fq *fq = NULL; 459 struct dpaa2_dq *dq; 460 const struct dpaa2_fd *fd; 461 int cleaned = 0; 462 int is_last; 463 464 do { 465 dq = dpaa2_io_store_next(ch->store, &is_last); 466 if (unlikely(!dq)) { 467 /* If we're here, we *must* have placed a 468 * volatile dequeue comnmand, so keep reading through 469 * the store until we get some sort of valid response 470 * token (either a valid frame or an "empty dequeue") 471 */ 472 continue; 473 } 474 475 fd = dpaa2_dq_fd(dq); 476 fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq); 477 478 fq->consume(priv, ch, fd, fq); 479 cleaned++; 480 } while (!is_last); 481 482 if (!cleaned) 483 return 0; 484 485 fq->stats.frames += cleaned; 486 487 /* A dequeue operation only pulls frames from a single queue 488 * into the store. Return the frame queue as an out param. 489 */ 490 if (src) 491 *src = fq; 492 493 return cleaned; 494 } 495 496 /* Configure the egress frame annotation for timestamp update */ 497 static void enable_tx_tstamp(struct dpaa2_fd *fd, void *buf_start) 498 { 499 struct dpaa2_faead *faead; 500 u32 ctrl, frc; 501 502 /* Mark the egress frame annotation area as valid */ 503 frc = dpaa2_fd_get_frc(fd); 504 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 505 506 /* Set hardware annotation size */ 507 ctrl = dpaa2_fd_get_ctrl(fd); 508 dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL); 509 510 /* enable UPD (update prepanded data) bit in FAEAD field of 511 * hardware frame annotation area 512 */ 513 ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD; 514 faead = dpaa2_get_faead(buf_start, true); 515 faead->ctrl = cpu_to_le32(ctrl); 516 } 517 518 /* Create a frame descriptor based on a fragmented skb */ 519 static int build_sg_fd(struct dpaa2_eth_priv *priv, 520 struct sk_buff *skb, 521 struct dpaa2_fd *fd) 522 { 523 struct device *dev = priv->net_dev->dev.parent; 524 void *sgt_buf = NULL; 525 dma_addr_t addr; 526 int nr_frags = skb_shinfo(skb)->nr_frags; 527 struct dpaa2_sg_entry *sgt; 528 int i, err; 529 int sgt_buf_size; 530 struct scatterlist *scl, *crt_scl; 531 int num_sg; 532 int num_dma_bufs; 533 struct dpaa2_eth_swa *swa; 534 535 /* Create and map scatterlist. 536 * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have 537 * to go beyond nr_frags+1. 538 * Note: We don't support chained scatterlists 539 */ 540 if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1)) 541 return -EINVAL; 542 543 scl = kcalloc(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC); 544 if (unlikely(!scl)) 545 return -ENOMEM; 546 547 sg_init_table(scl, nr_frags + 1); 548 num_sg = skb_to_sgvec(skb, scl, 0, skb->len); 549 num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 550 if (unlikely(!num_dma_bufs)) { 551 err = -ENOMEM; 552 goto dma_map_sg_failed; 553 } 554 555 /* Prepare the HW SGT structure */ 556 sgt_buf_size = priv->tx_data_offset + 557 sizeof(struct dpaa2_sg_entry) * num_dma_bufs; 558 sgt_buf = netdev_alloc_frag(sgt_buf_size + DPAA2_ETH_TX_BUF_ALIGN); 559 if (unlikely(!sgt_buf)) { 560 err = -ENOMEM; 561 goto sgt_buf_alloc_failed; 562 } 563 sgt_buf = PTR_ALIGN(sgt_buf, DPAA2_ETH_TX_BUF_ALIGN); 564 memset(sgt_buf, 0, sgt_buf_size); 565 566 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 567 568 /* Fill in the HW SGT structure. 569 * 570 * sgt_buf is zeroed out, so the following fields are implicit 571 * in all sgt entries: 572 * - offset is 0 573 * - format is 'dpaa2_sg_single' 574 */ 575 for_each_sg(scl, crt_scl, num_dma_bufs, i) { 576 dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl)); 577 dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl)); 578 } 579 dpaa2_sg_set_final(&sgt[i - 1], true); 580 581 /* Store the skb backpointer in the SGT buffer. 582 * Fit the scatterlist and the number of buffers alongside the 583 * skb backpointer in the software annotation area. We'll need 584 * all of them on Tx Conf. 585 */ 586 swa = (struct dpaa2_eth_swa *)sgt_buf; 587 swa->type = DPAA2_ETH_SWA_SG; 588 swa->sg.skb = skb; 589 swa->sg.scl = scl; 590 swa->sg.num_sg = num_sg; 591 swa->sg.sgt_size = sgt_buf_size; 592 593 /* Separately map the SGT buffer */ 594 addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 595 if (unlikely(dma_mapping_error(dev, addr))) { 596 err = -ENOMEM; 597 goto dma_map_single_failed; 598 } 599 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 600 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 601 dpaa2_fd_set_addr(fd, addr); 602 dpaa2_fd_set_len(fd, skb->len); 603 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 604 605 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 606 enable_tx_tstamp(fd, sgt_buf); 607 608 return 0; 609 610 dma_map_single_failed: 611 skb_free_frag(sgt_buf); 612 sgt_buf_alloc_failed: 613 dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 614 dma_map_sg_failed: 615 kfree(scl); 616 return err; 617 } 618 619 /* Create a frame descriptor based on a linear skb */ 620 static int build_single_fd(struct dpaa2_eth_priv *priv, 621 struct sk_buff *skb, 622 struct dpaa2_fd *fd) 623 { 624 struct device *dev = priv->net_dev->dev.parent; 625 u8 *buffer_start, *aligned_start; 626 struct dpaa2_eth_swa *swa; 627 dma_addr_t addr; 628 629 buffer_start = skb->data - dpaa2_eth_needed_headroom(priv, skb); 630 631 /* If there's enough room to align the FD address, do it. 632 * It will help hardware optimize accesses. 633 */ 634 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 635 DPAA2_ETH_TX_BUF_ALIGN); 636 if (aligned_start >= skb->head) 637 buffer_start = aligned_start; 638 639 /* Store a backpointer to the skb at the beginning of the buffer 640 * (in the private data area) such that we can release it 641 * on Tx confirm 642 */ 643 swa = (struct dpaa2_eth_swa *)buffer_start; 644 swa->type = DPAA2_ETH_SWA_SINGLE; 645 swa->single.skb = skb; 646 647 addr = dma_map_single(dev, buffer_start, 648 skb_tail_pointer(skb) - buffer_start, 649 DMA_BIDIRECTIONAL); 650 if (unlikely(dma_mapping_error(dev, addr))) 651 return -ENOMEM; 652 653 dpaa2_fd_set_addr(fd, addr); 654 dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start)); 655 dpaa2_fd_set_len(fd, skb->len); 656 dpaa2_fd_set_format(fd, dpaa2_fd_single); 657 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 658 659 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 660 enable_tx_tstamp(fd, buffer_start); 661 662 return 0; 663 } 664 665 /* FD freeing routine on the Tx path 666 * 667 * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb 668 * back-pointed to is also freed. 669 * This can be called either from dpaa2_eth_tx_conf() or on the error path of 670 * dpaa2_eth_tx(). 671 */ 672 static void free_tx_fd(const struct dpaa2_eth_priv *priv, 673 struct dpaa2_eth_fq *fq, 674 const struct dpaa2_fd *fd, bool in_napi) 675 { 676 struct device *dev = priv->net_dev->dev.parent; 677 dma_addr_t fd_addr; 678 struct sk_buff *skb = NULL; 679 unsigned char *buffer_start; 680 struct dpaa2_eth_swa *swa; 681 u8 fd_format = dpaa2_fd_get_format(fd); 682 u32 fd_len = dpaa2_fd_get_len(fd); 683 684 fd_addr = dpaa2_fd_get_addr(fd); 685 buffer_start = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr); 686 swa = (struct dpaa2_eth_swa *)buffer_start; 687 688 if (fd_format == dpaa2_fd_single) { 689 if (swa->type == DPAA2_ETH_SWA_SINGLE) { 690 skb = swa->single.skb; 691 /* Accessing the skb buffer is safe before dma unmap, 692 * because we didn't map the actual skb shell. 693 */ 694 dma_unmap_single(dev, fd_addr, 695 skb_tail_pointer(skb) - buffer_start, 696 DMA_BIDIRECTIONAL); 697 } else { 698 WARN_ONCE(swa->type != DPAA2_ETH_SWA_XDP, "Wrong SWA type"); 699 dma_unmap_single(dev, fd_addr, swa->xdp.dma_size, 700 DMA_BIDIRECTIONAL); 701 } 702 } else if (fd_format == dpaa2_fd_sg) { 703 skb = swa->sg.skb; 704 705 /* Unmap the scatterlist */ 706 dma_unmap_sg(dev, swa->sg.scl, swa->sg.num_sg, 707 DMA_BIDIRECTIONAL); 708 kfree(swa->sg.scl); 709 710 /* Unmap the SGT buffer */ 711 dma_unmap_single(dev, fd_addr, swa->sg.sgt_size, 712 DMA_BIDIRECTIONAL); 713 } else { 714 netdev_dbg(priv->net_dev, "Invalid FD format\n"); 715 return; 716 } 717 718 if (swa->type != DPAA2_ETH_SWA_XDP && in_napi) { 719 fq->dq_frames++; 720 fq->dq_bytes += fd_len; 721 } 722 723 if (swa->type == DPAA2_ETH_SWA_XDP) { 724 xdp_return_frame(swa->xdp.xdpf); 725 return; 726 } 727 728 /* Get the timestamp value */ 729 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 730 struct skb_shared_hwtstamps shhwtstamps; 731 __le64 *ts = dpaa2_get_ts(buffer_start, true); 732 u64 ns; 733 734 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 735 736 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 737 shhwtstamps.hwtstamp = ns_to_ktime(ns); 738 skb_tstamp_tx(skb, &shhwtstamps); 739 } 740 741 /* Free SGT buffer allocated on tx */ 742 if (fd_format != dpaa2_fd_single) 743 skb_free_frag(buffer_start); 744 745 /* Move on with skb release */ 746 napi_consume_skb(skb, in_napi); 747 } 748 749 static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) 750 { 751 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 752 struct dpaa2_fd fd; 753 struct rtnl_link_stats64 *percpu_stats; 754 struct dpaa2_eth_drv_stats *percpu_extras; 755 struct dpaa2_eth_fq *fq; 756 struct netdev_queue *nq; 757 u16 queue_mapping; 758 unsigned int needed_headroom; 759 u32 fd_len; 760 int err, i; 761 762 percpu_stats = this_cpu_ptr(priv->percpu_stats); 763 percpu_extras = this_cpu_ptr(priv->percpu_extras); 764 765 needed_headroom = dpaa2_eth_needed_headroom(priv, skb); 766 if (skb_headroom(skb) < needed_headroom) { 767 struct sk_buff *ns; 768 769 ns = skb_realloc_headroom(skb, needed_headroom); 770 if (unlikely(!ns)) { 771 percpu_stats->tx_dropped++; 772 goto err_alloc_headroom; 773 } 774 percpu_extras->tx_reallocs++; 775 776 if (skb->sk) 777 skb_set_owner_w(ns, skb->sk); 778 779 dev_kfree_skb(skb); 780 skb = ns; 781 } 782 783 /* We'll be holding a back-reference to the skb until Tx Confirmation; 784 * we don't want that overwritten by a concurrent Tx with a cloned skb. 785 */ 786 skb = skb_unshare(skb, GFP_ATOMIC); 787 if (unlikely(!skb)) { 788 /* skb_unshare() has already freed the skb */ 789 percpu_stats->tx_dropped++; 790 return NETDEV_TX_OK; 791 } 792 793 /* Setup the FD fields */ 794 memset(&fd, 0, sizeof(fd)); 795 796 if (skb_is_nonlinear(skb)) { 797 err = build_sg_fd(priv, skb, &fd); 798 percpu_extras->tx_sg_frames++; 799 percpu_extras->tx_sg_bytes += skb->len; 800 } else { 801 err = build_single_fd(priv, skb, &fd); 802 } 803 804 if (unlikely(err)) { 805 percpu_stats->tx_dropped++; 806 goto err_build_fd; 807 } 808 809 /* Tracing point */ 810 trace_dpaa2_tx_fd(net_dev, &fd); 811 812 /* TxConf FQ selection relies on queue id from the stack. 813 * In case of a forwarded frame from another DPNI interface, we choose 814 * a queue affined to the same core that processed the Rx frame 815 */ 816 queue_mapping = skb_get_queue_mapping(skb); 817 fq = &priv->fq[queue_mapping]; 818 819 fd_len = dpaa2_fd_get_len(&fd); 820 nq = netdev_get_tx_queue(net_dev, queue_mapping); 821 netdev_tx_sent_queue(nq, fd_len); 822 823 /* Everything that happens after this enqueues might race with 824 * the Tx confirmation callback for this frame 825 */ 826 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 827 err = priv->enqueue(priv, fq, &fd, 0); 828 if (err != -EBUSY) 829 break; 830 } 831 percpu_extras->tx_portal_busy += i; 832 if (unlikely(err < 0)) { 833 percpu_stats->tx_errors++; 834 /* Clean up everything, including freeing the skb */ 835 free_tx_fd(priv, fq, &fd, false); 836 netdev_tx_completed_queue(nq, 1, fd_len); 837 } else { 838 percpu_stats->tx_packets++; 839 percpu_stats->tx_bytes += fd_len; 840 } 841 842 return NETDEV_TX_OK; 843 844 err_build_fd: 845 err_alloc_headroom: 846 dev_kfree_skb(skb); 847 848 return NETDEV_TX_OK; 849 } 850 851 /* Tx confirmation frame processing routine */ 852 static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv, 853 struct dpaa2_eth_channel *ch __always_unused, 854 const struct dpaa2_fd *fd, 855 struct dpaa2_eth_fq *fq) 856 { 857 struct rtnl_link_stats64 *percpu_stats; 858 struct dpaa2_eth_drv_stats *percpu_extras; 859 u32 fd_len = dpaa2_fd_get_len(fd); 860 u32 fd_errors; 861 862 /* Tracing point */ 863 trace_dpaa2_tx_conf_fd(priv->net_dev, fd); 864 865 percpu_extras = this_cpu_ptr(priv->percpu_extras); 866 percpu_extras->tx_conf_frames++; 867 percpu_extras->tx_conf_bytes += fd_len; 868 869 /* Check frame errors in the FD field */ 870 fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK; 871 free_tx_fd(priv, fq, fd, true); 872 873 if (likely(!fd_errors)) 874 return; 875 876 if (net_ratelimit()) 877 netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n", 878 fd_errors); 879 880 percpu_stats = this_cpu_ptr(priv->percpu_stats); 881 /* Tx-conf logically pertains to the egress path. */ 882 percpu_stats->tx_errors++; 883 } 884 885 static int set_rx_csum(struct dpaa2_eth_priv *priv, bool enable) 886 { 887 int err; 888 889 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 890 DPNI_OFF_RX_L3_CSUM, enable); 891 if (err) { 892 netdev_err(priv->net_dev, 893 "dpni_set_offload(RX_L3_CSUM) failed\n"); 894 return err; 895 } 896 897 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 898 DPNI_OFF_RX_L4_CSUM, enable); 899 if (err) { 900 netdev_err(priv->net_dev, 901 "dpni_set_offload(RX_L4_CSUM) failed\n"); 902 return err; 903 } 904 905 return 0; 906 } 907 908 static int set_tx_csum(struct dpaa2_eth_priv *priv, bool enable) 909 { 910 int err; 911 912 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 913 DPNI_OFF_TX_L3_CSUM, enable); 914 if (err) { 915 netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n"); 916 return err; 917 } 918 919 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 920 DPNI_OFF_TX_L4_CSUM, enable); 921 if (err) { 922 netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n"); 923 return err; 924 } 925 926 return 0; 927 } 928 929 /* Perform a single release command to add buffers 930 * to the specified buffer pool 931 */ 932 static int add_bufs(struct dpaa2_eth_priv *priv, 933 struct dpaa2_eth_channel *ch, u16 bpid) 934 { 935 struct device *dev = priv->net_dev->dev.parent; 936 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 937 struct page *page; 938 dma_addr_t addr; 939 int i, err; 940 941 for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) { 942 /* Allocate buffer visible to WRIOP + skb shared info + 943 * alignment padding 944 */ 945 /* allocate one page for each Rx buffer. WRIOP sees 946 * the entire page except for a tailroom reserved for 947 * skb shared info 948 */ 949 page = dev_alloc_pages(0); 950 if (!page) 951 goto err_alloc; 952 953 addr = dma_map_page(dev, page, 0, DPAA2_ETH_RX_BUF_SIZE, 954 DMA_BIDIRECTIONAL); 955 if (unlikely(dma_mapping_error(dev, addr))) 956 goto err_map; 957 958 buf_array[i] = addr; 959 960 /* tracing point */ 961 trace_dpaa2_eth_buf_seed(priv->net_dev, 962 page, DPAA2_ETH_RX_BUF_RAW_SIZE, 963 addr, DPAA2_ETH_RX_BUF_SIZE, 964 bpid); 965 } 966 967 release_bufs: 968 /* In case the portal is busy, retry until successful */ 969 while ((err = dpaa2_io_service_release(ch->dpio, bpid, 970 buf_array, i)) == -EBUSY) 971 cpu_relax(); 972 973 /* If release command failed, clean up and bail out; 974 * not much else we can do about it 975 */ 976 if (err) { 977 free_bufs(priv, buf_array, i); 978 return 0; 979 } 980 981 return i; 982 983 err_map: 984 __free_pages(page, 0); 985 err_alloc: 986 /* If we managed to allocate at least some buffers, 987 * release them to hardware 988 */ 989 if (i) 990 goto release_bufs; 991 992 return 0; 993 } 994 995 static int seed_pool(struct dpaa2_eth_priv *priv, u16 bpid) 996 { 997 int i, j; 998 int new_count; 999 1000 /* This is the lazy seeding of Rx buffer pools. 1001 * dpaa2_add_bufs() is also used on the Rx hotpath and calls 1002 * napi_alloc_frag(). The trouble with that is that it in turn ends up 1003 * calling this_cpu_ptr(), which mandates execution in atomic context. 1004 * Rather than splitting up the code, do a one-off preempt disable. 1005 */ 1006 preempt_disable(); 1007 for (j = 0; j < priv->num_channels; j++) { 1008 for (i = 0; i < DPAA2_ETH_NUM_BUFS; 1009 i += DPAA2_ETH_BUFS_PER_CMD) { 1010 new_count = add_bufs(priv, priv->channel[j], bpid); 1011 priv->channel[j]->buf_count += new_count; 1012 1013 if (new_count < DPAA2_ETH_BUFS_PER_CMD) { 1014 preempt_enable(); 1015 return -ENOMEM; 1016 } 1017 } 1018 } 1019 preempt_enable(); 1020 1021 return 0; 1022 } 1023 1024 /** 1025 * Drain the specified number of buffers from the DPNI's private buffer pool. 1026 * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD 1027 */ 1028 static void drain_bufs(struct dpaa2_eth_priv *priv, int count) 1029 { 1030 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1031 int ret; 1032 1033 do { 1034 ret = dpaa2_io_service_acquire(NULL, priv->bpid, 1035 buf_array, count); 1036 if (ret < 0) { 1037 netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n"); 1038 return; 1039 } 1040 free_bufs(priv, buf_array, ret); 1041 } while (ret); 1042 } 1043 1044 static void drain_pool(struct dpaa2_eth_priv *priv) 1045 { 1046 int i; 1047 1048 drain_bufs(priv, DPAA2_ETH_BUFS_PER_CMD); 1049 drain_bufs(priv, 1); 1050 1051 for (i = 0; i < priv->num_channels; i++) 1052 priv->channel[i]->buf_count = 0; 1053 } 1054 1055 /* Function is called from softirq context only, so we don't need to guard 1056 * the access to percpu count 1057 */ 1058 static int refill_pool(struct dpaa2_eth_priv *priv, 1059 struct dpaa2_eth_channel *ch, 1060 u16 bpid) 1061 { 1062 int new_count; 1063 1064 if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH)) 1065 return 0; 1066 1067 do { 1068 new_count = add_bufs(priv, ch, bpid); 1069 if (unlikely(!new_count)) { 1070 /* Out of memory; abort for now, we'll try later on */ 1071 break; 1072 } 1073 ch->buf_count += new_count; 1074 } while (ch->buf_count < DPAA2_ETH_NUM_BUFS); 1075 1076 if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS)) 1077 return -ENOMEM; 1078 1079 return 0; 1080 } 1081 1082 static int pull_channel(struct dpaa2_eth_channel *ch) 1083 { 1084 int err; 1085 int dequeues = -1; 1086 1087 /* Retry while portal is busy */ 1088 do { 1089 err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id, 1090 ch->store); 1091 dequeues++; 1092 cpu_relax(); 1093 } while (err == -EBUSY); 1094 1095 ch->stats.dequeue_portal_busy += dequeues; 1096 if (unlikely(err)) 1097 ch->stats.pull_err++; 1098 1099 return err; 1100 } 1101 1102 /* NAPI poll routine 1103 * 1104 * Frames are dequeued from the QMan channel associated with this NAPI context. 1105 * Rx, Tx confirmation and (if configured) Rx error frames all count 1106 * towards the NAPI budget. 1107 */ 1108 static int dpaa2_eth_poll(struct napi_struct *napi, int budget) 1109 { 1110 struct dpaa2_eth_channel *ch; 1111 struct dpaa2_eth_priv *priv; 1112 int rx_cleaned = 0, txconf_cleaned = 0; 1113 struct dpaa2_eth_fq *fq, *txc_fq = NULL; 1114 struct netdev_queue *nq; 1115 int store_cleaned, work_done; 1116 int err; 1117 1118 ch = container_of(napi, struct dpaa2_eth_channel, napi); 1119 ch->xdp.res = 0; 1120 priv = ch->priv; 1121 1122 do { 1123 err = pull_channel(ch); 1124 if (unlikely(err)) 1125 break; 1126 1127 /* Refill pool if appropriate */ 1128 refill_pool(priv, ch, priv->bpid); 1129 1130 store_cleaned = consume_frames(ch, &fq); 1131 if (!store_cleaned) 1132 break; 1133 if (fq->type == DPAA2_RX_FQ) { 1134 rx_cleaned += store_cleaned; 1135 } else { 1136 txconf_cleaned += store_cleaned; 1137 /* We have a single Tx conf FQ on this channel */ 1138 txc_fq = fq; 1139 } 1140 1141 /* If we either consumed the whole NAPI budget with Rx frames 1142 * or we reached the Tx confirmations threshold, we're done. 1143 */ 1144 if (rx_cleaned >= budget || 1145 txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI) { 1146 work_done = budget; 1147 goto out; 1148 } 1149 } while (store_cleaned); 1150 1151 /* We didn't consume the entire budget, so finish napi and 1152 * re-enable data availability notifications 1153 */ 1154 napi_complete_done(napi, rx_cleaned); 1155 do { 1156 err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx); 1157 cpu_relax(); 1158 } while (err == -EBUSY); 1159 WARN_ONCE(err, "CDAN notifications rearm failed on core %d", 1160 ch->nctx.desired_cpu); 1161 1162 work_done = max(rx_cleaned, 1); 1163 1164 out: 1165 if (txc_fq && txc_fq->dq_frames) { 1166 nq = netdev_get_tx_queue(priv->net_dev, txc_fq->flowid); 1167 netdev_tx_completed_queue(nq, txc_fq->dq_frames, 1168 txc_fq->dq_bytes); 1169 txc_fq->dq_frames = 0; 1170 txc_fq->dq_bytes = 0; 1171 } 1172 1173 if (ch->xdp.res & XDP_REDIRECT) 1174 xdp_do_flush_map(); 1175 1176 return work_done; 1177 } 1178 1179 static void enable_ch_napi(struct dpaa2_eth_priv *priv) 1180 { 1181 struct dpaa2_eth_channel *ch; 1182 int i; 1183 1184 for (i = 0; i < priv->num_channels; i++) { 1185 ch = priv->channel[i]; 1186 napi_enable(&ch->napi); 1187 } 1188 } 1189 1190 static void disable_ch_napi(struct dpaa2_eth_priv *priv) 1191 { 1192 struct dpaa2_eth_channel *ch; 1193 int i; 1194 1195 for (i = 0; i < priv->num_channels; i++) { 1196 ch = priv->channel[i]; 1197 napi_disable(&ch->napi); 1198 } 1199 } 1200 1201 static int link_state_update(struct dpaa2_eth_priv *priv) 1202 { 1203 struct dpni_link_state state = {0}; 1204 int err; 1205 1206 err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state); 1207 if (unlikely(err)) { 1208 netdev_err(priv->net_dev, 1209 "dpni_get_link_state() failed\n"); 1210 return err; 1211 } 1212 1213 /* Chech link state; speed / duplex changes are not treated yet */ 1214 if (priv->link_state.up == state.up) 1215 return 0; 1216 1217 priv->link_state = state; 1218 if (state.up) { 1219 netif_carrier_on(priv->net_dev); 1220 netif_tx_start_all_queues(priv->net_dev); 1221 } else { 1222 netif_tx_stop_all_queues(priv->net_dev); 1223 netif_carrier_off(priv->net_dev); 1224 } 1225 1226 netdev_info(priv->net_dev, "Link Event: state %s\n", 1227 state.up ? "up" : "down"); 1228 1229 return 0; 1230 } 1231 1232 static int dpaa2_eth_open(struct net_device *net_dev) 1233 { 1234 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1235 int err; 1236 1237 err = seed_pool(priv, priv->bpid); 1238 if (err) { 1239 /* Not much to do; the buffer pool, though not filled up, 1240 * may still contain some buffers which would enable us 1241 * to limp on. 1242 */ 1243 netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n", 1244 priv->dpbp_dev->obj_desc.id, priv->bpid); 1245 } 1246 1247 /* We'll only start the txqs when the link is actually ready; make sure 1248 * we don't race against the link up notification, which may come 1249 * immediately after dpni_enable(); 1250 */ 1251 netif_tx_stop_all_queues(net_dev); 1252 enable_ch_napi(priv); 1253 /* Also, explicitly set carrier off, otherwise netif_carrier_ok() will 1254 * return true and cause 'ip link show' to report the LOWER_UP flag, 1255 * even though the link notification wasn't even received. 1256 */ 1257 netif_carrier_off(net_dev); 1258 1259 err = dpni_enable(priv->mc_io, 0, priv->mc_token); 1260 if (err < 0) { 1261 netdev_err(net_dev, "dpni_enable() failed\n"); 1262 goto enable_err; 1263 } 1264 1265 /* If the DPMAC object has already processed the link up interrupt, 1266 * we have to learn the link state ourselves. 1267 */ 1268 err = link_state_update(priv); 1269 if (err < 0) { 1270 netdev_err(net_dev, "Can't update link state\n"); 1271 goto link_state_err; 1272 } 1273 1274 return 0; 1275 1276 link_state_err: 1277 enable_err: 1278 disable_ch_napi(priv); 1279 drain_pool(priv); 1280 return err; 1281 } 1282 1283 /* Total number of in-flight frames on ingress queues */ 1284 static u32 ingress_fq_count(struct dpaa2_eth_priv *priv) 1285 { 1286 struct dpaa2_eth_fq *fq; 1287 u32 fcnt = 0, bcnt = 0, total = 0; 1288 int i, err; 1289 1290 for (i = 0; i < priv->num_fqs; i++) { 1291 fq = &priv->fq[i]; 1292 err = dpaa2_io_query_fq_count(NULL, fq->fqid, &fcnt, &bcnt); 1293 if (err) { 1294 netdev_warn(priv->net_dev, "query_fq_count failed"); 1295 break; 1296 } 1297 total += fcnt; 1298 } 1299 1300 return total; 1301 } 1302 1303 static void wait_for_fq_empty(struct dpaa2_eth_priv *priv) 1304 { 1305 int retries = 10; 1306 u32 pending; 1307 1308 do { 1309 pending = ingress_fq_count(priv); 1310 if (pending) 1311 msleep(100); 1312 } while (pending && --retries); 1313 } 1314 1315 static int dpaa2_eth_stop(struct net_device *net_dev) 1316 { 1317 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1318 int dpni_enabled = 0; 1319 int retries = 10; 1320 1321 netif_tx_stop_all_queues(net_dev); 1322 netif_carrier_off(net_dev); 1323 1324 /* On dpni_disable(), the MC firmware will: 1325 * - stop MAC Rx and wait for all Rx frames to be enqueued to software 1326 * - cut off WRIOP dequeues from egress FQs and wait until transmission 1327 * of all in flight Tx frames is finished (and corresponding Tx conf 1328 * frames are enqueued back to software) 1329 * 1330 * Before calling dpni_disable(), we wait for all Tx frames to arrive 1331 * on WRIOP. After it finishes, wait until all remaining frames on Rx 1332 * and Tx conf queues are consumed on NAPI poll. 1333 */ 1334 msleep(500); 1335 1336 do { 1337 dpni_disable(priv->mc_io, 0, priv->mc_token); 1338 dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled); 1339 if (dpni_enabled) 1340 /* Allow the hardware some slack */ 1341 msleep(100); 1342 } while (dpni_enabled && --retries); 1343 if (!retries) { 1344 netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n"); 1345 /* Must go on and disable NAPI nonetheless, so we don't crash at 1346 * the next "ifconfig up" 1347 */ 1348 } 1349 1350 wait_for_fq_empty(priv); 1351 disable_ch_napi(priv); 1352 1353 /* Empty the buffer pool */ 1354 drain_pool(priv); 1355 1356 return 0; 1357 } 1358 1359 static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr) 1360 { 1361 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1362 struct device *dev = net_dev->dev.parent; 1363 int err; 1364 1365 err = eth_mac_addr(net_dev, addr); 1366 if (err < 0) { 1367 dev_err(dev, "eth_mac_addr() failed (%d)\n", err); 1368 return err; 1369 } 1370 1371 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 1372 net_dev->dev_addr); 1373 if (err) { 1374 dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err); 1375 return err; 1376 } 1377 1378 return 0; 1379 } 1380 1381 /** Fill in counters maintained by the GPP driver. These may be different from 1382 * the hardware counters obtained by ethtool. 1383 */ 1384 static void dpaa2_eth_get_stats(struct net_device *net_dev, 1385 struct rtnl_link_stats64 *stats) 1386 { 1387 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1388 struct rtnl_link_stats64 *percpu_stats; 1389 u64 *cpustats; 1390 u64 *netstats = (u64 *)stats; 1391 int i, j; 1392 int num = sizeof(struct rtnl_link_stats64) / sizeof(u64); 1393 1394 for_each_possible_cpu(i) { 1395 percpu_stats = per_cpu_ptr(priv->percpu_stats, i); 1396 cpustats = (u64 *)percpu_stats; 1397 for (j = 0; j < num; j++) 1398 netstats[j] += cpustats[j]; 1399 } 1400 } 1401 1402 /* Copy mac unicast addresses from @net_dev to @priv. 1403 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1404 */ 1405 static void add_uc_hw_addr(const struct net_device *net_dev, 1406 struct dpaa2_eth_priv *priv) 1407 { 1408 struct netdev_hw_addr *ha; 1409 int err; 1410 1411 netdev_for_each_uc_addr(ha, net_dev) { 1412 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1413 ha->addr); 1414 if (err) 1415 netdev_warn(priv->net_dev, 1416 "Could not add ucast MAC %pM to the filtering table (err %d)\n", 1417 ha->addr, err); 1418 } 1419 } 1420 1421 /* Copy mac multicast addresses from @net_dev to @priv 1422 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1423 */ 1424 static void add_mc_hw_addr(const struct net_device *net_dev, 1425 struct dpaa2_eth_priv *priv) 1426 { 1427 struct netdev_hw_addr *ha; 1428 int err; 1429 1430 netdev_for_each_mc_addr(ha, net_dev) { 1431 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1432 ha->addr); 1433 if (err) 1434 netdev_warn(priv->net_dev, 1435 "Could not add mcast MAC %pM to the filtering table (err %d)\n", 1436 ha->addr, err); 1437 } 1438 } 1439 1440 static void dpaa2_eth_set_rx_mode(struct net_device *net_dev) 1441 { 1442 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1443 int uc_count = netdev_uc_count(net_dev); 1444 int mc_count = netdev_mc_count(net_dev); 1445 u8 max_mac = priv->dpni_attrs.mac_filter_entries; 1446 u32 options = priv->dpni_attrs.options; 1447 u16 mc_token = priv->mc_token; 1448 struct fsl_mc_io *mc_io = priv->mc_io; 1449 int err; 1450 1451 /* Basic sanity checks; these probably indicate a misconfiguration */ 1452 if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0) 1453 netdev_info(net_dev, 1454 "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n", 1455 max_mac); 1456 1457 /* Force promiscuous if the uc or mc counts exceed our capabilities. */ 1458 if (uc_count > max_mac) { 1459 netdev_info(net_dev, 1460 "Unicast addr count reached %d, max allowed is %d; forcing promisc\n", 1461 uc_count, max_mac); 1462 goto force_promisc; 1463 } 1464 if (mc_count + uc_count > max_mac) { 1465 netdev_info(net_dev, 1466 "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n", 1467 uc_count + mc_count, max_mac); 1468 goto force_mc_promisc; 1469 } 1470 1471 /* Adjust promisc settings due to flag combinations */ 1472 if (net_dev->flags & IFF_PROMISC) 1473 goto force_promisc; 1474 if (net_dev->flags & IFF_ALLMULTI) { 1475 /* First, rebuild unicast filtering table. This should be done 1476 * in promisc mode, in order to avoid frame loss while we 1477 * progressively add entries to the table. 1478 * We don't know whether we had been in promisc already, and 1479 * making an MC call to find out is expensive; so set uc promisc 1480 * nonetheless. 1481 */ 1482 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1483 if (err) 1484 netdev_warn(net_dev, "Can't set uc promisc\n"); 1485 1486 /* Actual uc table reconstruction. */ 1487 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0); 1488 if (err) 1489 netdev_warn(net_dev, "Can't clear uc filters\n"); 1490 add_uc_hw_addr(net_dev, priv); 1491 1492 /* Finally, clear uc promisc and set mc promisc as requested. */ 1493 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1494 if (err) 1495 netdev_warn(net_dev, "Can't clear uc promisc\n"); 1496 goto force_mc_promisc; 1497 } 1498 1499 /* Neither unicast, nor multicast promisc will be on... eventually. 1500 * For now, rebuild mac filtering tables while forcing both of them on. 1501 */ 1502 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1503 if (err) 1504 netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err); 1505 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1506 if (err) 1507 netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err); 1508 1509 /* Actual mac filtering tables reconstruction */ 1510 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1); 1511 if (err) 1512 netdev_warn(net_dev, "Can't clear mac filters\n"); 1513 add_mc_hw_addr(net_dev, priv); 1514 add_uc_hw_addr(net_dev, priv); 1515 1516 /* Now we can clear both ucast and mcast promisc, without risking 1517 * to drop legitimate frames anymore. 1518 */ 1519 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1520 if (err) 1521 netdev_warn(net_dev, "Can't clear ucast promisc\n"); 1522 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0); 1523 if (err) 1524 netdev_warn(net_dev, "Can't clear mcast promisc\n"); 1525 1526 return; 1527 1528 force_promisc: 1529 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1530 if (err) 1531 netdev_warn(net_dev, "Can't set ucast promisc\n"); 1532 force_mc_promisc: 1533 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1534 if (err) 1535 netdev_warn(net_dev, "Can't set mcast promisc\n"); 1536 } 1537 1538 static int dpaa2_eth_set_features(struct net_device *net_dev, 1539 netdev_features_t features) 1540 { 1541 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1542 netdev_features_t changed = features ^ net_dev->features; 1543 bool enable; 1544 int err; 1545 1546 if (changed & NETIF_F_RXCSUM) { 1547 enable = !!(features & NETIF_F_RXCSUM); 1548 err = set_rx_csum(priv, enable); 1549 if (err) 1550 return err; 1551 } 1552 1553 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 1554 enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 1555 err = set_tx_csum(priv, enable); 1556 if (err) 1557 return err; 1558 } 1559 1560 return 0; 1561 } 1562 1563 static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1564 { 1565 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1566 struct hwtstamp_config config; 1567 1568 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 1569 return -EFAULT; 1570 1571 switch (config.tx_type) { 1572 case HWTSTAMP_TX_OFF: 1573 priv->tx_tstamp = false; 1574 break; 1575 case HWTSTAMP_TX_ON: 1576 priv->tx_tstamp = true; 1577 break; 1578 default: 1579 return -ERANGE; 1580 } 1581 1582 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 1583 priv->rx_tstamp = false; 1584 } else { 1585 priv->rx_tstamp = true; 1586 /* TS is set for all frame types, not only those requested */ 1587 config.rx_filter = HWTSTAMP_FILTER_ALL; 1588 } 1589 1590 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 1591 -EFAULT : 0; 1592 } 1593 1594 static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1595 { 1596 if (cmd == SIOCSHWTSTAMP) 1597 return dpaa2_eth_ts_ioctl(dev, rq, cmd); 1598 1599 return -EINVAL; 1600 } 1601 1602 static bool xdp_mtu_valid(struct dpaa2_eth_priv *priv, int mtu) 1603 { 1604 int mfl, linear_mfl; 1605 1606 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1607 linear_mfl = DPAA2_ETH_RX_BUF_SIZE - DPAA2_ETH_RX_HWA_SIZE - 1608 dpaa2_eth_rx_head_room(priv) - XDP_PACKET_HEADROOM; 1609 1610 if (mfl > linear_mfl) { 1611 netdev_warn(priv->net_dev, "Maximum MTU for XDP is %d\n", 1612 linear_mfl - VLAN_ETH_HLEN); 1613 return false; 1614 } 1615 1616 return true; 1617 } 1618 1619 static int set_rx_mfl(struct dpaa2_eth_priv *priv, int mtu, bool has_xdp) 1620 { 1621 int mfl, err; 1622 1623 /* We enforce a maximum Rx frame length based on MTU only if we have 1624 * an XDP program attached (in order to avoid Rx S/G frames). 1625 * Otherwise, we accept all incoming frames as long as they are not 1626 * larger than maximum size supported in hardware 1627 */ 1628 if (has_xdp) 1629 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1630 else 1631 mfl = DPAA2_ETH_MFL; 1632 1633 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, mfl); 1634 if (err) { 1635 netdev_err(priv->net_dev, "dpni_set_max_frame_length failed\n"); 1636 return err; 1637 } 1638 1639 return 0; 1640 } 1641 1642 static int dpaa2_eth_change_mtu(struct net_device *dev, int new_mtu) 1643 { 1644 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1645 int err; 1646 1647 if (!priv->xdp_prog) 1648 goto out; 1649 1650 if (!xdp_mtu_valid(priv, new_mtu)) 1651 return -EINVAL; 1652 1653 err = set_rx_mfl(priv, new_mtu, true); 1654 if (err) 1655 return err; 1656 1657 out: 1658 dev->mtu = new_mtu; 1659 return 0; 1660 } 1661 1662 static int update_rx_buffer_headroom(struct dpaa2_eth_priv *priv, bool has_xdp) 1663 { 1664 struct dpni_buffer_layout buf_layout = {0}; 1665 int err; 1666 1667 err = dpni_get_buffer_layout(priv->mc_io, 0, priv->mc_token, 1668 DPNI_QUEUE_RX, &buf_layout); 1669 if (err) { 1670 netdev_err(priv->net_dev, "dpni_get_buffer_layout failed\n"); 1671 return err; 1672 } 1673 1674 /* Reserve extra headroom for XDP header size changes */ 1675 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv) + 1676 (has_xdp ? XDP_PACKET_HEADROOM : 0); 1677 buf_layout.options = DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM; 1678 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 1679 DPNI_QUEUE_RX, &buf_layout); 1680 if (err) { 1681 netdev_err(priv->net_dev, "dpni_set_buffer_layout failed\n"); 1682 return err; 1683 } 1684 1685 return 0; 1686 } 1687 1688 static int setup_xdp(struct net_device *dev, struct bpf_prog *prog) 1689 { 1690 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1691 struct dpaa2_eth_channel *ch; 1692 struct bpf_prog *old; 1693 bool up, need_update; 1694 int i, err; 1695 1696 if (prog && !xdp_mtu_valid(priv, dev->mtu)) 1697 return -EINVAL; 1698 1699 if (prog) { 1700 prog = bpf_prog_add(prog, priv->num_channels); 1701 if (IS_ERR(prog)) 1702 return PTR_ERR(prog); 1703 } 1704 1705 up = netif_running(dev); 1706 need_update = (!!priv->xdp_prog != !!prog); 1707 1708 if (up) 1709 dpaa2_eth_stop(dev); 1710 1711 /* While in xdp mode, enforce a maximum Rx frame size based on MTU. 1712 * Also, when switching between xdp/non-xdp modes we need to reconfigure 1713 * our Rx buffer layout. Buffer pool was drained on dpaa2_eth_stop, 1714 * so we are sure no old format buffers will be used from now on. 1715 */ 1716 if (need_update) { 1717 err = set_rx_mfl(priv, dev->mtu, !!prog); 1718 if (err) 1719 goto out_err; 1720 err = update_rx_buffer_headroom(priv, !!prog); 1721 if (err) 1722 goto out_err; 1723 } 1724 1725 old = xchg(&priv->xdp_prog, prog); 1726 if (old) 1727 bpf_prog_put(old); 1728 1729 for (i = 0; i < priv->num_channels; i++) { 1730 ch = priv->channel[i]; 1731 old = xchg(&ch->xdp.prog, prog); 1732 if (old) 1733 bpf_prog_put(old); 1734 } 1735 1736 if (up) { 1737 err = dpaa2_eth_open(dev); 1738 if (err) 1739 return err; 1740 } 1741 1742 return 0; 1743 1744 out_err: 1745 if (prog) 1746 bpf_prog_sub(prog, priv->num_channels); 1747 if (up) 1748 dpaa2_eth_open(dev); 1749 1750 return err; 1751 } 1752 1753 static int dpaa2_eth_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1754 { 1755 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1756 1757 switch (xdp->command) { 1758 case XDP_SETUP_PROG: 1759 return setup_xdp(dev, xdp->prog); 1760 case XDP_QUERY_PROG: 1761 xdp->prog_id = priv->xdp_prog ? priv->xdp_prog->aux->id : 0; 1762 break; 1763 default: 1764 return -EINVAL; 1765 } 1766 1767 return 0; 1768 } 1769 1770 static int dpaa2_eth_xdp_xmit_frame(struct net_device *net_dev, 1771 struct xdp_frame *xdpf) 1772 { 1773 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1774 struct device *dev = net_dev->dev.parent; 1775 struct rtnl_link_stats64 *percpu_stats; 1776 struct dpaa2_eth_drv_stats *percpu_extras; 1777 unsigned int needed_headroom; 1778 struct dpaa2_eth_swa *swa; 1779 struct dpaa2_eth_fq *fq; 1780 struct dpaa2_fd fd; 1781 void *buffer_start, *aligned_start; 1782 dma_addr_t addr; 1783 int err, i; 1784 1785 /* We require a minimum headroom to be able to transmit the frame. 1786 * Otherwise return an error and let the original net_device handle it 1787 */ 1788 needed_headroom = dpaa2_eth_needed_headroom(priv, NULL); 1789 if (xdpf->headroom < needed_headroom) 1790 return -EINVAL; 1791 1792 percpu_stats = this_cpu_ptr(priv->percpu_stats); 1793 percpu_extras = this_cpu_ptr(priv->percpu_extras); 1794 1795 /* Setup the FD fields */ 1796 memset(&fd, 0, sizeof(fd)); 1797 1798 /* Align FD address, if possible */ 1799 buffer_start = xdpf->data - needed_headroom; 1800 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 1801 DPAA2_ETH_TX_BUF_ALIGN); 1802 if (aligned_start >= xdpf->data - xdpf->headroom) 1803 buffer_start = aligned_start; 1804 1805 swa = (struct dpaa2_eth_swa *)buffer_start; 1806 /* fill in necessary fields here */ 1807 swa->type = DPAA2_ETH_SWA_XDP; 1808 swa->xdp.dma_size = xdpf->data + xdpf->len - buffer_start; 1809 swa->xdp.xdpf = xdpf; 1810 1811 addr = dma_map_single(dev, buffer_start, 1812 swa->xdp.dma_size, 1813 DMA_BIDIRECTIONAL); 1814 if (unlikely(dma_mapping_error(dev, addr))) { 1815 percpu_stats->tx_dropped++; 1816 return -ENOMEM; 1817 } 1818 1819 dpaa2_fd_set_addr(&fd, addr); 1820 dpaa2_fd_set_offset(&fd, xdpf->data - buffer_start); 1821 dpaa2_fd_set_len(&fd, xdpf->len); 1822 dpaa2_fd_set_format(&fd, dpaa2_fd_single); 1823 dpaa2_fd_set_ctrl(&fd, FD_CTRL_PTA); 1824 1825 fq = &priv->fq[smp_processor_id() % dpaa2_eth_queue_count(priv)]; 1826 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 1827 err = priv->enqueue(priv, fq, &fd, 0); 1828 if (err != -EBUSY) 1829 break; 1830 } 1831 percpu_extras->tx_portal_busy += i; 1832 if (unlikely(err < 0)) { 1833 percpu_stats->tx_errors++; 1834 /* let the Rx device handle the cleanup */ 1835 return err; 1836 } 1837 1838 percpu_stats->tx_packets++; 1839 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fd); 1840 1841 return 0; 1842 } 1843 1844 static int dpaa2_eth_xdp_xmit(struct net_device *net_dev, int n, 1845 struct xdp_frame **frames, u32 flags) 1846 { 1847 int drops = 0; 1848 int i, err; 1849 1850 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 1851 return -EINVAL; 1852 1853 if (!netif_running(net_dev)) 1854 return -ENETDOWN; 1855 1856 for (i = 0; i < n; i++) { 1857 struct xdp_frame *xdpf = frames[i]; 1858 1859 err = dpaa2_eth_xdp_xmit_frame(net_dev, xdpf); 1860 if (err) { 1861 xdp_return_frame_rx_napi(xdpf); 1862 drops++; 1863 } 1864 } 1865 1866 return n - drops; 1867 } 1868 1869 static const struct net_device_ops dpaa2_eth_ops = { 1870 .ndo_open = dpaa2_eth_open, 1871 .ndo_start_xmit = dpaa2_eth_tx, 1872 .ndo_stop = dpaa2_eth_stop, 1873 .ndo_set_mac_address = dpaa2_eth_set_addr, 1874 .ndo_get_stats64 = dpaa2_eth_get_stats, 1875 .ndo_set_rx_mode = dpaa2_eth_set_rx_mode, 1876 .ndo_set_features = dpaa2_eth_set_features, 1877 .ndo_do_ioctl = dpaa2_eth_ioctl, 1878 .ndo_change_mtu = dpaa2_eth_change_mtu, 1879 .ndo_bpf = dpaa2_eth_xdp, 1880 .ndo_xdp_xmit = dpaa2_eth_xdp_xmit, 1881 }; 1882 1883 static void cdan_cb(struct dpaa2_io_notification_ctx *ctx) 1884 { 1885 struct dpaa2_eth_channel *ch; 1886 1887 ch = container_of(ctx, struct dpaa2_eth_channel, nctx); 1888 1889 /* Update NAPI statistics */ 1890 ch->stats.cdan++; 1891 1892 napi_schedule_irqoff(&ch->napi); 1893 } 1894 1895 /* Allocate and configure a DPCON object */ 1896 static struct fsl_mc_device *setup_dpcon(struct dpaa2_eth_priv *priv) 1897 { 1898 struct fsl_mc_device *dpcon; 1899 struct device *dev = priv->net_dev->dev.parent; 1900 struct dpcon_attr attrs; 1901 int err; 1902 1903 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), 1904 FSL_MC_POOL_DPCON, &dpcon); 1905 if (err) { 1906 if (err == -ENXIO) 1907 err = -EPROBE_DEFER; 1908 else 1909 dev_info(dev, "Not enough DPCONs, will go on as-is\n"); 1910 return ERR_PTR(err); 1911 } 1912 1913 err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle); 1914 if (err) { 1915 dev_err(dev, "dpcon_open() failed\n"); 1916 goto free; 1917 } 1918 1919 err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle); 1920 if (err) { 1921 dev_err(dev, "dpcon_reset() failed\n"); 1922 goto close; 1923 } 1924 1925 err = dpcon_get_attributes(priv->mc_io, 0, dpcon->mc_handle, &attrs); 1926 if (err) { 1927 dev_err(dev, "dpcon_get_attributes() failed\n"); 1928 goto close; 1929 } 1930 1931 err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle); 1932 if (err) { 1933 dev_err(dev, "dpcon_enable() failed\n"); 1934 goto close; 1935 } 1936 1937 return dpcon; 1938 1939 close: 1940 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 1941 free: 1942 fsl_mc_object_free(dpcon); 1943 1944 return NULL; 1945 } 1946 1947 static void free_dpcon(struct dpaa2_eth_priv *priv, 1948 struct fsl_mc_device *dpcon) 1949 { 1950 dpcon_disable(priv->mc_io, 0, dpcon->mc_handle); 1951 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 1952 fsl_mc_object_free(dpcon); 1953 } 1954 1955 static struct dpaa2_eth_channel * 1956 alloc_channel(struct dpaa2_eth_priv *priv) 1957 { 1958 struct dpaa2_eth_channel *channel; 1959 struct dpcon_attr attr; 1960 struct device *dev = priv->net_dev->dev.parent; 1961 int err; 1962 1963 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 1964 if (!channel) 1965 return NULL; 1966 1967 channel->dpcon = setup_dpcon(priv); 1968 if (IS_ERR_OR_NULL(channel->dpcon)) { 1969 err = PTR_ERR(channel->dpcon); 1970 goto err_setup; 1971 } 1972 1973 err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle, 1974 &attr); 1975 if (err) { 1976 dev_err(dev, "dpcon_get_attributes() failed\n"); 1977 goto err_get_attr; 1978 } 1979 1980 channel->dpcon_id = attr.id; 1981 channel->ch_id = attr.qbman_ch_id; 1982 channel->priv = priv; 1983 1984 return channel; 1985 1986 err_get_attr: 1987 free_dpcon(priv, channel->dpcon); 1988 err_setup: 1989 kfree(channel); 1990 return ERR_PTR(err); 1991 } 1992 1993 static void free_channel(struct dpaa2_eth_priv *priv, 1994 struct dpaa2_eth_channel *channel) 1995 { 1996 free_dpcon(priv, channel->dpcon); 1997 kfree(channel); 1998 } 1999 2000 /* DPIO setup: allocate and configure QBMan channels, setup core affinity 2001 * and register data availability notifications 2002 */ 2003 static int setup_dpio(struct dpaa2_eth_priv *priv) 2004 { 2005 struct dpaa2_io_notification_ctx *nctx; 2006 struct dpaa2_eth_channel *channel; 2007 struct dpcon_notification_cfg dpcon_notif_cfg; 2008 struct device *dev = priv->net_dev->dev.parent; 2009 int i, err; 2010 2011 /* We want the ability to spread ingress traffic (RX, TX conf) to as 2012 * many cores as possible, so we need one channel for each core 2013 * (unless there's fewer queues than cores, in which case the extra 2014 * channels would be wasted). 2015 * Allocate one channel per core and register it to the core's 2016 * affine DPIO. If not enough channels are available for all cores 2017 * or if some cores don't have an affine DPIO, there will be no 2018 * ingress frame processing on those cores. 2019 */ 2020 cpumask_clear(&priv->dpio_cpumask); 2021 for_each_online_cpu(i) { 2022 /* Try to allocate a channel */ 2023 channel = alloc_channel(priv); 2024 if (IS_ERR_OR_NULL(channel)) { 2025 err = PTR_ERR(channel); 2026 if (err != -EPROBE_DEFER) 2027 dev_info(dev, 2028 "No affine channel for cpu %d and above\n", i); 2029 goto err_alloc_ch; 2030 } 2031 2032 priv->channel[priv->num_channels] = channel; 2033 2034 nctx = &channel->nctx; 2035 nctx->is_cdan = 1; 2036 nctx->cb = cdan_cb; 2037 nctx->id = channel->ch_id; 2038 nctx->desired_cpu = i; 2039 2040 /* Register the new context */ 2041 channel->dpio = dpaa2_io_service_select(i); 2042 err = dpaa2_io_service_register(channel->dpio, nctx, dev); 2043 if (err) { 2044 dev_dbg(dev, "No affine DPIO for cpu %d\n", i); 2045 /* If no affine DPIO for this core, there's probably 2046 * none available for next cores either. Signal we want 2047 * to retry later, in case the DPIO devices weren't 2048 * probed yet. 2049 */ 2050 err = -EPROBE_DEFER; 2051 goto err_service_reg; 2052 } 2053 2054 /* Register DPCON notification with MC */ 2055 dpcon_notif_cfg.dpio_id = nctx->dpio_id; 2056 dpcon_notif_cfg.priority = 0; 2057 dpcon_notif_cfg.user_ctx = nctx->qman64; 2058 err = dpcon_set_notification(priv->mc_io, 0, 2059 channel->dpcon->mc_handle, 2060 &dpcon_notif_cfg); 2061 if (err) { 2062 dev_err(dev, "dpcon_set_notification failed()\n"); 2063 goto err_set_cdan; 2064 } 2065 2066 /* If we managed to allocate a channel and also found an affine 2067 * DPIO for this core, add it to the final mask 2068 */ 2069 cpumask_set_cpu(i, &priv->dpio_cpumask); 2070 priv->num_channels++; 2071 2072 /* Stop if we already have enough channels to accommodate all 2073 * RX and TX conf queues 2074 */ 2075 if (priv->num_channels == priv->dpni_attrs.num_queues) 2076 break; 2077 } 2078 2079 return 0; 2080 2081 err_set_cdan: 2082 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 2083 err_service_reg: 2084 free_channel(priv, channel); 2085 err_alloc_ch: 2086 if (err == -EPROBE_DEFER) 2087 return err; 2088 2089 if (cpumask_empty(&priv->dpio_cpumask)) { 2090 dev_err(dev, "No cpu with an affine DPIO/DPCON\n"); 2091 return -ENODEV; 2092 } 2093 2094 dev_info(dev, "Cores %*pbl available for processing ingress traffic\n", 2095 cpumask_pr_args(&priv->dpio_cpumask)); 2096 2097 return 0; 2098 } 2099 2100 static void free_dpio(struct dpaa2_eth_priv *priv) 2101 { 2102 struct device *dev = priv->net_dev->dev.parent; 2103 struct dpaa2_eth_channel *ch; 2104 int i; 2105 2106 /* deregister CDAN notifications and free channels */ 2107 for (i = 0; i < priv->num_channels; i++) { 2108 ch = priv->channel[i]; 2109 dpaa2_io_service_deregister(ch->dpio, &ch->nctx, dev); 2110 free_channel(priv, ch); 2111 } 2112 } 2113 2114 static struct dpaa2_eth_channel *get_affine_channel(struct dpaa2_eth_priv *priv, 2115 int cpu) 2116 { 2117 struct device *dev = priv->net_dev->dev.parent; 2118 int i; 2119 2120 for (i = 0; i < priv->num_channels; i++) 2121 if (priv->channel[i]->nctx.desired_cpu == cpu) 2122 return priv->channel[i]; 2123 2124 /* We should never get here. Issue a warning and return 2125 * the first channel, because it's still better than nothing 2126 */ 2127 dev_warn(dev, "No affine channel found for cpu %d\n", cpu); 2128 2129 return priv->channel[0]; 2130 } 2131 2132 static void set_fq_affinity(struct dpaa2_eth_priv *priv) 2133 { 2134 struct device *dev = priv->net_dev->dev.parent; 2135 struct cpumask xps_mask; 2136 struct dpaa2_eth_fq *fq; 2137 int rx_cpu, txc_cpu; 2138 int i, err; 2139 2140 /* For each FQ, pick one channel/CPU to deliver frames to. 2141 * This may well change at runtime, either through irqbalance or 2142 * through direct user intervention. 2143 */ 2144 rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask); 2145 2146 for (i = 0; i < priv->num_fqs; i++) { 2147 fq = &priv->fq[i]; 2148 switch (fq->type) { 2149 case DPAA2_RX_FQ: 2150 fq->target_cpu = rx_cpu; 2151 rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask); 2152 if (rx_cpu >= nr_cpu_ids) 2153 rx_cpu = cpumask_first(&priv->dpio_cpumask); 2154 break; 2155 case DPAA2_TX_CONF_FQ: 2156 fq->target_cpu = txc_cpu; 2157 2158 /* Tell the stack to affine to txc_cpu the Tx queue 2159 * associated with the confirmation one 2160 */ 2161 cpumask_clear(&xps_mask); 2162 cpumask_set_cpu(txc_cpu, &xps_mask); 2163 err = netif_set_xps_queue(priv->net_dev, &xps_mask, 2164 fq->flowid); 2165 if (err) 2166 dev_err(dev, "Error setting XPS queue\n"); 2167 2168 txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask); 2169 if (txc_cpu >= nr_cpu_ids) 2170 txc_cpu = cpumask_first(&priv->dpio_cpumask); 2171 break; 2172 default: 2173 dev_err(dev, "Unknown FQ type: %d\n", fq->type); 2174 } 2175 fq->channel = get_affine_channel(priv, fq->target_cpu); 2176 } 2177 } 2178 2179 static void setup_fqs(struct dpaa2_eth_priv *priv) 2180 { 2181 int i; 2182 2183 /* We have one TxConf FQ per Tx flow. 2184 * The number of Tx and Rx queues is the same. 2185 * Tx queues come first in the fq array. 2186 */ 2187 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2188 priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ; 2189 priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf; 2190 priv->fq[priv->num_fqs++].flowid = (u16)i; 2191 } 2192 2193 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2194 priv->fq[priv->num_fqs].type = DPAA2_RX_FQ; 2195 priv->fq[priv->num_fqs].consume = dpaa2_eth_rx; 2196 priv->fq[priv->num_fqs++].flowid = (u16)i; 2197 } 2198 2199 /* For each FQ, decide on which core to process incoming frames */ 2200 set_fq_affinity(priv); 2201 } 2202 2203 /* Allocate and configure one buffer pool for each interface */ 2204 static int setup_dpbp(struct dpaa2_eth_priv *priv) 2205 { 2206 int err; 2207 struct fsl_mc_device *dpbp_dev; 2208 struct device *dev = priv->net_dev->dev.parent; 2209 struct dpbp_attr dpbp_attrs; 2210 2211 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, 2212 &dpbp_dev); 2213 if (err) { 2214 if (err == -ENXIO) 2215 err = -EPROBE_DEFER; 2216 else 2217 dev_err(dev, "DPBP device allocation failed\n"); 2218 return err; 2219 } 2220 2221 priv->dpbp_dev = dpbp_dev; 2222 2223 err = dpbp_open(priv->mc_io, 0, priv->dpbp_dev->obj_desc.id, 2224 &dpbp_dev->mc_handle); 2225 if (err) { 2226 dev_err(dev, "dpbp_open() failed\n"); 2227 goto err_open; 2228 } 2229 2230 err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle); 2231 if (err) { 2232 dev_err(dev, "dpbp_reset() failed\n"); 2233 goto err_reset; 2234 } 2235 2236 err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle); 2237 if (err) { 2238 dev_err(dev, "dpbp_enable() failed\n"); 2239 goto err_enable; 2240 } 2241 2242 err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle, 2243 &dpbp_attrs); 2244 if (err) { 2245 dev_err(dev, "dpbp_get_attributes() failed\n"); 2246 goto err_get_attr; 2247 } 2248 priv->bpid = dpbp_attrs.bpid; 2249 2250 return 0; 2251 2252 err_get_attr: 2253 dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle); 2254 err_enable: 2255 err_reset: 2256 dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle); 2257 err_open: 2258 fsl_mc_object_free(dpbp_dev); 2259 2260 return err; 2261 } 2262 2263 static void free_dpbp(struct dpaa2_eth_priv *priv) 2264 { 2265 drain_pool(priv); 2266 dpbp_disable(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2267 dpbp_close(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2268 fsl_mc_object_free(priv->dpbp_dev); 2269 } 2270 2271 static int set_buffer_layout(struct dpaa2_eth_priv *priv) 2272 { 2273 struct device *dev = priv->net_dev->dev.parent; 2274 struct dpni_buffer_layout buf_layout = {0}; 2275 u16 rx_buf_align; 2276 int err; 2277 2278 /* We need to check for WRIOP version 1.0.0, but depending on the MC 2279 * version, this number is not always provided correctly on rev1. 2280 * We need to check for both alternatives in this situation. 2281 */ 2282 if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) || 2283 priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0)) 2284 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1; 2285 else 2286 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN; 2287 2288 /* tx buffer */ 2289 buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE; 2290 buf_layout.pass_timestamp = true; 2291 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE | 2292 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2293 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2294 DPNI_QUEUE_TX, &buf_layout); 2295 if (err) { 2296 dev_err(dev, "dpni_set_buffer_layout(TX) failed\n"); 2297 return err; 2298 } 2299 2300 /* tx-confirm buffer */ 2301 buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2302 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2303 DPNI_QUEUE_TX_CONFIRM, &buf_layout); 2304 if (err) { 2305 dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n"); 2306 return err; 2307 } 2308 2309 /* Now that we've set our tx buffer layout, retrieve the minimum 2310 * required tx data offset. 2311 */ 2312 err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token, 2313 &priv->tx_data_offset); 2314 if (err) { 2315 dev_err(dev, "dpni_get_tx_data_offset() failed\n"); 2316 return err; 2317 } 2318 2319 if ((priv->tx_data_offset % 64) != 0) 2320 dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n", 2321 priv->tx_data_offset); 2322 2323 /* rx buffer */ 2324 buf_layout.pass_frame_status = true; 2325 buf_layout.pass_parser_result = true; 2326 buf_layout.data_align = rx_buf_align; 2327 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv); 2328 buf_layout.private_data_size = 0; 2329 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT | 2330 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | 2331 DPNI_BUF_LAYOUT_OPT_DATA_ALIGN | 2332 DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM | 2333 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2334 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2335 DPNI_QUEUE_RX, &buf_layout); 2336 if (err) { 2337 dev_err(dev, "dpni_set_buffer_layout(RX) failed\n"); 2338 return err; 2339 } 2340 2341 return 0; 2342 } 2343 2344 #define DPNI_ENQUEUE_FQID_VER_MAJOR 7 2345 #define DPNI_ENQUEUE_FQID_VER_MINOR 9 2346 2347 static inline int dpaa2_eth_enqueue_qd(struct dpaa2_eth_priv *priv, 2348 struct dpaa2_eth_fq *fq, 2349 struct dpaa2_fd *fd, u8 prio) 2350 { 2351 return dpaa2_io_service_enqueue_qd(fq->channel->dpio, 2352 priv->tx_qdid, prio, 2353 fq->tx_qdbin, fd); 2354 } 2355 2356 static inline int dpaa2_eth_enqueue_fq(struct dpaa2_eth_priv *priv, 2357 struct dpaa2_eth_fq *fq, 2358 struct dpaa2_fd *fd, 2359 u8 prio __always_unused) 2360 { 2361 return dpaa2_io_service_enqueue_fq(fq->channel->dpio, 2362 fq->tx_fqid, fd); 2363 } 2364 2365 static void set_enqueue_mode(struct dpaa2_eth_priv *priv) 2366 { 2367 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 2368 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 2369 priv->enqueue = dpaa2_eth_enqueue_qd; 2370 else 2371 priv->enqueue = dpaa2_eth_enqueue_fq; 2372 } 2373 2374 /* Configure the DPNI object this interface is associated with */ 2375 static int setup_dpni(struct fsl_mc_device *ls_dev) 2376 { 2377 struct device *dev = &ls_dev->dev; 2378 struct dpaa2_eth_priv *priv; 2379 struct net_device *net_dev; 2380 int err; 2381 2382 net_dev = dev_get_drvdata(dev); 2383 priv = netdev_priv(net_dev); 2384 2385 /* get a handle for the DPNI object */ 2386 err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token); 2387 if (err) { 2388 dev_err(dev, "dpni_open() failed\n"); 2389 return err; 2390 } 2391 2392 /* Check if we can work with this DPNI object */ 2393 err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major, 2394 &priv->dpni_ver_minor); 2395 if (err) { 2396 dev_err(dev, "dpni_get_api_version() failed\n"); 2397 goto close; 2398 } 2399 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) { 2400 dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n", 2401 priv->dpni_ver_major, priv->dpni_ver_minor, 2402 DPNI_VER_MAJOR, DPNI_VER_MINOR); 2403 err = -ENOTSUPP; 2404 goto close; 2405 } 2406 2407 ls_dev->mc_io = priv->mc_io; 2408 ls_dev->mc_handle = priv->mc_token; 2409 2410 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2411 if (err) { 2412 dev_err(dev, "dpni_reset() failed\n"); 2413 goto close; 2414 } 2415 2416 err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token, 2417 &priv->dpni_attrs); 2418 if (err) { 2419 dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err); 2420 goto close; 2421 } 2422 2423 err = set_buffer_layout(priv); 2424 if (err) 2425 goto close; 2426 2427 set_enqueue_mode(priv); 2428 2429 priv->cls_rules = devm_kzalloc(dev, sizeof(struct dpaa2_eth_cls_rule) * 2430 dpaa2_eth_fs_count(priv), GFP_KERNEL); 2431 if (!priv->cls_rules) 2432 goto close; 2433 2434 return 0; 2435 2436 close: 2437 dpni_close(priv->mc_io, 0, priv->mc_token); 2438 2439 return err; 2440 } 2441 2442 static void free_dpni(struct dpaa2_eth_priv *priv) 2443 { 2444 int err; 2445 2446 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2447 if (err) 2448 netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n", 2449 err); 2450 2451 dpni_close(priv->mc_io, 0, priv->mc_token); 2452 } 2453 2454 static int setup_rx_flow(struct dpaa2_eth_priv *priv, 2455 struct dpaa2_eth_fq *fq) 2456 { 2457 struct device *dev = priv->net_dev->dev.parent; 2458 struct dpni_queue queue; 2459 struct dpni_queue_id qid; 2460 struct dpni_taildrop td; 2461 int err; 2462 2463 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2464 DPNI_QUEUE_RX, 0, fq->flowid, &queue, &qid); 2465 if (err) { 2466 dev_err(dev, "dpni_get_queue(RX) failed\n"); 2467 return err; 2468 } 2469 2470 fq->fqid = qid.fqid; 2471 2472 queue.destination.id = fq->channel->dpcon_id; 2473 queue.destination.type = DPNI_DEST_DPCON; 2474 queue.destination.priority = 1; 2475 queue.user_context = (u64)(uintptr_t)fq; 2476 queue.flc.stash_control = 1; 2477 queue.flc.value &= 0xFFFFFFFFFFFFFFC0; 2478 /* 01 01 00 - data, annotation, flow context */ 2479 queue.flc.value |= 0x14; 2480 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2481 DPNI_QUEUE_RX, 0, fq->flowid, 2482 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST | 2483 DPNI_QUEUE_OPT_FLC, 2484 &queue); 2485 if (err) { 2486 dev_err(dev, "dpni_set_queue(RX) failed\n"); 2487 return err; 2488 } 2489 2490 td.enable = 1; 2491 td.threshold = DPAA2_ETH_TAILDROP_THRESH; 2492 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, DPNI_CP_QUEUE, 2493 DPNI_QUEUE_RX, 0, fq->flowid, &td); 2494 if (err) { 2495 dev_err(dev, "dpni_set_threshold() failed\n"); 2496 return err; 2497 } 2498 2499 /* xdp_rxq setup */ 2500 err = xdp_rxq_info_reg(&fq->channel->xdp_rxq, priv->net_dev, 2501 fq->flowid); 2502 if (err) { 2503 dev_err(dev, "xdp_rxq_info_reg failed\n"); 2504 return err; 2505 } 2506 2507 err = xdp_rxq_info_reg_mem_model(&fq->channel->xdp_rxq, 2508 MEM_TYPE_PAGE_ORDER0, NULL); 2509 if (err) { 2510 dev_err(dev, "xdp_rxq_info_reg_mem_model failed\n"); 2511 return err; 2512 } 2513 2514 return 0; 2515 } 2516 2517 static int setup_tx_flow(struct dpaa2_eth_priv *priv, 2518 struct dpaa2_eth_fq *fq) 2519 { 2520 struct device *dev = priv->net_dev->dev.parent; 2521 struct dpni_queue queue; 2522 struct dpni_queue_id qid; 2523 int err; 2524 2525 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2526 DPNI_QUEUE_TX, 0, fq->flowid, &queue, &qid); 2527 if (err) { 2528 dev_err(dev, "dpni_get_queue(TX) failed\n"); 2529 return err; 2530 } 2531 2532 fq->tx_qdbin = qid.qdbin; 2533 fq->tx_fqid = qid.fqid; 2534 2535 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2536 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 2537 &queue, &qid); 2538 if (err) { 2539 dev_err(dev, "dpni_get_queue(TX_CONF) failed\n"); 2540 return err; 2541 } 2542 2543 fq->fqid = qid.fqid; 2544 2545 queue.destination.id = fq->channel->dpcon_id; 2546 queue.destination.type = DPNI_DEST_DPCON; 2547 queue.destination.priority = 0; 2548 queue.user_context = (u64)(uintptr_t)fq; 2549 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2550 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 2551 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 2552 &queue); 2553 if (err) { 2554 dev_err(dev, "dpni_set_queue(TX_CONF) failed\n"); 2555 return err; 2556 } 2557 2558 return 0; 2559 } 2560 2561 /* Supported header fields for Rx hash distribution key */ 2562 static const struct dpaa2_eth_dist_fields dist_fields[] = { 2563 { 2564 /* L2 header */ 2565 .rxnfc_field = RXH_L2DA, 2566 .cls_prot = NET_PROT_ETH, 2567 .cls_field = NH_FLD_ETH_DA, 2568 .size = 6, 2569 }, { 2570 .cls_prot = NET_PROT_ETH, 2571 .cls_field = NH_FLD_ETH_SA, 2572 .size = 6, 2573 }, { 2574 /* This is the last ethertype field parsed: 2575 * depending on frame format, it can be the MAC ethertype 2576 * or the VLAN etype. 2577 */ 2578 .cls_prot = NET_PROT_ETH, 2579 .cls_field = NH_FLD_ETH_TYPE, 2580 .size = 2, 2581 }, { 2582 /* VLAN header */ 2583 .rxnfc_field = RXH_VLAN, 2584 .cls_prot = NET_PROT_VLAN, 2585 .cls_field = NH_FLD_VLAN_TCI, 2586 .size = 2, 2587 }, { 2588 /* IP header */ 2589 .rxnfc_field = RXH_IP_SRC, 2590 .cls_prot = NET_PROT_IP, 2591 .cls_field = NH_FLD_IP_SRC, 2592 .size = 4, 2593 }, { 2594 .rxnfc_field = RXH_IP_DST, 2595 .cls_prot = NET_PROT_IP, 2596 .cls_field = NH_FLD_IP_DST, 2597 .size = 4, 2598 }, { 2599 .rxnfc_field = RXH_L3_PROTO, 2600 .cls_prot = NET_PROT_IP, 2601 .cls_field = NH_FLD_IP_PROTO, 2602 .size = 1, 2603 }, { 2604 /* Using UDP ports, this is functionally equivalent to raw 2605 * byte pairs from L4 header. 2606 */ 2607 .rxnfc_field = RXH_L4_B_0_1, 2608 .cls_prot = NET_PROT_UDP, 2609 .cls_field = NH_FLD_UDP_PORT_SRC, 2610 .size = 2, 2611 }, { 2612 .rxnfc_field = RXH_L4_B_2_3, 2613 .cls_prot = NET_PROT_UDP, 2614 .cls_field = NH_FLD_UDP_PORT_DST, 2615 .size = 2, 2616 }, 2617 }; 2618 2619 /* Configure the Rx hash key using the legacy API */ 2620 static int config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2621 { 2622 struct device *dev = priv->net_dev->dev.parent; 2623 struct dpni_rx_tc_dist_cfg dist_cfg; 2624 int err; 2625 2626 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2627 2628 dist_cfg.key_cfg_iova = key; 2629 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2630 dist_cfg.dist_mode = DPNI_DIST_MODE_HASH; 2631 2632 err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 0, &dist_cfg); 2633 if (err) 2634 dev_err(dev, "dpni_set_rx_tc_dist failed\n"); 2635 2636 return err; 2637 } 2638 2639 /* Configure the Rx hash key using the new API */ 2640 static int config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2641 { 2642 struct device *dev = priv->net_dev->dev.parent; 2643 struct dpni_rx_dist_cfg dist_cfg; 2644 int err; 2645 2646 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2647 2648 dist_cfg.key_cfg_iova = key; 2649 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2650 dist_cfg.enable = 1; 2651 2652 err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2653 if (err) 2654 dev_err(dev, "dpni_set_rx_hash_dist failed\n"); 2655 2656 return err; 2657 } 2658 2659 /* Configure the Rx flow classification key */ 2660 static int config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2661 { 2662 struct device *dev = priv->net_dev->dev.parent; 2663 struct dpni_rx_dist_cfg dist_cfg; 2664 int err; 2665 2666 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2667 2668 dist_cfg.key_cfg_iova = key; 2669 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2670 dist_cfg.enable = 1; 2671 2672 err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2673 if (err) 2674 dev_err(dev, "dpni_set_rx_fs_dist failed\n"); 2675 2676 return err; 2677 } 2678 2679 /* Size of the Rx flow classification key */ 2680 int dpaa2_eth_cls_key_size(void) 2681 { 2682 int i, size = 0; 2683 2684 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) 2685 size += dist_fields[i].size; 2686 2687 return size; 2688 } 2689 2690 /* Offset of header field in Rx classification key */ 2691 int dpaa2_eth_cls_fld_off(int prot, int field) 2692 { 2693 int i, off = 0; 2694 2695 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2696 if (dist_fields[i].cls_prot == prot && 2697 dist_fields[i].cls_field == field) 2698 return off; 2699 off += dist_fields[i].size; 2700 } 2701 2702 WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n"); 2703 return 0; 2704 } 2705 2706 /* Set Rx distribution (hash or flow classification) key 2707 * flags is a combination of RXH_ bits 2708 */ 2709 static int dpaa2_eth_set_dist_key(struct net_device *net_dev, 2710 enum dpaa2_eth_rx_dist type, u64 flags) 2711 { 2712 struct device *dev = net_dev->dev.parent; 2713 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2714 struct dpkg_profile_cfg cls_cfg; 2715 u32 rx_hash_fields = 0; 2716 dma_addr_t key_iova; 2717 u8 *dma_mem; 2718 int i; 2719 int err = 0; 2720 2721 memset(&cls_cfg, 0, sizeof(cls_cfg)); 2722 2723 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2724 struct dpkg_extract *key = 2725 &cls_cfg.extracts[cls_cfg.num_extracts]; 2726 2727 /* For Rx hashing key we set only the selected fields. 2728 * For Rx flow classification key we set all supported fields 2729 */ 2730 if (type == DPAA2_ETH_RX_DIST_HASH) { 2731 if (!(flags & dist_fields[i].rxnfc_field)) 2732 continue; 2733 rx_hash_fields |= dist_fields[i].rxnfc_field; 2734 } 2735 2736 if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) { 2737 dev_err(dev, "error adding key extraction rule, too many rules?\n"); 2738 return -E2BIG; 2739 } 2740 2741 key->type = DPKG_EXTRACT_FROM_HDR; 2742 key->extract.from_hdr.prot = dist_fields[i].cls_prot; 2743 key->extract.from_hdr.type = DPKG_FULL_FIELD; 2744 key->extract.from_hdr.field = dist_fields[i].cls_field; 2745 cls_cfg.num_extracts++; 2746 } 2747 2748 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 2749 if (!dma_mem) 2750 return -ENOMEM; 2751 2752 err = dpni_prepare_key_cfg(&cls_cfg, dma_mem); 2753 if (err) { 2754 dev_err(dev, "dpni_prepare_key_cfg error %d\n", err); 2755 goto free_key; 2756 } 2757 2758 /* Prepare for setting the rx dist */ 2759 key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, 2760 DMA_TO_DEVICE); 2761 if (dma_mapping_error(dev, key_iova)) { 2762 dev_err(dev, "DMA mapping failed\n"); 2763 err = -ENOMEM; 2764 goto free_key; 2765 } 2766 2767 if (type == DPAA2_ETH_RX_DIST_HASH) { 2768 if (dpaa2_eth_has_legacy_dist(priv)) 2769 err = config_legacy_hash_key(priv, key_iova); 2770 else 2771 err = config_hash_key(priv, key_iova); 2772 } else { 2773 err = config_cls_key(priv, key_iova); 2774 } 2775 2776 dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE, 2777 DMA_TO_DEVICE); 2778 if (!err && type == DPAA2_ETH_RX_DIST_HASH) 2779 priv->rx_hash_fields = rx_hash_fields; 2780 2781 free_key: 2782 kfree(dma_mem); 2783 return err; 2784 } 2785 2786 int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags) 2787 { 2788 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2789 2790 if (!dpaa2_eth_hash_enabled(priv)) 2791 return -EOPNOTSUPP; 2792 2793 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, flags); 2794 } 2795 2796 static int dpaa2_eth_set_cls(struct dpaa2_eth_priv *priv) 2797 { 2798 struct device *dev = priv->net_dev->dev.parent; 2799 2800 /* Check if we actually support Rx flow classification */ 2801 if (dpaa2_eth_has_legacy_dist(priv)) { 2802 dev_dbg(dev, "Rx cls not supported by current MC version\n"); 2803 return -EOPNOTSUPP; 2804 } 2805 2806 if (priv->dpni_attrs.options & DPNI_OPT_NO_FS || 2807 !(priv->dpni_attrs.options & DPNI_OPT_HAS_KEY_MASKING)) { 2808 dev_dbg(dev, "Rx cls disabled in DPNI options\n"); 2809 return -EOPNOTSUPP; 2810 } 2811 2812 if (!dpaa2_eth_hash_enabled(priv)) { 2813 dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n"); 2814 return -EOPNOTSUPP; 2815 } 2816 2817 priv->rx_cls_enabled = 1; 2818 2819 return dpaa2_eth_set_dist_key(priv->net_dev, DPAA2_ETH_RX_DIST_CLS, 0); 2820 } 2821 2822 /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs, 2823 * frame queues and channels 2824 */ 2825 static int bind_dpni(struct dpaa2_eth_priv *priv) 2826 { 2827 struct net_device *net_dev = priv->net_dev; 2828 struct device *dev = net_dev->dev.parent; 2829 struct dpni_pools_cfg pools_params; 2830 struct dpni_error_cfg err_cfg; 2831 int err = 0; 2832 int i; 2833 2834 pools_params.num_dpbp = 1; 2835 pools_params.pools[0].dpbp_id = priv->dpbp_dev->obj_desc.id; 2836 pools_params.pools[0].backup_pool = 0; 2837 pools_params.pools[0].buffer_size = DPAA2_ETH_RX_BUF_SIZE; 2838 err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params); 2839 if (err) { 2840 dev_err(dev, "dpni_set_pools() failed\n"); 2841 return err; 2842 } 2843 2844 /* have the interface implicitly distribute traffic based on 2845 * the default hash key 2846 */ 2847 err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT); 2848 if (err && err != -EOPNOTSUPP) 2849 dev_err(dev, "Failed to configure hashing\n"); 2850 2851 /* Configure the flow classification key; it includes all 2852 * supported header fields and cannot be modified at runtime 2853 */ 2854 err = dpaa2_eth_set_cls(priv); 2855 if (err && err != -EOPNOTSUPP) 2856 dev_err(dev, "Failed to configure Rx classification key\n"); 2857 2858 /* Configure handling of error frames */ 2859 err_cfg.errors = DPAA2_FAS_RX_ERR_MASK; 2860 err_cfg.set_frame_annotation = 1; 2861 err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD; 2862 err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token, 2863 &err_cfg); 2864 if (err) { 2865 dev_err(dev, "dpni_set_errors_behavior failed\n"); 2866 return err; 2867 } 2868 2869 /* Configure Rx and Tx conf queues to generate CDANs */ 2870 for (i = 0; i < priv->num_fqs; i++) { 2871 switch (priv->fq[i].type) { 2872 case DPAA2_RX_FQ: 2873 err = setup_rx_flow(priv, &priv->fq[i]); 2874 break; 2875 case DPAA2_TX_CONF_FQ: 2876 err = setup_tx_flow(priv, &priv->fq[i]); 2877 break; 2878 default: 2879 dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type); 2880 return -EINVAL; 2881 } 2882 if (err) 2883 return err; 2884 } 2885 2886 err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token, 2887 DPNI_QUEUE_TX, &priv->tx_qdid); 2888 if (err) { 2889 dev_err(dev, "dpni_get_qdid() failed\n"); 2890 return err; 2891 } 2892 2893 return 0; 2894 } 2895 2896 /* Allocate rings for storing incoming frame descriptors */ 2897 static int alloc_rings(struct dpaa2_eth_priv *priv) 2898 { 2899 struct net_device *net_dev = priv->net_dev; 2900 struct device *dev = net_dev->dev.parent; 2901 int i; 2902 2903 for (i = 0; i < priv->num_channels; i++) { 2904 priv->channel[i]->store = 2905 dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev); 2906 if (!priv->channel[i]->store) { 2907 netdev_err(net_dev, "dpaa2_io_store_create() failed\n"); 2908 goto err_ring; 2909 } 2910 } 2911 2912 return 0; 2913 2914 err_ring: 2915 for (i = 0; i < priv->num_channels; i++) { 2916 if (!priv->channel[i]->store) 2917 break; 2918 dpaa2_io_store_destroy(priv->channel[i]->store); 2919 } 2920 2921 return -ENOMEM; 2922 } 2923 2924 static void free_rings(struct dpaa2_eth_priv *priv) 2925 { 2926 int i; 2927 2928 for (i = 0; i < priv->num_channels; i++) 2929 dpaa2_io_store_destroy(priv->channel[i]->store); 2930 } 2931 2932 static int set_mac_addr(struct dpaa2_eth_priv *priv) 2933 { 2934 struct net_device *net_dev = priv->net_dev; 2935 struct device *dev = net_dev->dev.parent; 2936 u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN]; 2937 int err; 2938 2939 /* Get firmware address, if any */ 2940 err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); 2941 if (err) { 2942 dev_err(dev, "dpni_get_port_mac_addr() failed\n"); 2943 return err; 2944 } 2945 2946 /* Get DPNI attributes address, if any */ 2947 err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 2948 dpni_mac_addr); 2949 if (err) { 2950 dev_err(dev, "dpni_get_primary_mac_addr() failed\n"); 2951 return err; 2952 } 2953 2954 /* First check if firmware has any address configured by bootloader */ 2955 if (!is_zero_ether_addr(mac_addr)) { 2956 /* If the DPMAC addr != DPNI addr, update it */ 2957 if (!ether_addr_equal(mac_addr, dpni_mac_addr)) { 2958 err = dpni_set_primary_mac_addr(priv->mc_io, 0, 2959 priv->mc_token, 2960 mac_addr); 2961 if (err) { 2962 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 2963 return err; 2964 } 2965 } 2966 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len); 2967 } else if (is_zero_ether_addr(dpni_mac_addr)) { 2968 /* No MAC address configured, fill in net_dev->dev_addr 2969 * with a random one 2970 */ 2971 eth_hw_addr_random(net_dev); 2972 dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); 2973 2974 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 2975 net_dev->dev_addr); 2976 if (err) { 2977 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 2978 return err; 2979 } 2980 2981 /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all 2982 * practical purposes, this will be our "permanent" mac address, 2983 * at least until the next reboot. This move will also permit 2984 * register_netdevice() to properly fill up net_dev->perm_addr. 2985 */ 2986 net_dev->addr_assign_type = NET_ADDR_PERM; 2987 } else { 2988 /* NET_ADDR_PERM is default, all we have to do is 2989 * fill in the device addr. 2990 */ 2991 memcpy(net_dev->dev_addr, dpni_mac_addr, net_dev->addr_len); 2992 } 2993 2994 return 0; 2995 } 2996 2997 static int netdev_init(struct net_device *net_dev) 2998 { 2999 struct device *dev = net_dev->dev.parent; 3000 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3001 u32 options = priv->dpni_attrs.options; 3002 u64 supported = 0, not_supported = 0; 3003 u8 bcast_addr[ETH_ALEN]; 3004 u8 num_queues; 3005 int err; 3006 3007 net_dev->netdev_ops = &dpaa2_eth_ops; 3008 net_dev->ethtool_ops = &dpaa2_ethtool_ops; 3009 3010 err = set_mac_addr(priv); 3011 if (err) 3012 return err; 3013 3014 /* Explicitly add the broadcast address to the MAC filtering table */ 3015 eth_broadcast_addr(bcast_addr); 3016 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr); 3017 if (err) { 3018 dev_err(dev, "dpni_add_mac_addr() failed\n"); 3019 return err; 3020 } 3021 3022 /* Set MTU upper limit; lower limit is 68B (default value) */ 3023 net_dev->max_mtu = DPAA2_ETH_MAX_MTU; 3024 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, 3025 DPAA2_ETH_MFL); 3026 if (err) { 3027 dev_err(dev, "dpni_set_max_frame_length() failed\n"); 3028 return err; 3029 } 3030 3031 /* Set actual number of queues in the net device */ 3032 num_queues = dpaa2_eth_queue_count(priv); 3033 err = netif_set_real_num_tx_queues(net_dev, num_queues); 3034 if (err) { 3035 dev_err(dev, "netif_set_real_num_tx_queues() failed\n"); 3036 return err; 3037 } 3038 err = netif_set_real_num_rx_queues(net_dev, num_queues); 3039 if (err) { 3040 dev_err(dev, "netif_set_real_num_rx_queues() failed\n"); 3041 return err; 3042 } 3043 3044 /* Capabilities listing */ 3045 supported |= IFF_LIVE_ADDR_CHANGE; 3046 3047 if (options & DPNI_OPT_NO_MAC_FILTER) 3048 not_supported |= IFF_UNICAST_FLT; 3049 else 3050 supported |= IFF_UNICAST_FLT; 3051 3052 net_dev->priv_flags |= supported; 3053 net_dev->priv_flags &= ~not_supported; 3054 3055 /* Features */ 3056 net_dev->features = NETIF_F_RXCSUM | 3057 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3058 NETIF_F_SG | NETIF_F_HIGHDMA | 3059 NETIF_F_LLTX; 3060 net_dev->hw_features = net_dev->features; 3061 3062 return 0; 3063 } 3064 3065 static int poll_link_state(void *arg) 3066 { 3067 struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg; 3068 int err; 3069 3070 while (!kthread_should_stop()) { 3071 err = link_state_update(priv); 3072 if (unlikely(err)) 3073 return err; 3074 3075 msleep(DPAA2_ETH_LINK_STATE_REFRESH); 3076 } 3077 3078 return 0; 3079 } 3080 3081 static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg) 3082 { 3083 u32 status = ~0; 3084 struct device *dev = (struct device *)arg; 3085 struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev); 3086 struct net_device *net_dev = dev_get_drvdata(dev); 3087 int err; 3088 3089 err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, 3090 DPNI_IRQ_INDEX, &status); 3091 if (unlikely(err)) { 3092 netdev_err(net_dev, "Can't get irq status (err %d)\n", err); 3093 return IRQ_HANDLED; 3094 } 3095 3096 if (status & DPNI_IRQ_EVENT_LINK_CHANGED) 3097 link_state_update(netdev_priv(net_dev)); 3098 3099 return IRQ_HANDLED; 3100 } 3101 3102 static int setup_irqs(struct fsl_mc_device *ls_dev) 3103 { 3104 int err = 0; 3105 struct fsl_mc_device_irq *irq; 3106 3107 err = fsl_mc_allocate_irqs(ls_dev); 3108 if (err) { 3109 dev_err(&ls_dev->dev, "MC irqs allocation failed\n"); 3110 return err; 3111 } 3112 3113 irq = ls_dev->irqs[0]; 3114 err = devm_request_threaded_irq(&ls_dev->dev, irq->msi_desc->irq, 3115 NULL, dpni_irq0_handler_thread, 3116 IRQF_NO_SUSPEND | IRQF_ONESHOT, 3117 dev_name(&ls_dev->dev), &ls_dev->dev); 3118 if (err < 0) { 3119 dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err); 3120 goto free_mc_irq; 3121 } 3122 3123 err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle, 3124 DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED); 3125 if (err < 0) { 3126 dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err); 3127 goto free_irq; 3128 } 3129 3130 err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle, 3131 DPNI_IRQ_INDEX, 1); 3132 if (err < 0) { 3133 dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err); 3134 goto free_irq; 3135 } 3136 3137 return 0; 3138 3139 free_irq: 3140 devm_free_irq(&ls_dev->dev, irq->msi_desc->irq, &ls_dev->dev); 3141 free_mc_irq: 3142 fsl_mc_free_irqs(ls_dev); 3143 3144 return err; 3145 } 3146 3147 static void add_ch_napi(struct dpaa2_eth_priv *priv) 3148 { 3149 int i; 3150 struct dpaa2_eth_channel *ch; 3151 3152 for (i = 0; i < priv->num_channels; i++) { 3153 ch = priv->channel[i]; 3154 /* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */ 3155 netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll, 3156 NAPI_POLL_WEIGHT); 3157 } 3158 } 3159 3160 static void del_ch_napi(struct dpaa2_eth_priv *priv) 3161 { 3162 int i; 3163 struct dpaa2_eth_channel *ch; 3164 3165 for (i = 0; i < priv->num_channels; i++) { 3166 ch = priv->channel[i]; 3167 netif_napi_del(&ch->napi); 3168 } 3169 } 3170 3171 static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev) 3172 { 3173 struct device *dev; 3174 struct net_device *net_dev = NULL; 3175 struct dpaa2_eth_priv *priv = NULL; 3176 int err = 0; 3177 3178 dev = &dpni_dev->dev; 3179 3180 /* Net device */ 3181 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_TX_QUEUES); 3182 if (!net_dev) { 3183 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3184 return -ENOMEM; 3185 } 3186 3187 SET_NETDEV_DEV(net_dev, dev); 3188 dev_set_drvdata(dev, net_dev); 3189 3190 priv = netdev_priv(net_dev); 3191 priv->net_dev = net_dev; 3192 3193 priv->iommu_domain = iommu_get_domain_for_dev(dev); 3194 3195 /* Obtain a MC portal */ 3196 err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, 3197 &priv->mc_io); 3198 if (err) { 3199 if (err == -ENXIO) 3200 err = -EPROBE_DEFER; 3201 else 3202 dev_err(dev, "MC portal allocation failed\n"); 3203 goto err_portal_alloc; 3204 } 3205 3206 /* MC objects initialization and configuration */ 3207 err = setup_dpni(dpni_dev); 3208 if (err) 3209 goto err_dpni_setup; 3210 3211 err = setup_dpio(priv); 3212 if (err) 3213 goto err_dpio_setup; 3214 3215 setup_fqs(priv); 3216 3217 err = setup_dpbp(priv); 3218 if (err) 3219 goto err_dpbp_setup; 3220 3221 err = bind_dpni(priv); 3222 if (err) 3223 goto err_bind; 3224 3225 /* Add a NAPI context for each channel */ 3226 add_ch_napi(priv); 3227 3228 /* Percpu statistics */ 3229 priv->percpu_stats = alloc_percpu(*priv->percpu_stats); 3230 if (!priv->percpu_stats) { 3231 dev_err(dev, "alloc_percpu(percpu_stats) failed\n"); 3232 err = -ENOMEM; 3233 goto err_alloc_percpu_stats; 3234 } 3235 priv->percpu_extras = alloc_percpu(*priv->percpu_extras); 3236 if (!priv->percpu_extras) { 3237 dev_err(dev, "alloc_percpu(percpu_extras) failed\n"); 3238 err = -ENOMEM; 3239 goto err_alloc_percpu_extras; 3240 } 3241 3242 err = netdev_init(net_dev); 3243 if (err) 3244 goto err_netdev_init; 3245 3246 /* Configure checksum offload based on current interface flags */ 3247 err = set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM)); 3248 if (err) 3249 goto err_csum; 3250 3251 err = set_tx_csum(priv, !!(net_dev->features & 3252 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))); 3253 if (err) 3254 goto err_csum; 3255 3256 err = alloc_rings(priv); 3257 if (err) 3258 goto err_alloc_rings; 3259 3260 err = setup_irqs(dpni_dev); 3261 if (err) { 3262 netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n"); 3263 priv->poll_thread = kthread_run(poll_link_state, priv, 3264 "%s_poll_link", net_dev->name); 3265 if (IS_ERR(priv->poll_thread)) { 3266 dev_err(dev, "Error starting polling thread\n"); 3267 goto err_poll_thread; 3268 } 3269 priv->do_link_poll = true; 3270 } 3271 3272 err = register_netdev(net_dev); 3273 if (err < 0) { 3274 dev_err(dev, "register_netdev() failed\n"); 3275 goto err_netdev_reg; 3276 } 3277 3278 #ifdef CONFIG_DEBUG_FS 3279 dpaa2_dbg_add(priv); 3280 #endif 3281 3282 dev_info(dev, "Probed interface %s\n", net_dev->name); 3283 return 0; 3284 3285 err_netdev_reg: 3286 if (priv->do_link_poll) 3287 kthread_stop(priv->poll_thread); 3288 else 3289 fsl_mc_free_irqs(dpni_dev); 3290 err_poll_thread: 3291 free_rings(priv); 3292 err_alloc_rings: 3293 err_csum: 3294 err_netdev_init: 3295 free_percpu(priv->percpu_extras); 3296 err_alloc_percpu_extras: 3297 free_percpu(priv->percpu_stats); 3298 err_alloc_percpu_stats: 3299 del_ch_napi(priv); 3300 err_bind: 3301 free_dpbp(priv); 3302 err_dpbp_setup: 3303 free_dpio(priv); 3304 err_dpio_setup: 3305 free_dpni(priv); 3306 err_dpni_setup: 3307 fsl_mc_portal_free(priv->mc_io); 3308 err_portal_alloc: 3309 dev_set_drvdata(dev, NULL); 3310 free_netdev(net_dev); 3311 3312 return err; 3313 } 3314 3315 static int dpaa2_eth_remove(struct fsl_mc_device *ls_dev) 3316 { 3317 struct device *dev; 3318 struct net_device *net_dev; 3319 struct dpaa2_eth_priv *priv; 3320 3321 dev = &ls_dev->dev; 3322 net_dev = dev_get_drvdata(dev); 3323 priv = netdev_priv(net_dev); 3324 3325 #ifdef CONFIG_DEBUG_FS 3326 dpaa2_dbg_remove(priv); 3327 #endif 3328 unregister_netdev(net_dev); 3329 3330 if (priv->do_link_poll) 3331 kthread_stop(priv->poll_thread); 3332 else 3333 fsl_mc_free_irqs(ls_dev); 3334 3335 free_rings(priv); 3336 free_percpu(priv->percpu_stats); 3337 free_percpu(priv->percpu_extras); 3338 3339 del_ch_napi(priv); 3340 free_dpbp(priv); 3341 free_dpio(priv); 3342 free_dpni(priv); 3343 3344 fsl_mc_portal_free(priv->mc_io); 3345 3346 free_netdev(net_dev); 3347 3348 dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name); 3349 3350 return 0; 3351 } 3352 3353 static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = { 3354 { 3355 .vendor = FSL_MC_VENDOR_FREESCALE, 3356 .obj_type = "dpni", 3357 }, 3358 { .vendor = 0x0 } 3359 }; 3360 MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table); 3361 3362 static struct fsl_mc_driver dpaa2_eth_driver = { 3363 .driver = { 3364 .name = KBUILD_MODNAME, 3365 .owner = THIS_MODULE, 3366 }, 3367 .probe = dpaa2_eth_probe, 3368 .remove = dpaa2_eth_remove, 3369 .match_id_table = dpaa2_eth_match_id_table 3370 }; 3371 3372 static int __init dpaa2_eth_driver_init(void) 3373 { 3374 int err; 3375 3376 dpaa2_eth_dbg_init(); 3377 err = fsl_mc_driver_register(&dpaa2_eth_driver); 3378 if (err) { 3379 dpaa2_eth_dbg_exit(); 3380 return err; 3381 } 3382 3383 return 0; 3384 } 3385 3386 static void __exit dpaa2_eth_driver_exit(void) 3387 { 3388 dpaa2_eth_dbg_exit(); 3389 fsl_mc_driver_unregister(&dpaa2_eth_driver); 3390 } 3391 3392 module_init(dpaa2_eth_driver_init); 3393 module_exit(dpaa2_eth_driver_exit); 3394