1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* Copyright 2014-2016 Freescale Semiconductor Inc. 3 * Copyright 2016-2019 NXP 4 */ 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/platform_device.h> 8 #include <linux/etherdevice.h> 9 #include <linux/of_net.h> 10 #include <linux/interrupt.h> 11 #include <linux/msi.h> 12 #include <linux/kthread.h> 13 #include <linux/iommu.h> 14 #include <linux/net_tstamp.h> 15 #include <linux/fsl/mc.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_trace.h> 18 #include <net/sock.h> 19 20 #include "dpaa2-eth.h" 21 22 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files 23 * using trace events only need to #include <trace/events/sched.h> 24 */ 25 #define CREATE_TRACE_POINTS 26 #include "dpaa2-eth-trace.h" 27 28 MODULE_LICENSE("Dual BSD/GPL"); 29 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 30 MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver"); 31 32 static void *dpaa2_iova_to_virt(struct iommu_domain *domain, 33 dma_addr_t iova_addr) 34 { 35 phys_addr_t phys_addr; 36 37 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 38 39 return phys_to_virt(phys_addr); 40 } 41 42 static void validate_rx_csum(struct dpaa2_eth_priv *priv, 43 u32 fd_status, 44 struct sk_buff *skb) 45 { 46 skb_checksum_none_assert(skb); 47 48 /* HW checksum validation is disabled, nothing to do here */ 49 if (!(priv->net_dev->features & NETIF_F_RXCSUM)) 50 return; 51 52 /* Read checksum validation bits */ 53 if (!((fd_status & DPAA2_FAS_L3CV) && 54 (fd_status & DPAA2_FAS_L4CV))) 55 return; 56 57 /* Inform the stack there's no need to compute L3/L4 csum anymore */ 58 skb->ip_summed = CHECKSUM_UNNECESSARY; 59 } 60 61 /* Free a received FD. 62 * Not to be used for Tx conf FDs or on any other paths. 63 */ 64 static void free_rx_fd(struct dpaa2_eth_priv *priv, 65 const struct dpaa2_fd *fd, 66 void *vaddr) 67 { 68 struct device *dev = priv->net_dev->dev.parent; 69 dma_addr_t addr = dpaa2_fd_get_addr(fd); 70 u8 fd_format = dpaa2_fd_get_format(fd); 71 struct dpaa2_sg_entry *sgt; 72 void *sg_vaddr; 73 int i; 74 75 /* If single buffer frame, just free the data buffer */ 76 if (fd_format == dpaa2_fd_single) 77 goto free_buf; 78 else if (fd_format != dpaa2_fd_sg) 79 /* We don't support any other format */ 80 return; 81 82 /* For S/G frames, we first need to free all SG entries 83 * except the first one, which was taken care of already 84 */ 85 sgt = vaddr + dpaa2_fd_get_offset(fd); 86 for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 87 addr = dpaa2_sg_get_addr(&sgt[i]); 88 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 89 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 90 DMA_BIDIRECTIONAL); 91 92 free_pages((unsigned long)sg_vaddr, 0); 93 if (dpaa2_sg_is_final(&sgt[i])) 94 break; 95 } 96 97 free_buf: 98 free_pages((unsigned long)vaddr, 0); 99 } 100 101 /* Build a linear skb based on a single-buffer frame descriptor */ 102 static struct sk_buff *build_linear_skb(struct dpaa2_eth_channel *ch, 103 const struct dpaa2_fd *fd, 104 void *fd_vaddr) 105 { 106 struct sk_buff *skb = NULL; 107 u16 fd_offset = dpaa2_fd_get_offset(fd); 108 u32 fd_length = dpaa2_fd_get_len(fd); 109 110 ch->buf_count--; 111 112 skb = build_skb(fd_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 113 if (unlikely(!skb)) 114 return NULL; 115 116 skb_reserve(skb, fd_offset); 117 skb_put(skb, fd_length); 118 119 return skb; 120 } 121 122 /* Build a non linear (fragmented) skb based on a S/G table */ 123 static struct sk_buff *build_frag_skb(struct dpaa2_eth_priv *priv, 124 struct dpaa2_eth_channel *ch, 125 struct dpaa2_sg_entry *sgt) 126 { 127 struct sk_buff *skb = NULL; 128 struct device *dev = priv->net_dev->dev.parent; 129 void *sg_vaddr; 130 dma_addr_t sg_addr; 131 u16 sg_offset; 132 u32 sg_length; 133 struct page *page, *head_page; 134 int page_offset; 135 int i; 136 137 for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 138 struct dpaa2_sg_entry *sge = &sgt[i]; 139 140 /* NOTE: We only support SG entries in dpaa2_sg_single format, 141 * but this is the only format we may receive from HW anyway 142 */ 143 144 /* Get the address and length from the S/G entry */ 145 sg_addr = dpaa2_sg_get_addr(sge); 146 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr); 147 dma_unmap_page(dev, sg_addr, DPAA2_ETH_RX_BUF_SIZE, 148 DMA_BIDIRECTIONAL); 149 150 sg_length = dpaa2_sg_get_len(sge); 151 152 if (i == 0) { 153 /* We build the skb around the first data buffer */ 154 skb = build_skb(sg_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 155 if (unlikely(!skb)) { 156 /* Free the first SG entry now, since we already 157 * unmapped it and obtained the virtual address 158 */ 159 free_pages((unsigned long)sg_vaddr, 0); 160 161 /* We still need to subtract the buffers used 162 * by this FD from our software counter 163 */ 164 while (!dpaa2_sg_is_final(&sgt[i]) && 165 i < DPAA2_ETH_MAX_SG_ENTRIES) 166 i++; 167 break; 168 } 169 170 sg_offset = dpaa2_sg_get_offset(sge); 171 skb_reserve(skb, sg_offset); 172 skb_put(skb, sg_length); 173 } else { 174 /* Rest of the data buffers are stored as skb frags */ 175 page = virt_to_page(sg_vaddr); 176 head_page = virt_to_head_page(sg_vaddr); 177 178 /* Offset in page (which may be compound). 179 * Data in subsequent SG entries is stored from the 180 * beginning of the buffer, so we don't need to add the 181 * sg_offset. 182 */ 183 page_offset = ((unsigned long)sg_vaddr & 184 (PAGE_SIZE - 1)) + 185 (page_address(page) - page_address(head_page)); 186 187 skb_add_rx_frag(skb, i - 1, head_page, page_offset, 188 sg_length, DPAA2_ETH_RX_BUF_SIZE); 189 } 190 191 if (dpaa2_sg_is_final(sge)) 192 break; 193 } 194 195 WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT"); 196 197 /* Count all data buffers + SG table buffer */ 198 ch->buf_count -= i + 2; 199 200 return skb; 201 } 202 203 /* Free buffers acquired from the buffer pool or which were meant to 204 * be released in the pool 205 */ 206 static void free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, int count) 207 { 208 struct device *dev = priv->net_dev->dev.parent; 209 void *vaddr; 210 int i; 211 212 for (i = 0; i < count; i++) { 213 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]); 214 dma_unmap_page(dev, buf_array[i], DPAA2_ETH_RX_BUF_SIZE, 215 DMA_BIDIRECTIONAL); 216 free_pages((unsigned long)vaddr, 0); 217 } 218 } 219 220 static void xdp_release_buf(struct dpaa2_eth_priv *priv, 221 struct dpaa2_eth_channel *ch, 222 dma_addr_t addr) 223 { 224 int retries = 0; 225 int err; 226 227 ch->xdp.drop_bufs[ch->xdp.drop_cnt++] = addr; 228 if (ch->xdp.drop_cnt < DPAA2_ETH_BUFS_PER_CMD) 229 return; 230 231 while ((err = dpaa2_io_service_release(ch->dpio, priv->bpid, 232 ch->xdp.drop_bufs, 233 ch->xdp.drop_cnt)) == -EBUSY) { 234 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 235 break; 236 cpu_relax(); 237 } 238 239 if (err) { 240 free_bufs(priv, ch->xdp.drop_bufs, ch->xdp.drop_cnt); 241 ch->buf_count -= ch->xdp.drop_cnt; 242 } 243 244 ch->xdp.drop_cnt = 0; 245 } 246 247 static int xdp_enqueue(struct dpaa2_eth_priv *priv, struct dpaa2_fd *fd, 248 void *buf_start, u16 queue_id) 249 { 250 struct dpaa2_eth_fq *fq; 251 struct dpaa2_faead *faead; 252 u32 ctrl, frc; 253 int i, err; 254 255 /* Mark the egress frame hardware annotation area as valid */ 256 frc = dpaa2_fd_get_frc(fd); 257 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 258 dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL); 259 260 /* Instruct hardware to release the FD buffer directly into 261 * the buffer pool once transmission is completed, instead of 262 * sending a Tx confirmation frame to us 263 */ 264 ctrl = DPAA2_FAEAD_A4V | DPAA2_FAEAD_A2V | DPAA2_FAEAD_EBDDV; 265 faead = dpaa2_get_faead(buf_start, false); 266 faead->ctrl = cpu_to_le32(ctrl); 267 faead->conf_fqid = 0; 268 269 fq = &priv->fq[queue_id]; 270 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 271 err = priv->enqueue(priv, fq, fd, 0); 272 if (err != -EBUSY) 273 break; 274 } 275 276 return err; 277 } 278 279 static u32 run_xdp(struct dpaa2_eth_priv *priv, 280 struct dpaa2_eth_channel *ch, 281 struct dpaa2_eth_fq *rx_fq, 282 struct dpaa2_fd *fd, void *vaddr) 283 { 284 dma_addr_t addr = dpaa2_fd_get_addr(fd); 285 struct rtnl_link_stats64 *percpu_stats; 286 struct bpf_prog *xdp_prog; 287 struct xdp_buff xdp; 288 u32 xdp_act = XDP_PASS; 289 int err; 290 291 percpu_stats = this_cpu_ptr(priv->percpu_stats); 292 293 rcu_read_lock(); 294 295 xdp_prog = READ_ONCE(ch->xdp.prog); 296 if (!xdp_prog) 297 goto out; 298 299 xdp.data = vaddr + dpaa2_fd_get_offset(fd); 300 xdp.data_end = xdp.data + dpaa2_fd_get_len(fd); 301 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; 302 xdp_set_data_meta_invalid(&xdp); 303 xdp.rxq = &ch->xdp_rxq; 304 305 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 306 307 /* xdp.data pointer may have changed */ 308 dpaa2_fd_set_offset(fd, xdp.data - vaddr); 309 dpaa2_fd_set_len(fd, xdp.data_end - xdp.data); 310 311 switch (xdp_act) { 312 case XDP_PASS: 313 break; 314 case XDP_TX: 315 err = xdp_enqueue(priv, fd, vaddr, rx_fq->flowid); 316 if (err) { 317 xdp_release_buf(priv, ch, addr); 318 percpu_stats->tx_errors++; 319 ch->stats.xdp_tx_err++; 320 } else { 321 percpu_stats->tx_packets++; 322 percpu_stats->tx_bytes += dpaa2_fd_get_len(fd); 323 ch->stats.xdp_tx++; 324 } 325 break; 326 default: 327 bpf_warn_invalid_xdp_action(xdp_act); 328 /* fall through */ 329 case XDP_ABORTED: 330 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 331 /* fall through */ 332 case XDP_DROP: 333 xdp_release_buf(priv, ch, addr); 334 ch->stats.xdp_drop++; 335 break; 336 case XDP_REDIRECT: 337 dma_unmap_page(priv->net_dev->dev.parent, addr, 338 DPAA2_ETH_RX_BUF_SIZE, DMA_BIDIRECTIONAL); 339 ch->buf_count--; 340 xdp.data_hard_start = vaddr; 341 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 342 if (unlikely(err)) 343 ch->stats.xdp_drop++; 344 else 345 ch->stats.xdp_redirect++; 346 break; 347 } 348 349 ch->xdp.res |= xdp_act; 350 out: 351 rcu_read_unlock(); 352 return xdp_act; 353 } 354 355 /* Main Rx frame processing routine */ 356 static void dpaa2_eth_rx(struct dpaa2_eth_priv *priv, 357 struct dpaa2_eth_channel *ch, 358 const struct dpaa2_fd *fd, 359 struct dpaa2_eth_fq *fq) 360 { 361 dma_addr_t addr = dpaa2_fd_get_addr(fd); 362 u8 fd_format = dpaa2_fd_get_format(fd); 363 void *vaddr; 364 struct sk_buff *skb; 365 struct rtnl_link_stats64 *percpu_stats; 366 struct dpaa2_eth_drv_stats *percpu_extras; 367 struct device *dev = priv->net_dev->dev.parent; 368 struct dpaa2_fas *fas; 369 void *buf_data; 370 u32 status = 0; 371 u32 xdp_act; 372 373 /* Tracing point */ 374 trace_dpaa2_rx_fd(priv->net_dev, fd); 375 376 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 377 dma_sync_single_for_cpu(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 378 DMA_BIDIRECTIONAL); 379 380 fas = dpaa2_get_fas(vaddr, false); 381 prefetch(fas); 382 buf_data = vaddr + dpaa2_fd_get_offset(fd); 383 prefetch(buf_data); 384 385 percpu_stats = this_cpu_ptr(priv->percpu_stats); 386 percpu_extras = this_cpu_ptr(priv->percpu_extras); 387 388 if (fd_format == dpaa2_fd_single) { 389 xdp_act = run_xdp(priv, ch, fq, (struct dpaa2_fd *)fd, vaddr); 390 if (xdp_act != XDP_PASS) { 391 percpu_stats->rx_packets++; 392 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 393 return; 394 } 395 396 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 397 DMA_BIDIRECTIONAL); 398 skb = build_linear_skb(ch, fd, vaddr); 399 } else if (fd_format == dpaa2_fd_sg) { 400 WARN_ON(priv->xdp_prog); 401 402 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 403 DMA_BIDIRECTIONAL); 404 skb = build_frag_skb(priv, ch, buf_data); 405 free_pages((unsigned long)vaddr, 0); 406 percpu_extras->rx_sg_frames++; 407 percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd); 408 } else { 409 /* We don't support any other format */ 410 goto err_frame_format; 411 } 412 413 if (unlikely(!skb)) 414 goto err_build_skb; 415 416 prefetch(skb->data); 417 418 /* Get the timestamp value */ 419 if (priv->rx_tstamp) { 420 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 421 __le64 *ts = dpaa2_get_ts(vaddr, false); 422 u64 ns; 423 424 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 425 426 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 427 shhwtstamps->hwtstamp = ns_to_ktime(ns); 428 } 429 430 /* Check if we need to validate the L4 csum */ 431 if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) { 432 status = le32_to_cpu(fas->status); 433 validate_rx_csum(priv, status, skb); 434 } 435 436 skb->protocol = eth_type_trans(skb, priv->net_dev); 437 skb_record_rx_queue(skb, fq->flowid); 438 439 percpu_stats->rx_packets++; 440 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 441 442 list_add_tail(&skb->list, ch->rx_list); 443 444 return; 445 446 err_build_skb: 447 free_rx_fd(priv, fd, vaddr); 448 err_frame_format: 449 percpu_stats->rx_dropped++; 450 } 451 452 /* Consume all frames pull-dequeued into the store. This is the simplest way to 453 * make sure we don't accidentally issue another volatile dequeue which would 454 * overwrite (leak) frames already in the store. 455 * 456 * Observance of NAPI budget is not our concern, leaving that to the caller. 457 */ 458 static int consume_frames(struct dpaa2_eth_channel *ch, 459 struct dpaa2_eth_fq **src) 460 { 461 struct dpaa2_eth_priv *priv = ch->priv; 462 struct dpaa2_eth_fq *fq = NULL; 463 struct dpaa2_dq *dq; 464 const struct dpaa2_fd *fd; 465 int cleaned = 0, retries = 0; 466 int is_last; 467 468 do { 469 dq = dpaa2_io_store_next(ch->store, &is_last); 470 if (unlikely(!dq)) { 471 /* If we're here, we *must* have placed a 472 * volatile dequeue comnmand, so keep reading through 473 * the store until we get some sort of valid response 474 * token (either a valid frame or an "empty dequeue") 475 */ 476 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) { 477 netdev_err_once(priv->net_dev, 478 "Unable to read a valid dequeue response\n"); 479 return -ETIMEDOUT; 480 } 481 continue; 482 } 483 484 fd = dpaa2_dq_fd(dq); 485 fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq); 486 487 fq->consume(priv, ch, fd, fq); 488 cleaned++; 489 retries = 0; 490 } while (!is_last); 491 492 if (!cleaned) 493 return 0; 494 495 fq->stats.frames += cleaned; 496 497 /* A dequeue operation only pulls frames from a single queue 498 * into the store. Return the frame queue as an out param. 499 */ 500 if (src) 501 *src = fq; 502 503 return cleaned; 504 } 505 506 /* Configure the egress frame annotation for timestamp update */ 507 static void enable_tx_tstamp(struct dpaa2_fd *fd, void *buf_start) 508 { 509 struct dpaa2_faead *faead; 510 u32 ctrl, frc; 511 512 /* Mark the egress frame annotation area as valid */ 513 frc = dpaa2_fd_get_frc(fd); 514 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 515 516 /* Set hardware annotation size */ 517 ctrl = dpaa2_fd_get_ctrl(fd); 518 dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL); 519 520 /* enable UPD (update prepanded data) bit in FAEAD field of 521 * hardware frame annotation area 522 */ 523 ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD; 524 faead = dpaa2_get_faead(buf_start, true); 525 faead->ctrl = cpu_to_le32(ctrl); 526 } 527 528 /* Create a frame descriptor based on a fragmented skb */ 529 static int build_sg_fd(struct dpaa2_eth_priv *priv, 530 struct sk_buff *skb, 531 struct dpaa2_fd *fd) 532 { 533 struct device *dev = priv->net_dev->dev.parent; 534 void *sgt_buf = NULL; 535 dma_addr_t addr; 536 int nr_frags = skb_shinfo(skb)->nr_frags; 537 struct dpaa2_sg_entry *sgt; 538 int i, err; 539 int sgt_buf_size; 540 struct scatterlist *scl, *crt_scl; 541 int num_sg; 542 int num_dma_bufs; 543 struct dpaa2_eth_swa *swa; 544 545 /* Create and map scatterlist. 546 * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have 547 * to go beyond nr_frags+1. 548 * Note: We don't support chained scatterlists 549 */ 550 if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1)) 551 return -EINVAL; 552 553 scl = kcalloc(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC); 554 if (unlikely(!scl)) 555 return -ENOMEM; 556 557 sg_init_table(scl, nr_frags + 1); 558 num_sg = skb_to_sgvec(skb, scl, 0, skb->len); 559 num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 560 if (unlikely(!num_dma_bufs)) { 561 err = -ENOMEM; 562 goto dma_map_sg_failed; 563 } 564 565 /* Prepare the HW SGT structure */ 566 sgt_buf_size = priv->tx_data_offset + 567 sizeof(struct dpaa2_sg_entry) * num_dma_bufs; 568 sgt_buf = napi_alloc_frag(sgt_buf_size + DPAA2_ETH_TX_BUF_ALIGN); 569 if (unlikely(!sgt_buf)) { 570 err = -ENOMEM; 571 goto sgt_buf_alloc_failed; 572 } 573 sgt_buf = PTR_ALIGN(sgt_buf, DPAA2_ETH_TX_BUF_ALIGN); 574 memset(sgt_buf, 0, sgt_buf_size); 575 576 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 577 578 /* Fill in the HW SGT structure. 579 * 580 * sgt_buf is zeroed out, so the following fields are implicit 581 * in all sgt entries: 582 * - offset is 0 583 * - format is 'dpaa2_sg_single' 584 */ 585 for_each_sg(scl, crt_scl, num_dma_bufs, i) { 586 dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl)); 587 dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl)); 588 } 589 dpaa2_sg_set_final(&sgt[i - 1], true); 590 591 /* Store the skb backpointer in the SGT buffer. 592 * Fit the scatterlist and the number of buffers alongside the 593 * skb backpointer in the software annotation area. We'll need 594 * all of them on Tx Conf. 595 */ 596 swa = (struct dpaa2_eth_swa *)sgt_buf; 597 swa->type = DPAA2_ETH_SWA_SG; 598 swa->sg.skb = skb; 599 swa->sg.scl = scl; 600 swa->sg.num_sg = num_sg; 601 swa->sg.sgt_size = sgt_buf_size; 602 603 /* Separately map the SGT buffer */ 604 addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 605 if (unlikely(dma_mapping_error(dev, addr))) { 606 err = -ENOMEM; 607 goto dma_map_single_failed; 608 } 609 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 610 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 611 dpaa2_fd_set_addr(fd, addr); 612 dpaa2_fd_set_len(fd, skb->len); 613 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 614 615 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 616 enable_tx_tstamp(fd, sgt_buf); 617 618 return 0; 619 620 dma_map_single_failed: 621 skb_free_frag(sgt_buf); 622 sgt_buf_alloc_failed: 623 dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 624 dma_map_sg_failed: 625 kfree(scl); 626 return err; 627 } 628 629 /* Create a frame descriptor based on a linear skb */ 630 static int build_single_fd(struct dpaa2_eth_priv *priv, 631 struct sk_buff *skb, 632 struct dpaa2_fd *fd) 633 { 634 struct device *dev = priv->net_dev->dev.parent; 635 u8 *buffer_start, *aligned_start; 636 struct dpaa2_eth_swa *swa; 637 dma_addr_t addr; 638 639 buffer_start = skb->data - dpaa2_eth_needed_headroom(priv, skb); 640 641 /* If there's enough room to align the FD address, do it. 642 * It will help hardware optimize accesses. 643 */ 644 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 645 DPAA2_ETH_TX_BUF_ALIGN); 646 if (aligned_start >= skb->head) 647 buffer_start = aligned_start; 648 649 /* Store a backpointer to the skb at the beginning of the buffer 650 * (in the private data area) such that we can release it 651 * on Tx confirm 652 */ 653 swa = (struct dpaa2_eth_swa *)buffer_start; 654 swa->type = DPAA2_ETH_SWA_SINGLE; 655 swa->single.skb = skb; 656 657 addr = dma_map_single(dev, buffer_start, 658 skb_tail_pointer(skb) - buffer_start, 659 DMA_BIDIRECTIONAL); 660 if (unlikely(dma_mapping_error(dev, addr))) 661 return -ENOMEM; 662 663 dpaa2_fd_set_addr(fd, addr); 664 dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start)); 665 dpaa2_fd_set_len(fd, skb->len); 666 dpaa2_fd_set_format(fd, dpaa2_fd_single); 667 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 668 669 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 670 enable_tx_tstamp(fd, buffer_start); 671 672 return 0; 673 } 674 675 /* FD freeing routine on the Tx path 676 * 677 * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb 678 * back-pointed to is also freed. 679 * This can be called either from dpaa2_eth_tx_conf() or on the error path of 680 * dpaa2_eth_tx(). 681 */ 682 static void free_tx_fd(const struct dpaa2_eth_priv *priv, 683 struct dpaa2_eth_fq *fq, 684 const struct dpaa2_fd *fd, bool in_napi) 685 { 686 struct device *dev = priv->net_dev->dev.parent; 687 dma_addr_t fd_addr; 688 struct sk_buff *skb = NULL; 689 unsigned char *buffer_start; 690 struct dpaa2_eth_swa *swa; 691 u8 fd_format = dpaa2_fd_get_format(fd); 692 u32 fd_len = dpaa2_fd_get_len(fd); 693 694 fd_addr = dpaa2_fd_get_addr(fd); 695 buffer_start = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr); 696 swa = (struct dpaa2_eth_swa *)buffer_start; 697 698 if (fd_format == dpaa2_fd_single) { 699 if (swa->type == DPAA2_ETH_SWA_SINGLE) { 700 skb = swa->single.skb; 701 /* Accessing the skb buffer is safe before dma unmap, 702 * because we didn't map the actual skb shell. 703 */ 704 dma_unmap_single(dev, fd_addr, 705 skb_tail_pointer(skb) - buffer_start, 706 DMA_BIDIRECTIONAL); 707 } else { 708 WARN_ONCE(swa->type != DPAA2_ETH_SWA_XDP, "Wrong SWA type"); 709 dma_unmap_single(dev, fd_addr, swa->xdp.dma_size, 710 DMA_BIDIRECTIONAL); 711 } 712 } else if (fd_format == dpaa2_fd_sg) { 713 skb = swa->sg.skb; 714 715 /* Unmap the scatterlist */ 716 dma_unmap_sg(dev, swa->sg.scl, swa->sg.num_sg, 717 DMA_BIDIRECTIONAL); 718 kfree(swa->sg.scl); 719 720 /* Unmap the SGT buffer */ 721 dma_unmap_single(dev, fd_addr, swa->sg.sgt_size, 722 DMA_BIDIRECTIONAL); 723 } else { 724 netdev_dbg(priv->net_dev, "Invalid FD format\n"); 725 return; 726 } 727 728 if (swa->type != DPAA2_ETH_SWA_XDP && in_napi) { 729 fq->dq_frames++; 730 fq->dq_bytes += fd_len; 731 } 732 733 if (swa->type == DPAA2_ETH_SWA_XDP) { 734 xdp_return_frame(swa->xdp.xdpf); 735 return; 736 } 737 738 /* Get the timestamp value */ 739 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 740 struct skb_shared_hwtstamps shhwtstamps; 741 __le64 *ts = dpaa2_get_ts(buffer_start, true); 742 u64 ns; 743 744 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 745 746 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 747 shhwtstamps.hwtstamp = ns_to_ktime(ns); 748 skb_tstamp_tx(skb, &shhwtstamps); 749 } 750 751 /* Free SGT buffer allocated on tx */ 752 if (fd_format != dpaa2_fd_single) 753 skb_free_frag(buffer_start); 754 755 /* Move on with skb release */ 756 napi_consume_skb(skb, in_napi); 757 } 758 759 static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) 760 { 761 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 762 struct dpaa2_fd fd; 763 struct rtnl_link_stats64 *percpu_stats; 764 struct dpaa2_eth_drv_stats *percpu_extras; 765 struct dpaa2_eth_fq *fq; 766 struct netdev_queue *nq; 767 u16 queue_mapping; 768 unsigned int needed_headroom; 769 u32 fd_len; 770 u8 prio = 0; 771 int err, i; 772 773 percpu_stats = this_cpu_ptr(priv->percpu_stats); 774 percpu_extras = this_cpu_ptr(priv->percpu_extras); 775 776 needed_headroom = dpaa2_eth_needed_headroom(priv, skb); 777 if (skb_headroom(skb) < needed_headroom) { 778 struct sk_buff *ns; 779 780 ns = skb_realloc_headroom(skb, needed_headroom); 781 if (unlikely(!ns)) { 782 percpu_stats->tx_dropped++; 783 goto err_alloc_headroom; 784 } 785 percpu_extras->tx_reallocs++; 786 787 if (skb->sk) 788 skb_set_owner_w(ns, skb->sk); 789 790 dev_kfree_skb(skb); 791 skb = ns; 792 } 793 794 /* We'll be holding a back-reference to the skb until Tx Confirmation; 795 * we don't want that overwritten by a concurrent Tx with a cloned skb. 796 */ 797 skb = skb_unshare(skb, GFP_ATOMIC); 798 if (unlikely(!skb)) { 799 /* skb_unshare() has already freed the skb */ 800 percpu_stats->tx_dropped++; 801 return NETDEV_TX_OK; 802 } 803 804 /* Setup the FD fields */ 805 memset(&fd, 0, sizeof(fd)); 806 807 if (skb_is_nonlinear(skb)) { 808 err = build_sg_fd(priv, skb, &fd); 809 percpu_extras->tx_sg_frames++; 810 percpu_extras->tx_sg_bytes += skb->len; 811 } else { 812 err = build_single_fd(priv, skb, &fd); 813 } 814 815 if (unlikely(err)) { 816 percpu_stats->tx_dropped++; 817 goto err_build_fd; 818 } 819 820 /* Tracing point */ 821 trace_dpaa2_tx_fd(net_dev, &fd); 822 823 /* TxConf FQ selection relies on queue id from the stack. 824 * In case of a forwarded frame from another DPNI interface, we choose 825 * a queue affined to the same core that processed the Rx frame 826 */ 827 queue_mapping = skb_get_queue_mapping(skb); 828 829 if (net_dev->num_tc) { 830 prio = netdev_txq_to_tc(net_dev, queue_mapping); 831 /* Hardware interprets priority level 0 as being the highest, 832 * so we need to do a reverse mapping to the netdev tc index 833 */ 834 prio = net_dev->num_tc - prio - 1; 835 /* We have only one FQ array entry for all Tx hardware queues 836 * with the same flow id (but different priority levels) 837 */ 838 queue_mapping %= dpaa2_eth_queue_count(priv); 839 } 840 fq = &priv->fq[queue_mapping]; 841 842 fd_len = dpaa2_fd_get_len(&fd); 843 nq = netdev_get_tx_queue(net_dev, queue_mapping); 844 netdev_tx_sent_queue(nq, fd_len); 845 846 /* Everything that happens after this enqueues might race with 847 * the Tx confirmation callback for this frame 848 */ 849 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 850 err = priv->enqueue(priv, fq, &fd, prio); 851 if (err != -EBUSY) 852 break; 853 } 854 percpu_extras->tx_portal_busy += i; 855 if (unlikely(err < 0)) { 856 percpu_stats->tx_errors++; 857 /* Clean up everything, including freeing the skb */ 858 free_tx_fd(priv, fq, &fd, false); 859 netdev_tx_completed_queue(nq, 1, fd_len); 860 } else { 861 percpu_stats->tx_packets++; 862 percpu_stats->tx_bytes += fd_len; 863 } 864 865 return NETDEV_TX_OK; 866 867 err_build_fd: 868 err_alloc_headroom: 869 dev_kfree_skb(skb); 870 871 return NETDEV_TX_OK; 872 } 873 874 /* Tx confirmation frame processing routine */ 875 static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv, 876 struct dpaa2_eth_channel *ch __always_unused, 877 const struct dpaa2_fd *fd, 878 struct dpaa2_eth_fq *fq) 879 { 880 struct rtnl_link_stats64 *percpu_stats; 881 struct dpaa2_eth_drv_stats *percpu_extras; 882 u32 fd_len = dpaa2_fd_get_len(fd); 883 u32 fd_errors; 884 885 /* Tracing point */ 886 trace_dpaa2_tx_conf_fd(priv->net_dev, fd); 887 888 percpu_extras = this_cpu_ptr(priv->percpu_extras); 889 percpu_extras->tx_conf_frames++; 890 percpu_extras->tx_conf_bytes += fd_len; 891 892 /* Check frame errors in the FD field */ 893 fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK; 894 free_tx_fd(priv, fq, fd, true); 895 896 if (likely(!fd_errors)) 897 return; 898 899 if (net_ratelimit()) 900 netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n", 901 fd_errors); 902 903 percpu_stats = this_cpu_ptr(priv->percpu_stats); 904 /* Tx-conf logically pertains to the egress path. */ 905 percpu_stats->tx_errors++; 906 } 907 908 static int set_rx_csum(struct dpaa2_eth_priv *priv, bool enable) 909 { 910 int err; 911 912 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 913 DPNI_OFF_RX_L3_CSUM, enable); 914 if (err) { 915 netdev_err(priv->net_dev, 916 "dpni_set_offload(RX_L3_CSUM) failed\n"); 917 return err; 918 } 919 920 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 921 DPNI_OFF_RX_L4_CSUM, enable); 922 if (err) { 923 netdev_err(priv->net_dev, 924 "dpni_set_offload(RX_L4_CSUM) failed\n"); 925 return err; 926 } 927 928 return 0; 929 } 930 931 static int set_tx_csum(struct dpaa2_eth_priv *priv, bool enable) 932 { 933 int err; 934 935 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 936 DPNI_OFF_TX_L3_CSUM, enable); 937 if (err) { 938 netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n"); 939 return err; 940 } 941 942 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 943 DPNI_OFF_TX_L4_CSUM, enable); 944 if (err) { 945 netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n"); 946 return err; 947 } 948 949 return 0; 950 } 951 952 /* Perform a single release command to add buffers 953 * to the specified buffer pool 954 */ 955 static int add_bufs(struct dpaa2_eth_priv *priv, 956 struct dpaa2_eth_channel *ch, u16 bpid) 957 { 958 struct device *dev = priv->net_dev->dev.parent; 959 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 960 struct page *page; 961 dma_addr_t addr; 962 int retries = 0; 963 int i, err; 964 965 for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) { 966 /* Allocate buffer visible to WRIOP + skb shared info + 967 * alignment padding 968 */ 969 /* allocate one page for each Rx buffer. WRIOP sees 970 * the entire page except for a tailroom reserved for 971 * skb shared info 972 */ 973 page = dev_alloc_pages(0); 974 if (!page) 975 goto err_alloc; 976 977 addr = dma_map_page(dev, page, 0, DPAA2_ETH_RX_BUF_SIZE, 978 DMA_BIDIRECTIONAL); 979 if (unlikely(dma_mapping_error(dev, addr))) 980 goto err_map; 981 982 buf_array[i] = addr; 983 984 /* tracing point */ 985 trace_dpaa2_eth_buf_seed(priv->net_dev, 986 page, DPAA2_ETH_RX_BUF_RAW_SIZE, 987 addr, DPAA2_ETH_RX_BUF_SIZE, 988 bpid); 989 } 990 991 release_bufs: 992 /* In case the portal is busy, retry until successful */ 993 while ((err = dpaa2_io_service_release(ch->dpio, bpid, 994 buf_array, i)) == -EBUSY) { 995 if (retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 996 break; 997 cpu_relax(); 998 } 999 1000 /* If release command failed, clean up and bail out; 1001 * not much else we can do about it 1002 */ 1003 if (err) { 1004 free_bufs(priv, buf_array, i); 1005 return 0; 1006 } 1007 1008 return i; 1009 1010 err_map: 1011 __free_pages(page, 0); 1012 err_alloc: 1013 /* If we managed to allocate at least some buffers, 1014 * release them to hardware 1015 */ 1016 if (i) 1017 goto release_bufs; 1018 1019 return 0; 1020 } 1021 1022 static int seed_pool(struct dpaa2_eth_priv *priv, u16 bpid) 1023 { 1024 int i, j; 1025 int new_count; 1026 1027 for (j = 0; j < priv->num_channels; j++) { 1028 for (i = 0; i < DPAA2_ETH_NUM_BUFS; 1029 i += DPAA2_ETH_BUFS_PER_CMD) { 1030 new_count = add_bufs(priv, priv->channel[j], bpid); 1031 priv->channel[j]->buf_count += new_count; 1032 1033 if (new_count < DPAA2_ETH_BUFS_PER_CMD) { 1034 return -ENOMEM; 1035 } 1036 } 1037 } 1038 1039 return 0; 1040 } 1041 1042 /** 1043 * Drain the specified number of buffers from the DPNI's private buffer pool. 1044 * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD 1045 */ 1046 static void drain_bufs(struct dpaa2_eth_priv *priv, int count) 1047 { 1048 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1049 int retries = 0; 1050 int ret; 1051 1052 do { 1053 ret = dpaa2_io_service_acquire(NULL, priv->bpid, 1054 buf_array, count); 1055 if (ret < 0) { 1056 if (ret == -EBUSY && 1057 retries++ >= DPAA2_ETH_SWP_BUSY_RETRIES) 1058 continue; 1059 netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n"); 1060 return; 1061 } 1062 free_bufs(priv, buf_array, ret); 1063 retries = 0; 1064 } while (ret); 1065 } 1066 1067 static void drain_pool(struct dpaa2_eth_priv *priv) 1068 { 1069 int i; 1070 1071 drain_bufs(priv, DPAA2_ETH_BUFS_PER_CMD); 1072 drain_bufs(priv, 1); 1073 1074 for (i = 0; i < priv->num_channels; i++) 1075 priv->channel[i]->buf_count = 0; 1076 } 1077 1078 /* Function is called from softirq context only, so we don't need to guard 1079 * the access to percpu count 1080 */ 1081 static int refill_pool(struct dpaa2_eth_priv *priv, 1082 struct dpaa2_eth_channel *ch, 1083 u16 bpid) 1084 { 1085 int new_count; 1086 1087 if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH)) 1088 return 0; 1089 1090 do { 1091 new_count = add_bufs(priv, ch, bpid); 1092 if (unlikely(!new_count)) { 1093 /* Out of memory; abort for now, we'll try later on */ 1094 break; 1095 } 1096 ch->buf_count += new_count; 1097 } while (ch->buf_count < DPAA2_ETH_NUM_BUFS); 1098 1099 if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS)) 1100 return -ENOMEM; 1101 1102 return 0; 1103 } 1104 1105 static int pull_channel(struct dpaa2_eth_channel *ch) 1106 { 1107 int err; 1108 int dequeues = -1; 1109 1110 /* Retry while portal is busy */ 1111 do { 1112 err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id, 1113 ch->store); 1114 dequeues++; 1115 cpu_relax(); 1116 } while (err == -EBUSY && dequeues < DPAA2_ETH_SWP_BUSY_RETRIES); 1117 1118 ch->stats.dequeue_portal_busy += dequeues; 1119 if (unlikely(err)) 1120 ch->stats.pull_err++; 1121 1122 return err; 1123 } 1124 1125 /* NAPI poll routine 1126 * 1127 * Frames are dequeued from the QMan channel associated with this NAPI context. 1128 * Rx, Tx confirmation and (if configured) Rx error frames all count 1129 * towards the NAPI budget. 1130 */ 1131 static int dpaa2_eth_poll(struct napi_struct *napi, int budget) 1132 { 1133 struct dpaa2_eth_channel *ch; 1134 struct dpaa2_eth_priv *priv; 1135 int rx_cleaned = 0, txconf_cleaned = 0; 1136 struct dpaa2_eth_fq *fq, *txc_fq = NULL; 1137 struct netdev_queue *nq; 1138 int store_cleaned, work_done; 1139 struct list_head rx_list; 1140 int retries = 0; 1141 int err; 1142 1143 ch = container_of(napi, struct dpaa2_eth_channel, napi); 1144 ch->xdp.res = 0; 1145 priv = ch->priv; 1146 1147 INIT_LIST_HEAD(&rx_list); 1148 ch->rx_list = &rx_list; 1149 1150 do { 1151 err = pull_channel(ch); 1152 if (unlikely(err)) 1153 break; 1154 1155 /* Refill pool if appropriate */ 1156 refill_pool(priv, ch, priv->bpid); 1157 1158 store_cleaned = consume_frames(ch, &fq); 1159 if (store_cleaned <= 0) 1160 break; 1161 if (fq->type == DPAA2_RX_FQ) { 1162 rx_cleaned += store_cleaned; 1163 } else { 1164 txconf_cleaned += store_cleaned; 1165 /* We have a single Tx conf FQ on this channel */ 1166 txc_fq = fq; 1167 } 1168 1169 /* If we either consumed the whole NAPI budget with Rx frames 1170 * or we reached the Tx confirmations threshold, we're done. 1171 */ 1172 if (rx_cleaned >= budget || 1173 txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI) { 1174 work_done = budget; 1175 goto out; 1176 } 1177 } while (store_cleaned); 1178 1179 /* We didn't consume the entire budget, so finish napi and 1180 * re-enable data availability notifications 1181 */ 1182 napi_complete_done(napi, rx_cleaned); 1183 do { 1184 err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx); 1185 cpu_relax(); 1186 } while (err == -EBUSY && retries++ < DPAA2_ETH_SWP_BUSY_RETRIES); 1187 WARN_ONCE(err, "CDAN notifications rearm failed on core %d", 1188 ch->nctx.desired_cpu); 1189 1190 work_done = max(rx_cleaned, 1); 1191 1192 out: 1193 netif_receive_skb_list(ch->rx_list); 1194 1195 if (txc_fq && txc_fq->dq_frames) { 1196 nq = netdev_get_tx_queue(priv->net_dev, txc_fq->flowid); 1197 netdev_tx_completed_queue(nq, txc_fq->dq_frames, 1198 txc_fq->dq_bytes); 1199 txc_fq->dq_frames = 0; 1200 txc_fq->dq_bytes = 0; 1201 } 1202 1203 if (ch->xdp.res & XDP_REDIRECT) 1204 xdp_do_flush_map(); 1205 1206 return work_done; 1207 } 1208 1209 static void enable_ch_napi(struct dpaa2_eth_priv *priv) 1210 { 1211 struct dpaa2_eth_channel *ch; 1212 int i; 1213 1214 for (i = 0; i < priv->num_channels; i++) { 1215 ch = priv->channel[i]; 1216 napi_enable(&ch->napi); 1217 } 1218 } 1219 1220 static void disable_ch_napi(struct dpaa2_eth_priv *priv) 1221 { 1222 struct dpaa2_eth_channel *ch; 1223 int i; 1224 1225 for (i = 0; i < priv->num_channels; i++) { 1226 ch = priv->channel[i]; 1227 napi_disable(&ch->napi); 1228 } 1229 } 1230 1231 static void dpaa2_eth_set_rx_taildrop(struct dpaa2_eth_priv *priv, bool enable) 1232 { 1233 struct dpni_taildrop td = {0}; 1234 int i, err; 1235 1236 if (priv->rx_td_enabled == enable) 1237 return; 1238 1239 td.enable = enable; 1240 td.threshold = DPAA2_ETH_TAILDROP_THRESH; 1241 1242 for (i = 0; i < priv->num_fqs; i++) { 1243 if (priv->fq[i].type != DPAA2_RX_FQ) 1244 continue; 1245 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, 1246 DPNI_CP_QUEUE, DPNI_QUEUE_RX, 0, 1247 priv->fq[i].flowid, &td); 1248 if (err) { 1249 netdev_err(priv->net_dev, 1250 "dpni_set_taildrop() failed\n"); 1251 break; 1252 } 1253 } 1254 1255 priv->rx_td_enabled = enable; 1256 } 1257 1258 static int link_state_update(struct dpaa2_eth_priv *priv) 1259 { 1260 struct dpni_link_state state = {0}; 1261 bool tx_pause; 1262 int err; 1263 1264 err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state); 1265 if (unlikely(err)) { 1266 netdev_err(priv->net_dev, 1267 "dpni_get_link_state() failed\n"); 1268 return err; 1269 } 1270 1271 /* If Tx pause frame settings have changed, we need to update 1272 * Rx FQ taildrop configuration as well. We configure taildrop 1273 * only when pause frame generation is disabled. 1274 */ 1275 tx_pause = !!(state.options & DPNI_LINK_OPT_PAUSE) ^ 1276 !!(state.options & DPNI_LINK_OPT_ASYM_PAUSE); 1277 dpaa2_eth_set_rx_taildrop(priv, !tx_pause); 1278 1279 /* When we manage the MAC/PHY using phylink there is no need 1280 * to manually update the netif_carrier. 1281 */ 1282 if (priv->mac) 1283 goto out; 1284 1285 /* Chech link state; speed / duplex changes are not treated yet */ 1286 if (priv->link_state.up == state.up) 1287 goto out; 1288 1289 if (state.up) { 1290 netif_carrier_on(priv->net_dev); 1291 netif_tx_start_all_queues(priv->net_dev); 1292 } else { 1293 netif_tx_stop_all_queues(priv->net_dev); 1294 netif_carrier_off(priv->net_dev); 1295 } 1296 1297 netdev_info(priv->net_dev, "Link Event: state %s\n", 1298 state.up ? "up" : "down"); 1299 1300 out: 1301 priv->link_state = state; 1302 1303 return 0; 1304 } 1305 1306 static int dpaa2_eth_open(struct net_device *net_dev) 1307 { 1308 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1309 int err; 1310 1311 err = seed_pool(priv, priv->bpid); 1312 if (err) { 1313 /* Not much to do; the buffer pool, though not filled up, 1314 * may still contain some buffers which would enable us 1315 * to limp on. 1316 */ 1317 netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n", 1318 priv->dpbp_dev->obj_desc.id, priv->bpid); 1319 } 1320 1321 if (!priv->mac) { 1322 /* We'll only start the txqs when the link is actually ready; 1323 * make sure we don't race against the link up notification, 1324 * which may come immediately after dpni_enable(); 1325 */ 1326 netif_tx_stop_all_queues(net_dev); 1327 1328 /* Also, explicitly set carrier off, otherwise 1329 * netif_carrier_ok() will return true and cause 'ip link show' 1330 * to report the LOWER_UP flag, even though the link 1331 * notification wasn't even received. 1332 */ 1333 netif_carrier_off(net_dev); 1334 } 1335 enable_ch_napi(priv); 1336 1337 err = dpni_enable(priv->mc_io, 0, priv->mc_token); 1338 if (err < 0) { 1339 netdev_err(net_dev, "dpni_enable() failed\n"); 1340 goto enable_err; 1341 } 1342 1343 if (!priv->mac) { 1344 /* If the DPMAC object has already processed the link up 1345 * interrupt, we have to learn the link state ourselves. 1346 */ 1347 err = link_state_update(priv); 1348 if (err < 0) { 1349 netdev_err(net_dev, "Can't update link state\n"); 1350 goto link_state_err; 1351 } 1352 } else { 1353 phylink_start(priv->mac->phylink); 1354 } 1355 1356 return 0; 1357 1358 link_state_err: 1359 enable_err: 1360 disable_ch_napi(priv); 1361 drain_pool(priv); 1362 return err; 1363 } 1364 1365 /* Total number of in-flight frames on ingress queues */ 1366 static u32 ingress_fq_count(struct dpaa2_eth_priv *priv) 1367 { 1368 struct dpaa2_eth_fq *fq; 1369 u32 fcnt = 0, bcnt = 0, total = 0; 1370 int i, err; 1371 1372 for (i = 0; i < priv->num_fqs; i++) { 1373 fq = &priv->fq[i]; 1374 err = dpaa2_io_query_fq_count(NULL, fq->fqid, &fcnt, &bcnt); 1375 if (err) { 1376 netdev_warn(priv->net_dev, "query_fq_count failed"); 1377 break; 1378 } 1379 total += fcnt; 1380 } 1381 1382 return total; 1383 } 1384 1385 static void wait_for_ingress_fq_empty(struct dpaa2_eth_priv *priv) 1386 { 1387 int retries = 10; 1388 u32 pending; 1389 1390 do { 1391 pending = ingress_fq_count(priv); 1392 if (pending) 1393 msleep(100); 1394 } while (pending && --retries); 1395 } 1396 1397 #define DPNI_TX_PENDING_VER_MAJOR 7 1398 #define DPNI_TX_PENDING_VER_MINOR 13 1399 static void wait_for_egress_fq_empty(struct dpaa2_eth_priv *priv) 1400 { 1401 union dpni_statistics stats; 1402 int retries = 10; 1403 int err; 1404 1405 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_TX_PENDING_VER_MAJOR, 1406 DPNI_TX_PENDING_VER_MINOR) < 0) 1407 goto out; 1408 1409 do { 1410 err = dpni_get_statistics(priv->mc_io, 0, priv->mc_token, 6, 1411 &stats); 1412 if (err) 1413 goto out; 1414 if (stats.page_6.tx_pending_frames == 0) 1415 return; 1416 } while (--retries); 1417 1418 out: 1419 msleep(500); 1420 } 1421 1422 static int dpaa2_eth_stop(struct net_device *net_dev) 1423 { 1424 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1425 int dpni_enabled = 0; 1426 int retries = 10; 1427 1428 if (!priv->mac) { 1429 netif_tx_stop_all_queues(net_dev); 1430 netif_carrier_off(net_dev); 1431 } else { 1432 phylink_stop(priv->mac->phylink); 1433 } 1434 1435 /* On dpni_disable(), the MC firmware will: 1436 * - stop MAC Rx and wait for all Rx frames to be enqueued to software 1437 * - cut off WRIOP dequeues from egress FQs and wait until transmission 1438 * of all in flight Tx frames is finished (and corresponding Tx conf 1439 * frames are enqueued back to software) 1440 * 1441 * Before calling dpni_disable(), we wait for all Tx frames to arrive 1442 * on WRIOP. After it finishes, wait until all remaining frames on Rx 1443 * and Tx conf queues are consumed on NAPI poll. 1444 */ 1445 wait_for_egress_fq_empty(priv); 1446 1447 do { 1448 dpni_disable(priv->mc_io, 0, priv->mc_token); 1449 dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled); 1450 if (dpni_enabled) 1451 /* Allow the hardware some slack */ 1452 msleep(100); 1453 } while (dpni_enabled && --retries); 1454 if (!retries) { 1455 netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n"); 1456 /* Must go on and disable NAPI nonetheless, so we don't crash at 1457 * the next "ifconfig up" 1458 */ 1459 } 1460 1461 wait_for_ingress_fq_empty(priv); 1462 disable_ch_napi(priv); 1463 1464 /* Empty the buffer pool */ 1465 drain_pool(priv); 1466 1467 return 0; 1468 } 1469 1470 static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr) 1471 { 1472 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1473 struct device *dev = net_dev->dev.parent; 1474 int err; 1475 1476 err = eth_mac_addr(net_dev, addr); 1477 if (err < 0) { 1478 dev_err(dev, "eth_mac_addr() failed (%d)\n", err); 1479 return err; 1480 } 1481 1482 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 1483 net_dev->dev_addr); 1484 if (err) { 1485 dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err); 1486 return err; 1487 } 1488 1489 return 0; 1490 } 1491 1492 /** Fill in counters maintained by the GPP driver. These may be different from 1493 * the hardware counters obtained by ethtool. 1494 */ 1495 static void dpaa2_eth_get_stats(struct net_device *net_dev, 1496 struct rtnl_link_stats64 *stats) 1497 { 1498 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1499 struct rtnl_link_stats64 *percpu_stats; 1500 u64 *cpustats; 1501 u64 *netstats = (u64 *)stats; 1502 int i, j; 1503 int num = sizeof(struct rtnl_link_stats64) / sizeof(u64); 1504 1505 for_each_possible_cpu(i) { 1506 percpu_stats = per_cpu_ptr(priv->percpu_stats, i); 1507 cpustats = (u64 *)percpu_stats; 1508 for (j = 0; j < num; j++) 1509 netstats[j] += cpustats[j]; 1510 } 1511 } 1512 1513 /* Copy mac unicast addresses from @net_dev to @priv. 1514 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1515 */ 1516 static void add_uc_hw_addr(const struct net_device *net_dev, 1517 struct dpaa2_eth_priv *priv) 1518 { 1519 struct netdev_hw_addr *ha; 1520 int err; 1521 1522 netdev_for_each_uc_addr(ha, net_dev) { 1523 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1524 ha->addr); 1525 if (err) 1526 netdev_warn(priv->net_dev, 1527 "Could not add ucast MAC %pM to the filtering table (err %d)\n", 1528 ha->addr, err); 1529 } 1530 } 1531 1532 /* Copy mac multicast addresses from @net_dev to @priv 1533 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1534 */ 1535 static void add_mc_hw_addr(const struct net_device *net_dev, 1536 struct dpaa2_eth_priv *priv) 1537 { 1538 struct netdev_hw_addr *ha; 1539 int err; 1540 1541 netdev_for_each_mc_addr(ha, net_dev) { 1542 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1543 ha->addr); 1544 if (err) 1545 netdev_warn(priv->net_dev, 1546 "Could not add mcast MAC %pM to the filtering table (err %d)\n", 1547 ha->addr, err); 1548 } 1549 } 1550 1551 static void dpaa2_eth_set_rx_mode(struct net_device *net_dev) 1552 { 1553 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1554 int uc_count = netdev_uc_count(net_dev); 1555 int mc_count = netdev_mc_count(net_dev); 1556 u8 max_mac = priv->dpni_attrs.mac_filter_entries; 1557 u32 options = priv->dpni_attrs.options; 1558 u16 mc_token = priv->mc_token; 1559 struct fsl_mc_io *mc_io = priv->mc_io; 1560 int err; 1561 1562 /* Basic sanity checks; these probably indicate a misconfiguration */ 1563 if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0) 1564 netdev_info(net_dev, 1565 "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n", 1566 max_mac); 1567 1568 /* Force promiscuous if the uc or mc counts exceed our capabilities. */ 1569 if (uc_count > max_mac) { 1570 netdev_info(net_dev, 1571 "Unicast addr count reached %d, max allowed is %d; forcing promisc\n", 1572 uc_count, max_mac); 1573 goto force_promisc; 1574 } 1575 if (mc_count + uc_count > max_mac) { 1576 netdev_info(net_dev, 1577 "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n", 1578 uc_count + mc_count, max_mac); 1579 goto force_mc_promisc; 1580 } 1581 1582 /* Adjust promisc settings due to flag combinations */ 1583 if (net_dev->flags & IFF_PROMISC) 1584 goto force_promisc; 1585 if (net_dev->flags & IFF_ALLMULTI) { 1586 /* First, rebuild unicast filtering table. This should be done 1587 * in promisc mode, in order to avoid frame loss while we 1588 * progressively add entries to the table. 1589 * We don't know whether we had been in promisc already, and 1590 * making an MC call to find out is expensive; so set uc promisc 1591 * nonetheless. 1592 */ 1593 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1594 if (err) 1595 netdev_warn(net_dev, "Can't set uc promisc\n"); 1596 1597 /* Actual uc table reconstruction. */ 1598 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0); 1599 if (err) 1600 netdev_warn(net_dev, "Can't clear uc filters\n"); 1601 add_uc_hw_addr(net_dev, priv); 1602 1603 /* Finally, clear uc promisc and set mc promisc as requested. */ 1604 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1605 if (err) 1606 netdev_warn(net_dev, "Can't clear uc promisc\n"); 1607 goto force_mc_promisc; 1608 } 1609 1610 /* Neither unicast, nor multicast promisc will be on... eventually. 1611 * For now, rebuild mac filtering tables while forcing both of them on. 1612 */ 1613 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1614 if (err) 1615 netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err); 1616 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1617 if (err) 1618 netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err); 1619 1620 /* Actual mac filtering tables reconstruction */ 1621 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1); 1622 if (err) 1623 netdev_warn(net_dev, "Can't clear mac filters\n"); 1624 add_mc_hw_addr(net_dev, priv); 1625 add_uc_hw_addr(net_dev, priv); 1626 1627 /* Now we can clear both ucast and mcast promisc, without risking 1628 * to drop legitimate frames anymore. 1629 */ 1630 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1631 if (err) 1632 netdev_warn(net_dev, "Can't clear ucast promisc\n"); 1633 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0); 1634 if (err) 1635 netdev_warn(net_dev, "Can't clear mcast promisc\n"); 1636 1637 return; 1638 1639 force_promisc: 1640 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1641 if (err) 1642 netdev_warn(net_dev, "Can't set ucast promisc\n"); 1643 force_mc_promisc: 1644 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1645 if (err) 1646 netdev_warn(net_dev, "Can't set mcast promisc\n"); 1647 } 1648 1649 static int dpaa2_eth_set_features(struct net_device *net_dev, 1650 netdev_features_t features) 1651 { 1652 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1653 netdev_features_t changed = features ^ net_dev->features; 1654 bool enable; 1655 int err; 1656 1657 if (changed & NETIF_F_RXCSUM) { 1658 enable = !!(features & NETIF_F_RXCSUM); 1659 err = set_rx_csum(priv, enable); 1660 if (err) 1661 return err; 1662 } 1663 1664 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 1665 enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 1666 err = set_tx_csum(priv, enable); 1667 if (err) 1668 return err; 1669 } 1670 1671 return 0; 1672 } 1673 1674 static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1675 { 1676 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1677 struct hwtstamp_config config; 1678 1679 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 1680 return -EFAULT; 1681 1682 switch (config.tx_type) { 1683 case HWTSTAMP_TX_OFF: 1684 priv->tx_tstamp = false; 1685 break; 1686 case HWTSTAMP_TX_ON: 1687 priv->tx_tstamp = true; 1688 break; 1689 default: 1690 return -ERANGE; 1691 } 1692 1693 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 1694 priv->rx_tstamp = false; 1695 } else { 1696 priv->rx_tstamp = true; 1697 /* TS is set for all frame types, not only those requested */ 1698 config.rx_filter = HWTSTAMP_FILTER_ALL; 1699 } 1700 1701 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 1702 -EFAULT : 0; 1703 } 1704 1705 static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1706 { 1707 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1708 1709 if (cmd == SIOCSHWTSTAMP) 1710 return dpaa2_eth_ts_ioctl(dev, rq, cmd); 1711 1712 if (priv->mac) 1713 return phylink_mii_ioctl(priv->mac->phylink, rq, cmd); 1714 1715 return -EOPNOTSUPP; 1716 } 1717 1718 static bool xdp_mtu_valid(struct dpaa2_eth_priv *priv, int mtu) 1719 { 1720 int mfl, linear_mfl; 1721 1722 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1723 linear_mfl = DPAA2_ETH_RX_BUF_SIZE - DPAA2_ETH_RX_HWA_SIZE - 1724 dpaa2_eth_rx_head_room(priv) - XDP_PACKET_HEADROOM; 1725 1726 if (mfl > linear_mfl) { 1727 netdev_warn(priv->net_dev, "Maximum MTU for XDP is %d\n", 1728 linear_mfl - VLAN_ETH_HLEN); 1729 return false; 1730 } 1731 1732 return true; 1733 } 1734 1735 static int set_rx_mfl(struct dpaa2_eth_priv *priv, int mtu, bool has_xdp) 1736 { 1737 int mfl, err; 1738 1739 /* We enforce a maximum Rx frame length based on MTU only if we have 1740 * an XDP program attached (in order to avoid Rx S/G frames). 1741 * Otherwise, we accept all incoming frames as long as they are not 1742 * larger than maximum size supported in hardware 1743 */ 1744 if (has_xdp) 1745 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1746 else 1747 mfl = DPAA2_ETH_MFL; 1748 1749 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, mfl); 1750 if (err) { 1751 netdev_err(priv->net_dev, "dpni_set_max_frame_length failed\n"); 1752 return err; 1753 } 1754 1755 return 0; 1756 } 1757 1758 static int dpaa2_eth_change_mtu(struct net_device *dev, int new_mtu) 1759 { 1760 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1761 int err; 1762 1763 if (!priv->xdp_prog) 1764 goto out; 1765 1766 if (!xdp_mtu_valid(priv, new_mtu)) 1767 return -EINVAL; 1768 1769 err = set_rx_mfl(priv, new_mtu, true); 1770 if (err) 1771 return err; 1772 1773 out: 1774 dev->mtu = new_mtu; 1775 return 0; 1776 } 1777 1778 static int update_rx_buffer_headroom(struct dpaa2_eth_priv *priv, bool has_xdp) 1779 { 1780 struct dpni_buffer_layout buf_layout = {0}; 1781 int err; 1782 1783 err = dpni_get_buffer_layout(priv->mc_io, 0, priv->mc_token, 1784 DPNI_QUEUE_RX, &buf_layout); 1785 if (err) { 1786 netdev_err(priv->net_dev, "dpni_get_buffer_layout failed\n"); 1787 return err; 1788 } 1789 1790 /* Reserve extra headroom for XDP header size changes */ 1791 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv) + 1792 (has_xdp ? XDP_PACKET_HEADROOM : 0); 1793 buf_layout.options = DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM; 1794 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 1795 DPNI_QUEUE_RX, &buf_layout); 1796 if (err) { 1797 netdev_err(priv->net_dev, "dpni_set_buffer_layout failed\n"); 1798 return err; 1799 } 1800 1801 return 0; 1802 } 1803 1804 static int setup_xdp(struct net_device *dev, struct bpf_prog *prog) 1805 { 1806 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1807 struct dpaa2_eth_channel *ch; 1808 struct bpf_prog *old; 1809 bool up, need_update; 1810 int i, err; 1811 1812 if (prog && !xdp_mtu_valid(priv, dev->mtu)) 1813 return -EINVAL; 1814 1815 if (prog) 1816 bpf_prog_add(prog, priv->num_channels); 1817 1818 up = netif_running(dev); 1819 need_update = (!!priv->xdp_prog != !!prog); 1820 1821 if (up) 1822 dpaa2_eth_stop(dev); 1823 1824 /* While in xdp mode, enforce a maximum Rx frame size based on MTU. 1825 * Also, when switching between xdp/non-xdp modes we need to reconfigure 1826 * our Rx buffer layout. Buffer pool was drained on dpaa2_eth_stop, 1827 * so we are sure no old format buffers will be used from now on. 1828 */ 1829 if (need_update) { 1830 err = set_rx_mfl(priv, dev->mtu, !!prog); 1831 if (err) 1832 goto out_err; 1833 err = update_rx_buffer_headroom(priv, !!prog); 1834 if (err) 1835 goto out_err; 1836 } 1837 1838 old = xchg(&priv->xdp_prog, prog); 1839 if (old) 1840 bpf_prog_put(old); 1841 1842 for (i = 0; i < priv->num_channels; i++) { 1843 ch = priv->channel[i]; 1844 old = xchg(&ch->xdp.prog, prog); 1845 if (old) 1846 bpf_prog_put(old); 1847 } 1848 1849 if (up) { 1850 err = dpaa2_eth_open(dev); 1851 if (err) 1852 return err; 1853 } 1854 1855 return 0; 1856 1857 out_err: 1858 if (prog) 1859 bpf_prog_sub(prog, priv->num_channels); 1860 if (up) 1861 dpaa2_eth_open(dev); 1862 1863 return err; 1864 } 1865 1866 static int dpaa2_eth_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1867 { 1868 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1869 1870 switch (xdp->command) { 1871 case XDP_SETUP_PROG: 1872 return setup_xdp(dev, xdp->prog); 1873 case XDP_QUERY_PROG: 1874 xdp->prog_id = priv->xdp_prog ? priv->xdp_prog->aux->id : 0; 1875 break; 1876 default: 1877 return -EINVAL; 1878 } 1879 1880 return 0; 1881 } 1882 1883 static int dpaa2_eth_xdp_xmit_frame(struct net_device *net_dev, 1884 struct xdp_frame *xdpf) 1885 { 1886 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1887 struct device *dev = net_dev->dev.parent; 1888 struct rtnl_link_stats64 *percpu_stats; 1889 struct dpaa2_eth_drv_stats *percpu_extras; 1890 unsigned int needed_headroom; 1891 struct dpaa2_eth_swa *swa; 1892 struct dpaa2_eth_fq *fq; 1893 struct dpaa2_fd fd; 1894 void *buffer_start, *aligned_start; 1895 dma_addr_t addr; 1896 int err, i; 1897 1898 /* We require a minimum headroom to be able to transmit the frame. 1899 * Otherwise return an error and let the original net_device handle it 1900 */ 1901 needed_headroom = dpaa2_eth_needed_headroom(priv, NULL); 1902 if (xdpf->headroom < needed_headroom) 1903 return -EINVAL; 1904 1905 percpu_stats = this_cpu_ptr(priv->percpu_stats); 1906 percpu_extras = this_cpu_ptr(priv->percpu_extras); 1907 1908 /* Setup the FD fields */ 1909 memset(&fd, 0, sizeof(fd)); 1910 1911 /* Align FD address, if possible */ 1912 buffer_start = xdpf->data - needed_headroom; 1913 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 1914 DPAA2_ETH_TX_BUF_ALIGN); 1915 if (aligned_start >= xdpf->data - xdpf->headroom) 1916 buffer_start = aligned_start; 1917 1918 swa = (struct dpaa2_eth_swa *)buffer_start; 1919 /* fill in necessary fields here */ 1920 swa->type = DPAA2_ETH_SWA_XDP; 1921 swa->xdp.dma_size = xdpf->data + xdpf->len - buffer_start; 1922 swa->xdp.xdpf = xdpf; 1923 1924 addr = dma_map_single(dev, buffer_start, 1925 swa->xdp.dma_size, 1926 DMA_BIDIRECTIONAL); 1927 if (unlikely(dma_mapping_error(dev, addr))) { 1928 percpu_stats->tx_dropped++; 1929 return -ENOMEM; 1930 } 1931 1932 dpaa2_fd_set_addr(&fd, addr); 1933 dpaa2_fd_set_offset(&fd, xdpf->data - buffer_start); 1934 dpaa2_fd_set_len(&fd, xdpf->len); 1935 dpaa2_fd_set_format(&fd, dpaa2_fd_single); 1936 dpaa2_fd_set_ctrl(&fd, FD_CTRL_PTA); 1937 1938 fq = &priv->fq[smp_processor_id() % dpaa2_eth_queue_count(priv)]; 1939 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 1940 err = priv->enqueue(priv, fq, &fd, 0); 1941 if (err != -EBUSY) 1942 break; 1943 } 1944 percpu_extras->tx_portal_busy += i; 1945 if (unlikely(err < 0)) { 1946 percpu_stats->tx_errors++; 1947 /* let the Rx device handle the cleanup */ 1948 return err; 1949 } 1950 1951 percpu_stats->tx_packets++; 1952 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fd); 1953 1954 return 0; 1955 } 1956 1957 static int dpaa2_eth_xdp_xmit(struct net_device *net_dev, int n, 1958 struct xdp_frame **frames, u32 flags) 1959 { 1960 int drops = 0; 1961 int i, err; 1962 1963 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 1964 return -EINVAL; 1965 1966 if (!netif_running(net_dev)) 1967 return -ENETDOWN; 1968 1969 for (i = 0; i < n; i++) { 1970 struct xdp_frame *xdpf = frames[i]; 1971 1972 err = dpaa2_eth_xdp_xmit_frame(net_dev, xdpf); 1973 if (err) { 1974 xdp_return_frame_rx_napi(xdpf); 1975 drops++; 1976 } 1977 } 1978 1979 return n - drops; 1980 } 1981 1982 static int update_xps(struct dpaa2_eth_priv *priv) 1983 { 1984 struct net_device *net_dev = priv->net_dev; 1985 struct cpumask xps_mask; 1986 struct dpaa2_eth_fq *fq; 1987 int i, num_queues, netdev_queues; 1988 int err = 0; 1989 1990 num_queues = dpaa2_eth_queue_count(priv); 1991 netdev_queues = (net_dev->num_tc ? : 1) * num_queues; 1992 1993 /* The first <num_queues> entries in priv->fq array are Tx/Tx conf 1994 * queues, so only process those 1995 */ 1996 for (i = 0; i < netdev_queues; i++) { 1997 fq = &priv->fq[i % num_queues]; 1998 1999 cpumask_clear(&xps_mask); 2000 cpumask_set_cpu(fq->target_cpu, &xps_mask); 2001 2002 err = netif_set_xps_queue(net_dev, &xps_mask, i); 2003 if (err) { 2004 netdev_warn_once(net_dev, "Error setting XPS queue\n"); 2005 break; 2006 } 2007 } 2008 2009 return err; 2010 } 2011 2012 static int dpaa2_eth_setup_tc(struct net_device *net_dev, 2013 enum tc_setup_type type, void *type_data) 2014 { 2015 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2016 struct tc_mqprio_qopt *mqprio = type_data; 2017 u8 num_tc, num_queues; 2018 int i; 2019 2020 if (type != TC_SETUP_QDISC_MQPRIO) 2021 return -EINVAL; 2022 2023 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 2024 num_queues = dpaa2_eth_queue_count(priv); 2025 num_tc = mqprio->num_tc; 2026 2027 if (num_tc == net_dev->num_tc) 2028 return 0; 2029 2030 if (num_tc > dpaa2_eth_tc_count(priv)) { 2031 netdev_err(net_dev, "Max %d traffic classes supported\n", 2032 dpaa2_eth_tc_count(priv)); 2033 return -EINVAL; 2034 } 2035 2036 if (!num_tc) { 2037 netdev_reset_tc(net_dev); 2038 netif_set_real_num_tx_queues(net_dev, num_queues); 2039 goto out; 2040 } 2041 2042 netdev_set_num_tc(net_dev, num_tc); 2043 netif_set_real_num_tx_queues(net_dev, num_tc * num_queues); 2044 2045 for (i = 0; i < num_tc; i++) 2046 netdev_set_tc_queue(net_dev, i, num_queues, i * num_queues); 2047 2048 out: 2049 update_xps(priv); 2050 2051 return 0; 2052 } 2053 2054 static const struct net_device_ops dpaa2_eth_ops = { 2055 .ndo_open = dpaa2_eth_open, 2056 .ndo_start_xmit = dpaa2_eth_tx, 2057 .ndo_stop = dpaa2_eth_stop, 2058 .ndo_set_mac_address = dpaa2_eth_set_addr, 2059 .ndo_get_stats64 = dpaa2_eth_get_stats, 2060 .ndo_set_rx_mode = dpaa2_eth_set_rx_mode, 2061 .ndo_set_features = dpaa2_eth_set_features, 2062 .ndo_do_ioctl = dpaa2_eth_ioctl, 2063 .ndo_change_mtu = dpaa2_eth_change_mtu, 2064 .ndo_bpf = dpaa2_eth_xdp, 2065 .ndo_xdp_xmit = dpaa2_eth_xdp_xmit, 2066 .ndo_setup_tc = dpaa2_eth_setup_tc, 2067 }; 2068 2069 static void cdan_cb(struct dpaa2_io_notification_ctx *ctx) 2070 { 2071 struct dpaa2_eth_channel *ch; 2072 2073 ch = container_of(ctx, struct dpaa2_eth_channel, nctx); 2074 2075 /* Update NAPI statistics */ 2076 ch->stats.cdan++; 2077 2078 napi_schedule_irqoff(&ch->napi); 2079 } 2080 2081 /* Allocate and configure a DPCON object */ 2082 static struct fsl_mc_device *setup_dpcon(struct dpaa2_eth_priv *priv) 2083 { 2084 struct fsl_mc_device *dpcon; 2085 struct device *dev = priv->net_dev->dev.parent; 2086 int err; 2087 2088 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), 2089 FSL_MC_POOL_DPCON, &dpcon); 2090 if (err) { 2091 if (err == -ENXIO) 2092 err = -EPROBE_DEFER; 2093 else 2094 dev_info(dev, "Not enough DPCONs, will go on as-is\n"); 2095 return ERR_PTR(err); 2096 } 2097 2098 err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle); 2099 if (err) { 2100 dev_err(dev, "dpcon_open() failed\n"); 2101 goto free; 2102 } 2103 2104 err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle); 2105 if (err) { 2106 dev_err(dev, "dpcon_reset() failed\n"); 2107 goto close; 2108 } 2109 2110 err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle); 2111 if (err) { 2112 dev_err(dev, "dpcon_enable() failed\n"); 2113 goto close; 2114 } 2115 2116 return dpcon; 2117 2118 close: 2119 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 2120 free: 2121 fsl_mc_object_free(dpcon); 2122 2123 return NULL; 2124 } 2125 2126 static void free_dpcon(struct dpaa2_eth_priv *priv, 2127 struct fsl_mc_device *dpcon) 2128 { 2129 dpcon_disable(priv->mc_io, 0, dpcon->mc_handle); 2130 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 2131 fsl_mc_object_free(dpcon); 2132 } 2133 2134 static struct dpaa2_eth_channel * 2135 alloc_channel(struct dpaa2_eth_priv *priv) 2136 { 2137 struct dpaa2_eth_channel *channel; 2138 struct dpcon_attr attr; 2139 struct device *dev = priv->net_dev->dev.parent; 2140 int err; 2141 2142 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 2143 if (!channel) 2144 return NULL; 2145 2146 channel->dpcon = setup_dpcon(priv); 2147 if (IS_ERR_OR_NULL(channel->dpcon)) { 2148 err = PTR_ERR_OR_ZERO(channel->dpcon); 2149 goto err_setup; 2150 } 2151 2152 err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle, 2153 &attr); 2154 if (err) { 2155 dev_err(dev, "dpcon_get_attributes() failed\n"); 2156 goto err_get_attr; 2157 } 2158 2159 channel->dpcon_id = attr.id; 2160 channel->ch_id = attr.qbman_ch_id; 2161 channel->priv = priv; 2162 2163 return channel; 2164 2165 err_get_attr: 2166 free_dpcon(priv, channel->dpcon); 2167 err_setup: 2168 kfree(channel); 2169 return ERR_PTR(err); 2170 } 2171 2172 static void free_channel(struct dpaa2_eth_priv *priv, 2173 struct dpaa2_eth_channel *channel) 2174 { 2175 free_dpcon(priv, channel->dpcon); 2176 kfree(channel); 2177 } 2178 2179 /* DPIO setup: allocate and configure QBMan channels, setup core affinity 2180 * and register data availability notifications 2181 */ 2182 static int setup_dpio(struct dpaa2_eth_priv *priv) 2183 { 2184 struct dpaa2_io_notification_ctx *nctx; 2185 struct dpaa2_eth_channel *channel; 2186 struct dpcon_notification_cfg dpcon_notif_cfg; 2187 struct device *dev = priv->net_dev->dev.parent; 2188 int i, err; 2189 2190 /* We want the ability to spread ingress traffic (RX, TX conf) to as 2191 * many cores as possible, so we need one channel for each core 2192 * (unless there's fewer queues than cores, in which case the extra 2193 * channels would be wasted). 2194 * Allocate one channel per core and register it to the core's 2195 * affine DPIO. If not enough channels are available for all cores 2196 * or if some cores don't have an affine DPIO, there will be no 2197 * ingress frame processing on those cores. 2198 */ 2199 cpumask_clear(&priv->dpio_cpumask); 2200 for_each_online_cpu(i) { 2201 /* Try to allocate a channel */ 2202 channel = alloc_channel(priv); 2203 if (IS_ERR_OR_NULL(channel)) { 2204 err = PTR_ERR_OR_ZERO(channel); 2205 if (err != -EPROBE_DEFER) 2206 dev_info(dev, 2207 "No affine channel for cpu %d and above\n", i); 2208 goto err_alloc_ch; 2209 } 2210 2211 priv->channel[priv->num_channels] = channel; 2212 2213 nctx = &channel->nctx; 2214 nctx->is_cdan = 1; 2215 nctx->cb = cdan_cb; 2216 nctx->id = channel->ch_id; 2217 nctx->desired_cpu = i; 2218 2219 /* Register the new context */ 2220 channel->dpio = dpaa2_io_service_select(i); 2221 err = dpaa2_io_service_register(channel->dpio, nctx, dev); 2222 if (err) { 2223 dev_dbg(dev, "No affine DPIO for cpu %d\n", i); 2224 /* If no affine DPIO for this core, there's probably 2225 * none available for next cores either. Signal we want 2226 * to retry later, in case the DPIO devices weren't 2227 * probed yet. 2228 */ 2229 err = -EPROBE_DEFER; 2230 goto err_service_reg; 2231 } 2232 2233 /* Register DPCON notification with MC */ 2234 dpcon_notif_cfg.dpio_id = nctx->dpio_id; 2235 dpcon_notif_cfg.priority = 0; 2236 dpcon_notif_cfg.user_ctx = nctx->qman64; 2237 err = dpcon_set_notification(priv->mc_io, 0, 2238 channel->dpcon->mc_handle, 2239 &dpcon_notif_cfg); 2240 if (err) { 2241 dev_err(dev, "dpcon_set_notification failed()\n"); 2242 goto err_set_cdan; 2243 } 2244 2245 /* If we managed to allocate a channel and also found an affine 2246 * DPIO for this core, add it to the final mask 2247 */ 2248 cpumask_set_cpu(i, &priv->dpio_cpumask); 2249 priv->num_channels++; 2250 2251 /* Stop if we already have enough channels to accommodate all 2252 * RX and TX conf queues 2253 */ 2254 if (priv->num_channels == priv->dpni_attrs.num_queues) 2255 break; 2256 } 2257 2258 return 0; 2259 2260 err_set_cdan: 2261 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 2262 err_service_reg: 2263 free_channel(priv, channel); 2264 err_alloc_ch: 2265 if (err == -EPROBE_DEFER) { 2266 for (i = 0; i < priv->num_channels; i++) { 2267 channel = priv->channel[i]; 2268 nctx = &channel->nctx; 2269 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 2270 free_channel(priv, channel); 2271 } 2272 priv->num_channels = 0; 2273 return err; 2274 } 2275 2276 if (cpumask_empty(&priv->dpio_cpumask)) { 2277 dev_err(dev, "No cpu with an affine DPIO/DPCON\n"); 2278 return -ENODEV; 2279 } 2280 2281 dev_info(dev, "Cores %*pbl available for processing ingress traffic\n", 2282 cpumask_pr_args(&priv->dpio_cpumask)); 2283 2284 return 0; 2285 } 2286 2287 static void free_dpio(struct dpaa2_eth_priv *priv) 2288 { 2289 struct device *dev = priv->net_dev->dev.parent; 2290 struct dpaa2_eth_channel *ch; 2291 int i; 2292 2293 /* deregister CDAN notifications and free channels */ 2294 for (i = 0; i < priv->num_channels; i++) { 2295 ch = priv->channel[i]; 2296 dpaa2_io_service_deregister(ch->dpio, &ch->nctx, dev); 2297 free_channel(priv, ch); 2298 } 2299 } 2300 2301 static struct dpaa2_eth_channel *get_affine_channel(struct dpaa2_eth_priv *priv, 2302 int cpu) 2303 { 2304 struct device *dev = priv->net_dev->dev.parent; 2305 int i; 2306 2307 for (i = 0; i < priv->num_channels; i++) 2308 if (priv->channel[i]->nctx.desired_cpu == cpu) 2309 return priv->channel[i]; 2310 2311 /* We should never get here. Issue a warning and return 2312 * the first channel, because it's still better than nothing 2313 */ 2314 dev_warn(dev, "No affine channel found for cpu %d\n", cpu); 2315 2316 return priv->channel[0]; 2317 } 2318 2319 static void set_fq_affinity(struct dpaa2_eth_priv *priv) 2320 { 2321 struct device *dev = priv->net_dev->dev.parent; 2322 struct dpaa2_eth_fq *fq; 2323 int rx_cpu, txc_cpu; 2324 int i; 2325 2326 /* For each FQ, pick one channel/CPU to deliver frames to. 2327 * This may well change at runtime, either through irqbalance or 2328 * through direct user intervention. 2329 */ 2330 rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask); 2331 2332 for (i = 0; i < priv->num_fqs; i++) { 2333 fq = &priv->fq[i]; 2334 switch (fq->type) { 2335 case DPAA2_RX_FQ: 2336 fq->target_cpu = rx_cpu; 2337 rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask); 2338 if (rx_cpu >= nr_cpu_ids) 2339 rx_cpu = cpumask_first(&priv->dpio_cpumask); 2340 break; 2341 case DPAA2_TX_CONF_FQ: 2342 fq->target_cpu = txc_cpu; 2343 txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask); 2344 if (txc_cpu >= nr_cpu_ids) 2345 txc_cpu = cpumask_first(&priv->dpio_cpumask); 2346 break; 2347 default: 2348 dev_err(dev, "Unknown FQ type: %d\n", fq->type); 2349 } 2350 fq->channel = get_affine_channel(priv, fq->target_cpu); 2351 } 2352 2353 update_xps(priv); 2354 } 2355 2356 static void setup_fqs(struct dpaa2_eth_priv *priv) 2357 { 2358 int i; 2359 2360 /* We have one TxConf FQ per Tx flow. 2361 * The number of Tx and Rx queues is the same. 2362 * Tx queues come first in the fq array. 2363 */ 2364 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2365 priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ; 2366 priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf; 2367 priv->fq[priv->num_fqs++].flowid = (u16)i; 2368 } 2369 2370 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2371 priv->fq[priv->num_fqs].type = DPAA2_RX_FQ; 2372 priv->fq[priv->num_fqs].consume = dpaa2_eth_rx; 2373 priv->fq[priv->num_fqs++].flowid = (u16)i; 2374 } 2375 2376 /* For each FQ, decide on which core to process incoming frames */ 2377 set_fq_affinity(priv); 2378 } 2379 2380 /* Allocate and configure one buffer pool for each interface */ 2381 static int setup_dpbp(struct dpaa2_eth_priv *priv) 2382 { 2383 int err; 2384 struct fsl_mc_device *dpbp_dev; 2385 struct device *dev = priv->net_dev->dev.parent; 2386 struct dpbp_attr dpbp_attrs; 2387 2388 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, 2389 &dpbp_dev); 2390 if (err) { 2391 if (err == -ENXIO) 2392 err = -EPROBE_DEFER; 2393 else 2394 dev_err(dev, "DPBP device allocation failed\n"); 2395 return err; 2396 } 2397 2398 priv->dpbp_dev = dpbp_dev; 2399 2400 err = dpbp_open(priv->mc_io, 0, priv->dpbp_dev->obj_desc.id, 2401 &dpbp_dev->mc_handle); 2402 if (err) { 2403 dev_err(dev, "dpbp_open() failed\n"); 2404 goto err_open; 2405 } 2406 2407 err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle); 2408 if (err) { 2409 dev_err(dev, "dpbp_reset() failed\n"); 2410 goto err_reset; 2411 } 2412 2413 err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle); 2414 if (err) { 2415 dev_err(dev, "dpbp_enable() failed\n"); 2416 goto err_enable; 2417 } 2418 2419 err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle, 2420 &dpbp_attrs); 2421 if (err) { 2422 dev_err(dev, "dpbp_get_attributes() failed\n"); 2423 goto err_get_attr; 2424 } 2425 priv->bpid = dpbp_attrs.bpid; 2426 2427 return 0; 2428 2429 err_get_attr: 2430 dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle); 2431 err_enable: 2432 err_reset: 2433 dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle); 2434 err_open: 2435 fsl_mc_object_free(dpbp_dev); 2436 2437 return err; 2438 } 2439 2440 static void free_dpbp(struct dpaa2_eth_priv *priv) 2441 { 2442 drain_pool(priv); 2443 dpbp_disable(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2444 dpbp_close(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2445 fsl_mc_object_free(priv->dpbp_dev); 2446 } 2447 2448 static int set_buffer_layout(struct dpaa2_eth_priv *priv) 2449 { 2450 struct device *dev = priv->net_dev->dev.parent; 2451 struct dpni_buffer_layout buf_layout = {0}; 2452 u16 rx_buf_align; 2453 int err; 2454 2455 /* We need to check for WRIOP version 1.0.0, but depending on the MC 2456 * version, this number is not always provided correctly on rev1. 2457 * We need to check for both alternatives in this situation. 2458 */ 2459 if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) || 2460 priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0)) 2461 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1; 2462 else 2463 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN; 2464 2465 /* tx buffer */ 2466 buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE; 2467 buf_layout.pass_timestamp = true; 2468 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE | 2469 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2470 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2471 DPNI_QUEUE_TX, &buf_layout); 2472 if (err) { 2473 dev_err(dev, "dpni_set_buffer_layout(TX) failed\n"); 2474 return err; 2475 } 2476 2477 /* tx-confirm buffer */ 2478 buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2479 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2480 DPNI_QUEUE_TX_CONFIRM, &buf_layout); 2481 if (err) { 2482 dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n"); 2483 return err; 2484 } 2485 2486 /* Now that we've set our tx buffer layout, retrieve the minimum 2487 * required tx data offset. 2488 */ 2489 err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token, 2490 &priv->tx_data_offset); 2491 if (err) { 2492 dev_err(dev, "dpni_get_tx_data_offset() failed\n"); 2493 return err; 2494 } 2495 2496 if ((priv->tx_data_offset % 64) != 0) 2497 dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n", 2498 priv->tx_data_offset); 2499 2500 /* rx buffer */ 2501 buf_layout.pass_frame_status = true; 2502 buf_layout.pass_parser_result = true; 2503 buf_layout.data_align = rx_buf_align; 2504 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv); 2505 buf_layout.private_data_size = 0; 2506 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT | 2507 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | 2508 DPNI_BUF_LAYOUT_OPT_DATA_ALIGN | 2509 DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM | 2510 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2511 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2512 DPNI_QUEUE_RX, &buf_layout); 2513 if (err) { 2514 dev_err(dev, "dpni_set_buffer_layout(RX) failed\n"); 2515 return err; 2516 } 2517 2518 return 0; 2519 } 2520 2521 #define DPNI_ENQUEUE_FQID_VER_MAJOR 7 2522 #define DPNI_ENQUEUE_FQID_VER_MINOR 9 2523 2524 static inline int dpaa2_eth_enqueue_qd(struct dpaa2_eth_priv *priv, 2525 struct dpaa2_eth_fq *fq, 2526 struct dpaa2_fd *fd, u8 prio) 2527 { 2528 return dpaa2_io_service_enqueue_qd(fq->channel->dpio, 2529 priv->tx_qdid, prio, 2530 fq->tx_qdbin, fd); 2531 } 2532 2533 static inline int dpaa2_eth_enqueue_fq(struct dpaa2_eth_priv *priv, 2534 struct dpaa2_eth_fq *fq, 2535 struct dpaa2_fd *fd, u8 prio) 2536 { 2537 return dpaa2_io_service_enqueue_fq(fq->channel->dpio, 2538 fq->tx_fqid[prio], fd); 2539 } 2540 2541 static void set_enqueue_mode(struct dpaa2_eth_priv *priv) 2542 { 2543 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 2544 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 2545 priv->enqueue = dpaa2_eth_enqueue_qd; 2546 else 2547 priv->enqueue = dpaa2_eth_enqueue_fq; 2548 } 2549 2550 static int set_pause(struct dpaa2_eth_priv *priv) 2551 { 2552 struct device *dev = priv->net_dev->dev.parent; 2553 struct dpni_link_cfg link_cfg = {0}; 2554 int err; 2555 2556 /* Get the default link options so we don't override other flags */ 2557 err = dpni_get_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); 2558 if (err) { 2559 dev_err(dev, "dpni_get_link_cfg() failed\n"); 2560 return err; 2561 } 2562 2563 /* By default, enable both Rx and Tx pause frames */ 2564 link_cfg.options |= DPNI_LINK_OPT_PAUSE; 2565 link_cfg.options &= ~DPNI_LINK_OPT_ASYM_PAUSE; 2566 err = dpni_set_link_cfg(priv->mc_io, 0, priv->mc_token, &link_cfg); 2567 if (err) { 2568 dev_err(dev, "dpni_set_link_cfg() failed\n"); 2569 return err; 2570 } 2571 2572 priv->link_state.options = link_cfg.options; 2573 2574 return 0; 2575 } 2576 2577 static void update_tx_fqids(struct dpaa2_eth_priv *priv) 2578 { 2579 struct dpni_queue_id qid = {0}; 2580 struct dpaa2_eth_fq *fq; 2581 struct dpni_queue queue; 2582 int i, j, err; 2583 2584 /* We only use Tx FQIDs for FQID-based enqueue, so check 2585 * if DPNI version supports it before updating FQIDs 2586 */ 2587 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 2588 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 2589 return; 2590 2591 for (i = 0; i < priv->num_fqs; i++) { 2592 fq = &priv->fq[i]; 2593 if (fq->type != DPAA2_TX_CONF_FQ) 2594 continue; 2595 for (j = 0; j < dpaa2_eth_tc_count(priv); j++) { 2596 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2597 DPNI_QUEUE_TX, j, fq->flowid, 2598 &queue, &qid); 2599 if (err) 2600 goto out_err; 2601 2602 fq->tx_fqid[j] = qid.fqid; 2603 if (fq->tx_fqid[j] == 0) 2604 goto out_err; 2605 } 2606 } 2607 2608 priv->enqueue = dpaa2_eth_enqueue_fq; 2609 2610 return; 2611 2612 out_err: 2613 netdev_info(priv->net_dev, 2614 "Error reading Tx FQID, fallback to QDID-based enqueue\n"); 2615 priv->enqueue = dpaa2_eth_enqueue_qd; 2616 } 2617 2618 /* Configure the DPNI object this interface is associated with */ 2619 static int setup_dpni(struct fsl_mc_device *ls_dev) 2620 { 2621 struct device *dev = &ls_dev->dev; 2622 struct dpaa2_eth_priv *priv; 2623 struct net_device *net_dev; 2624 int err; 2625 2626 net_dev = dev_get_drvdata(dev); 2627 priv = netdev_priv(net_dev); 2628 2629 /* get a handle for the DPNI object */ 2630 err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token); 2631 if (err) { 2632 dev_err(dev, "dpni_open() failed\n"); 2633 return err; 2634 } 2635 2636 /* Check if we can work with this DPNI object */ 2637 err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major, 2638 &priv->dpni_ver_minor); 2639 if (err) { 2640 dev_err(dev, "dpni_get_api_version() failed\n"); 2641 goto close; 2642 } 2643 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) { 2644 dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n", 2645 priv->dpni_ver_major, priv->dpni_ver_minor, 2646 DPNI_VER_MAJOR, DPNI_VER_MINOR); 2647 err = -ENOTSUPP; 2648 goto close; 2649 } 2650 2651 ls_dev->mc_io = priv->mc_io; 2652 ls_dev->mc_handle = priv->mc_token; 2653 2654 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2655 if (err) { 2656 dev_err(dev, "dpni_reset() failed\n"); 2657 goto close; 2658 } 2659 2660 err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token, 2661 &priv->dpni_attrs); 2662 if (err) { 2663 dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err); 2664 goto close; 2665 } 2666 2667 err = set_buffer_layout(priv); 2668 if (err) 2669 goto close; 2670 2671 set_enqueue_mode(priv); 2672 2673 /* Enable pause frame support */ 2674 if (dpaa2_eth_has_pause_support(priv)) { 2675 err = set_pause(priv); 2676 if (err) 2677 goto close; 2678 } 2679 2680 priv->cls_rules = devm_kzalloc(dev, sizeof(struct dpaa2_eth_cls_rule) * 2681 dpaa2_eth_fs_count(priv), GFP_KERNEL); 2682 if (!priv->cls_rules) 2683 goto close; 2684 2685 return 0; 2686 2687 close: 2688 dpni_close(priv->mc_io, 0, priv->mc_token); 2689 2690 return err; 2691 } 2692 2693 static void free_dpni(struct dpaa2_eth_priv *priv) 2694 { 2695 int err; 2696 2697 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2698 if (err) 2699 netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n", 2700 err); 2701 2702 dpni_close(priv->mc_io, 0, priv->mc_token); 2703 } 2704 2705 static int setup_rx_flow(struct dpaa2_eth_priv *priv, 2706 struct dpaa2_eth_fq *fq) 2707 { 2708 struct device *dev = priv->net_dev->dev.parent; 2709 struct dpni_queue queue; 2710 struct dpni_queue_id qid; 2711 int err; 2712 2713 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2714 DPNI_QUEUE_RX, 0, fq->flowid, &queue, &qid); 2715 if (err) { 2716 dev_err(dev, "dpni_get_queue(RX) failed\n"); 2717 return err; 2718 } 2719 2720 fq->fqid = qid.fqid; 2721 2722 queue.destination.id = fq->channel->dpcon_id; 2723 queue.destination.type = DPNI_DEST_DPCON; 2724 queue.destination.priority = 1; 2725 queue.user_context = (u64)(uintptr_t)fq; 2726 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2727 DPNI_QUEUE_RX, 0, fq->flowid, 2728 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 2729 &queue); 2730 if (err) { 2731 dev_err(dev, "dpni_set_queue(RX) failed\n"); 2732 return err; 2733 } 2734 2735 /* xdp_rxq setup */ 2736 err = xdp_rxq_info_reg(&fq->channel->xdp_rxq, priv->net_dev, 2737 fq->flowid); 2738 if (err) { 2739 dev_err(dev, "xdp_rxq_info_reg failed\n"); 2740 return err; 2741 } 2742 2743 err = xdp_rxq_info_reg_mem_model(&fq->channel->xdp_rxq, 2744 MEM_TYPE_PAGE_ORDER0, NULL); 2745 if (err) { 2746 dev_err(dev, "xdp_rxq_info_reg_mem_model failed\n"); 2747 return err; 2748 } 2749 2750 return 0; 2751 } 2752 2753 static int setup_tx_flow(struct dpaa2_eth_priv *priv, 2754 struct dpaa2_eth_fq *fq) 2755 { 2756 struct device *dev = priv->net_dev->dev.parent; 2757 struct dpni_queue queue; 2758 struct dpni_queue_id qid; 2759 int i, err; 2760 2761 for (i = 0; i < dpaa2_eth_tc_count(priv); i++) { 2762 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2763 DPNI_QUEUE_TX, i, fq->flowid, 2764 &queue, &qid); 2765 if (err) { 2766 dev_err(dev, "dpni_get_queue(TX) failed\n"); 2767 return err; 2768 } 2769 fq->tx_fqid[i] = qid.fqid; 2770 } 2771 2772 /* All Tx queues belonging to the same flowid have the same qdbin */ 2773 fq->tx_qdbin = qid.qdbin; 2774 2775 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2776 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 2777 &queue, &qid); 2778 if (err) { 2779 dev_err(dev, "dpni_get_queue(TX_CONF) failed\n"); 2780 return err; 2781 } 2782 2783 fq->fqid = qid.fqid; 2784 2785 queue.destination.id = fq->channel->dpcon_id; 2786 queue.destination.type = DPNI_DEST_DPCON; 2787 queue.destination.priority = 0; 2788 queue.user_context = (u64)(uintptr_t)fq; 2789 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2790 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 2791 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 2792 &queue); 2793 if (err) { 2794 dev_err(dev, "dpni_set_queue(TX_CONF) failed\n"); 2795 return err; 2796 } 2797 2798 return 0; 2799 } 2800 2801 /* Supported header fields for Rx hash distribution key */ 2802 static const struct dpaa2_eth_dist_fields dist_fields[] = { 2803 { 2804 /* L2 header */ 2805 .rxnfc_field = RXH_L2DA, 2806 .cls_prot = NET_PROT_ETH, 2807 .cls_field = NH_FLD_ETH_DA, 2808 .id = DPAA2_ETH_DIST_ETHDST, 2809 .size = 6, 2810 }, { 2811 .cls_prot = NET_PROT_ETH, 2812 .cls_field = NH_FLD_ETH_SA, 2813 .id = DPAA2_ETH_DIST_ETHSRC, 2814 .size = 6, 2815 }, { 2816 /* This is the last ethertype field parsed: 2817 * depending on frame format, it can be the MAC ethertype 2818 * or the VLAN etype. 2819 */ 2820 .cls_prot = NET_PROT_ETH, 2821 .cls_field = NH_FLD_ETH_TYPE, 2822 .id = DPAA2_ETH_DIST_ETHTYPE, 2823 .size = 2, 2824 }, { 2825 /* VLAN header */ 2826 .rxnfc_field = RXH_VLAN, 2827 .cls_prot = NET_PROT_VLAN, 2828 .cls_field = NH_FLD_VLAN_TCI, 2829 .id = DPAA2_ETH_DIST_VLAN, 2830 .size = 2, 2831 }, { 2832 /* IP header */ 2833 .rxnfc_field = RXH_IP_SRC, 2834 .cls_prot = NET_PROT_IP, 2835 .cls_field = NH_FLD_IP_SRC, 2836 .id = DPAA2_ETH_DIST_IPSRC, 2837 .size = 4, 2838 }, { 2839 .rxnfc_field = RXH_IP_DST, 2840 .cls_prot = NET_PROT_IP, 2841 .cls_field = NH_FLD_IP_DST, 2842 .id = DPAA2_ETH_DIST_IPDST, 2843 .size = 4, 2844 }, { 2845 .rxnfc_field = RXH_L3_PROTO, 2846 .cls_prot = NET_PROT_IP, 2847 .cls_field = NH_FLD_IP_PROTO, 2848 .id = DPAA2_ETH_DIST_IPPROTO, 2849 .size = 1, 2850 }, { 2851 /* Using UDP ports, this is functionally equivalent to raw 2852 * byte pairs from L4 header. 2853 */ 2854 .rxnfc_field = RXH_L4_B_0_1, 2855 .cls_prot = NET_PROT_UDP, 2856 .cls_field = NH_FLD_UDP_PORT_SRC, 2857 .id = DPAA2_ETH_DIST_L4SRC, 2858 .size = 2, 2859 }, { 2860 .rxnfc_field = RXH_L4_B_2_3, 2861 .cls_prot = NET_PROT_UDP, 2862 .cls_field = NH_FLD_UDP_PORT_DST, 2863 .id = DPAA2_ETH_DIST_L4DST, 2864 .size = 2, 2865 }, 2866 }; 2867 2868 /* Configure the Rx hash key using the legacy API */ 2869 static int config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2870 { 2871 struct device *dev = priv->net_dev->dev.parent; 2872 struct dpni_rx_tc_dist_cfg dist_cfg; 2873 int err; 2874 2875 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2876 2877 dist_cfg.key_cfg_iova = key; 2878 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2879 dist_cfg.dist_mode = DPNI_DIST_MODE_HASH; 2880 2881 err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 0, &dist_cfg); 2882 if (err) 2883 dev_err(dev, "dpni_set_rx_tc_dist failed\n"); 2884 2885 return err; 2886 } 2887 2888 /* Configure the Rx hash key using the new API */ 2889 static int config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2890 { 2891 struct device *dev = priv->net_dev->dev.parent; 2892 struct dpni_rx_dist_cfg dist_cfg; 2893 int err; 2894 2895 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2896 2897 dist_cfg.key_cfg_iova = key; 2898 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2899 dist_cfg.enable = 1; 2900 2901 err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2902 if (err) 2903 dev_err(dev, "dpni_set_rx_hash_dist failed\n"); 2904 2905 return err; 2906 } 2907 2908 /* Configure the Rx flow classification key */ 2909 static int config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2910 { 2911 struct device *dev = priv->net_dev->dev.parent; 2912 struct dpni_rx_dist_cfg dist_cfg; 2913 int err; 2914 2915 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2916 2917 dist_cfg.key_cfg_iova = key; 2918 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2919 dist_cfg.enable = 1; 2920 2921 err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2922 if (err) 2923 dev_err(dev, "dpni_set_rx_fs_dist failed\n"); 2924 2925 return err; 2926 } 2927 2928 /* Size of the Rx flow classification key */ 2929 int dpaa2_eth_cls_key_size(u64 fields) 2930 { 2931 int i, size = 0; 2932 2933 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2934 if (!(fields & dist_fields[i].id)) 2935 continue; 2936 size += dist_fields[i].size; 2937 } 2938 2939 return size; 2940 } 2941 2942 /* Offset of header field in Rx classification key */ 2943 int dpaa2_eth_cls_fld_off(int prot, int field) 2944 { 2945 int i, off = 0; 2946 2947 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2948 if (dist_fields[i].cls_prot == prot && 2949 dist_fields[i].cls_field == field) 2950 return off; 2951 off += dist_fields[i].size; 2952 } 2953 2954 WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n"); 2955 return 0; 2956 } 2957 2958 /* Prune unused fields from the classification rule. 2959 * Used when masking is not supported 2960 */ 2961 void dpaa2_eth_cls_trim_rule(void *key_mem, u64 fields) 2962 { 2963 int off = 0, new_off = 0; 2964 int i, size; 2965 2966 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2967 size = dist_fields[i].size; 2968 if (dist_fields[i].id & fields) { 2969 memcpy(key_mem + new_off, key_mem + off, size); 2970 new_off += size; 2971 } 2972 off += size; 2973 } 2974 } 2975 2976 /* Set Rx distribution (hash or flow classification) key 2977 * flags is a combination of RXH_ bits 2978 */ 2979 static int dpaa2_eth_set_dist_key(struct net_device *net_dev, 2980 enum dpaa2_eth_rx_dist type, u64 flags) 2981 { 2982 struct device *dev = net_dev->dev.parent; 2983 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2984 struct dpkg_profile_cfg cls_cfg; 2985 u32 rx_hash_fields = 0; 2986 dma_addr_t key_iova; 2987 u8 *dma_mem; 2988 int i; 2989 int err = 0; 2990 2991 memset(&cls_cfg, 0, sizeof(cls_cfg)); 2992 2993 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2994 struct dpkg_extract *key = 2995 &cls_cfg.extracts[cls_cfg.num_extracts]; 2996 2997 /* For both Rx hashing and classification keys 2998 * we set only the selected fields. 2999 */ 3000 if (!(flags & dist_fields[i].id)) 3001 continue; 3002 if (type == DPAA2_ETH_RX_DIST_HASH) 3003 rx_hash_fields |= dist_fields[i].rxnfc_field; 3004 3005 if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) { 3006 dev_err(dev, "error adding key extraction rule, too many rules?\n"); 3007 return -E2BIG; 3008 } 3009 3010 key->type = DPKG_EXTRACT_FROM_HDR; 3011 key->extract.from_hdr.prot = dist_fields[i].cls_prot; 3012 key->extract.from_hdr.type = DPKG_FULL_FIELD; 3013 key->extract.from_hdr.field = dist_fields[i].cls_field; 3014 cls_cfg.num_extracts++; 3015 } 3016 3017 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 3018 if (!dma_mem) 3019 return -ENOMEM; 3020 3021 err = dpni_prepare_key_cfg(&cls_cfg, dma_mem); 3022 if (err) { 3023 dev_err(dev, "dpni_prepare_key_cfg error %d\n", err); 3024 goto free_key; 3025 } 3026 3027 /* Prepare for setting the rx dist */ 3028 key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, 3029 DMA_TO_DEVICE); 3030 if (dma_mapping_error(dev, key_iova)) { 3031 dev_err(dev, "DMA mapping failed\n"); 3032 err = -ENOMEM; 3033 goto free_key; 3034 } 3035 3036 if (type == DPAA2_ETH_RX_DIST_HASH) { 3037 if (dpaa2_eth_has_legacy_dist(priv)) 3038 err = config_legacy_hash_key(priv, key_iova); 3039 else 3040 err = config_hash_key(priv, key_iova); 3041 } else { 3042 err = config_cls_key(priv, key_iova); 3043 } 3044 3045 dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE, 3046 DMA_TO_DEVICE); 3047 if (!err && type == DPAA2_ETH_RX_DIST_HASH) 3048 priv->rx_hash_fields = rx_hash_fields; 3049 3050 free_key: 3051 kfree(dma_mem); 3052 return err; 3053 } 3054 3055 int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags) 3056 { 3057 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3058 u64 key = 0; 3059 int i; 3060 3061 if (!dpaa2_eth_hash_enabled(priv)) 3062 return -EOPNOTSUPP; 3063 3064 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) 3065 if (dist_fields[i].rxnfc_field & flags) 3066 key |= dist_fields[i].id; 3067 3068 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, key); 3069 } 3070 3071 int dpaa2_eth_set_cls(struct net_device *net_dev, u64 flags) 3072 { 3073 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_CLS, flags); 3074 } 3075 3076 static int dpaa2_eth_set_default_cls(struct dpaa2_eth_priv *priv) 3077 { 3078 struct device *dev = priv->net_dev->dev.parent; 3079 int err; 3080 3081 /* Check if we actually support Rx flow classification */ 3082 if (dpaa2_eth_has_legacy_dist(priv)) { 3083 dev_dbg(dev, "Rx cls not supported by current MC version\n"); 3084 return -EOPNOTSUPP; 3085 } 3086 3087 if (!dpaa2_eth_fs_enabled(priv)) { 3088 dev_dbg(dev, "Rx cls disabled in DPNI options\n"); 3089 return -EOPNOTSUPP; 3090 } 3091 3092 if (!dpaa2_eth_hash_enabled(priv)) { 3093 dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n"); 3094 return -EOPNOTSUPP; 3095 } 3096 3097 /* If there is no support for masking in the classification table, 3098 * we don't set a default key, as it will depend on the rules 3099 * added by the user at runtime. 3100 */ 3101 if (!dpaa2_eth_fs_mask_enabled(priv)) 3102 goto out; 3103 3104 err = dpaa2_eth_set_cls(priv->net_dev, DPAA2_ETH_DIST_ALL); 3105 if (err) 3106 return err; 3107 3108 out: 3109 priv->rx_cls_enabled = 1; 3110 3111 return 0; 3112 } 3113 3114 /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs, 3115 * frame queues and channels 3116 */ 3117 static int bind_dpni(struct dpaa2_eth_priv *priv) 3118 { 3119 struct net_device *net_dev = priv->net_dev; 3120 struct device *dev = net_dev->dev.parent; 3121 struct dpni_pools_cfg pools_params; 3122 struct dpni_error_cfg err_cfg; 3123 int err = 0; 3124 int i; 3125 3126 pools_params.num_dpbp = 1; 3127 pools_params.pools[0].dpbp_id = priv->dpbp_dev->obj_desc.id; 3128 pools_params.pools[0].backup_pool = 0; 3129 pools_params.pools[0].buffer_size = DPAA2_ETH_RX_BUF_SIZE; 3130 err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params); 3131 if (err) { 3132 dev_err(dev, "dpni_set_pools() failed\n"); 3133 return err; 3134 } 3135 3136 /* have the interface implicitly distribute traffic based on 3137 * the default hash key 3138 */ 3139 err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT); 3140 if (err && err != -EOPNOTSUPP) 3141 dev_err(dev, "Failed to configure hashing\n"); 3142 3143 /* Configure the flow classification key; it includes all 3144 * supported header fields and cannot be modified at runtime 3145 */ 3146 err = dpaa2_eth_set_default_cls(priv); 3147 if (err && err != -EOPNOTSUPP) 3148 dev_err(dev, "Failed to configure Rx classification key\n"); 3149 3150 /* Configure handling of error frames */ 3151 err_cfg.errors = DPAA2_FAS_RX_ERR_MASK; 3152 err_cfg.set_frame_annotation = 1; 3153 err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD; 3154 err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token, 3155 &err_cfg); 3156 if (err) { 3157 dev_err(dev, "dpni_set_errors_behavior failed\n"); 3158 return err; 3159 } 3160 3161 /* Configure Rx and Tx conf queues to generate CDANs */ 3162 for (i = 0; i < priv->num_fqs; i++) { 3163 switch (priv->fq[i].type) { 3164 case DPAA2_RX_FQ: 3165 err = setup_rx_flow(priv, &priv->fq[i]); 3166 break; 3167 case DPAA2_TX_CONF_FQ: 3168 err = setup_tx_flow(priv, &priv->fq[i]); 3169 break; 3170 default: 3171 dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type); 3172 return -EINVAL; 3173 } 3174 if (err) 3175 return err; 3176 } 3177 3178 err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token, 3179 DPNI_QUEUE_TX, &priv->tx_qdid); 3180 if (err) { 3181 dev_err(dev, "dpni_get_qdid() failed\n"); 3182 return err; 3183 } 3184 3185 return 0; 3186 } 3187 3188 /* Allocate rings for storing incoming frame descriptors */ 3189 static int alloc_rings(struct dpaa2_eth_priv *priv) 3190 { 3191 struct net_device *net_dev = priv->net_dev; 3192 struct device *dev = net_dev->dev.parent; 3193 int i; 3194 3195 for (i = 0; i < priv->num_channels; i++) { 3196 priv->channel[i]->store = 3197 dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev); 3198 if (!priv->channel[i]->store) { 3199 netdev_err(net_dev, "dpaa2_io_store_create() failed\n"); 3200 goto err_ring; 3201 } 3202 } 3203 3204 return 0; 3205 3206 err_ring: 3207 for (i = 0; i < priv->num_channels; i++) { 3208 if (!priv->channel[i]->store) 3209 break; 3210 dpaa2_io_store_destroy(priv->channel[i]->store); 3211 } 3212 3213 return -ENOMEM; 3214 } 3215 3216 static void free_rings(struct dpaa2_eth_priv *priv) 3217 { 3218 int i; 3219 3220 for (i = 0; i < priv->num_channels; i++) 3221 dpaa2_io_store_destroy(priv->channel[i]->store); 3222 } 3223 3224 static int set_mac_addr(struct dpaa2_eth_priv *priv) 3225 { 3226 struct net_device *net_dev = priv->net_dev; 3227 struct device *dev = net_dev->dev.parent; 3228 u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN]; 3229 int err; 3230 3231 /* Get firmware address, if any */ 3232 err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); 3233 if (err) { 3234 dev_err(dev, "dpni_get_port_mac_addr() failed\n"); 3235 return err; 3236 } 3237 3238 /* Get DPNI attributes address, if any */ 3239 err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 3240 dpni_mac_addr); 3241 if (err) { 3242 dev_err(dev, "dpni_get_primary_mac_addr() failed\n"); 3243 return err; 3244 } 3245 3246 /* First check if firmware has any address configured by bootloader */ 3247 if (!is_zero_ether_addr(mac_addr)) { 3248 /* If the DPMAC addr != DPNI addr, update it */ 3249 if (!ether_addr_equal(mac_addr, dpni_mac_addr)) { 3250 err = dpni_set_primary_mac_addr(priv->mc_io, 0, 3251 priv->mc_token, 3252 mac_addr); 3253 if (err) { 3254 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 3255 return err; 3256 } 3257 } 3258 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len); 3259 } else if (is_zero_ether_addr(dpni_mac_addr)) { 3260 /* No MAC address configured, fill in net_dev->dev_addr 3261 * with a random one 3262 */ 3263 eth_hw_addr_random(net_dev); 3264 dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); 3265 3266 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 3267 net_dev->dev_addr); 3268 if (err) { 3269 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 3270 return err; 3271 } 3272 3273 /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all 3274 * practical purposes, this will be our "permanent" mac address, 3275 * at least until the next reboot. This move will also permit 3276 * register_netdevice() to properly fill up net_dev->perm_addr. 3277 */ 3278 net_dev->addr_assign_type = NET_ADDR_PERM; 3279 } else { 3280 /* NET_ADDR_PERM is default, all we have to do is 3281 * fill in the device addr. 3282 */ 3283 memcpy(net_dev->dev_addr, dpni_mac_addr, net_dev->addr_len); 3284 } 3285 3286 return 0; 3287 } 3288 3289 static int netdev_init(struct net_device *net_dev) 3290 { 3291 struct device *dev = net_dev->dev.parent; 3292 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3293 u32 options = priv->dpni_attrs.options; 3294 u64 supported = 0, not_supported = 0; 3295 u8 bcast_addr[ETH_ALEN]; 3296 u8 num_queues; 3297 int err; 3298 3299 net_dev->netdev_ops = &dpaa2_eth_ops; 3300 net_dev->ethtool_ops = &dpaa2_ethtool_ops; 3301 3302 err = set_mac_addr(priv); 3303 if (err) 3304 return err; 3305 3306 /* Explicitly add the broadcast address to the MAC filtering table */ 3307 eth_broadcast_addr(bcast_addr); 3308 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr); 3309 if (err) { 3310 dev_err(dev, "dpni_add_mac_addr() failed\n"); 3311 return err; 3312 } 3313 3314 /* Set MTU upper limit; lower limit is 68B (default value) */ 3315 net_dev->max_mtu = DPAA2_ETH_MAX_MTU; 3316 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, 3317 DPAA2_ETH_MFL); 3318 if (err) { 3319 dev_err(dev, "dpni_set_max_frame_length() failed\n"); 3320 return err; 3321 } 3322 3323 /* Set actual number of queues in the net device */ 3324 num_queues = dpaa2_eth_queue_count(priv); 3325 err = netif_set_real_num_tx_queues(net_dev, num_queues); 3326 if (err) { 3327 dev_err(dev, "netif_set_real_num_tx_queues() failed\n"); 3328 return err; 3329 } 3330 err = netif_set_real_num_rx_queues(net_dev, num_queues); 3331 if (err) { 3332 dev_err(dev, "netif_set_real_num_rx_queues() failed\n"); 3333 return err; 3334 } 3335 3336 /* Capabilities listing */ 3337 supported |= IFF_LIVE_ADDR_CHANGE; 3338 3339 if (options & DPNI_OPT_NO_MAC_FILTER) 3340 not_supported |= IFF_UNICAST_FLT; 3341 else 3342 supported |= IFF_UNICAST_FLT; 3343 3344 net_dev->priv_flags |= supported; 3345 net_dev->priv_flags &= ~not_supported; 3346 3347 /* Features */ 3348 net_dev->features = NETIF_F_RXCSUM | 3349 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3350 NETIF_F_SG | NETIF_F_HIGHDMA | 3351 NETIF_F_LLTX; 3352 net_dev->hw_features = net_dev->features; 3353 3354 return 0; 3355 } 3356 3357 static int poll_link_state(void *arg) 3358 { 3359 struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg; 3360 int err; 3361 3362 while (!kthread_should_stop()) { 3363 err = link_state_update(priv); 3364 if (unlikely(err)) 3365 return err; 3366 3367 msleep(DPAA2_ETH_LINK_STATE_REFRESH); 3368 } 3369 3370 return 0; 3371 } 3372 3373 static int dpaa2_eth_connect_mac(struct dpaa2_eth_priv *priv) 3374 { 3375 struct fsl_mc_device *dpni_dev, *dpmac_dev; 3376 struct dpaa2_mac *mac; 3377 int err; 3378 3379 dpni_dev = to_fsl_mc_device(priv->net_dev->dev.parent); 3380 dpmac_dev = fsl_mc_get_endpoint(dpni_dev); 3381 if (IS_ERR(dpmac_dev) || dpmac_dev->dev.type != &fsl_mc_bus_dpmac_type) 3382 return 0; 3383 3384 if (dpaa2_mac_is_type_fixed(dpmac_dev, priv->mc_io)) 3385 return 0; 3386 3387 mac = kzalloc(sizeof(struct dpaa2_mac), GFP_KERNEL); 3388 if (!mac) 3389 return -ENOMEM; 3390 3391 mac->mc_dev = dpmac_dev; 3392 mac->mc_io = priv->mc_io; 3393 mac->net_dev = priv->net_dev; 3394 3395 err = dpaa2_mac_connect(mac); 3396 if (err) { 3397 netdev_err(priv->net_dev, "Error connecting to the MAC endpoint\n"); 3398 kfree(mac); 3399 return err; 3400 } 3401 priv->mac = mac; 3402 3403 return 0; 3404 } 3405 3406 static void dpaa2_eth_disconnect_mac(struct dpaa2_eth_priv *priv) 3407 { 3408 if (!priv->mac) 3409 return; 3410 3411 dpaa2_mac_disconnect(priv->mac); 3412 kfree(priv->mac); 3413 priv->mac = NULL; 3414 } 3415 3416 static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg) 3417 { 3418 u32 status = ~0; 3419 struct device *dev = (struct device *)arg; 3420 struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev); 3421 struct net_device *net_dev = dev_get_drvdata(dev); 3422 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3423 int err; 3424 3425 err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, 3426 DPNI_IRQ_INDEX, &status); 3427 if (unlikely(err)) { 3428 netdev_err(net_dev, "Can't get irq status (err %d)\n", err); 3429 return IRQ_HANDLED; 3430 } 3431 3432 if (status & DPNI_IRQ_EVENT_LINK_CHANGED) 3433 link_state_update(netdev_priv(net_dev)); 3434 3435 if (status & DPNI_IRQ_EVENT_ENDPOINT_CHANGED) { 3436 set_mac_addr(netdev_priv(net_dev)); 3437 update_tx_fqids(priv); 3438 3439 rtnl_lock(); 3440 if (priv->mac) 3441 dpaa2_eth_disconnect_mac(priv); 3442 else 3443 dpaa2_eth_connect_mac(priv); 3444 rtnl_unlock(); 3445 } 3446 3447 return IRQ_HANDLED; 3448 } 3449 3450 static int setup_irqs(struct fsl_mc_device *ls_dev) 3451 { 3452 int err = 0; 3453 struct fsl_mc_device_irq *irq; 3454 3455 err = fsl_mc_allocate_irqs(ls_dev); 3456 if (err) { 3457 dev_err(&ls_dev->dev, "MC irqs allocation failed\n"); 3458 return err; 3459 } 3460 3461 irq = ls_dev->irqs[0]; 3462 err = devm_request_threaded_irq(&ls_dev->dev, irq->msi_desc->irq, 3463 NULL, dpni_irq0_handler_thread, 3464 IRQF_NO_SUSPEND | IRQF_ONESHOT, 3465 dev_name(&ls_dev->dev), &ls_dev->dev); 3466 if (err < 0) { 3467 dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err); 3468 goto free_mc_irq; 3469 } 3470 3471 err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle, 3472 DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED | 3473 DPNI_IRQ_EVENT_ENDPOINT_CHANGED); 3474 if (err < 0) { 3475 dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err); 3476 goto free_irq; 3477 } 3478 3479 err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle, 3480 DPNI_IRQ_INDEX, 1); 3481 if (err < 0) { 3482 dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err); 3483 goto free_irq; 3484 } 3485 3486 return 0; 3487 3488 free_irq: 3489 devm_free_irq(&ls_dev->dev, irq->msi_desc->irq, &ls_dev->dev); 3490 free_mc_irq: 3491 fsl_mc_free_irqs(ls_dev); 3492 3493 return err; 3494 } 3495 3496 static void add_ch_napi(struct dpaa2_eth_priv *priv) 3497 { 3498 int i; 3499 struct dpaa2_eth_channel *ch; 3500 3501 for (i = 0; i < priv->num_channels; i++) { 3502 ch = priv->channel[i]; 3503 /* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */ 3504 netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll, 3505 NAPI_POLL_WEIGHT); 3506 } 3507 } 3508 3509 static void del_ch_napi(struct dpaa2_eth_priv *priv) 3510 { 3511 int i; 3512 struct dpaa2_eth_channel *ch; 3513 3514 for (i = 0; i < priv->num_channels; i++) { 3515 ch = priv->channel[i]; 3516 netif_napi_del(&ch->napi); 3517 } 3518 } 3519 3520 static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev) 3521 { 3522 struct device *dev; 3523 struct net_device *net_dev = NULL; 3524 struct dpaa2_eth_priv *priv = NULL; 3525 int err = 0; 3526 3527 dev = &dpni_dev->dev; 3528 3529 /* Net device */ 3530 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_NETDEV_QUEUES); 3531 if (!net_dev) { 3532 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3533 return -ENOMEM; 3534 } 3535 3536 SET_NETDEV_DEV(net_dev, dev); 3537 dev_set_drvdata(dev, net_dev); 3538 3539 priv = netdev_priv(net_dev); 3540 priv->net_dev = net_dev; 3541 3542 priv->iommu_domain = iommu_get_domain_for_dev(dev); 3543 3544 /* Obtain a MC portal */ 3545 err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, 3546 &priv->mc_io); 3547 if (err) { 3548 if (err == -ENXIO) 3549 err = -EPROBE_DEFER; 3550 else 3551 dev_err(dev, "MC portal allocation failed\n"); 3552 goto err_portal_alloc; 3553 } 3554 3555 /* MC objects initialization and configuration */ 3556 err = setup_dpni(dpni_dev); 3557 if (err) 3558 goto err_dpni_setup; 3559 3560 err = setup_dpio(priv); 3561 if (err) 3562 goto err_dpio_setup; 3563 3564 setup_fqs(priv); 3565 3566 err = setup_dpbp(priv); 3567 if (err) 3568 goto err_dpbp_setup; 3569 3570 err = bind_dpni(priv); 3571 if (err) 3572 goto err_bind; 3573 3574 /* Add a NAPI context for each channel */ 3575 add_ch_napi(priv); 3576 3577 /* Percpu statistics */ 3578 priv->percpu_stats = alloc_percpu(*priv->percpu_stats); 3579 if (!priv->percpu_stats) { 3580 dev_err(dev, "alloc_percpu(percpu_stats) failed\n"); 3581 err = -ENOMEM; 3582 goto err_alloc_percpu_stats; 3583 } 3584 priv->percpu_extras = alloc_percpu(*priv->percpu_extras); 3585 if (!priv->percpu_extras) { 3586 dev_err(dev, "alloc_percpu(percpu_extras) failed\n"); 3587 err = -ENOMEM; 3588 goto err_alloc_percpu_extras; 3589 } 3590 3591 err = netdev_init(net_dev); 3592 if (err) 3593 goto err_netdev_init; 3594 3595 /* Configure checksum offload based on current interface flags */ 3596 err = set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM)); 3597 if (err) 3598 goto err_csum; 3599 3600 err = set_tx_csum(priv, !!(net_dev->features & 3601 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))); 3602 if (err) 3603 goto err_csum; 3604 3605 err = alloc_rings(priv); 3606 if (err) 3607 goto err_alloc_rings; 3608 3609 err = setup_irqs(dpni_dev); 3610 if (err) { 3611 netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n"); 3612 priv->poll_thread = kthread_run(poll_link_state, priv, 3613 "%s_poll_link", net_dev->name); 3614 if (IS_ERR(priv->poll_thread)) { 3615 dev_err(dev, "Error starting polling thread\n"); 3616 goto err_poll_thread; 3617 } 3618 priv->do_link_poll = true; 3619 } 3620 3621 err = dpaa2_eth_connect_mac(priv); 3622 if (err) 3623 goto err_connect_mac; 3624 3625 err = register_netdev(net_dev); 3626 if (err < 0) { 3627 dev_err(dev, "register_netdev() failed\n"); 3628 goto err_netdev_reg; 3629 } 3630 3631 #ifdef CONFIG_DEBUG_FS 3632 dpaa2_dbg_add(priv); 3633 #endif 3634 3635 dev_info(dev, "Probed interface %s\n", net_dev->name); 3636 return 0; 3637 3638 err_netdev_reg: 3639 dpaa2_eth_disconnect_mac(priv); 3640 err_connect_mac: 3641 if (priv->do_link_poll) 3642 kthread_stop(priv->poll_thread); 3643 else 3644 fsl_mc_free_irqs(dpni_dev); 3645 err_poll_thread: 3646 free_rings(priv); 3647 err_alloc_rings: 3648 err_csum: 3649 err_netdev_init: 3650 free_percpu(priv->percpu_extras); 3651 err_alloc_percpu_extras: 3652 free_percpu(priv->percpu_stats); 3653 err_alloc_percpu_stats: 3654 del_ch_napi(priv); 3655 err_bind: 3656 free_dpbp(priv); 3657 err_dpbp_setup: 3658 free_dpio(priv); 3659 err_dpio_setup: 3660 free_dpni(priv); 3661 err_dpni_setup: 3662 fsl_mc_portal_free(priv->mc_io); 3663 err_portal_alloc: 3664 dev_set_drvdata(dev, NULL); 3665 free_netdev(net_dev); 3666 3667 return err; 3668 } 3669 3670 static int dpaa2_eth_remove(struct fsl_mc_device *ls_dev) 3671 { 3672 struct device *dev; 3673 struct net_device *net_dev; 3674 struct dpaa2_eth_priv *priv; 3675 3676 dev = &ls_dev->dev; 3677 net_dev = dev_get_drvdata(dev); 3678 priv = netdev_priv(net_dev); 3679 3680 #ifdef CONFIG_DEBUG_FS 3681 dpaa2_dbg_remove(priv); 3682 #endif 3683 rtnl_lock(); 3684 dpaa2_eth_disconnect_mac(priv); 3685 rtnl_unlock(); 3686 3687 unregister_netdev(net_dev); 3688 3689 if (priv->do_link_poll) 3690 kthread_stop(priv->poll_thread); 3691 else 3692 fsl_mc_free_irqs(ls_dev); 3693 3694 free_rings(priv); 3695 free_percpu(priv->percpu_stats); 3696 free_percpu(priv->percpu_extras); 3697 3698 del_ch_napi(priv); 3699 free_dpbp(priv); 3700 free_dpio(priv); 3701 free_dpni(priv); 3702 3703 fsl_mc_portal_free(priv->mc_io); 3704 3705 free_netdev(net_dev); 3706 3707 dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name); 3708 3709 return 0; 3710 } 3711 3712 static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = { 3713 { 3714 .vendor = FSL_MC_VENDOR_FREESCALE, 3715 .obj_type = "dpni", 3716 }, 3717 { .vendor = 0x0 } 3718 }; 3719 MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table); 3720 3721 static struct fsl_mc_driver dpaa2_eth_driver = { 3722 .driver = { 3723 .name = KBUILD_MODNAME, 3724 .owner = THIS_MODULE, 3725 }, 3726 .probe = dpaa2_eth_probe, 3727 .remove = dpaa2_eth_remove, 3728 .match_id_table = dpaa2_eth_match_id_table 3729 }; 3730 3731 static int __init dpaa2_eth_driver_init(void) 3732 { 3733 int err; 3734 3735 dpaa2_eth_dbg_init(); 3736 err = fsl_mc_driver_register(&dpaa2_eth_driver); 3737 if (err) { 3738 dpaa2_eth_dbg_exit(); 3739 return err; 3740 } 3741 3742 return 0; 3743 } 3744 3745 static void __exit dpaa2_eth_driver_exit(void) 3746 { 3747 dpaa2_eth_dbg_exit(); 3748 fsl_mc_driver_unregister(&dpaa2_eth_driver); 3749 } 3750 3751 module_init(dpaa2_eth_driver_init); 3752 module_exit(dpaa2_eth_driver_exit); 3753