1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* Copyright 2014-2016 Freescale Semiconductor Inc. 3 * Copyright 2016-2020 NXP 4 */ 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/platform_device.h> 8 #include <linux/etherdevice.h> 9 #include <linux/of_net.h> 10 #include <linux/interrupt.h> 11 #include <linux/msi.h> 12 #include <linux/kthread.h> 13 #include <linux/iommu.h> 14 #include <linux/net_tstamp.h> 15 #include <linux/fsl/mc.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_trace.h> 18 #include <net/sock.h> 19 20 #include "dpaa2-eth.h" 21 22 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files 23 * using trace events only need to #include <trace/events/sched.h> 24 */ 25 #define CREATE_TRACE_POINTS 26 #include "dpaa2-eth-trace.h" 27 28 MODULE_LICENSE("Dual BSD/GPL"); 29 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 30 MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver"); 31 32 static void *dpaa2_iova_to_virt(struct iommu_domain *domain, 33 dma_addr_t iova_addr) 34 { 35 phys_addr_t phys_addr; 36 37 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 38 39 return phys_to_virt(phys_addr); 40 } 41 42 static void validate_rx_csum(struct dpaa2_eth_priv *priv, 43 u32 fd_status, 44 struct sk_buff *skb) 45 { 46 skb_checksum_none_assert(skb); 47 48 /* HW checksum validation is disabled, nothing to do here */ 49 if (!(priv->net_dev->features & NETIF_F_RXCSUM)) 50 return; 51 52 /* Read checksum validation bits */ 53 if (!((fd_status & DPAA2_FAS_L3CV) && 54 (fd_status & DPAA2_FAS_L4CV))) 55 return; 56 57 /* Inform the stack there's no need to compute L3/L4 csum anymore */ 58 skb->ip_summed = CHECKSUM_UNNECESSARY; 59 } 60 61 /* Free a received FD. 62 * Not to be used for Tx conf FDs or on any other paths. 63 */ 64 static void free_rx_fd(struct dpaa2_eth_priv *priv, 65 const struct dpaa2_fd *fd, 66 void *vaddr) 67 { 68 struct device *dev = priv->net_dev->dev.parent; 69 dma_addr_t addr = dpaa2_fd_get_addr(fd); 70 u8 fd_format = dpaa2_fd_get_format(fd); 71 struct dpaa2_sg_entry *sgt; 72 void *sg_vaddr; 73 int i; 74 75 /* If single buffer frame, just free the data buffer */ 76 if (fd_format == dpaa2_fd_single) 77 goto free_buf; 78 else if (fd_format != dpaa2_fd_sg) 79 /* We don't support any other format */ 80 return; 81 82 /* For S/G frames, we first need to free all SG entries 83 * except the first one, which was taken care of already 84 */ 85 sgt = vaddr + dpaa2_fd_get_offset(fd); 86 for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 87 addr = dpaa2_sg_get_addr(&sgt[i]); 88 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 89 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 90 DMA_BIDIRECTIONAL); 91 92 free_pages((unsigned long)sg_vaddr, 0); 93 if (dpaa2_sg_is_final(&sgt[i])) 94 break; 95 } 96 97 free_buf: 98 free_pages((unsigned long)vaddr, 0); 99 } 100 101 /* Build a linear skb based on a single-buffer frame descriptor */ 102 static struct sk_buff *build_linear_skb(struct dpaa2_eth_channel *ch, 103 const struct dpaa2_fd *fd, 104 void *fd_vaddr) 105 { 106 struct sk_buff *skb = NULL; 107 u16 fd_offset = dpaa2_fd_get_offset(fd); 108 u32 fd_length = dpaa2_fd_get_len(fd); 109 110 ch->buf_count--; 111 112 skb = build_skb(fd_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 113 if (unlikely(!skb)) 114 return NULL; 115 116 skb_reserve(skb, fd_offset); 117 skb_put(skb, fd_length); 118 119 return skb; 120 } 121 122 /* Build a non linear (fragmented) skb based on a S/G table */ 123 static struct sk_buff *build_frag_skb(struct dpaa2_eth_priv *priv, 124 struct dpaa2_eth_channel *ch, 125 struct dpaa2_sg_entry *sgt) 126 { 127 struct sk_buff *skb = NULL; 128 struct device *dev = priv->net_dev->dev.parent; 129 void *sg_vaddr; 130 dma_addr_t sg_addr; 131 u16 sg_offset; 132 u32 sg_length; 133 struct page *page, *head_page; 134 int page_offset; 135 int i; 136 137 for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 138 struct dpaa2_sg_entry *sge = &sgt[i]; 139 140 /* NOTE: We only support SG entries in dpaa2_sg_single format, 141 * but this is the only format we may receive from HW anyway 142 */ 143 144 /* Get the address and length from the S/G entry */ 145 sg_addr = dpaa2_sg_get_addr(sge); 146 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr); 147 dma_unmap_page(dev, sg_addr, DPAA2_ETH_RX_BUF_SIZE, 148 DMA_BIDIRECTIONAL); 149 150 sg_length = dpaa2_sg_get_len(sge); 151 152 if (i == 0) { 153 /* We build the skb around the first data buffer */ 154 skb = build_skb(sg_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 155 if (unlikely(!skb)) { 156 /* Free the first SG entry now, since we already 157 * unmapped it and obtained the virtual address 158 */ 159 free_pages((unsigned long)sg_vaddr, 0); 160 161 /* We still need to subtract the buffers used 162 * by this FD from our software counter 163 */ 164 while (!dpaa2_sg_is_final(&sgt[i]) && 165 i < DPAA2_ETH_MAX_SG_ENTRIES) 166 i++; 167 break; 168 } 169 170 sg_offset = dpaa2_sg_get_offset(sge); 171 skb_reserve(skb, sg_offset); 172 skb_put(skb, sg_length); 173 } else { 174 /* Rest of the data buffers are stored as skb frags */ 175 page = virt_to_page(sg_vaddr); 176 head_page = virt_to_head_page(sg_vaddr); 177 178 /* Offset in page (which may be compound). 179 * Data in subsequent SG entries is stored from the 180 * beginning of the buffer, so we don't need to add the 181 * sg_offset. 182 */ 183 page_offset = ((unsigned long)sg_vaddr & 184 (PAGE_SIZE - 1)) + 185 (page_address(page) - page_address(head_page)); 186 187 skb_add_rx_frag(skb, i - 1, head_page, page_offset, 188 sg_length, DPAA2_ETH_RX_BUF_SIZE); 189 } 190 191 if (dpaa2_sg_is_final(sge)) 192 break; 193 } 194 195 WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT"); 196 197 /* Count all data buffers + SG table buffer */ 198 ch->buf_count -= i + 2; 199 200 return skb; 201 } 202 203 /* Free buffers acquired from the buffer pool or which were meant to 204 * be released in the pool 205 */ 206 static void free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, int count) 207 { 208 struct device *dev = priv->net_dev->dev.parent; 209 void *vaddr; 210 int i; 211 212 for (i = 0; i < count; i++) { 213 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]); 214 dma_unmap_page(dev, buf_array[i], DPAA2_ETH_RX_BUF_SIZE, 215 DMA_BIDIRECTIONAL); 216 free_pages((unsigned long)vaddr, 0); 217 } 218 } 219 220 static void xdp_release_buf(struct dpaa2_eth_priv *priv, 221 struct dpaa2_eth_channel *ch, 222 dma_addr_t addr) 223 { 224 int retries = 0; 225 int err; 226 227 ch->xdp.drop_bufs[ch->xdp.drop_cnt++] = addr; 228 if (ch->xdp.drop_cnt < DPAA2_ETH_BUFS_PER_CMD) 229 return; 230 231 while ((err = dpaa2_io_service_release(ch->dpio, priv->bpid, 232 ch->xdp.drop_bufs, 233 ch->xdp.drop_cnt)) == -EBUSY) { 234 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 235 break; 236 cpu_relax(); 237 } 238 239 if (err) { 240 free_bufs(priv, ch->xdp.drop_bufs, ch->xdp.drop_cnt); 241 ch->buf_count -= ch->xdp.drop_cnt; 242 } 243 244 ch->xdp.drop_cnt = 0; 245 } 246 247 static int xdp_enqueue(struct dpaa2_eth_priv *priv, struct dpaa2_fd *fd, 248 void *buf_start, u16 queue_id) 249 { 250 struct dpaa2_eth_fq *fq; 251 struct dpaa2_faead *faead; 252 u32 ctrl, frc; 253 int i, err; 254 255 /* Mark the egress frame hardware annotation area as valid */ 256 frc = dpaa2_fd_get_frc(fd); 257 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 258 dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL); 259 260 /* Instruct hardware to release the FD buffer directly into 261 * the buffer pool once transmission is completed, instead of 262 * sending a Tx confirmation frame to us 263 */ 264 ctrl = DPAA2_FAEAD_A4V | DPAA2_FAEAD_A2V | DPAA2_FAEAD_EBDDV; 265 faead = dpaa2_get_faead(buf_start, false); 266 faead->ctrl = cpu_to_le32(ctrl); 267 faead->conf_fqid = 0; 268 269 fq = &priv->fq[queue_id]; 270 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 271 err = priv->enqueue(priv, fq, fd, 0, 1, NULL); 272 if (err != -EBUSY) 273 break; 274 } 275 276 return err; 277 } 278 279 static u32 run_xdp(struct dpaa2_eth_priv *priv, 280 struct dpaa2_eth_channel *ch, 281 struct dpaa2_eth_fq *rx_fq, 282 struct dpaa2_fd *fd, void *vaddr) 283 { 284 dma_addr_t addr = dpaa2_fd_get_addr(fd); 285 struct rtnl_link_stats64 *percpu_stats; 286 struct bpf_prog *xdp_prog; 287 struct xdp_buff xdp; 288 u32 xdp_act = XDP_PASS; 289 int err; 290 291 percpu_stats = this_cpu_ptr(priv->percpu_stats); 292 293 rcu_read_lock(); 294 295 xdp_prog = READ_ONCE(ch->xdp.prog); 296 if (!xdp_prog) 297 goto out; 298 299 xdp.data = vaddr + dpaa2_fd_get_offset(fd); 300 xdp.data_end = xdp.data + dpaa2_fd_get_len(fd); 301 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; 302 xdp_set_data_meta_invalid(&xdp); 303 xdp.rxq = &ch->xdp_rxq; 304 305 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 306 307 /* xdp.data pointer may have changed */ 308 dpaa2_fd_set_offset(fd, xdp.data - vaddr); 309 dpaa2_fd_set_len(fd, xdp.data_end - xdp.data); 310 311 switch (xdp_act) { 312 case XDP_PASS: 313 break; 314 case XDP_TX: 315 err = xdp_enqueue(priv, fd, vaddr, rx_fq->flowid); 316 if (err) { 317 xdp_release_buf(priv, ch, addr); 318 percpu_stats->tx_errors++; 319 ch->stats.xdp_tx_err++; 320 } else { 321 percpu_stats->tx_packets++; 322 percpu_stats->tx_bytes += dpaa2_fd_get_len(fd); 323 ch->stats.xdp_tx++; 324 } 325 break; 326 default: 327 bpf_warn_invalid_xdp_action(xdp_act); 328 /* fall through */ 329 case XDP_ABORTED: 330 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 331 /* fall through */ 332 case XDP_DROP: 333 xdp_release_buf(priv, ch, addr); 334 ch->stats.xdp_drop++; 335 break; 336 case XDP_REDIRECT: 337 dma_unmap_page(priv->net_dev->dev.parent, addr, 338 DPAA2_ETH_RX_BUF_SIZE, DMA_BIDIRECTIONAL); 339 ch->buf_count--; 340 xdp.data_hard_start = vaddr; 341 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 342 if (unlikely(err)) 343 ch->stats.xdp_drop++; 344 else 345 ch->stats.xdp_redirect++; 346 break; 347 } 348 349 ch->xdp.res |= xdp_act; 350 out: 351 rcu_read_unlock(); 352 return xdp_act; 353 } 354 355 /* Main Rx frame processing routine */ 356 static void dpaa2_eth_rx(struct dpaa2_eth_priv *priv, 357 struct dpaa2_eth_channel *ch, 358 const struct dpaa2_fd *fd, 359 struct dpaa2_eth_fq *fq) 360 { 361 dma_addr_t addr = dpaa2_fd_get_addr(fd); 362 u8 fd_format = dpaa2_fd_get_format(fd); 363 void *vaddr; 364 struct sk_buff *skb; 365 struct rtnl_link_stats64 *percpu_stats; 366 struct dpaa2_eth_drv_stats *percpu_extras; 367 struct device *dev = priv->net_dev->dev.parent; 368 struct dpaa2_fas *fas; 369 void *buf_data; 370 u32 status = 0; 371 u32 xdp_act; 372 373 /* Tracing point */ 374 trace_dpaa2_rx_fd(priv->net_dev, fd); 375 376 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 377 dma_sync_single_for_cpu(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 378 DMA_BIDIRECTIONAL); 379 380 fas = dpaa2_get_fas(vaddr, false); 381 prefetch(fas); 382 buf_data = vaddr + dpaa2_fd_get_offset(fd); 383 prefetch(buf_data); 384 385 percpu_stats = this_cpu_ptr(priv->percpu_stats); 386 percpu_extras = this_cpu_ptr(priv->percpu_extras); 387 388 if (fd_format == dpaa2_fd_single) { 389 xdp_act = run_xdp(priv, ch, fq, (struct dpaa2_fd *)fd, vaddr); 390 if (xdp_act != XDP_PASS) { 391 percpu_stats->rx_packets++; 392 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 393 return; 394 } 395 396 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 397 DMA_BIDIRECTIONAL); 398 skb = build_linear_skb(ch, fd, vaddr); 399 } else if (fd_format == dpaa2_fd_sg) { 400 WARN_ON(priv->xdp_prog); 401 402 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 403 DMA_BIDIRECTIONAL); 404 skb = build_frag_skb(priv, ch, buf_data); 405 free_pages((unsigned long)vaddr, 0); 406 percpu_extras->rx_sg_frames++; 407 percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd); 408 } else { 409 /* We don't support any other format */ 410 goto err_frame_format; 411 } 412 413 if (unlikely(!skb)) 414 goto err_build_skb; 415 416 prefetch(skb->data); 417 418 /* Get the timestamp value */ 419 if (priv->rx_tstamp) { 420 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 421 __le64 *ts = dpaa2_get_ts(vaddr, false); 422 u64 ns; 423 424 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 425 426 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 427 shhwtstamps->hwtstamp = ns_to_ktime(ns); 428 } 429 430 /* Check if we need to validate the L4 csum */ 431 if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) { 432 status = le32_to_cpu(fas->status); 433 validate_rx_csum(priv, status, skb); 434 } 435 436 skb->protocol = eth_type_trans(skb, priv->net_dev); 437 skb_record_rx_queue(skb, fq->flowid); 438 439 percpu_stats->rx_packets++; 440 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 441 442 list_add_tail(&skb->list, ch->rx_list); 443 444 return; 445 446 err_build_skb: 447 free_rx_fd(priv, fd, vaddr); 448 err_frame_format: 449 percpu_stats->rx_dropped++; 450 } 451 452 /* Consume all frames pull-dequeued into the store. This is the simplest way to 453 * make sure we don't accidentally issue another volatile dequeue which would 454 * overwrite (leak) frames already in the store. 455 * 456 * Observance of NAPI budget is not our concern, leaving that to the caller. 457 */ 458 static int consume_frames(struct dpaa2_eth_channel *ch, 459 struct dpaa2_eth_fq **src) 460 { 461 struct dpaa2_eth_priv *priv = ch->priv; 462 struct dpaa2_eth_fq *fq = NULL; 463 struct dpaa2_dq *dq; 464 const struct dpaa2_fd *fd; 465 int cleaned = 0, retries = 0; 466 int is_last; 467 468 do { 469 dq = dpaa2_io_store_next(ch->store, &is_last); 470 if (unlikely(!dq)) { 471 /* If we're here, we *must* have placed a 472 * volatile dequeue comnmand, so keep reading through 473 * the store until we get some sort of valid response 474 * token (either a valid frame or an "empty dequeue") 475 */ 476 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) { 477 netdev_err_once(priv->net_dev, 478 "Unable to read a valid dequeue response\n"); 479 return -ETIMEDOUT; 480 } 481 continue; 482 } 483 484 fd = dpaa2_dq_fd(dq); 485 fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq); 486 487 fq->consume(priv, ch, fd, fq); 488 cleaned++; 489 retries = 0; 490 } while (!is_last); 491 492 if (!cleaned) 493 return 0; 494 495 fq->stats.frames += cleaned; 496 497 /* A dequeue operation only pulls frames from a single queue 498 * into the store. Return the frame queue as an out param. 499 */ 500 if (src) 501 *src = fq; 502 503 return cleaned; 504 } 505 506 /* Configure the egress frame annotation for timestamp update */ 507 static void enable_tx_tstamp(struct dpaa2_fd *fd, void *buf_start) 508 { 509 struct dpaa2_faead *faead; 510 u32 ctrl, frc; 511 512 /* Mark the egress frame annotation area as valid */ 513 frc = dpaa2_fd_get_frc(fd); 514 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 515 516 /* Set hardware annotation size */ 517 ctrl = dpaa2_fd_get_ctrl(fd); 518 dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL); 519 520 /* enable UPD (update prepanded data) bit in FAEAD field of 521 * hardware frame annotation area 522 */ 523 ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD; 524 faead = dpaa2_get_faead(buf_start, true); 525 faead->ctrl = cpu_to_le32(ctrl); 526 } 527 528 /* Create a frame descriptor based on a fragmented skb */ 529 static int build_sg_fd(struct dpaa2_eth_priv *priv, 530 struct sk_buff *skb, 531 struct dpaa2_fd *fd) 532 { 533 struct device *dev = priv->net_dev->dev.parent; 534 void *sgt_buf = NULL; 535 dma_addr_t addr; 536 int nr_frags = skb_shinfo(skb)->nr_frags; 537 struct dpaa2_sg_entry *sgt; 538 int i, err; 539 int sgt_buf_size; 540 struct scatterlist *scl, *crt_scl; 541 int num_sg; 542 int num_dma_bufs; 543 struct dpaa2_eth_swa *swa; 544 545 /* Create and map scatterlist. 546 * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have 547 * to go beyond nr_frags+1. 548 * Note: We don't support chained scatterlists 549 */ 550 if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1)) 551 return -EINVAL; 552 553 scl = kcalloc(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC); 554 if (unlikely(!scl)) 555 return -ENOMEM; 556 557 sg_init_table(scl, nr_frags + 1); 558 num_sg = skb_to_sgvec(skb, scl, 0, skb->len); 559 num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 560 if (unlikely(!num_dma_bufs)) { 561 err = -ENOMEM; 562 goto dma_map_sg_failed; 563 } 564 565 /* Prepare the HW SGT structure */ 566 sgt_buf_size = priv->tx_data_offset + 567 sizeof(struct dpaa2_sg_entry) * num_dma_bufs; 568 sgt_buf = napi_alloc_frag(sgt_buf_size + DPAA2_ETH_TX_BUF_ALIGN); 569 if (unlikely(!sgt_buf)) { 570 err = -ENOMEM; 571 goto sgt_buf_alloc_failed; 572 } 573 sgt_buf = PTR_ALIGN(sgt_buf, DPAA2_ETH_TX_BUF_ALIGN); 574 memset(sgt_buf, 0, sgt_buf_size); 575 576 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 577 578 /* Fill in the HW SGT structure. 579 * 580 * sgt_buf is zeroed out, so the following fields are implicit 581 * in all sgt entries: 582 * - offset is 0 583 * - format is 'dpaa2_sg_single' 584 */ 585 for_each_sg(scl, crt_scl, num_dma_bufs, i) { 586 dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl)); 587 dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl)); 588 } 589 dpaa2_sg_set_final(&sgt[i - 1], true); 590 591 /* Store the skb backpointer in the SGT buffer. 592 * Fit the scatterlist and the number of buffers alongside the 593 * skb backpointer in the software annotation area. We'll need 594 * all of them on Tx Conf. 595 */ 596 swa = (struct dpaa2_eth_swa *)sgt_buf; 597 swa->type = DPAA2_ETH_SWA_SG; 598 swa->sg.skb = skb; 599 swa->sg.scl = scl; 600 swa->sg.num_sg = num_sg; 601 swa->sg.sgt_size = sgt_buf_size; 602 603 /* Separately map the SGT buffer */ 604 addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 605 if (unlikely(dma_mapping_error(dev, addr))) { 606 err = -ENOMEM; 607 goto dma_map_single_failed; 608 } 609 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 610 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 611 dpaa2_fd_set_addr(fd, addr); 612 dpaa2_fd_set_len(fd, skb->len); 613 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 614 615 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 616 enable_tx_tstamp(fd, sgt_buf); 617 618 return 0; 619 620 dma_map_single_failed: 621 skb_free_frag(sgt_buf); 622 sgt_buf_alloc_failed: 623 dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 624 dma_map_sg_failed: 625 kfree(scl); 626 return err; 627 } 628 629 /* Create a frame descriptor based on a linear skb */ 630 static int build_single_fd(struct dpaa2_eth_priv *priv, 631 struct sk_buff *skb, 632 struct dpaa2_fd *fd) 633 { 634 struct device *dev = priv->net_dev->dev.parent; 635 u8 *buffer_start, *aligned_start; 636 struct dpaa2_eth_swa *swa; 637 dma_addr_t addr; 638 639 buffer_start = skb->data - dpaa2_eth_needed_headroom(priv, skb); 640 641 /* If there's enough room to align the FD address, do it. 642 * It will help hardware optimize accesses. 643 */ 644 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 645 DPAA2_ETH_TX_BUF_ALIGN); 646 if (aligned_start >= skb->head) 647 buffer_start = aligned_start; 648 649 /* Store a backpointer to the skb at the beginning of the buffer 650 * (in the private data area) such that we can release it 651 * on Tx confirm 652 */ 653 swa = (struct dpaa2_eth_swa *)buffer_start; 654 swa->type = DPAA2_ETH_SWA_SINGLE; 655 swa->single.skb = skb; 656 657 addr = dma_map_single(dev, buffer_start, 658 skb_tail_pointer(skb) - buffer_start, 659 DMA_BIDIRECTIONAL); 660 if (unlikely(dma_mapping_error(dev, addr))) 661 return -ENOMEM; 662 663 dpaa2_fd_set_addr(fd, addr); 664 dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start)); 665 dpaa2_fd_set_len(fd, skb->len); 666 dpaa2_fd_set_format(fd, dpaa2_fd_single); 667 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 668 669 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 670 enable_tx_tstamp(fd, buffer_start); 671 672 return 0; 673 } 674 675 /* FD freeing routine on the Tx path 676 * 677 * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb 678 * back-pointed to is also freed. 679 * This can be called either from dpaa2_eth_tx_conf() or on the error path of 680 * dpaa2_eth_tx(). 681 */ 682 static void free_tx_fd(const struct dpaa2_eth_priv *priv, 683 struct dpaa2_eth_fq *fq, 684 const struct dpaa2_fd *fd, bool in_napi) 685 { 686 struct device *dev = priv->net_dev->dev.parent; 687 dma_addr_t fd_addr; 688 struct sk_buff *skb = NULL; 689 unsigned char *buffer_start; 690 struct dpaa2_eth_swa *swa; 691 u8 fd_format = dpaa2_fd_get_format(fd); 692 u32 fd_len = dpaa2_fd_get_len(fd); 693 694 fd_addr = dpaa2_fd_get_addr(fd); 695 buffer_start = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr); 696 swa = (struct dpaa2_eth_swa *)buffer_start; 697 698 if (fd_format == dpaa2_fd_single) { 699 if (swa->type == DPAA2_ETH_SWA_SINGLE) { 700 skb = swa->single.skb; 701 /* Accessing the skb buffer is safe before dma unmap, 702 * because we didn't map the actual skb shell. 703 */ 704 dma_unmap_single(dev, fd_addr, 705 skb_tail_pointer(skb) - buffer_start, 706 DMA_BIDIRECTIONAL); 707 } else { 708 WARN_ONCE(swa->type != DPAA2_ETH_SWA_XDP, "Wrong SWA type"); 709 dma_unmap_single(dev, fd_addr, swa->xdp.dma_size, 710 DMA_BIDIRECTIONAL); 711 } 712 } else if (fd_format == dpaa2_fd_sg) { 713 skb = swa->sg.skb; 714 715 /* Unmap the scatterlist */ 716 dma_unmap_sg(dev, swa->sg.scl, swa->sg.num_sg, 717 DMA_BIDIRECTIONAL); 718 kfree(swa->sg.scl); 719 720 /* Unmap the SGT buffer */ 721 dma_unmap_single(dev, fd_addr, swa->sg.sgt_size, 722 DMA_BIDIRECTIONAL); 723 } else { 724 netdev_dbg(priv->net_dev, "Invalid FD format\n"); 725 return; 726 } 727 728 if (swa->type != DPAA2_ETH_SWA_XDP && in_napi) { 729 fq->dq_frames++; 730 fq->dq_bytes += fd_len; 731 } 732 733 if (swa->type == DPAA2_ETH_SWA_XDP) { 734 xdp_return_frame(swa->xdp.xdpf); 735 return; 736 } 737 738 /* Get the timestamp value */ 739 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 740 struct skb_shared_hwtstamps shhwtstamps; 741 __le64 *ts = dpaa2_get_ts(buffer_start, true); 742 u64 ns; 743 744 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 745 746 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 747 shhwtstamps.hwtstamp = ns_to_ktime(ns); 748 skb_tstamp_tx(skb, &shhwtstamps); 749 } 750 751 /* Free SGT buffer allocated on tx */ 752 if (fd_format != dpaa2_fd_single) 753 skb_free_frag(buffer_start); 754 755 /* Move on with skb release */ 756 napi_consume_skb(skb, in_napi); 757 } 758 759 static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) 760 { 761 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 762 struct dpaa2_fd fd; 763 struct rtnl_link_stats64 *percpu_stats; 764 struct dpaa2_eth_drv_stats *percpu_extras; 765 struct dpaa2_eth_fq *fq; 766 struct netdev_queue *nq; 767 u16 queue_mapping; 768 unsigned int needed_headroom; 769 u32 fd_len; 770 u8 prio = 0; 771 int err, i; 772 773 percpu_stats = this_cpu_ptr(priv->percpu_stats); 774 percpu_extras = this_cpu_ptr(priv->percpu_extras); 775 776 needed_headroom = dpaa2_eth_needed_headroom(priv, skb); 777 if (skb_headroom(skb) < needed_headroom) { 778 struct sk_buff *ns; 779 780 ns = skb_realloc_headroom(skb, needed_headroom); 781 if (unlikely(!ns)) { 782 percpu_stats->tx_dropped++; 783 goto err_alloc_headroom; 784 } 785 percpu_extras->tx_reallocs++; 786 787 if (skb->sk) 788 skb_set_owner_w(ns, skb->sk); 789 790 dev_kfree_skb(skb); 791 skb = ns; 792 } 793 794 /* We'll be holding a back-reference to the skb until Tx Confirmation; 795 * we don't want that overwritten by a concurrent Tx with a cloned skb. 796 */ 797 skb = skb_unshare(skb, GFP_ATOMIC); 798 if (unlikely(!skb)) { 799 /* skb_unshare() has already freed the skb */ 800 percpu_stats->tx_dropped++; 801 return NETDEV_TX_OK; 802 } 803 804 /* Setup the FD fields */ 805 memset(&fd, 0, sizeof(fd)); 806 807 if (skb_is_nonlinear(skb)) { 808 err = build_sg_fd(priv, skb, &fd); 809 percpu_extras->tx_sg_frames++; 810 percpu_extras->tx_sg_bytes += skb->len; 811 } else { 812 err = build_single_fd(priv, skb, &fd); 813 } 814 815 if (unlikely(err)) { 816 percpu_stats->tx_dropped++; 817 goto err_build_fd; 818 } 819 820 /* Tracing point */ 821 trace_dpaa2_tx_fd(net_dev, &fd); 822 823 /* TxConf FQ selection relies on queue id from the stack. 824 * In case of a forwarded frame from another DPNI interface, we choose 825 * a queue affined to the same core that processed the Rx frame 826 */ 827 queue_mapping = skb_get_queue_mapping(skb); 828 829 if (net_dev->num_tc) { 830 prio = netdev_txq_to_tc(net_dev, queue_mapping); 831 /* Hardware interprets priority level 0 as being the highest, 832 * so we need to do a reverse mapping to the netdev tc index 833 */ 834 prio = net_dev->num_tc - prio - 1; 835 /* We have only one FQ array entry for all Tx hardware queues 836 * with the same flow id (but different priority levels) 837 */ 838 queue_mapping %= dpaa2_eth_queue_count(priv); 839 } 840 fq = &priv->fq[queue_mapping]; 841 842 fd_len = dpaa2_fd_get_len(&fd); 843 nq = netdev_get_tx_queue(net_dev, queue_mapping); 844 netdev_tx_sent_queue(nq, fd_len); 845 846 /* Everything that happens after this enqueues might race with 847 * the Tx confirmation callback for this frame 848 */ 849 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 850 err = priv->enqueue(priv, fq, &fd, prio, 1, NULL); 851 if (err != -EBUSY) 852 break; 853 } 854 percpu_extras->tx_portal_busy += i; 855 if (unlikely(err < 0)) { 856 percpu_stats->tx_errors++; 857 /* Clean up everything, including freeing the skb */ 858 free_tx_fd(priv, fq, &fd, false); 859 netdev_tx_completed_queue(nq, 1, fd_len); 860 } else { 861 percpu_stats->tx_packets++; 862 percpu_stats->tx_bytes += fd_len; 863 } 864 865 return NETDEV_TX_OK; 866 867 err_build_fd: 868 err_alloc_headroom: 869 dev_kfree_skb(skb); 870 871 return NETDEV_TX_OK; 872 } 873 874 /* Tx confirmation frame processing routine */ 875 static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv, 876 struct dpaa2_eth_channel *ch __always_unused, 877 const struct dpaa2_fd *fd, 878 struct dpaa2_eth_fq *fq) 879 { 880 struct rtnl_link_stats64 *percpu_stats; 881 struct dpaa2_eth_drv_stats *percpu_extras; 882 u32 fd_len = dpaa2_fd_get_len(fd); 883 u32 fd_errors; 884 885 /* Tracing point */ 886 trace_dpaa2_tx_conf_fd(priv->net_dev, fd); 887 888 percpu_extras = this_cpu_ptr(priv->percpu_extras); 889 percpu_extras->tx_conf_frames++; 890 percpu_extras->tx_conf_bytes += fd_len; 891 892 /* Check frame errors in the FD field */ 893 fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK; 894 free_tx_fd(priv, fq, fd, true); 895 896 if (likely(!fd_errors)) 897 return; 898 899 if (net_ratelimit()) 900 netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n", 901 fd_errors); 902 903 percpu_stats = this_cpu_ptr(priv->percpu_stats); 904 /* Tx-conf logically pertains to the egress path. */ 905 percpu_stats->tx_errors++; 906 } 907 908 static int set_rx_csum(struct dpaa2_eth_priv *priv, bool enable) 909 { 910 int err; 911 912 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 913 DPNI_OFF_RX_L3_CSUM, enable); 914 if (err) { 915 netdev_err(priv->net_dev, 916 "dpni_set_offload(RX_L3_CSUM) failed\n"); 917 return err; 918 } 919 920 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 921 DPNI_OFF_RX_L4_CSUM, enable); 922 if (err) { 923 netdev_err(priv->net_dev, 924 "dpni_set_offload(RX_L4_CSUM) failed\n"); 925 return err; 926 } 927 928 return 0; 929 } 930 931 static int set_tx_csum(struct dpaa2_eth_priv *priv, bool enable) 932 { 933 int err; 934 935 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 936 DPNI_OFF_TX_L3_CSUM, enable); 937 if (err) { 938 netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n"); 939 return err; 940 } 941 942 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 943 DPNI_OFF_TX_L4_CSUM, enable); 944 if (err) { 945 netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n"); 946 return err; 947 } 948 949 return 0; 950 } 951 952 /* Perform a single release command to add buffers 953 * to the specified buffer pool 954 */ 955 static int add_bufs(struct dpaa2_eth_priv *priv, 956 struct dpaa2_eth_channel *ch, u16 bpid) 957 { 958 struct device *dev = priv->net_dev->dev.parent; 959 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 960 struct page *page; 961 dma_addr_t addr; 962 int retries = 0; 963 int i, err; 964 965 for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) { 966 /* Allocate buffer visible to WRIOP + skb shared info + 967 * alignment padding 968 */ 969 /* allocate one page for each Rx buffer. WRIOP sees 970 * the entire page except for a tailroom reserved for 971 * skb shared info 972 */ 973 page = dev_alloc_pages(0); 974 if (!page) 975 goto err_alloc; 976 977 addr = dma_map_page(dev, page, 0, DPAA2_ETH_RX_BUF_SIZE, 978 DMA_BIDIRECTIONAL); 979 if (unlikely(dma_mapping_error(dev, addr))) 980 goto err_map; 981 982 buf_array[i] = addr; 983 984 /* tracing point */ 985 trace_dpaa2_eth_buf_seed(priv->net_dev, 986 page, DPAA2_ETH_RX_BUF_RAW_SIZE, 987 addr, DPAA2_ETH_RX_BUF_SIZE, 988 bpid); 989 } 990 991 release_bufs: 992 /* In case the portal is busy, retry until successful */ 993 while ((err = dpaa2_io_service_release(ch->dpio, bpid, 994 buf_array, i)) == -EBUSY) { 995 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 996 break; 997 cpu_relax(); 998 } 999 1000 /* If release command failed, clean up and bail out; 1001 * not much else we can do about it 1002 */ 1003 if (err) { 1004 free_bufs(priv, buf_array, i); 1005 return 0; 1006 } 1007 1008 return i; 1009 1010 err_map: 1011 __free_pages(page, 0); 1012 err_alloc: 1013 /* If we managed to allocate at least some buffers, 1014 * release them to hardware 1015 */ 1016 if (i) 1017 goto release_bufs; 1018 1019 return 0; 1020 } 1021 1022 static int seed_pool(struct dpaa2_eth_priv *priv, u16 bpid) 1023 { 1024 int i, j; 1025 int new_count; 1026 1027 for (j = 0; j < priv->num_channels; j++) { 1028 for (i = 0; i < DPAA2_ETH_NUM_BUFS; 1029 i += DPAA2_ETH_BUFS_PER_CMD) { 1030 new_count = add_bufs(priv, priv->channel[j], bpid); 1031 priv->channel[j]->buf_count += new_count; 1032 1033 if (new_count < DPAA2_ETH_BUFS_PER_CMD) { 1034 return -ENOMEM; 1035 } 1036 } 1037 } 1038 1039 return 0; 1040 } 1041 1042 /** 1043 * Drain the specified number of buffers from the DPNI's private buffer pool. 1044 * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD 1045 */ 1046 static void drain_bufs(struct dpaa2_eth_priv *priv, int count) 1047 { 1048 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1049 int retries = 0; 1050 int ret; 1051 1052 do { 1053 ret = dpaa2_io_service_acquire(NULL, priv->bpid, 1054 buf_array, count); 1055 if (ret < 0) { 1056 if (ret == -EBUSY && 1057 retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 1058 continue; 1059 netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n"); 1060 return; 1061 } 1062 free_bufs(priv, buf_array, ret); 1063 retries = 0; 1064 } while (ret); 1065 } 1066 1067 static void drain_pool(struct dpaa2_eth_priv *priv) 1068 { 1069 int i; 1070 1071 drain_bufs(priv, DPAA2_ETH_BUFS_PER_CMD); 1072 drain_bufs(priv, 1); 1073 1074 for (i = 0; i < priv->num_channels; i++) 1075 priv->channel[i]->buf_count = 0; 1076 } 1077 1078 /* Function is called from softirq context only, so we don't need to guard 1079 * the access to percpu count 1080 */ 1081 static int refill_pool(struct dpaa2_eth_priv *priv, 1082 struct dpaa2_eth_channel *ch, 1083 u16 bpid) 1084 { 1085 int new_count; 1086 1087 if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH)) 1088 return 0; 1089 1090 do { 1091 new_count = add_bufs(priv, ch, bpid); 1092 if (unlikely(!new_count)) { 1093 /* Out of memory; abort for now, we'll try later on */ 1094 break; 1095 } 1096 ch->buf_count += new_count; 1097 } while (ch->buf_count < DPAA2_ETH_NUM_BUFS); 1098 1099 if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS)) 1100 return -ENOMEM; 1101 1102 return 0; 1103 } 1104 1105 static int pull_channel(struct dpaa2_eth_channel *ch) 1106 { 1107 int err; 1108 int dequeues = -1; 1109 1110 /* Retry while portal is busy */ 1111 do { 1112 err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id, 1113 ch->store); 1114 dequeues++; 1115 cpu_relax(); 1116 } while (err == -EBUSY && dequeues < DPAA2_ETH_SWP_BUSY_RETRIES); 1117 1118 ch->stats.dequeue_portal_busy += dequeues; 1119 if (unlikely(err)) 1120 ch->stats.pull_err++; 1121 1122 return err; 1123 } 1124 1125 /* NAPI poll routine 1126 * 1127 * Frames are dequeued from the QMan channel associated with this NAPI context. 1128 * Rx, Tx confirmation and (if configured) Rx error frames all count 1129 * towards the NAPI budget. 1130 */ 1131 static int dpaa2_eth_poll(struct napi_struct *napi, int budget) 1132 { 1133 struct dpaa2_eth_channel *ch; 1134 struct dpaa2_eth_priv *priv; 1135 int rx_cleaned = 0, txconf_cleaned = 0; 1136 struct dpaa2_eth_fq *fq, *txc_fq = NULL; 1137 struct netdev_queue *nq; 1138 int store_cleaned, work_done; 1139 struct list_head rx_list; 1140 int retries = 0; 1141 int err; 1142 1143 ch = container_of(napi, struct dpaa2_eth_channel, napi); 1144 ch->xdp.res = 0; 1145 priv = ch->priv; 1146 1147 INIT_LIST_HEAD(&rx_list); 1148 ch->rx_list = &rx_list; 1149 1150 do { 1151 err = pull_channel(ch); 1152 if (unlikely(err)) 1153 break; 1154 1155 /* Refill pool if appropriate */ 1156 refill_pool(priv, ch, priv->bpid); 1157 1158 store_cleaned = consume_frames(ch, &fq); 1159 if (store_cleaned <= 0) 1160 break; 1161 if (fq->type == DPAA2_RX_FQ) { 1162 rx_cleaned += store_cleaned; 1163 } else { 1164 txconf_cleaned += store_cleaned; 1165 /* We have a single Tx conf FQ on this channel */ 1166 txc_fq = fq; 1167 } 1168 1169 /* If we either consumed the whole NAPI budget with Rx frames 1170 * or we reached the Tx confirmations threshold, we're done. 1171 */ 1172 if (rx_cleaned >= budget || 1173 txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI) { 1174 work_done = budget; 1175 goto out; 1176 } 1177 } while (store_cleaned); 1178 1179 /* We didn't consume the entire budget, so finish napi and 1180 * re-enable data availability notifications 1181 */ 1182 napi_complete_done(napi, rx_cleaned); 1183 do { 1184 err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx); 1185 cpu_relax(); 1186 } while (err == -EBUSY && retries++ < DPAA2_ETH_SWP_BUSY_RETRIES); 1187 WARN_ONCE(err, "CDAN notifications rearm failed on core %d", 1188 ch->nctx.desired_cpu); 1189 1190 work_done = max(rx_cleaned, 1); 1191 1192 out: 1193 netif_receive_skb_list(ch->rx_list); 1194 1195 if (txc_fq && txc_fq->dq_frames) { 1196 nq = netdev_get_tx_queue(priv->net_dev, txc_fq->flowid); 1197 netdev_tx_completed_queue(nq, txc_fq->dq_frames, 1198 txc_fq->dq_bytes); 1199 txc_fq->dq_frames = 0; 1200 txc_fq->dq_bytes = 0; 1201 } 1202 1203 if (ch->xdp.res & XDP_REDIRECT) 1204 xdp_do_flush_map(); 1205 1206 return work_done; 1207 } 1208 1209 static void enable_ch_napi(struct dpaa2_eth_priv *priv) 1210 { 1211 struct dpaa2_eth_channel *ch; 1212 int i; 1213 1214 for (i = 0; i < priv->num_channels; i++) { 1215 ch = priv->channel[i]; 1216 napi_enable(&ch->napi); 1217 } 1218 } 1219 1220 static void disable_ch_napi(struct dpaa2_eth_priv *priv) 1221 { 1222 struct dpaa2_eth_channel *ch; 1223 int i; 1224 1225 for (i = 0; i < priv->num_channels; i++) { 1226 ch = priv->channel[i]; 1227 napi_disable(&ch->napi); 1228 } 1229 } 1230 1231 static void dpaa2_eth_set_rx_taildrop(struct dpaa2_eth_priv *priv, bool enable) 1232 { 1233 struct dpni_taildrop td = {0}; 1234 int i, err; 1235 1236 if (priv->rx_td_enabled == enable) 1237 return; 1238 1239 td.enable = enable; 1240 td.threshold = DPAA2_ETH_TAILDROP_THRESH; 1241 1242 for (i = 0; i < priv->num_fqs; i++) { 1243 if (priv->fq[i].type != DPAA2_RX_FQ) 1244 continue; 1245 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, 1246 DPNI_CP_QUEUE, DPNI_QUEUE_RX, 0, 1247 priv->fq[i].flowid, &td); 1248 if (err) { 1249 netdev_err(priv->net_dev, 1250 "dpni_set_taildrop() failed\n"); 1251 break; 1252 } 1253 } 1254 1255 priv->rx_td_enabled = enable; 1256 } 1257 1258 static int link_state_update(struct dpaa2_eth_priv *priv) 1259 { 1260 struct dpni_link_state state = {0}; 1261 bool tx_pause; 1262 int err; 1263 1264 err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state); 1265 if (unlikely(err)) { 1266 netdev_err(priv->net_dev, 1267 "dpni_get_link_state() failed\n"); 1268 return err; 1269 } 1270 1271 /* If Tx pause frame settings have changed, we need to update 1272 * Rx FQ taildrop configuration as well. We configure taildrop 1273 * only when pause frame generation is disabled. 1274 */ 1275 tx_pause = !!(state.options & DPNI_LINK_OPT_PAUSE) ^ 1276 !!(state.options & DPNI_LINK_OPT_ASYM_PAUSE); 1277 dpaa2_eth_set_rx_taildrop(priv, !tx_pause); 1278 1279 /* When we manage the MAC/PHY using phylink there is no need 1280 * to manually update the netif_carrier. 1281 */ 1282 if (priv->mac) 1283 goto out; 1284 1285 /* Chech link state; speed / duplex changes are not treated yet */ 1286 if (priv->link_state.up == state.up) 1287 goto out; 1288 1289 if (state.up) { 1290 netif_carrier_on(priv->net_dev); 1291 netif_tx_start_all_queues(priv->net_dev); 1292 } else { 1293 netif_tx_stop_all_queues(priv->net_dev); 1294 netif_carrier_off(priv->net_dev); 1295 } 1296 1297 netdev_info(priv->net_dev, "Link Event: state %s\n", 1298 state.up ? "up" : "down"); 1299 1300 out: 1301 priv->link_state = state; 1302 1303 return 0; 1304 } 1305 1306 static int dpaa2_eth_open(struct net_device *net_dev) 1307 { 1308 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1309 int err; 1310 1311 err = seed_pool(priv, priv->bpid); 1312 if (err) { 1313 /* Not much to do; the buffer pool, though not filled up, 1314 * may still contain some buffers which would enable us 1315 * to limp on. 1316 */ 1317 netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n", 1318 priv->dpbp_dev->obj_desc.id, priv->bpid); 1319 } 1320 1321 if (!priv->mac) { 1322 /* We'll only start the txqs when the link is actually ready; 1323 * make sure we don't race against the link up notification, 1324 * which may come immediately after dpni_enable(); 1325 */ 1326 netif_tx_stop_all_queues(net_dev); 1327 1328 /* Also, explicitly set carrier off, otherwise 1329 * netif_carrier_ok() will return true and cause 'ip link show' 1330 * to report the LOWER_UP flag, even though the link 1331 * notification wasn't even received. 1332 */ 1333 netif_carrier_off(net_dev); 1334 } 1335 enable_ch_napi(priv); 1336 1337 err = dpni_enable(priv->mc_io, 0, priv->mc_token); 1338 if (err < 0) { 1339 netdev_err(net_dev, "dpni_enable() failed\n"); 1340 goto enable_err; 1341 } 1342 1343 if (!priv->mac) { 1344 /* If the DPMAC object has already processed the link up 1345 * interrupt, we have to learn the link state ourselves. 1346 */ 1347 err = link_state_update(priv); 1348 if (err < 0) { 1349 netdev_err(net_dev, "Can't update link state\n"); 1350 goto link_state_err; 1351 } 1352 } else { 1353 phylink_start(priv->mac->phylink); 1354 } 1355 1356 return 0; 1357 1358 link_state_err: 1359 enable_err: 1360 disable_ch_napi(priv); 1361 drain_pool(priv); 1362 return err; 1363 } 1364 1365 /* Total number of in-flight frames on ingress queues */ 1366 static u32 ingress_fq_count(struct dpaa2_eth_priv *priv) 1367 { 1368 struct dpaa2_eth_fq *fq; 1369 u32 fcnt = 0, bcnt = 0, total = 0; 1370 int i, err; 1371 1372 for (i = 0; i < priv->num_fqs; i++) { 1373 fq = &priv->fq[i]; 1374 err = dpaa2_io_query_fq_count(NULL, fq->fqid, &fcnt, &bcnt); 1375 if (err) { 1376 netdev_warn(priv->net_dev, "query_fq_count failed"); 1377 break; 1378 } 1379 total += fcnt; 1380 } 1381 1382 return total; 1383 } 1384 1385 static void wait_for_ingress_fq_empty(struct dpaa2_eth_priv *priv) 1386 { 1387 int retries = 10; 1388 u32 pending; 1389 1390 do { 1391 pending = ingress_fq_count(priv); 1392 if (pending) 1393 msleep(100); 1394 } while (pending && --retries); 1395 } 1396 1397 #define DPNI_TX_PENDING_VER_MAJOR 7 1398 #define DPNI_TX_PENDING_VER_MINOR 13 1399 static void wait_for_egress_fq_empty(struct dpaa2_eth_priv *priv) 1400 { 1401 union dpni_statistics stats; 1402 int retries = 10; 1403 int err; 1404 1405 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_TX_PENDING_VER_MAJOR, 1406 DPNI_TX_PENDING_VER_MINOR) < 0) 1407 goto out; 1408 1409 do { 1410 err = dpni_get_statistics(priv->mc_io, 0, priv->mc_token, 6, 1411 &stats); 1412 if (err) 1413 goto out; 1414 if (stats.page_6.tx_pending_frames == 0) 1415 return; 1416 } while (--retries); 1417 1418 out: 1419 msleep(500); 1420 } 1421 1422 static int dpaa2_eth_stop(struct net_device *net_dev) 1423 { 1424 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1425 int dpni_enabled = 0; 1426 int retries = 10; 1427 1428 if (!priv->mac) { 1429 netif_tx_stop_all_queues(net_dev); 1430 netif_carrier_off(net_dev); 1431 } else { 1432 phylink_stop(priv->mac->phylink); 1433 } 1434 1435 /* On dpni_disable(), the MC firmware will: 1436 * - stop MAC Rx and wait for all Rx frames to be enqueued to software 1437 * - cut off WRIOP dequeues from egress FQs and wait until transmission 1438 * of all in flight Tx frames is finished (and corresponding Tx conf 1439 * frames are enqueued back to software) 1440 * 1441 * Before calling dpni_disable(), we wait for all Tx frames to arrive 1442 * on WRIOP. After it finishes, wait until all remaining frames on Rx 1443 * and Tx conf queues are consumed on NAPI poll. 1444 */ 1445 wait_for_egress_fq_empty(priv); 1446 1447 do { 1448 dpni_disable(priv->mc_io, 0, priv->mc_token); 1449 dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled); 1450 if (dpni_enabled) 1451 /* Allow the hardware some slack */ 1452 msleep(100); 1453 } while (dpni_enabled && --retries); 1454 if (!retries) { 1455 netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n"); 1456 /* Must go on and disable NAPI nonetheless, so we don't crash at 1457 * the next "ifconfig up" 1458 */ 1459 } 1460 1461 wait_for_ingress_fq_empty(priv); 1462 disable_ch_napi(priv); 1463 1464 /* Empty the buffer pool */ 1465 drain_pool(priv); 1466 1467 return 0; 1468 } 1469 1470 static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr) 1471 { 1472 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1473 struct device *dev = net_dev->dev.parent; 1474 int err; 1475 1476 err = eth_mac_addr(net_dev, addr); 1477 if (err < 0) { 1478 dev_err(dev, "eth_mac_addr() failed (%d)\n", err); 1479 return err; 1480 } 1481 1482 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 1483 net_dev->dev_addr); 1484 if (err) { 1485 dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err); 1486 return err; 1487 } 1488 1489 return 0; 1490 } 1491 1492 /** Fill in counters maintained by the GPP driver. These may be different from 1493 * the hardware counters obtained by ethtool. 1494 */ 1495 static void dpaa2_eth_get_stats(struct net_device *net_dev, 1496 struct rtnl_link_stats64 *stats) 1497 { 1498 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1499 struct rtnl_link_stats64 *percpu_stats; 1500 u64 *cpustats; 1501 u64 *netstats = (u64 *)stats; 1502 int i, j; 1503 int num = sizeof(struct rtnl_link_stats64) / sizeof(u64); 1504 1505 for_each_possible_cpu(i) { 1506 percpu_stats = per_cpu_ptr(priv->percpu_stats, i); 1507 cpustats = (u64 *)percpu_stats; 1508 for (j = 0; j < num; j++) 1509 netstats[j] += cpustats[j]; 1510 } 1511 } 1512 1513 /* Copy mac unicast addresses from @net_dev to @priv. 1514 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1515 */ 1516 static void add_uc_hw_addr(const struct net_device *net_dev, 1517 struct dpaa2_eth_priv *priv) 1518 { 1519 struct netdev_hw_addr *ha; 1520 int err; 1521 1522 netdev_for_each_uc_addr(ha, net_dev) { 1523 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1524 ha->addr); 1525 if (err) 1526 netdev_warn(priv->net_dev, 1527 "Could not add ucast MAC %pM to the filtering table (err %d)\n", 1528 ha->addr, err); 1529 } 1530 } 1531 1532 /* Copy mac multicast addresses from @net_dev to @priv 1533 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1534 */ 1535 static void add_mc_hw_addr(const struct net_device *net_dev, 1536 struct dpaa2_eth_priv *priv) 1537 { 1538 struct netdev_hw_addr *ha; 1539 int err; 1540 1541 netdev_for_each_mc_addr(ha, net_dev) { 1542 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1543 ha->addr); 1544 if (err) 1545 netdev_warn(priv->net_dev, 1546 "Could not add mcast MAC %pM to the filtering table (err %d)\n", 1547 ha->addr, err); 1548 } 1549 } 1550 1551 static void dpaa2_eth_set_rx_mode(struct net_device *net_dev) 1552 { 1553 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1554 int uc_count = netdev_uc_count(net_dev); 1555 int mc_count = netdev_mc_count(net_dev); 1556 u8 max_mac = priv->dpni_attrs.mac_filter_entries; 1557 u32 options = priv->dpni_attrs.options; 1558 u16 mc_token = priv->mc_token; 1559 struct fsl_mc_io *mc_io = priv->mc_io; 1560 int err; 1561 1562 /* Basic sanity checks; these probably indicate a misconfiguration */ 1563 if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0) 1564 netdev_info(net_dev, 1565 "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n", 1566 max_mac); 1567 1568 /* Force promiscuous if the uc or mc counts exceed our capabilities. */ 1569 if (uc_count > max_mac) { 1570 netdev_info(net_dev, 1571 "Unicast addr count reached %d, max allowed is %d; forcing promisc\n", 1572 uc_count, max_mac); 1573 goto force_promisc; 1574 } 1575 if (mc_count + uc_count > max_mac) { 1576 netdev_info(net_dev, 1577 "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n", 1578 uc_count + mc_count, max_mac); 1579 goto force_mc_promisc; 1580 } 1581 1582 /* Adjust promisc settings due to flag combinations */ 1583 if (net_dev->flags & IFF_PROMISC) 1584 goto force_promisc; 1585 if (net_dev->flags & IFF_ALLMULTI) { 1586 /* First, rebuild unicast filtering table. This should be done 1587 * in promisc mode, in order to avoid frame loss while we 1588 * progressively add entries to the table. 1589 * We don't know whether we had been in promisc already, and 1590 * making an MC call to find out is expensive; so set uc promisc 1591 * nonetheless. 1592 */ 1593 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1594 if (err) 1595 netdev_warn(net_dev, "Can't set uc promisc\n"); 1596 1597 /* Actual uc table reconstruction. */ 1598 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0); 1599 if (err) 1600 netdev_warn(net_dev, "Can't clear uc filters\n"); 1601 add_uc_hw_addr(net_dev, priv); 1602 1603 /* Finally, clear uc promisc and set mc promisc as requested. */ 1604 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1605 if (err) 1606 netdev_warn(net_dev, "Can't clear uc promisc\n"); 1607 goto force_mc_promisc; 1608 } 1609 1610 /* Neither unicast, nor multicast promisc will be on... eventually. 1611 * For now, rebuild mac filtering tables while forcing both of them on. 1612 */ 1613 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1614 if (err) 1615 netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err); 1616 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1617 if (err) 1618 netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err); 1619 1620 /* Actual mac filtering tables reconstruction */ 1621 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1); 1622 if (err) 1623 netdev_warn(net_dev, "Can't clear mac filters\n"); 1624 add_mc_hw_addr(net_dev, priv); 1625 add_uc_hw_addr(net_dev, priv); 1626 1627 /* Now we can clear both ucast and mcast promisc, without risking 1628 * to drop legitimate frames anymore. 1629 */ 1630 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1631 if (err) 1632 netdev_warn(net_dev, "Can't clear ucast promisc\n"); 1633 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0); 1634 if (err) 1635 netdev_warn(net_dev, "Can't clear mcast promisc\n"); 1636 1637 return; 1638 1639 force_promisc: 1640 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1641 if (err) 1642 netdev_warn(net_dev, "Can't set ucast promisc\n"); 1643 force_mc_promisc: 1644 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1645 if (err) 1646 netdev_warn(net_dev, "Can't set mcast promisc\n"); 1647 } 1648 1649 static int dpaa2_eth_set_features(struct net_device *net_dev, 1650 netdev_features_t features) 1651 { 1652 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1653 netdev_features_t changed = features ^ net_dev->features; 1654 bool enable; 1655 int err; 1656 1657 if (changed & NETIF_F_RXCSUM) { 1658 enable = !!(features & NETIF_F_RXCSUM); 1659 err = set_rx_csum(priv, enable); 1660 if (err) 1661 return err; 1662 } 1663 1664 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 1665 enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 1666 err = set_tx_csum(priv, enable); 1667 if (err) 1668 return err; 1669 } 1670 1671 return 0; 1672 } 1673 1674 static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1675 { 1676 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1677 struct hwtstamp_config config; 1678 1679 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 1680 return -EFAULT; 1681 1682 switch (config.tx_type) { 1683 case HWTSTAMP_TX_OFF: 1684 priv->tx_tstamp = false; 1685 break; 1686 case HWTSTAMP_TX_ON: 1687 priv->tx_tstamp = true; 1688 break; 1689 default: 1690 return -ERANGE; 1691 } 1692 1693 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 1694 priv->rx_tstamp = false; 1695 } else { 1696 priv->rx_tstamp = true; 1697 /* TS is set for all frame types, not only those requested */ 1698 config.rx_filter = HWTSTAMP_FILTER_ALL; 1699 } 1700 1701 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 1702 -EFAULT : 0; 1703 } 1704 1705 static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1706 { 1707 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1708 1709 if (cmd == SIOCSHWTSTAMP) 1710 return dpaa2_eth_ts_ioctl(dev, rq, cmd); 1711 1712 if (priv->mac) 1713 return phylink_mii_ioctl(priv->mac->phylink, rq, cmd); 1714 1715 return -EOPNOTSUPP; 1716 } 1717 1718 static bool xdp_mtu_valid(struct dpaa2_eth_priv *priv, int mtu) 1719 { 1720 int mfl, linear_mfl; 1721 1722 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1723 linear_mfl = DPAA2_ETH_RX_BUF_SIZE - DPAA2_ETH_RX_HWA_SIZE - 1724 dpaa2_eth_rx_head_room(priv) - XDP_PACKET_HEADROOM; 1725 1726 if (mfl > linear_mfl) { 1727 netdev_warn(priv->net_dev, "Maximum MTU for XDP is %d\n", 1728 linear_mfl - VLAN_ETH_HLEN); 1729 return false; 1730 } 1731 1732 return true; 1733 } 1734 1735 static int set_rx_mfl(struct dpaa2_eth_priv *priv, int mtu, bool has_xdp) 1736 { 1737 int mfl, err; 1738 1739 /* We enforce a maximum Rx frame length based on MTU only if we have 1740 * an XDP program attached (in order to avoid Rx S/G frames). 1741 * Otherwise, we accept all incoming frames as long as they are not 1742 * larger than maximum size supported in hardware 1743 */ 1744 if (has_xdp) 1745 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1746 else 1747 mfl = DPAA2_ETH_MFL; 1748 1749 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, mfl); 1750 if (err) { 1751 netdev_err(priv->net_dev, "dpni_set_max_frame_length failed\n"); 1752 return err; 1753 } 1754 1755 return 0; 1756 } 1757 1758 static int dpaa2_eth_change_mtu(struct net_device *dev, int new_mtu) 1759 { 1760 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1761 int err; 1762 1763 if (!priv->xdp_prog) 1764 goto out; 1765 1766 if (!xdp_mtu_valid(priv, new_mtu)) 1767 return -EINVAL; 1768 1769 err = set_rx_mfl(priv, new_mtu, true); 1770 if (err) 1771 return err; 1772 1773 out: 1774 dev->mtu = new_mtu; 1775 return 0; 1776 } 1777 1778 static int update_rx_buffer_headroom(struct dpaa2_eth_priv *priv, bool has_xdp) 1779 { 1780 struct dpni_buffer_layout buf_layout = {0}; 1781 int err; 1782 1783 err = dpni_get_buffer_layout(priv->mc_io, 0, priv->mc_token, 1784 DPNI_QUEUE_RX, &buf_layout); 1785 if (err) { 1786 netdev_err(priv->net_dev, "dpni_get_buffer_layout failed\n"); 1787 return err; 1788 } 1789 1790 /* Reserve extra headroom for XDP header size changes */ 1791 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv) + 1792 (has_xdp ? XDP_PACKET_HEADROOM : 0); 1793 buf_layout.options = DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM; 1794 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 1795 DPNI_QUEUE_RX, &buf_layout); 1796 if (err) { 1797 netdev_err(priv->net_dev, "dpni_set_buffer_layout failed\n"); 1798 return err; 1799 } 1800 1801 return 0; 1802 } 1803 1804 static int setup_xdp(struct net_device *dev, struct bpf_prog *prog) 1805 { 1806 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1807 struct dpaa2_eth_channel *ch; 1808 struct bpf_prog *old; 1809 bool up, need_update; 1810 int i, err; 1811 1812 if (prog && !xdp_mtu_valid(priv, dev->mtu)) 1813 return -EINVAL; 1814 1815 if (prog) 1816 bpf_prog_add(prog, priv->num_channels); 1817 1818 up = netif_running(dev); 1819 need_update = (!!priv->xdp_prog != !!prog); 1820 1821 if (up) 1822 dpaa2_eth_stop(dev); 1823 1824 /* While in xdp mode, enforce a maximum Rx frame size based on MTU. 1825 * Also, when switching between xdp/non-xdp modes we need to reconfigure 1826 * our Rx buffer layout. Buffer pool was drained on dpaa2_eth_stop, 1827 * so we are sure no old format buffers will be used from now on. 1828 */ 1829 if (need_update) { 1830 err = set_rx_mfl(priv, dev->mtu, !!prog); 1831 if (err) 1832 goto out_err; 1833 err = update_rx_buffer_headroom(priv, !!prog); 1834 if (err) 1835 goto out_err; 1836 } 1837 1838 old = xchg(&priv->xdp_prog, prog); 1839 if (old) 1840 bpf_prog_put(old); 1841 1842 for (i = 0; i < priv->num_channels; i++) { 1843 ch = priv->channel[i]; 1844 old = xchg(&ch->xdp.prog, prog); 1845 if (old) 1846 bpf_prog_put(old); 1847 } 1848 1849 if (up) { 1850 err = dpaa2_eth_open(dev); 1851 if (err) 1852 return err; 1853 } 1854 1855 return 0; 1856 1857 out_err: 1858 if (prog) 1859 bpf_prog_sub(prog, priv->num_channels); 1860 if (up) 1861 dpaa2_eth_open(dev); 1862 1863 return err; 1864 } 1865 1866 static int dpaa2_eth_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1867 { 1868 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1869 1870 switch (xdp->command) { 1871 case XDP_SETUP_PROG: 1872 return setup_xdp(dev, xdp->prog); 1873 case XDP_QUERY_PROG: 1874 xdp->prog_id = priv->xdp_prog ? priv->xdp_prog->aux->id : 0; 1875 break; 1876 default: 1877 return -EINVAL; 1878 } 1879 1880 return 0; 1881 } 1882 1883 static int dpaa2_eth_xdp_create_fd(struct net_device *net_dev, 1884 struct xdp_frame *xdpf, 1885 struct dpaa2_fd *fd) 1886 { 1887 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1888 struct device *dev = net_dev->dev.parent; 1889 unsigned int needed_headroom; 1890 struct dpaa2_eth_swa *swa; 1891 void *buffer_start, *aligned_start; 1892 dma_addr_t addr; 1893 1894 /* We require a minimum headroom to be able to transmit the frame. 1895 * Otherwise return an error and let the original net_device handle it 1896 */ 1897 needed_headroom = dpaa2_eth_needed_headroom(priv, NULL); 1898 if (xdpf->headroom < needed_headroom) 1899 return -EINVAL; 1900 1901 /* Setup the FD fields */ 1902 memset(fd, 0, sizeof(*fd)); 1903 1904 /* Align FD address, if possible */ 1905 buffer_start = xdpf->data - needed_headroom; 1906 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 1907 DPAA2_ETH_TX_BUF_ALIGN); 1908 if (aligned_start >= xdpf->data - xdpf->headroom) 1909 buffer_start = aligned_start; 1910 1911 swa = (struct dpaa2_eth_swa *)buffer_start; 1912 /* fill in necessary fields here */ 1913 swa->type = DPAA2_ETH_SWA_XDP; 1914 swa->xdp.dma_size = xdpf->data + xdpf->len - buffer_start; 1915 swa->xdp.xdpf = xdpf; 1916 1917 addr = dma_map_single(dev, buffer_start, 1918 swa->xdp.dma_size, 1919 DMA_BIDIRECTIONAL); 1920 if (unlikely(dma_mapping_error(dev, addr))) 1921 return -ENOMEM; 1922 1923 dpaa2_fd_set_addr(fd, addr); 1924 dpaa2_fd_set_offset(fd, xdpf->data - buffer_start); 1925 dpaa2_fd_set_len(fd, xdpf->len); 1926 dpaa2_fd_set_format(fd, dpaa2_fd_single); 1927 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 1928 1929 return 0; 1930 } 1931 1932 static int dpaa2_eth_xdp_xmit(struct net_device *net_dev, int n, 1933 struct xdp_frame **frames, u32 flags) 1934 { 1935 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1936 struct dpaa2_eth_drv_stats *percpu_extras; 1937 struct rtnl_link_stats64 *percpu_stats; 1938 struct dpaa2_eth_fq *fq; 1939 struct dpaa2_fd fd; 1940 int drops = 0; 1941 int i, err; 1942 1943 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 1944 return -EINVAL; 1945 1946 if (!netif_running(net_dev)) 1947 return -ENETDOWN; 1948 1949 percpu_stats = this_cpu_ptr(priv->percpu_stats); 1950 percpu_extras = this_cpu_ptr(priv->percpu_extras); 1951 1952 for (i = 0; i < n; i++) { 1953 struct xdp_frame *xdpf = frames[i]; 1954 1955 /* create the FD from the xdp_frame */ 1956 err = dpaa2_eth_xdp_create_fd(net_dev, xdpf, &fd); 1957 if (err) { 1958 percpu_stats->tx_dropped++; 1959 xdp_return_frame_rx_napi(xdpf); 1960 drops++; 1961 continue; 1962 } 1963 1964 /* enqueue the newly created FD */ 1965 fq = &priv->fq[smp_processor_id() % dpaa2_eth_queue_count(priv)]; 1966 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 1967 err = priv->enqueue(priv, fq, &fd, 0, 1); 1968 if (err != -EBUSY) 1969 break; 1970 } 1971 1972 percpu_extras->tx_portal_busy += i; 1973 if (unlikely(err < 0)) { 1974 percpu_stats->tx_errors++; 1975 xdp_return_frame_rx_napi(xdpf); 1976 continue; 1977 } 1978 1979 percpu_stats->tx_packets++; 1980 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fd); 1981 } 1982 1983 return n - drops; 1984 } 1985 1986 static int update_xps(struct dpaa2_eth_priv *priv) 1987 { 1988 struct net_device *net_dev = priv->net_dev; 1989 struct cpumask xps_mask; 1990 struct dpaa2_eth_fq *fq; 1991 int i, num_queues, netdev_queues; 1992 int err = 0; 1993 1994 num_queues = dpaa2_eth_queue_count(priv); 1995 netdev_queues = (net_dev->num_tc ? : 1) * num_queues; 1996 1997 /* The first <num_queues> entries in priv->fq array are Tx/Tx conf 1998 * queues, so only process those 1999 */ 2000 for (i = 0; i < netdev_queues; i++) { 2001 fq = &priv->fq[i % num_queues]; 2002 2003 cpumask_clear(&xps_mask); 2004 cpumask_set_cpu(fq->target_cpu, &xps_mask); 2005 2006 err = netif_set_xps_queue(net_dev, &xps_mask, i); 2007 if (err) { 2008 netdev_warn_once(net_dev, "Error setting XPS queue\n"); 2009 break; 2010 } 2011 } 2012 2013 return err; 2014 } 2015 2016 static int dpaa2_eth_setup_tc(struct net_device *net_dev, 2017 enum tc_setup_type type, void *type_data) 2018 { 2019 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2020 struct tc_mqprio_qopt *mqprio = type_data; 2021 u8 num_tc, num_queues; 2022 int i; 2023 2024 if (type != TC_SETUP_QDISC_MQPRIO) 2025 return -EINVAL; 2026 2027 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 2028 num_queues = dpaa2_eth_queue_count(priv); 2029 num_tc = mqprio->num_tc; 2030 2031 if (num_tc == net_dev->num_tc) 2032 return 0; 2033 2034 if (num_tc > dpaa2_eth_tc_count(priv)) { 2035 netdev_err(net_dev, "Max %d traffic classes supported\n", 2036 dpaa2_eth_tc_count(priv)); 2037 return -EINVAL; 2038 } 2039 2040 if (!num_tc) { 2041 netdev_reset_tc(net_dev); 2042 netif_set_real_num_tx_queues(net_dev, num_queues); 2043 goto out; 2044 } 2045 2046 netdev_set_num_tc(net_dev, num_tc); 2047 netif_set_real_num_tx_queues(net_dev, num_tc * num_queues); 2048 2049 for (i = 0; i < num_tc; i++) 2050 netdev_set_tc_queue(net_dev, i, num_queues, i * num_queues); 2051 2052 out: 2053 update_xps(priv); 2054 2055 return 0; 2056 } 2057 2058 static const struct net_device_ops dpaa2_eth_ops = { 2059 .ndo_open = dpaa2_eth_open, 2060 .ndo_start_xmit = dpaa2_eth_tx, 2061 .ndo_stop = dpaa2_eth_stop, 2062 .ndo_set_mac_address = dpaa2_eth_set_addr, 2063 .ndo_get_stats64 = dpaa2_eth_get_stats, 2064 .ndo_set_rx_mode = dpaa2_eth_set_rx_mode, 2065 .ndo_set_features = dpaa2_eth_set_features, 2066 .ndo_do_ioctl = dpaa2_eth_ioctl, 2067 .ndo_change_mtu = dpaa2_eth_change_mtu, 2068 .ndo_bpf = dpaa2_eth_xdp, 2069 .ndo_xdp_xmit = dpaa2_eth_xdp_xmit, 2070 .ndo_setup_tc = dpaa2_eth_setup_tc, 2071 }; 2072 2073 static void cdan_cb(struct dpaa2_io_notification_ctx *ctx) 2074 { 2075 struct dpaa2_eth_channel *ch; 2076 2077 ch = container_of(ctx, struct dpaa2_eth_channel, nctx); 2078 2079 /* Update NAPI statistics */ 2080 ch->stats.cdan++; 2081 2082 napi_schedule_irqoff(&ch->napi); 2083 } 2084 2085 /* Allocate and configure a DPCON object */ 2086 static struct fsl_mc_device *setup_dpcon(struct dpaa2_eth_priv *priv) 2087 { 2088 struct fsl_mc_device *dpcon; 2089 struct device *dev = priv->net_dev->dev.parent; 2090 int err; 2091 2092 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), 2093 FSL_MC_POOL_DPCON, &dpcon); 2094 if (err) { 2095 if (err == -ENXIO) 2096 err = -EPROBE_DEFER; 2097 else 2098 dev_info(dev, "Not enough DPCONs, will go on as-is\n"); 2099 return ERR_PTR(err); 2100 } 2101 2102 err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle); 2103 if (err) { 2104 dev_err(dev, "dpcon_open() failed\n"); 2105 goto free; 2106 } 2107 2108 err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle); 2109 if (err) { 2110 dev_err(dev, "dpcon_reset() failed\n"); 2111 goto close; 2112 } 2113 2114 err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle); 2115 if (err) { 2116 dev_err(dev, "dpcon_enable() failed\n"); 2117 goto close; 2118 } 2119 2120 return dpcon; 2121 2122 close: 2123 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 2124 free: 2125 fsl_mc_object_free(dpcon); 2126 2127 return NULL; 2128 } 2129 2130 static void free_dpcon(struct dpaa2_eth_priv *priv, 2131 struct fsl_mc_device *dpcon) 2132 { 2133 dpcon_disable(priv->mc_io, 0, dpcon->mc_handle); 2134 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 2135 fsl_mc_object_free(dpcon); 2136 } 2137 2138 static struct dpaa2_eth_channel * 2139 alloc_channel(struct dpaa2_eth_priv *priv) 2140 { 2141 struct dpaa2_eth_channel *channel; 2142 struct dpcon_attr attr; 2143 struct device *dev = priv->net_dev->dev.parent; 2144 int err; 2145 2146 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 2147 if (!channel) 2148 return NULL; 2149 2150 channel->dpcon = setup_dpcon(priv); 2151 if (IS_ERR_OR_NULL(channel->dpcon)) { 2152 err = PTR_ERR_OR_ZERO(channel->dpcon); 2153 goto err_setup; 2154 } 2155 2156 err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle, 2157 &attr); 2158 if (err) { 2159 dev_err(dev, "dpcon_get_attributes() failed\n"); 2160 goto err_get_attr; 2161 } 2162 2163 channel->dpcon_id = attr.id; 2164 channel->ch_id = attr.qbman_ch_id; 2165 channel->priv = priv; 2166 2167 return channel; 2168 2169 err_get_attr: 2170 free_dpcon(priv, channel->dpcon); 2171 err_setup: 2172 kfree(channel); 2173 return ERR_PTR(err); 2174 } 2175 2176 static void free_channel(struct dpaa2_eth_priv *priv, 2177 struct dpaa2_eth_channel *channel) 2178 { 2179 free_dpcon(priv, channel->dpcon); 2180 kfree(channel); 2181 } 2182 2183 /* DPIO setup: allocate and configure QBMan channels, setup core affinity 2184 * and register data availability notifications 2185 */ 2186 static int setup_dpio(struct dpaa2_eth_priv *priv) 2187 { 2188 struct dpaa2_io_notification_ctx *nctx; 2189 struct dpaa2_eth_channel *channel; 2190 struct dpcon_notification_cfg dpcon_notif_cfg; 2191 struct device *dev = priv->net_dev->dev.parent; 2192 int i, err; 2193 2194 /* We want the ability to spread ingress traffic (RX, TX conf) to as 2195 * many cores as possible, so we need one channel for each core 2196 * (unless there's fewer queues than cores, in which case the extra 2197 * channels would be wasted). 2198 * Allocate one channel per core and register it to the core's 2199 * affine DPIO. If not enough channels are available for all cores 2200 * or if some cores don't have an affine DPIO, there will be no 2201 * ingress frame processing on those cores. 2202 */ 2203 cpumask_clear(&priv->dpio_cpumask); 2204 for_each_online_cpu(i) { 2205 /* Try to allocate a channel */ 2206 channel = alloc_channel(priv); 2207 if (IS_ERR_OR_NULL(channel)) { 2208 err = PTR_ERR_OR_ZERO(channel); 2209 if (err != -EPROBE_DEFER) 2210 dev_info(dev, 2211 "No affine channel for cpu %d and above\n", i); 2212 goto err_alloc_ch; 2213 } 2214 2215 priv->channel[priv->num_channels] = channel; 2216 2217 nctx = &channel->nctx; 2218 nctx->is_cdan = 1; 2219 nctx->cb = cdan_cb; 2220 nctx->id = channel->ch_id; 2221 nctx->desired_cpu = i; 2222 2223 /* Register the new context */ 2224 channel->dpio = dpaa2_io_service_select(i); 2225 err = dpaa2_io_service_register(channel->dpio, nctx, dev); 2226 if (err) { 2227 dev_dbg(dev, "No affine DPIO for cpu %d\n", i); 2228 /* If no affine DPIO for this core, there's probably 2229 * none available for next cores either. Signal we want 2230 * to retry later, in case the DPIO devices weren't 2231 * probed yet. 2232 */ 2233 err = -EPROBE_DEFER; 2234 goto err_service_reg; 2235 } 2236 2237 /* Register DPCON notification with MC */ 2238 dpcon_notif_cfg.dpio_id = nctx->dpio_id; 2239 dpcon_notif_cfg.priority = 0; 2240 dpcon_notif_cfg.user_ctx = nctx->qman64; 2241 err = dpcon_set_notification(priv->mc_io, 0, 2242 channel->dpcon->mc_handle, 2243 &dpcon_notif_cfg); 2244 if (err) { 2245 dev_err(dev, "dpcon_set_notification failed()\n"); 2246 goto err_set_cdan; 2247 } 2248 2249 /* If we managed to allocate a channel and also found an affine 2250 * DPIO for this core, add it to the final mask 2251 */ 2252 cpumask_set_cpu(i, &priv->dpio_cpumask); 2253 priv->num_channels++; 2254 2255 /* Stop if we already have enough channels to accommodate all 2256 * RX and TX conf queues 2257 */ 2258 if (priv->num_channels == priv->dpni_attrs.num_queues) 2259 break; 2260 } 2261 2262 return 0; 2263 2264 err_set_cdan: 2265 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 2266 err_service_reg: 2267 free_channel(priv, channel); 2268 err_alloc_ch: 2269 if (err == -EPROBE_DEFER) { 2270 for (i = 0; i < priv->num_channels; i++) { 2271 channel = priv->channel[i]; 2272 nctx = &channel->nctx; 2273 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 2274 free_channel(priv, channel); 2275 } 2276 priv->num_channels = 0; 2277 return err; 2278 } 2279 2280 if (cpumask_empty(&priv->dpio_cpumask)) { 2281 dev_err(dev, "No cpu with an affine DPIO/DPCON\n"); 2282 return -ENODEV; 2283 } 2284 2285 dev_info(dev, "Cores %*pbl available for processing ingress traffic\n", 2286 cpumask_pr_args(&priv->dpio_cpumask)); 2287 2288 return 0; 2289 } 2290 2291 static void free_dpio(struct dpaa2_eth_priv *priv) 2292 { 2293 struct device *dev = priv->net_dev->dev.parent; 2294 struct dpaa2_eth_channel *ch; 2295 int i; 2296 2297 /* deregister CDAN notifications and free channels */ 2298 for (i = 0; i < priv->num_channels; i++) { 2299 ch = priv->channel[i]; 2300 dpaa2_io_service_deregister(ch->dpio, &ch->nctx, dev); 2301 free_channel(priv, ch); 2302 } 2303 } 2304 2305 static struct dpaa2_eth_channel *get_affine_channel(struct dpaa2_eth_priv *priv, 2306 int cpu) 2307 { 2308 struct device *dev = priv->net_dev->dev.parent; 2309 int i; 2310 2311 for (i = 0; i < priv->num_channels; i++) 2312 if (priv->channel[i]->nctx.desired_cpu == cpu) 2313 return priv->channel[i]; 2314 2315 /* We should never get here. Issue a warning and return 2316 * the first channel, because it's still better than nothing 2317 */ 2318 dev_warn(dev, "No affine channel found for cpu %d\n", cpu); 2319 2320 return priv->channel[0]; 2321 } 2322 2323 static void set_fq_affinity(struct dpaa2_eth_priv *priv) 2324 { 2325 struct device *dev = priv->net_dev->dev.parent; 2326 struct dpaa2_eth_fq *fq; 2327 int rx_cpu, txc_cpu; 2328 int i; 2329 2330 /* For each FQ, pick one channel/CPU to deliver frames to. 2331 * This may well change at runtime, either through irqbalance or 2332 * through direct user intervention. 2333 */ 2334 rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask); 2335 2336 for (i = 0; i < priv->num_fqs; i++) { 2337 fq = &priv->fq[i]; 2338 switch (fq->type) { 2339 case DPAA2_RX_FQ: 2340 fq->target_cpu = rx_cpu; 2341 rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask); 2342 if (rx_cpu >= nr_cpu_ids) 2343 rx_cpu = cpumask_first(&priv->dpio_cpumask); 2344 break; 2345 case DPAA2_TX_CONF_FQ: 2346 fq->target_cpu = txc_cpu; 2347 txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask); 2348 if (txc_cpu >= nr_cpu_ids) 2349 txc_cpu = cpumask_first(&priv->dpio_cpumask); 2350 break; 2351 default: 2352 dev_err(dev, "Unknown FQ type: %d\n", fq->type); 2353 } 2354 fq->channel = get_affine_channel(priv, fq->target_cpu); 2355 } 2356 2357 update_xps(priv); 2358 } 2359 2360 static void setup_fqs(struct dpaa2_eth_priv *priv) 2361 { 2362 int i; 2363 2364 /* We have one TxConf FQ per Tx flow. 2365 * The number of Tx and Rx queues is the same. 2366 * Tx queues come first in the fq array. 2367 */ 2368 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2369 priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ; 2370 priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf; 2371 priv->fq[priv->num_fqs++].flowid = (u16)i; 2372 } 2373 2374 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2375 priv->fq[priv->num_fqs].type = DPAA2_RX_FQ; 2376 priv->fq[priv->num_fqs].consume = dpaa2_eth_rx; 2377 priv->fq[priv->num_fqs++].flowid = (u16)i; 2378 } 2379 2380 /* For each FQ, decide on which core to process incoming frames */ 2381 set_fq_affinity(priv); 2382 } 2383 2384 /* Allocate and configure one buffer pool for each interface */ 2385 static int setup_dpbp(struct dpaa2_eth_priv *priv) 2386 { 2387 int err; 2388 struct fsl_mc_device *dpbp_dev; 2389 struct device *dev = priv->net_dev->dev.parent; 2390 struct dpbp_attr dpbp_attrs; 2391 2392 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, 2393 &dpbp_dev); 2394 if (err) { 2395 if (err == -ENXIO) 2396 err = -EPROBE_DEFER; 2397 else 2398 dev_err(dev, "DPBP device allocation failed\n"); 2399 return err; 2400 } 2401 2402 priv->dpbp_dev = dpbp_dev; 2403 2404 err = dpbp_open(priv->mc_io, 0, priv->dpbp_dev->obj_desc.id, 2405 &dpbp_dev->mc_handle); 2406 if (err) { 2407 dev_err(dev, "dpbp_open() failed\n"); 2408 goto err_open; 2409 } 2410 2411 err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle); 2412 if (err) { 2413 dev_err(dev, "dpbp_reset() failed\n"); 2414 goto err_reset; 2415 } 2416 2417 err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle); 2418 if (err) { 2419 dev_err(dev, "dpbp_enable() failed\n"); 2420 goto err_enable; 2421 } 2422 2423 err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle, 2424 &dpbp_attrs); 2425 if (err) { 2426 dev_err(dev, "dpbp_get_attributes() failed\n"); 2427 goto err_get_attr; 2428 } 2429 priv->bpid = dpbp_attrs.bpid; 2430 2431 return 0; 2432 2433 err_get_attr: 2434 dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle); 2435 err_enable: 2436 err_reset: 2437 dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle); 2438 err_open: 2439 fsl_mc_object_free(dpbp_dev); 2440 2441 return err; 2442 } 2443 2444 static void free_dpbp(struct dpaa2_eth_priv *priv) 2445 { 2446 drain_pool(priv); 2447 dpbp_disable(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2448 dpbp_close(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2449 fsl_mc_object_free(priv->dpbp_dev); 2450 } 2451 2452 static int set_buffer_layout(struct dpaa2_eth_priv *priv) 2453 { 2454 struct device *dev = priv->net_dev->dev.parent; 2455 struct dpni_buffer_layout buf_layout = {0}; 2456 u16 rx_buf_align; 2457 int err; 2458 2459 /* We need to check for WRIOP version 1.0.0, but depending on the MC 2460 * version, this number is not always provided correctly on rev1. 2461 * We need to check for both alternatives in this situation. 2462 */ 2463 if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) || 2464 priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0)) 2465 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1; 2466 else 2467 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN; 2468 2469 /* tx buffer */ 2470 buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE; 2471 buf_layout.pass_timestamp = true; 2472 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE | 2473 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2474 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2475 DPNI_QUEUE_TX, &buf_layout); 2476 if (err) { 2477 dev_err(dev, "dpni_set_buffer_layout(TX) failed\n"); 2478 return err; 2479 } 2480 2481 /* tx-confirm buffer */ 2482 buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2483 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2484 DPNI_QUEUE_TX_CONFIRM, &buf_layout); 2485 if (err) { 2486 dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n"); 2487 return err; 2488 } 2489 2490 /* Now that we've set our tx buffer layout, retrieve the minimum 2491 * required tx data offset. 2492 */ 2493 err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token, 2494 &priv->tx_data_offset); 2495 if (err) { 2496 dev_err(dev, "dpni_get_tx_data_offset() failed\n"); 2497 return err; 2498 } 2499 2500 if ((priv->tx_data_offset % 64) != 0) 2501 dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n", 2502 priv->tx_data_offset); 2503 2504 /* rx buffer */ 2505 buf_layout.pass_frame_status = true; 2506 buf_layout.pass_parser_result = true; 2507 buf_layout.data_align = rx_buf_align; 2508 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv); 2509 buf_layout.private_data_size = 0; 2510 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT | 2511 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | 2512 DPNI_BUF_LAYOUT_OPT_DATA_ALIGN | 2513 DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM | 2514 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2515 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2516 DPNI_QUEUE_RX, &buf_layout); 2517 if (err) { 2518 dev_err(dev, "dpni_set_buffer_layout(RX) failed\n"); 2519 return err; 2520 } 2521 2522 return 0; 2523 } 2524 2525 #define DPNI_ENQUEUE_FQID_VER_MAJOR 7 2526 #define DPNI_ENQUEUE_FQID_VER_MINOR 9 2527 2528 static inline int dpaa2_eth_enqueue_qd(struct dpaa2_eth_priv *priv, 2529 struct dpaa2_eth_fq *fq, 2530 struct dpaa2_fd *fd, u8 prio, 2531 u32 num_frames __always_unused, 2532 int *frames_enqueued) 2533 { 2534 int err; 2535 2536 err = dpaa2_io_service_enqueue_qd(fq->channel->dpio, 2537 priv->tx_qdid, prio, 2538 fq->tx_qdbin, fd); 2539 if (!err && frames_enqueued) 2540 *frames_enqueued = 1; 2541 return err; 2542 } 2543 2544 static inline int dpaa2_eth_enqueue_fq_multiple(struct dpaa2_eth_priv *priv, 2545 struct dpaa2_eth_fq *fq, 2546 struct dpaa2_fd *fd, 2547 u8 prio, u32 num_frames, 2548 int *frames_enqueued) 2549 { 2550 int err; 2551 2552 err = dpaa2_io_service_enqueue_multiple_fq(fq->channel->dpio, 2553 fq->tx_fqid[prio], 2554 fd, num_frames); 2555 2556 if (err == 0) 2557 return -EBUSY; 2558 2559 if (frames_enqueued) 2560 *frames_enqueued = err; 2561 return 0; 2562 } 2563 2564 static void set_enqueue_mode(struct dpaa2_eth_priv *priv) 2565 { 2566 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 2567 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 2568 priv->enqueue = dpaa2_eth_enqueue_qd; 2569 else 2570 priv->enqueue = dpaa2_eth_enqueue_fq_multiple; 2571 } 2572 2573 static int set_pause(struct dpaa2_eth_priv *priv) 2574 { 2575 struct device *dev = priv->net_dev->dev.parent; 2576 struct dpni_link_cfg link_cfg = {0}; 2577 int err; 2578 2579 /* Get the default link options so we don't override other flags */ 2580 err = dpni_get_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); 2581 if (err) { 2582 dev_err(dev, "dpni_get_link_cfg() failed\n"); 2583 return err; 2584 } 2585 2586 /* By default, enable both Rx and Tx pause frames */ 2587 link_cfg.options |= DPNI_LINK_OPT_PAUSE; 2588 link_cfg.options &= ~DPNI_LINK_OPT_ASYM_PAUSE; 2589 err = dpni_set_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); 2590 if (err) { 2591 dev_err(dev, "dpni_set_link_cfg() failed\n"); 2592 return err; 2593 } 2594 2595 priv->link_state.options = link_cfg.options; 2596 2597 return 0; 2598 } 2599 2600 static void update_tx_fqids(struct dpaa2_eth_priv *priv) 2601 { 2602 struct dpni_queue_id qid = {0}; 2603 struct dpaa2_eth_fq *fq; 2604 struct dpni_queue queue; 2605 int i, j, err; 2606 2607 /* We only use Tx FQIDs for FQID-based enqueue, so check 2608 * if DPNI version supports it before updating FQIDs 2609 */ 2610 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 2611 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 2612 return; 2613 2614 for (i = 0; i < priv->num_fqs; i++) { 2615 fq = &priv->fq[i]; 2616 if (fq->type != DPAA2_TX_CONF_FQ) 2617 continue; 2618 for (j = 0; j < dpaa2_eth_tc_count(priv); j++) { 2619 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2620 DPNI_QUEUE_TX, j, fq->flowid, 2621 &queue, &qid); 2622 if (err) 2623 goto out_err; 2624 2625 fq->tx_fqid[j] = qid.fqid; 2626 if (fq->tx_fqid[j] == 0) 2627 goto out_err; 2628 } 2629 } 2630 2631 priv->enqueue = dpaa2_eth_enqueue_fq_multiple; 2632 2633 return; 2634 2635 out_err: 2636 netdev_info(priv->net_dev, 2637 "Error reading Tx FQID, fallback to QDID-based enqueue\n"); 2638 priv->enqueue = dpaa2_eth_enqueue_qd; 2639 } 2640 2641 /* Configure the DPNI object this interface is associated with */ 2642 static int setup_dpni(struct fsl_mc_device *ls_dev) 2643 { 2644 struct device *dev = &ls_dev->dev; 2645 struct dpaa2_eth_priv *priv; 2646 struct net_device *net_dev; 2647 int err; 2648 2649 net_dev = dev_get_drvdata(dev); 2650 priv = netdev_priv(net_dev); 2651 2652 /* get a handle for the DPNI object */ 2653 err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token); 2654 if (err) { 2655 dev_err(dev, "dpni_open() failed\n"); 2656 return err; 2657 } 2658 2659 /* Check if we can work with this DPNI object */ 2660 err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major, 2661 &priv->dpni_ver_minor); 2662 if (err) { 2663 dev_err(dev, "dpni_get_api_version() failed\n"); 2664 goto close; 2665 } 2666 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) { 2667 dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n", 2668 priv->dpni_ver_major, priv->dpni_ver_minor, 2669 DPNI_VER_MAJOR, DPNI_VER_MINOR); 2670 err = -ENOTSUPP; 2671 goto close; 2672 } 2673 2674 ls_dev->mc_io = priv->mc_io; 2675 ls_dev->mc_handle = priv->mc_token; 2676 2677 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2678 if (err) { 2679 dev_err(dev, "dpni_reset() failed\n"); 2680 goto close; 2681 } 2682 2683 err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token, 2684 &priv->dpni_attrs); 2685 if (err) { 2686 dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err); 2687 goto close; 2688 } 2689 2690 err = set_buffer_layout(priv); 2691 if (err) 2692 goto close; 2693 2694 set_enqueue_mode(priv); 2695 2696 /* Enable pause frame support */ 2697 if (dpaa2_eth_has_pause_support(priv)) { 2698 err = set_pause(priv); 2699 if (err) 2700 goto close; 2701 } 2702 2703 priv->cls_rules = devm_kzalloc(dev, sizeof(struct dpaa2_eth_cls_rule) * 2704 dpaa2_eth_fs_count(priv), GFP_KERNEL); 2705 if (!priv->cls_rules) 2706 goto close; 2707 2708 return 0; 2709 2710 close: 2711 dpni_close(priv->mc_io, 0, priv->mc_token); 2712 2713 return err; 2714 } 2715 2716 static void free_dpni(struct dpaa2_eth_priv *priv) 2717 { 2718 int err; 2719 2720 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2721 if (err) 2722 netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n", 2723 err); 2724 2725 dpni_close(priv->mc_io, 0, priv->mc_token); 2726 } 2727 2728 static int setup_rx_flow(struct dpaa2_eth_priv *priv, 2729 struct dpaa2_eth_fq *fq) 2730 { 2731 struct device *dev = priv->net_dev->dev.parent; 2732 struct dpni_queue queue; 2733 struct dpni_queue_id qid; 2734 int err; 2735 2736 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2737 DPNI_QUEUE_RX, 0, fq->flowid, &queue, &qid); 2738 if (err) { 2739 dev_err(dev, "dpni_get_queue(RX) failed\n"); 2740 return err; 2741 } 2742 2743 fq->fqid = qid.fqid; 2744 2745 queue.destination.id = fq->channel->dpcon_id; 2746 queue.destination.type = DPNI_DEST_DPCON; 2747 queue.destination.priority = 1; 2748 queue.user_context = (u64)(uintptr_t)fq; 2749 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2750 DPNI_QUEUE_RX, 0, fq->flowid, 2751 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 2752 &queue); 2753 if (err) { 2754 dev_err(dev, "dpni_set_queue(RX) failed\n"); 2755 return err; 2756 } 2757 2758 /* xdp_rxq setup */ 2759 err = xdp_rxq_info_reg(&fq->channel->xdp_rxq, priv->net_dev, 2760 fq->flowid); 2761 if (err) { 2762 dev_err(dev, "xdp_rxq_info_reg failed\n"); 2763 return err; 2764 } 2765 2766 err = xdp_rxq_info_reg_mem_model(&fq->channel->xdp_rxq, 2767 MEM_TYPE_PAGE_ORDER0, NULL); 2768 if (err) { 2769 dev_err(dev, "xdp_rxq_info_reg_mem_model failed\n"); 2770 return err; 2771 } 2772 2773 return 0; 2774 } 2775 2776 static int setup_tx_flow(struct dpaa2_eth_priv *priv, 2777 struct dpaa2_eth_fq *fq) 2778 { 2779 struct device *dev = priv->net_dev->dev.parent; 2780 struct dpni_queue queue; 2781 struct dpni_queue_id qid; 2782 int i, err; 2783 2784 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 2785 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2786 DPNI_QUEUE_TX, i, fq->flowid, 2787 &queue, &qid); 2788 if (err) { 2789 dev_err(dev, "dpni_get_queue(TX) failed\n"); 2790 return err; 2791 } 2792 fq->tx_fqid[i] = qid.fqid; 2793 } 2794 2795 /* All Tx queues belonging to the same flowid have the same qdbin */ 2796 fq->tx_qdbin = qid.qdbin; 2797 2798 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2799 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 2800 &queue, &qid); 2801 if (err) { 2802 dev_err(dev, "dpni_get_queue(TX_CONF) failed\n"); 2803 return err; 2804 } 2805 2806 fq->fqid = qid.fqid; 2807 2808 queue.destination.id = fq->channel->dpcon_id; 2809 queue.destination.type = DPNI_DEST_DPCON; 2810 queue.destination.priority = 0; 2811 queue.user_context = (u64)(uintptr_t)fq; 2812 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2813 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 2814 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 2815 &queue); 2816 if (err) { 2817 dev_err(dev, "dpni_set_queue(TX_CONF) failed\n"); 2818 return err; 2819 } 2820 2821 return 0; 2822 } 2823 2824 /* Supported header fields for Rx hash distribution key */ 2825 static const struct dpaa2_eth_dist_fields dist_fields[] = { 2826 { 2827 /* L2 header */ 2828 .rxnfc_field = RXH_L2DA, 2829 .cls_prot = NET_PROT_ETH, 2830 .cls_field = NH_FLD_ETH_DA, 2831 .id = DPAA2_ETH_DIST_ETHDST, 2832 .size = 6, 2833 }, { 2834 .cls_prot = NET_PROT_ETH, 2835 .cls_field = NH_FLD_ETH_SA, 2836 .id = DPAA2_ETH_DIST_ETHSRC, 2837 .size = 6, 2838 }, { 2839 /* This is the last ethertype field parsed: 2840 * depending on frame format, it can be the MAC ethertype 2841 * or the VLAN etype. 2842 */ 2843 .cls_prot = NET_PROT_ETH, 2844 .cls_field = NH_FLD_ETH_TYPE, 2845 .id = DPAA2_ETH_DIST_ETHTYPE, 2846 .size = 2, 2847 }, { 2848 /* VLAN header */ 2849 .rxnfc_field = RXH_VLAN, 2850 .cls_prot = NET_PROT_VLAN, 2851 .cls_field = NH_FLD_VLAN_TCI, 2852 .id = DPAA2_ETH_DIST_VLAN, 2853 .size = 2, 2854 }, { 2855 /* IP header */ 2856 .rxnfc_field = RXH_IP_SRC, 2857 .cls_prot = NET_PROT_IP, 2858 .cls_field = NH_FLD_IP_SRC, 2859 .id = DPAA2_ETH_DIST_IPSRC, 2860 .size = 4, 2861 }, { 2862 .rxnfc_field = RXH_IP_DST, 2863 .cls_prot = NET_PROT_IP, 2864 .cls_field = NH_FLD_IP_DST, 2865 .id = DPAA2_ETH_DIST_IPDST, 2866 .size = 4, 2867 }, { 2868 .rxnfc_field = RXH_L3_PROTO, 2869 .cls_prot = NET_PROT_IP, 2870 .cls_field = NH_FLD_IP_PROTO, 2871 .id = DPAA2_ETH_DIST_IPPROTO, 2872 .size = 1, 2873 }, { 2874 /* Using UDP ports, this is functionally equivalent to raw 2875 * byte pairs from L4 header. 2876 */ 2877 .rxnfc_field = RXH_L4_B_0_1, 2878 .cls_prot = NET_PROT_UDP, 2879 .cls_field = NH_FLD_UDP_PORT_SRC, 2880 .id = DPAA2_ETH_DIST_L4SRC, 2881 .size = 2, 2882 }, { 2883 .rxnfc_field = RXH_L4_B_2_3, 2884 .cls_prot = NET_PROT_UDP, 2885 .cls_field = NH_FLD_UDP_PORT_DST, 2886 .id = DPAA2_ETH_DIST_L4DST, 2887 .size = 2, 2888 }, 2889 }; 2890 2891 /* Configure the Rx hash key using the legacy API */ 2892 static int config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2893 { 2894 struct device *dev = priv->net_dev->dev.parent; 2895 struct dpni_rx_tc_dist_cfg dist_cfg; 2896 int err; 2897 2898 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2899 2900 dist_cfg.key_cfg_iova = key; 2901 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2902 dist_cfg.dist_mode = DPNI_DIST_MODE_HASH; 2903 2904 err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 0, &dist_cfg); 2905 if (err) 2906 dev_err(dev, "dpni_set_rx_tc_dist failed\n"); 2907 2908 return err; 2909 } 2910 2911 /* Configure the Rx hash key using the new API */ 2912 static int config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2913 { 2914 struct device *dev = priv->net_dev->dev.parent; 2915 struct dpni_rx_dist_cfg dist_cfg; 2916 int err; 2917 2918 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2919 2920 dist_cfg.key_cfg_iova = key; 2921 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2922 dist_cfg.enable = 1; 2923 2924 err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2925 if (err) 2926 dev_err(dev, "dpni_set_rx_hash_dist failed\n"); 2927 2928 return err; 2929 } 2930 2931 /* Configure the Rx flow classification key */ 2932 static int config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2933 { 2934 struct device *dev = priv->net_dev->dev.parent; 2935 struct dpni_rx_dist_cfg dist_cfg; 2936 int err; 2937 2938 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2939 2940 dist_cfg.key_cfg_iova = key; 2941 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2942 dist_cfg.enable = 1; 2943 2944 err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2945 if (err) 2946 dev_err(dev, "dpni_set_rx_fs_dist failed\n"); 2947 2948 return err; 2949 } 2950 2951 /* Size of the Rx flow classification key */ 2952 int dpaa2_eth_cls_key_size(u64 fields) 2953 { 2954 int i, size = 0; 2955 2956 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2957 if (!(fields & dist_fields[i].id)) 2958 continue; 2959 size += dist_fields[i].size; 2960 } 2961 2962 return size; 2963 } 2964 2965 /* Offset of header field in Rx classification key */ 2966 int dpaa2_eth_cls_fld_off(int prot, int field) 2967 { 2968 int i, off = 0; 2969 2970 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2971 if (dist_fields[i].cls_prot == prot && 2972 dist_fields[i].cls_field == field) 2973 return off; 2974 off += dist_fields[i].size; 2975 } 2976 2977 WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n"); 2978 return 0; 2979 } 2980 2981 /* Prune unused fields from the classification rule. 2982 * Used when masking is not supported 2983 */ 2984 void dpaa2_eth_cls_trim_rule(void *key_mem, u64 fields) 2985 { 2986 int off = 0, new_off = 0; 2987 int i, size; 2988 2989 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2990 size = dist_fields[i].size; 2991 if (dist_fields[i].id & fields) { 2992 memcpy(key_mem + new_off, key_mem + off, size); 2993 new_off += size; 2994 } 2995 off += size; 2996 } 2997 } 2998 2999 /* Set Rx distribution (hash or flow classification) key 3000 * flags is a combination of RXH_ bits 3001 */ 3002 static int dpaa2_eth_set_dist_key(struct net_device *net_dev, 3003 enum dpaa2_eth_rx_dist type, u64 flags) 3004 { 3005 struct device *dev = net_dev->dev.parent; 3006 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3007 struct dpkg_profile_cfg cls_cfg; 3008 u32 rx_hash_fields = 0; 3009 dma_addr_t key_iova; 3010 u8 *dma_mem; 3011 int i; 3012 int err = 0; 3013 3014 memset(&cls_cfg, 0, sizeof(cls_cfg)); 3015 3016 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 3017 struct dpkg_extract *key = 3018 &cls_cfg.extracts[cls_cfg.num_extracts]; 3019 3020 /* For both Rx hashing and classification keys 3021 * we set only the selected fields. 3022 */ 3023 if (!(flags & dist_fields[i].id)) 3024 continue; 3025 if (type == DPAA2_ETH_RX_DIST_HASH) 3026 rx_hash_fields |= dist_fields[i].rxnfc_field; 3027 3028 if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) { 3029 dev_err(dev, "error adding key extraction rule, too many rules?\n"); 3030 return -E2BIG; 3031 } 3032 3033 key->type = DPKG_EXTRACT_FROM_HDR; 3034 key->extract.from_hdr.prot = dist_fields[i].cls_prot; 3035 key->extract.from_hdr.type = DPKG_FULL_FIELD; 3036 key->extract.from_hdr.field = dist_fields[i].cls_field; 3037 cls_cfg.num_extracts++; 3038 } 3039 3040 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 3041 if (!dma_mem) 3042 return -ENOMEM; 3043 3044 err = dpni_prepare_key_cfg(&cls_cfg, dma_mem); 3045 if (err) { 3046 dev_err(dev, "dpni_prepare_key_cfg error %d\n", err); 3047 goto free_key; 3048 } 3049 3050 /* Prepare for setting the rx dist */ 3051 key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, 3052 DMA_TO_DEVICE); 3053 if (dma_mapping_error(dev, key_iova)) { 3054 dev_err(dev, "DMA mapping failed\n"); 3055 err = -ENOMEM; 3056 goto free_key; 3057 } 3058 3059 if (type == DPAA2_ETH_RX_DIST_HASH) { 3060 if (dpaa2_eth_has_legacy_dist(priv)) 3061 err = config_legacy_hash_key(priv, key_iova); 3062 else 3063 err = config_hash_key(priv, key_iova); 3064 } else { 3065 err = config_cls_key(priv, key_iova); 3066 } 3067 3068 dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE, 3069 DMA_TO_DEVICE); 3070 if (!err && type == DPAA2_ETH_RX_DIST_HASH) 3071 priv->rx_hash_fields = rx_hash_fields; 3072 3073 free_key: 3074 kfree(dma_mem); 3075 return err; 3076 } 3077 3078 int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags) 3079 { 3080 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3081 u64 key = 0; 3082 int i; 3083 3084 if (!dpaa2_eth_hash_enabled(priv)) 3085 return -EOPNOTSUPP; 3086 3087 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) 3088 if (dist_fields[i].rxnfc_field & flags) 3089 key |= dist_fields[i].id; 3090 3091 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, key); 3092 } 3093 3094 int dpaa2_eth_set_cls(struct net_device *net_dev, u64 flags) 3095 { 3096 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_CLS, flags); 3097 } 3098 3099 static int dpaa2_eth_set_default_cls(struct dpaa2_eth_priv *priv) 3100 { 3101 struct device *dev = priv->net_dev->dev.parent; 3102 int err; 3103 3104 /* Check if we actually support Rx flow classification */ 3105 if (dpaa2_eth_has_legacy_dist(priv)) { 3106 dev_dbg(dev, "Rx cls not supported by current MC version\n"); 3107 return -EOPNOTSUPP; 3108 } 3109 3110 if (!dpaa2_eth_fs_enabled(priv)) { 3111 dev_dbg(dev, "Rx cls disabled in DPNI options\n"); 3112 return -EOPNOTSUPP; 3113 } 3114 3115 if (!dpaa2_eth_hash_enabled(priv)) { 3116 dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n"); 3117 return -EOPNOTSUPP; 3118 } 3119 3120 /* If there is no support for masking in the classification table, 3121 * we don't set a default key, as it will depend on the rules 3122 * added by the user at runtime. 3123 */ 3124 if (!dpaa2_eth_fs_mask_enabled(priv)) 3125 goto out; 3126 3127 err = dpaa2_eth_set_cls(priv->net_dev, DPAA2_ETH_DIST_ALL); 3128 if (err) 3129 return err; 3130 3131 out: 3132 priv->rx_cls_enabled = 1; 3133 3134 return 0; 3135 } 3136 3137 /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs, 3138 * frame queues and channels 3139 */ 3140 static int bind_dpni(struct dpaa2_eth_priv *priv) 3141 { 3142 struct net_device *net_dev = priv->net_dev; 3143 struct device *dev = net_dev->dev.parent; 3144 struct dpni_pools_cfg pools_params; 3145 struct dpni_error_cfg err_cfg; 3146 int err = 0; 3147 int i; 3148 3149 pools_params.num_dpbp = 1; 3150 pools_params.pools[0].dpbp_id = priv->dpbp_dev->obj_desc.id; 3151 pools_params.pools[0].backup_pool = 0; 3152 pools_params.pools[0].buffer_size = DPAA2_ETH_RX_BUF_SIZE; 3153 err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params); 3154 if (err) { 3155 dev_err(dev, "dpni_set_pools() failed\n"); 3156 return err; 3157 } 3158 3159 /* have the interface implicitly distribute traffic based on 3160 * the default hash key 3161 */ 3162 err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT); 3163 if (err && err != -EOPNOTSUPP) 3164 dev_err(dev, "Failed to configure hashing\n"); 3165 3166 /* Configure the flow classification key; it includes all 3167 * supported header fields and cannot be modified at runtime 3168 */ 3169 err = dpaa2_eth_set_default_cls(priv); 3170 if (err && err != -EOPNOTSUPP) 3171 dev_err(dev, "Failed to configure Rx classification key\n"); 3172 3173 /* Configure handling of error frames */ 3174 err_cfg.errors = DPAA2_FAS_RX_ERR_MASK; 3175 err_cfg.set_frame_annotation = 1; 3176 err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD; 3177 err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token, 3178 &err_cfg); 3179 if (err) { 3180 dev_err(dev, "dpni_set_errors_behavior failed\n"); 3181 return err; 3182 } 3183 3184 /* Configure Rx and Tx conf queues to generate CDANs */ 3185 for (i = 0; i < priv->num_fqs; i++) { 3186 switch (priv->fq[i].type) { 3187 case DPAA2_RX_FQ: 3188 err = setup_rx_flow(priv, &priv->fq[i]); 3189 break; 3190 case DPAA2_TX_CONF_FQ: 3191 err = setup_tx_flow(priv, &priv->fq[i]); 3192 break; 3193 default: 3194 dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type); 3195 return -EINVAL; 3196 } 3197 if (err) 3198 return err; 3199 } 3200 3201 err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token, 3202 DPNI_QUEUE_TX, &priv->tx_qdid); 3203 if (err) { 3204 dev_err(dev, "dpni_get_qdid() failed\n"); 3205 return err; 3206 } 3207 3208 return 0; 3209 } 3210 3211 /* Allocate rings for storing incoming frame descriptors */ 3212 static int alloc_rings(struct dpaa2_eth_priv *priv) 3213 { 3214 struct net_device *net_dev = priv->net_dev; 3215 struct device *dev = net_dev->dev.parent; 3216 int i; 3217 3218 for (i = 0; i < priv->num_channels; i++) { 3219 priv->channel[i]->store = 3220 dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev); 3221 if (!priv->channel[i]->store) { 3222 netdev_err(net_dev, "dpaa2_io_store_create() failed\n"); 3223 goto err_ring; 3224 } 3225 } 3226 3227 return 0; 3228 3229 err_ring: 3230 for (i = 0; i < priv->num_channels; i++) { 3231 if (!priv->channel[i]->store) 3232 break; 3233 dpaa2_io_store_destroy(priv->channel[i]->store); 3234 } 3235 3236 return -ENOMEM; 3237 } 3238 3239 static void free_rings(struct dpaa2_eth_priv *priv) 3240 { 3241 int i; 3242 3243 for (i = 0; i < priv->num_channels; i++) 3244 dpaa2_io_store_destroy(priv->channel[i]->store); 3245 } 3246 3247 static int set_mac_addr(struct dpaa2_eth_priv *priv) 3248 { 3249 struct net_device *net_dev = priv->net_dev; 3250 struct device *dev = net_dev->dev.parent; 3251 u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN]; 3252 int err; 3253 3254 /* Get firmware address, if any */ 3255 err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); 3256 if (err) { 3257 dev_err(dev, "dpni_get_port_mac_addr() failed\n"); 3258 return err; 3259 } 3260 3261 /* Get DPNI attributes address, if any */ 3262 err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 3263 dpni_mac_addr); 3264 if (err) { 3265 dev_err(dev, "dpni_get_primary_mac_addr() failed\n"); 3266 return err; 3267 } 3268 3269 /* First check if firmware has any address configured by bootloader */ 3270 if (!is_zero_ether_addr(mac_addr)) { 3271 /* If the DPMAC addr != DPNI addr, update it */ 3272 if (!ether_addr_equal(mac_addr, dpni_mac_addr)) { 3273 err = dpni_set_primary_mac_addr(priv->mc_io, 0, 3274 priv->mc_token, 3275 mac_addr); 3276 if (err) { 3277 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 3278 return err; 3279 } 3280 } 3281 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len); 3282 } else if (is_zero_ether_addr(dpni_mac_addr)) { 3283 /* No MAC address configured, fill in net_dev->dev_addr 3284 * with a random one 3285 */ 3286 eth_hw_addr_random(net_dev); 3287 dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); 3288 3289 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 3290 net_dev->dev_addr); 3291 if (err) { 3292 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 3293 return err; 3294 } 3295 3296 /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all 3297 * practical purposes, this will be our "permanent" mac address, 3298 * at least until the next reboot. This move will also permit 3299 * register_netdevice() to properly fill up net_dev->perm_addr. 3300 */ 3301 net_dev->addr_assign_type = NET_ADDR_PERM; 3302 } else { 3303 /* NET_ADDR_PERM is default, all we have to do is 3304 * fill in the device addr. 3305 */ 3306 memcpy(net_dev->dev_addr, dpni_mac_addr, net_dev->addr_len); 3307 } 3308 3309 return 0; 3310 } 3311 3312 static int netdev_init(struct net_device *net_dev) 3313 { 3314 struct device *dev = net_dev->dev.parent; 3315 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3316 u32 options = priv->dpni_attrs.options; 3317 u64 supported = 0, not_supported = 0; 3318 u8 bcast_addr[ETH_ALEN]; 3319 u8 num_queues; 3320 int err; 3321 3322 net_dev->netdev_ops = &dpaa2_eth_ops; 3323 net_dev->ethtool_ops = &dpaa2_ethtool_ops; 3324 3325 err = set_mac_addr(priv); 3326 if (err) 3327 return err; 3328 3329 /* Explicitly add the broadcast address to the MAC filtering table */ 3330 eth_broadcast_addr(bcast_addr); 3331 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr); 3332 if (err) { 3333 dev_err(dev, "dpni_add_mac_addr() failed\n"); 3334 return err; 3335 } 3336 3337 /* Set MTU upper limit; lower limit is 68B (default value) */ 3338 net_dev->max_mtu = DPAA2_ETH_MAX_MTU; 3339 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, 3340 DPAA2_ETH_MFL); 3341 if (err) { 3342 dev_err(dev, "dpni_set_max_frame_length() failed\n"); 3343 return err; 3344 } 3345 3346 /* Set actual number of queues in the net device */ 3347 num_queues = dpaa2_eth_queue_count(priv); 3348 err = netif_set_real_num_tx_queues(net_dev, num_queues); 3349 if (err) { 3350 dev_err(dev, "netif_set_real_num_tx_queues() failed\n"); 3351 return err; 3352 } 3353 err = netif_set_real_num_rx_queues(net_dev, num_queues); 3354 if (err) { 3355 dev_err(dev, "netif_set_real_num_rx_queues() failed\n"); 3356 return err; 3357 } 3358 3359 /* Capabilities listing */ 3360 supported |= IFF_LIVE_ADDR_CHANGE; 3361 3362 if (options & DPNI_OPT_NO_MAC_FILTER) 3363 not_supported |= IFF_UNICAST_FLT; 3364 else 3365 supported |= IFF_UNICAST_FLT; 3366 3367 net_dev->priv_flags |= supported; 3368 net_dev->priv_flags &= ~not_supported; 3369 3370 /* Features */ 3371 net_dev->features = NETIF_F_RXCSUM | 3372 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3373 NETIF_F_SG | NETIF_F_HIGHDMA | 3374 NETIF_F_LLTX; 3375 net_dev->hw_features = net_dev->features; 3376 3377 return 0; 3378 } 3379 3380 static int poll_link_state(void *arg) 3381 { 3382 struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg; 3383 int err; 3384 3385 while (!kthread_should_stop()) { 3386 err = link_state_update(priv); 3387 if (unlikely(err)) 3388 return err; 3389 3390 msleep(DPAA2_ETH_LINK_STATE_REFRESH); 3391 } 3392 3393 return 0; 3394 } 3395 3396 static int dpaa2_eth_connect_mac(struct dpaa2_eth_priv *priv) 3397 { 3398 struct fsl_mc_device *dpni_dev, *dpmac_dev; 3399 struct dpaa2_mac *mac; 3400 int err; 3401 3402 dpni_dev = to_fsl_mc_device(priv->net_dev->dev.parent); 3403 dpmac_dev = fsl_mc_get_endpoint(dpni_dev); 3404 if (IS_ERR(dpmac_dev) || dpmac_dev->dev.type != &fsl_mc_bus_dpmac_type) 3405 return 0; 3406 3407 if (dpaa2_mac_is_type_fixed(dpmac_dev, priv->mc_io)) 3408 return 0; 3409 3410 mac = kzalloc(sizeof(struct dpaa2_mac), GFP_KERNEL); 3411 if (!mac) 3412 return -ENOMEM; 3413 3414 mac->mc_dev = dpmac_dev; 3415 mac->mc_io = priv->mc_io; 3416 mac->net_dev = priv->net_dev; 3417 3418 err = dpaa2_mac_connect(mac); 3419 if (err) { 3420 netdev_err(priv->net_dev, "Error connecting to the MAC endpoint\n"); 3421 kfree(mac); 3422 return err; 3423 } 3424 priv->mac = mac; 3425 3426 return 0; 3427 } 3428 3429 static void dpaa2_eth_disconnect_mac(struct dpaa2_eth_priv *priv) 3430 { 3431 if (!priv->mac) 3432 return; 3433 3434 dpaa2_mac_disconnect(priv->mac); 3435 kfree(priv->mac); 3436 priv->mac = NULL; 3437 } 3438 3439 static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg) 3440 { 3441 u32 status = ~0; 3442 struct device *dev = (struct device *)arg; 3443 struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev); 3444 struct net_device *net_dev = dev_get_drvdata(dev); 3445 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3446 int err; 3447 3448 err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, 3449 DPNI_IRQ_INDEX, &status); 3450 if (unlikely(err)) { 3451 netdev_err(net_dev, "Can't get irq status (err %d)\n", err); 3452 return IRQ_HANDLED; 3453 } 3454 3455 if (status & DPNI_IRQ_EVENT_LINK_CHANGED) 3456 link_state_update(netdev_priv(net_dev)); 3457 3458 if (status & DPNI_IRQ_EVENT_ENDPOINT_CHANGED) { 3459 set_mac_addr(netdev_priv(net_dev)); 3460 update_tx_fqids(priv); 3461 3462 rtnl_lock(); 3463 if (priv->mac) 3464 dpaa2_eth_disconnect_mac(priv); 3465 else 3466 dpaa2_eth_connect_mac(priv); 3467 rtnl_unlock(); 3468 } 3469 3470 return IRQ_HANDLED; 3471 } 3472 3473 static int setup_irqs(struct fsl_mc_device *ls_dev) 3474 { 3475 int err = 0; 3476 struct fsl_mc_device_irq *irq; 3477 3478 err = fsl_mc_allocate_irqs(ls_dev); 3479 if (err) { 3480 dev_err(&ls_dev->dev, "MC irqs allocation failed\n"); 3481 return err; 3482 } 3483 3484 irq = ls_dev->irqs[0]; 3485 err = devm_request_threaded_irq(&ls_dev->dev, irq->msi_desc->irq, 3486 NULL, dpni_irq0_handler_thread, 3487 IRQF_NO_SUSPEND | IRQF_ONESHOT, 3488 dev_name(&ls_dev->dev), &ls_dev->dev); 3489 if (err < 0) { 3490 dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err); 3491 goto free_mc_irq; 3492 } 3493 3494 err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle, 3495 DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED | 3496 DPNI_IRQ_EVENT_ENDPOINT_CHANGED); 3497 if (err < 0) { 3498 dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err); 3499 goto free_irq; 3500 } 3501 3502 err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle, 3503 DPNI_IRQ_INDEX, 1); 3504 if (err < 0) { 3505 dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err); 3506 goto free_irq; 3507 } 3508 3509 return 0; 3510 3511 free_irq: 3512 devm_free_irq(&ls_dev->dev, irq->msi_desc->irq, &ls_dev->dev); 3513 free_mc_irq: 3514 fsl_mc_free_irqs(ls_dev); 3515 3516 return err; 3517 } 3518 3519 static void add_ch_napi(struct dpaa2_eth_priv *priv) 3520 { 3521 int i; 3522 struct dpaa2_eth_channel *ch; 3523 3524 for (i = 0; i < priv->num_channels; i++) { 3525 ch = priv->channel[i]; 3526 /* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */ 3527 netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll, 3528 NAPI_POLL_WEIGHT); 3529 } 3530 } 3531 3532 static void del_ch_napi(struct dpaa2_eth_priv *priv) 3533 { 3534 int i; 3535 struct dpaa2_eth_channel *ch; 3536 3537 for (i = 0; i < priv->num_channels; i++) { 3538 ch = priv->channel[i]; 3539 netif_napi_del(&ch->napi); 3540 } 3541 } 3542 3543 static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev) 3544 { 3545 struct device *dev; 3546 struct net_device *net_dev = NULL; 3547 struct dpaa2_eth_priv *priv = NULL; 3548 int err = 0; 3549 3550 dev = &dpni_dev->dev; 3551 3552 /* Net device */ 3553 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_NETDEV_QUEUES); 3554 if (!net_dev) { 3555 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3556 return -ENOMEM; 3557 } 3558 3559 SET_NETDEV_DEV(net_dev, dev); 3560 dev_set_drvdata(dev, net_dev); 3561 3562 priv = netdev_priv(net_dev); 3563 priv->net_dev = net_dev; 3564 3565 priv->iommu_domain = iommu_get_domain_for_dev(dev); 3566 3567 /* Obtain a MC portal */ 3568 err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, 3569 &priv->mc_io); 3570 if (err) { 3571 if (err == -ENXIO) 3572 err = -EPROBE_DEFER; 3573 else 3574 dev_err(dev, "MC portal allocation failed\n"); 3575 goto err_portal_alloc; 3576 } 3577 3578 /* MC objects initialization and configuration */ 3579 err = setup_dpni(dpni_dev); 3580 if (err) 3581 goto err_dpni_setup; 3582 3583 err = setup_dpio(priv); 3584 if (err) 3585 goto err_dpio_setup; 3586 3587 setup_fqs(priv); 3588 3589 err = setup_dpbp(priv); 3590 if (err) 3591 goto err_dpbp_setup; 3592 3593 err = bind_dpni(priv); 3594 if (err) 3595 goto err_bind; 3596 3597 /* Add a NAPI context for each channel */ 3598 add_ch_napi(priv); 3599 3600 /* Percpu statistics */ 3601 priv->percpu_stats = alloc_percpu(*priv->percpu_stats); 3602 if (!priv->percpu_stats) { 3603 dev_err(dev, "alloc_percpu(percpu_stats) failed\n"); 3604 err = -ENOMEM; 3605 goto err_alloc_percpu_stats; 3606 } 3607 priv->percpu_extras = alloc_percpu(*priv->percpu_extras); 3608 if (!priv->percpu_extras) { 3609 dev_err(dev, "alloc_percpu(percpu_extras) failed\n"); 3610 err = -ENOMEM; 3611 goto err_alloc_percpu_extras; 3612 } 3613 3614 err = netdev_init(net_dev); 3615 if (err) 3616 goto err_netdev_init; 3617 3618 /* Configure checksum offload based on current interface flags */ 3619 err = set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM)); 3620 if (err) 3621 goto err_csum; 3622 3623 err = set_tx_csum(priv, !!(net_dev->features & 3624 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))); 3625 if (err) 3626 goto err_csum; 3627 3628 err = alloc_rings(priv); 3629 if (err) 3630 goto err_alloc_rings; 3631 3632 err = setup_irqs(dpni_dev); 3633 if (err) { 3634 netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n"); 3635 priv->poll_thread = kthread_run(poll_link_state, priv, 3636 "%s_poll_link", net_dev->name); 3637 if (IS_ERR(priv->poll_thread)) { 3638 dev_err(dev, "Error starting polling thread\n"); 3639 goto err_poll_thread; 3640 } 3641 priv->do_link_poll = true; 3642 } 3643 3644 err = dpaa2_eth_connect_mac(priv); 3645 if (err) 3646 goto err_connect_mac; 3647 3648 err = register_netdev(net_dev); 3649 if (err < 0) { 3650 dev_err(dev, "register_netdev() failed\n"); 3651 goto err_netdev_reg; 3652 } 3653 3654 #ifdef CONFIG_DEBUG_FS 3655 dpaa2_dbg_add(priv); 3656 #endif 3657 3658 dev_info(dev, "Probed interface %s\n", net_dev->name); 3659 return 0; 3660 3661 err_netdev_reg: 3662 dpaa2_eth_disconnect_mac(priv); 3663 err_connect_mac: 3664 if (priv->do_link_poll) 3665 kthread_stop(priv->poll_thread); 3666 else 3667 fsl_mc_free_irqs(dpni_dev); 3668 err_poll_thread: 3669 free_rings(priv); 3670 err_alloc_rings: 3671 err_csum: 3672 err_netdev_init: 3673 free_percpu(priv->percpu_extras); 3674 err_alloc_percpu_extras: 3675 free_percpu(priv->percpu_stats); 3676 err_alloc_percpu_stats: 3677 del_ch_napi(priv); 3678 err_bind: 3679 free_dpbp(priv); 3680 err_dpbp_setup: 3681 free_dpio(priv); 3682 err_dpio_setup: 3683 free_dpni(priv); 3684 err_dpni_setup: 3685 fsl_mc_portal_free(priv->mc_io); 3686 err_portal_alloc: 3687 dev_set_drvdata(dev, NULL); 3688 free_netdev(net_dev); 3689 3690 return err; 3691 } 3692 3693 static int dpaa2_eth_remove(struct fsl_mc_device *ls_dev) 3694 { 3695 struct device *dev; 3696 struct net_device *net_dev; 3697 struct dpaa2_eth_priv *priv; 3698 3699 dev = &ls_dev->dev; 3700 net_dev = dev_get_drvdata(dev); 3701 priv = netdev_priv(net_dev); 3702 3703 #ifdef CONFIG_DEBUG_FS 3704 dpaa2_dbg_remove(priv); 3705 #endif 3706 rtnl_lock(); 3707 dpaa2_eth_disconnect_mac(priv); 3708 rtnl_unlock(); 3709 3710 unregister_netdev(net_dev); 3711 3712 if (priv->do_link_poll) 3713 kthread_stop(priv->poll_thread); 3714 else 3715 fsl_mc_free_irqs(ls_dev); 3716 3717 free_rings(priv); 3718 free_percpu(priv->percpu_stats); 3719 free_percpu(priv->percpu_extras); 3720 3721 del_ch_napi(priv); 3722 free_dpbp(priv); 3723 free_dpio(priv); 3724 free_dpni(priv); 3725 3726 fsl_mc_portal_free(priv->mc_io); 3727 3728 free_netdev(net_dev); 3729 3730 dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name); 3731 3732 return 0; 3733 } 3734 3735 static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = { 3736 { 3737 .vendor = FSL_MC_VENDOR_FREESCALE, 3738 .obj_type = "dpni", 3739 }, 3740 { .vendor = 0x0 } 3741 }; 3742 MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table); 3743 3744 static struct fsl_mc_driver dpaa2_eth_driver = { 3745 .driver = { 3746 .name = KBUILD_MODNAME, 3747 .owner = THIS_MODULE, 3748 }, 3749 .probe = dpaa2_eth_probe, 3750 .remove = dpaa2_eth_remove, 3751 .match_id_table = dpaa2_eth_match_id_table 3752 }; 3753 3754 static int __init dpaa2_eth_driver_init(void) 3755 { 3756 int err; 3757 3758 dpaa2_eth_dbg_init(); 3759 err = fsl_mc_driver_register(&dpaa2_eth_driver); 3760 if (err) { 3761 dpaa2_eth_dbg_exit(); 3762 return err; 3763 } 3764 3765 return 0; 3766 } 3767 3768 static void __exit dpaa2_eth_driver_exit(void) 3769 { 3770 dpaa2_eth_dbg_exit(); 3771 fsl_mc_driver_unregister(&dpaa2_eth_driver); 3772 } 3773 3774 module_init(dpaa2_eth_driver_init); 3775 module_exit(dpaa2_eth_driver_exit); 3776