1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /* Copyright 2014-2016 Freescale Semiconductor Inc.
3  * Copyright 2016-2017 NXP
4  */
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/platform_device.h>
8 #include <linux/etherdevice.h>
9 #include <linux/of_net.h>
10 #include <linux/interrupt.h>
11 #include <linux/msi.h>
12 #include <linux/kthread.h>
13 #include <linux/iommu.h>
14 #include <linux/net_tstamp.h>
15 #include <linux/fsl/mc.h>
16 
17 #include <net/sock.h>
18 
19 #include "dpaa2-eth.h"
20 
21 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files
22  * using trace events only need to #include <trace/events/sched.h>
23  */
24 #define CREATE_TRACE_POINTS
25 #include "dpaa2-eth-trace.h"
26 
27 MODULE_LICENSE("Dual BSD/GPL");
28 MODULE_AUTHOR("Freescale Semiconductor, Inc");
29 MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver");
30 
31 static void *dpaa2_iova_to_virt(struct iommu_domain *domain,
32 				dma_addr_t iova_addr)
33 {
34 	phys_addr_t phys_addr;
35 
36 	phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr;
37 
38 	return phys_to_virt(phys_addr);
39 }
40 
41 static void validate_rx_csum(struct dpaa2_eth_priv *priv,
42 			     u32 fd_status,
43 			     struct sk_buff *skb)
44 {
45 	skb_checksum_none_assert(skb);
46 
47 	/* HW checksum validation is disabled, nothing to do here */
48 	if (!(priv->net_dev->features & NETIF_F_RXCSUM))
49 		return;
50 
51 	/* Read checksum validation bits */
52 	if (!((fd_status & DPAA2_FAS_L3CV) &&
53 	      (fd_status & DPAA2_FAS_L4CV)))
54 		return;
55 
56 	/* Inform the stack there's no need to compute L3/L4 csum anymore */
57 	skb->ip_summed = CHECKSUM_UNNECESSARY;
58 }
59 
60 /* Free a received FD.
61  * Not to be used for Tx conf FDs or on any other paths.
62  */
63 static void free_rx_fd(struct dpaa2_eth_priv *priv,
64 		       const struct dpaa2_fd *fd,
65 		       void *vaddr)
66 {
67 	struct device *dev = priv->net_dev->dev.parent;
68 	dma_addr_t addr = dpaa2_fd_get_addr(fd);
69 	u8 fd_format = dpaa2_fd_get_format(fd);
70 	struct dpaa2_sg_entry *sgt;
71 	void *sg_vaddr;
72 	int i;
73 
74 	/* If single buffer frame, just free the data buffer */
75 	if (fd_format == dpaa2_fd_single)
76 		goto free_buf;
77 	else if (fd_format != dpaa2_fd_sg)
78 		/* We don't support any other format */
79 		return;
80 
81 	/* For S/G frames, we first need to free all SG entries
82 	 * except the first one, which was taken care of already
83 	 */
84 	sgt = vaddr + dpaa2_fd_get_offset(fd);
85 	for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) {
86 		addr = dpaa2_sg_get_addr(&sgt[i]);
87 		sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr);
88 		dma_unmap_single(dev, addr, DPAA2_ETH_RX_BUF_SIZE,
89 				 DMA_FROM_DEVICE);
90 
91 		skb_free_frag(sg_vaddr);
92 		if (dpaa2_sg_is_final(&sgt[i]))
93 			break;
94 	}
95 
96 free_buf:
97 	skb_free_frag(vaddr);
98 }
99 
100 /* Build a linear skb based on a single-buffer frame descriptor */
101 static struct sk_buff *build_linear_skb(struct dpaa2_eth_priv *priv,
102 					struct dpaa2_eth_channel *ch,
103 					const struct dpaa2_fd *fd,
104 					void *fd_vaddr)
105 {
106 	struct sk_buff *skb = NULL;
107 	u16 fd_offset = dpaa2_fd_get_offset(fd);
108 	u32 fd_length = dpaa2_fd_get_len(fd);
109 
110 	ch->buf_count--;
111 
112 	skb = build_skb(fd_vaddr, DPAA2_ETH_SKB_SIZE);
113 	if (unlikely(!skb))
114 		return NULL;
115 
116 	skb_reserve(skb, fd_offset);
117 	skb_put(skb, fd_length);
118 
119 	return skb;
120 }
121 
122 /* Build a non linear (fragmented) skb based on a S/G table */
123 static struct sk_buff *build_frag_skb(struct dpaa2_eth_priv *priv,
124 				      struct dpaa2_eth_channel *ch,
125 				      struct dpaa2_sg_entry *sgt)
126 {
127 	struct sk_buff *skb = NULL;
128 	struct device *dev = priv->net_dev->dev.parent;
129 	void *sg_vaddr;
130 	dma_addr_t sg_addr;
131 	u16 sg_offset;
132 	u32 sg_length;
133 	struct page *page, *head_page;
134 	int page_offset;
135 	int i;
136 
137 	for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) {
138 		struct dpaa2_sg_entry *sge = &sgt[i];
139 
140 		/* NOTE: We only support SG entries in dpaa2_sg_single format,
141 		 * but this is the only format we may receive from HW anyway
142 		 */
143 
144 		/* Get the address and length from the S/G entry */
145 		sg_addr = dpaa2_sg_get_addr(sge);
146 		sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr);
147 		dma_unmap_single(dev, sg_addr, DPAA2_ETH_RX_BUF_SIZE,
148 				 DMA_FROM_DEVICE);
149 
150 		sg_length = dpaa2_sg_get_len(sge);
151 
152 		if (i == 0) {
153 			/* We build the skb around the first data buffer */
154 			skb = build_skb(sg_vaddr, DPAA2_ETH_SKB_SIZE);
155 			if (unlikely(!skb)) {
156 				/* Free the first SG entry now, since we already
157 				 * unmapped it and obtained the virtual address
158 				 */
159 				skb_free_frag(sg_vaddr);
160 
161 				/* We still need to subtract the buffers used
162 				 * by this FD from our software counter
163 				 */
164 				while (!dpaa2_sg_is_final(&sgt[i]) &&
165 				       i < DPAA2_ETH_MAX_SG_ENTRIES)
166 					i++;
167 				break;
168 			}
169 
170 			sg_offset = dpaa2_sg_get_offset(sge);
171 			skb_reserve(skb, sg_offset);
172 			skb_put(skb, sg_length);
173 		} else {
174 			/* Rest of the data buffers are stored as skb frags */
175 			page = virt_to_page(sg_vaddr);
176 			head_page = virt_to_head_page(sg_vaddr);
177 
178 			/* Offset in page (which may be compound).
179 			 * Data in subsequent SG entries is stored from the
180 			 * beginning of the buffer, so we don't need to add the
181 			 * sg_offset.
182 			 */
183 			page_offset = ((unsigned long)sg_vaddr &
184 				(PAGE_SIZE - 1)) +
185 				(page_address(page) - page_address(head_page));
186 
187 			skb_add_rx_frag(skb, i - 1, head_page, page_offset,
188 					sg_length, DPAA2_ETH_RX_BUF_SIZE);
189 		}
190 
191 		if (dpaa2_sg_is_final(sge))
192 			break;
193 	}
194 
195 	WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT");
196 
197 	/* Count all data buffers + SG table buffer */
198 	ch->buf_count -= i + 2;
199 
200 	return skb;
201 }
202 
203 /* Main Rx frame processing routine */
204 static void dpaa2_eth_rx(struct dpaa2_eth_priv *priv,
205 			 struct dpaa2_eth_channel *ch,
206 			 const struct dpaa2_fd *fd,
207 			 struct napi_struct *napi,
208 			 u16 queue_id)
209 {
210 	dma_addr_t addr = dpaa2_fd_get_addr(fd);
211 	u8 fd_format = dpaa2_fd_get_format(fd);
212 	void *vaddr;
213 	struct sk_buff *skb;
214 	struct rtnl_link_stats64 *percpu_stats;
215 	struct dpaa2_eth_drv_stats *percpu_extras;
216 	struct device *dev = priv->net_dev->dev.parent;
217 	struct dpaa2_fas *fas;
218 	void *buf_data;
219 	u32 status = 0;
220 
221 	/* Tracing point */
222 	trace_dpaa2_rx_fd(priv->net_dev, fd);
223 
224 	vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr);
225 	dma_unmap_single(dev, addr, DPAA2_ETH_RX_BUF_SIZE, DMA_FROM_DEVICE);
226 
227 	fas = dpaa2_get_fas(vaddr, false);
228 	prefetch(fas);
229 	buf_data = vaddr + dpaa2_fd_get_offset(fd);
230 	prefetch(buf_data);
231 
232 	percpu_stats = this_cpu_ptr(priv->percpu_stats);
233 	percpu_extras = this_cpu_ptr(priv->percpu_extras);
234 
235 	if (fd_format == dpaa2_fd_single) {
236 		skb = build_linear_skb(priv, ch, fd, vaddr);
237 	} else if (fd_format == dpaa2_fd_sg) {
238 		skb = build_frag_skb(priv, ch, buf_data);
239 		skb_free_frag(vaddr);
240 		percpu_extras->rx_sg_frames++;
241 		percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd);
242 	} else {
243 		/* We don't support any other format */
244 		goto err_frame_format;
245 	}
246 
247 	if (unlikely(!skb))
248 		goto err_build_skb;
249 
250 	prefetch(skb->data);
251 
252 	/* Get the timestamp value */
253 	if (priv->rx_tstamp) {
254 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
255 		__le64 *ts = dpaa2_get_ts(vaddr, false);
256 		u64 ns;
257 
258 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
259 
260 		ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts);
261 		shhwtstamps->hwtstamp = ns_to_ktime(ns);
262 	}
263 
264 	/* Check if we need to validate the L4 csum */
265 	if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) {
266 		status = le32_to_cpu(fas->status);
267 		validate_rx_csum(priv, status, skb);
268 	}
269 
270 	skb->protocol = eth_type_trans(skb, priv->net_dev);
271 	skb_record_rx_queue(skb, queue_id);
272 
273 	percpu_stats->rx_packets++;
274 	percpu_stats->rx_bytes += dpaa2_fd_get_len(fd);
275 
276 	napi_gro_receive(napi, skb);
277 
278 	return;
279 
280 err_build_skb:
281 	free_rx_fd(priv, fd, vaddr);
282 err_frame_format:
283 	percpu_stats->rx_dropped++;
284 }
285 
286 /* Consume all frames pull-dequeued into the store. This is the simplest way to
287  * make sure we don't accidentally issue another volatile dequeue which would
288  * overwrite (leak) frames already in the store.
289  *
290  * Observance of NAPI budget is not our concern, leaving that to the caller.
291  */
292 static int consume_frames(struct dpaa2_eth_channel *ch,
293 			  enum dpaa2_eth_fq_type *type)
294 {
295 	struct dpaa2_eth_priv *priv = ch->priv;
296 	struct dpaa2_eth_fq *fq = NULL;
297 	struct dpaa2_dq *dq;
298 	const struct dpaa2_fd *fd;
299 	int cleaned = 0;
300 	int is_last;
301 
302 	do {
303 		dq = dpaa2_io_store_next(ch->store, &is_last);
304 		if (unlikely(!dq)) {
305 			/* If we're here, we *must* have placed a
306 			 * volatile dequeue comnmand, so keep reading through
307 			 * the store until we get some sort of valid response
308 			 * token (either a valid frame or an "empty dequeue")
309 			 */
310 			continue;
311 		}
312 
313 		fd = dpaa2_dq_fd(dq);
314 		fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq);
315 
316 		fq->consume(priv, ch, fd, &ch->napi, fq->flowid);
317 		cleaned++;
318 	} while (!is_last);
319 
320 	if (!cleaned)
321 		return 0;
322 
323 	fq->stats.frames += cleaned;
324 	ch->stats.frames += cleaned;
325 
326 	/* A dequeue operation only pulls frames from a single queue
327 	 * into the store. Return the frame queue type as an out param.
328 	 */
329 	if (type)
330 		*type = fq->type;
331 
332 	return cleaned;
333 }
334 
335 /* Configure the egress frame annotation for timestamp update */
336 static void enable_tx_tstamp(struct dpaa2_fd *fd, void *buf_start)
337 {
338 	struct dpaa2_faead *faead;
339 	u32 ctrl, frc;
340 
341 	/* Mark the egress frame annotation area as valid */
342 	frc = dpaa2_fd_get_frc(fd);
343 	dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV);
344 
345 	/* Set hardware annotation size */
346 	ctrl = dpaa2_fd_get_ctrl(fd);
347 	dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL);
348 
349 	/* enable UPD (update prepanded data) bit in FAEAD field of
350 	 * hardware frame annotation area
351 	 */
352 	ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD;
353 	faead = dpaa2_get_faead(buf_start, true);
354 	faead->ctrl = cpu_to_le32(ctrl);
355 }
356 
357 /* Create a frame descriptor based on a fragmented skb */
358 static int build_sg_fd(struct dpaa2_eth_priv *priv,
359 		       struct sk_buff *skb,
360 		       struct dpaa2_fd *fd)
361 {
362 	struct device *dev = priv->net_dev->dev.parent;
363 	void *sgt_buf = NULL;
364 	dma_addr_t addr;
365 	int nr_frags = skb_shinfo(skb)->nr_frags;
366 	struct dpaa2_sg_entry *sgt;
367 	int i, err;
368 	int sgt_buf_size;
369 	struct scatterlist *scl, *crt_scl;
370 	int num_sg;
371 	int num_dma_bufs;
372 	struct dpaa2_eth_swa *swa;
373 
374 	/* Create and map scatterlist.
375 	 * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have
376 	 * to go beyond nr_frags+1.
377 	 * Note: We don't support chained scatterlists
378 	 */
379 	if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1))
380 		return -EINVAL;
381 
382 	scl = kcalloc(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC);
383 	if (unlikely(!scl))
384 		return -ENOMEM;
385 
386 	sg_init_table(scl, nr_frags + 1);
387 	num_sg = skb_to_sgvec(skb, scl, 0, skb->len);
388 	num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL);
389 	if (unlikely(!num_dma_bufs)) {
390 		err = -ENOMEM;
391 		goto dma_map_sg_failed;
392 	}
393 
394 	/* Prepare the HW SGT structure */
395 	sgt_buf_size = priv->tx_data_offset +
396 		       sizeof(struct dpaa2_sg_entry) *  num_dma_bufs;
397 	sgt_buf = netdev_alloc_frag(sgt_buf_size + DPAA2_ETH_TX_BUF_ALIGN);
398 	if (unlikely(!sgt_buf)) {
399 		err = -ENOMEM;
400 		goto sgt_buf_alloc_failed;
401 	}
402 	sgt_buf = PTR_ALIGN(sgt_buf, DPAA2_ETH_TX_BUF_ALIGN);
403 	memset(sgt_buf, 0, sgt_buf_size);
404 
405 	sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset);
406 
407 	/* Fill in the HW SGT structure.
408 	 *
409 	 * sgt_buf is zeroed out, so the following fields are implicit
410 	 * in all sgt entries:
411 	 *   - offset is 0
412 	 *   - format is 'dpaa2_sg_single'
413 	 */
414 	for_each_sg(scl, crt_scl, num_dma_bufs, i) {
415 		dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl));
416 		dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl));
417 	}
418 	dpaa2_sg_set_final(&sgt[i - 1], true);
419 
420 	/* Store the skb backpointer in the SGT buffer.
421 	 * Fit the scatterlist and the number of buffers alongside the
422 	 * skb backpointer in the software annotation area. We'll need
423 	 * all of them on Tx Conf.
424 	 */
425 	swa = (struct dpaa2_eth_swa *)sgt_buf;
426 	swa->skb = skb;
427 	swa->scl = scl;
428 	swa->num_sg = num_sg;
429 	swa->sgt_size = sgt_buf_size;
430 
431 	/* Separately map the SGT buffer */
432 	addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL);
433 	if (unlikely(dma_mapping_error(dev, addr))) {
434 		err = -ENOMEM;
435 		goto dma_map_single_failed;
436 	}
437 	dpaa2_fd_set_offset(fd, priv->tx_data_offset);
438 	dpaa2_fd_set_format(fd, dpaa2_fd_sg);
439 	dpaa2_fd_set_addr(fd, addr);
440 	dpaa2_fd_set_len(fd, skb->len);
441 	dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA | FD_CTRL_PTV1);
442 
443 	if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
444 		enable_tx_tstamp(fd, sgt_buf);
445 
446 	return 0;
447 
448 dma_map_single_failed:
449 	skb_free_frag(sgt_buf);
450 sgt_buf_alloc_failed:
451 	dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL);
452 dma_map_sg_failed:
453 	kfree(scl);
454 	return err;
455 }
456 
457 /* Create a frame descriptor based on a linear skb */
458 static int build_single_fd(struct dpaa2_eth_priv *priv,
459 			   struct sk_buff *skb,
460 			   struct dpaa2_fd *fd)
461 {
462 	struct device *dev = priv->net_dev->dev.parent;
463 	u8 *buffer_start, *aligned_start;
464 	struct sk_buff **skbh;
465 	dma_addr_t addr;
466 
467 	buffer_start = skb->data - dpaa2_eth_needed_headroom(priv, skb);
468 
469 	/* If there's enough room to align the FD address, do it.
470 	 * It will help hardware optimize accesses.
471 	 */
472 	aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN,
473 				  DPAA2_ETH_TX_BUF_ALIGN);
474 	if (aligned_start >= skb->head)
475 		buffer_start = aligned_start;
476 
477 	/* Store a backpointer to the skb at the beginning of the buffer
478 	 * (in the private data area) such that we can release it
479 	 * on Tx confirm
480 	 */
481 	skbh = (struct sk_buff **)buffer_start;
482 	*skbh = skb;
483 
484 	addr = dma_map_single(dev, buffer_start,
485 			      skb_tail_pointer(skb) - buffer_start,
486 			      DMA_BIDIRECTIONAL);
487 	if (unlikely(dma_mapping_error(dev, addr)))
488 		return -ENOMEM;
489 
490 	dpaa2_fd_set_addr(fd, addr);
491 	dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start));
492 	dpaa2_fd_set_len(fd, skb->len);
493 	dpaa2_fd_set_format(fd, dpaa2_fd_single);
494 	dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA | FD_CTRL_PTV1);
495 
496 	if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
497 		enable_tx_tstamp(fd, buffer_start);
498 
499 	return 0;
500 }
501 
502 /* FD freeing routine on the Tx path
503  *
504  * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb
505  * back-pointed to is also freed.
506  * This can be called either from dpaa2_eth_tx_conf() or on the error path of
507  * dpaa2_eth_tx().
508  */
509 static void free_tx_fd(const struct dpaa2_eth_priv *priv,
510 		       const struct dpaa2_fd *fd)
511 {
512 	struct device *dev = priv->net_dev->dev.parent;
513 	dma_addr_t fd_addr;
514 	struct sk_buff **skbh, *skb;
515 	unsigned char *buffer_start;
516 	struct dpaa2_eth_swa *swa;
517 	u8 fd_format = dpaa2_fd_get_format(fd);
518 
519 	fd_addr = dpaa2_fd_get_addr(fd);
520 	skbh = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr);
521 
522 	if (fd_format == dpaa2_fd_single) {
523 		skb = *skbh;
524 		buffer_start = (unsigned char *)skbh;
525 		/* Accessing the skb buffer is safe before dma unmap, because
526 		 * we didn't map the actual skb shell.
527 		 */
528 		dma_unmap_single(dev, fd_addr,
529 				 skb_tail_pointer(skb) - buffer_start,
530 				 DMA_BIDIRECTIONAL);
531 	} else if (fd_format == dpaa2_fd_sg) {
532 		swa = (struct dpaa2_eth_swa *)skbh;
533 		skb = swa->skb;
534 
535 		/* Unmap the scatterlist */
536 		dma_unmap_sg(dev, swa->scl, swa->num_sg, DMA_BIDIRECTIONAL);
537 		kfree(swa->scl);
538 
539 		/* Unmap the SGT buffer */
540 		dma_unmap_single(dev, fd_addr, swa->sgt_size,
541 				 DMA_BIDIRECTIONAL);
542 	} else {
543 		netdev_dbg(priv->net_dev, "Invalid FD format\n");
544 		return;
545 	}
546 
547 	/* Get the timestamp value */
548 	if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
549 		struct skb_shared_hwtstamps shhwtstamps;
550 		__le64 *ts = dpaa2_get_ts(skbh, true);
551 		u64 ns;
552 
553 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
554 
555 		ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts);
556 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
557 		skb_tstamp_tx(skb, &shhwtstamps);
558 	}
559 
560 	/* Free SGT buffer allocated on tx */
561 	if (fd_format != dpaa2_fd_single)
562 		skb_free_frag(skbh);
563 
564 	/* Move on with skb release */
565 	dev_kfree_skb(skb);
566 }
567 
568 static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev)
569 {
570 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
571 	struct dpaa2_fd fd;
572 	struct rtnl_link_stats64 *percpu_stats;
573 	struct dpaa2_eth_drv_stats *percpu_extras;
574 	struct dpaa2_eth_fq *fq;
575 	u16 queue_mapping;
576 	unsigned int needed_headroom;
577 	int err, i;
578 
579 	percpu_stats = this_cpu_ptr(priv->percpu_stats);
580 	percpu_extras = this_cpu_ptr(priv->percpu_extras);
581 
582 	needed_headroom = dpaa2_eth_needed_headroom(priv, skb);
583 	if (skb_headroom(skb) < needed_headroom) {
584 		struct sk_buff *ns;
585 
586 		ns = skb_realloc_headroom(skb, needed_headroom);
587 		if (unlikely(!ns)) {
588 			percpu_stats->tx_dropped++;
589 			goto err_alloc_headroom;
590 		}
591 		percpu_extras->tx_reallocs++;
592 
593 		if (skb->sk)
594 			skb_set_owner_w(ns, skb->sk);
595 
596 		dev_kfree_skb(skb);
597 		skb = ns;
598 	}
599 
600 	/* We'll be holding a back-reference to the skb until Tx Confirmation;
601 	 * we don't want that overwritten by a concurrent Tx with a cloned skb.
602 	 */
603 	skb = skb_unshare(skb, GFP_ATOMIC);
604 	if (unlikely(!skb)) {
605 		/* skb_unshare() has already freed the skb */
606 		percpu_stats->tx_dropped++;
607 		return NETDEV_TX_OK;
608 	}
609 
610 	/* Setup the FD fields */
611 	memset(&fd, 0, sizeof(fd));
612 
613 	if (skb_is_nonlinear(skb)) {
614 		err = build_sg_fd(priv, skb, &fd);
615 		percpu_extras->tx_sg_frames++;
616 		percpu_extras->tx_sg_bytes += skb->len;
617 	} else {
618 		err = build_single_fd(priv, skb, &fd);
619 	}
620 
621 	if (unlikely(err)) {
622 		percpu_stats->tx_dropped++;
623 		goto err_build_fd;
624 	}
625 
626 	/* Tracing point */
627 	trace_dpaa2_tx_fd(net_dev, &fd);
628 
629 	/* TxConf FQ selection relies on queue id from the stack.
630 	 * In case of a forwarded frame from another DPNI interface, we choose
631 	 * a queue affined to the same core that processed the Rx frame
632 	 */
633 	queue_mapping = skb_get_queue_mapping(skb);
634 	fq = &priv->fq[queue_mapping];
635 	for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) {
636 		err = dpaa2_io_service_enqueue_qd(fq->channel->dpio,
637 						  priv->tx_qdid, 0,
638 						  fq->tx_qdbin, &fd);
639 		if (err != -EBUSY)
640 			break;
641 	}
642 	percpu_extras->tx_portal_busy += i;
643 	if (unlikely(err < 0)) {
644 		percpu_stats->tx_errors++;
645 		/* Clean up everything, including freeing the skb */
646 		free_tx_fd(priv, &fd);
647 	} else {
648 		percpu_stats->tx_packets++;
649 		percpu_stats->tx_bytes += dpaa2_fd_get_len(&fd);
650 	}
651 
652 	return NETDEV_TX_OK;
653 
654 err_build_fd:
655 err_alloc_headroom:
656 	dev_kfree_skb(skb);
657 
658 	return NETDEV_TX_OK;
659 }
660 
661 /* Tx confirmation frame processing routine */
662 static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv,
663 			      struct dpaa2_eth_channel *ch,
664 			      const struct dpaa2_fd *fd,
665 			      struct napi_struct *napi __always_unused,
666 			      u16 queue_id __always_unused)
667 {
668 	struct rtnl_link_stats64 *percpu_stats;
669 	struct dpaa2_eth_drv_stats *percpu_extras;
670 	u32 fd_errors;
671 
672 	/* Tracing point */
673 	trace_dpaa2_tx_conf_fd(priv->net_dev, fd);
674 
675 	percpu_extras = this_cpu_ptr(priv->percpu_extras);
676 	percpu_extras->tx_conf_frames++;
677 	percpu_extras->tx_conf_bytes += dpaa2_fd_get_len(fd);
678 
679 	/* Check frame errors in the FD field */
680 	fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK;
681 	free_tx_fd(priv, fd);
682 
683 	if (likely(!fd_errors))
684 		return;
685 
686 	if (net_ratelimit())
687 		netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n",
688 			   fd_errors);
689 
690 	percpu_stats = this_cpu_ptr(priv->percpu_stats);
691 	/* Tx-conf logically pertains to the egress path. */
692 	percpu_stats->tx_errors++;
693 }
694 
695 static int set_rx_csum(struct dpaa2_eth_priv *priv, bool enable)
696 {
697 	int err;
698 
699 	err = dpni_set_offload(priv->mc_io, 0, priv->mc_token,
700 			       DPNI_OFF_RX_L3_CSUM, enable);
701 	if (err) {
702 		netdev_err(priv->net_dev,
703 			   "dpni_set_offload(RX_L3_CSUM) failed\n");
704 		return err;
705 	}
706 
707 	err = dpni_set_offload(priv->mc_io, 0, priv->mc_token,
708 			       DPNI_OFF_RX_L4_CSUM, enable);
709 	if (err) {
710 		netdev_err(priv->net_dev,
711 			   "dpni_set_offload(RX_L4_CSUM) failed\n");
712 		return err;
713 	}
714 
715 	return 0;
716 }
717 
718 static int set_tx_csum(struct dpaa2_eth_priv *priv, bool enable)
719 {
720 	int err;
721 
722 	err = dpni_set_offload(priv->mc_io, 0, priv->mc_token,
723 			       DPNI_OFF_TX_L3_CSUM, enable);
724 	if (err) {
725 		netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n");
726 		return err;
727 	}
728 
729 	err = dpni_set_offload(priv->mc_io, 0, priv->mc_token,
730 			       DPNI_OFF_TX_L4_CSUM, enable);
731 	if (err) {
732 		netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n");
733 		return err;
734 	}
735 
736 	return 0;
737 }
738 
739 /* Free buffers acquired from the buffer pool or which were meant to
740  * be released in the pool
741  */
742 static void free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, int count)
743 {
744 	struct device *dev = priv->net_dev->dev.parent;
745 	void *vaddr;
746 	int i;
747 
748 	for (i = 0; i < count; i++) {
749 		vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]);
750 		dma_unmap_single(dev, buf_array[i], DPAA2_ETH_RX_BUF_SIZE,
751 				 DMA_FROM_DEVICE);
752 		skb_free_frag(vaddr);
753 	}
754 }
755 
756 /* Perform a single release command to add buffers
757  * to the specified buffer pool
758  */
759 static int add_bufs(struct dpaa2_eth_priv *priv,
760 		    struct dpaa2_eth_channel *ch, u16 bpid)
761 {
762 	struct device *dev = priv->net_dev->dev.parent;
763 	u64 buf_array[DPAA2_ETH_BUFS_PER_CMD];
764 	void *buf;
765 	dma_addr_t addr;
766 	int i, err;
767 
768 	for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) {
769 		/* Allocate buffer visible to WRIOP + skb shared info +
770 		 * alignment padding
771 		 */
772 		buf = napi_alloc_frag(dpaa2_eth_buf_raw_size(priv));
773 		if (unlikely(!buf))
774 			goto err_alloc;
775 
776 		buf = PTR_ALIGN(buf, priv->rx_buf_align);
777 
778 		addr = dma_map_single(dev, buf, DPAA2_ETH_RX_BUF_SIZE,
779 				      DMA_FROM_DEVICE);
780 		if (unlikely(dma_mapping_error(dev, addr)))
781 			goto err_map;
782 
783 		buf_array[i] = addr;
784 
785 		/* tracing point */
786 		trace_dpaa2_eth_buf_seed(priv->net_dev,
787 					 buf, dpaa2_eth_buf_raw_size(priv),
788 					 addr, DPAA2_ETH_RX_BUF_SIZE,
789 					 bpid);
790 	}
791 
792 release_bufs:
793 	/* In case the portal is busy, retry until successful */
794 	while ((err = dpaa2_io_service_release(ch->dpio, bpid,
795 					       buf_array, i)) == -EBUSY)
796 		cpu_relax();
797 
798 	/* If release command failed, clean up and bail out;
799 	 * not much else we can do about it
800 	 */
801 	if (err) {
802 		free_bufs(priv, buf_array, i);
803 		return 0;
804 	}
805 
806 	return i;
807 
808 err_map:
809 	skb_free_frag(buf);
810 err_alloc:
811 	/* If we managed to allocate at least some buffers,
812 	 * release them to hardware
813 	 */
814 	if (i)
815 		goto release_bufs;
816 
817 	return 0;
818 }
819 
820 static int seed_pool(struct dpaa2_eth_priv *priv, u16 bpid)
821 {
822 	int i, j;
823 	int new_count;
824 
825 	/* This is the lazy seeding of Rx buffer pools.
826 	 * dpaa2_add_bufs() is also used on the Rx hotpath and calls
827 	 * napi_alloc_frag(). The trouble with that is that it in turn ends up
828 	 * calling this_cpu_ptr(), which mandates execution in atomic context.
829 	 * Rather than splitting up the code, do a one-off preempt disable.
830 	 */
831 	preempt_disable();
832 	for (j = 0; j < priv->num_channels; j++) {
833 		for (i = 0; i < DPAA2_ETH_NUM_BUFS;
834 		     i += DPAA2_ETH_BUFS_PER_CMD) {
835 			new_count = add_bufs(priv, priv->channel[j], bpid);
836 			priv->channel[j]->buf_count += new_count;
837 
838 			if (new_count < DPAA2_ETH_BUFS_PER_CMD) {
839 				preempt_enable();
840 				return -ENOMEM;
841 			}
842 		}
843 	}
844 	preempt_enable();
845 
846 	return 0;
847 }
848 
849 /**
850  * Drain the specified number of buffers from the DPNI's private buffer pool.
851  * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD
852  */
853 static void drain_bufs(struct dpaa2_eth_priv *priv, int count)
854 {
855 	u64 buf_array[DPAA2_ETH_BUFS_PER_CMD];
856 	int ret;
857 
858 	do {
859 		ret = dpaa2_io_service_acquire(NULL, priv->bpid,
860 					       buf_array, count);
861 		if (ret < 0) {
862 			netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n");
863 			return;
864 		}
865 		free_bufs(priv, buf_array, ret);
866 	} while (ret);
867 }
868 
869 static void drain_pool(struct dpaa2_eth_priv *priv)
870 {
871 	int i;
872 
873 	drain_bufs(priv, DPAA2_ETH_BUFS_PER_CMD);
874 	drain_bufs(priv, 1);
875 
876 	for (i = 0; i < priv->num_channels; i++)
877 		priv->channel[i]->buf_count = 0;
878 }
879 
880 /* Function is called from softirq context only, so we don't need to guard
881  * the access to percpu count
882  */
883 static int refill_pool(struct dpaa2_eth_priv *priv,
884 		       struct dpaa2_eth_channel *ch,
885 		       u16 bpid)
886 {
887 	int new_count;
888 
889 	if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH))
890 		return 0;
891 
892 	do {
893 		new_count = add_bufs(priv, ch, bpid);
894 		if (unlikely(!new_count)) {
895 			/* Out of memory; abort for now, we'll try later on */
896 			break;
897 		}
898 		ch->buf_count += new_count;
899 	} while (ch->buf_count < DPAA2_ETH_NUM_BUFS);
900 
901 	if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS))
902 		return -ENOMEM;
903 
904 	return 0;
905 }
906 
907 static int pull_channel(struct dpaa2_eth_channel *ch)
908 {
909 	int err;
910 	int dequeues = -1;
911 
912 	/* Retry while portal is busy */
913 	do {
914 		err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id,
915 						    ch->store);
916 		dequeues++;
917 		cpu_relax();
918 	} while (err == -EBUSY);
919 
920 	ch->stats.dequeue_portal_busy += dequeues;
921 	if (unlikely(err))
922 		ch->stats.pull_err++;
923 
924 	return err;
925 }
926 
927 /* NAPI poll routine
928  *
929  * Frames are dequeued from the QMan channel associated with this NAPI context.
930  * Rx, Tx confirmation and (if configured) Rx error frames all count
931  * towards the NAPI budget.
932  */
933 static int dpaa2_eth_poll(struct napi_struct *napi, int budget)
934 {
935 	struct dpaa2_eth_channel *ch;
936 	struct dpaa2_eth_priv *priv;
937 	int rx_cleaned = 0, txconf_cleaned = 0;
938 	enum dpaa2_eth_fq_type type = 0;
939 	int store_cleaned;
940 	int err;
941 
942 	ch = container_of(napi, struct dpaa2_eth_channel, napi);
943 	priv = ch->priv;
944 
945 	do {
946 		err = pull_channel(ch);
947 		if (unlikely(err))
948 			break;
949 
950 		/* Refill pool if appropriate */
951 		refill_pool(priv, ch, priv->bpid);
952 
953 		store_cleaned = consume_frames(ch, &type);
954 		if (type == DPAA2_RX_FQ)
955 			rx_cleaned += store_cleaned;
956 		else
957 			txconf_cleaned += store_cleaned;
958 
959 		/* If we either consumed the whole NAPI budget with Rx frames
960 		 * or we reached the Tx confirmations threshold, we're done.
961 		 */
962 		if (rx_cleaned >= budget ||
963 		    txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI)
964 			return budget;
965 	} while (store_cleaned);
966 
967 	/* We didn't consume the entire budget, so finish napi and
968 	 * re-enable data availability notifications
969 	 */
970 	napi_complete_done(napi, rx_cleaned);
971 	do {
972 		err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx);
973 		cpu_relax();
974 	} while (err == -EBUSY);
975 	WARN_ONCE(err, "CDAN notifications rearm failed on core %d",
976 		  ch->nctx.desired_cpu);
977 
978 	return max(rx_cleaned, 1);
979 }
980 
981 static void enable_ch_napi(struct dpaa2_eth_priv *priv)
982 {
983 	struct dpaa2_eth_channel *ch;
984 	int i;
985 
986 	for (i = 0; i < priv->num_channels; i++) {
987 		ch = priv->channel[i];
988 		napi_enable(&ch->napi);
989 	}
990 }
991 
992 static void disable_ch_napi(struct dpaa2_eth_priv *priv)
993 {
994 	struct dpaa2_eth_channel *ch;
995 	int i;
996 
997 	for (i = 0; i < priv->num_channels; i++) {
998 		ch = priv->channel[i];
999 		napi_disable(&ch->napi);
1000 	}
1001 }
1002 
1003 static int link_state_update(struct dpaa2_eth_priv *priv)
1004 {
1005 	struct dpni_link_state state = {0};
1006 	int err;
1007 
1008 	err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state);
1009 	if (unlikely(err)) {
1010 		netdev_err(priv->net_dev,
1011 			   "dpni_get_link_state() failed\n");
1012 		return err;
1013 	}
1014 
1015 	/* Chech link state; speed / duplex changes are not treated yet */
1016 	if (priv->link_state.up == state.up)
1017 		return 0;
1018 
1019 	priv->link_state = state;
1020 	if (state.up) {
1021 		netif_carrier_on(priv->net_dev);
1022 		netif_tx_start_all_queues(priv->net_dev);
1023 	} else {
1024 		netif_tx_stop_all_queues(priv->net_dev);
1025 		netif_carrier_off(priv->net_dev);
1026 	}
1027 
1028 	netdev_info(priv->net_dev, "Link Event: state %s\n",
1029 		    state.up ? "up" : "down");
1030 
1031 	return 0;
1032 }
1033 
1034 static int dpaa2_eth_open(struct net_device *net_dev)
1035 {
1036 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
1037 	int err;
1038 
1039 	err = seed_pool(priv, priv->bpid);
1040 	if (err) {
1041 		/* Not much to do; the buffer pool, though not filled up,
1042 		 * may still contain some buffers which would enable us
1043 		 * to limp on.
1044 		 */
1045 		netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n",
1046 			   priv->dpbp_dev->obj_desc.id, priv->bpid);
1047 	}
1048 
1049 	/* We'll only start the txqs when the link is actually ready; make sure
1050 	 * we don't race against the link up notification, which may come
1051 	 * immediately after dpni_enable();
1052 	 */
1053 	netif_tx_stop_all_queues(net_dev);
1054 	enable_ch_napi(priv);
1055 	/* Also, explicitly set carrier off, otherwise netif_carrier_ok() will
1056 	 * return true and cause 'ip link show' to report the LOWER_UP flag,
1057 	 * even though the link notification wasn't even received.
1058 	 */
1059 	netif_carrier_off(net_dev);
1060 
1061 	err = dpni_enable(priv->mc_io, 0, priv->mc_token);
1062 	if (err < 0) {
1063 		netdev_err(net_dev, "dpni_enable() failed\n");
1064 		goto enable_err;
1065 	}
1066 
1067 	/* If the DPMAC object has already processed the link up interrupt,
1068 	 * we have to learn the link state ourselves.
1069 	 */
1070 	err = link_state_update(priv);
1071 	if (err < 0) {
1072 		netdev_err(net_dev, "Can't update link state\n");
1073 		goto link_state_err;
1074 	}
1075 
1076 	return 0;
1077 
1078 link_state_err:
1079 enable_err:
1080 	disable_ch_napi(priv);
1081 	drain_pool(priv);
1082 	return err;
1083 }
1084 
1085 /* The DPIO store must be empty when we call this,
1086  * at the end of every NAPI cycle.
1087  */
1088 static u32 drain_channel(struct dpaa2_eth_priv *priv,
1089 			 struct dpaa2_eth_channel *ch)
1090 {
1091 	u32 drained = 0, total = 0;
1092 
1093 	do {
1094 		pull_channel(ch);
1095 		drained = consume_frames(ch, NULL);
1096 		total += drained;
1097 	} while (drained);
1098 
1099 	return total;
1100 }
1101 
1102 static u32 drain_ingress_frames(struct dpaa2_eth_priv *priv)
1103 {
1104 	struct dpaa2_eth_channel *ch;
1105 	int i;
1106 	u32 drained = 0;
1107 
1108 	for (i = 0; i < priv->num_channels; i++) {
1109 		ch = priv->channel[i];
1110 		drained += drain_channel(priv, ch);
1111 	}
1112 
1113 	return drained;
1114 }
1115 
1116 static int dpaa2_eth_stop(struct net_device *net_dev)
1117 {
1118 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
1119 	int dpni_enabled = 0;
1120 	int retries = 10;
1121 	u32 drained;
1122 
1123 	netif_tx_stop_all_queues(net_dev);
1124 	netif_carrier_off(net_dev);
1125 
1126 	/* Loop while dpni_disable() attempts to drain the egress FQs
1127 	 * and confirm them back to us.
1128 	 */
1129 	do {
1130 		dpni_disable(priv->mc_io, 0, priv->mc_token);
1131 		dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled);
1132 		if (dpni_enabled)
1133 			/* Allow the hardware some slack */
1134 			msleep(100);
1135 	} while (dpni_enabled && --retries);
1136 	if (!retries) {
1137 		netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n");
1138 		/* Must go on and disable NAPI nonetheless, so we don't crash at
1139 		 * the next "ifconfig up"
1140 		 */
1141 	}
1142 
1143 	/* Wait for NAPI to complete on every core and disable it.
1144 	 * In particular, this will also prevent NAPI from being rescheduled if
1145 	 * a new CDAN is serviced, effectively discarding the CDAN. We therefore
1146 	 * don't even need to disarm the channels, except perhaps for the case
1147 	 * of a huge coalescing value.
1148 	 */
1149 	disable_ch_napi(priv);
1150 
1151 	 /* Manually drain the Rx and TxConf queues */
1152 	drained = drain_ingress_frames(priv);
1153 	if (drained)
1154 		netdev_dbg(net_dev, "Drained %d frames.\n", drained);
1155 
1156 	/* Empty the buffer pool */
1157 	drain_pool(priv);
1158 
1159 	return 0;
1160 }
1161 
1162 static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr)
1163 {
1164 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
1165 	struct device *dev = net_dev->dev.parent;
1166 	int err;
1167 
1168 	err = eth_mac_addr(net_dev, addr);
1169 	if (err < 0) {
1170 		dev_err(dev, "eth_mac_addr() failed (%d)\n", err);
1171 		return err;
1172 	}
1173 
1174 	err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token,
1175 					net_dev->dev_addr);
1176 	if (err) {
1177 		dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err);
1178 		return err;
1179 	}
1180 
1181 	return 0;
1182 }
1183 
1184 /** Fill in counters maintained by the GPP driver. These may be different from
1185  * the hardware counters obtained by ethtool.
1186  */
1187 static void dpaa2_eth_get_stats(struct net_device *net_dev,
1188 				struct rtnl_link_stats64 *stats)
1189 {
1190 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
1191 	struct rtnl_link_stats64 *percpu_stats;
1192 	u64 *cpustats;
1193 	u64 *netstats = (u64 *)stats;
1194 	int i, j;
1195 	int num = sizeof(struct rtnl_link_stats64) / sizeof(u64);
1196 
1197 	for_each_possible_cpu(i) {
1198 		percpu_stats = per_cpu_ptr(priv->percpu_stats, i);
1199 		cpustats = (u64 *)percpu_stats;
1200 		for (j = 0; j < num; j++)
1201 			netstats[j] += cpustats[j];
1202 	}
1203 }
1204 
1205 /* Copy mac unicast addresses from @net_dev to @priv.
1206  * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable.
1207  */
1208 static void add_uc_hw_addr(const struct net_device *net_dev,
1209 			   struct dpaa2_eth_priv *priv)
1210 {
1211 	struct netdev_hw_addr *ha;
1212 	int err;
1213 
1214 	netdev_for_each_uc_addr(ha, net_dev) {
1215 		err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token,
1216 					ha->addr);
1217 		if (err)
1218 			netdev_warn(priv->net_dev,
1219 				    "Could not add ucast MAC %pM to the filtering table (err %d)\n",
1220 				    ha->addr, err);
1221 	}
1222 }
1223 
1224 /* Copy mac multicast addresses from @net_dev to @priv
1225  * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable.
1226  */
1227 static void add_mc_hw_addr(const struct net_device *net_dev,
1228 			   struct dpaa2_eth_priv *priv)
1229 {
1230 	struct netdev_hw_addr *ha;
1231 	int err;
1232 
1233 	netdev_for_each_mc_addr(ha, net_dev) {
1234 		err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token,
1235 					ha->addr);
1236 		if (err)
1237 			netdev_warn(priv->net_dev,
1238 				    "Could not add mcast MAC %pM to the filtering table (err %d)\n",
1239 				    ha->addr, err);
1240 	}
1241 }
1242 
1243 static void dpaa2_eth_set_rx_mode(struct net_device *net_dev)
1244 {
1245 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
1246 	int uc_count = netdev_uc_count(net_dev);
1247 	int mc_count = netdev_mc_count(net_dev);
1248 	u8 max_mac = priv->dpni_attrs.mac_filter_entries;
1249 	u32 options = priv->dpni_attrs.options;
1250 	u16 mc_token = priv->mc_token;
1251 	struct fsl_mc_io *mc_io = priv->mc_io;
1252 	int err;
1253 
1254 	/* Basic sanity checks; these probably indicate a misconfiguration */
1255 	if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0)
1256 		netdev_info(net_dev,
1257 			    "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n",
1258 			    max_mac);
1259 
1260 	/* Force promiscuous if the uc or mc counts exceed our capabilities. */
1261 	if (uc_count > max_mac) {
1262 		netdev_info(net_dev,
1263 			    "Unicast addr count reached %d, max allowed is %d; forcing promisc\n",
1264 			    uc_count, max_mac);
1265 		goto force_promisc;
1266 	}
1267 	if (mc_count + uc_count > max_mac) {
1268 		netdev_info(net_dev,
1269 			    "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n",
1270 			    uc_count + mc_count, max_mac);
1271 		goto force_mc_promisc;
1272 	}
1273 
1274 	/* Adjust promisc settings due to flag combinations */
1275 	if (net_dev->flags & IFF_PROMISC)
1276 		goto force_promisc;
1277 	if (net_dev->flags & IFF_ALLMULTI) {
1278 		/* First, rebuild unicast filtering table. This should be done
1279 		 * in promisc mode, in order to avoid frame loss while we
1280 		 * progressively add entries to the table.
1281 		 * We don't know whether we had been in promisc already, and
1282 		 * making an MC call to find out is expensive; so set uc promisc
1283 		 * nonetheless.
1284 		 */
1285 		err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1);
1286 		if (err)
1287 			netdev_warn(net_dev, "Can't set uc promisc\n");
1288 
1289 		/* Actual uc table reconstruction. */
1290 		err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0);
1291 		if (err)
1292 			netdev_warn(net_dev, "Can't clear uc filters\n");
1293 		add_uc_hw_addr(net_dev, priv);
1294 
1295 		/* Finally, clear uc promisc and set mc promisc as requested. */
1296 		err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0);
1297 		if (err)
1298 			netdev_warn(net_dev, "Can't clear uc promisc\n");
1299 		goto force_mc_promisc;
1300 	}
1301 
1302 	/* Neither unicast, nor multicast promisc will be on... eventually.
1303 	 * For now, rebuild mac filtering tables while forcing both of them on.
1304 	 */
1305 	err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1);
1306 	if (err)
1307 		netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err);
1308 	err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1);
1309 	if (err)
1310 		netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err);
1311 
1312 	/* Actual mac filtering tables reconstruction */
1313 	err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1);
1314 	if (err)
1315 		netdev_warn(net_dev, "Can't clear mac filters\n");
1316 	add_mc_hw_addr(net_dev, priv);
1317 	add_uc_hw_addr(net_dev, priv);
1318 
1319 	/* Now we can clear both ucast and mcast promisc, without risking
1320 	 * to drop legitimate frames anymore.
1321 	 */
1322 	err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0);
1323 	if (err)
1324 		netdev_warn(net_dev, "Can't clear ucast promisc\n");
1325 	err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0);
1326 	if (err)
1327 		netdev_warn(net_dev, "Can't clear mcast promisc\n");
1328 
1329 	return;
1330 
1331 force_promisc:
1332 	err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1);
1333 	if (err)
1334 		netdev_warn(net_dev, "Can't set ucast promisc\n");
1335 force_mc_promisc:
1336 	err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1);
1337 	if (err)
1338 		netdev_warn(net_dev, "Can't set mcast promisc\n");
1339 }
1340 
1341 static int dpaa2_eth_set_features(struct net_device *net_dev,
1342 				  netdev_features_t features)
1343 {
1344 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
1345 	netdev_features_t changed = features ^ net_dev->features;
1346 	bool enable;
1347 	int err;
1348 
1349 	if (changed & NETIF_F_RXCSUM) {
1350 		enable = !!(features & NETIF_F_RXCSUM);
1351 		err = set_rx_csum(priv, enable);
1352 		if (err)
1353 			return err;
1354 	}
1355 
1356 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
1357 		enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
1358 		err = set_tx_csum(priv, enable);
1359 		if (err)
1360 			return err;
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1367 {
1368 	struct dpaa2_eth_priv *priv = netdev_priv(dev);
1369 	struct hwtstamp_config config;
1370 
1371 	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
1372 		return -EFAULT;
1373 
1374 	switch (config.tx_type) {
1375 	case HWTSTAMP_TX_OFF:
1376 		priv->tx_tstamp = false;
1377 		break;
1378 	case HWTSTAMP_TX_ON:
1379 		priv->tx_tstamp = true;
1380 		break;
1381 	default:
1382 		return -ERANGE;
1383 	}
1384 
1385 	if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
1386 		priv->rx_tstamp = false;
1387 	} else {
1388 		priv->rx_tstamp = true;
1389 		/* TS is set for all frame types, not only those requested */
1390 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1391 	}
1392 
1393 	return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
1394 			-EFAULT : 0;
1395 }
1396 
1397 static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1398 {
1399 	if (cmd == SIOCSHWTSTAMP)
1400 		return dpaa2_eth_ts_ioctl(dev, rq, cmd);
1401 
1402 	return -EINVAL;
1403 }
1404 
1405 static const struct net_device_ops dpaa2_eth_ops = {
1406 	.ndo_open = dpaa2_eth_open,
1407 	.ndo_start_xmit = dpaa2_eth_tx,
1408 	.ndo_stop = dpaa2_eth_stop,
1409 	.ndo_set_mac_address = dpaa2_eth_set_addr,
1410 	.ndo_get_stats64 = dpaa2_eth_get_stats,
1411 	.ndo_set_rx_mode = dpaa2_eth_set_rx_mode,
1412 	.ndo_set_features = dpaa2_eth_set_features,
1413 	.ndo_do_ioctl = dpaa2_eth_ioctl,
1414 };
1415 
1416 static void cdan_cb(struct dpaa2_io_notification_ctx *ctx)
1417 {
1418 	struct dpaa2_eth_channel *ch;
1419 
1420 	ch = container_of(ctx, struct dpaa2_eth_channel, nctx);
1421 
1422 	/* Update NAPI statistics */
1423 	ch->stats.cdan++;
1424 
1425 	napi_schedule_irqoff(&ch->napi);
1426 }
1427 
1428 /* Allocate and configure a DPCON object */
1429 static struct fsl_mc_device *setup_dpcon(struct dpaa2_eth_priv *priv)
1430 {
1431 	struct fsl_mc_device *dpcon;
1432 	struct device *dev = priv->net_dev->dev.parent;
1433 	struct dpcon_attr attrs;
1434 	int err;
1435 
1436 	err = fsl_mc_object_allocate(to_fsl_mc_device(dev),
1437 				     FSL_MC_POOL_DPCON, &dpcon);
1438 	if (err) {
1439 		dev_info(dev, "Not enough DPCONs, will go on as-is\n");
1440 		return NULL;
1441 	}
1442 
1443 	err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle);
1444 	if (err) {
1445 		dev_err(dev, "dpcon_open() failed\n");
1446 		goto free;
1447 	}
1448 
1449 	err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle);
1450 	if (err) {
1451 		dev_err(dev, "dpcon_reset() failed\n");
1452 		goto close;
1453 	}
1454 
1455 	err = dpcon_get_attributes(priv->mc_io, 0, dpcon->mc_handle, &attrs);
1456 	if (err) {
1457 		dev_err(dev, "dpcon_get_attributes() failed\n");
1458 		goto close;
1459 	}
1460 
1461 	err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle);
1462 	if (err) {
1463 		dev_err(dev, "dpcon_enable() failed\n");
1464 		goto close;
1465 	}
1466 
1467 	return dpcon;
1468 
1469 close:
1470 	dpcon_close(priv->mc_io, 0, dpcon->mc_handle);
1471 free:
1472 	fsl_mc_object_free(dpcon);
1473 
1474 	return NULL;
1475 }
1476 
1477 static void free_dpcon(struct dpaa2_eth_priv *priv,
1478 		       struct fsl_mc_device *dpcon)
1479 {
1480 	dpcon_disable(priv->mc_io, 0, dpcon->mc_handle);
1481 	dpcon_close(priv->mc_io, 0, dpcon->mc_handle);
1482 	fsl_mc_object_free(dpcon);
1483 }
1484 
1485 static struct dpaa2_eth_channel *
1486 alloc_channel(struct dpaa2_eth_priv *priv)
1487 {
1488 	struct dpaa2_eth_channel *channel;
1489 	struct dpcon_attr attr;
1490 	struct device *dev = priv->net_dev->dev.parent;
1491 	int err;
1492 
1493 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
1494 	if (!channel)
1495 		return NULL;
1496 
1497 	channel->dpcon = setup_dpcon(priv);
1498 	if (!channel->dpcon)
1499 		goto err_setup;
1500 
1501 	err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle,
1502 				   &attr);
1503 	if (err) {
1504 		dev_err(dev, "dpcon_get_attributes() failed\n");
1505 		goto err_get_attr;
1506 	}
1507 
1508 	channel->dpcon_id = attr.id;
1509 	channel->ch_id = attr.qbman_ch_id;
1510 	channel->priv = priv;
1511 
1512 	return channel;
1513 
1514 err_get_attr:
1515 	free_dpcon(priv, channel->dpcon);
1516 err_setup:
1517 	kfree(channel);
1518 	return NULL;
1519 }
1520 
1521 static void free_channel(struct dpaa2_eth_priv *priv,
1522 			 struct dpaa2_eth_channel *channel)
1523 {
1524 	free_dpcon(priv, channel->dpcon);
1525 	kfree(channel);
1526 }
1527 
1528 /* DPIO setup: allocate and configure QBMan channels, setup core affinity
1529  * and register data availability notifications
1530  */
1531 static int setup_dpio(struct dpaa2_eth_priv *priv)
1532 {
1533 	struct dpaa2_io_notification_ctx *nctx;
1534 	struct dpaa2_eth_channel *channel;
1535 	struct dpcon_notification_cfg dpcon_notif_cfg;
1536 	struct device *dev = priv->net_dev->dev.parent;
1537 	int i, err;
1538 
1539 	/* We want the ability to spread ingress traffic (RX, TX conf) to as
1540 	 * many cores as possible, so we need one channel for each core
1541 	 * (unless there's fewer queues than cores, in which case the extra
1542 	 * channels would be wasted).
1543 	 * Allocate one channel per core and register it to the core's
1544 	 * affine DPIO. If not enough channels are available for all cores
1545 	 * or if some cores don't have an affine DPIO, there will be no
1546 	 * ingress frame processing on those cores.
1547 	 */
1548 	cpumask_clear(&priv->dpio_cpumask);
1549 	for_each_online_cpu(i) {
1550 		/* Try to allocate a channel */
1551 		channel = alloc_channel(priv);
1552 		if (!channel) {
1553 			dev_info(dev,
1554 				 "No affine channel for cpu %d and above\n", i);
1555 			err = -ENODEV;
1556 			goto err_alloc_ch;
1557 		}
1558 
1559 		priv->channel[priv->num_channels] = channel;
1560 
1561 		nctx = &channel->nctx;
1562 		nctx->is_cdan = 1;
1563 		nctx->cb = cdan_cb;
1564 		nctx->id = channel->ch_id;
1565 		nctx->desired_cpu = i;
1566 
1567 		/* Register the new context */
1568 		channel->dpio = dpaa2_io_service_select(i);
1569 		err = dpaa2_io_service_register(channel->dpio, nctx);
1570 		if (err) {
1571 			dev_dbg(dev, "No affine DPIO for cpu %d\n", i);
1572 			/* If no affine DPIO for this core, there's probably
1573 			 * none available for next cores either. Signal we want
1574 			 * to retry later, in case the DPIO devices weren't
1575 			 * probed yet.
1576 			 */
1577 			err = -EPROBE_DEFER;
1578 			goto err_service_reg;
1579 		}
1580 
1581 		/* Register DPCON notification with MC */
1582 		dpcon_notif_cfg.dpio_id = nctx->dpio_id;
1583 		dpcon_notif_cfg.priority = 0;
1584 		dpcon_notif_cfg.user_ctx = nctx->qman64;
1585 		err = dpcon_set_notification(priv->mc_io, 0,
1586 					     channel->dpcon->mc_handle,
1587 					     &dpcon_notif_cfg);
1588 		if (err) {
1589 			dev_err(dev, "dpcon_set_notification failed()\n");
1590 			goto err_set_cdan;
1591 		}
1592 
1593 		/* If we managed to allocate a channel and also found an affine
1594 		 * DPIO for this core, add it to the final mask
1595 		 */
1596 		cpumask_set_cpu(i, &priv->dpio_cpumask);
1597 		priv->num_channels++;
1598 
1599 		/* Stop if we already have enough channels to accommodate all
1600 		 * RX and TX conf queues
1601 		 */
1602 		if (priv->num_channels == dpaa2_eth_queue_count(priv))
1603 			break;
1604 	}
1605 
1606 	return 0;
1607 
1608 err_set_cdan:
1609 	dpaa2_io_service_deregister(channel->dpio, nctx);
1610 err_service_reg:
1611 	free_channel(priv, channel);
1612 err_alloc_ch:
1613 	if (cpumask_empty(&priv->dpio_cpumask)) {
1614 		dev_err(dev, "No cpu with an affine DPIO/DPCON\n");
1615 		return err;
1616 	}
1617 
1618 	dev_info(dev, "Cores %*pbl available for processing ingress traffic\n",
1619 		 cpumask_pr_args(&priv->dpio_cpumask));
1620 
1621 	return 0;
1622 }
1623 
1624 static void free_dpio(struct dpaa2_eth_priv *priv)
1625 {
1626 	int i;
1627 	struct dpaa2_eth_channel *ch;
1628 
1629 	/* deregister CDAN notifications and free channels */
1630 	for (i = 0; i < priv->num_channels; i++) {
1631 		ch = priv->channel[i];
1632 		dpaa2_io_service_deregister(ch->dpio, &ch->nctx);
1633 		free_channel(priv, ch);
1634 	}
1635 }
1636 
1637 static struct dpaa2_eth_channel *get_affine_channel(struct dpaa2_eth_priv *priv,
1638 						    int cpu)
1639 {
1640 	struct device *dev = priv->net_dev->dev.parent;
1641 	int i;
1642 
1643 	for (i = 0; i < priv->num_channels; i++)
1644 		if (priv->channel[i]->nctx.desired_cpu == cpu)
1645 			return priv->channel[i];
1646 
1647 	/* We should never get here. Issue a warning and return
1648 	 * the first channel, because it's still better than nothing
1649 	 */
1650 	dev_warn(dev, "No affine channel found for cpu %d\n", cpu);
1651 
1652 	return priv->channel[0];
1653 }
1654 
1655 static void set_fq_affinity(struct dpaa2_eth_priv *priv)
1656 {
1657 	struct device *dev = priv->net_dev->dev.parent;
1658 	struct cpumask xps_mask;
1659 	struct dpaa2_eth_fq *fq;
1660 	int rx_cpu, txc_cpu;
1661 	int i, err;
1662 
1663 	/* For each FQ, pick one channel/CPU to deliver frames to.
1664 	 * This may well change at runtime, either through irqbalance or
1665 	 * through direct user intervention.
1666 	 */
1667 	rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask);
1668 
1669 	for (i = 0; i < priv->num_fqs; i++) {
1670 		fq = &priv->fq[i];
1671 		switch (fq->type) {
1672 		case DPAA2_RX_FQ:
1673 			fq->target_cpu = rx_cpu;
1674 			rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask);
1675 			if (rx_cpu >= nr_cpu_ids)
1676 				rx_cpu = cpumask_first(&priv->dpio_cpumask);
1677 			break;
1678 		case DPAA2_TX_CONF_FQ:
1679 			fq->target_cpu = txc_cpu;
1680 
1681 			/* Tell the stack to affine to txc_cpu the Tx queue
1682 			 * associated with the confirmation one
1683 			 */
1684 			cpumask_clear(&xps_mask);
1685 			cpumask_set_cpu(txc_cpu, &xps_mask);
1686 			err = netif_set_xps_queue(priv->net_dev, &xps_mask,
1687 						  fq->flowid);
1688 			if (err)
1689 				dev_err(dev, "Error setting XPS queue\n");
1690 
1691 			txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask);
1692 			if (txc_cpu >= nr_cpu_ids)
1693 				txc_cpu = cpumask_first(&priv->dpio_cpumask);
1694 			break;
1695 		default:
1696 			dev_err(dev, "Unknown FQ type: %d\n", fq->type);
1697 		}
1698 		fq->channel = get_affine_channel(priv, fq->target_cpu);
1699 	}
1700 }
1701 
1702 static void setup_fqs(struct dpaa2_eth_priv *priv)
1703 {
1704 	int i;
1705 
1706 	/* We have one TxConf FQ per Tx flow.
1707 	 * The number of Tx and Rx queues is the same.
1708 	 * Tx queues come first in the fq array.
1709 	 */
1710 	for (i = 0; i < dpaa2_eth_queue_count(priv); i++) {
1711 		priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ;
1712 		priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf;
1713 		priv->fq[priv->num_fqs++].flowid = (u16)i;
1714 	}
1715 
1716 	for (i = 0; i < dpaa2_eth_queue_count(priv); i++) {
1717 		priv->fq[priv->num_fqs].type = DPAA2_RX_FQ;
1718 		priv->fq[priv->num_fqs].consume = dpaa2_eth_rx;
1719 		priv->fq[priv->num_fqs++].flowid = (u16)i;
1720 	}
1721 
1722 	/* For each FQ, decide on which core to process incoming frames */
1723 	set_fq_affinity(priv);
1724 }
1725 
1726 /* Allocate and configure one buffer pool for each interface */
1727 static int setup_dpbp(struct dpaa2_eth_priv *priv)
1728 {
1729 	int err;
1730 	struct fsl_mc_device *dpbp_dev;
1731 	struct device *dev = priv->net_dev->dev.parent;
1732 	struct dpbp_attr dpbp_attrs;
1733 
1734 	err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP,
1735 				     &dpbp_dev);
1736 	if (err) {
1737 		dev_err(dev, "DPBP device allocation failed\n");
1738 		return err;
1739 	}
1740 
1741 	priv->dpbp_dev = dpbp_dev;
1742 
1743 	err = dpbp_open(priv->mc_io, 0, priv->dpbp_dev->obj_desc.id,
1744 			&dpbp_dev->mc_handle);
1745 	if (err) {
1746 		dev_err(dev, "dpbp_open() failed\n");
1747 		goto err_open;
1748 	}
1749 
1750 	err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle);
1751 	if (err) {
1752 		dev_err(dev, "dpbp_reset() failed\n");
1753 		goto err_reset;
1754 	}
1755 
1756 	err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle);
1757 	if (err) {
1758 		dev_err(dev, "dpbp_enable() failed\n");
1759 		goto err_enable;
1760 	}
1761 
1762 	err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle,
1763 				  &dpbp_attrs);
1764 	if (err) {
1765 		dev_err(dev, "dpbp_get_attributes() failed\n");
1766 		goto err_get_attr;
1767 	}
1768 	priv->bpid = dpbp_attrs.bpid;
1769 
1770 	return 0;
1771 
1772 err_get_attr:
1773 	dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle);
1774 err_enable:
1775 err_reset:
1776 	dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle);
1777 err_open:
1778 	fsl_mc_object_free(dpbp_dev);
1779 
1780 	return err;
1781 }
1782 
1783 static void free_dpbp(struct dpaa2_eth_priv *priv)
1784 {
1785 	drain_pool(priv);
1786 	dpbp_disable(priv->mc_io, 0, priv->dpbp_dev->mc_handle);
1787 	dpbp_close(priv->mc_io, 0, priv->dpbp_dev->mc_handle);
1788 	fsl_mc_object_free(priv->dpbp_dev);
1789 }
1790 
1791 static int set_buffer_layout(struct dpaa2_eth_priv *priv)
1792 {
1793 	struct device *dev = priv->net_dev->dev.parent;
1794 	struct dpni_buffer_layout buf_layout = {0};
1795 	int err;
1796 
1797 	/* We need to check for WRIOP version 1.0.0, but depending on the MC
1798 	 * version, this number is not always provided correctly on rev1.
1799 	 * We need to check for both alternatives in this situation.
1800 	 */
1801 	if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) ||
1802 	    priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0))
1803 		priv->rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1;
1804 	else
1805 		priv->rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN;
1806 
1807 	/* tx buffer */
1808 	buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE;
1809 	buf_layout.pass_timestamp = true;
1810 	buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE |
1811 			     DPNI_BUF_LAYOUT_OPT_TIMESTAMP;
1812 	err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token,
1813 				     DPNI_QUEUE_TX, &buf_layout);
1814 	if (err) {
1815 		dev_err(dev, "dpni_set_buffer_layout(TX) failed\n");
1816 		return err;
1817 	}
1818 
1819 	/* tx-confirm buffer */
1820 	buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP;
1821 	err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token,
1822 				     DPNI_QUEUE_TX_CONFIRM, &buf_layout);
1823 	if (err) {
1824 		dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n");
1825 		return err;
1826 	}
1827 
1828 	/* Now that we've set our tx buffer layout, retrieve the minimum
1829 	 * required tx data offset.
1830 	 */
1831 	err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token,
1832 				      &priv->tx_data_offset);
1833 	if (err) {
1834 		dev_err(dev, "dpni_get_tx_data_offset() failed\n");
1835 		return err;
1836 	}
1837 
1838 	if ((priv->tx_data_offset % 64) != 0)
1839 		dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n",
1840 			 priv->tx_data_offset);
1841 
1842 	/* rx buffer */
1843 	buf_layout.pass_frame_status = true;
1844 	buf_layout.pass_parser_result = true;
1845 	buf_layout.data_align = priv->rx_buf_align;
1846 	buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv);
1847 	buf_layout.private_data_size = 0;
1848 	buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT |
1849 			     DPNI_BUF_LAYOUT_OPT_FRAME_STATUS |
1850 			     DPNI_BUF_LAYOUT_OPT_DATA_ALIGN |
1851 			     DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM |
1852 			     DPNI_BUF_LAYOUT_OPT_TIMESTAMP;
1853 	err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token,
1854 				     DPNI_QUEUE_RX, &buf_layout);
1855 	if (err) {
1856 		dev_err(dev, "dpni_set_buffer_layout(RX) failed\n");
1857 		return err;
1858 	}
1859 
1860 	return 0;
1861 }
1862 
1863 /* Configure the DPNI object this interface is associated with */
1864 static int setup_dpni(struct fsl_mc_device *ls_dev)
1865 {
1866 	struct device *dev = &ls_dev->dev;
1867 	struct dpaa2_eth_priv *priv;
1868 	struct net_device *net_dev;
1869 	int err;
1870 
1871 	net_dev = dev_get_drvdata(dev);
1872 	priv = netdev_priv(net_dev);
1873 
1874 	/* get a handle for the DPNI object */
1875 	err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token);
1876 	if (err) {
1877 		dev_err(dev, "dpni_open() failed\n");
1878 		return err;
1879 	}
1880 
1881 	/* Check if we can work with this DPNI object */
1882 	err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major,
1883 				   &priv->dpni_ver_minor);
1884 	if (err) {
1885 		dev_err(dev, "dpni_get_api_version() failed\n");
1886 		goto close;
1887 	}
1888 	if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) {
1889 		dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n",
1890 			priv->dpni_ver_major, priv->dpni_ver_minor,
1891 			DPNI_VER_MAJOR, DPNI_VER_MINOR);
1892 		err = -ENOTSUPP;
1893 		goto close;
1894 	}
1895 
1896 	ls_dev->mc_io = priv->mc_io;
1897 	ls_dev->mc_handle = priv->mc_token;
1898 
1899 	err = dpni_reset(priv->mc_io, 0, priv->mc_token);
1900 	if (err) {
1901 		dev_err(dev, "dpni_reset() failed\n");
1902 		goto close;
1903 	}
1904 
1905 	err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token,
1906 				  &priv->dpni_attrs);
1907 	if (err) {
1908 		dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err);
1909 		goto close;
1910 	}
1911 
1912 	err = set_buffer_layout(priv);
1913 	if (err)
1914 		goto close;
1915 
1916 	priv->cls_rules = devm_kzalloc(dev, sizeof(struct dpaa2_eth_cls_rule) *
1917 				       dpaa2_eth_fs_count(priv), GFP_KERNEL);
1918 	if (!priv->cls_rules)
1919 		goto close;
1920 
1921 	return 0;
1922 
1923 close:
1924 	dpni_close(priv->mc_io, 0, priv->mc_token);
1925 
1926 	return err;
1927 }
1928 
1929 static void free_dpni(struct dpaa2_eth_priv *priv)
1930 {
1931 	int err;
1932 
1933 	err = dpni_reset(priv->mc_io, 0, priv->mc_token);
1934 	if (err)
1935 		netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n",
1936 			    err);
1937 
1938 	dpni_close(priv->mc_io, 0, priv->mc_token);
1939 }
1940 
1941 static int setup_rx_flow(struct dpaa2_eth_priv *priv,
1942 			 struct dpaa2_eth_fq *fq)
1943 {
1944 	struct device *dev = priv->net_dev->dev.parent;
1945 	struct dpni_queue queue;
1946 	struct dpni_queue_id qid;
1947 	struct dpni_taildrop td;
1948 	int err;
1949 
1950 	err = dpni_get_queue(priv->mc_io, 0, priv->mc_token,
1951 			     DPNI_QUEUE_RX, 0, fq->flowid, &queue, &qid);
1952 	if (err) {
1953 		dev_err(dev, "dpni_get_queue(RX) failed\n");
1954 		return err;
1955 	}
1956 
1957 	fq->fqid = qid.fqid;
1958 
1959 	queue.destination.id = fq->channel->dpcon_id;
1960 	queue.destination.type = DPNI_DEST_DPCON;
1961 	queue.destination.priority = 1;
1962 	queue.user_context = (u64)(uintptr_t)fq;
1963 	err = dpni_set_queue(priv->mc_io, 0, priv->mc_token,
1964 			     DPNI_QUEUE_RX, 0, fq->flowid,
1965 			     DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST,
1966 			     &queue);
1967 	if (err) {
1968 		dev_err(dev, "dpni_set_queue(RX) failed\n");
1969 		return err;
1970 	}
1971 
1972 	td.enable = 1;
1973 	td.threshold = DPAA2_ETH_TAILDROP_THRESH;
1974 	err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, DPNI_CP_QUEUE,
1975 				DPNI_QUEUE_RX, 0, fq->flowid, &td);
1976 	if (err) {
1977 		dev_err(dev, "dpni_set_threshold() failed\n");
1978 		return err;
1979 	}
1980 
1981 	return 0;
1982 }
1983 
1984 static int setup_tx_flow(struct dpaa2_eth_priv *priv,
1985 			 struct dpaa2_eth_fq *fq)
1986 {
1987 	struct device *dev = priv->net_dev->dev.parent;
1988 	struct dpni_queue queue;
1989 	struct dpni_queue_id qid;
1990 	int err;
1991 
1992 	err = dpni_get_queue(priv->mc_io, 0, priv->mc_token,
1993 			     DPNI_QUEUE_TX, 0, fq->flowid, &queue, &qid);
1994 	if (err) {
1995 		dev_err(dev, "dpni_get_queue(TX) failed\n");
1996 		return err;
1997 	}
1998 
1999 	fq->tx_qdbin = qid.qdbin;
2000 
2001 	err = dpni_get_queue(priv->mc_io, 0, priv->mc_token,
2002 			     DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid,
2003 			     &queue, &qid);
2004 	if (err) {
2005 		dev_err(dev, "dpni_get_queue(TX_CONF) failed\n");
2006 		return err;
2007 	}
2008 
2009 	fq->fqid = qid.fqid;
2010 
2011 	queue.destination.id = fq->channel->dpcon_id;
2012 	queue.destination.type = DPNI_DEST_DPCON;
2013 	queue.destination.priority = 0;
2014 	queue.user_context = (u64)(uintptr_t)fq;
2015 	err = dpni_set_queue(priv->mc_io, 0, priv->mc_token,
2016 			     DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid,
2017 			     DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST,
2018 			     &queue);
2019 	if (err) {
2020 		dev_err(dev, "dpni_set_queue(TX_CONF) failed\n");
2021 		return err;
2022 	}
2023 
2024 	return 0;
2025 }
2026 
2027 /* Supported header fields for Rx hash distribution key */
2028 static const struct dpaa2_eth_dist_fields dist_fields[] = {
2029 	{
2030 		/* L2 header */
2031 		.rxnfc_field = RXH_L2DA,
2032 		.cls_prot = NET_PROT_ETH,
2033 		.cls_field = NH_FLD_ETH_DA,
2034 		.size = 6,
2035 	}, {
2036 		.cls_prot = NET_PROT_ETH,
2037 		.cls_field = NH_FLD_ETH_SA,
2038 		.size = 6,
2039 	}, {
2040 		/* This is the last ethertype field parsed:
2041 		 * depending on frame format, it can be the MAC ethertype
2042 		 * or the VLAN etype.
2043 		 */
2044 		.cls_prot = NET_PROT_ETH,
2045 		.cls_field = NH_FLD_ETH_TYPE,
2046 		.size = 2,
2047 	}, {
2048 		/* VLAN header */
2049 		.rxnfc_field = RXH_VLAN,
2050 		.cls_prot = NET_PROT_VLAN,
2051 		.cls_field = NH_FLD_VLAN_TCI,
2052 		.size = 2,
2053 	}, {
2054 		/* IP header */
2055 		.rxnfc_field = RXH_IP_SRC,
2056 		.cls_prot = NET_PROT_IP,
2057 		.cls_field = NH_FLD_IP_SRC,
2058 		.size = 4,
2059 	}, {
2060 		.rxnfc_field = RXH_IP_DST,
2061 		.cls_prot = NET_PROT_IP,
2062 		.cls_field = NH_FLD_IP_DST,
2063 		.size = 4,
2064 	}, {
2065 		.rxnfc_field = RXH_L3_PROTO,
2066 		.cls_prot = NET_PROT_IP,
2067 		.cls_field = NH_FLD_IP_PROTO,
2068 		.size = 1,
2069 	}, {
2070 		/* Using UDP ports, this is functionally equivalent to raw
2071 		 * byte pairs from L4 header.
2072 		 */
2073 		.rxnfc_field = RXH_L4_B_0_1,
2074 		.cls_prot = NET_PROT_UDP,
2075 		.cls_field = NH_FLD_UDP_PORT_SRC,
2076 		.size = 2,
2077 	}, {
2078 		.rxnfc_field = RXH_L4_B_2_3,
2079 		.cls_prot = NET_PROT_UDP,
2080 		.cls_field = NH_FLD_UDP_PORT_DST,
2081 		.size = 2,
2082 	},
2083 };
2084 
2085 /* Configure the Rx hash key using the legacy API */
2086 static int config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key)
2087 {
2088 	struct device *dev = priv->net_dev->dev.parent;
2089 	struct dpni_rx_tc_dist_cfg dist_cfg;
2090 	int err;
2091 
2092 	memset(&dist_cfg, 0, sizeof(dist_cfg));
2093 
2094 	dist_cfg.key_cfg_iova = key;
2095 	dist_cfg.dist_size = dpaa2_eth_queue_count(priv);
2096 	dist_cfg.dist_mode = DPNI_DIST_MODE_HASH;
2097 
2098 	err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 0, &dist_cfg);
2099 	if (err)
2100 		dev_err(dev, "dpni_set_rx_tc_dist failed\n");
2101 
2102 	return err;
2103 }
2104 
2105 /* Configure the Rx hash key using the new API */
2106 static int config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key)
2107 {
2108 	struct device *dev = priv->net_dev->dev.parent;
2109 	struct dpni_rx_dist_cfg dist_cfg;
2110 	int err;
2111 
2112 	memset(&dist_cfg, 0, sizeof(dist_cfg));
2113 
2114 	dist_cfg.key_cfg_iova = key;
2115 	dist_cfg.dist_size = dpaa2_eth_queue_count(priv);
2116 	dist_cfg.enable = 1;
2117 
2118 	err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg);
2119 	if (err)
2120 		dev_err(dev, "dpni_set_rx_hash_dist failed\n");
2121 
2122 	return err;
2123 }
2124 
2125 /* Configure the Rx flow classification key */
2126 static int config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key)
2127 {
2128 	struct device *dev = priv->net_dev->dev.parent;
2129 	struct dpni_rx_dist_cfg dist_cfg;
2130 	int err;
2131 
2132 	memset(&dist_cfg, 0, sizeof(dist_cfg));
2133 
2134 	dist_cfg.key_cfg_iova = key;
2135 	dist_cfg.dist_size = dpaa2_eth_queue_count(priv);
2136 	dist_cfg.enable = 1;
2137 
2138 	err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg);
2139 	if (err)
2140 		dev_err(dev, "dpni_set_rx_fs_dist failed\n");
2141 
2142 	return err;
2143 }
2144 
2145 /* Size of the Rx flow classification key */
2146 int dpaa2_eth_cls_key_size(void)
2147 {
2148 	int i, size = 0;
2149 
2150 	for (i = 0; i < ARRAY_SIZE(dist_fields); i++)
2151 		size += dist_fields[i].size;
2152 
2153 	return size;
2154 }
2155 
2156 /* Offset of header field in Rx classification key */
2157 int dpaa2_eth_cls_fld_off(int prot, int field)
2158 {
2159 	int i, off = 0;
2160 
2161 	for (i = 0; i < ARRAY_SIZE(dist_fields); i++) {
2162 		if (dist_fields[i].cls_prot == prot &&
2163 		    dist_fields[i].cls_field == field)
2164 			return off;
2165 		off += dist_fields[i].size;
2166 	}
2167 
2168 	WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n");
2169 	return 0;
2170 }
2171 
2172 /* Set Rx distribution (hash or flow classification) key
2173  * flags is a combination of RXH_ bits
2174  */
2175 static int dpaa2_eth_set_dist_key(struct net_device *net_dev,
2176 				  enum dpaa2_eth_rx_dist type, u64 flags)
2177 {
2178 	struct device *dev = net_dev->dev.parent;
2179 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
2180 	struct dpkg_profile_cfg cls_cfg;
2181 	u32 rx_hash_fields = 0;
2182 	dma_addr_t key_iova;
2183 	u8 *dma_mem;
2184 	int i;
2185 	int err = 0;
2186 
2187 	memset(&cls_cfg, 0, sizeof(cls_cfg));
2188 
2189 	for (i = 0; i < ARRAY_SIZE(dist_fields); i++) {
2190 		struct dpkg_extract *key =
2191 			&cls_cfg.extracts[cls_cfg.num_extracts];
2192 
2193 		/* For Rx hashing key we set only the selected fields.
2194 		 * For Rx flow classification key we set all supported fields
2195 		 */
2196 		if (type == DPAA2_ETH_RX_DIST_HASH) {
2197 			if (!(flags & dist_fields[i].rxnfc_field))
2198 				continue;
2199 			rx_hash_fields |= dist_fields[i].rxnfc_field;
2200 		}
2201 
2202 		if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) {
2203 			dev_err(dev, "error adding key extraction rule, too many rules?\n");
2204 			return -E2BIG;
2205 		}
2206 
2207 		key->type = DPKG_EXTRACT_FROM_HDR;
2208 		key->extract.from_hdr.prot = dist_fields[i].cls_prot;
2209 		key->extract.from_hdr.type = DPKG_FULL_FIELD;
2210 		key->extract.from_hdr.field = dist_fields[i].cls_field;
2211 		cls_cfg.num_extracts++;
2212 	}
2213 
2214 	dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL);
2215 	if (!dma_mem)
2216 		return -ENOMEM;
2217 
2218 	err = dpni_prepare_key_cfg(&cls_cfg, dma_mem);
2219 	if (err) {
2220 		dev_err(dev, "dpni_prepare_key_cfg error %d\n", err);
2221 		goto free_key;
2222 	}
2223 
2224 	/* Prepare for setting the rx dist */
2225 	key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE,
2226 				  DMA_TO_DEVICE);
2227 	if (dma_mapping_error(dev, key_iova)) {
2228 		dev_err(dev, "DMA mapping failed\n");
2229 		err = -ENOMEM;
2230 		goto free_key;
2231 	}
2232 
2233 	if (type == DPAA2_ETH_RX_DIST_HASH) {
2234 		if (dpaa2_eth_has_legacy_dist(priv))
2235 			err = config_legacy_hash_key(priv, key_iova);
2236 		else
2237 			err = config_hash_key(priv, key_iova);
2238 	} else {
2239 		err = config_cls_key(priv, key_iova);
2240 	}
2241 
2242 	dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE,
2243 			 DMA_TO_DEVICE);
2244 	if (!err && type == DPAA2_ETH_RX_DIST_HASH)
2245 		priv->rx_hash_fields = rx_hash_fields;
2246 
2247 free_key:
2248 	kfree(dma_mem);
2249 	return err;
2250 }
2251 
2252 int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags)
2253 {
2254 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
2255 
2256 	if (!dpaa2_eth_hash_enabled(priv))
2257 		return -EOPNOTSUPP;
2258 
2259 	return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, flags);
2260 }
2261 
2262 static int dpaa2_eth_set_cls(struct dpaa2_eth_priv *priv)
2263 {
2264 	struct device *dev = priv->net_dev->dev.parent;
2265 
2266 	/* Check if we actually support Rx flow classification */
2267 	if (dpaa2_eth_has_legacy_dist(priv)) {
2268 		dev_dbg(dev, "Rx cls not supported by current MC version\n");
2269 		return -EOPNOTSUPP;
2270 	}
2271 
2272 	if (priv->dpni_attrs.options & DPNI_OPT_NO_FS ||
2273 	    !(priv->dpni_attrs.options & DPNI_OPT_HAS_KEY_MASKING)) {
2274 		dev_dbg(dev, "Rx cls disabled in DPNI options\n");
2275 		return -EOPNOTSUPP;
2276 	}
2277 
2278 	if (!dpaa2_eth_hash_enabled(priv)) {
2279 		dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n");
2280 		return -EOPNOTSUPP;
2281 	}
2282 
2283 	priv->rx_cls_enabled = 1;
2284 
2285 	return dpaa2_eth_set_dist_key(priv->net_dev, DPAA2_ETH_RX_DIST_CLS, 0);
2286 }
2287 
2288 /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs,
2289  * frame queues and channels
2290  */
2291 static int bind_dpni(struct dpaa2_eth_priv *priv)
2292 {
2293 	struct net_device *net_dev = priv->net_dev;
2294 	struct device *dev = net_dev->dev.parent;
2295 	struct dpni_pools_cfg pools_params;
2296 	struct dpni_error_cfg err_cfg;
2297 	int err = 0;
2298 	int i;
2299 
2300 	pools_params.num_dpbp = 1;
2301 	pools_params.pools[0].dpbp_id = priv->dpbp_dev->obj_desc.id;
2302 	pools_params.pools[0].backup_pool = 0;
2303 	pools_params.pools[0].buffer_size = DPAA2_ETH_RX_BUF_SIZE;
2304 	err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params);
2305 	if (err) {
2306 		dev_err(dev, "dpni_set_pools() failed\n");
2307 		return err;
2308 	}
2309 
2310 	/* have the interface implicitly distribute traffic based on
2311 	 * the default hash key
2312 	 */
2313 	err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT);
2314 	if (err && err != -EOPNOTSUPP)
2315 		dev_err(dev, "Failed to configure hashing\n");
2316 
2317 	/* Configure the flow classification key; it includes all
2318 	 * supported header fields and cannot be modified at runtime
2319 	 */
2320 	err = dpaa2_eth_set_cls(priv);
2321 	if (err && err != -EOPNOTSUPP)
2322 		dev_err(dev, "Failed to configure Rx classification key\n");
2323 
2324 	/* Configure handling of error frames */
2325 	err_cfg.errors = DPAA2_FAS_RX_ERR_MASK;
2326 	err_cfg.set_frame_annotation = 1;
2327 	err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD;
2328 	err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token,
2329 				       &err_cfg);
2330 	if (err) {
2331 		dev_err(dev, "dpni_set_errors_behavior failed\n");
2332 		return err;
2333 	}
2334 
2335 	/* Configure Rx and Tx conf queues to generate CDANs */
2336 	for (i = 0; i < priv->num_fqs; i++) {
2337 		switch (priv->fq[i].type) {
2338 		case DPAA2_RX_FQ:
2339 			err = setup_rx_flow(priv, &priv->fq[i]);
2340 			break;
2341 		case DPAA2_TX_CONF_FQ:
2342 			err = setup_tx_flow(priv, &priv->fq[i]);
2343 			break;
2344 		default:
2345 			dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type);
2346 			return -EINVAL;
2347 		}
2348 		if (err)
2349 			return err;
2350 	}
2351 
2352 	err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token,
2353 			    DPNI_QUEUE_TX, &priv->tx_qdid);
2354 	if (err) {
2355 		dev_err(dev, "dpni_get_qdid() failed\n");
2356 		return err;
2357 	}
2358 
2359 	return 0;
2360 }
2361 
2362 /* Allocate rings for storing incoming frame descriptors */
2363 static int alloc_rings(struct dpaa2_eth_priv *priv)
2364 {
2365 	struct net_device *net_dev = priv->net_dev;
2366 	struct device *dev = net_dev->dev.parent;
2367 	int i;
2368 
2369 	for (i = 0; i < priv->num_channels; i++) {
2370 		priv->channel[i]->store =
2371 			dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev);
2372 		if (!priv->channel[i]->store) {
2373 			netdev_err(net_dev, "dpaa2_io_store_create() failed\n");
2374 			goto err_ring;
2375 		}
2376 	}
2377 
2378 	return 0;
2379 
2380 err_ring:
2381 	for (i = 0; i < priv->num_channels; i++) {
2382 		if (!priv->channel[i]->store)
2383 			break;
2384 		dpaa2_io_store_destroy(priv->channel[i]->store);
2385 	}
2386 
2387 	return -ENOMEM;
2388 }
2389 
2390 static void free_rings(struct dpaa2_eth_priv *priv)
2391 {
2392 	int i;
2393 
2394 	for (i = 0; i < priv->num_channels; i++)
2395 		dpaa2_io_store_destroy(priv->channel[i]->store);
2396 }
2397 
2398 static int set_mac_addr(struct dpaa2_eth_priv *priv)
2399 {
2400 	struct net_device *net_dev = priv->net_dev;
2401 	struct device *dev = net_dev->dev.parent;
2402 	u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN];
2403 	int err;
2404 
2405 	/* Get firmware address, if any */
2406 	err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr);
2407 	if (err) {
2408 		dev_err(dev, "dpni_get_port_mac_addr() failed\n");
2409 		return err;
2410 	}
2411 
2412 	/* Get DPNI attributes address, if any */
2413 	err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token,
2414 					dpni_mac_addr);
2415 	if (err) {
2416 		dev_err(dev, "dpni_get_primary_mac_addr() failed\n");
2417 		return err;
2418 	}
2419 
2420 	/* First check if firmware has any address configured by bootloader */
2421 	if (!is_zero_ether_addr(mac_addr)) {
2422 		/* If the DPMAC addr != DPNI addr, update it */
2423 		if (!ether_addr_equal(mac_addr, dpni_mac_addr)) {
2424 			err = dpni_set_primary_mac_addr(priv->mc_io, 0,
2425 							priv->mc_token,
2426 							mac_addr);
2427 			if (err) {
2428 				dev_err(dev, "dpni_set_primary_mac_addr() failed\n");
2429 				return err;
2430 			}
2431 		}
2432 		memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
2433 	} else if (is_zero_ether_addr(dpni_mac_addr)) {
2434 		/* No MAC address configured, fill in net_dev->dev_addr
2435 		 * with a random one
2436 		 */
2437 		eth_hw_addr_random(net_dev);
2438 		dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n");
2439 
2440 		err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token,
2441 						net_dev->dev_addr);
2442 		if (err) {
2443 			dev_err(dev, "dpni_set_primary_mac_addr() failed\n");
2444 			return err;
2445 		}
2446 
2447 		/* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all
2448 		 * practical purposes, this will be our "permanent" mac address,
2449 		 * at least until the next reboot. This move will also permit
2450 		 * register_netdevice() to properly fill up net_dev->perm_addr.
2451 		 */
2452 		net_dev->addr_assign_type = NET_ADDR_PERM;
2453 	} else {
2454 		/* NET_ADDR_PERM is default, all we have to do is
2455 		 * fill in the device addr.
2456 		 */
2457 		memcpy(net_dev->dev_addr, dpni_mac_addr, net_dev->addr_len);
2458 	}
2459 
2460 	return 0;
2461 }
2462 
2463 static int netdev_init(struct net_device *net_dev)
2464 {
2465 	struct device *dev = net_dev->dev.parent;
2466 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
2467 	u32 options = priv->dpni_attrs.options;
2468 	u64 supported = 0, not_supported = 0;
2469 	u8 bcast_addr[ETH_ALEN];
2470 	u8 num_queues;
2471 	int err;
2472 
2473 	net_dev->netdev_ops = &dpaa2_eth_ops;
2474 	net_dev->ethtool_ops = &dpaa2_ethtool_ops;
2475 
2476 	err = set_mac_addr(priv);
2477 	if (err)
2478 		return err;
2479 
2480 	/* Explicitly add the broadcast address to the MAC filtering table */
2481 	eth_broadcast_addr(bcast_addr);
2482 	err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr);
2483 	if (err) {
2484 		dev_err(dev, "dpni_add_mac_addr() failed\n");
2485 		return err;
2486 	}
2487 
2488 	/* Set MTU upper limit; lower limit is 68B (default value) */
2489 	net_dev->max_mtu = DPAA2_ETH_MAX_MTU;
2490 	err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token,
2491 					DPAA2_ETH_MFL);
2492 	if (err) {
2493 		dev_err(dev, "dpni_set_max_frame_length() failed\n");
2494 		return err;
2495 	}
2496 
2497 	/* Set actual number of queues in the net device */
2498 	num_queues = dpaa2_eth_queue_count(priv);
2499 	err = netif_set_real_num_tx_queues(net_dev, num_queues);
2500 	if (err) {
2501 		dev_err(dev, "netif_set_real_num_tx_queues() failed\n");
2502 		return err;
2503 	}
2504 	err = netif_set_real_num_rx_queues(net_dev, num_queues);
2505 	if (err) {
2506 		dev_err(dev, "netif_set_real_num_rx_queues() failed\n");
2507 		return err;
2508 	}
2509 
2510 	/* Capabilities listing */
2511 	supported |= IFF_LIVE_ADDR_CHANGE;
2512 
2513 	if (options & DPNI_OPT_NO_MAC_FILTER)
2514 		not_supported |= IFF_UNICAST_FLT;
2515 	else
2516 		supported |= IFF_UNICAST_FLT;
2517 
2518 	net_dev->priv_flags |= supported;
2519 	net_dev->priv_flags &= ~not_supported;
2520 
2521 	/* Features */
2522 	net_dev->features = NETIF_F_RXCSUM |
2523 			    NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2524 			    NETIF_F_SG | NETIF_F_HIGHDMA |
2525 			    NETIF_F_LLTX;
2526 	net_dev->hw_features = net_dev->features;
2527 
2528 	return 0;
2529 }
2530 
2531 static int poll_link_state(void *arg)
2532 {
2533 	struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg;
2534 	int err;
2535 
2536 	while (!kthread_should_stop()) {
2537 		err = link_state_update(priv);
2538 		if (unlikely(err))
2539 			return err;
2540 
2541 		msleep(DPAA2_ETH_LINK_STATE_REFRESH);
2542 	}
2543 
2544 	return 0;
2545 }
2546 
2547 static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg)
2548 {
2549 	u32 status = ~0;
2550 	struct device *dev = (struct device *)arg;
2551 	struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev);
2552 	struct net_device *net_dev = dev_get_drvdata(dev);
2553 	int err;
2554 
2555 	err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle,
2556 				  DPNI_IRQ_INDEX, &status);
2557 	if (unlikely(err)) {
2558 		netdev_err(net_dev, "Can't get irq status (err %d)\n", err);
2559 		return IRQ_HANDLED;
2560 	}
2561 
2562 	if (status & DPNI_IRQ_EVENT_LINK_CHANGED)
2563 		link_state_update(netdev_priv(net_dev));
2564 
2565 	return IRQ_HANDLED;
2566 }
2567 
2568 static int setup_irqs(struct fsl_mc_device *ls_dev)
2569 {
2570 	int err = 0;
2571 	struct fsl_mc_device_irq *irq;
2572 
2573 	err = fsl_mc_allocate_irqs(ls_dev);
2574 	if (err) {
2575 		dev_err(&ls_dev->dev, "MC irqs allocation failed\n");
2576 		return err;
2577 	}
2578 
2579 	irq = ls_dev->irqs[0];
2580 	err = devm_request_threaded_irq(&ls_dev->dev, irq->msi_desc->irq,
2581 					NULL, dpni_irq0_handler_thread,
2582 					IRQF_NO_SUSPEND | IRQF_ONESHOT,
2583 					dev_name(&ls_dev->dev), &ls_dev->dev);
2584 	if (err < 0) {
2585 		dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err);
2586 		goto free_mc_irq;
2587 	}
2588 
2589 	err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle,
2590 				DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED);
2591 	if (err < 0) {
2592 		dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err);
2593 		goto free_irq;
2594 	}
2595 
2596 	err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle,
2597 				  DPNI_IRQ_INDEX, 1);
2598 	if (err < 0) {
2599 		dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err);
2600 		goto free_irq;
2601 	}
2602 
2603 	return 0;
2604 
2605 free_irq:
2606 	devm_free_irq(&ls_dev->dev, irq->msi_desc->irq, &ls_dev->dev);
2607 free_mc_irq:
2608 	fsl_mc_free_irqs(ls_dev);
2609 
2610 	return err;
2611 }
2612 
2613 static void add_ch_napi(struct dpaa2_eth_priv *priv)
2614 {
2615 	int i;
2616 	struct dpaa2_eth_channel *ch;
2617 
2618 	for (i = 0; i < priv->num_channels; i++) {
2619 		ch = priv->channel[i];
2620 		/* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */
2621 		netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll,
2622 			       NAPI_POLL_WEIGHT);
2623 	}
2624 }
2625 
2626 static void del_ch_napi(struct dpaa2_eth_priv *priv)
2627 {
2628 	int i;
2629 	struct dpaa2_eth_channel *ch;
2630 
2631 	for (i = 0; i < priv->num_channels; i++) {
2632 		ch = priv->channel[i];
2633 		netif_napi_del(&ch->napi);
2634 	}
2635 }
2636 
2637 static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev)
2638 {
2639 	struct device *dev;
2640 	struct net_device *net_dev = NULL;
2641 	struct dpaa2_eth_priv *priv = NULL;
2642 	int err = 0;
2643 
2644 	dev = &dpni_dev->dev;
2645 
2646 	/* Net device */
2647 	net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_TX_QUEUES);
2648 	if (!net_dev) {
2649 		dev_err(dev, "alloc_etherdev_mq() failed\n");
2650 		return -ENOMEM;
2651 	}
2652 
2653 	SET_NETDEV_DEV(net_dev, dev);
2654 	dev_set_drvdata(dev, net_dev);
2655 
2656 	priv = netdev_priv(net_dev);
2657 	priv->net_dev = net_dev;
2658 
2659 	priv->iommu_domain = iommu_get_domain_for_dev(dev);
2660 
2661 	/* Obtain a MC portal */
2662 	err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL,
2663 				     &priv->mc_io);
2664 	if (err) {
2665 		if (err == -ENXIO)
2666 			err = -EPROBE_DEFER;
2667 		else
2668 			dev_err(dev, "MC portal allocation failed\n");
2669 		goto err_portal_alloc;
2670 	}
2671 
2672 	/* MC objects initialization and configuration */
2673 	err = setup_dpni(dpni_dev);
2674 	if (err)
2675 		goto err_dpni_setup;
2676 
2677 	err = setup_dpio(priv);
2678 	if (err)
2679 		goto err_dpio_setup;
2680 
2681 	setup_fqs(priv);
2682 
2683 	err = setup_dpbp(priv);
2684 	if (err)
2685 		goto err_dpbp_setup;
2686 
2687 	err = bind_dpni(priv);
2688 	if (err)
2689 		goto err_bind;
2690 
2691 	/* Add a NAPI context for each channel */
2692 	add_ch_napi(priv);
2693 
2694 	/* Percpu statistics */
2695 	priv->percpu_stats = alloc_percpu(*priv->percpu_stats);
2696 	if (!priv->percpu_stats) {
2697 		dev_err(dev, "alloc_percpu(percpu_stats) failed\n");
2698 		err = -ENOMEM;
2699 		goto err_alloc_percpu_stats;
2700 	}
2701 	priv->percpu_extras = alloc_percpu(*priv->percpu_extras);
2702 	if (!priv->percpu_extras) {
2703 		dev_err(dev, "alloc_percpu(percpu_extras) failed\n");
2704 		err = -ENOMEM;
2705 		goto err_alloc_percpu_extras;
2706 	}
2707 
2708 	err = netdev_init(net_dev);
2709 	if (err)
2710 		goto err_netdev_init;
2711 
2712 	/* Configure checksum offload based on current interface flags */
2713 	err = set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM));
2714 	if (err)
2715 		goto err_csum;
2716 
2717 	err = set_tx_csum(priv, !!(net_dev->features &
2718 				   (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)));
2719 	if (err)
2720 		goto err_csum;
2721 
2722 	err = alloc_rings(priv);
2723 	if (err)
2724 		goto err_alloc_rings;
2725 
2726 	err = setup_irqs(dpni_dev);
2727 	if (err) {
2728 		netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n");
2729 		priv->poll_thread = kthread_run(poll_link_state, priv,
2730 						"%s_poll_link", net_dev->name);
2731 		if (IS_ERR(priv->poll_thread)) {
2732 			dev_err(dev, "Error starting polling thread\n");
2733 			goto err_poll_thread;
2734 		}
2735 		priv->do_link_poll = true;
2736 	}
2737 
2738 	err = register_netdev(net_dev);
2739 	if (err < 0) {
2740 		dev_err(dev, "register_netdev() failed\n");
2741 		goto err_netdev_reg;
2742 	}
2743 
2744 	dev_info(dev, "Probed interface %s\n", net_dev->name);
2745 	return 0;
2746 
2747 err_netdev_reg:
2748 	if (priv->do_link_poll)
2749 		kthread_stop(priv->poll_thread);
2750 	else
2751 		fsl_mc_free_irqs(dpni_dev);
2752 err_poll_thread:
2753 	free_rings(priv);
2754 err_alloc_rings:
2755 err_csum:
2756 err_netdev_init:
2757 	free_percpu(priv->percpu_extras);
2758 err_alloc_percpu_extras:
2759 	free_percpu(priv->percpu_stats);
2760 err_alloc_percpu_stats:
2761 	del_ch_napi(priv);
2762 err_bind:
2763 	free_dpbp(priv);
2764 err_dpbp_setup:
2765 	free_dpio(priv);
2766 err_dpio_setup:
2767 	free_dpni(priv);
2768 err_dpni_setup:
2769 	fsl_mc_portal_free(priv->mc_io);
2770 err_portal_alloc:
2771 	dev_set_drvdata(dev, NULL);
2772 	free_netdev(net_dev);
2773 
2774 	return err;
2775 }
2776 
2777 static int dpaa2_eth_remove(struct fsl_mc_device *ls_dev)
2778 {
2779 	struct device *dev;
2780 	struct net_device *net_dev;
2781 	struct dpaa2_eth_priv *priv;
2782 
2783 	dev = &ls_dev->dev;
2784 	net_dev = dev_get_drvdata(dev);
2785 	priv = netdev_priv(net_dev);
2786 
2787 	unregister_netdev(net_dev);
2788 
2789 	if (priv->do_link_poll)
2790 		kthread_stop(priv->poll_thread);
2791 	else
2792 		fsl_mc_free_irqs(ls_dev);
2793 
2794 	free_rings(priv);
2795 	free_percpu(priv->percpu_stats);
2796 	free_percpu(priv->percpu_extras);
2797 
2798 	del_ch_napi(priv);
2799 	free_dpbp(priv);
2800 	free_dpio(priv);
2801 	free_dpni(priv);
2802 
2803 	fsl_mc_portal_free(priv->mc_io);
2804 
2805 	free_netdev(net_dev);
2806 
2807 	dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name);
2808 
2809 	return 0;
2810 }
2811 
2812 static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = {
2813 	{
2814 		.vendor = FSL_MC_VENDOR_FREESCALE,
2815 		.obj_type = "dpni",
2816 	},
2817 	{ .vendor = 0x0 }
2818 };
2819 MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table);
2820 
2821 static struct fsl_mc_driver dpaa2_eth_driver = {
2822 	.driver = {
2823 		.name = KBUILD_MODNAME,
2824 		.owner = THIS_MODULE,
2825 	},
2826 	.probe = dpaa2_eth_probe,
2827 	.remove = dpaa2_eth_remove,
2828 	.match_id_table = dpaa2_eth_match_id_table
2829 };
2830 
2831 module_fsl_mc_driver(dpaa2_eth_driver);
2832