1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* Copyright 2014-2016 Freescale Semiconductor Inc. 3 * Copyright 2016-2017 NXP 4 */ 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/platform_device.h> 8 #include <linux/etherdevice.h> 9 #include <linux/of_net.h> 10 #include <linux/interrupt.h> 11 #include <linux/msi.h> 12 #include <linux/kthread.h> 13 #include <linux/iommu.h> 14 #include <linux/net_tstamp.h> 15 #include <linux/fsl/mc.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_trace.h> 18 #include <net/sock.h> 19 20 #include "dpaa2-eth.h" 21 22 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files 23 * using trace events only need to #include <trace/events/sched.h> 24 */ 25 #define CREATE_TRACE_POINTS 26 #include "dpaa2-eth-trace.h" 27 28 MODULE_LICENSE("Dual BSD/GPL"); 29 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 30 MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver"); 31 32 static void *dpaa2_iova_to_virt(struct iommu_domain *domain, 33 dma_addr_t iova_addr) 34 { 35 phys_addr_t phys_addr; 36 37 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 38 39 return phys_to_virt(phys_addr); 40 } 41 42 static void validate_rx_csum(struct dpaa2_eth_priv *priv, 43 u32 fd_status, 44 struct sk_buff *skb) 45 { 46 skb_checksum_none_assert(skb); 47 48 /* HW checksum validation is disabled, nothing to do here */ 49 if (!(priv->net_dev->features & NETIF_F_RXCSUM)) 50 return; 51 52 /* Read checksum validation bits */ 53 if (!((fd_status & DPAA2_FAS_L3CV) && 54 (fd_status & DPAA2_FAS_L4CV))) 55 return; 56 57 /* Inform the stack there's no need to compute L3/L4 csum anymore */ 58 skb->ip_summed = CHECKSUM_UNNECESSARY; 59 } 60 61 /* Free a received FD. 62 * Not to be used for Tx conf FDs or on any other paths. 63 */ 64 static void free_rx_fd(struct dpaa2_eth_priv *priv, 65 const struct dpaa2_fd *fd, 66 void *vaddr) 67 { 68 struct device *dev = priv->net_dev->dev.parent; 69 dma_addr_t addr = dpaa2_fd_get_addr(fd); 70 u8 fd_format = dpaa2_fd_get_format(fd); 71 struct dpaa2_sg_entry *sgt; 72 void *sg_vaddr; 73 int i; 74 75 /* If single buffer frame, just free the data buffer */ 76 if (fd_format == dpaa2_fd_single) 77 goto free_buf; 78 else if (fd_format != dpaa2_fd_sg) 79 /* We don't support any other format */ 80 return; 81 82 /* For S/G frames, we first need to free all SG entries 83 * except the first one, which was taken care of already 84 */ 85 sgt = vaddr + dpaa2_fd_get_offset(fd); 86 for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 87 addr = dpaa2_sg_get_addr(&sgt[i]); 88 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 89 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 90 DMA_BIDIRECTIONAL); 91 92 free_pages((unsigned long)sg_vaddr, 0); 93 if (dpaa2_sg_is_final(&sgt[i])) 94 break; 95 } 96 97 free_buf: 98 free_pages((unsigned long)vaddr, 0); 99 } 100 101 /* Build a linear skb based on a single-buffer frame descriptor */ 102 static struct sk_buff *build_linear_skb(struct dpaa2_eth_channel *ch, 103 const struct dpaa2_fd *fd, 104 void *fd_vaddr) 105 { 106 struct sk_buff *skb = NULL; 107 u16 fd_offset = dpaa2_fd_get_offset(fd); 108 u32 fd_length = dpaa2_fd_get_len(fd); 109 110 ch->buf_count--; 111 112 skb = build_skb(fd_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 113 if (unlikely(!skb)) 114 return NULL; 115 116 skb_reserve(skb, fd_offset); 117 skb_put(skb, fd_length); 118 119 return skb; 120 } 121 122 /* Build a non linear (fragmented) skb based on a S/G table */ 123 static struct sk_buff *build_frag_skb(struct dpaa2_eth_priv *priv, 124 struct dpaa2_eth_channel *ch, 125 struct dpaa2_sg_entry *sgt) 126 { 127 struct sk_buff *skb = NULL; 128 struct device *dev = priv->net_dev->dev.parent; 129 void *sg_vaddr; 130 dma_addr_t sg_addr; 131 u16 sg_offset; 132 u32 sg_length; 133 struct page *page, *head_page; 134 int page_offset; 135 int i; 136 137 for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 138 struct dpaa2_sg_entry *sge = &sgt[i]; 139 140 /* NOTE: We only support SG entries in dpaa2_sg_single format, 141 * but this is the only format we may receive from HW anyway 142 */ 143 144 /* Get the address and length from the S/G entry */ 145 sg_addr = dpaa2_sg_get_addr(sge); 146 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr); 147 dma_unmap_page(dev, sg_addr, DPAA2_ETH_RX_BUF_SIZE, 148 DMA_BIDIRECTIONAL); 149 150 sg_length = dpaa2_sg_get_len(sge); 151 152 if (i == 0) { 153 /* We build the skb around the first data buffer */ 154 skb = build_skb(sg_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 155 if (unlikely(!skb)) { 156 /* Free the first SG entry now, since we already 157 * unmapped it and obtained the virtual address 158 */ 159 free_pages((unsigned long)sg_vaddr, 0); 160 161 /* We still need to subtract the buffers used 162 * by this FD from our software counter 163 */ 164 while (!dpaa2_sg_is_final(&sgt[i]) && 165 i < DPAA2_ETH_MAX_SG_ENTRIES) 166 i++; 167 break; 168 } 169 170 sg_offset = dpaa2_sg_get_offset(sge); 171 skb_reserve(skb, sg_offset); 172 skb_put(skb, sg_length); 173 } else { 174 /* Rest of the data buffers are stored as skb frags */ 175 page = virt_to_page(sg_vaddr); 176 head_page = virt_to_head_page(sg_vaddr); 177 178 /* Offset in page (which may be compound). 179 * Data in subsequent SG entries is stored from the 180 * beginning of the buffer, so we don't need to add the 181 * sg_offset. 182 */ 183 page_offset = ((unsigned long)sg_vaddr & 184 (PAGE_SIZE - 1)) + 185 (page_address(page) - page_address(head_page)); 186 187 skb_add_rx_frag(skb, i - 1, head_page, page_offset, 188 sg_length, DPAA2_ETH_RX_BUF_SIZE); 189 } 190 191 if (dpaa2_sg_is_final(sge)) 192 break; 193 } 194 195 WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT"); 196 197 /* Count all data buffers + SG table buffer */ 198 ch->buf_count -= i + 2; 199 200 return skb; 201 } 202 203 /* Free buffers acquired from the buffer pool or which were meant to 204 * be released in the pool 205 */ 206 static void free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, int count) 207 { 208 struct device *dev = priv->net_dev->dev.parent; 209 void *vaddr; 210 int i; 211 212 for (i = 0; i < count; i++) { 213 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]); 214 dma_unmap_page(dev, buf_array[i], DPAA2_ETH_RX_BUF_SIZE, 215 DMA_BIDIRECTIONAL); 216 free_pages((unsigned long)vaddr, 0); 217 } 218 } 219 220 static void xdp_release_buf(struct dpaa2_eth_priv *priv, 221 struct dpaa2_eth_channel *ch, 222 dma_addr_t addr) 223 { 224 int err; 225 226 ch->xdp.drop_bufs[ch->xdp.drop_cnt++] = addr; 227 if (ch->xdp.drop_cnt < DPAA2_ETH_BUFS_PER_CMD) 228 return; 229 230 while ((err = dpaa2_io_service_release(ch->dpio, priv->bpid, 231 ch->xdp.drop_bufs, 232 ch->xdp.drop_cnt)) == -EBUSY) 233 cpu_relax(); 234 235 if (err) { 236 free_bufs(priv, ch->xdp.drop_bufs, ch->xdp.drop_cnt); 237 ch->buf_count -= ch->xdp.drop_cnt; 238 } 239 240 ch->xdp.drop_cnt = 0; 241 } 242 243 static int xdp_enqueue(struct dpaa2_eth_priv *priv, struct dpaa2_fd *fd, 244 void *buf_start, u16 queue_id) 245 { 246 struct dpaa2_eth_fq *fq; 247 struct dpaa2_faead *faead; 248 u32 ctrl, frc; 249 int i, err; 250 251 /* Mark the egress frame hardware annotation area as valid */ 252 frc = dpaa2_fd_get_frc(fd); 253 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 254 dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL); 255 256 /* Instruct hardware to release the FD buffer directly into 257 * the buffer pool once transmission is completed, instead of 258 * sending a Tx confirmation frame to us 259 */ 260 ctrl = DPAA2_FAEAD_A4V | DPAA2_FAEAD_A2V | DPAA2_FAEAD_EBDDV; 261 faead = dpaa2_get_faead(buf_start, false); 262 faead->ctrl = cpu_to_le32(ctrl); 263 faead->conf_fqid = 0; 264 265 fq = &priv->fq[queue_id]; 266 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 267 err = priv->enqueue(priv, fq, fd, 0); 268 if (err != -EBUSY) 269 break; 270 } 271 272 return err; 273 } 274 275 static u32 run_xdp(struct dpaa2_eth_priv *priv, 276 struct dpaa2_eth_channel *ch, 277 struct dpaa2_eth_fq *rx_fq, 278 struct dpaa2_fd *fd, void *vaddr) 279 { 280 dma_addr_t addr = dpaa2_fd_get_addr(fd); 281 struct rtnl_link_stats64 *percpu_stats; 282 struct bpf_prog *xdp_prog; 283 struct xdp_buff xdp; 284 u32 xdp_act = XDP_PASS; 285 int err; 286 287 percpu_stats = this_cpu_ptr(priv->percpu_stats); 288 289 rcu_read_lock(); 290 291 xdp_prog = READ_ONCE(ch->xdp.prog); 292 if (!xdp_prog) 293 goto out; 294 295 xdp.data = vaddr + dpaa2_fd_get_offset(fd); 296 xdp.data_end = xdp.data + dpaa2_fd_get_len(fd); 297 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; 298 xdp_set_data_meta_invalid(&xdp); 299 xdp.rxq = &ch->xdp_rxq; 300 301 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 302 303 /* xdp.data pointer may have changed */ 304 dpaa2_fd_set_offset(fd, xdp.data - vaddr); 305 dpaa2_fd_set_len(fd, xdp.data_end - xdp.data); 306 307 switch (xdp_act) { 308 case XDP_PASS: 309 break; 310 case XDP_TX: 311 err = xdp_enqueue(priv, fd, vaddr, rx_fq->flowid); 312 if (err) { 313 xdp_release_buf(priv, ch, addr); 314 percpu_stats->tx_errors++; 315 ch->stats.xdp_tx_err++; 316 } else { 317 percpu_stats->tx_packets++; 318 percpu_stats->tx_bytes += dpaa2_fd_get_len(fd); 319 ch->stats.xdp_tx++; 320 } 321 break; 322 default: 323 bpf_warn_invalid_xdp_action(xdp_act); 324 /* fall through */ 325 case XDP_ABORTED: 326 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 327 /* fall through */ 328 case XDP_DROP: 329 xdp_release_buf(priv, ch, addr); 330 ch->stats.xdp_drop++; 331 break; 332 case XDP_REDIRECT: 333 dma_unmap_page(priv->net_dev->dev.parent, addr, 334 DPAA2_ETH_RX_BUF_SIZE, DMA_BIDIRECTIONAL); 335 ch->buf_count--; 336 xdp.data_hard_start = vaddr; 337 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 338 if (unlikely(err)) 339 ch->stats.xdp_drop++; 340 else 341 ch->stats.xdp_redirect++; 342 break; 343 } 344 345 ch->xdp.res |= xdp_act; 346 out: 347 rcu_read_unlock(); 348 return xdp_act; 349 } 350 351 /* Main Rx frame processing routine */ 352 static void dpaa2_eth_rx(struct dpaa2_eth_priv *priv, 353 struct dpaa2_eth_channel *ch, 354 const struct dpaa2_fd *fd, 355 struct dpaa2_eth_fq *fq) 356 { 357 dma_addr_t addr = dpaa2_fd_get_addr(fd); 358 u8 fd_format = dpaa2_fd_get_format(fd); 359 void *vaddr; 360 struct sk_buff *skb; 361 struct rtnl_link_stats64 *percpu_stats; 362 struct dpaa2_eth_drv_stats *percpu_extras; 363 struct device *dev = priv->net_dev->dev.parent; 364 struct dpaa2_fas *fas; 365 void *buf_data; 366 u32 status = 0; 367 u32 xdp_act; 368 369 /* Tracing point */ 370 trace_dpaa2_rx_fd(priv->net_dev, fd); 371 372 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 373 dma_sync_single_for_cpu(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 374 DMA_BIDIRECTIONAL); 375 376 fas = dpaa2_get_fas(vaddr, false); 377 prefetch(fas); 378 buf_data = vaddr + dpaa2_fd_get_offset(fd); 379 prefetch(buf_data); 380 381 percpu_stats = this_cpu_ptr(priv->percpu_stats); 382 percpu_extras = this_cpu_ptr(priv->percpu_extras); 383 384 if (fd_format == dpaa2_fd_single) { 385 xdp_act = run_xdp(priv, ch, fq, (struct dpaa2_fd *)fd, vaddr); 386 if (xdp_act != XDP_PASS) { 387 percpu_stats->rx_packets++; 388 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 389 return; 390 } 391 392 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 393 DMA_BIDIRECTIONAL); 394 skb = build_linear_skb(ch, fd, vaddr); 395 } else if (fd_format == dpaa2_fd_sg) { 396 WARN_ON(priv->xdp_prog); 397 398 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 399 DMA_BIDIRECTIONAL); 400 skb = build_frag_skb(priv, ch, buf_data); 401 free_pages((unsigned long)vaddr, 0); 402 percpu_extras->rx_sg_frames++; 403 percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd); 404 } else { 405 /* We don't support any other format */ 406 goto err_frame_format; 407 } 408 409 if (unlikely(!skb)) 410 goto err_build_skb; 411 412 prefetch(skb->data); 413 414 /* Get the timestamp value */ 415 if (priv->rx_tstamp) { 416 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 417 __le64 *ts = dpaa2_get_ts(vaddr, false); 418 u64 ns; 419 420 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 421 422 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 423 shhwtstamps->hwtstamp = ns_to_ktime(ns); 424 } 425 426 /* Check if we need to validate the L4 csum */ 427 if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) { 428 status = le32_to_cpu(fas->status); 429 validate_rx_csum(priv, status, skb); 430 } 431 432 skb->protocol = eth_type_trans(skb, priv->net_dev); 433 skb_record_rx_queue(skb, fq->flowid); 434 435 percpu_stats->rx_packets++; 436 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 437 438 napi_gro_receive(&ch->napi, skb); 439 440 return; 441 442 err_build_skb: 443 free_rx_fd(priv, fd, vaddr); 444 err_frame_format: 445 percpu_stats->rx_dropped++; 446 } 447 448 /* Consume all frames pull-dequeued into the store. This is the simplest way to 449 * make sure we don't accidentally issue another volatile dequeue which would 450 * overwrite (leak) frames already in the store. 451 * 452 * Observance of NAPI budget is not our concern, leaving that to the caller. 453 */ 454 static int consume_frames(struct dpaa2_eth_channel *ch, 455 struct dpaa2_eth_fq **src) 456 { 457 struct dpaa2_eth_priv *priv = ch->priv; 458 struct dpaa2_eth_fq *fq = NULL; 459 struct dpaa2_dq *dq; 460 const struct dpaa2_fd *fd; 461 int cleaned = 0; 462 int is_last; 463 464 do { 465 dq = dpaa2_io_store_next(ch->store, &is_last); 466 if (unlikely(!dq)) { 467 /* If we're here, we *must* have placed a 468 * volatile dequeue comnmand, so keep reading through 469 * the store until we get some sort of valid response 470 * token (either a valid frame or an "empty dequeue") 471 */ 472 continue; 473 } 474 475 fd = dpaa2_dq_fd(dq); 476 fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq); 477 478 fq->consume(priv, ch, fd, fq); 479 cleaned++; 480 } while (!is_last); 481 482 if (!cleaned) 483 return 0; 484 485 fq->stats.frames += cleaned; 486 487 /* A dequeue operation only pulls frames from a single queue 488 * into the store. Return the frame queue as an out param. 489 */ 490 if (src) 491 *src = fq; 492 493 return cleaned; 494 } 495 496 /* Configure the egress frame annotation for timestamp update */ 497 static void enable_tx_tstamp(struct dpaa2_fd *fd, void *buf_start) 498 { 499 struct dpaa2_faead *faead; 500 u32 ctrl, frc; 501 502 /* Mark the egress frame annotation area as valid */ 503 frc = dpaa2_fd_get_frc(fd); 504 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 505 506 /* Set hardware annotation size */ 507 ctrl = dpaa2_fd_get_ctrl(fd); 508 dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL); 509 510 /* enable UPD (update prepanded data) bit in FAEAD field of 511 * hardware frame annotation area 512 */ 513 ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD; 514 faead = dpaa2_get_faead(buf_start, true); 515 faead->ctrl = cpu_to_le32(ctrl); 516 } 517 518 /* Create a frame descriptor based on a fragmented skb */ 519 static int build_sg_fd(struct dpaa2_eth_priv *priv, 520 struct sk_buff *skb, 521 struct dpaa2_fd *fd) 522 { 523 struct device *dev = priv->net_dev->dev.parent; 524 void *sgt_buf = NULL; 525 dma_addr_t addr; 526 int nr_frags = skb_shinfo(skb)->nr_frags; 527 struct dpaa2_sg_entry *sgt; 528 int i, err; 529 int sgt_buf_size; 530 struct scatterlist *scl, *crt_scl; 531 int num_sg; 532 int num_dma_bufs; 533 struct dpaa2_eth_swa *swa; 534 535 /* Create and map scatterlist. 536 * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have 537 * to go beyond nr_frags+1. 538 * Note: We don't support chained scatterlists 539 */ 540 if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1)) 541 return -EINVAL; 542 543 scl = kcalloc(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC); 544 if (unlikely(!scl)) 545 return -ENOMEM; 546 547 sg_init_table(scl, nr_frags + 1); 548 num_sg = skb_to_sgvec(skb, scl, 0, skb->len); 549 num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 550 if (unlikely(!num_dma_bufs)) { 551 err = -ENOMEM; 552 goto dma_map_sg_failed; 553 } 554 555 /* Prepare the HW SGT structure */ 556 sgt_buf_size = priv->tx_data_offset + 557 sizeof(struct dpaa2_sg_entry) * num_dma_bufs; 558 sgt_buf = netdev_alloc_frag(sgt_buf_size + DPAA2_ETH_TX_BUF_ALIGN); 559 if (unlikely(!sgt_buf)) { 560 err = -ENOMEM; 561 goto sgt_buf_alloc_failed; 562 } 563 sgt_buf = PTR_ALIGN(sgt_buf, DPAA2_ETH_TX_BUF_ALIGN); 564 memset(sgt_buf, 0, sgt_buf_size); 565 566 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 567 568 /* Fill in the HW SGT structure. 569 * 570 * sgt_buf is zeroed out, so the following fields are implicit 571 * in all sgt entries: 572 * - offset is 0 573 * - format is 'dpaa2_sg_single' 574 */ 575 for_each_sg(scl, crt_scl, num_dma_bufs, i) { 576 dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl)); 577 dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl)); 578 } 579 dpaa2_sg_set_final(&sgt[i - 1], true); 580 581 /* Store the skb backpointer in the SGT buffer. 582 * Fit the scatterlist and the number of buffers alongside the 583 * skb backpointer in the software annotation area. We'll need 584 * all of them on Tx Conf. 585 */ 586 swa = (struct dpaa2_eth_swa *)sgt_buf; 587 swa->type = DPAA2_ETH_SWA_SG; 588 swa->sg.skb = skb; 589 swa->sg.scl = scl; 590 swa->sg.num_sg = num_sg; 591 swa->sg.sgt_size = sgt_buf_size; 592 593 /* Separately map the SGT buffer */ 594 addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 595 if (unlikely(dma_mapping_error(dev, addr))) { 596 err = -ENOMEM; 597 goto dma_map_single_failed; 598 } 599 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 600 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 601 dpaa2_fd_set_addr(fd, addr); 602 dpaa2_fd_set_len(fd, skb->len); 603 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 604 605 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 606 enable_tx_tstamp(fd, sgt_buf); 607 608 return 0; 609 610 dma_map_single_failed: 611 skb_free_frag(sgt_buf); 612 sgt_buf_alloc_failed: 613 dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 614 dma_map_sg_failed: 615 kfree(scl); 616 return err; 617 } 618 619 /* Create a frame descriptor based on a linear skb */ 620 static int build_single_fd(struct dpaa2_eth_priv *priv, 621 struct sk_buff *skb, 622 struct dpaa2_fd *fd) 623 { 624 struct device *dev = priv->net_dev->dev.parent; 625 u8 *buffer_start, *aligned_start; 626 struct dpaa2_eth_swa *swa; 627 dma_addr_t addr; 628 629 buffer_start = skb->data - dpaa2_eth_needed_headroom(priv, skb); 630 631 /* If there's enough room to align the FD address, do it. 632 * It will help hardware optimize accesses. 633 */ 634 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 635 DPAA2_ETH_TX_BUF_ALIGN); 636 if (aligned_start >= skb->head) 637 buffer_start = aligned_start; 638 639 /* Store a backpointer to the skb at the beginning of the buffer 640 * (in the private data area) such that we can release it 641 * on Tx confirm 642 */ 643 swa = (struct dpaa2_eth_swa *)buffer_start; 644 swa->type = DPAA2_ETH_SWA_SINGLE; 645 swa->single.skb = skb; 646 647 addr = dma_map_single(dev, buffer_start, 648 skb_tail_pointer(skb) - buffer_start, 649 DMA_BIDIRECTIONAL); 650 if (unlikely(dma_mapping_error(dev, addr))) 651 return -ENOMEM; 652 653 dpaa2_fd_set_addr(fd, addr); 654 dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start)); 655 dpaa2_fd_set_len(fd, skb->len); 656 dpaa2_fd_set_format(fd, dpaa2_fd_single); 657 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 658 659 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 660 enable_tx_tstamp(fd, buffer_start); 661 662 return 0; 663 } 664 665 /* FD freeing routine on the Tx path 666 * 667 * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb 668 * back-pointed to is also freed. 669 * This can be called either from dpaa2_eth_tx_conf() or on the error path of 670 * dpaa2_eth_tx(). 671 */ 672 static void free_tx_fd(const struct dpaa2_eth_priv *priv, 673 struct dpaa2_eth_fq *fq, 674 const struct dpaa2_fd *fd, bool in_napi) 675 { 676 struct device *dev = priv->net_dev->dev.parent; 677 dma_addr_t fd_addr; 678 struct sk_buff *skb = NULL; 679 unsigned char *buffer_start; 680 struct dpaa2_eth_swa *swa; 681 u8 fd_format = dpaa2_fd_get_format(fd); 682 u32 fd_len = dpaa2_fd_get_len(fd); 683 684 fd_addr = dpaa2_fd_get_addr(fd); 685 buffer_start = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr); 686 swa = (struct dpaa2_eth_swa *)buffer_start; 687 688 if (fd_format == dpaa2_fd_single) { 689 if (swa->type == DPAA2_ETH_SWA_SINGLE) { 690 skb = swa->single.skb; 691 /* Accessing the skb buffer is safe before dma unmap, 692 * because we didn't map the actual skb shell. 693 */ 694 dma_unmap_single(dev, fd_addr, 695 skb_tail_pointer(skb) - buffer_start, 696 DMA_BIDIRECTIONAL); 697 } else { 698 WARN_ONCE(swa->type != DPAA2_ETH_SWA_XDP, "Wrong SWA type"); 699 dma_unmap_single(dev, fd_addr, swa->xdp.dma_size, 700 DMA_BIDIRECTIONAL); 701 } 702 } else if (fd_format == dpaa2_fd_sg) { 703 skb = swa->sg.skb; 704 705 /* Unmap the scatterlist */ 706 dma_unmap_sg(dev, swa->sg.scl, swa->sg.num_sg, 707 DMA_BIDIRECTIONAL); 708 kfree(swa->sg.scl); 709 710 /* Unmap the SGT buffer */ 711 dma_unmap_single(dev, fd_addr, swa->sg.sgt_size, 712 DMA_BIDIRECTIONAL); 713 } else { 714 netdev_dbg(priv->net_dev, "Invalid FD format\n"); 715 return; 716 } 717 718 if (swa->type != DPAA2_ETH_SWA_XDP && in_napi) { 719 fq->dq_frames++; 720 fq->dq_bytes += fd_len; 721 } 722 723 if (swa->type == DPAA2_ETH_SWA_XDP) { 724 xdp_return_frame(swa->xdp.xdpf); 725 return; 726 } 727 728 /* Get the timestamp value */ 729 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 730 struct skb_shared_hwtstamps shhwtstamps; 731 __le64 *ts = dpaa2_get_ts(buffer_start, true); 732 u64 ns; 733 734 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 735 736 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 737 shhwtstamps.hwtstamp = ns_to_ktime(ns); 738 skb_tstamp_tx(skb, &shhwtstamps); 739 } 740 741 /* Free SGT buffer allocated on tx */ 742 if (fd_format != dpaa2_fd_single) 743 skb_free_frag(buffer_start); 744 745 /* Move on with skb release */ 746 napi_consume_skb(skb, in_napi); 747 } 748 749 static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) 750 { 751 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 752 struct dpaa2_fd fd; 753 struct rtnl_link_stats64 *percpu_stats; 754 struct dpaa2_eth_drv_stats *percpu_extras; 755 struct dpaa2_eth_fq *fq; 756 struct netdev_queue *nq; 757 u16 queue_mapping; 758 unsigned int needed_headroom; 759 u32 fd_len; 760 int err, i; 761 762 percpu_stats = this_cpu_ptr(priv->percpu_stats); 763 percpu_extras = this_cpu_ptr(priv->percpu_extras); 764 765 needed_headroom = dpaa2_eth_needed_headroom(priv, skb); 766 if (skb_headroom(skb) < needed_headroom) { 767 struct sk_buff *ns; 768 769 ns = skb_realloc_headroom(skb, needed_headroom); 770 if (unlikely(!ns)) { 771 percpu_stats->tx_dropped++; 772 goto err_alloc_headroom; 773 } 774 percpu_extras->tx_reallocs++; 775 776 if (skb->sk) 777 skb_set_owner_w(ns, skb->sk); 778 779 dev_kfree_skb(skb); 780 skb = ns; 781 } 782 783 /* We'll be holding a back-reference to the skb until Tx Confirmation; 784 * we don't want that overwritten by a concurrent Tx with a cloned skb. 785 */ 786 skb = skb_unshare(skb, GFP_ATOMIC); 787 if (unlikely(!skb)) { 788 /* skb_unshare() has already freed the skb */ 789 percpu_stats->tx_dropped++; 790 return NETDEV_TX_OK; 791 } 792 793 /* Setup the FD fields */ 794 memset(&fd, 0, sizeof(fd)); 795 796 if (skb_is_nonlinear(skb)) { 797 err = build_sg_fd(priv, skb, &fd); 798 percpu_extras->tx_sg_frames++; 799 percpu_extras->tx_sg_bytes += skb->len; 800 } else { 801 err = build_single_fd(priv, skb, &fd); 802 } 803 804 if (unlikely(err)) { 805 percpu_stats->tx_dropped++; 806 goto err_build_fd; 807 } 808 809 /* Tracing point */ 810 trace_dpaa2_tx_fd(net_dev, &fd); 811 812 /* TxConf FQ selection relies on queue id from the stack. 813 * In case of a forwarded frame from another DPNI interface, we choose 814 * a queue affined to the same core that processed the Rx frame 815 */ 816 queue_mapping = skb_get_queue_mapping(skb); 817 fq = &priv->fq[queue_mapping]; 818 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 819 err = priv->enqueue(priv, fq, &fd, 0); 820 if (err != -EBUSY) 821 break; 822 } 823 percpu_extras->tx_portal_busy += i; 824 if (unlikely(err < 0)) { 825 percpu_stats->tx_errors++; 826 /* Clean up everything, including freeing the skb */ 827 free_tx_fd(priv, fq, &fd, false); 828 } else { 829 fd_len = dpaa2_fd_get_len(&fd); 830 percpu_stats->tx_packets++; 831 percpu_stats->tx_bytes += fd_len; 832 833 nq = netdev_get_tx_queue(net_dev, queue_mapping); 834 netdev_tx_sent_queue(nq, fd_len); 835 } 836 837 return NETDEV_TX_OK; 838 839 err_build_fd: 840 err_alloc_headroom: 841 dev_kfree_skb(skb); 842 843 return NETDEV_TX_OK; 844 } 845 846 /* Tx confirmation frame processing routine */ 847 static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv, 848 struct dpaa2_eth_channel *ch __always_unused, 849 const struct dpaa2_fd *fd, 850 struct dpaa2_eth_fq *fq) 851 { 852 struct rtnl_link_stats64 *percpu_stats; 853 struct dpaa2_eth_drv_stats *percpu_extras; 854 u32 fd_len = dpaa2_fd_get_len(fd); 855 u32 fd_errors; 856 857 /* Tracing point */ 858 trace_dpaa2_tx_conf_fd(priv->net_dev, fd); 859 860 percpu_extras = this_cpu_ptr(priv->percpu_extras); 861 percpu_extras->tx_conf_frames++; 862 percpu_extras->tx_conf_bytes += fd_len; 863 864 /* Check frame errors in the FD field */ 865 fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK; 866 free_tx_fd(priv, fq, fd, true); 867 868 if (likely(!fd_errors)) 869 return; 870 871 if (net_ratelimit()) 872 netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n", 873 fd_errors); 874 875 percpu_stats = this_cpu_ptr(priv->percpu_stats); 876 /* Tx-conf logically pertains to the egress path. */ 877 percpu_stats->tx_errors++; 878 } 879 880 static int set_rx_csum(struct dpaa2_eth_priv *priv, bool enable) 881 { 882 int err; 883 884 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 885 DPNI_OFF_RX_L3_CSUM, enable); 886 if (err) { 887 netdev_err(priv->net_dev, 888 "dpni_set_offload(RX_L3_CSUM) failed\n"); 889 return err; 890 } 891 892 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 893 DPNI_OFF_RX_L4_CSUM, enable); 894 if (err) { 895 netdev_err(priv->net_dev, 896 "dpni_set_offload(RX_L4_CSUM) failed\n"); 897 return err; 898 } 899 900 return 0; 901 } 902 903 static int set_tx_csum(struct dpaa2_eth_priv *priv, bool enable) 904 { 905 int err; 906 907 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 908 DPNI_OFF_TX_L3_CSUM, enable); 909 if (err) { 910 netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n"); 911 return err; 912 } 913 914 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 915 DPNI_OFF_TX_L4_CSUM, enable); 916 if (err) { 917 netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n"); 918 return err; 919 } 920 921 return 0; 922 } 923 924 /* Perform a single release command to add buffers 925 * to the specified buffer pool 926 */ 927 static int add_bufs(struct dpaa2_eth_priv *priv, 928 struct dpaa2_eth_channel *ch, u16 bpid) 929 { 930 struct device *dev = priv->net_dev->dev.parent; 931 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 932 struct page *page; 933 dma_addr_t addr; 934 int i, err; 935 936 for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) { 937 /* Allocate buffer visible to WRIOP + skb shared info + 938 * alignment padding 939 */ 940 /* allocate one page for each Rx buffer. WRIOP sees 941 * the entire page except for a tailroom reserved for 942 * skb shared info 943 */ 944 page = dev_alloc_pages(0); 945 if (!page) 946 goto err_alloc; 947 948 addr = dma_map_page(dev, page, 0, DPAA2_ETH_RX_BUF_SIZE, 949 DMA_BIDIRECTIONAL); 950 if (unlikely(dma_mapping_error(dev, addr))) 951 goto err_map; 952 953 buf_array[i] = addr; 954 955 /* tracing point */ 956 trace_dpaa2_eth_buf_seed(priv->net_dev, 957 page, DPAA2_ETH_RX_BUF_RAW_SIZE, 958 addr, DPAA2_ETH_RX_BUF_SIZE, 959 bpid); 960 } 961 962 release_bufs: 963 /* In case the portal is busy, retry until successful */ 964 while ((err = dpaa2_io_service_release(ch->dpio, bpid, 965 buf_array, i)) == -EBUSY) 966 cpu_relax(); 967 968 /* If release command failed, clean up and bail out; 969 * not much else we can do about it 970 */ 971 if (err) { 972 free_bufs(priv, buf_array, i); 973 return 0; 974 } 975 976 return i; 977 978 err_map: 979 __free_pages(page, 0); 980 err_alloc: 981 /* If we managed to allocate at least some buffers, 982 * release them to hardware 983 */ 984 if (i) 985 goto release_bufs; 986 987 return 0; 988 } 989 990 static int seed_pool(struct dpaa2_eth_priv *priv, u16 bpid) 991 { 992 int i, j; 993 int new_count; 994 995 /* This is the lazy seeding of Rx buffer pools. 996 * dpaa2_add_bufs() is also used on the Rx hotpath and calls 997 * napi_alloc_frag(). The trouble with that is that it in turn ends up 998 * calling this_cpu_ptr(), which mandates execution in atomic context. 999 * Rather than splitting up the code, do a one-off preempt disable. 1000 */ 1001 preempt_disable(); 1002 for (j = 0; j < priv->num_channels; j++) { 1003 for (i = 0; i < DPAA2_ETH_NUM_BUFS; 1004 i += DPAA2_ETH_BUFS_PER_CMD) { 1005 new_count = add_bufs(priv, priv->channel[j], bpid); 1006 priv->channel[j]->buf_count += new_count; 1007 1008 if (new_count < DPAA2_ETH_BUFS_PER_CMD) { 1009 preempt_enable(); 1010 return -ENOMEM; 1011 } 1012 } 1013 } 1014 preempt_enable(); 1015 1016 return 0; 1017 } 1018 1019 /** 1020 * Drain the specified number of buffers from the DPNI's private buffer pool. 1021 * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD 1022 */ 1023 static void drain_bufs(struct dpaa2_eth_priv *priv, int count) 1024 { 1025 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1026 int ret; 1027 1028 do { 1029 ret = dpaa2_io_service_acquire(NULL, priv->bpid, 1030 buf_array, count); 1031 if (ret < 0) { 1032 netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n"); 1033 return; 1034 } 1035 free_bufs(priv, buf_array, ret); 1036 } while (ret); 1037 } 1038 1039 static void drain_pool(struct dpaa2_eth_priv *priv) 1040 { 1041 int i; 1042 1043 drain_bufs(priv, DPAA2_ETH_BUFS_PER_CMD); 1044 drain_bufs(priv, 1); 1045 1046 for (i = 0; i < priv->num_channels; i++) 1047 priv->channel[i]->buf_count = 0; 1048 } 1049 1050 /* Function is called from softirq context only, so we don't need to guard 1051 * the access to percpu count 1052 */ 1053 static int refill_pool(struct dpaa2_eth_priv *priv, 1054 struct dpaa2_eth_channel *ch, 1055 u16 bpid) 1056 { 1057 int new_count; 1058 1059 if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH)) 1060 return 0; 1061 1062 do { 1063 new_count = add_bufs(priv, ch, bpid); 1064 if (unlikely(!new_count)) { 1065 /* Out of memory; abort for now, we'll try later on */ 1066 break; 1067 } 1068 ch->buf_count += new_count; 1069 } while (ch->buf_count < DPAA2_ETH_NUM_BUFS); 1070 1071 if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS)) 1072 return -ENOMEM; 1073 1074 return 0; 1075 } 1076 1077 static int pull_channel(struct dpaa2_eth_channel *ch) 1078 { 1079 int err; 1080 int dequeues = -1; 1081 1082 /* Retry while portal is busy */ 1083 do { 1084 err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id, 1085 ch->store); 1086 dequeues++; 1087 cpu_relax(); 1088 } while (err == -EBUSY); 1089 1090 ch->stats.dequeue_portal_busy += dequeues; 1091 if (unlikely(err)) 1092 ch->stats.pull_err++; 1093 1094 return err; 1095 } 1096 1097 /* NAPI poll routine 1098 * 1099 * Frames are dequeued from the QMan channel associated with this NAPI context. 1100 * Rx, Tx confirmation and (if configured) Rx error frames all count 1101 * towards the NAPI budget. 1102 */ 1103 static int dpaa2_eth_poll(struct napi_struct *napi, int budget) 1104 { 1105 struct dpaa2_eth_channel *ch; 1106 struct dpaa2_eth_priv *priv; 1107 int rx_cleaned = 0, txconf_cleaned = 0; 1108 struct dpaa2_eth_fq *fq, *txc_fq = NULL; 1109 struct netdev_queue *nq; 1110 int store_cleaned, work_done; 1111 int err; 1112 1113 ch = container_of(napi, struct dpaa2_eth_channel, napi); 1114 ch->xdp.res = 0; 1115 priv = ch->priv; 1116 1117 do { 1118 err = pull_channel(ch); 1119 if (unlikely(err)) 1120 break; 1121 1122 /* Refill pool if appropriate */ 1123 refill_pool(priv, ch, priv->bpid); 1124 1125 store_cleaned = consume_frames(ch, &fq); 1126 if (!store_cleaned) 1127 break; 1128 if (fq->type == DPAA2_RX_FQ) { 1129 rx_cleaned += store_cleaned; 1130 } else { 1131 txconf_cleaned += store_cleaned; 1132 /* We have a single Tx conf FQ on this channel */ 1133 txc_fq = fq; 1134 } 1135 1136 /* If we either consumed the whole NAPI budget with Rx frames 1137 * or we reached the Tx confirmations threshold, we're done. 1138 */ 1139 if (rx_cleaned >= budget || 1140 txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI) { 1141 work_done = budget; 1142 goto out; 1143 } 1144 } while (store_cleaned); 1145 1146 /* We didn't consume the entire budget, so finish napi and 1147 * re-enable data availability notifications 1148 */ 1149 napi_complete_done(napi, rx_cleaned); 1150 do { 1151 err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx); 1152 cpu_relax(); 1153 } while (err == -EBUSY); 1154 WARN_ONCE(err, "CDAN notifications rearm failed on core %d", 1155 ch->nctx.desired_cpu); 1156 1157 work_done = max(rx_cleaned, 1); 1158 1159 out: 1160 if (txc_fq && txc_fq->dq_frames) { 1161 nq = netdev_get_tx_queue(priv->net_dev, txc_fq->flowid); 1162 netdev_tx_completed_queue(nq, txc_fq->dq_frames, 1163 txc_fq->dq_bytes); 1164 txc_fq->dq_frames = 0; 1165 txc_fq->dq_bytes = 0; 1166 } 1167 1168 if (ch->xdp.res & XDP_REDIRECT) 1169 xdp_do_flush_map(); 1170 1171 return work_done; 1172 } 1173 1174 static void enable_ch_napi(struct dpaa2_eth_priv *priv) 1175 { 1176 struct dpaa2_eth_channel *ch; 1177 int i; 1178 1179 for (i = 0; i < priv->num_channels; i++) { 1180 ch = priv->channel[i]; 1181 napi_enable(&ch->napi); 1182 } 1183 } 1184 1185 static void disable_ch_napi(struct dpaa2_eth_priv *priv) 1186 { 1187 struct dpaa2_eth_channel *ch; 1188 int i; 1189 1190 for (i = 0; i < priv->num_channels; i++) { 1191 ch = priv->channel[i]; 1192 napi_disable(&ch->napi); 1193 } 1194 } 1195 1196 static int link_state_update(struct dpaa2_eth_priv *priv) 1197 { 1198 struct dpni_link_state state = {0}; 1199 int err; 1200 1201 err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state); 1202 if (unlikely(err)) { 1203 netdev_err(priv->net_dev, 1204 "dpni_get_link_state() failed\n"); 1205 return err; 1206 } 1207 1208 /* Chech link state; speed / duplex changes are not treated yet */ 1209 if (priv->link_state.up == state.up) 1210 return 0; 1211 1212 priv->link_state = state; 1213 if (state.up) { 1214 netif_carrier_on(priv->net_dev); 1215 netif_tx_start_all_queues(priv->net_dev); 1216 } else { 1217 netif_tx_stop_all_queues(priv->net_dev); 1218 netif_carrier_off(priv->net_dev); 1219 } 1220 1221 netdev_info(priv->net_dev, "Link Event: state %s\n", 1222 state.up ? "up" : "down"); 1223 1224 return 0; 1225 } 1226 1227 static int dpaa2_eth_open(struct net_device *net_dev) 1228 { 1229 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1230 int err; 1231 1232 err = seed_pool(priv, priv->bpid); 1233 if (err) { 1234 /* Not much to do; the buffer pool, though not filled up, 1235 * may still contain some buffers which would enable us 1236 * to limp on. 1237 */ 1238 netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n", 1239 priv->dpbp_dev->obj_desc.id, priv->bpid); 1240 } 1241 1242 /* We'll only start the txqs when the link is actually ready; make sure 1243 * we don't race against the link up notification, which may come 1244 * immediately after dpni_enable(); 1245 */ 1246 netif_tx_stop_all_queues(net_dev); 1247 enable_ch_napi(priv); 1248 /* Also, explicitly set carrier off, otherwise netif_carrier_ok() will 1249 * return true and cause 'ip link show' to report the LOWER_UP flag, 1250 * even though the link notification wasn't even received. 1251 */ 1252 netif_carrier_off(net_dev); 1253 1254 err = dpni_enable(priv->mc_io, 0, priv->mc_token); 1255 if (err < 0) { 1256 netdev_err(net_dev, "dpni_enable() failed\n"); 1257 goto enable_err; 1258 } 1259 1260 /* If the DPMAC object has already processed the link up interrupt, 1261 * we have to learn the link state ourselves. 1262 */ 1263 err = link_state_update(priv); 1264 if (err < 0) { 1265 netdev_err(net_dev, "Can't update link state\n"); 1266 goto link_state_err; 1267 } 1268 1269 return 0; 1270 1271 link_state_err: 1272 enable_err: 1273 disable_ch_napi(priv); 1274 drain_pool(priv); 1275 return err; 1276 } 1277 1278 /* Total number of in-flight frames on ingress queues */ 1279 static u32 ingress_fq_count(struct dpaa2_eth_priv *priv) 1280 { 1281 struct dpaa2_eth_fq *fq; 1282 u32 fcnt = 0, bcnt = 0, total = 0; 1283 int i, err; 1284 1285 for (i = 0; i < priv->num_fqs; i++) { 1286 fq = &priv->fq[i]; 1287 err = dpaa2_io_query_fq_count(NULL, fq->fqid, &fcnt, &bcnt); 1288 if (err) { 1289 netdev_warn(priv->net_dev, "query_fq_count failed"); 1290 break; 1291 } 1292 total += fcnt; 1293 } 1294 1295 return total; 1296 } 1297 1298 static void wait_for_fq_empty(struct dpaa2_eth_priv *priv) 1299 { 1300 int retries = 10; 1301 u32 pending; 1302 1303 do { 1304 pending = ingress_fq_count(priv); 1305 if (pending) 1306 msleep(100); 1307 } while (pending && --retries); 1308 } 1309 1310 static int dpaa2_eth_stop(struct net_device *net_dev) 1311 { 1312 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1313 int dpni_enabled = 0; 1314 int retries = 10; 1315 1316 netif_tx_stop_all_queues(net_dev); 1317 netif_carrier_off(net_dev); 1318 1319 /* On dpni_disable(), the MC firmware will: 1320 * - stop MAC Rx and wait for all Rx frames to be enqueued to software 1321 * - cut off WRIOP dequeues from egress FQs and wait until transmission 1322 * of all in flight Tx frames is finished (and corresponding Tx conf 1323 * frames are enqueued back to software) 1324 * 1325 * Before calling dpni_disable(), we wait for all Tx frames to arrive 1326 * on WRIOP. After it finishes, wait until all remaining frames on Rx 1327 * and Tx conf queues are consumed on NAPI poll. 1328 */ 1329 msleep(500); 1330 1331 do { 1332 dpni_disable(priv->mc_io, 0, priv->mc_token); 1333 dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled); 1334 if (dpni_enabled) 1335 /* Allow the hardware some slack */ 1336 msleep(100); 1337 } while (dpni_enabled && --retries); 1338 if (!retries) { 1339 netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n"); 1340 /* Must go on and disable NAPI nonetheless, so we don't crash at 1341 * the next "ifconfig up" 1342 */ 1343 } 1344 1345 wait_for_fq_empty(priv); 1346 disable_ch_napi(priv); 1347 1348 /* Empty the buffer pool */ 1349 drain_pool(priv); 1350 1351 return 0; 1352 } 1353 1354 static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr) 1355 { 1356 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1357 struct device *dev = net_dev->dev.parent; 1358 int err; 1359 1360 err = eth_mac_addr(net_dev, addr); 1361 if (err < 0) { 1362 dev_err(dev, "eth_mac_addr() failed (%d)\n", err); 1363 return err; 1364 } 1365 1366 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 1367 net_dev->dev_addr); 1368 if (err) { 1369 dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err); 1370 return err; 1371 } 1372 1373 return 0; 1374 } 1375 1376 /** Fill in counters maintained by the GPP driver. These may be different from 1377 * the hardware counters obtained by ethtool. 1378 */ 1379 static void dpaa2_eth_get_stats(struct net_device *net_dev, 1380 struct rtnl_link_stats64 *stats) 1381 { 1382 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1383 struct rtnl_link_stats64 *percpu_stats; 1384 u64 *cpustats; 1385 u64 *netstats = (u64 *)stats; 1386 int i, j; 1387 int num = sizeof(struct rtnl_link_stats64) / sizeof(u64); 1388 1389 for_each_possible_cpu(i) { 1390 percpu_stats = per_cpu_ptr(priv->percpu_stats, i); 1391 cpustats = (u64 *)percpu_stats; 1392 for (j = 0; j < num; j++) 1393 netstats[j] += cpustats[j]; 1394 } 1395 } 1396 1397 /* Copy mac unicast addresses from @net_dev to @priv. 1398 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1399 */ 1400 static void add_uc_hw_addr(const struct net_device *net_dev, 1401 struct dpaa2_eth_priv *priv) 1402 { 1403 struct netdev_hw_addr *ha; 1404 int err; 1405 1406 netdev_for_each_uc_addr(ha, net_dev) { 1407 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1408 ha->addr); 1409 if (err) 1410 netdev_warn(priv->net_dev, 1411 "Could not add ucast MAC %pM to the filtering table (err %d)\n", 1412 ha->addr, err); 1413 } 1414 } 1415 1416 /* Copy mac multicast addresses from @net_dev to @priv 1417 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1418 */ 1419 static void add_mc_hw_addr(const struct net_device *net_dev, 1420 struct dpaa2_eth_priv *priv) 1421 { 1422 struct netdev_hw_addr *ha; 1423 int err; 1424 1425 netdev_for_each_mc_addr(ha, net_dev) { 1426 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1427 ha->addr); 1428 if (err) 1429 netdev_warn(priv->net_dev, 1430 "Could not add mcast MAC %pM to the filtering table (err %d)\n", 1431 ha->addr, err); 1432 } 1433 } 1434 1435 static void dpaa2_eth_set_rx_mode(struct net_device *net_dev) 1436 { 1437 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1438 int uc_count = netdev_uc_count(net_dev); 1439 int mc_count = netdev_mc_count(net_dev); 1440 u8 max_mac = priv->dpni_attrs.mac_filter_entries; 1441 u32 options = priv->dpni_attrs.options; 1442 u16 mc_token = priv->mc_token; 1443 struct fsl_mc_io *mc_io = priv->mc_io; 1444 int err; 1445 1446 /* Basic sanity checks; these probably indicate a misconfiguration */ 1447 if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0) 1448 netdev_info(net_dev, 1449 "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n", 1450 max_mac); 1451 1452 /* Force promiscuous if the uc or mc counts exceed our capabilities. */ 1453 if (uc_count > max_mac) { 1454 netdev_info(net_dev, 1455 "Unicast addr count reached %d, max allowed is %d; forcing promisc\n", 1456 uc_count, max_mac); 1457 goto force_promisc; 1458 } 1459 if (mc_count + uc_count > max_mac) { 1460 netdev_info(net_dev, 1461 "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n", 1462 uc_count + mc_count, max_mac); 1463 goto force_mc_promisc; 1464 } 1465 1466 /* Adjust promisc settings due to flag combinations */ 1467 if (net_dev->flags & IFF_PROMISC) 1468 goto force_promisc; 1469 if (net_dev->flags & IFF_ALLMULTI) { 1470 /* First, rebuild unicast filtering table. This should be done 1471 * in promisc mode, in order to avoid frame loss while we 1472 * progressively add entries to the table. 1473 * We don't know whether we had been in promisc already, and 1474 * making an MC call to find out is expensive; so set uc promisc 1475 * nonetheless. 1476 */ 1477 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1478 if (err) 1479 netdev_warn(net_dev, "Can't set uc promisc\n"); 1480 1481 /* Actual uc table reconstruction. */ 1482 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0); 1483 if (err) 1484 netdev_warn(net_dev, "Can't clear uc filters\n"); 1485 add_uc_hw_addr(net_dev, priv); 1486 1487 /* Finally, clear uc promisc and set mc promisc as requested. */ 1488 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1489 if (err) 1490 netdev_warn(net_dev, "Can't clear uc promisc\n"); 1491 goto force_mc_promisc; 1492 } 1493 1494 /* Neither unicast, nor multicast promisc will be on... eventually. 1495 * For now, rebuild mac filtering tables while forcing both of them on. 1496 */ 1497 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1498 if (err) 1499 netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err); 1500 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1501 if (err) 1502 netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err); 1503 1504 /* Actual mac filtering tables reconstruction */ 1505 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1); 1506 if (err) 1507 netdev_warn(net_dev, "Can't clear mac filters\n"); 1508 add_mc_hw_addr(net_dev, priv); 1509 add_uc_hw_addr(net_dev, priv); 1510 1511 /* Now we can clear both ucast and mcast promisc, without risking 1512 * to drop legitimate frames anymore. 1513 */ 1514 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1515 if (err) 1516 netdev_warn(net_dev, "Can't clear ucast promisc\n"); 1517 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0); 1518 if (err) 1519 netdev_warn(net_dev, "Can't clear mcast promisc\n"); 1520 1521 return; 1522 1523 force_promisc: 1524 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1525 if (err) 1526 netdev_warn(net_dev, "Can't set ucast promisc\n"); 1527 force_mc_promisc: 1528 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1529 if (err) 1530 netdev_warn(net_dev, "Can't set mcast promisc\n"); 1531 } 1532 1533 static int dpaa2_eth_set_features(struct net_device *net_dev, 1534 netdev_features_t features) 1535 { 1536 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1537 netdev_features_t changed = features ^ net_dev->features; 1538 bool enable; 1539 int err; 1540 1541 if (changed & NETIF_F_RXCSUM) { 1542 enable = !!(features & NETIF_F_RXCSUM); 1543 err = set_rx_csum(priv, enable); 1544 if (err) 1545 return err; 1546 } 1547 1548 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 1549 enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 1550 err = set_tx_csum(priv, enable); 1551 if (err) 1552 return err; 1553 } 1554 1555 return 0; 1556 } 1557 1558 static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1559 { 1560 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1561 struct hwtstamp_config config; 1562 1563 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 1564 return -EFAULT; 1565 1566 switch (config.tx_type) { 1567 case HWTSTAMP_TX_OFF: 1568 priv->tx_tstamp = false; 1569 break; 1570 case HWTSTAMP_TX_ON: 1571 priv->tx_tstamp = true; 1572 break; 1573 default: 1574 return -ERANGE; 1575 } 1576 1577 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 1578 priv->rx_tstamp = false; 1579 } else { 1580 priv->rx_tstamp = true; 1581 /* TS is set for all frame types, not only those requested */ 1582 config.rx_filter = HWTSTAMP_FILTER_ALL; 1583 } 1584 1585 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 1586 -EFAULT : 0; 1587 } 1588 1589 static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1590 { 1591 if (cmd == SIOCSHWTSTAMP) 1592 return dpaa2_eth_ts_ioctl(dev, rq, cmd); 1593 1594 return -EINVAL; 1595 } 1596 1597 static bool xdp_mtu_valid(struct dpaa2_eth_priv *priv, int mtu) 1598 { 1599 int mfl, linear_mfl; 1600 1601 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1602 linear_mfl = DPAA2_ETH_RX_BUF_SIZE - DPAA2_ETH_RX_HWA_SIZE - 1603 dpaa2_eth_rx_head_room(priv) - XDP_PACKET_HEADROOM; 1604 1605 if (mfl > linear_mfl) { 1606 netdev_warn(priv->net_dev, "Maximum MTU for XDP is %d\n", 1607 linear_mfl - VLAN_ETH_HLEN); 1608 return false; 1609 } 1610 1611 return true; 1612 } 1613 1614 static int set_rx_mfl(struct dpaa2_eth_priv *priv, int mtu, bool has_xdp) 1615 { 1616 int mfl, err; 1617 1618 /* We enforce a maximum Rx frame length based on MTU only if we have 1619 * an XDP program attached (in order to avoid Rx S/G frames). 1620 * Otherwise, we accept all incoming frames as long as they are not 1621 * larger than maximum size supported in hardware 1622 */ 1623 if (has_xdp) 1624 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1625 else 1626 mfl = DPAA2_ETH_MFL; 1627 1628 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, mfl); 1629 if (err) { 1630 netdev_err(priv->net_dev, "dpni_set_max_frame_length failed\n"); 1631 return err; 1632 } 1633 1634 return 0; 1635 } 1636 1637 static int dpaa2_eth_change_mtu(struct net_device *dev, int new_mtu) 1638 { 1639 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1640 int err; 1641 1642 if (!priv->xdp_prog) 1643 goto out; 1644 1645 if (!xdp_mtu_valid(priv, new_mtu)) 1646 return -EINVAL; 1647 1648 err = set_rx_mfl(priv, new_mtu, true); 1649 if (err) 1650 return err; 1651 1652 out: 1653 dev->mtu = new_mtu; 1654 return 0; 1655 } 1656 1657 static int update_rx_buffer_headroom(struct dpaa2_eth_priv *priv, bool has_xdp) 1658 { 1659 struct dpni_buffer_layout buf_layout = {0}; 1660 int err; 1661 1662 err = dpni_get_buffer_layout(priv->mc_io, 0, priv->mc_token, 1663 DPNI_QUEUE_RX, &buf_layout); 1664 if (err) { 1665 netdev_err(priv->net_dev, "dpni_get_buffer_layout failed\n"); 1666 return err; 1667 } 1668 1669 /* Reserve extra headroom for XDP header size changes */ 1670 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv) + 1671 (has_xdp ? XDP_PACKET_HEADROOM : 0); 1672 buf_layout.options = DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM; 1673 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 1674 DPNI_QUEUE_RX, &buf_layout); 1675 if (err) { 1676 netdev_err(priv->net_dev, "dpni_set_buffer_layout failed\n"); 1677 return err; 1678 } 1679 1680 return 0; 1681 } 1682 1683 static int setup_xdp(struct net_device *dev, struct bpf_prog *prog) 1684 { 1685 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1686 struct dpaa2_eth_channel *ch; 1687 struct bpf_prog *old; 1688 bool up, need_update; 1689 int i, err; 1690 1691 if (prog && !xdp_mtu_valid(priv, dev->mtu)) 1692 return -EINVAL; 1693 1694 if (prog) { 1695 prog = bpf_prog_add(prog, priv->num_channels); 1696 if (IS_ERR(prog)) 1697 return PTR_ERR(prog); 1698 } 1699 1700 up = netif_running(dev); 1701 need_update = (!!priv->xdp_prog != !!prog); 1702 1703 if (up) 1704 dpaa2_eth_stop(dev); 1705 1706 /* While in xdp mode, enforce a maximum Rx frame size based on MTU. 1707 * Also, when switching between xdp/non-xdp modes we need to reconfigure 1708 * our Rx buffer layout. Buffer pool was drained on dpaa2_eth_stop, 1709 * so we are sure no old format buffers will be used from now on. 1710 */ 1711 if (need_update) { 1712 err = set_rx_mfl(priv, dev->mtu, !!prog); 1713 if (err) 1714 goto out_err; 1715 err = update_rx_buffer_headroom(priv, !!prog); 1716 if (err) 1717 goto out_err; 1718 } 1719 1720 old = xchg(&priv->xdp_prog, prog); 1721 if (old) 1722 bpf_prog_put(old); 1723 1724 for (i = 0; i < priv->num_channels; i++) { 1725 ch = priv->channel[i]; 1726 old = xchg(&ch->xdp.prog, prog); 1727 if (old) 1728 bpf_prog_put(old); 1729 } 1730 1731 if (up) { 1732 err = dpaa2_eth_open(dev); 1733 if (err) 1734 return err; 1735 } 1736 1737 return 0; 1738 1739 out_err: 1740 if (prog) 1741 bpf_prog_sub(prog, priv->num_channels); 1742 if (up) 1743 dpaa2_eth_open(dev); 1744 1745 return err; 1746 } 1747 1748 static int dpaa2_eth_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1749 { 1750 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1751 1752 switch (xdp->command) { 1753 case XDP_SETUP_PROG: 1754 return setup_xdp(dev, xdp->prog); 1755 case XDP_QUERY_PROG: 1756 xdp->prog_id = priv->xdp_prog ? priv->xdp_prog->aux->id : 0; 1757 break; 1758 default: 1759 return -EINVAL; 1760 } 1761 1762 return 0; 1763 } 1764 1765 static int dpaa2_eth_xdp_xmit_frame(struct net_device *net_dev, 1766 struct xdp_frame *xdpf) 1767 { 1768 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1769 struct device *dev = net_dev->dev.parent; 1770 struct rtnl_link_stats64 *percpu_stats; 1771 struct dpaa2_eth_drv_stats *percpu_extras; 1772 unsigned int needed_headroom; 1773 struct dpaa2_eth_swa *swa; 1774 struct dpaa2_eth_fq *fq; 1775 struct dpaa2_fd fd; 1776 void *buffer_start, *aligned_start; 1777 dma_addr_t addr; 1778 int err, i; 1779 1780 /* We require a minimum headroom to be able to transmit the frame. 1781 * Otherwise return an error and let the original net_device handle it 1782 */ 1783 needed_headroom = dpaa2_eth_needed_headroom(priv, NULL); 1784 if (xdpf->headroom < needed_headroom) 1785 return -EINVAL; 1786 1787 percpu_stats = this_cpu_ptr(priv->percpu_stats); 1788 percpu_extras = this_cpu_ptr(priv->percpu_extras); 1789 1790 /* Setup the FD fields */ 1791 memset(&fd, 0, sizeof(fd)); 1792 1793 /* Align FD address, if possible */ 1794 buffer_start = xdpf->data - needed_headroom; 1795 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 1796 DPAA2_ETH_TX_BUF_ALIGN); 1797 if (aligned_start >= xdpf->data - xdpf->headroom) 1798 buffer_start = aligned_start; 1799 1800 swa = (struct dpaa2_eth_swa *)buffer_start; 1801 /* fill in necessary fields here */ 1802 swa->type = DPAA2_ETH_SWA_XDP; 1803 swa->xdp.dma_size = xdpf->data + xdpf->len - buffer_start; 1804 swa->xdp.xdpf = xdpf; 1805 1806 addr = dma_map_single(dev, buffer_start, 1807 swa->xdp.dma_size, 1808 DMA_BIDIRECTIONAL); 1809 if (unlikely(dma_mapping_error(dev, addr))) { 1810 percpu_stats->tx_dropped++; 1811 return -ENOMEM; 1812 } 1813 1814 dpaa2_fd_set_addr(&fd, addr); 1815 dpaa2_fd_set_offset(&fd, xdpf->data - buffer_start); 1816 dpaa2_fd_set_len(&fd, xdpf->len); 1817 dpaa2_fd_set_format(&fd, dpaa2_fd_single); 1818 dpaa2_fd_set_ctrl(&fd, FD_CTRL_PTA); 1819 1820 fq = &priv->fq[smp_processor_id() % dpaa2_eth_queue_count(priv)]; 1821 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 1822 err = priv->enqueue(priv, fq, &fd, 0); 1823 if (err != -EBUSY) 1824 break; 1825 } 1826 percpu_extras->tx_portal_busy += i; 1827 if (unlikely(err < 0)) { 1828 percpu_stats->tx_errors++; 1829 /* let the Rx device handle the cleanup */ 1830 return err; 1831 } 1832 1833 percpu_stats->tx_packets++; 1834 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fd); 1835 1836 return 0; 1837 } 1838 1839 static int dpaa2_eth_xdp_xmit(struct net_device *net_dev, int n, 1840 struct xdp_frame **frames, u32 flags) 1841 { 1842 int drops = 0; 1843 int i, err; 1844 1845 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 1846 return -EINVAL; 1847 1848 if (!netif_running(net_dev)) 1849 return -ENETDOWN; 1850 1851 for (i = 0; i < n; i++) { 1852 struct xdp_frame *xdpf = frames[i]; 1853 1854 err = dpaa2_eth_xdp_xmit_frame(net_dev, xdpf); 1855 if (err) { 1856 xdp_return_frame_rx_napi(xdpf); 1857 drops++; 1858 } 1859 } 1860 1861 return n - drops; 1862 } 1863 1864 static const struct net_device_ops dpaa2_eth_ops = { 1865 .ndo_open = dpaa2_eth_open, 1866 .ndo_start_xmit = dpaa2_eth_tx, 1867 .ndo_stop = dpaa2_eth_stop, 1868 .ndo_set_mac_address = dpaa2_eth_set_addr, 1869 .ndo_get_stats64 = dpaa2_eth_get_stats, 1870 .ndo_set_rx_mode = dpaa2_eth_set_rx_mode, 1871 .ndo_set_features = dpaa2_eth_set_features, 1872 .ndo_do_ioctl = dpaa2_eth_ioctl, 1873 .ndo_change_mtu = dpaa2_eth_change_mtu, 1874 .ndo_bpf = dpaa2_eth_xdp, 1875 .ndo_xdp_xmit = dpaa2_eth_xdp_xmit, 1876 }; 1877 1878 static void cdan_cb(struct dpaa2_io_notification_ctx *ctx) 1879 { 1880 struct dpaa2_eth_channel *ch; 1881 1882 ch = container_of(ctx, struct dpaa2_eth_channel, nctx); 1883 1884 /* Update NAPI statistics */ 1885 ch->stats.cdan++; 1886 1887 napi_schedule_irqoff(&ch->napi); 1888 } 1889 1890 /* Allocate and configure a DPCON object */ 1891 static struct fsl_mc_device *setup_dpcon(struct dpaa2_eth_priv *priv) 1892 { 1893 struct fsl_mc_device *dpcon; 1894 struct device *dev = priv->net_dev->dev.parent; 1895 struct dpcon_attr attrs; 1896 int err; 1897 1898 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), 1899 FSL_MC_POOL_DPCON, &dpcon); 1900 if (err) { 1901 if (err == -ENXIO) 1902 err = -EPROBE_DEFER; 1903 else 1904 dev_info(dev, "Not enough DPCONs, will go on as-is\n"); 1905 return ERR_PTR(err); 1906 } 1907 1908 err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle); 1909 if (err) { 1910 dev_err(dev, "dpcon_open() failed\n"); 1911 goto free; 1912 } 1913 1914 err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle); 1915 if (err) { 1916 dev_err(dev, "dpcon_reset() failed\n"); 1917 goto close; 1918 } 1919 1920 err = dpcon_get_attributes(priv->mc_io, 0, dpcon->mc_handle, &attrs); 1921 if (err) { 1922 dev_err(dev, "dpcon_get_attributes() failed\n"); 1923 goto close; 1924 } 1925 1926 err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle); 1927 if (err) { 1928 dev_err(dev, "dpcon_enable() failed\n"); 1929 goto close; 1930 } 1931 1932 return dpcon; 1933 1934 close: 1935 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 1936 free: 1937 fsl_mc_object_free(dpcon); 1938 1939 return NULL; 1940 } 1941 1942 static void free_dpcon(struct dpaa2_eth_priv *priv, 1943 struct fsl_mc_device *dpcon) 1944 { 1945 dpcon_disable(priv->mc_io, 0, dpcon->mc_handle); 1946 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 1947 fsl_mc_object_free(dpcon); 1948 } 1949 1950 static struct dpaa2_eth_channel * 1951 alloc_channel(struct dpaa2_eth_priv *priv) 1952 { 1953 struct dpaa2_eth_channel *channel; 1954 struct dpcon_attr attr; 1955 struct device *dev = priv->net_dev->dev.parent; 1956 int err; 1957 1958 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 1959 if (!channel) 1960 return NULL; 1961 1962 channel->dpcon = setup_dpcon(priv); 1963 if (IS_ERR_OR_NULL(channel->dpcon)) { 1964 err = PTR_ERR(channel->dpcon); 1965 goto err_setup; 1966 } 1967 1968 err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle, 1969 &attr); 1970 if (err) { 1971 dev_err(dev, "dpcon_get_attributes() failed\n"); 1972 goto err_get_attr; 1973 } 1974 1975 channel->dpcon_id = attr.id; 1976 channel->ch_id = attr.qbman_ch_id; 1977 channel->priv = priv; 1978 1979 return channel; 1980 1981 err_get_attr: 1982 free_dpcon(priv, channel->dpcon); 1983 err_setup: 1984 kfree(channel); 1985 return ERR_PTR(err); 1986 } 1987 1988 static void free_channel(struct dpaa2_eth_priv *priv, 1989 struct dpaa2_eth_channel *channel) 1990 { 1991 free_dpcon(priv, channel->dpcon); 1992 kfree(channel); 1993 } 1994 1995 /* DPIO setup: allocate and configure QBMan channels, setup core affinity 1996 * and register data availability notifications 1997 */ 1998 static int setup_dpio(struct dpaa2_eth_priv *priv) 1999 { 2000 struct dpaa2_io_notification_ctx *nctx; 2001 struct dpaa2_eth_channel *channel; 2002 struct dpcon_notification_cfg dpcon_notif_cfg; 2003 struct device *dev = priv->net_dev->dev.parent; 2004 int i, err; 2005 2006 /* We want the ability to spread ingress traffic (RX, TX conf) to as 2007 * many cores as possible, so we need one channel for each core 2008 * (unless there's fewer queues than cores, in which case the extra 2009 * channels would be wasted). 2010 * Allocate one channel per core and register it to the core's 2011 * affine DPIO. If not enough channels are available for all cores 2012 * or if some cores don't have an affine DPIO, there will be no 2013 * ingress frame processing on those cores. 2014 */ 2015 cpumask_clear(&priv->dpio_cpumask); 2016 for_each_online_cpu(i) { 2017 /* Try to allocate a channel */ 2018 channel = alloc_channel(priv); 2019 if (IS_ERR_OR_NULL(channel)) { 2020 err = PTR_ERR(channel); 2021 if (err != -EPROBE_DEFER) 2022 dev_info(dev, 2023 "No affine channel for cpu %d and above\n", i); 2024 goto err_alloc_ch; 2025 } 2026 2027 priv->channel[priv->num_channels] = channel; 2028 2029 nctx = &channel->nctx; 2030 nctx->is_cdan = 1; 2031 nctx->cb = cdan_cb; 2032 nctx->id = channel->ch_id; 2033 nctx->desired_cpu = i; 2034 2035 /* Register the new context */ 2036 channel->dpio = dpaa2_io_service_select(i); 2037 err = dpaa2_io_service_register(channel->dpio, nctx, dev); 2038 if (err) { 2039 dev_dbg(dev, "No affine DPIO for cpu %d\n", i); 2040 /* If no affine DPIO for this core, there's probably 2041 * none available for next cores either. Signal we want 2042 * to retry later, in case the DPIO devices weren't 2043 * probed yet. 2044 */ 2045 err = -EPROBE_DEFER; 2046 goto err_service_reg; 2047 } 2048 2049 /* Register DPCON notification with MC */ 2050 dpcon_notif_cfg.dpio_id = nctx->dpio_id; 2051 dpcon_notif_cfg.priority = 0; 2052 dpcon_notif_cfg.user_ctx = nctx->qman64; 2053 err = dpcon_set_notification(priv->mc_io, 0, 2054 channel->dpcon->mc_handle, 2055 &dpcon_notif_cfg); 2056 if (err) { 2057 dev_err(dev, "dpcon_set_notification failed()\n"); 2058 goto err_set_cdan; 2059 } 2060 2061 /* If we managed to allocate a channel and also found an affine 2062 * DPIO for this core, add it to the final mask 2063 */ 2064 cpumask_set_cpu(i, &priv->dpio_cpumask); 2065 priv->num_channels++; 2066 2067 /* Stop if we already have enough channels to accommodate all 2068 * RX and TX conf queues 2069 */ 2070 if (priv->num_channels == priv->dpni_attrs.num_queues) 2071 break; 2072 } 2073 2074 return 0; 2075 2076 err_set_cdan: 2077 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 2078 err_service_reg: 2079 free_channel(priv, channel); 2080 err_alloc_ch: 2081 if (err == -EPROBE_DEFER) 2082 return err; 2083 2084 if (cpumask_empty(&priv->dpio_cpumask)) { 2085 dev_err(dev, "No cpu with an affine DPIO/DPCON\n"); 2086 return -ENODEV; 2087 } 2088 2089 dev_info(dev, "Cores %*pbl available for processing ingress traffic\n", 2090 cpumask_pr_args(&priv->dpio_cpumask)); 2091 2092 return 0; 2093 } 2094 2095 static void free_dpio(struct dpaa2_eth_priv *priv) 2096 { 2097 struct device *dev = priv->net_dev->dev.parent; 2098 struct dpaa2_eth_channel *ch; 2099 int i; 2100 2101 /* deregister CDAN notifications and free channels */ 2102 for (i = 0; i < priv->num_channels; i++) { 2103 ch = priv->channel[i]; 2104 dpaa2_io_service_deregister(ch->dpio, &ch->nctx, dev); 2105 free_channel(priv, ch); 2106 } 2107 } 2108 2109 static struct dpaa2_eth_channel *get_affine_channel(struct dpaa2_eth_priv *priv, 2110 int cpu) 2111 { 2112 struct device *dev = priv->net_dev->dev.parent; 2113 int i; 2114 2115 for (i = 0; i < priv->num_channels; i++) 2116 if (priv->channel[i]->nctx.desired_cpu == cpu) 2117 return priv->channel[i]; 2118 2119 /* We should never get here. Issue a warning and return 2120 * the first channel, because it's still better than nothing 2121 */ 2122 dev_warn(dev, "No affine channel found for cpu %d\n", cpu); 2123 2124 return priv->channel[0]; 2125 } 2126 2127 static void set_fq_affinity(struct dpaa2_eth_priv *priv) 2128 { 2129 struct device *dev = priv->net_dev->dev.parent; 2130 struct cpumask xps_mask; 2131 struct dpaa2_eth_fq *fq; 2132 int rx_cpu, txc_cpu; 2133 int i, err; 2134 2135 /* For each FQ, pick one channel/CPU to deliver frames to. 2136 * This may well change at runtime, either through irqbalance or 2137 * through direct user intervention. 2138 */ 2139 rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask); 2140 2141 for (i = 0; i < priv->num_fqs; i++) { 2142 fq = &priv->fq[i]; 2143 switch (fq->type) { 2144 case DPAA2_RX_FQ: 2145 fq->target_cpu = rx_cpu; 2146 rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask); 2147 if (rx_cpu >= nr_cpu_ids) 2148 rx_cpu = cpumask_first(&priv->dpio_cpumask); 2149 break; 2150 case DPAA2_TX_CONF_FQ: 2151 fq->target_cpu = txc_cpu; 2152 2153 /* Tell the stack to affine to txc_cpu the Tx queue 2154 * associated with the confirmation one 2155 */ 2156 cpumask_clear(&xps_mask); 2157 cpumask_set_cpu(txc_cpu, &xps_mask); 2158 err = netif_set_xps_queue(priv->net_dev, &xps_mask, 2159 fq->flowid); 2160 if (err) 2161 dev_err(dev, "Error setting XPS queue\n"); 2162 2163 txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask); 2164 if (txc_cpu >= nr_cpu_ids) 2165 txc_cpu = cpumask_first(&priv->dpio_cpumask); 2166 break; 2167 default: 2168 dev_err(dev, "Unknown FQ type: %d\n", fq->type); 2169 } 2170 fq->channel = get_affine_channel(priv, fq->target_cpu); 2171 } 2172 } 2173 2174 static void setup_fqs(struct dpaa2_eth_priv *priv) 2175 { 2176 int i; 2177 2178 /* We have one TxConf FQ per Tx flow. 2179 * The number of Tx and Rx queues is the same. 2180 * Tx queues come first in the fq array. 2181 */ 2182 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2183 priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ; 2184 priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf; 2185 priv->fq[priv->num_fqs++].flowid = (u16)i; 2186 } 2187 2188 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2189 priv->fq[priv->num_fqs].type = DPAA2_RX_FQ; 2190 priv->fq[priv->num_fqs].consume = dpaa2_eth_rx; 2191 priv->fq[priv->num_fqs++].flowid = (u16)i; 2192 } 2193 2194 /* For each FQ, decide on which core to process incoming frames */ 2195 set_fq_affinity(priv); 2196 } 2197 2198 /* Allocate and configure one buffer pool for each interface */ 2199 static int setup_dpbp(struct dpaa2_eth_priv *priv) 2200 { 2201 int err; 2202 struct fsl_mc_device *dpbp_dev; 2203 struct device *dev = priv->net_dev->dev.parent; 2204 struct dpbp_attr dpbp_attrs; 2205 2206 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, 2207 &dpbp_dev); 2208 if (err) { 2209 if (err == -ENXIO) 2210 err = -EPROBE_DEFER; 2211 else 2212 dev_err(dev, "DPBP device allocation failed\n"); 2213 return err; 2214 } 2215 2216 priv->dpbp_dev = dpbp_dev; 2217 2218 err = dpbp_open(priv->mc_io, 0, priv->dpbp_dev->obj_desc.id, 2219 &dpbp_dev->mc_handle); 2220 if (err) { 2221 dev_err(dev, "dpbp_open() failed\n"); 2222 goto err_open; 2223 } 2224 2225 err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle); 2226 if (err) { 2227 dev_err(dev, "dpbp_reset() failed\n"); 2228 goto err_reset; 2229 } 2230 2231 err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle); 2232 if (err) { 2233 dev_err(dev, "dpbp_enable() failed\n"); 2234 goto err_enable; 2235 } 2236 2237 err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle, 2238 &dpbp_attrs); 2239 if (err) { 2240 dev_err(dev, "dpbp_get_attributes() failed\n"); 2241 goto err_get_attr; 2242 } 2243 priv->bpid = dpbp_attrs.bpid; 2244 2245 return 0; 2246 2247 err_get_attr: 2248 dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle); 2249 err_enable: 2250 err_reset: 2251 dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle); 2252 err_open: 2253 fsl_mc_object_free(dpbp_dev); 2254 2255 return err; 2256 } 2257 2258 static void free_dpbp(struct dpaa2_eth_priv *priv) 2259 { 2260 drain_pool(priv); 2261 dpbp_disable(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2262 dpbp_close(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2263 fsl_mc_object_free(priv->dpbp_dev); 2264 } 2265 2266 static int set_buffer_layout(struct dpaa2_eth_priv *priv) 2267 { 2268 struct device *dev = priv->net_dev->dev.parent; 2269 struct dpni_buffer_layout buf_layout = {0}; 2270 u16 rx_buf_align; 2271 int err; 2272 2273 /* We need to check for WRIOP version 1.0.0, but depending on the MC 2274 * version, this number is not always provided correctly on rev1. 2275 * We need to check for both alternatives in this situation. 2276 */ 2277 if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) || 2278 priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0)) 2279 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1; 2280 else 2281 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN; 2282 2283 /* tx buffer */ 2284 buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE; 2285 buf_layout.pass_timestamp = true; 2286 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE | 2287 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2288 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2289 DPNI_QUEUE_TX, &buf_layout); 2290 if (err) { 2291 dev_err(dev, "dpni_set_buffer_layout(TX) failed\n"); 2292 return err; 2293 } 2294 2295 /* tx-confirm buffer */ 2296 buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2297 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2298 DPNI_QUEUE_TX_CONFIRM, &buf_layout); 2299 if (err) { 2300 dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n"); 2301 return err; 2302 } 2303 2304 /* Now that we've set our tx buffer layout, retrieve the minimum 2305 * required tx data offset. 2306 */ 2307 err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token, 2308 &priv->tx_data_offset); 2309 if (err) { 2310 dev_err(dev, "dpni_get_tx_data_offset() failed\n"); 2311 return err; 2312 } 2313 2314 if ((priv->tx_data_offset % 64) != 0) 2315 dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n", 2316 priv->tx_data_offset); 2317 2318 /* rx buffer */ 2319 buf_layout.pass_frame_status = true; 2320 buf_layout.pass_parser_result = true; 2321 buf_layout.data_align = rx_buf_align; 2322 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv); 2323 buf_layout.private_data_size = 0; 2324 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT | 2325 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | 2326 DPNI_BUF_LAYOUT_OPT_DATA_ALIGN | 2327 DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM | 2328 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2329 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2330 DPNI_QUEUE_RX, &buf_layout); 2331 if (err) { 2332 dev_err(dev, "dpni_set_buffer_layout(RX) failed\n"); 2333 return err; 2334 } 2335 2336 return 0; 2337 } 2338 2339 #define DPNI_ENQUEUE_FQID_VER_MAJOR 7 2340 #define DPNI_ENQUEUE_FQID_VER_MINOR 9 2341 2342 static inline int dpaa2_eth_enqueue_qd(struct dpaa2_eth_priv *priv, 2343 struct dpaa2_eth_fq *fq, 2344 struct dpaa2_fd *fd, u8 prio) 2345 { 2346 return dpaa2_io_service_enqueue_qd(fq->channel->dpio, 2347 priv->tx_qdid, prio, 2348 fq->tx_qdbin, fd); 2349 } 2350 2351 static inline int dpaa2_eth_enqueue_fq(struct dpaa2_eth_priv *priv, 2352 struct dpaa2_eth_fq *fq, 2353 struct dpaa2_fd *fd, 2354 u8 prio __always_unused) 2355 { 2356 return dpaa2_io_service_enqueue_fq(fq->channel->dpio, 2357 fq->tx_fqid, fd); 2358 } 2359 2360 static void set_enqueue_mode(struct dpaa2_eth_priv *priv) 2361 { 2362 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 2363 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 2364 priv->enqueue = dpaa2_eth_enqueue_qd; 2365 else 2366 priv->enqueue = dpaa2_eth_enqueue_fq; 2367 } 2368 2369 /* Configure the DPNI object this interface is associated with */ 2370 static int setup_dpni(struct fsl_mc_device *ls_dev) 2371 { 2372 struct device *dev = &ls_dev->dev; 2373 struct dpaa2_eth_priv *priv; 2374 struct net_device *net_dev; 2375 int err; 2376 2377 net_dev = dev_get_drvdata(dev); 2378 priv = netdev_priv(net_dev); 2379 2380 /* get a handle for the DPNI object */ 2381 err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token); 2382 if (err) { 2383 dev_err(dev, "dpni_open() failed\n"); 2384 return err; 2385 } 2386 2387 /* Check if we can work with this DPNI object */ 2388 err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major, 2389 &priv->dpni_ver_minor); 2390 if (err) { 2391 dev_err(dev, "dpni_get_api_version() failed\n"); 2392 goto close; 2393 } 2394 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) { 2395 dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n", 2396 priv->dpni_ver_major, priv->dpni_ver_minor, 2397 DPNI_VER_MAJOR, DPNI_VER_MINOR); 2398 err = -ENOTSUPP; 2399 goto close; 2400 } 2401 2402 ls_dev->mc_io = priv->mc_io; 2403 ls_dev->mc_handle = priv->mc_token; 2404 2405 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2406 if (err) { 2407 dev_err(dev, "dpni_reset() failed\n"); 2408 goto close; 2409 } 2410 2411 err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token, 2412 &priv->dpni_attrs); 2413 if (err) { 2414 dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err); 2415 goto close; 2416 } 2417 2418 err = set_buffer_layout(priv); 2419 if (err) 2420 goto close; 2421 2422 set_enqueue_mode(priv); 2423 2424 priv->cls_rules = devm_kzalloc(dev, sizeof(struct dpaa2_eth_cls_rule) * 2425 dpaa2_eth_fs_count(priv), GFP_KERNEL); 2426 if (!priv->cls_rules) 2427 goto close; 2428 2429 return 0; 2430 2431 close: 2432 dpni_close(priv->mc_io, 0, priv->mc_token); 2433 2434 return err; 2435 } 2436 2437 static void free_dpni(struct dpaa2_eth_priv *priv) 2438 { 2439 int err; 2440 2441 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2442 if (err) 2443 netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n", 2444 err); 2445 2446 dpni_close(priv->mc_io, 0, priv->mc_token); 2447 } 2448 2449 static int setup_rx_flow(struct dpaa2_eth_priv *priv, 2450 struct dpaa2_eth_fq *fq) 2451 { 2452 struct device *dev = priv->net_dev->dev.parent; 2453 struct dpni_queue queue; 2454 struct dpni_queue_id qid; 2455 struct dpni_taildrop td; 2456 int err; 2457 2458 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2459 DPNI_QUEUE_RX, 0, fq->flowid, &queue, &qid); 2460 if (err) { 2461 dev_err(dev, "dpni_get_queue(RX) failed\n"); 2462 return err; 2463 } 2464 2465 fq->fqid = qid.fqid; 2466 2467 queue.destination.id = fq->channel->dpcon_id; 2468 queue.destination.type = DPNI_DEST_DPCON; 2469 queue.destination.priority = 1; 2470 queue.user_context = (u64)(uintptr_t)fq; 2471 queue.flc.stash_control = 1; 2472 queue.flc.value &= 0xFFFFFFFFFFFFFFC0; 2473 /* 01 01 00 - data, annotation, flow context */ 2474 queue.flc.value |= 0x14; 2475 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2476 DPNI_QUEUE_RX, 0, fq->flowid, 2477 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST | 2478 DPNI_QUEUE_OPT_FLC, 2479 &queue); 2480 if (err) { 2481 dev_err(dev, "dpni_set_queue(RX) failed\n"); 2482 return err; 2483 } 2484 2485 td.enable = 1; 2486 td.threshold = DPAA2_ETH_TAILDROP_THRESH; 2487 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, DPNI_CP_QUEUE, 2488 DPNI_QUEUE_RX, 0, fq->flowid, &td); 2489 if (err) { 2490 dev_err(dev, "dpni_set_threshold() failed\n"); 2491 return err; 2492 } 2493 2494 /* xdp_rxq setup */ 2495 err = xdp_rxq_info_reg(&fq->channel->xdp_rxq, priv->net_dev, 2496 fq->flowid); 2497 if (err) { 2498 dev_err(dev, "xdp_rxq_info_reg failed\n"); 2499 return err; 2500 } 2501 2502 err = xdp_rxq_info_reg_mem_model(&fq->channel->xdp_rxq, 2503 MEM_TYPE_PAGE_ORDER0, NULL); 2504 if (err) { 2505 dev_err(dev, "xdp_rxq_info_reg_mem_model failed\n"); 2506 return err; 2507 } 2508 2509 return 0; 2510 } 2511 2512 static int setup_tx_flow(struct dpaa2_eth_priv *priv, 2513 struct dpaa2_eth_fq *fq) 2514 { 2515 struct device *dev = priv->net_dev->dev.parent; 2516 struct dpni_queue queue; 2517 struct dpni_queue_id qid; 2518 int err; 2519 2520 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2521 DPNI_QUEUE_TX, 0, fq->flowid, &queue, &qid); 2522 if (err) { 2523 dev_err(dev, "dpni_get_queue(TX) failed\n"); 2524 return err; 2525 } 2526 2527 fq->tx_qdbin = qid.qdbin; 2528 fq->tx_fqid = qid.fqid; 2529 2530 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2531 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 2532 &queue, &qid); 2533 if (err) { 2534 dev_err(dev, "dpni_get_queue(TX_CONF) failed\n"); 2535 return err; 2536 } 2537 2538 fq->fqid = qid.fqid; 2539 2540 queue.destination.id = fq->channel->dpcon_id; 2541 queue.destination.type = DPNI_DEST_DPCON; 2542 queue.destination.priority = 0; 2543 queue.user_context = (u64)(uintptr_t)fq; 2544 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2545 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 2546 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 2547 &queue); 2548 if (err) { 2549 dev_err(dev, "dpni_set_queue(TX_CONF) failed\n"); 2550 return err; 2551 } 2552 2553 return 0; 2554 } 2555 2556 /* Supported header fields for Rx hash distribution key */ 2557 static const struct dpaa2_eth_dist_fields dist_fields[] = { 2558 { 2559 /* L2 header */ 2560 .rxnfc_field = RXH_L2DA, 2561 .cls_prot = NET_PROT_ETH, 2562 .cls_field = NH_FLD_ETH_DA, 2563 .size = 6, 2564 }, { 2565 .cls_prot = NET_PROT_ETH, 2566 .cls_field = NH_FLD_ETH_SA, 2567 .size = 6, 2568 }, { 2569 /* This is the last ethertype field parsed: 2570 * depending on frame format, it can be the MAC ethertype 2571 * or the VLAN etype. 2572 */ 2573 .cls_prot = NET_PROT_ETH, 2574 .cls_field = NH_FLD_ETH_TYPE, 2575 .size = 2, 2576 }, { 2577 /* VLAN header */ 2578 .rxnfc_field = RXH_VLAN, 2579 .cls_prot = NET_PROT_VLAN, 2580 .cls_field = NH_FLD_VLAN_TCI, 2581 .size = 2, 2582 }, { 2583 /* IP header */ 2584 .rxnfc_field = RXH_IP_SRC, 2585 .cls_prot = NET_PROT_IP, 2586 .cls_field = NH_FLD_IP_SRC, 2587 .size = 4, 2588 }, { 2589 .rxnfc_field = RXH_IP_DST, 2590 .cls_prot = NET_PROT_IP, 2591 .cls_field = NH_FLD_IP_DST, 2592 .size = 4, 2593 }, { 2594 .rxnfc_field = RXH_L3_PROTO, 2595 .cls_prot = NET_PROT_IP, 2596 .cls_field = NH_FLD_IP_PROTO, 2597 .size = 1, 2598 }, { 2599 /* Using UDP ports, this is functionally equivalent to raw 2600 * byte pairs from L4 header. 2601 */ 2602 .rxnfc_field = RXH_L4_B_0_1, 2603 .cls_prot = NET_PROT_UDP, 2604 .cls_field = NH_FLD_UDP_PORT_SRC, 2605 .size = 2, 2606 }, { 2607 .rxnfc_field = RXH_L4_B_2_3, 2608 .cls_prot = NET_PROT_UDP, 2609 .cls_field = NH_FLD_UDP_PORT_DST, 2610 .size = 2, 2611 }, 2612 }; 2613 2614 /* Configure the Rx hash key using the legacy API */ 2615 static int config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2616 { 2617 struct device *dev = priv->net_dev->dev.parent; 2618 struct dpni_rx_tc_dist_cfg dist_cfg; 2619 int err; 2620 2621 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2622 2623 dist_cfg.key_cfg_iova = key; 2624 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2625 dist_cfg.dist_mode = DPNI_DIST_MODE_HASH; 2626 2627 err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 0, &dist_cfg); 2628 if (err) 2629 dev_err(dev, "dpni_set_rx_tc_dist failed\n"); 2630 2631 return err; 2632 } 2633 2634 /* Configure the Rx hash key using the new API */ 2635 static int config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2636 { 2637 struct device *dev = priv->net_dev->dev.parent; 2638 struct dpni_rx_dist_cfg dist_cfg; 2639 int err; 2640 2641 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2642 2643 dist_cfg.key_cfg_iova = key; 2644 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2645 dist_cfg.enable = 1; 2646 2647 err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2648 if (err) 2649 dev_err(dev, "dpni_set_rx_hash_dist failed\n"); 2650 2651 return err; 2652 } 2653 2654 /* Configure the Rx flow classification key */ 2655 static int config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2656 { 2657 struct device *dev = priv->net_dev->dev.parent; 2658 struct dpni_rx_dist_cfg dist_cfg; 2659 int err; 2660 2661 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2662 2663 dist_cfg.key_cfg_iova = key; 2664 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2665 dist_cfg.enable = 1; 2666 2667 err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2668 if (err) 2669 dev_err(dev, "dpni_set_rx_fs_dist failed\n"); 2670 2671 return err; 2672 } 2673 2674 /* Size of the Rx flow classification key */ 2675 int dpaa2_eth_cls_key_size(void) 2676 { 2677 int i, size = 0; 2678 2679 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) 2680 size += dist_fields[i].size; 2681 2682 return size; 2683 } 2684 2685 /* Offset of header field in Rx classification key */ 2686 int dpaa2_eth_cls_fld_off(int prot, int field) 2687 { 2688 int i, off = 0; 2689 2690 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2691 if (dist_fields[i].cls_prot == prot && 2692 dist_fields[i].cls_field == field) 2693 return off; 2694 off += dist_fields[i].size; 2695 } 2696 2697 WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n"); 2698 return 0; 2699 } 2700 2701 /* Set Rx distribution (hash or flow classification) key 2702 * flags is a combination of RXH_ bits 2703 */ 2704 static int dpaa2_eth_set_dist_key(struct net_device *net_dev, 2705 enum dpaa2_eth_rx_dist type, u64 flags) 2706 { 2707 struct device *dev = net_dev->dev.parent; 2708 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2709 struct dpkg_profile_cfg cls_cfg; 2710 u32 rx_hash_fields = 0; 2711 dma_addr_t key_iova; 2712 u8 *dma_mem; 2713 int i; 2714 int err = 0; 2715 2716 memset(&cls_cfg, 0, sizeof(cls_cfg)); 2717 2718 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2719 struct dpkg_extract *key = 2720 &cls_cfg.extracts[cls_cfg.num_extracts]; 2721 2722 /* For Rx hashing key we set only the selected fields. 2723 * For Rx flow classification key we set all supported fields 2724 */ 2725 if (type == DPAA2_ETH_RX_DIST_HASH) { 2726 if (!(flags & dist_fields[i].rxnfc_field)) 2727 continue; 2728 rx_hash_fields |= dist_fields[i].rxnfc_field; 2729 } 2730 2731 if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) { 2732 dev_err(dev, "error adding key extraction rule, too many rules?\n"); 2733 return -E2BIG; 2734 } 2735 2736 key->type = DPKG_EXTRACT_FROM_HDR; 2737 key->extract.from_hdr.prot = dist_fields[i].cls_prot; 2738 key->extract.from_hdr.type = DPKG_FULL_FIELD; 2739 key->extract.from_hdr.field = dist_fields[i].cls_field; 2740 cls_cfg.num_extracts++; 2741 } 2742 2743 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 2744 if (!dma_mem) 2745 return -ENOMEM; 2746 2747 err = dpni_prepare_key_cfg(&cls_cfg, dma_mem); 2748 if (err) { 2749 dev_err(dev, "dpni_prepare_key_cfg error %d\n", err); 2750 goto free_key; 2751 } 2752 2753 /* Prepare for setting the rx dist */ 2754 key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, 2755 DMA_TO_DEVICE); 2756 if (dma_mapping_error(dev, key_iova)) { 2757 dev_err(dev, "DMA mapping failed\n"); 2758 err = -ENOMEM; 2759 goto free_key; 2760 } 2761 2762 if (type == DPAA2_ETH_RX_DIST_HASH) { 2763 if (dpaa2_eth_has_legacy_dist(priv)) 2764 err = config_legacy_hash_key(priv, key_iova); 2765 else 2766 err = config_hash_key(priv, key_iova); 2767 } else { 2768 err = config_cls_key(priv, key_iova); 2769 } 2770 2771 dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE, 2772 DMA_TO_DEVICE); 2773 if (!err && type == DPAA2_ETH_RX_DIST_HASH) 2774 priv->rx_hash_fields = rx_hash_fields; 2775 2776 free_key: 2777 kfree(dma_mem); 2778 return err; 2779 } 2780 2781 int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags) 2782 { 2783 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2784 2785 if (!dpaa2_eth_hash_enabled(priv)) 2786 return -EOPNOTSUPP; 2787 2788 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, flags); 2789 } 2790 2791 static int dpaa2_eth_set_cls(struct dpaa2_eth_priv *priv) 2792 { 2793 struct device *dev = priv->net_dev->dev.parent; 2794 2795 /* Check if we actually support Rx flow classification */ 2796 if (dpaa2_eth_has_legacy_dist(priv)) { 2797 dev_dbg(dev, "Rx cls not supported by current MC version\n"); 2798 return -EOPNOTSUPP; 2799 } 2800 2801 if (priv->dpni_attrs.options & DPNI_OPT_NO_FS || 2802 !(priv->dpni_attrs.options & DPNI_OPT_HAS_KEY_MASKING)) { 2803 dev_dbg(dev, "Rx cls disabled in DPNI options\n"); 2804 return -EOPNOTSUPP; 2805 } 2806 2807 if (!dpaa2_eth_hash_enabled(priv)) { 2808 dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n"); 2809 return -EOPNOTSUPP; 2810 } 2811 2812 priv->rx_cls_enabled = 1; 2813 2814 return dpaa2_eth_set_dist_key(priv->net_dev, DPAA2_ETH_RX_DIST_CLS, 0); 2815 } 2816 2817 /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs, 2818 * frame queues and channels 2819 */ 2820 static int bind_dpni(struct dpaa2_eth_priv *priv) 2821 { 2822 struct net_device *net_dev = priv->net_dev; 2823 struct device *dev = net_dev->dev.parent; 2824 struct dpni_pools_cfg pools_params; 2825 struct dpni_error_cfg err_cfg; 2826 int err = 0; 2827 int i; 2828 2829 pools_params.num_dpbp = 1; 2830 pools_params.pools[0].dpbp_id = priv->dpbp_dev->obj_desc.id; 2831 pools_params.pools[0].backup_pool = 0; 2832 pools_params.pools[0].buffer_size = DPAA2_ETH_RX_BUF_SIZE; 2833 err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params); 2834 if (err) { 2835 dev_err(dev, "dpni_set_pools() failed\n"); 2836 return err; 2837 } 2838 2839 /* have the interface implicitly distribute traffic based on 2840 * the default hash key 2841 */ 2842 err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT); 2843 if (err && err != -EOPNOTSUPP) 2844 dev_err(dev, "Failed to configure hashing\n"); 2845 2846 /* Configure the flow classification key; it includes all 2847 * supported header fields and cannot be modified at runtime 2848 */ 2849 err = dpaa2_eth_set_cls(priv); 2850 if (err && err != -EOPNOTSUPP) 2851 dev_err(dev, "Failed to configure Rx classification key\n"); 2852 2853 /* Configure handling of error frames */ 2854 err_cfg.errors = DPAA2_FAS_RX_ERR_MASK; 2855 err_cfg.set_frame_annotation = 1; 2856 err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD; 2857 err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token, 2858 &err_cfg); 2859 if (err) { 2860 dev_err(dev, "dpni_set_errors_behavior failed\n"); 2861 return err; 2862 } 2863 2864 /* Configure Rx and Tx conf queues to generate CDANs */ 2865 for (i = 0; i < priv->num_fqs; i++) { 2866 switch (priv->fq[i].type) { 2867 case DPAA2_RX_FQ: 2868 err = setup_rx_flow(priv, &priv->fq[i]); 2869 break; 2870 case DPAA2_TX_CONF_FQ: 2871 err = setup_tx_flow(priv, &priv->fq[i]); 2872 break; 2873 default: 2874 dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type); 2875 return -EINVAL; 2876 } 2877 if (err) 2878 return err; 2879 } 2880 2881 err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token, 2882 DPNI_QUEUE_TX, &priv->tx_qdid); 2883 if (err) { 2884 dev_err(dev, "dpni_get_qdid() failed\n"); 2885 return err; 2886 } 2887 2888 return 0; 2889 } 2890 2891 /* Allocate rings for storing incoming frame descriptors */ 2892 static int alloc_rings(struct dpaa2_eth_priv *priv) 2893 { 2894 struct net_device *net_dev = priv->net_dev; 2895 struct device *dev = net_dev->dev.parent; 2896 int i; 2897 2898 for (i = 0; i < priv->num_channels; i++) { 2899 priv->channel[i]->store = 2900 dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev); 2901 if (!priv->channel[i]->store) { 2902 netdev_err(net_dev, "dpaa2_io_store_create() failed\n"); 2903 goto err_ring; 2904 } 2905 } 2906 2907 return 0; 2908 2909 err_ring: 2910 for (i = 0; i < priv->num_channels; i++) { 2911 if (!priv->channel[i]->store) 2912 break; 2913 dpaa2_io_store_destroy(priv->channel[i]->store); 2914 } 2915 2916 return -ENOMEM; 2917 } 2918 2919 static void free_rings(struct dpaa2_eth_priv *priv) 2920 { 2921 int i; 2922 2923 for (i = 0; i < priv->num_channels; i++) 2924 dpaa2_io_store_destroy(priv->channel[i]->store); 2925 } 2926 2927 static int set_mac_addr(struct dpaa2_eth_priv *priv) 2928 { 2929 struct net_device *net_dev = priv->net_dev; 2930 struct device *dev = net_dev->dev.parent; 2931 u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN]; 2932 int err; 2933 2934 /* Get firmware address, if any */ 2935 err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); 2936 if (err) { 2937 dev_err(dev, "dpni_get_port_mac_addr() failed\n"); 2938 return err; 2939 } 2940 2941 /* Get DPNI attributes address, if any */ 2942 err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 2943 dpni_mac_addr); 2944 if (err) { 2945 dev_err(dev, "dpni_get_primary_mac_addr() failed\n"); 2946 return err; 2947 } 2948 2949 /* First check if firmware has any address configured by bootloader */ 2950 if (!is_zero_ether_addr(mac_addr)) { 2951 /* If the DPMAC addr != DPNI addr, update it */ 2952 if (!ether_addr_equal(mac_addr, dpni_mac_addr)) { 2953 err = dpni_set_primary_mac_addr(priv->mc_io, 0, 2954 priv->mc_token, 2955 mac_addr); 2956 if (err) { 2957 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 2958 return err; 2959 } 2960 } 2961 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len); 2962 } else if (is_zero_ether_addr(dpni_mac_addr)) { 2963 /* No MAC address configured, fill in net_dev->dev_addr 2964 * with a random one 2965 */ 2966 eth_hw_addr_random(net_dev); 2967 dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); 2968 2969 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 2970 net_dev->dev_addr); 2971 if (err) { 2972 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 2973 return err; 2974 } 2975 2976 /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all 2977 * practical purposes, this will be our "permanent" mac address, 2978 * at least until the next reboot. This move will also permit 2979 * register_netdevice() to properly fill up net_dev->perm_addr. 2980 */ 2981 net_dev->addr_assign_type = NET_ADDR_PERM; 2982 } else { 2983 /* NET_ADDR_PERM is default, all we have to do is 2984 * fill in the device addr. 2985 */ 2986 memcpy(net_dev->dev_addr, dpni_mac_addr, net_dev->addr_len); 2987 } 2988 2989 return 0; 2990 } 2991 2992 static int netdev_init(struct net_device *net_dev) 2993 { 2994 struct device *dev = net_dev->dev.parent; 2995 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2996 u32 options = priv->dpni_attrs.options; 2997 u64 supported = 0, not_supported = 0; 2998 u8 bcast_addr[ETH_ALEN]; 2999 u8 num_queues; 3000 int err; 3001 3002 net_dev->netdev_ops = &dpaa2_eth_ops; 3003 net_dev->ethtool_ops = &dpaa2_ethtool_ops; 3004 3005 err = set_mac_addr(priv); 3006 if (err) 3007 return err; 3008 3009 /* Explicitly add the broadcast address to the MAC filtering table */ 3010 eth_broadcast_addr(bcast_addr); 3011 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr); 3012 if (err) { 3013 dev_err(dev, "dpni_add_mac_addr() failed\n"); 3014 return err; 3015 } 3016 3017 /* Set MTU upper limit; lower limit is 68B (default value) */ 3018 net_dev->max_mtu = DPAA2_ETH_MAX_MTU; 3019 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, 3020 DPAA2_ETH_MFL); 3021 if (err) { 3022 dev_err(dev, "dpni_set_max_frame_length() failed\n"); 3023 return err; 3024 } 3025 3026 /* Set actual number of queues in the net device */ 3027 num_queues = dpaa2_eth_queue_count(priv); 3028 err = netif_set_real_num_tx_queues(net_dev, num_queues); 3029 if (err) { 3030 dev_err(dev, "netif_set_real_num_tx_queues() failed\n"); 3031 return err; 3032 } 3033 err = netif_set_real_num_rx_queues(net_dev, num_queues); 3034 if (err) { 3035 dev_err(dev, "netif_set_real_num_rx_queues() failed\n"); 3036 return err; 3037 } 3038 3039 /* Capabilities listing */ 3040 supported |= IFF_LIVE_ADDR_CHANGE; 3041 3042 if (options & DPNI_OPT_NO_MAC_FILTER) 3043 not_supported |= IFF_UNICAST_FLT; 3044 else 3045 supported |= IFF_UNICAST_FLT; 3046 3047 net_dev->priv_flags |= supported; 3048 net_dev->priv_flags &= ~not_supported; 3049 3050 /* Features */ 3051 net_dev->features = NETIF_F_RXCSUM | 3052 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3053 NETIF_F_SG | NETIF_F_HIGHDMA | 3054 NETIF_F_LLTX; 3055 net_dev->hw_features = net_dev->features; 3056 3057 return 0; 3058 } 3059 3060 static int poll_link_state(void *arg) 3061 { 3062 struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg; 3063 int err; 3064 3065 while (!kthread_should_stop()) { 3066 err = link_state_update(priv); 3067 if (unlikely(err)) 3068 return err; 3069 3070 msleep(DPAA2_ETH_LINK_STATE_REFRESH); 3071 } 3072 3073 return 0; 3074 } 3075 3076 static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg) 3077 { 3078 u32 status = ~0; 3079 struct device *dev = (struct device *)arg; 3080 struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev); 3081 struct net_device *net_dev = dev_get_drvdata(dev); 3082 int err; 3083 3084 err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, 3085 DPNI_IRQ_INDEX, &status); 3086 if (unlikely(err)) { 3087 netdev_err(net_dev, "Can't get irq status (err %d)\n", err); 3088 return IRQ_HANDLED; 3089 } 3090 3091 if (status & DPNI_IRQ_EVENT_LINK_CHANGED) 3092 link_state_update(netdev_priv(net_dev)); 3093 3094 return IRQ_HANDLED; 3095 } 3096 3097 static int setup_irqs(struct fsl_mc_device *ls_dev) 3098 { 3099 int err = 0; 3100 struct fsl_mc_device_irq *irq; 3101 3102 err = fsl_mc_allocate_irqs(ls_dev); 3103 if (err) { 3104 dev_err(&ls_dev->dev, "MC irqs allocation failed\n"); 3105 return err; 3106 } 3107 3108 irq = ls_dev->irqs[0]; 3109 err = devm_request_threaded_irq(&ls_dev->dev, irq->msi_desc->irq, 3110 NULL, dpni_irq0_handler_thread, 3111 IRQF_NO_SUSPEND | IRQF_ONESHOT, 3112 dev_name(&ls_dev->dev), &ls_dev->dev); 3113 if (err < 0) { 3114 dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err); 3115 goto free_mc_irq; 3116 } 3117 3118 err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle, 3119 DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED); 3120 if (err < 0) { 3121 dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err); 3122 goto free_irq; 3123 } 3124 3125 err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle, 3126 DPNI_IRQ_INDEX, 1); 3127 if (err < 0) { 3128 dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err); 3129 goto free_irq; 3130 } 3131 3132 return 0; 3133 3134 free_irq: 3135 devm_free_irq(&ls_dev->dev, irq->msi_desc->irq, &ls_dev->dev); 3136 free_mc_irq: 3137 fsl_mc_free_irqs(ls_dev); 3138 3139 return err; 3140 } 3141 3142 static void add_ch_napi(struct dpaa2_eth_priv *priv) 3143 { 3144 int i; 3145 struct dpaa2_eth_channel *ch; 3146 3147 for (i = 0; i < priv->num_channels; i++) { 3148 ch = priv->channel[i]; 3149 /* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */ 3150 netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll, 3151 NAPI_POLL_WEIGHT); 3152 } 3153 } 3154 3155 static void del_ch_napi(struct dpaa2_eth_priv *priv) 3156 { 3157 int i; 3158 struct dpaa2_eth_channel *ch; 3159 3160 for (i = 0; i < priv->num_channels; i++) { 3161 ch = priv->channel[i]; 3162 netif_napi_del(&ch->napi); 3163 } 3164 } 3165 3166 static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev) 3167 { 3168 struct device *dev; 3169 struct net_device *net_dev = NULL; 3170 struct dpaa2_eth_priv *priv = NULL; 3171 int err = 0; 3172 3173 dev = &dpni_dev->dev; 3174 3175 /* Net device */ 3176 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_TX_QUEUES); 3177 if (!net_dev) { 3178 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3179 return -ENOMEM; 3180 } 3181 3182 SET_NETDEV_DEV(net_dev, dev); 3183 dev_set_drvdata(dev, net_dev); 3184 3185 priv = netdev_priv(net_dev); 3186 priv->net_dev = net_dev; 3187 3188 priv->iommu_domain = iommu_get_domain_for_dev(dev); 3189 3190 /* Obtain a MC portal */ 3191 err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, 3192 &priv->mc_io); 3193 if (err) { 3194 if (err == -ENXIO) 3195 err = -EPROBE_DEFER; 3196 else 3197 dev_err(dev, "MC portal allocation failed\n"); 3198 goto err_portal_alloc; 3199 } 3200 3201 /* MC objects initialization and configuration */ 3202 err = setup_dpni(dpni_dev); 3203 if (err) 3204 goto err_dpni_setup; 3205 3206 err = setup_dpio(priv); 3207 if (err) 3208 goto err_dpio_setup; 3209 3210 setup_fqs(priv); 3211 3212 err = setup_dpbp(priv); 3213 if (err) 3214 goto err_dpbp_setup; 3215 3216 err = bind_dpni(priv); 3217 if (err) 3218 goto err_bind; 3219 3220 /* Add a NAPI context for each channel */ 3221 add_ch_napi(priv); 3222 3223 /* Percpu statistics */ 3224 priv->percpu_stats = alloc_percpu(*priv->percpu_stats); 3225 if (!priv->percpu_stats) { 3226 dev_err(dev, "alloc_percpu(percpu_stats) failed\n"); 3227 err = -ENOMEM; 3228 goto err_alloc_percpu_stats; 3229 } 3230 priv->percpu_extras = alloc_percpu(*priv->percpu_extras); 3231 if (!priv->percpu_extras) { 3232 dev_err(dev, "alloc_percpu(percpu_extras) failed\n"); 3233 err = -ENOMEM; 3234 goto err_alloc_percpu_extras; 3235 } 3236 3237 err = netdev_init(net_dev); 3238 if (err) 3239 goto err_netdev_init; 3240 3241 /* Configure checksum offload based on current interface flags */ 3242 err = set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM)); 3243 if (err) 3244 goto err_csum; 3245 3246 err = set_tx_csum(priv, !!(net_dev->features & 3247 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))); 3248 if (err) 3249 goto err_csum; 3250 3251 err = alloc_rings(priv); 3252 if (err) 3253 goto err_alloc_rings; 3254 3255 err = setup_irqs(dpni_dev); 3256 if (err) { 3257 netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n"); 3258 priv->poll_thread = kthread_run(poll_link_state, priv, 3259 "%s_poll_link", net_dev->name); 3260 if (IS_ERR(priv->poll_thread)) { 3261 dev_err(dev, "Error starting polling thread\n"); 3262 goto err_poll_thread; 3263 } 3264 priv->do_link_poll = true; 3265 } 3266 3267 err = register_netdev(net_dev); 3268 if (err < 0) { 3269 dev_err(dev, "register_netdev() failed\n"); 3270 goto err_netdev_reg; 3271 } 3272 3273 #ifdef CONFIG_DEBUG_FS 3274 dpaa2_dbg_add(priv); 3275 #endif 3276 3277 dev_info(dev, "Probed interface %s\n", net_dev->name); 3278 return 0; 3279 3280 err_netdev_reg: 3281 if (priv->do_link_poll) 3282 kthread_stop(priv->poll_thread); 3283 else 3284 fsl_mc_free_irqs(dpni_dev); 3285 err_poll_thread: 3286 free_rings(priv); 3287 err_alloc_rings: 3288 err_csum: 3289 err_netdev_init: 3290 free_percpu(priv->percpu_extras); 3291 err_alloc_percpu_extras: 3292 free_percpu(priv->percpu_stats); 3293 err_alloc_percpu_stats: 3294 del_ch_napi(priv); 3295 err_bind: 3296 free_dpbp(priv); 3297 err_dpbp_setup: 3298 free_dpio(priv); 3299 err_dpio_setup: 3300 free_dpni(priv); 3301 err_dpni_setup: 3302 fsl_mc_portal_free(priv->mc_io); 3303 err_portal_alloc: 3304 dev_set_drvdata(dev, NULL); 3305 free_netdev(net_dev); 3306 3307 return err; 3308 } 3309 3310 static int dpaa2_eth_remove(struct fsl_mc_device *ls_dev) 3311 { 3312 struct device *dev; 3313 struct net_device *net_dev; 3314 struct dpaa2_eth_priv *priv; 3315 3316 dev = &ls_dev->dev; 3317 net_dev = dev_get_drvdata(dev); 3318 priv = netdev_priv(net_dev); 3319 3320 #ifdef CONFIG_DEBUG_FS 3321 dpaa2_dbg_remove(priv); 3322 #endif 3323 unregister_netdev(net_dev); 3324 3325 if (priv->do_link_poll) 3326 kthread_stop(priv->poll_thread); 3327 else 3328 fsl_mc_free_irqs(ls_dev); 3329 3330 free_rings(priv); 3331 free_percpu(priv->percpu_stats); 3332 free_percpu(priv->percpu_extras); 3333 3334 del_ch_napi(priv); 3335 free_dpbp(priv); 3336 free_dpio(priv); 3337 free_dpni(priv); 3338 3339 fsl_mc_portal_free(priv->mc_io); 3340 3341 free_netdev(net_dev); 3342 3343 dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name); 3344 3345 return 0; 3346 } 3347 3348 static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = { 3349 { 3350 .vendor = FSL_MC_VENDOR_FREESCALE, 3351 .obj_type = "dpni", 3352 }, 3353 { .vendor = 0x0 } 3354 }; 3355 MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table); 3356 3357 static struct fsl_mc_driver dpaa2_eth_driver = { 3358 .driver = { 3359 .name = KBUILD_MODNAME, 3360 .owner = THIS_MODULE, 3361 }, 3362 .probe = dpaa2_eth_probe, 3363 .remove = dpaa2_eth_remove, 3364 .match_id_table = dpaa2_eth_match_id_table 3365 }; 3366 3367 static int __init dpaa2_eth_driver_init(void) 3368 { 3369 int err; 3370 3371 dpaa2_eth_dbg_init(); 3372 err = fsl_mc_driver_register(&dpaa2_eth_driver); 3373 if (err) { 3374 dpaa2_eth_dbg_exit(); 3375 return err; 3376 } 3377 3378 return 0; 3379 } 3380 3381 static void __exit dpaa2_eth_driver_exit(void) 3382 { 3383 dpaa2_eth_dbg_exit(); 3384 fsl_mc_driver_unregister(&dpaa2_eth_driver); 3385 } 3386 3387 module_init(dpaa2_eth_driver_init); 3388 module_exit(dpaa2_eth_driver_exit); 3389