1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /* Copyright 2014-2016 Freescale Semiconductor Inc.
3  * Copyright 2016-2017 NXP
4  */
5 #include <linux/init.h>
6 #include <linux/module.h>
7 #include <linux/platform_device.h>
8 #include <linux/etherdevice.h>
9 #include <linux/of_net.h>
10 #include <linux/interrupt.h>
11 #include <linux/msi.h>
12 #include <linux/kthread.h>
13 #include <linux/iommu.h>
14 #include <linux/net_tstamp.h>
15 #include <linux/fsl/mc.h>
16 
17 #include <net/sock.h>
18 
19 #include "dpaa2-eth.h"
20 
21 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files
22  * using trace events only need to #include <trace/events/sched.h>
23  */
24 #define CREATE_TRACE_POINTS
25 #include "dpaa2-eth-trace.h"
26 
27 MODULE_LICENSE("Dual BSD/GPL");
28 MODULE_AUTHOR("Freescale Semiconductor, Inc");
29 MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver");
30 
31 static void *dpaa2_iova_to_virt(struct iommu_domain *domain,
32 				dma_addr_t iova_addr)
33 {
34 	phys_addr_t phys_addr;
35 
36 	phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr;
37 
38 	return phys_to_virt(phys_addr);
39 }
40 
41 static void validate_rx_csum(struct dpaa2_eth_priv *priv,
42 			     u32 fd_status,
43 			     struct sk_buff *skb)
44 {
45 	skb_checksum_none_assert(skb);
46 
47 	/* HW checksum validation is disabled, nothing to do here */
48 	if (!(priv->net_dev->features & NETIF_F_RXCSUM))
49 		return;
50 
51 	/* Read checksum validation bits */
52 	if (!((fd_status & DPAA2_FAS_L3CV) &&
53 	      (fd_status & DPAA2_FAS_L4CV)))
54 		return;
55 
56 	/* Inform the stack there's no need to compute L3/L4 csum anymore */
57 	skb->ip_summed = CHECKSUM_UNNECESSARY;
58 }
59 
60 /* Free a received FD.
61  * Not to be used for Tx conf FDs or on any other paths.
62  */
63 static void free_rx_fd(struct dpaa2_eth_priv *priv,
64 		       const struct dpaa2_fd *fd,
65 		       void *vaddr)
66 {
67 	struct device *dev = priv->net_dev->dev.parent;
68 	dma_addr_t addr = dpaa2_fd_get_addr(fd);
69 	u8 fd_format = dpaa2_fd_get_format(fd);
70 	struct dpaa2_sg_entry *sgt;
71 	void *sg_vaddr;
72 	int i;
73 
74 	/* If single buffer frame, just free the data buffer */
75 	if (fd_format == dpaa2_fd_single)
76 		goto free_buf;
77 	else if (fd_format != dpaa2_fd_sg)
78 		/* We don't support any other format */
79 		return;
80 
81 	/* For S/G frames, we first need to free all SG entries
82 	 * except the first one, which was taken care of already
83 	 */
84 	sgt = vaddr + dpaa2_fd_get_offset(fd);
85 	for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) {
86 		addr = dpaa2_sg_get_addr(&sgt[i]);
87 		sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr);
88 		dma_unmap_single(dev, addr, DPAA2_ETH_RX_BUF_SIZE,
89 				 DMA_FROM_DEVICE);
90 
91 		skb_free_frag(sg_vaddr);
92 		if (dpaa2_sg_is_final(&sgt[i]))
93 			break;
94 	}
95 
96 free_buf:
97 	skb_free_frag(vaddr);
98 }
99 
100 /* Build a linear skb based on a single-buffer frame descriptor */
101 static struct sk_buff *build_linear_skb(struct dpaa2_eth_channel *ch,
102 					const struct dpaa2_fd *fd,
103 					void *fd_vaddr)
104 {
105 	struct sk_buff *skb = NULL;
106 	u16 fd_offset = dpaa2_fd_get_offset(fd);
107 	u32 fd_length = dpaa2_fd_get_len(fd);
108 
109 	ch->buf_count--;
110 
111 	skb = build_skb(fd_vaddr, DPAA2_ETH_SKB_SIZE);
112 	if (unlikely(!skb))
113 		return NULL;
114 
115 	skb_reserve(skb, fd_offset);
116 	skb_put(skb, fd_length);
117 
118 	return skb;
119 }
120 
121 /* Build a non linear (fragmented) skb based on a S/G table */
122 static struct sk_buff *build_frag_skb(struct dpaa2_eth_priv *priv,
123 				      struct dpaa2_eth_channel *ch,
124 				      struct dpaa2_sg_entry *sgt)
125 {
126 	struct sk_buff *skb = NULL;
127 	struct device *dev = priv->net_dev->dev.parent;
128 	void *sg_vaddr;
129 	dma_addr_t sg_addr;
130 	u16 sg_offset;
131 	u32 sg_length;
132 	struct page *page, *head_page;
133 	int page_offset;
134 	int i;
135 
136 	for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) {
137 		struct dpaa2_sg_entry *sge = &sgt[i];
138 
139 		/* NOTE: We only support SG entries in dpaa2_sg_single format,
140 		 * but this is the only format we may receive from HW anyway
141 		 */
142 
143 		/* Get the address and length from the S/G entry */
144 		sg_addr = dpaa2_sg_get_addr(sge);
145 		sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr);
146 		dma_unmap_single(dev, sg_addr, DPAA2_ETH_RX_BUF_SIZE,
147 				 DMA_FROM_DEVICE);
148 
149 		sg_length = dpaa2_sg_get_len(sge);
150 
151 		if (i == 0) {
152 			/* We build the skb around the first data buffer */
153 			skb = build_skb(sg_vaddr, DPAA2_ETH_SKB_SIZE);
154 			if (unlikely(!skb)) {
155 				/* Free the first SG entry now, since we already
156 				 * unmapped it and obtained the virtual address
157 				 */
158 				skb_free_frag(sg_vaddr);
159 
160 				/* We still need to subtract the buffers used
161 				 * by this FD from our software counter
162 				 */
163 				while (!dpaa2_sg_is_final(&sgt[i]) &&
164 				       i < DPAA2_ETH_MAX_SG_ENTRIES)
165 					i++;
166 				break;
167 			}
168 
169 			sg_offset = dpaa2_sg_get_offset(sge);
170 			skb_reserve(skb, sg_offset);
171 			skb_put(skb, sg_length);
172 		} else {
173 			/* Rest of the data buffers are stored as skb frags */
174 			page = virt_to_page(sg_vaddr);
175 			head_page = virt_to_head_page(sg_vaddr);
176 
177 			/* Offset in page (which may be compound).
178 			 * Data in subsequent SG entries is stored from the
179 			 * beginning of the buffer, so we don't need to add the
180 			 * sg_offset.
181 			 */
182 			page_offset = ((unsigned long)sg_vaddr &
183 				(PAGE_SIZE - 1)) +
184 				(page_address(page) - page_address(head_page));
185 
186 			skb_add_rx_frag(skb, i - 1, head_page, page_offset,
187 					sg_length, DPAA2_ETH_RX_BUF_SIZE);
188 		}
189 
190 		if (dpaa2_sg_is_final(sge))
191 			break;
192 	}
193 
194 	WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT");
195 
196 	/* Count all data buffers + SG table buffer */
197 	ch->buf_count -= i + 2;
198 
199 	return skb;
200 }
201 
202 /* Main Rx frame processing routine */
203 static void dpaa2_eth_rx(struct dpaa2_eth_priv *priv,
204 			 struct dpaa2_eth_channel *ch,
205 			 const struct dpaa2_fd *fd,
206 			 struct dpaa2_eth_fq *fq)
207 {
208 	dma_addr_t addr = dpaa2_fd_get_addr(fd);
209 	u8 fd_format = dpaa2_fd_get_format(fd);
210 	void *vaddr;
211 	struct sk_buff *skb;
212 	struct rtnl_link_stats64 *percpu_stats;
213 	struct dpaa2_eth_drv_stats *percpu_extras;
214 	struct device *dev = priv->net_dev->dev.parent;
215 	struct dpaa2_fas *fas;
216 	void *buf_data;
217 	u32 status = 0;
218 
219 	/* Tracing point */
220 	trace_dpaa2_rx_fd(priv->net_dev, fd);
221 
222 	vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr);
223 	dma_unmap_single(dev, addr, DPAA2_ETH_RX_BUF_SIZE, DMA_FROM_DEVICE);
224 
225 	fas = dpaa2_get_fas(vaddr, false);
226 	prefetch(fas);
227 	buf_data = vaddr + dpaa2_fd_get_offset(fd);
228 	prefetch(buf_data);
229 
230 	percpu_stats = this_cpu_ptr(priv->percpu_stats);
231 	percpu_extras = this_cpu_ptr(priv->percpu_extras);
232 
233 	if (fd_format == dpaa2_fd_single) {
234 		skb = build_linear_skb(ch, fd, vaddr);
235 	} else if (fd_format == dpaa2_fd_sg) {
236 		skb = build_frag_skb(priv, ch, buf_data);
237 		skb_free_frag(vaddr);
238 		percpu_extras->rx_sg_frames++;
239 		percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd);
240 	} else {
241 		/* We don't support any other format */
242 		goto err_frame_format;
243 	}
244 
245 	if (unlikely(!skb))
246 		goto err_build_skb;
247 
248 	prefetch(skb->data);
249 
250 	/* Get the timestamp value */
251 	if (priv->rx_tstamp) {
252 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
253 		__le64 *ts = dpaa2_get_ts(vaddr, false);
254 		u64 ns;
255 
256 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
257 
258 		ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts);
259 		shhwtstamps->hwtstamp = ns_to_ktime(ns);
260 	}
261 
262 	/* Check if we need to validate the L4 csum */
263 	if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) {
264 		status = le32_to_cpu(fas->status);
265 		validate_rx_csum(priv, status, skb);
266 	}
267 
268 	skb->protocol = eth_type_trans(skb, priv->net_dev);
269 	skb_record_rx_queue(skb, fq->flowid);
270 
271 	percpu_stats->rx_packets++;
272 	percpu_stats->rx_bytes += dpaa2_fd_get_len(fd);
273 
274 	napi_gro_receive(&ch->napi, skb);
275 
276 	return;
277 
278 err_build_skb:
279 	free_rx_fd(priv, fd, vaddr);
280 err_frame_format:
281 	percpu_stats->rx_dropped++;
282 }
283 
284 /* Consume all frames pull-dequeued into the store. This is the simplest way to
285  * make sure we don't accidentally issue another volatile dequeue which would
286  * overwrite (leak) frames already in the store.
287  *
288  * Observance of NAPI budget is not our concern, leaving that to the caller.
289  */
290 static int consume_frames(struct dpaa2_eth_channel *ch,
291 			  struct dpaa2_eth_fq **src)
292 {
293 	struct dpaa2_eth_priv *priv = ch->priv;
294 	struct dpaa2_eth_fq *fq = NULL;
295 	struct dpaa2_dq *dq;
296 	const struct dpaa2_fd *fd;
297 	int cleaned = 0;
298 	int is_last;
299 
300 	do {
301 		dq = dpaa2_io_store_next(ch->store, &is_last);
302 		if (unlikely(!dq)) {
303 			/* If we're here, we *must* have placed a
304 			 * volatile dequeue comnmand, so keep reading through
305 			 * the store until we get some sort of valid response
306 			 * token (either a valid frame or an "empty dequeue")
307 			 */
308 			continue;
309 		}
310 
311 		fd = dpaa2_dq_fd(dq);
312 		fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq);
313 
314 		fq->consume(priv, ch, fd, fq);
315 		cleaned++;
316 	} while (!is_last);
317 
318 	if (!cleaned)
319 		return 0;
320 
321 	fq->stats.frames += cleaned;
322 	ch->stats.frames += cleaned;
323 
324 	/* A dequeue operation only pulls frames from a single queue
325 	 * into the store. Return the frame queue as an out param.
326 	 */
327 	if (src)
328 		*src = fq;
329 
330 	return cleaned;
331 }
332 
333 /* Configure the egress frame annotation for timestamp update */
334 static void enable_tx_tstamp(struct dpaa2_fd *fd, void *buf_start)
335 {
336 	struct dpaa2_faead *faead;
337 	u32 ctrl, frc;
338 
339 	/* Mark the egress frame annotation area as valid */
340 	frc = dpaa2_fd_get_frc(fd);
341 	dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV);
342 
343 	/* Set hardware annotation size */
344 	ctrl = dpaa2_fd_get_ctrl(fd);
345 	dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL);
346 
347 	/* enable UPD (update prepanded data) bit in FAEAD field of
348 	 * hardware frame annotation area
349 	 */
350 	ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD;
351 	faead = dpaa2_get_faead(buf_start, true);
352 	faead->ctrl = cpu_to_le32(ctrl);
353 }
354 
355 /* Create a frame descriptor based on a fragmented skb */
356 static int build_sg_fd(struct dpaa2_eth_priv *priv,
357 		       struct sk_buff *skb,
358 		       struct dpaa2_fd *fd)
359 {
360 	struct device *dev = priv->net_dev->dev.parent;
361 	void *sgt_buf = NULL;
362 	dma_addr_t addr;
363 	int nr_frags = skb_shinfo(skb)->nr_frags;
364 	struct dpaa2_sg_entry *sgt;
365 	int i, err;
366 	int sgt_buf_size;
367 	struct scatterlist *scl, *crt_scl;
368 	int num_sg;
369 	int num_dma_bufs;
370 	struct dpaa2_eth_swa *swa;
371 
372 	/* Create and map scatterlist.
373 	 * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have
374 	 * to go beyond nr_frags+1.
375 	 * Note: We don't support chained scatterlists
376 	 */
377 	if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1))
378 		return -EINVAL;
379 
380 	scl = kcalloc(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC);
381 	if (unlikely(!scl))
382 		return -ENOMEM;
383 
384 	sg_init_table(scl, nr_frags + 1);
385 	num_sg = skb_to_sgvec(skb, scl, 0, skb->len);
386 	num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL);
387 	if (unlikely(!num_dma_bufs)) {
388 		err = -ENOMEM;
389 		goto dma_map_sg_failed;
390 	}
391 
392 	/* Prepare the HW SGT structure */
393 	sgt_buf_size = priv->tx_data_offset +
394 		       sizeof(struct dpaa2_sg_entry) *  num_dma_bufs;
395 	sgt_buf = netdev_alloc_frag(sgt_buf_size + DPAA2_ETH_TX_BUF_ALIGN);
396 	if (unlikely(!sgt_buf)) {
397 		err = -ENOMEM;
398 		goto sgt_buf_alloc_failed;
399 	}
400 	sgt_buf = PTR_ALIGN(sgt_buf, DPAA2_ETH_TX_BUF_ALIGN);
401 	memset(sgt_buf, 0, sgt_buf_size);
402 
403 	sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset);
404 
405 	/* Fill in the HW SGT structure.
406 	 *
407 	 * sgt_buf is zeroed out, so the following fields are implicit
408 	 * in all sgt entries:
409 	 *   - offset is 0
410 	 *   - format is 'dpaa2_sg_single'
411 	 */
412 	for_each_sg(scl, crt_scl, num_dma_bufs, i) {
413 		dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl));
414 		dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl));
415 	}
416 	dpaa2_sg_set_final(&sgt[i - 1], true);
417 
418 	/* Store the skb backpointer in the SGT buffer.
419 	 * Fit the scatterlist and the number of buffers alongside the
420 	 * skb backpointer in the software annotation area. We'll need
421 	 * all of them on Tx Conf.
422 	 */
423 	swa = (struct dpaa2_eth_swa *)sgt_buf;
424 	swa->skb = skb;
425 	swa->scl = scl;
426 	swa->num_sg = num_sg;
427 	swa->sgt_size = sgt_buf_size;
428 
429 	/* Separately map the SGT buffer */
430 	addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL);
431 	if (unlikely(dma_mapping_error(dev, addr))) {
432 		err = -ENOMEM;
433 		goto dma_map_single_failed;
434 	}
435 	dpaa2_fd_set_offset(fd, priv->tx_data_offset);
436 	dpaa2_fd_set_format(fd, dpaa2_fd_sg);
437 	dpaa2_fd_set_addr(fd, addr);
438 	dpaa2_fd_set_len(fd, skb->len);
439 	dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA);
440 
441 	if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
442 		enable_tx_tstamp(fd, sgt_buf);
443 
444 	return 0;
445 
446 dma_map_single_failed:
447 	skb_free_frag(sgt_buf);
448 sgt_buf_alloc_failed:
449 	dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL);
450 dma_map_sg_failed:
451 	kfree(scl);
452 	return err;
453 }
454 
455 /* Create a frame descriptor based on a linear skb */
456 static int build_single_fd(struct dpaa2_eth_priv *priv,
457 			   struct sk_buff *skb,
458 			   struct dpaa2_fd *fd)
459 {
460 	struct device *dev = priv->net_dev->dev.parent;
461 	u8 *buffer_start, *aligned_start;
462 	struct sk_buff **skbh;
463 	dma_addr_t addr;
464 
465 	buffer_start = skb->data - dpaa2_eth_needed_headroom(priv, skb);
466 
467 	/* If there's enough room to align the FD address, do it.
468 	 * It will help hardware optimize accesses.
469 	 */
470 	aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN,
471 				  DPAA2_ETH_TX_BUF_ALIGN);
472 	if (aligned_start >= skb->head)
473 		buffer_start = aligned_start;
474 
475 	/* Store a backpointer to the skb at the beginning of the buffer
476 	 * (in the private data area) such that we can release it
477 	 * on Tx confirm
478 	 */
479 	skbh = (struct sk_buff **)buffer_start;
480 	*skbh = skb;
481 
482 	addr = dma_map_single(dev, buffer_start,
483 			      skb_tail_pointer(skb) - buffer_start,
484 			      DMA_BIDIRECTIONAL);
485 	if (unlikely(dma_mapping_error(dev, addr)))
486 		return -ENOMEM;
487 
488 	dpaa2_fd_set_addr(fd, addr);
489 	dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start));
490 	dpaa2_fd_set_len(fd, skb->len);
491 	dpaa2_fd_set_format(fd, dpaa2_fd_single);
492 	dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA);
493 
494 	if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
495 		enable_tx_tstamp(fd, buffer_start);
496 
497 	return 0;
498 }
499 
500 /* FD freeing routine on the Tx path
501  *
502  * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb
503  * back-pointed to is also freed.
504  * This can be called either from dpaa2_eth_tx_conf() or on the error path of
505  * dpaa2_eth_tx().
506  */
507 static void free_tx_fd(const struct dpaa2_eth_priv *priv,
508 		       const struct dpaa2_fd *fd)
509 {
510 	struct device *dev = priv->net_dev->dev.parent;
511 	dma_addr_t fd_addr;
512 	struct sk_buff **skbh, *skb;
513 	unsigned char *buffer_start;
514 	struct dpaa2_eth_swa *swa;
515 	u8 fd_format = dpaa2_fd_get_format(fd);
516 
517 	fd_addr = dpaa2_fd_get_addr(fd);
518 	skbh = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr);
519 
520 	if (fd_format == dpaa2_fd_single) {
521 		skb = *skbh;
522 		buffer_start = (unsigned char *)skbh;
523 		/* Accessing the skb buffer is safe before dma unmap, because
524 		 * we didn't map the actual skb shell.
525 		 */
526 		dma_unmap_single(dev, fd_addr,
527 				 skb_tail_pointer(skb) - buffer_start,
528 				 DMA_BIDIRECTIONAL);
529 	} else if (fd_format == dpaa2_fd_sg) {
530 		swa = (struct dpaa2_eth_swa *)skbh;
531 		skb = swa->skb;
532 
533 		/* Unmap the scatterlist */
534 		dma_unmap_sg(dev, swa->scl, swa->num_sg, DMA_BIDIRECTIONAL);
535 		kfree(swa->scl);
536 
537 		/* Unmap the SGT buffer */
538 		dma_unmap_single(dev, fd_addr, swa->sgt_size,
539 				 DMA_BIDIRECTIONAL);
540 	} else {
541 		netdev_dbg(priv->net_dev, "Invalid FD format\n");
542 		return;
543 	}
544 
545 	/* Get the timestamp value */
546 	if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
547 		struct skb_shared_hwtstamps shhwtstamps;
548 		__le64 *ts = dpaa2_get_ts(skbh, true);
549 		u64 ns;
550 
551 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
552 
553 		ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts);
554 		shhwtstamps.hwtstamp = ns_to_ktime(ns);
555 		skb_tstamp_tx(skb, &shhwtstamps);
556 	}
557 
558 	/* Free SGT buffer allocated on tx */
559 	if (fd_format != dpaa2_fd_single)
560 		skb_free_frag(skbh);
561 
562 	/* Move on with skb release */
563 	dev_kfree_skb(skb);
564 }
565 
566 static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev)
567 {
568 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
569 	struct dpaa2_fd fd;
570 	struct rtnl_link_stats64 *percpu_stats;
571 	struct dpaa2_eth_drv_stats *percpu_extras;
572 	struct dpaa2_eth_fq *fq;
573 	struct netdev_queue *nq;
574 	u16 queue_mapping;
575 	unsigned int needed_headroom;
576 	u32 fd_len;
577 	int err, i;
578 
579 	percpu_stats = this_cpu_ptr(priv->percpu_stats);
580 	percpu_extras = this_cpu_ptr(priv->percpu_extras);
581 
582 	needed_headroom = dpaa2_eth_needed_headroom(priv, skb);
583 	if (skb_headroom(skb) < needed_headroom) {
584 		struct sk_buff *ns;
585 
586 		ns = skb_realloc_headroom(skb, needed_headroom);
587 		if (unlikely(!ns)) {
588 			percpu_stats->tx_dropped++;
589 			goto err_alloc_headroom;
590 		}
591 		percpu_extras->tx_reallocs++;
592 
593 		if (skb->sk)
594 			skb_set_owner_w(ns, skb->sk);
595 
596 		dev_kfree_skb(skb);
597 		skb = ns;
598 	}
599 
600 	/* We'll be holding a back-reference to the skb until Tx Confirmation;
601 	 * we don't want that overwritten by a concurrent Tx with a cloned skb.
602 	 */
603 	skb = skb_unshare(skb, GFP_ATOMIC);
604 	if (unlikely(!skb)) {
605 		/* skb_unshare() has already freed the skb */
606 		percpu_stats->tx_dropped++;
607 		return NETDEV_TX_OK;
608 	}
609 
610 	/* Setup the FD fields */
611 	memset(&fd, 0, sizeof(fd));
612 
613 	if (skb_is_nonlinear(skb)) {
614 		err = build_sg_fd(priv, skb, &fd);
615 		percpu_extras->tx_sg_frames++;
616 		percpu_extras->tx_sg_bytes += skb->len;
617 	} else {
618 		err = build_single_fd(priv, skb, &fd);
619 	}
620 
621 	if (unlikely(err)) {
622 		percpu_stats->tx_dropped++;
623 		goto err_build_fd;
624 	}
625 
626 	/* Tracing point */
627 	trace_dpaa2_tx_fd(net_dev, &fd);
628 
629 	/* TxConf FQ selection relies on queue id from the stack.
630 	 * In case of a forwarded frame from another DPNI interface, we choose
631 	 * a queue affined to the same core that processed the Rx frame
632 	 */
633 	queue_mapping = skb_get_queue_mapping(skb);
634 	fq = &priv->fq[queue_mapping];
635 	for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) {
636 		err = dpaa2_io_service_enqueue_qd(fq->channel->dpio,
637 						  priv->tx_qdid, 0,
638 						  fq->tx_qdbin, &fd);
639 		if (err != -EBUSY)
640 			break;
641 	}
642 	percpu_extras->tx_portal_busy += i;
643 	if (unlikely(err < 0)) {
644 		percpu_stats->tx_errors++;
645 		/* Clean up everything, including freeing the skb */
646 		free_tx_fd(priv, &fd);
647 	} else {
648 		fd_len = dpaa2_fd_get_len(&fd);
649 		percpu_stats->tx_packets++;
650 		percpu_stats->tx_bytes += fd_len;
651 
652 		nq = netdev_get_tx_queue(net_dev, queue_mapping);
653 		netdev_tx_sent_queue(nq, fd_len);
654 	}
655 
656 	return NETDEV_TX_OK;
657 
658 err_build_fd:
659 err_alloc_headroom:
660 	dev_kfree_skb(skb);
661 
662 	return NETDEV_TX_OK;
663 }
664 
665 /* Tx confirmation frame processing routine */
666 static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv,
667 			      struct dpaa2_eth_channel *ch __always_unused,
668 			      const struct dpaa2_fd *fd,
669 			      struct dpaa2_eth_fq *fq)
670 {
671 	struct rtnl_link_stats64 *percpu_stats;
672 	struct dpaa2_eth_drv_stats *percpu_extras;
673 	u32 fd_len = dpaa2_fd_get_len(fd);
674 	u32 fd_errors;
675 
676 	/* Tracing point */
677 	trace_dpaa2_tx_conf_fd(priv->net_dev, fd);
678 
679 	percpu_extras = this_cpu_ptr(priv->percpu_extras);
680 	percpu_extras->tx_conf_frames++;
681 	percpu_extras->tx_conf_bytes += fd_len;
682 
683 	fq->dq_frames++;
684 	fq->dq_bytes += fd_len;
685 
686 	/* Check frame errors in the FD field */
687 	fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK;
688 	free_tx_fd(priv, fd);
689 
690 	if (likely(!fd_errors))
691 		return;
692 
693 	if (net_ratelimit())
694 		netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n",
695 			   fd_errors);
696 
697 	percpu_stats = this_cpu_ptr(priv->percpu_stats);
698 	/* Tx-conf logically pertains to the egress path. */
699 	percpu_stats->tx_errors++;
700 }
701 
702 static int set_rx_csum(struct dpaa2_eth_priv *priv, bool enable)
703 {
704 	int err;
705 
706 	err = dpni_set_offload(priv->mc_io, 0, priv->mc_token,
707 			       DPNI_OFF_RX_L3_CSUM, enable);
708 	if (err) {
709 		netdev_err(priv->net_dev,
710 			   "dpni_set_offload(RX_L3_CSUM) failed\n");
711 		return err;
712 	}
713 
714 	err = dpni_set_offload(priv->mc_io, 0, priv->mc_token,
715 			       DPNI_OFF_RX_L4_CSUM, enable);
716 	if (err) {
717 		netdev_err(priv->net_dev,
718 			   "dpni_set_offload(RX_L4_CSUM) failed\n");
719 		return err;
720 	}
721 
722 	return 0;
723 }
724 
725 static int set_tx_csum(struct dpaa2_eth_priv *priv, bool enable)
726 {
727 	int err;
728 
729 	err = dpni_set_offload(priv->mc_io, 0, priv->mc_token,
730 			       DPNI_OFF_TX_L3_CSUM, enable);
731 	if (err) {
732 		netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n");
733 		return err;
734 	}
735 
736 	err = dpni_set_offload(priv->mc_io, 0, priv->mc_token,
737 			       DPNI_OFF_TX_L4_CSUM, enable);
738 	if (err) {
739 		netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n");
740 		return err;
741 	}
742 
743 	return 0;
744 }
745 
746 /* Free buffers acquired from the buffer pool or which were meant to
747  * be released in the pool
748  */
749 static void free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, int count)
750 {
751 	struct device *dev = priv->net_dev->dev.parent;
752 	void *vaddr;
753 	int i;
754 
755 	for (i = 0; i < count; i++) {
756 		vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]);
757 		dma_unmap_single(dev, buf_array[i], DPAA2_ETH_RX_BUF_SIZE,
758 				 DMA_FROM_DEVICE);
759 		skb_free_frag(vaddr);
760 	}
761 }
762 
763 /* Perform a single release command to add buffers
764  * to the specified buffer pool
765  */
766 static int add_bufs(struct dpaa2_eth_priv *priv,
767 		    struct dpaa2_eth_channel *ch, u16 bpid)
768 {
769 	struct device *dev = priv->net_dev->dev.parent;
770 	u64 buf_array[DPAA2_ETH_BUFS_PER_CMD];
771 	void *buf;
772 	dma_addr_t addr;
773 	int i, err;
774 
775 	for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) {
776 		/* Allocate buffer visible to WRIOP + skb shared info +
777 		 * alignment padding
778 		 */
779 		buf = napi_alloc_frag(dpaa2_eth_buf_raw_size(priv));
780 		if (unlikely(!buf))
781 			goto err_alloc;
782 
783 		buf = PTR_ALIGN(buf, priv->rx_buf_align);
784 
785 		addr = dma_map_single(dev, buf, DPAA2_ETH_RX_BUF_SIZE,
786 				      DMA_FROM_DEVICE);
787 		if (unlikely(dma_mapping_error(dev, addr)))
788 			goto err_map;
789 
790 		buf_array[i] = addr;
791 
792 		/* tracing point */
793 		trace_dpaa2_eth_buf_seed(priv->net_dev,
794 					 buf, dpaa2_eth_buf_raw_size(priv),
795 					 addr, DPAA2_ETH_RX_BUF_SIZE,
796 					 bpid);
797 	}
798 
799 release_bufs:
800 	/* In case the portal is busy, retry until successful */
801 	while ((err = dpaa2_io_service_release(ch->dpio, bpid,
802 					       buf_array, i)) == -EBUSY)
803 		cpu_relax();
804 
805 	/* If release command failed, clean up and bail out;
806 	 * not much else we can do about it
807 	 */
808 	if (err) {
809 		free_bufs(priv, buf_array, i);
810 		return 0;
811 	}
812 
813 	return i;
814 
815 err_map:
816 	skb_free_frag(buf);
817 err_alloc:
818 	/* If we managed to allocate at least some buffers,
819 	 * release them to hardware
820 	 */
821 	if (i)
822 		goto release_bufs;
823 
824 	return 0;
825 }
826 
827 static int seed_pool(struct dpaa2_eth_priv *priv, u16 bpid)
828 {
829 	int i, j;
830 	int new_count;
831 
832 	/* This is the lazy seeding of Rx buffer pools.
833 	 * dpaa2_add_bufs() is also used on the Rx hotpath and calls
834 	 * napi_alloc_frag(). The trouble with that is that it in turn ends up
835 	 * calling this_cpu_ptr(), which mandates execution in atomic context.
836 	 * Rather than splitting up the code, do a one-off preempt disable.
837 	 */
838 	preempt_disable();
839 	for (j = 0; j < priv->num_channels; j++) {
840 		for (i = 0; i < DPAA2_ETH_NUM_BUFS;
841 		     i += DPAA2_ETH_BUFS_PER_CMD) {
842 			new_count = add_bufs(priv, priv->channel[j], bpid);
843 			priv->channel[j]->buf_count += new_count;
844 
845 			if (new_count < DPAA2_ETH_BUFS_PER_CMD) {
846 				preempt_enable();
847 				return -ENOMEM;
848 			}
849 		}
850 	}
851 	preempt_enable();
852 
853 	return 0;
854 }
855 
856 /**
857  * Drain the specified number of buffers from the DPNI's private buffer pool.
858  * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD
859  */
860 static void drain_bufs(struct dpaa2_eth_priv *priv, int count)
861 {
862 	u64 buf_array[DPAA2_ETH_BUFS_PER_CMD];
863 	int ret;
864 
865 	do {
866 		ret = dpaa2_io_service_acquire(NULL, priv->bpid,
867 					       buf_array, count);
868 		if (ret < 0) {
869 			netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n");
870 			return;
871 		}
872 		free_bufs(priv, buf_array, ret);
873 	} while (ret);
874 }
875 
876 static void drain_pool(struct dpaa2_eth_priv *priv)
877 {
878 	int i;
879 
880 	drain_bufs(priv, DPAA2_ETH_BUFS_PER_CMD);
881 	drain_bufs(priv, 1);
882 
883 	for (i = 0; i < priv->num_channels; i++)
884 		priv->channel[i]->buf_count = 0;
885 }
886 
887 /* Function is called from softirq context only, so we don't need to guard
888  * the access to percpu count
889  */
890 static int refill_pool(struct dpaa2_eth_priv *priv,
891 		       struct dpaa2_eth_channel *ch,
892 		       u16 bpid)
893 {
894 	int new_count;
895 
896 	if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH))
897 		return 0;
898 
899 	do {
900 		new_count = add_bufs(priv, ch, bpid);
901 		if (unlikely(!new_count)) {
902 			/* Out of memory; abort for now, we'll try later on */
903 			break;
904 		}
905 		ch->buf_count += new_count;
906 	} while (ch->buf_count < DPAA2_ETH_NUM_BUFS);
907 
908 	if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS))
909 		return -ENOMEM;
910 
911 	return 0;
912 }
913 
914 static int pull_channel(struct dpaa2_eth_channel *ch)
915 {
916 	int err;
917 	int dequeues = -1;
918 
919 	/* Retry while portal is busy */
920 	do {
921 		err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id,
922 						    ch->store);
923 		dequeues++;
924 		cpu_relax();
925 	} while (err == -EBUSY);
926 
927 	ch->stats.dequeue_portal_busy += dequeues;
928 	if (unlikely(err))
929 		ch->stats.pull_err++;
930 
931 	return err;
932 }
933 
934 /* NAPI poll routine
935  *
936  * Frames are dequeued from the QMan channel associated with this NAPI context.
937  * Rx, Tx confirmation and (if configured) Rx error frames all count
938  * towards the NAPI budget.
939  */
940 static int dpaa2_eth_poll(struct napi_struct *napi, int budget)
941 {
942 	struct dpaa2_eth_channel *ch;
943 	struct dpaa2_eth_priv *priv;
944 	int rx_cleaned = 0, txconf_cleaned = 0;
945 	struct dpaa2_eth_fq *fq, *txc_fq = NULL;
946 	struct netdev_queue *nq;
947 	int store_cleaned, work_done;
948 	int err;
949 
950 	ch = container_of(napi, struct dpaa2_eth_channel, napi);
951 	priv = ch->priv;
952 
953 	do {
954 		err = pull_channel(ch);
955 		if (unlikely(err))
956 			break;
957 
958 		/* Refill pool if appropriate */
959 		refill_pool(priv, ch, priv->bpid);
960 
961 		store_cleaned = consume_frames(ch, &fq);
962 		if (!store_cleaned)
963 			break;
964 		if (fq->type == DPAA2_RX_FQ) {
965 			rx_cleaned += store_cleaned;
966 		} else {
967 			txconf_cleaned += store_cleaned;
968 			/* We have a single Tx conf FQ on this channel */
969 			txc_fq = fq;
970 		}
971 
972 		/* If we either consumed the whole NAPI budget with Rx frames
973 		 * or we reached the Tx confirmations threshold, we're done.
974 		 */
975 		if (rx_cleaned >= budget ||
976 		    txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI) {
977 			work_done = budget;
978 			goto out;
979 		}
980 	} while (store_cleaned);
981 
982 	/* We didn't consume the entire budget, so finish napi and
983 	 * re-enable data availability notifications
984 	 */
985 	napi_complete_done(napi, rx_cleaned);
986 	do {
987 		err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx);
988 		cpu_relax();
989 	} while (err == -EBUSY);
990 	WARN_ONCE(err, "CDAN notifications rearm failed on core %d",
991 		  ch->nctx.desired_cpu);
992 
993 	work_done = max(rx_cleaned, 1);
994 
995 out:
996 	if (txc_fq) {
997 		nq = netdev_get_tx_queue(priv->net_dev, txc_fq->flowid);
998 		netdev_tx_completed_queue(nq, txc_fq->dq_frames,
999 					  txc_fq->dq_bytes);
1000 		txc_fq->dq_frames = 0;
1001 		txc_fq->dq_bytes = 0;
1002 	}
1003 
1004 	return work_done;
1005 }
1006 
1007 static void enable_ch_napi(struct dpaa2_eth_priv *priv)
1008 {
1009 	struct dpaa2_eth_channel *ch;
1010 	int i;
1011 
1012 	for (i = 0; i < priv->num_channels; i++) {
1013 		ch = priv->channel[i];
1014 		napi_enable(&ch->napi);
1015 	}
1016 }
1017 
1018 static void disable_ch_napi(struct dpaa2_eth_priv *priv)
1019 {
1020 	struct dpaa2_eth_channel *ch;
1021 	int i;
1022 
1023 	for (i = 0; i < priv->num_channels; i++) {
1024 		ch = priv->channel[i];
1025 		napi_disable(&ch->napi);
1026 	}
1027 }
1028 
1029 static int link_state_update(struct dpaa2_eth_priv *priv)
1030 {
1031 	struct dpni_link_state state = {0};
1032 	int err;
1033 
1034 	err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state);
1035 	if (unlikely(err)) {
1036 		netdev_err(priv->net_dev,
1037 			   "dpni_get_link_state() failed\n");
1038 		return err;
1039 	}
1040 
1041 	/* Chech link state; speed / duplex changes are not treated yet */
1042 	if (priv->link_state.up == state.up)
1043 		return 0;
1044 
1045 	priv->link_state = state;
1046 	if (state.up) {
1047 		netif_carrier_on(priv->net_dev);
1048 		netif_tx_start_all_queues(priv->net_dev);
1049 	} else {
1050 		netif_tx_stop_all_queues(priv->net_dev);
1051 		netif_carrier_off(priv->net_dev);
1052 	}
1053 
1054 	netdev_info(priv->net_dev, "Link Event: state %s\n",
1055 		    state.up ? "up" : "down");
1056 
1057 	return 0;
1058 }
1059 
1060 static int dpaa2_eth_open(struct net_device *net_dev)
1061 {
1062 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
1063 	int err;
1064 
1065 	err = seed_pool(priv, priv->bpid);
1066 	if (err) {
1067 		/* Not much to do; the buffer pool, though not filled up,
1068 		 * may still contain some buffers which would enable us
1069 		 * to limp on.
1070 		 */
1071 		netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n",
1072 			   priv->dpbp_dev->obj_desc.id, priv->bpid);
1073 	}
1074 
1075 	/* We'll only start the txqs when the link is actually ready; make sure
1076 	 * we don't race against the link up notification, which may come
1077 	 * immediately after dpni_enable();
1078 	 */
1079 	netif_tx_stop_all_queues(net_dev);
1080 	enable_ch_napi(priv);
1081 	/* Also, explicitly set carrier off, otherwise netif_carrier_ok() will
1082 	 * return true and cause 'ip link show' to report the LOWER_UP flag,
1083 	 * even though the link notification wasn't even received.
1084 	 */
1085 	netif_carrier_off(net_dev);
1086 
1087 	err = dpni_enable(priv->mc_io, 0, priv->mc_token);
1088 	if (err < 0) {
1089 		netdev_err(net_dev, "dpni_enable() failed\n");
1090 		goto enable_err;
1091 	}
1092 
1093 	/* If the DPMAC object has already processed the link up interrupt,
1094 	 * we have to learn the link state ourselves.
1095 	 */
1096 	err = link_state_update(priv);
1097 	if (err < 0) {
1098 		netdev_err(net_dev, "Can't update link state\n");
1099 		goto link_state_err;
1100 	}
1101 
1102 	return 0;
1103 
1104 link_state_err:
1105 enable_err:
1106 	disable_ch_napi(priv);
1107 	drain_pool(priv);
1108 	return err;
1109 }
1110 
1111 /* The DPIO store must be empty when we call this,
1112  * at the end of every NAPI cycle.
1113  */
1114 static u32 drain_channel(struct dpaa2_eth_channel *ch)
1115 {
1116 	u32 drained = 0, total = 0;
1117 
1118 	do {
1119 		pull_channel(ch);
1120 		drained = consume_frames(ch, NULL);
1121 		total += drained;
1122 	} while (drained);
1123 
1124 	return total;
1125 }
1126 
1127 static u32 drain_ingress_frames(struct dpaa2_eth_priv *priv)
1128 {
1129 	struct dpaa2_eth_channel *ch;
1130 	int i;
1131 	u32 drained = 0;
1132 
1133 	for (i = 0; i < priv->num_channels; i++) {
1134 		ch = priv->channel[i];
1135 		drained += drain_channel(ch);
1136 	}
1137 
1138 	return drained;
1139 }
1140 
1141 static int dpaa2_eth_stop(struct net_device *net_dev)
1142 {
1143 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
1144 	int dpni_enabled = 0;
1145 	int retries = 10;
1146 	u32 drained;
1147 
1148 	netif_tx_stop_all_queues(net_dev);
1149 	netif_carrier_off(net_dev);
1150 
1151 	/* Loop while dpni_disable() attempts to drain the egress FQs
1152 	 * and confirm them back to us.
1153 	 */
1154 	do {
1155 		dpni_disable(priv->mc_io, 0, priv->mc_token);
1156 		dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled);
1157 		if (dpni_enabled)
1158 			/* Allow the hardware some slack */
1159 			msleep(100);
1160 	} while (dpni_enabled && --retries);
1161 	if (!retries) {
1162 		netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n");
1163 		/* Must go on and disable NAPI nonetheless, so we don't crash at
1164 		 * the next "ifconfig up"
1165 		 */
1166 	}
1167 
1168 	/* Wait for NAPI to complete on every core and disable it.
1169 	 * In particular, this will also prevent NAPI from being rescheduled if
1170 	 * a new CDAN is serviced, effectively discarding the CDAN. We therefore
1171 	 * don't even need to disarm the channels, except perhaps for the case
1172 	 * of a huge coalescing value.
1173 	 */
1174 	disable_ch_napi(priv);
1175 
1176 	 /* Manually drain the Rx and TxConf queues */
1177 	drained = drain_ingress_frames(priv);
1178 	if (drained)
1179 		netdev_dbg(net_dev, "Drained %d frames.\n", drained);
1180 
1181 	/* Empty the buffer pool */
1182 	drain_pool(priv);
1183 
1184 	return 0;
1185 }
1186 
1187 static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr)
1188 {
1189 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
1190 	struct device *dev = net_dev->dev.parent;
1191 	int err;
1192 
1193 	err = eth_mac_addr(net_dev, addr);
1194 	if (err < 0) {
1195 		dev_err(dev, "eth_mac_addr() failed (%d)\n", err);
1196 		return err;
1197 	}
1198 
1199 	err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token,
1200 					net_dev->dev_addr);
1201 	if (err) {
1202 		dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err);
1203 		return err;
1204 	}
1205 
1206 	return 0;
1207 }
1208 
1209 /** Fill in counters maintained by the GPP driver. These may be different from
1210  * the hardware counters obtained by ethtool.
1211  */
1212 static void dpaa2_eth_get_stats(struct net_device *net_dev,
1213 				struct rtnl_link_stats64 *stats)
1214 {
1215 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
1216 	struct rtnl_link_stats64 *percpu_stats;
1217 	u64 *cpustats;
1218 	u64 *netstats = (u64 *)stats;
1219 	int i, j;
1220 	int num = sizeof(struct rtnl_link_stats64) / sizeof(u64);
1221 
1222 	for_each_possible_cpu(i) {
1223 		percpu_stats = per_cpu_ptr(priv->percpu_stats, i);
1224 		cpustats = (u64 *)percpu_stats;
1225 		for (j = 0; j < num; j++)
1226 			netstats[j] += cpustats[j];
1227 	}
1228 }
1229 
1230 /* Copy mac unicast addresses from @net_dev to @priv.
1231  * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable.
1232  */
1233 static void add_uc_hw_addr(const struct net_device *net_dev,
1234 			   struct dpaa2_eth_priv *priv)
1235 {
1236 	struct netdev_hw_addr *ha;
1237 	int err;
1238 
1239 	netdev_for_each_uc_addr(ha, net_dev) {
1240 		err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token,
1241 					ha->addr);
1242 		if (err)
1243 			netdev_warn(priv->net_dev,
1244 				    "Could not add ucast MAC %pM to the filtering table (err %d)\n",
1245 				    ha->addr, err);
1246 	}
1247 }
1248 
1249 /* Copy mac multicast addresses from @net_dev to @priv
1250  * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable.
1251  */
1252 static void add_mc_hw_addr(const struct net_device *net_dev,
1253 			   struct dpaa2_eth_priv *priv)
1254 {
1255 	struct netdev_hw_addr *ha;
1256 	int err;
1257 
1258 	netdev_for_each_mc_addr(ha, net_dev) {
1259 		err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token,
1260 					ha->addr);
1261 		if (err)
1262 			netdev_warn(priv->net_dev,
1263 				    "Could not add mcast MAC %pM to the filtering table (err %d)\n",
1264 				    ha->addr, err);
1265 	}
1266 }
1267 
1268 static void dpaa2_eth_set_rx_mode(struct net_device *net_dev)
1269 {
1270 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
1271 	int uc_count = netdev_uc_count(net_dev);
1272 	int mc_count = netdev_mc_count(net_dev);
1273 	u8 max_mac = priv->dpni_attrs.mac_filter_entries;
1274 	u32 options = priv->dpni_attrs.options;
1275 	u16 mc_token = priv->mc_token;
1276 	struct fsl_mc_io *mc_io = priv->mc_io;
1277 	int err;
1278 
1279 	/* Basic sanity checks; these probably indicate a misconfiguration */
1280 	if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0)
1281 		netdev_info(net_dev,
1282 			    "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n",
1283 			    max_mac);
1284 
1285 	/* Force promiscuous if the uc or mc counts exceed our capabilities. */
1286 	if (uc_count > max_mac) {
1287 		netdev_info(net_dev,
1288 			    "Unicast addr count reached %d, max allowed is %d; forcing promisc\n",
1289 			    uc_count, max_mac);
1290 		goto force_promisc;
1291 	}
1292 	if (mc_count + uc_count > max_mac) {
1293 		netdev_info(net_dev,
1294 			    "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n",
1295 			    uc_count + mc_count, max_mac);
1296 		goto force_mc_promisc;
1297 	}
1298 
1299 	/* Adjust promisc settings due to flag combinations */
1300 	if (net_dev->flags & IFF_PROMISC)
1301 		goto force_promisc;
1302 	if (net_dev->flags & IFF_ALLMULTI) {
1303 		/* First, rebuild unicast filtering table. This should be done
1304 		 * in promisc mode, in order to avoid frame loss while we
1305 		 * progressively add entries to the table.
1306 		 * We don't know whether we had been in promisc already, and
1307 		 * making an MC call to find out is expensive; so set uc promisc
1308 		 * nonetheless.
1309 		 */
1310 		err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1);
1311 		if (err)
1312 			netdev_warn(net_dev, "Can't set uc promisc\n");
1313 
1314 		/* Actual uc table reconstruction. */
1315 		err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0);
1316 		if (err)
1317 			netdev_warn(net_dev, "Can't clear uc filters\n");
1318 		add_uc_hw_addr(net_dev, priv);
1319 
1320 		/* Finally, clear uc promisc and set mc promisc as requested. */
1321 		err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0);
1322 		if (err)
1323 			netdev_warn(net_dev, "Can't clear uc promisc\n");
1324 		goto force_mc_promisc;
1325 	}
1326 
1327 	/* Neither unicast, nor multicast promisc will be on... eventually.
1328 	 * For now, rebuild mac filtering tables while forcing both of them on.
1329 	 */
1330 	err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1);
1331 	if (err)
1332 		netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err);
1333 	err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1);
1334 	if (err)
1335 		netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err);
1336 
1337 	/* Actual mac filtering tables reconstruction */
1338 	err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1);
1339 	if (err)
1340 		netdev_warn(net_dev, "Can't clear mac filters\n");
1341 	add_mc_hw_addr(net_dev, priv);
1342 	add_uc_hw_addr(net_dev, priv);
1343 
1344 	/* Now we can clear both ucast and mcast promisc, without risking
1345 	 * to drop legitimate frames anymore.
1346 	 */
1347 	err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0);
1348 	if (err)
1349 		netdev_warn(net_dev, "Can't clear ucast promisc\n");
1350 	err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0);
1351 	if (err)
1352 		netdev_warn(net_dev, "Can't clear mcast promisc\n");
1353 
1354 	return;
1355 
1356 force_promisc:
1357 	err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1);
1358 	if (err)
1359 		netdev_warn(net_dev, "Can't set ucast promisc\n");
1360 force_mc_promisc:
1361 	err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1);
1362 	if (err)
1363 		netdev_warn(net_dev, "Can't set mcast promisc\n");
1364 }
1365 
1366 static int dpaa2_eth_set_features(struct net_device *net_dev,
1367 				  netdev_features_t features)
1368 {
1369 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
1370 	netdev_features_t changed = features ^ net_dev->features;
1371 	bool enable;
1372 	int err;
1373 
1374 	if (changed & NETIF_F_RXCSUM) {
1375 		enable = !!(features & NETIF_F_RXCSUM);
1376 		err = set_rx_csum(priv, enable);
1377 		if (err)
1378 			return err;
1379 	}
1380 
1381 	if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
1382 		enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
1383 		err = set_tx_csum(priv, enable);
1384 		if (err)
1385 			return err;
1386 	}
1387 
1388 	return 0;
1389 }
1390 
1391 static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1392 {
1393 	struct dpaa2_eth_priv *priv = netdev_priv(dev);
1394 	struct hwtstamp_config config;
1395 
1396 	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
1397 		return -EFAULT;
1398 
1399 	switch (config.tx_type) {
1400 	case HWTSTAMP_TX_OFF:
1401 		priv->tx_tstamp = false;
1402 		break;
1403 	case HWTSTAMP_TX_ON:
1404 		priv->tx_tstamp = true;
1405 		break;
1406 	default:
1407 		return -ERANGE;
1408 	}
1409 
1410 	if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
1411 		priv->rx_tstamp = false;
1412 	} else {
1413 		priv->rx_tstamp = true;
1414 		/* TS is set for all frame types, not only those requested */
1415 		config.rx_filter = HWTSTAMP_FILTER_ALL;
1416 	}
1417 
1418 	return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
1419 			-EFAULT : 0;
1420 }
1421 
1422 static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1423 {
1424 	if (cmd == SIOCSHWTSTAMP)
1425 		return dpaa2_eth_ts_ioctl(dev, rq, cmd);
1426 
1427 	return -EINVAL;
1428 }
1429 
1430 static const struct net_device_ops dpaa2_eth_ops = {
1431 	.ndo_open = dpaa2_eth_open,
1432 	.ndo_start_xmit = dpaa2_eth_tx,
1433 	.ndo_stop = dpaa2_eth_stop,
1434 	.ndo_set_mac_address = dpaa2_eth_set_addr,
1435 	.ndo_get_stats64 = dpaa2_eth_get_stats,
1436 	.ndo_set_rx_mode = dpaa2_eth_set_rx_mode,
1437 	.ndo_set_features = dpaa2_eth_set_features,
1438 	.ndo_do_ioctl = dpaa2_eth_ioctl,
1439 };
1440 
1441 static void cdan_cb(struct dpaa2_io_notification_ctx *ctx)
1442 {
1443 	struct dpaa2_eth_channel *ch;
1444 
1445 	ch = container_of(ctx, struct dpaa2_eth_channel, nctx);
1446 
1447 	/* Update NAPI statistics */
1448 	ch->stats.cdan++;
1449 
1450 	napi_schedule_irqoff(&ch->napi);
1451 }
1452 
1453 /* Allocate and configure a DPCON object */
1454 static struct fsl_mc_device *setup_dpcon(struct dpaa2_eth_priv *priv)
1455 {
1456 	struct fsl_mc_device *dpcon;
1457 	struct device *dev = priv->net_dev->dev.parent;
1458 	struct dpcon_attr attrs;
1459 	int err;
1460 
1461 	err = fsl_mc_object_allocate(to_fsl_mc_device(dev),
1462 				     FSL_MC_POOL_DPCON, &dpcon);
1463 	if (err) {
1464 		if (err == -ENXIO)
1465 			err = -EPROBE_DEFER;
1466 		else
1467 			dev_info(dev, "Not enough DPCONs, will go on as-is\n");
1468 		return ERR_PTR(err);
1469 	}
1470 
1471 	err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle);
1472 	if (err) {
1473 		dev_err(dev, "dpcon_open() failed\n");
1474 		goto free;
1475 	}
1476 
1477 	err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle);
1478 	if (err) {
1479 		dev_err(dev, "dpcon_reset() failed\n");
1480 		goto close;
1481 	}
1482 
1483 	err = dpcon_get_attributes(priv->mc_io, 0, dpcon->mc_handle, &attrs);
1484 	if (err) {
1485 		dev_err(dev, "dpcon_get_attributes() failed\n");
1486 		goto close;
1487 	}
1488 
1489 	err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle);
1490 	if (err) {
1491 		dev_err(dev, "dpcon_enable() failed\n");
1492 		goto close;
1493 	}
1494 
1495 	return dpcon;
1496 
1497 close:
1498 	dpcon_close(priv->mc_io, 0, dpcon->mc_handle);
1499 free:
1500 	fsl_mc_object_free(dpcon);
1501 
1502 	return NULL;
1503 }
1504 
1505 static void free_dpcon(struct dpaa2_eth_priv *priv,
1506 		       struct fsl_mc_device *dpcon)
1507 {
1508 	dpcon_disable(priv->mc_io, 0, dpcon->mc_handle);
1509 	dpcon_close(priv->mc_io, 0, dpcon->mc_handle);
1510 	fsl_mc_object_free(dpcon);
1511 }
1512 
1513 static struct dpaa2_eth_channel *
1514 alloc_channel(struct dpaa2_eth_priv *priv)
1515 {
1516 	struct dpaa2_eth_channel *channel;
1517 	struct dpcon_attr attr;
1518 	struct device *dev = priv->net_dev->dev.parent;
1519 	int err;
1520 
1521 	channel = kzalloc(sizeof(*channel), GFP_KERNEL);
1522 	if (!channel)
1523 		return NULL;
1524 
1525 	channel->dpcon = setup_dpcon(priv);
1526 	if (IS_ERR_OR_NULL(channel->dpcon)) {
1527 		err = PTR_ERR(channel->dpcon);
1528 		goto err_setup;
1529 	}
1530 
1531 	err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle,
1532 				   &attr);
1533 	if (err) {
1534 		dev_err(dev, "dpcon_get_attributes() failed\n");
1535 		goto err_get_attr;
1536 	}
1537 
1538 	channel->dpcon_id = attr.id;
1539 	channel->ch_id = attr.qbman_ch_id;
1540 	channel->priv = priv;
1541 
1542 	return channel;
1543 
1544 err_get_attr:
1545 	free_dpcon(priv, channel->dpcon);
1546 err_setup:
1547 	kfree(channel);
1548 	return ERR_PTR(err);
1549 }
1550 
1551 static void free_channel(struct dpaa2_eth_priv *priv,
1552 			 struct dpaa2_eth_channel *channel)
1553 {
1554 	free_dpcon(priv, channel->dpcon);
1555 	kfree(channel);
1556 }
1557 
1558 /* DPIO setup: allocate and configure QBMan channels, setup core affinity
1559  * and register data availability notifications
1560  */
1561 static int setup_dpio(struct dpaa2_eth_priv *priv)
1562 {
1563 	struct dpaa2_io_notification_ctx *nctx;
1564 	struct dpaa2_eth_channel *channel;
1565 	struct dpcon_notification_cfg dpcon_notif_cfg;
1566 	struct device *dev = priv->net_dev->dev.parent;
1567 	int i, err;
1568 
1569 	/* We want the ability to spread ingress traffic (RX, TX conf) to as
1570 	 * many cores as possible, so we need one channel for each core
1571 	 * (unless there's fewer queues than cores, in which case the extra
1572 	 * channels would be wasted).
1573 	 * Allocate one channel per core and register it to the core's
1574 	 * affine DPIO. If not enough channels are available for all cores
1575 	 * or if some cores don't have an affine DPIO, there will be no
1576 	 * ingress frame processing on those cores.
1577 	 */
1578 	cpumask_clear(&priv->dpio_cpumask);
1579 	for_each_online_cpu(i) {
1580 		/* Try to allocate a channel */
1581 		channel = alloc_channel(priv);
1582 		if (IS_ERR_OR_NULL(channel)) {
1583 			err = PTR_ERR(channel);
1584 			if (err != -EPROBE_DEFER)
1585 				dev_info(dev,
1586 					 "No affine channel for cpu %d and above\n", i);
1587 			goto err_alloc_ch;
1588 		}
1589 
1590 		priv->channel[priv->num_channels] = channel;
1591 
1592 		nctx = &channel->nctx;
1593 		nctx->is_cdan = 1;
1594 		nctx->cb = cdan_cb;
1595 		nctx->id = channel->ch_id;
1596 		nctx->desired_cpu = i;
1597 
1598 		/* Register the new context */
1599 		channel->dpio = dpaa2_io_service_select(i);
1600 		err = dpaa2_io_service_register(channel->dpio, nctx);
1601 		if (err) {
1602 			dev_dbg(dev, "No affine DPIO for cpu %d\n", i);
1603 			/* If no affine DPIO for this core, there's probably
1604 			 * none available for next cores either. Signal we want
1605 			 * to retry later, in case the DPIO devices weren't
1606 			 * probed yet.
1607 			 */
1608 			err = -EPROBE_DEFER;
1609 			goto err_service_reg;
1610 		}
1611 
1612 		/* Register DPCON notification with MC */
1613 		dpcon_notif_cfg.dpio_id = nctx->dpio_id;
1614 		dpcon_notif_cfg.priority = 0;
1615 		dpcon_notif_cfg.user_ctx = nctx->qman64;
1616 		err = dpcon_set_notification(priv->mc_io, 0,
1617 					     channel->dpcon->mc_handle,
1618 					     &dpcon_notif_cfg);
1619 		if (err) {
1620 			dev_err(dev, "dpcon_set_notification failed()\n");
1621 			goto err_set_cdan;
1622 		}
1623 
1624 		/* If we managed to allocate a channel and also found an affine
1625 		 * DPIO for this core, add it to the final mask
1626 		 */
1627 		cpumask_set_cpu(i, &priv->dpio_cpumask);
1628 		priv->num_channels++;
1629 
1630 		/* Stop if we already have enough channels to accommodate all
1631 		 * RX and TX conf queues
1632 		 */
1633 		if (priv->num_channels == priv->dpni_attrs.num_queues)
1634 			break;
1635 	}
1636 
1637 	return 0;
1638 
1639 err_set_cdan:
1640 	dpaa2_io_service_deregister(channel->dpio, nctx);
1641 err_service_reg:
1642 	free_channel(priv, channel);
1643 err_alloc_ch:
1644 	if (err == -EPROBE_DEFER)
1645 		return err;
1646 
1647 	if (cpumask_empty(&priv->dpio_cpumask)) {
1648 		dev_err(dev, "No cpu with an affine DPIO/DPCON\n");
1649 		return -ENODEV;
1650 	}
1651 
1652 	dev_info(dev, "Cores %*pbl available for processing ingress traffic\n",
1653 		 cpumask_pr_args(&priv->dpio_cpumask));
1654 
1655 	return 0;
1656 }
1657 
1658 static void free_dpio(struct dpaa2_eth_priv *priv)
1659 {
1660 	int i;
1661 	struct dpaa2_eth_channel *ch;
1662 
1663 	/* deregister CDAN notifications and free channels */
1664 	for (i = 0; i < priv->num_channels; i++) {
1665 		ch = priv->channel[i];
1666 		dpaa2_io_service_deregister(ch->dpio, &ch->nctx);
1667 		free_channel(priv, ch);
1668 	}
1669 }
1670 
1671 static struct dpaa2_eth_channel *get_affine_channel(struct dpaa2_eth_priv *priv,
1672 						    int cpu)
1673 {
1674 	struct device *dev = priv->net_dev->dev.parent;
1675 	int i;
1676 
1677 	for (i = 0; i < priv->num_channels; i++)
1678 		if (priv->channel[i]->nctx.desired_cpu == cpu)
1679 			return priv->channel[i];
1680 
1681 	/* We should never get here. Issue a warning and return
1682 	 * the first channel, because it's still better than nothing
1683 	 */
1684 	dev_warn(dev, "No affine channel found for cpu %d\n", cpu);
1685 
1686 	return priv->channel[0];
1687 }
1688 
1689 static void set_fq_affinity(struct dpaa2_eth_priv *priv)
1690 {
1691 	struct device *dev = priv->net_dev->dev.parent;
1692 	struct cpumask xps_mask;
1693 	struct dpaa2_eth_fq *fq;
1694 	int rx_cpu, txc_cpu;
1695 	int i, err;
1696 
1697 	/* For each FQ, pick one channel/CPU to deliver frames to.
1698 	 * This may well change at runtime, either through irqbalance or
1699 	 * through direct user intervention.
1700 	 */
1701 	rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask);
1702 
1703 	for (i = 0; i < priv->num_fqs; i++) {
1704 		fq = &priv->fq[i];
1705 		switch (fq->type) {
1706 		case DPAA2_RX_FQ:
1707 			fq->target_cpu = rx_cpu;
1708 			rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask);
1709 			if (rx_cpu >= nr_cpu_ids)
1710 				rx_cpu = cpumask_first(&priv->dpio_cpumask);
1711 			break;
1712 		case DPAA2_TX_CONF_FQ:
1713 			fq->target_cpu = txc_cpu;
1714 
1715 			/* Tell the stack to affine to txc_cpu the Tx queue
1716 			 * associated with the confirmation one
1717 			 */
1718 			cpumask_clear(&xps_mask);
1719 			cpumask_set_cpu(txc_cpu, &xps_mask);
1720 			err = netif_set_xps_queue(priv->net_dev, &xps_mask,
1721 						  fq->flowid);
1722 			if (err)
1723 				dev_err(dev, "Error setting XPS queue\n");
1724 
1725 			txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask);
1726 			if (txc_cpu >= nr_cpu_ids)
1727 				txc_cpu = cpumask_first(&priv->dpio_cpumask);
1728 			break;
1729 		default:
1730 			dev_err(dev, "Unknown FQ type: %d\n", fq->type);
1731 		}
1732 		fq->channel = get_affine_channel(priv, fq->target_cpu);
1733 	}
1734 }
1735 
1736 static void setup_fqs(struct dpaa2_eth_priv *priv)
1737 {
1738 	int i;
1739 
1740 	/* We have one TxConf FQ per Tx flow.
1741 	 * The number of Tx and Rx queues is the same.
1742 	 * Tx queues come first in the fq array.
1743 	 */
1744 	for (i = 0; i < dpaa2_eth_queue_count(priv); i++) {
1745 		priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ;
1746 		priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf;
1747 		priv->fq[priv->num_fqs++].flowid = (u16)i;
1748 	}
1749 
1750 	for (i = 0; i < dpaa2_eth_queue_count(priv); i++) {
1751 		priv->fq[priv->num_fqs].type = DPAA2_RX_FQ;
1752 		priv->fq[priv->num_fqs].consume = dpaa2_eth_rx;
1753 		priv->fq[priv->num_fqs++].flowid = (u16)i;
1754 	}
1755 
1756 	/* For each FQ, decide on which core to process incoming frames */
1757 	set_fq_affinity(priv);
1758 }
1759 
1760 /* Allocate and configure one buffer pool for each interface */
1761 static int setup_dpbp(struct dpaa2_eth_priv *priv)
1762 {
1763 	int err;
1764 	struct fsl_mc_device *dpbp_dev;
1765 	struct device *dev = priv->net_dev->dev.parent;
1766 	struct dpbp_attr dpbp_attrs;
1767 
1768 	err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP,
1769 				     &dpbp_dev);
1770 	if (err) {
1771 		if (err == -ENXIO)
1772 			err = -EPROBE_DEFER;
1773 		else
1774 			dev_err(dev, "DPBP device allocation failed\n");
1775 		return err;
1776 	}
1777 
1778 	priv->dpbp_dev = dpbp_dev;
1779 
1780 	err = dpbp_open(priv->mc_io, 0, priv->dpbp_dev->obj_desc.id,
1781 			&dpbp_dev->mc_handle);
1782 	if (err) {
1783 		dev_err(dev, "dpbp_open() failed\n");
1784 		goto err_open;
1785 	}
1786 
1787 	err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle);
1788 	if (err) {
1789 		dev_err(dev, "dpbp_reset() failed\n");
1790 		goto err_reset;
1791 	}
1792 
1793 	err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle);
1794 	if (err) {
1795 		dev_err(dev, "dpbp_enable() failed\n");
1796 		goto err_enable;
1797 	}
1798 
1799 	err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle,
1800 				  &dpbp_attrs);
1801 	if (err) {
1802 		dev_err(dev, "dpbp_get_attributes() failed\n");
1803 		goto err_get_attr;
1804 	}
1805 	priv->bpid = dpbp_attrs.bpid;
1806 
1807 	return 0;
1808 
1809 err_get_attr:
1810 	dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle);
1811 err_enable:
1812 err_reset:
1813 	dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle);
1814 err_open:
1815 	fsl_mc_object_free(dpbp_dev);
1816 
1817 	return err;
1818 }
1819 
1820 static void free_dpbp(struct dpaa2_eth_priv *priv)
1821 {
1822 	drain_pool(priv);
1823 	dpbp_disable(priv->mc_io, 0, priv->dpbp_dev->mc_handle);
1824 	dpbp_close(priv->mc_io, 0, priv->dpbp_dev->mc_handle);
1825 	fsl_mc_object_free(priv->dpbp_dev);
1826 }
1827 
1828 static int set_buffer_layout(struct dpaa2_eth_priv *priv)
1829 {
1830 	struct device *dev = priv->net_dev->dev.parent;
1831 	struct dpni_buffer_layout buf_layout = {0};
1832 	int err;
1833 
1834 	/* We need to check for WRIOP version 1.0.0, but depending on the MC
1835 	 * version, this number is not always provided correctly on rev1.
1836 	 * We need to check for both alternatives in this situation.
1837 	 */
1838 	if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) ||
1839 	    priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0))
1840 		priv->rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1;
1841 	else
1842 		priv->rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN;
1843 
1844 	/* tx buffer */
1845 	buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE;
1846 	buf_layout.pass_timestamp = true;
1847 	buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE |
1848 			     DPNI_BUF_LAYOUT_OPT_TIMESTAMP;
1849 	err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token,
1850 				     DPNI_QUEUE_TX, &buf_layout);
1851 	if (err) {
1852 		dev_err(dev, "dpni_set_buffer_layout(TX) failed\n");
1853 		return err;
1854 	}
1855 
1856 	/* tx-confirm buffer */
1857 	buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP;
1858 	err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token,
1859 				     DPNI_QUEUE_TX_CONFIRM, &buf_layout);
1860 	if (err) {
1861 		dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n");
1862 		return err;
1863 	}
1864 
1865 	/* Now that we've set our tx buffer layout, retrieve the minimum
1866 	 * required tx data offset.
1867 	 */
1868 	err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token,
1869 				      &priv->tx_data_offset);
1870 	if (err) {
1871 		dev_err(dev, "dpni_get_tx_data_offset() failed\n");
1872 		return err;
1873 	}
1874 
1875 	if ((priv->tx_data_offset % 64) != 0)
1876 		dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n",
1877 			 priv->tx_data_offset);
1878 
1879 	/* rx buffer */
1880 	buf_layout.pass_frame_status = true;
1881 	buf_layout.pass_parser_result = true;
1882 	buf_layout.data_align = priv->rx_buf_align;
1883 	buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv);
1884 	buf_layout.private_data_size = 0;
1885 	buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT |
1886 			     DPNI_BUF_LAYOUT_OPT_FRAME_STATUS |
1887 			     DPNI_BUF_LAYOUT_OPT_DATA_ALIGN |
1888 			     DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM |
1889 			     DPNI_BUF_LAYOUT_OPT_TIMESTAMP;
1890 	err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token,
1891 				     DPNI_QUEUE_RX, &buf_layout);
1892 	if (err) {
1893 		dev_err(dev, "dpni_set_buffer_layout(RX) failed\n");
1894 		return err;
1895 	}
1896 
1897 	return 0;
1898 }
1899 
1900 /* Configure the DPNI object this interface is associated with */
1901 static int setup_dpni(struct fsl_mc_device *ls_dev)
1902 {
1903 	struct device *dev = &ls_dev->dev;
1904 	struct dpaa2_eth_priv *priv;
1905 	struct net_device *net_dev;
1906 	int err;
1907 
1908 	net_dev = dev_get_drvdata(dev);
1909 	priv = netdev_priv(net_dev);
1910 
1911 	/* get a handle for the DPNI object */
1912 	err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token);
1913 	if (err) {
1914 		dev_err(dev, "dpni_open() failed\n");
1915 		return err;
1916 	}
1917 
1918 	/* Check if we can work with this DPNI object */
1919 	err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major,
1920 				   &priv->dpni_ver_minor);
1921 	if (err) {
1922 		dev_err(dev, "dpni_get_api_version() failed\n");
1923 		goto close;
1924 	}
1925 	if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) {
1926 		dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n",
1927 			priv->dpni_ver_major, priv->dpni_ver_minor,
1928 			DPNI_VER_MAJOR, DPNI_VER_MINOR);
1929 		err = -ENOTSUPP;
1930 		goto close;
1931 	}
1932 
1933 	ls_dev->mc_io = priv->mc_io;
1934 	ls_dev->mc_handle = priv->mc_token;
1935 
1936 	err = dpni_reset(priv->mc_io, 0, priv->mc_token);
1937 	if (err) {
1938 		dev_err(dev, "dpni_reset() failed\n");
1939 		goto close;
1940 	}
1941 
1942 	err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token,
1943 				  &priv->dpni_attrs);
1944 	if (err) {
1945 		dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err);
1946 		goto close;
1947 	}
1948 
1949 	err = set_buffer_layout(priv);
1950 	if (err)
1951 		goto close;
1952 
1953 	priv->cls_rules = devm_kzalloc(dev, sizeof(struct dpaa2_eth_cls_rule) *
1954 				       dpaa2_eth_fs_count(priv), GFP_KERNEL);
1955 	if (!priv->cls_rules)
1956 		goto close;
1957 
1958 	return 0;
1959 
1960 close:
1961 	dpni_close(priv->mc_io, 0, priv->mc_token);
1962 
1963 	return err;
1964 }
1965 
1966 static void free_dpni(struct dpaa2_eth_priv *priv)
1967 {
1968 	int err;
1969 
1970 	err = dpni_reset(priv->mc_io, 0, priv->mc_token);
1971 	if (err)
1972 		netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n",
1973 			    err);
1974 
1975 	dpni_close(priv->mc_io, 0, priv->mc_token);
1976 }
1977 
1978 static int setup_rx_flow(struct dpaa2_eth_priv *priv,
1979 			 struct dpaa2_eth_fq *fq)
1980 {
1981 	struct device *dev = priv->net_dev->dev.parent;
1982 	struct dpni_queue queue;
1983 	struct dpni_queue_id qid;
1984 	struct dpni_taildrop td;
1985 	int err;
1986 
1987 	err = dpni_get_queue(priv->mc_io, 0, priv->mc_token,
1988 			     DPNI_QUEUE_RX, 0, fq->flowid, &queue, &qid);
1989 	if (err) {
1990 		dev_err(dev, "dpni_get_queue(RX) failed\n");
1991 		return err;
1992 	}
1993 
1994 	fq->fqid = qid.fqid;
1995 
1996 	queue.destination.id = fq->channel->dpcon_id;
1997 	queue.destination.type = DPNI_DEST_DPCON;
1998 	queue.destination.priority = 1;
1999 	queue.user_context = (u64)(uintptr_t)fq;
2000 	err = dpni_set_queue(priv->mc_io, 0, priv->mc_token,
2001 			     DPNI_QUEUE_RX, 0, fq->flowid,
2002 			     DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST,
2003 			     &queue);
2004 	if (err) {
2005 		dev_err(dev, "dpni_set_queue(RX) failed\n");
2006 		return err;
2007 	}
2008 
2009 	td.enable = 1;
2010 	td.threshold = DPAA2_ETH_TAILDROP_THRESH;
2011 	err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, DPNI_CP_QUEUE,
2012 				DPNI_QUEUE_RX, 0, fq->flowid, &td);
2013 	if (err) {
2014 		dev_err(dev, "dpni_set_threshold() failed\n");
2015 		return err;
2016 	}
2017 
2018 	return 0;
2019 }
2020 
2021 static int setup_tx_flow(struct dpaa2_eth_priv *priv,
2022 			 struct dpaa2_eth_fq *fq)
2023 {
2024 	struct device *dev = priv->net_dev->dev.parent;
2025 	struct dpni_queue queue;
2026 	struct dpni_queue_id qid;
2027 	int err;
2028 
2029 	err = dpni_get_queue(priv->mc_io, 0, priv->mc_token,
2030 			     DPNI_QUEUE_TX, 0, fq->flowid, &queue, &qid);
2031 	if (err) {
2032 		dev_err(dev, "dpni_get_queue(TX) failed\n");
2033 		return err;
2034 	}
2035 
2036 	fq->tx_qdbin = qid.qdbin;
2037 
2038 	err = dpni_get_queue(priv->mc_io, 0, priv->mc_token,
2039 			     DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid,
2040 			     &queue, &qid);
2041 	if (err) {
2042 		dev_err(dev, "dpni_get_queue(TX_CONF) failed\n");
2043 		return err;
2044 	}
2045 
2046 	fq->fqid = qid.fqid;
2047 
2048 	queue.destination.id = fq->channel->dpcon_id;
2049 	queue.destination.type = DPNI_DEST_DPCON;
2050 	queue.destination.priority = 0;
2051 	queue.user_context = (u64)(uintptr_t)fq;
2052 	err = dpni_set_queue(priv->mc_io, 0, priv->mc_token,
2053 			     DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid,
2054 			     DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST,
2055 			     &queue);
2056 	if (err) {
2057 		dev_err(dev, "dpni_set_queue(TX_CONF) failed\n");
2058 		return err;
2059 	}
2060 
2061 	return 0;
2062 }
2063 
2064 /* Supported header fields for Rx hash distribution key */
2065 static const struct dpaa2_eth_dist_fields dist_fields[] = {
2066 	{
2067 		/* L2 header */
2068 		.rxnfc_field = RXH_L2DA,
2069 		.cls_prot = NET_PROT_ETH,
2070 		.cls_field = NH_FLD_ETH_DA,
2071 		.size = 6,
2072 	}, {
2073 		.cls_prot = NET_PROT_ETH,
2074 		.cls_field = NH_FLD_ETH_SA,
2075 		.size = 6,
2076 	}, {
2077 		/* This is the last ethertype field parsed:
2078 		 * depending on frame format, it can be the MAC ethertype
2079 		 * or the VLAN etype.
2080 		 */
2081 		.cls_prot = NET_PROT_ETH,
2082 		.cls_field = NH_FLD_ETH_TYPE,
2083 		.size = 2,
2084 	}, {
2085 		/* VLAN header */
2086 		.rxnfc_field = RXH_VLAN,
2087 		.cls_prot = NET_PROT_VLAN,
2088 		.cls_field = NH_FLD_VLAN_TCI,
2089 		.size = 2,
2090 	}, {
2091 		/* IP header */
2092 		.rxnfc_field = RXH_IP_SRC,
2093 		.cls_prot = NET_PROT_IP,
2094 		.cls_field = NH_FLD_IP_SRC,
2095 		.size = 4,
2096 	}, {
2097 		.rxnfc_field = RXH_IP_DST,
2098 		.cls_prot = NET_PROT_IP,
2099 		.cls_field = NH_FLD_IP_DST,
2100 		.size = 4,
2101 	}, {
2102 		.rxnfc_field = RXH_L3_PROTO,
2103 		.cls_prot = NET_PROT_IP,
2104 		.cls_field = NH_FLD_IP_PROTO,
2105 		.size = 1,
2106 	}, {
2107 		/* Using UDP ports, this is functionally equivalent to raw
2108 		 * byte pairs from L4 header.
2109 		 */
2110 		.rxnfc_field = RXH_L4_B_0_1,
2111 		.cls_prot = NET_PROT_UDP,
2112 		.cls_field = NH_FLD_UDP_PORT_SRC,
2113 		.size = 2,
2114 	}, {
2115 		.rxnfc_field = RXH_L4_B_2_3,
2116 		.cls_prot = NET_PROT_UDP,
2117 		.cls_field = NH_FLD_UDP_PORT_DST,
2118 		.size = 2,
2119 	},
2120 };
2121 
2122 /* Configure the Rx hash key using the legacy API */
2123 static int config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key)
2124 {
2125 	struct device *dev = priv->net_dev->dev.parent;
2126 	struct dpni_rx_tc_dist_cfg dist_cfg;
2127 	int err;
2128 
2129 	memset(&dist_cfg, 0, sizeof(dist_cfg));
2130 
2131 	dist_cfg.key_cfg_iova = key;
2132 	dist_cfg.dist_size = dpaa2_eth_queue_count(priv);
2133 	dist_cfg.dist_mode = DPNI_DIST_MODE_HASH;
2134 
2135 	err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 0, &dist_cfg);
2136 	if (err)
2137 		dev_err(dev, "dpni_set_rx_tc_dist failed\n");
2138 
2139 	return err;
2140 }
2141 
2142 /* Configure the Rx hash key using the new API */
2143 static int config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key)
2144 {
2145 	struct device *dev = priv->net_dev->dev.parent;
2146 	struct dpni_rx_dist_cfg dist_cfg;
2147 	int err;
2148 
2149 	memset(&dist_cfg, 0, sizeof(dist_cfg));
2150 
2151 	dist_cfg.key_cfg_iova = key;
2152 	dist_cfg.dist_size = dpaa2_eth_queue_count(priv);
2153 	dist_cfg.enable = 1;
2154 
2155 	err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg);
2156 	if (err)
2157 		dev_err(dev, "dpni_set_rx_hash_dist failed\n");
2158 
2159 	return err;
2160 }
2161 
2162 /* Configure the Rx flow classification key */
2163 static int config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key)
2164 {
2165 	struct device *dev = priv->net_dev->dev.parent;
2166 	struct dpni_rx_dist_cfg dist_cfg;
2167 	int err;
2168 
2169 	memset(&dist_cfg, 0, sizeof(dist_cfg));
2170 
2171 	dist_cfg.key_cfg_iova = key;
2172 	dist_cfg.dist_size = dpaa2_eth_queue_count(priv);
2173 	dist_cfg.enable = 1;
2174 
2175 	err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg);
2176 	if (err)
2177 		dev_err(dev, "dpni_set_rx_fs_dist failed\n");
2178 
2179 	return err;
2180 }
2181 
2182 /* Size of the Rx flow classification key */
2183 int dpaa2_eth_cls_key_size(void)
2184 {
2185 	int i, size = 0;
2186 
2187 	for (i = 0; i < ARRAY_SIZE(dist_fields); i++)
2188 		size += dist_fields[i].size;
2189 
2190 	return size;
2191 }
2192 
2193 /* Offset of header field in Rx classification key */
2194 int dpaa2_eth_cls_fld_off(int prot, int field)
2195 {
2196 	int i, off = 0;
2197 
2198 	for (i = 0; i < ARRAY_SIZE(dist_fields); i++) {
2199 		if (dist_fields[i].cls_prot == prot &&
2200 		    dist_fields[i].cls_field == field)
2201 			return off;
2202 		off += dist_fields[i].size;
2203 	}
2204 
2205 	WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n");
2206 	return 0;
2207 }
2208 
2209 /* Set Rx distribution (hash or flow classification) key
2210  * flags is a combination of RXH_ bits
2211  */
2212 static int dpaa2_eth_set_dist_key(struct net_device *net_dev,
2213 				  enum dpaa2_eth_rx_dist type, u64 flags)
2214 {
2215 	struct device *dev = net_dev->dev.parent;
2216 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
2217 	struct dpkg_profile_cfg cls_cfg;
2218 	u32 rx_hash_fields = 0;
2219 	dma_addr_t key_iova;
2220 	u8 *dma_mem;
2221 	int i;
2222 	int err = 0;
2223 
2224 	memset(&cls_cfg, 0, sizeof(cls_cfg));
2225 
2226 	for (i = 0; i < ARRAY_SIZE(dist_fields); i++) {
2227 		struct dpkg_extract *key =
2228 			&cls_cfg.extracts[cls_cfg.num_extracts];
2229 
2230 		/* For Rx hashing key we set only the selected fields.
2231 		 * For Rx flow classification key we set all supported fields
2232 		 */
2233 		if (type == DPAA2_ETH_RX_DIST_HASH) {
2234 			if (!(flags & dist_fields[i].rxnfc_field))
2235 				continue;
2236 			rx_hash_fields |= dist_fields[i].rxnfc_field;
2237 		}
2238 
2239 		if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) {
2240 			dev_err(dev, "error adding key extraction rule, too many rules?\n");
2241 			return -E2BIG;
2242 		}
2243 
2244 		key->type = DPKG_EXTRACT_FROM_HDR;
2245 		key->extract.from_hdr.prot = dist_fields[i].cls_prot;
2246 		key->extract.from_hdr.type = DPKG_FULL_FIELD;
2247 		key->extract.from_hdr.field = dist_fields[i].cls_field;
2248 		cls_cfg.num_extracts++;
2249 	}
2250 
2251 	dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL);
2252 	if (!dma_mem)
2253 		return -ENOMEM;
2254 
2255 	err = dpni_prepare_key_cfg(&cls_cfg, dma_mem);
2256 	if (err) {
2257 		dev_err(dev, "dpni_prepare_key_cfg error %d\n", err);
2258 		goto free_key;
2259 	}
2260 
2261 	/* Prepare for setting the rx dist */
2262 	key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE,
2263 				  DMA_TO_DEVICE);
2264 	if (dma_mapping_error(dev, key_iova)) {
2265 		dev_err(dev, "DMA mapping failed\n");
2266 		err = -ENOMEM;
2267 		goto free_key;
2268 	}
2269 
2270 	if (type == DPAA2_ETH_RX_DIST_HASH) {
2271 		if (dpaa2_eth_has_legacy_dist(priv))
2272 			err = config_legacy_hash_key(priv, key_iova);
2273 		else
2274 			err = config_hash_key(priv, key_iova);
2275 	} else {
2276 		err = config_cls_key(priv, key_iova);
2277 	}
2278 
2279 	dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE,
2280 			 DMA_TO_DEVICE);
2281 	if (!err && type == DPAA2_ETH_RX_DIST_HASH)
2282 		priv->rx_hash_fields = rx_hash_fields;
2283 
2284 free_key:
2285 	kfree(dma_mem);
2286 	return err;
2287 }
2288 
2289 int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags)
2290 {
2291 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
2292 
2293 	if (!dpaa2_eth_hash_enabled(priv))
2294 		return -EOPNOTSUPP;
2295 
2296 	return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, flags);
2297 }
2298 
2299 static int dpaa2_eth_set_cls(struct dpaa2_eth_priv *priv)
2300 {
2301 	struct device *dev = priv->net_dev->dev.parent;
2302 
2303 	/* Check if we actually support Rx flow classification */
2304 	if (dpaa2_eth_has_legacy_dist(priv)) {
2305 		dev_dbg(dev, "Rx cls not supported by current MC version\n");
2306 		return -EOPNOTSUPP;
2307 	}
2308 
2309 	if (priv->dpni_attrs.options & DPNI_OPT_NO_FS ||
2310 	    !(priv->dpni_attrs.options & DPNI_OPT_HAS_KEY_MASKING)) {
2311 		dev_dbg(dev, "Rx cls disabled in DPNI options\n");
2312 		return -EOPNOTSUPP;
2313 	}
2314 
2315 	if (!dpaa2_eth_hash_enabled(priv)) {
2316 		dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n");
2317 		return -EOPNOTSUPP;
2318 	}
2319 
2320 	priv->rx_cls_enabled = 1;
2321 
2322 	return dpaa2_eth_set_dist_key(priv->net_dev, DPAA2_ETH_RX_DIST_CLS, 0);
2323 }
2324 
2325 /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs,
2326  * frame queues and channels
2327  */
2328 static int bind_dpni(struct dpaa2_eth_priv *priv)
2329 {
2330 	struct net_device *net_dev = priv->net_dev;
2331 	struct device *dev = net_dev->dev.parent;
2332 	struct dpni_pools_cfg pools_params;
2333 	struct dpni_error_cfg err_cfg;
2334 	int err = 0;
2335 	int i;
2336 
2337 	pools_params.num_dpbp = 1;
2338 	pools_params.pools[0].dpbp_id = priv->dpbp_dev->obj_desc.id;
2339 	pools_params.pools[0].backup_pool = 0;
2340 	pools_params.pools[0].buffer_size = DPAA2_ETH_RX_BUF_SIZE;
2341 	err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params);
2342 	if (err) {
2343 		dev_err(dev, "dpni_set_pools() failed\n");
2344 		return err;
2345 	}
2346 
2347 	/* have the interface implicitly distribute traffic based on
2348 	 * the default hash key
2349 	 */
2350 	err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT);
2351 	if (err && err != -EOPNOTSUPP)
2352 		dev_err(dev, "Failed to configure hashing\n");
2353 
2354 	/* Configure the flow classification key; it includes all
2355 	 * supported header fields and cannot be modified at runtime
2356 	 */
2357 	err = dpaa2_eth_set_cls(priv);
2358 	if (err && err != -EOPNOTSUPP)
2359 		dev_err(dev, "Failed to configure Rx classification key\n");
2360 
2361 	/* Configure handling of error frames */
2362 	err_cfg.errors = DPAA2_FAS_RX_ERR_MASK;
2363 	err_cfg.set_frame_annotation = 1;
2364 	err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD;
2365 	err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token,
2366 				       &err_cfg);
2367 	if (err) {
2368 		dev_err(dev, "dpni_set_errors_behavior failed\n");
2369 		return err;
2370 	}
2371 
2372 	/* Configure Rx and Tx conf queues to generate CDANs */
2373 	for (i = 0; i < priv->num_fqs; i++) {
2374 		switch (priv->fq[i].type) {
2375 		case DPAA2_RX_FQ:
2376 			err = setup_rx_flow(priv, &priv->fq[i]);
2377 			break;
2378 		case DPAA2_TX_CONF_FQ:
2379 			err = setup_tx_flow(priv, &priv->fq[i]);
2380 			break;
2381 		default:
2382 			dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type);
2383 			return -EINVAL;
2384 		}
2385 		if (err)
2386 			return err;
2387 	}
2388 
2389 	err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token,
2390 			    DPNI_QUEUE_TX, &priv->tx_qdid);
2391 	if (err) {
2392 		dev_err(dev, "dpni_get_qdid() failed\n");
2393 		return err;
2394 	}
2395 
2396 	return 0;
2397 }
2398 
2399 /* Allocate rings for storing incoming frame descriptors */
2400 static int alloc_rings(struct dpaa2_eth_priv *priv)
2401 {
2402 	struct net_device *net_dev = priv->net_dev;
2403 	struct device *dev = net_dev->dev.parent;
2404 	int i;
2405 
2406 	for (i = 0; i < priv->num_channels; i++) {
2407 		priv->channel[i]->store =
2408 			dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev);
2409 		if (!priv->channel[i]->store) {
2410 			netdev_err(net_dev, "dpaa2_io_store_create() failed\n");
2411 			goto err_ring;
2412 		}
2413 	}
2414 
2415 	return 0;
2416 
2417 err_ring:
2418 	for (i = 0; i < priv->num_channels; i++) {
2419 		if (!priv->channel[i]->store)
2420 			break;
2421 		dpaa2_io_store_destroy(priv->channel[i]->store);
2422 	}
2423 
2424 	return -ENOMEM;
2425 }
2426 
2427 static void free_rings(struct dpaa2_eth_priv *priv)
2428 {
2429 	int i;
2430 
2431 	for (i = 0; i < priv->num_channels; i++)
2432 		dpaa2_io_store_destroy(priv->channel[i]->store);
2433 }
2434 
2435 static int set_mac_addr(struct dpaa2_eth_priv *priv)
2436 {
2437 	struct net_device *net_dev = priv->net_dev;
2438 	struct device *dev = net_dev->dev.parent;
2439 	u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN];
2440 	int err;
2441 
2442 	/* Get firmware address, if any */
2443 	err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr);
2444 	if (err) {
2445 		dev_err(dev, "dpni_get_port_mac_addr() failed\n");
2446 		return err;
2447 	}
2448 
2449 	/* Get DPNI attributes address, if any */
2450 	err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token,
2451 					dpni_mac_addr);
2452 	if (err) {
2453 		dev_err(dev, "dpni_get_primary_mac_addr() failed\n");
2454 		return err;
2455 	}
2456 
2457 	/* First check if firmware has any address configured by bootloader */
2458 	if (!is_zero_ether_addr(mac_addr)) {
2459 		/* If the DPMAC addr != DPNI addr, update it */
2460 		if (!ether_addr_equal(mac_addr, dpni_mac_addr)) {
2461 			err = dpni_set_primary_mac_addr(priv->mc_io, 0,
2462 							priv->mc_token,
2463 							mac_addr);
2464 			if (err) {
2465 				dev_err(dev, "dpni_set_primary_mac_addr() failed\n");
2466 				return err;
2467 			}
2468 		}
2469 		memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
2470 	} else if (is_zero_ether_addr(dpni_mac_addr)) {
2471 		/* No MAC address configured, fill in net_dev->dev_addr
2472 		 * with a random one
2473 		 */
2474 		eth_hw_addr_random(net_dev);
2475 		dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n");
2476 
2477 		err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token,
2478 						net_dev->dev_addr);
2479 		if (err) {
2480 			dev_err(dev, "dpni_set_primary_mac_addr() failed\n");
2481 			return err;
2482 		}
2483 
2484 		/* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all
2485 		 * practical purposes, this will be our "permanent" mac address,
2486 		 * at least until the next reboot. This move will also permit
2487 		 * register_netdevice() to properly fill up net_dev->perm_addr.
2488 		 */
2489 		net_dev->addr_assign_type = NET_ADDR_PERM;
2490 	} else {
2491 		/* NET_ADDR_PERM is default, all we have to do is
2492 		 * fill in the device addr.
2493 		 */
2494 		memcpy(net_dev->dev_addr, dpni_mac_addr, net_dev->addr_len);
2495 	}
2496 
2497 	return 0;
2498 }
2499 
2500 static int netdev_init(struct net_device *net_dev)
2501 {
2502 	struct device *dev = net_dev->dev.parent;
2503 	struct dpaa2_eth_priv *priv = netdev_priv(net_dev);
2504 	u32 options = priv->dpni_attrs.options;
2505 	u64 supported = 0, not_supported = 0;
2506 	u8 bcast_addr[ETH_ALEN];
2507 	u8 num_queues;
2508 	int err;
2509 
2510 	net_dev->netdev_ops = &dpaa2_eth_ops;
2511 	net_dev->ethtool_ops = &dpaa2_ethtool_ops;
2512 
2513 	err = set_mac_addr(priv);
2514 	if (err)
2515 		return err;
2516 
2517 	/* Explicitly add the broadcast address to the MAC filtering table */
2518 	eth_broadcast_addr(bcast_addr);
2519 	err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr);
2520 	if (err) {
2521 		dev_err(dev, "dpni_add_mac_addr() failed\n");
2522 		return err;
2523 	}
2524 
2525 	/* Set MTU upper limit; lower limit is 68B (default value) */
2526 	net_dev->max_mtu = DPAA2_ETH_MAX_MTU;
2527 	err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token,
2528 					DPAA2_ETH_MFL);
2529 	if (err) {
2530 		dev_err(dev, "dpni_set_max_frame_length() failed\n");
2531 		return err;
2532 	}
2533 
2534 	/* Set actual number of queues in the net device */
2535 	num_queues = dpaa2_eth_queue_count(priv);
2536 	err = netif_set_real_num_tx_queues(net_dev, num_queues);
2537 	if (err) {
2538 		dev_err(dev, "netif_set_real_num_tx_queues() failed\n");
2539 		return err;
2540 	}
2541 	err = netif_set_real_num_rx_queues(net_dev, num_queues);
2542 	if (err) {
2543 		dev_err(dev, "netif_set_real_num_rx_queues() failed\n");
2544 		return err;
2545 	}
2546 
2547 	/* Capabilities listing */
2548 	supported |= IFF_LIVE_ADDR_CHANGE;
2549 
2550 	if (options & DPNI_OPT_NO_MAC_FILTER)
2551 		not_supported |= IFF_UNICAST_FLT;
2552 	else
2553 		supported |= IFF_UNICAST_FLT;
2554 
2555 	net_dev->priv_flags |= supported;
2556 	net_dev->priv_flags &= ~not_supported;
2557 
2558 	/* Features */
2559 	net_dev->features = NETIF_F_RXCSUM |
2560 			    NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2561 			    NETIF_F_SG | NETIF_F_HIGHDMA |
2562 			    NETIF_F_LLTX;
2563 	net_dev->hw_features = net_dev->features;
2564 
2565 	return 0;
2566 }
2567 
2568 static int poll_link_state(void *arg)
2569 {
2570 	struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg;
2571 	int err;
2572 
2573 	while (!kthread_should_stop()) {
2574 		err = link_state_update(priv);
2575 		if (unlikely(err))
2576 			return err;
2577 
2578 		msleep(DPAA2_ETH_LINK_STATE_REFRESH);
2579 	}
2580 
2581 	return 0;
2582 }
2583 
2584 static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg)
2585 {
2586 	u32 status = ~0;
2587 	struct device *dev = (struct device *)arg;
2588 	struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev);
2589 	struct net_device *net_dev = dev_get_drvdata(dev);
2590 	int err;
2591 
2592 	err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle,
2593 				  DPNI_IRQ_INDEX, &status);
2594 	if (unlikely(err)) {
2595 		netdev_err(net_dev, "Can't get irq status (err %d)\n", err);
2596 		return IRQ_HANDLED;
2597 	}
2598 
2599 	if (status & DPNI_IRQ_EVENT_LINK_CHANGED)
2600 		link_state_update(netdev_priv(net_dev));
2601 
2602 	return IRQ_HANDLED;
2603 }
2604 
2605 static int setup_irqs(struct fsl_mc_device *ls_dev)
2606 {
2607 	int err = 0;
2608 	struct fsl_mc_device_irq *irq;
2609 
2610 	err = fsl_mc_allocate_irqs(ls_dev);
2611 	if (err) {
2612 		dev_err(&ls_dev->dev, "MC irqs allocation failed\n");
2613 		return err;
2614 	}
2615 
2616 	irq = ls_dev->irqs[0];
2617 	err = devm_request_threaded_irq(&ls_dev->dev, irq->msi_desc->irq,
2618 					NULL, dpni_irq0_handler_thread,
2619 					IRQF_NO_SUSPEND | IRQF_ONESHOT,
2620 					dev_name(&ls_dev->dev), &ls_dev->dev);
2621 	if (err < 0) {
2622 		dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err);
2623 		goto free_mc_irq;
2624 	}
2625 
2626 	err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle,
2627 				DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED);
2628 	if (err < 0) {
2629 		dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err);
2630 		goto free_irq;
2631 	}
2632 
2633 	err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle,
2634 				  DPNI_IRQ_INDEX, 1);
2635 	if (err < 0) {
2636 		dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err);
2637 		goto free_irq;
2638 	}
2639 
2640 	return 0;
2641 
2642 free_irq:
2643 	devm_free_irq(&ls_dev->dev, irq->msi_desc->irq, &ls_dev->dev);
2644 free_mc_irq:
2645 	fsl_mc_free_irqs(ls_dev);
2646 
2647 	return err;
2648 }
2649 
2650 static void add_ch_napi(struct dpaa2_eth_priv *priv)
2651 {
2652 	int i;
2653 	struct dpaa2_eth_channel *ch;
2654 
2655 	for (i = 0; i < priv->num_channels; i++) {
2656 		ch = priv->channel[i];
2657 		/* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */
2658 		netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll,
2659 			       NAPI_POLL_WEIGHT);
2660 	}
2661 }
2662 
2663 static void del_ch_napi(struct dpaa2_eth_priv *priv)
2664 {
2665 	int i;
2666 	struct dpaa2_eth_channel *ch;
2667 
2668 	for (i = 0; i < priv->num_channels; i++) {
2669 		ch = priv->channel[i];
2670 		netif_napi_del(&ch->napi);
2671 	}
2672 }
2673 
2674 static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev)
2675 {
2676 	struct device *dev;
2677 	struct net_device *net_dev = NULL;
2678 	struct dpaa2_eth_priv *priv = NULL;
2679 	int err = 0;
2680 
2681 	dev = &dpni_dev->dev;
2682 
2683 	/* Net device */
2684 	net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_TX_QUEUES);
2685 	if (!net_dev) {
2686 		dev_err(dev, "alloc_etherdev_mq() failed\n");
2687 		return -ENOMEM;
2688 	}
2689 
2690 	SET_NETDEV_DEV(net_dev, dev);
2691 	dev_set_drvdata(dev, net_dev);
2692 
2693 	priv = netdev_priv(net_dev);
2694 	priv->net_dev = net_dev;
2695 
2696 	priv->iommu_domain = iommu_get_domain_for_dev(dev);
2697 
2698 	/* Obtain a MC portal */
2699 	err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL,
2700 				     &priv->mc_io);
2701 	if (err) {
2702 		if (err == -ENXIO)
2703 			err = -EPROBE_DEFER;
2704 		else
2705 			dev_err(dev, "MC portal allocation failed\n");
2706 		goto err_portal_alloc;
2707 	}
2708 
2709 	/* MC objects initialization and configuration */
2710 	err = setup_dpni(dpni_dev);
2711 	if (err)
2712 		goto err_dpni_setup;
2713 
2714 	err = setup_dpio(priv);
2715 	if (err)
2716 		goto err_dpio_setup;
2717 
2718 	setup_fqs(priv);
2719 
2720 	err = setup_dpbp(priv);
2721 	if (err)
2722 		goto err_dpbp_setup;
2723 
2724 	err = bind_dpni(priv);
2725 	if (err)
2726 		goto err_bind;
2727 
2728 	/* Add a NAPI context for each channel */
2729 	add_ch_napi(priv);
2730 
2731 	/* Percpu statistics */
2732 	priv->percpu_stats = alloc_percpu(*priv->percpu_stats);
2733 	if (!priv->percpu_stats) {
2734 		dev_err(dev, "alloc_percpu(percpu_stats) failed\n");
2735 		err = -ENOMEM;
2736 		goto err_alloc_percpu_stats;
2737 	}
2738 	priv->percpu_extras = alloc_percpu(*priv->percpu_extras);
2739 	if (!priv->percpu_extras) {
2740 		dev_err(dev, "alloc_percpu(percpu_extras) failed\n");
2741 		err = -ENOMEM;
2742 		goto err_alloc_percpu_extras;
2743 	}
2744 
2745 	err = netdev_init(net_dev);
2746 	if (err)
2747 		goto err_netdev_init;
2748 
2749 	/* Configure checksum offload based on current interface flags */
2750 	err = set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM));
2751 	if (err)
2752 		goto err_csum;
2753 
2754 	err = set_tx_csum(priv, !!(net_dev->features &
2755 				   (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)));
2756 	if (err)
2757 		goto err_csum;
2758 
2759 	err = alloc_rings(priv);
2760 	if (err)
2761 		goto err_alloc_rings;
2762 
2763 	err = setup_irqs(dpni_dev);
2764 	if (err) {
2765 		netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n");
2766 		priv->poll_thread = kthread_run(poll_link_state, priv,
2767 						"%s_poll_link", net_dev->name);
2768 		if (IS_ERR(priv->poll_thread)) {
2769 			dev_err(dev, "Error starting polling thread\n");
2770 			goto err_poll_thread;
2771 		}
2772 		priv->do_link_poll = true;
2773 	}
2774 
2775 	err = register_netdev(net_dev);
2776 	if (err < 0) {
2777 		dev_err(dev, "register_netdev() failed\n");
2778 		goto err_netdev_reg;
2779 	}
2780 
2781 	dev_info(dev, "Probed interface %s\n", net_dev->name);
2782 	return 0;
2783 
2784 err_netdev_reg:
2785 	if (priv->do_link_poll)
2786 		kthread_stop(priv->poll_thread);
2787 	else
2788 		fsl_mc_free_irqs(dpni_dev);
2789 err_poll_thread:
2790 	free_rings(priv);
2791 err_alloc_rings:
2792 err_csum:
2793 err_netdev_init:
2794 	free_percpu(priv->percpu_extras);
2795 err_alloc_percpu_extras:
2796 	free_percpu(priv->percpu_stats);
2797 err_alloc_percpu_stats:
2798 	del_ch_napi(priv);
2799 err_bind:
2800 	free_dpbp(priv);
2801 err_dpbp_setup:
2802 	free_dpio(priv);
2803 err_dpio_setup:
2804 	free_dpni(priv);
2805 err_dpni_setup:
2806 	fsl_mc_portal_free(priv->mc_io);
2807 err_portal_alloc:
2808 	dev_set_drvdata(dev, NULL);
2809 	free_netdev(net_dev);
2810 
2811 	return err;
2812 }
2813 
2814 static int dpaa2_eth_remove(struct fsl_mc_device *ls_dev)
2815 {
2816 	struct device *dev;
2817 	struct net_device *net_dev;
2818 	struct dpaa2_eth_priv *priv;
2819 
2820 	dev = &ls_dev->dev;
2821 	net_dev = dev_get_drvdata(dev);
2822 	priv = netdev_priv(net_dev);
2823 
2824 	unregister_netdev(net_dev);
2825 
2826 	if (priv->do_link_poll)
2827 		kthread_stop(priv->poll_thread);
2828 	else
2829 		fsl_mc_free_irqs(ls_dev);
2830 
2831 	free_rings(priv);
2832 	free_percpu(priv->percpu_stats);
2833 	free_percpu(priv->percpu_extras);
2834 
2835 	del_ch_napi(priv);
2836 	free_dpbp(priv);
2837 	free_dpio(priv);
2838 	free_dpni(priv);
2839 
2840 	fsl_mc_portal_free(priv->mc_io);
2841 
2842 	free_netdev(net_dev);
2843 
2844 	dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name);
2845 
2846 	return 0;
2847 }
2848 
2849 static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = {
2850 	{
2851 		.vendor = FSL_MC_VENDOR_FREESCALE,
2852 		.obj_type = "dpni",
2853 	},
2854 	{ .vendor = 0x0 }
2855 };
2856 MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table);
2857 
2858 static struct fsl_mc_driver dpaa2_eth_driver = {
2859 	.driver = {
2860 		.name = KBUILD_MODNAME,
2861 		.owner = THIS_MODULE,
2862 	},
2863 	.probe = dpaa2_eth_probe,
2864 	.remove = dpaa2_eth_remove,
2865 	.match_id_table = dpaa2_eth_match_id_table
2866 };
2867 
2868 module_fsl_mc_driver(dpaa2_eth_driver);
2869