1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* Copyright 2014-2016 Freescale Semiconductor Inc. 3 * Copyright 2016-2017 NXP 4 */ 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/platform_device.h> 8 #include <linux/etherdevice.h> 9 #include <linux/of_net.h> 10 #include <linux/interrupt.h> 11 #include <linux/msi.h> 12 #include <linux/kthread.h> 13 #include <linux/iommu.h> 14 #include <linux/net_tstamp.h> 15 #include <linux/fsl/mc.h> 16 #include <linux/bpf.h> 17 #include <linux/bpf_trace.h> 18 #include <net/sock.h> 19 20 #include "dpaa2-eth.h" 21 22 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpa files 23 * using trace events only need to #include <trace/events/sched.h> 24 */ 25 #define CREATE_TRACE_POINTS 26 #include "dpaa2-eth-trace.h" 27 28 MODULE_LICENSE("Dual BSD/GPL"); 29 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 30 MODULE_DESCRIPTION("Freescale DPAA2 Ethernet Driver"); 31 32 static void *dpaa2_iova_to_virt(struct iommu_domain *domain, 33 dma_addr_t iova_addr) 34 { 35 phys_addr_t phys_addr; 36 37 phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; 38 39 return phys_to_virt(phys_addr); 40 } 41 42 static void validate_rx_csum(struct dpaa2_eth_priv *priv, 43 u32 fd_status, 44 struct sk_buff *skb) 45 { 46 skb_checksum_none_assert(skb); 47 48 /* HW checksum validation is disabled, nothing to do here */ 49 if (!(priv->net_dev->features & NETIF_F_RXCSUM)) 50 return; 51 52 /* Read checksum validation bits */ 53 if (!((fd_status & DPAA2_FAS_L3CV) && 54 (fd_status & DPAA2_FAS_L4CV))) 55 return; 56 57 /* Inform the stack there's no need to compute L3/L4 csum anymore */ 58 skb->ip_summed = CHECKSUM_UNNECESSARY; 59 } 60 61 /* Free a received FD. 62 * Not to be used for Tx conf FDs or on any other paths. 63 */ 64 static void free_rx_fd(struct dpaa2_eth_priv *priv, 65 const struct dpaa2_fd *fd, 66 void *vaddr) 67 { 68 struct device *dev = priv->net_dev->dev.parent; 69 dma_addr_t addr = dpaa2_fd_get_addr(fd); 70 u8 fd_format = dpaa2_fd_get_format(fd); 71 struct dpaa2_sg_entry *sgt; 72 void *sg_vaddr; 73 int i; 74 75 /* If single buffer frame, just free the data buffer */ 76 if (fd_format == dpaa2_fd_single) 77 goto free_buf; 78 else if (fd_format != dpaa2_fd_sg) 79 /* We don't support any other format */ 80 return; 81 82 /* For S/G frames, we first need to free all SG entries 83 * except the first one, which was taken care of already 84 */ 85 sgt = vaddr + dpaa2_fd_get_offset(fd); 86 for (i = 1; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 87 addr = dpaa2_sg_get_addr(&sgt[i]); 88 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 89 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 90 DMA_BIDIRECTIONAL); 91 92 free_pages((unsigned long)sg_vaddr, 0); 93 if (dpaa2_sg_is_final(&sgt[i])) 94 break; 95 } 96 97 free_buf: 98 free_pages((unsigned long)vaddr, 0); 99 } 100 101 /* Build a linear skb based on a single-buffer frame descriptor */ 102 static struct sk_buff *build_linear_skb(struct dpaa2_eth_channel *ch, 103 const struct dpaa2_fd *fd, 104 void *fd_vaddr) 105 { 106 struct sk_buff *skb = NULL; 107 u16 fd_offset = dpaa2_fd_get_offset(fd); 108 u32 fd_length = dpaa2_fd_get_len(fd); 109 110 ch->buf_count--; 111 112 skb = build_skb(fd_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 113 if (unlikely(!skb)) 114 return NULL; 115 116 skb_reserve(skb, fd_offset); 117 skb_put(skb, fd_length); 118 119 return skb; 120 } 121 122 /* Build a non linear (fragmented) skb based on a S/G table */ 123 static struct sk_buff *build_frag_skb(struct dpaa2_eth_priv *priv, 124 struct dpaa2_eth_channel *ch, 125 struct dpaa2_sg_entry *sgt) 126 { 127 struct sk_buff *skb = NULL; 128 struct device *dev = priv->net_dev->dev.parent; 129 void *sg_vaddr; 130 dma_addr_t sg_addr; 131 u16 sg_offset; 132 u32 sg_length; 133 struct page *page, *head_page; 134 int page_offset; 135 int i; 136 137 for (i = 0; i < DPAA2_ETH_MAX_SG_ENTRIES; i++) { 138 struct dpaa2_sg_entry *sge = &sgt[i]; 139 140 /* NOTE: We only support SG entries in dpaa2_sg_single format, 141 * but this is the only format we may receive from HW anyway 142 */ 143 144 /* Get the address and length from the S/G entry */ 145 sg_addr = dpaa2_sg_get_addr(sge); 146 sg_vaddr = dpaa2_iova_to_virt(priv->iommu_domain, sg_addr); 147 dma_unmap_page(dev, sg_addr, DPAA2_ETH_RX_BUF_SIZE, 148 DMA_BIDIRECTIONAL); 149 150 sg_length = dpaa2_sg_get_len(sge); 151 152 if (i == 0) { 153 /* We build the skb around the first data buffer */ 154 skb = build_skb(sg_vaddr, DPAA2_ETH_RX_BUF_RAW_SIZE); 155 if (unlikely(!skb)) { 156 /* Free the first SG entry now, since we already 157 * unmapped it and obtained the virtual address 158 */ 159 free_pages((unsigned long)sg_vaddr, 0); 160 161 /* We still need to subtract the buffers used 162 * by this FD from our software counter 163 */ 164 while (!dpaa2_sg_is_final(&sgt[i]) && 165 i < DPAA2_ETH_MAX_SG_ENTRIES) 166 i++; 167 break; 168 } 169 170 sg_offset = dpaa2_sg_get_offset(sge); 171 skb_reserve(skb, sg_offset); 172 skb_put(skb, sg_length); 173 } else { 174 /* Rest of the data buffers are stored as skb frags */ 175 page = virt_to_page(sg_vaddr); 176 head_page = virt_to_head_page(sg_vaddr); 177 178 /* Offset in page (which may be compound). 179 * Data in subsequent SG entries is stored from the 180 * beginning of the buffer, so we don't need to add the 181 * sg_offset. 182 */ 183 page_offset = ((unsigned long)sg_vaddr & 184 (PAGE_SIZE - 1)) + 185 (page_address(page) - page_address(head_page)); 186 187 skb_add_rx_frag(skb, i - 1, head_page, page_offset, 188 sg_length, DPAA2_ETH_RX_BUF_SIZE); 189 } 190 191 if (dpaa2_sg_is_final(sge)) 192 break; 193 } 194 195 WARN_ONCE(i == DPAA2_ETH_MAX_SG_ENTRIES, "Final bit not set in SGT"); 196 197 /* Count all data buffers + SG table buffer */ 198 ch->buf_count -= i + 2; 199 200 return skb; 201 } 202 203 /* Free buffers acquired from the buffer pool or which were meant to 204 * be released in the pool 205 */ 206 static void free_bufs(struct dpaa2_eth_priv *priv, u64 *buf_array, int count) 207 { 208 struct device *dev = priv->net_dev->dev.parent; 209 void *vaddr; 210 int i; 211 212 for (i = 0; i < count; i++) { 213 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, buf_array[i]); 214 dma_unmap_page(dev, buf_array[i], DPAA2_ETH_RX_BUF_SIZE, 215 DMA_BIDIRECTIONAL); 216 free_pages((unsigned long)vaddr, 0); 217 } 218 } 219 220 static void xdp_release_buf(struct dpaa2_eth_priv *priv, 221 struct dpaa2_eth_channel *ch, 222 dma_addr_t addr) 223 { 224 int err; 225 226 ch->xdp.drop_bufs[ch->xdp.drop_cnt++] = addr; 227 if (ch->xdp.drop_cnt < DPAA2_ETH_BUFS_PER_CMD) 228 return; 229 230 while ((err = dpaa2_io_service_release(ch->dpio, priv->bpid, 231 ch->xdp.drop_bufs, 232 ch->xdp.drop_cnt)) == -EBUSY) 233 cpu_relax(); 234 235 if (err) { 236 free_bufs(priv, ch->xdp.drop_bufs, ch->xdp.drop_cnt); 237 ch->buf_count -= ch->xdp.drop_cnt; 238 } 239 240 ch->xdp.drop_cnt = 0; 241 } 242 243 static int xdp_enqueue(struct dpaa2_eth_priv *priv, struct dpaa2_fd *fd, 244 void *buf_start, u16 queue_id) 245 { 246 struct dpaa2_eth_fq *fq; 247 struct dpaa2_faead *faead; 248 u32 ctrl, frc; 249 int i, err; 250 251 /* Mark the egress frame hardware annotation area as valid */ 252 frc = dpaa2_fd_get_frc(fd); 253 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 254 dpaa2_fd_set_ctrl(fd, DPAA2_FD_CTRL_ASAL); 255 256 /* Instruct hardware to release the FD buffer directly into 257 * the buffer pool once transmission is completed, instead of 258 * sending a Tx confirmation frame to us 259 */ 260 ctrl = DPAA2_FAEAD_A4V | DPAA2_FAEAD_A2V | DPAA2_FAEAD_EBDDV; 261 faead = dpaa2_get_faead(buf_start, false); 262 faead->ctrl = cpu_to_le32(ctrl); 263 faead->conf_fqid = 0; 264 265 fq = &priv->fq[queue_id]; 266 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 267 err = priv->enqueue(priv, fq, fd, 0); 268 if (err != -EBUSY) 269 break; 270 } 271 272 return err; 273 } 274 275 static u32 run_xdp(struct dpaa2_eth_priv *priv, 276 struct dpaa2_eth_channel *ch, 277 struct dpaa2_eth_fq *rx_fq, 278 struct dpaa2_fd *fd, void *vaddr) 279 { 280 dma_addr_t addr = dpaa2_fd_get_addr(fd); 281 struct rtnl_link_stats64 *percpu_stats; 282 struct bpf_prog *xdp_prog; 283 struct xdp_buff xdp; 284 u32 xdp_act = XDP_PASS; 285 int err; 286 287 percpu_stats = this_cpu_ptr(priv->percpu_stats); 288 289 rcu_read_lock(); 290 291 xdp_prog = READ_ONCE(ch->xdp.prog); 292 if (!xdp_prog) 293 goto out; 294 295 xdp.data = vaddr + dpaa2_fd_get_offset(fd); 296 xdp.data_end = xdp.data + dpaa2_fd_get_len(fd); 297 xdp.data_hard_start = xdp.data - XDP_PACKET_HEADROOM; 298 xdp_set_data_meta_invalid(&xdp); 299 xdp.rxq = &ch->xdp_rxq; 300 301 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 302 303 /* xdp.data pointer may have changed */ 304 dpaa2_fd_set_offset(fd, xdp.data - vaddr); 305 dpaa2_fd_set_len(fd, xdp.data_end - xdp.data); 306 307 switch (xdp_act) { 308 case XDP_PASS: 309 break; 310 case XDP_TX: 311 err = xdp_enqueue(priv, fd, vaddr, rx_fq->flowid); 312 if (err) { 313 xdp_release_buf(priv, ch, addr); 314 percpu_stats->tx_errors++; 315 ch->stats.xdp_tx_err++; 316 } else { 317 percpu_stats->tx_packets++; 318 percpu_stats->tx_bytes += dpaa2_fd_get_len(fd); 319 ch->stats.xdp_tx++; 320 } 321 break; 322 default: 323 bpf_warn_invalid_xdp_action(xdp_act); 324 /* fall through */ 325 case XDP_ABORTED: 326 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 327 /* fall through */ 328 case XDP_DROP: 329 xdp_release_buf(priv, ch, addr); 330 ch->stats.xdp_drop++; 331 break; 332 case XDP_REDIRECT: 333 dma_unmap_page(priv->net_dev->dev.parent, addr, 334 DPAA2_ETH_RX_BUF_SIZE, DMA_BIDIRECTIONAL); 335 ch->buf_count--; 336 xdp.data_hard_start = vaddr; 337 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 338 if (unlikely(err)) 339 ch->stats.xdp_drop++; 340 else 341 ch->stats.xdp_redirect++; 342 break; 343 } 344 345 ch->xdp.res |= xdp_act; 346 out: 347 rcu_read_unlock(); 348 return xdp_act; 349 } 350 351 /* Main Rx frame processing routine */ 352 static void dpaa2_eth_rx(struct dpaa2_eth_priv *priv, 353 struct dpaa2_eth_channel *ch, 354 const struct dpaa2_fd *fd, 355 struct dpaa2_eth_fq *fq) 356 { 357 dma_addr_t addr = dpaa2_fd_get_addr(fd); 358 u8 fd_format = dpaa2_fd_get_format(fd); 359 void *vaddr; 360 struct sk_buff *skb; 361 struct rtnl_link_stats64 *percpu_stats; 362 struct dpaa2_eth_drv_stats *percpu_extras; 363 struct device *dev = priv->net_dev->dev.parent; 364 struct dpaa2_fas *fas; 365 void *buf_data; 366 u32 status = 0; 367 u32 xdp_act; 368 369 /* Tracing point */ 370 trace_dpaa2_rx_fd(priv->net_dev, fd); 371 372 vaddr = dpaa2_iova_to_virt(priv->iommu_domain, addr); 373 dma_sync_single_for_cpu(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 374 DMA_BIDIRECTIONAL); 375 376 fas = dpaa2_get_fas(vaddr, false); 377 prefetch(fas); 378 buf_data = vaddr + dpaa2_fd_get_offset(fd); 379 prefetch(buf_data); 380 381 percpu_stats = this_cpu_ptr(priv->percpu_stats); 382 percpu_extras = this_cpu_ptr(priv->percpu_extras); 383 384 if (fd_format == dpaa2_fd_single) { 385 xdp_act = run_xdp(priv, ch, fq, (struct dpaa2_fd *)fd, vaddr); 386 if (xdp_act != XDP_PASS) { 387 percpu_stats->rx_packets++; 388 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 389 return; 390 } 391 392 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 393 DMA_BIDIRECTIONAL); 394 skb = build_linear_skb(ch, fd, vaddr); 395 } else if (fd_format == dpaa2_fd_sg) { 396 WARN_ON(priv->xdp_prog); 397 398 dma_unmap_page(dev, addr, DPAA2_ETH_RX_BUF_SIZE, 399 DMA_BIDIRECTIONAL); 400 skb = build_frag_skb(priv, ch, buf_data); 401 free_pages((unsigned long)vaddr, 0); 402 percpu_extras->rx_sg_frames++; 403 percpu_extras->rx_sg_bytes += dpaa2_fd_get_len(fd); 404 } else { 405 /* We don't support any other format */ 406 goto err_frame_format; 407 } 408 409 if (unlikely(!skb)) 410 goto err_build_skb; 411 412 prefetch(skb->data); 413 414 /* Get the timestamp value */ 415 if (priv->rx_tstamp) { 416 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb); 417 __le64 *ts = dpaa2_get_ts(vaddr, false); 418 u64 ns; 419 420 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 421 422 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 423 shhwtstamps->hwtstamp = ns_to_ktime(ns); 424 } 425 426 /* Check if we need to validate the L4 csum */ 427 if (likely(dpaa2_fd_get_frc(fd) & DPAA2_FD_FRC_FASV)) { 428 status = le32_to_cpu(fas->status); 429 validate_rx_csum(priv, status, skb); 430 } 431 432 skb->protocol = eth_type_trans(skb, priv->net_dev); 433 skb_record_rx_queue(skb, fq->flowid); 434 435 percpu_stats->rx_packets++; 436 percpu_stats->rx_bytes += dpaa2_fd_get_len(fd); 437 438 list_add_tail(&skb->list, ch->rx_list); 439 440 return; 441 442 err_build_skb: 443 free_rx_fd(priv, fd, vaddr); 444 err_frame_format: 445 percpu_stats->rx_dropped++; 446 } 447 448 /* Consume all frames pull-dequeued into the store. This is the simplest way to 449 * make sure we don't accidentally issue another volatile dequeue which would 450 * overwrite (leak) frames already in the store. 451 * 452 * Observance of NAPI budget is not our concern, leaving that to the caller. 453 */ 454 static int consume_frames(struct dpaa2_eth_channel *ch, 455 struct dpaa2_eth_fq **src) 456 { 457 struct dpaa2_eth_priv *priv = ch->priv; 458 struct dpaa2_eth_fq *fq = NULL; 459 struct dpaa2_dq *dq; 460 const struct dpaa2_fd *fd; 461 int cleaned = 0; 462 int is_last; 463 464 do { 465 dq = dpaa2_io_store_next(ch->store, &is_last); 466 if (unlikely(!dq)) { 467 /* If we're here, we *must* have placed a 468 * volatile dequeue comnmand, so keep reading through 469 * the store until we get some sort of valid response 470 * token (either a valid frame or an "empty dequeue") 471 */ 472 continue; 473 } 474 475 fd = dpaa2_dq_fd(dq); 476 fq = (struct dpaa2_eth_fq *)(uintptr_t)dpaa2_dq_fqd_ctx(dq); 477 478 fq->consume(priv, ch, fd, fq); 479 cleaned++; 480 } while (!is_last); 481 482 if (!cleaned) 483 return 0; 484 485 fq->stats.frames += cleaned; 486 487 /* A dequeue operation only pulls frames from a single queue 488 * into the store. Return the frame queue as an out param. 489 */ 490 if (src) 491 *src = fq; 492 493 return cleaned; 494 } 495 496 /* Configure the egress frame annotation for timestamp update */ 497 static void enable_tx_tstamp(struct dpaa2_fd *fd, void *buf_start) 498 { 499 struct dpaa2_faead *faead; 500 u32 ctrl, frc; 501 502 /* Mark the egress frame annotation area as valid */ 503 frc = dpaa2_fd_get_frc(fd); 504 dpaa2_fd_set_frc(fd, frc | DPAA2_FD_FRC_FAEADV); 505 506 /* Set hardware annotation size */ 507 ctrl = dpaa2_fd_get_ctrl(fd); 508 dpaa2_fd_set_ctrl(fd, ctrl | DPAA2_FD_CTRL_ASAL); 509 510 /* enable UPD (update prepanded data) bit in FAEAD field of 511 * hardware frame annotation area 512 */ 513 ctrl = DPAA2_FAEAD_A2V | DPAA2_FAEAD_UPDV | DPAA2_FAEAD_UPD; 514 faead = dpaa2_get_faead(buf_start, true); 515 faead->ctrl = cpu_to_le32(ctrl); 516 } 517 518 /* Create a frame descriptor based on a fragmented skb */ 519 static int build_sg_fd(struct dpaa2_eth_priv *priv, 520 struct sk_buff *skb, 521 struct dpaa2_fd *fd) 522 { 523 struct device *dev = priv->net_dev->dev.parent; 524 void *sgt_buf = NULL; 525 dma_addr_t addr; 526 int nr_frags = skb_shinfo(skb)->nr_frags; 527 struct dpaa2_sg_entry *sgt; 528 int i, err; 529 int sgt_buf_size; 530 struct scatterlist *scl, *crt_scl; 531 int num_sg; 532 int num_dma_bufs; 533 struct dpaa2_eth_swa *swa; 534 535 /* Create and map scatterlist. 536 * We don't advertise NETIF_F_FRAGLIST, so skb_to_sgvec() will not have 537 * to go beyond nr_frags+1. 538 * Note: We don't support chained scatterlists 539 */ 540 if (unlikely(PAGE_SIZE / sizeof(struct scatterlist) < nr_frags + 1)) 541 return -EINVAL; 542 543 scl = kcalloc(nr_frags + 1, sizeof(struct scatterlist), GFP_ATOMIC); 544 if (unlikely(!scl)) 545 return -ENOMEM; 546 547 sg_init_table(scl, nr_frags + 1); 548 num_sg = skb_to_sgvec(skb, scl, 0, skb->len); 549 num_dma_bufs = dma_map_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 550 if (unlikely(!num_dma_bufs)) { 551 err = -ENOMEM; 552 goto dma_map_sg_failed; 553 } 554 555 /* Prepare the HW SGT structure */ 556 sgt_buf_size = priv->tx_data_offset + 557 sizeof(struct dpaa2_sg_entry) * num_dma_bufs; 558 sgt_buf = netdev_alloc_frag(sgt_buf_size + DPAA2_ETH_TX_BUF_ALIGN); 559 if (unlikely(!sgt_buf)) { 560 err = -ENOMEM; 561 goto sgt_buf_alloc_failed; 562 } 563 sgt_buf = PTR_ALIGN(sgt_buf, DPAA2_ETH_TX_BUF_ALIGN); 564 memset(sgt_buf, 0, sgt_buf_size); 565 566 sgt = (struct dpaa2_sg_entry *)(sgt_buf + priv->tx_data_offset); 567 568 /* Fill in the HW SGT structure. 569 * 570 * sgt_buf is zeroed out, so the following fields are implicit 571 * in all sgt entries: 572 * - offset is 0 573 * - format is 'dpaa2_sg_single' 574 */ 575 for_each_sg(scl, crt_scl, num_dma_bufs, i) { 576 dpaa2_sg_set_addr(&sgt[i], sg_dma_address(crt_scl)); 577 dpaa2_sg_set_len(&sgt[i], sg_dma_len(crt_scl)); 578 } 579 dpaa2_sg_set_final(&sgt[i - 1], true); 580 581 /* Store the skb backpointer in the SGT buffer. 582 * Fit the scatterlist and the number of buffers alongside the 583 * skb backpointer in the software annotation area. We'll need 584 * all of them on Tx Conf. 585 */ 586 swa = (struct dpaa2_eth_swa *)sgt_buf; 587 swa->type = DPAA2_ETH_SWA_SG; 588 swa->sg.skb = skb; 589 swa->sg.scl = scl; 590 swa->sg.num_sg = num_sg; 591 swa->sg.sgt_size = sgt_buf_size; 592 593 /* Separately map the SGT buffer */ 594 addr = dma_map_single(dev, sgt_buf, sgt_buf_size, DMA_BIDIRECTIONAL); 595 if (unlikely(dma_mapping_error(dev, addr))) { 596 err = -ENOMEM; 597 goto dma_map_single_failed; 598 } 599 dpaa2_fd_set_offset(fd, priv->tx_data_offset); 600 dpaa2_fd_set_format(fd, dpaa2_fd_sg); 601 dpaa2_fd_set_addr(fd, addr); 602 dpaa2_fd_set_len(fd, skb->len); 603 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 604 605 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 606 enable_tx_tstamp(fd, sgt_buf); 607 608 return 0; 609 610 dma_map_single_failed: 611 skb_free_frag(sgt_buf); 612 sgt_buf_alloc_failed: 613 dma_unmap_sg(dev, scl, num_sg, DMA_BIDIRECTIONAL); 614 dma_map_sg_failed: 615 kfree(scl); 616 return err; 617 } 618 619 /* Create a frame descriptor based on a linear skb */ 620 static int build_single_fd(struct dpaa2_eth_priv *priv, 621 struct sk_buff *skb, 622 struct dpaa2_fd *fd) 623 { 624 struct device *dev = priv->net_dev->dev.parent; 625 u8 *buffer_start, *aligned_start; 626 struct dpaa2_eth_swa *swa; 627 dma_addr_t addr; 628 629 buffer_start = skb->data - dpaa2_eth_needed_headroom(priv, skb); 630 631 /* If there's enough room to align the FD address, do it. 632 * It will help hardware optimize accesses. 633 */ 634 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 635 DPAA2_ETH_TX_BUF_ALIGN); 636 if (aligned_start >= skb->head) 637 buffer_start = aligned_start; 638 639 /* Store a backpointer to the skb at the beginning of the buffer 640 * (in the private data area) such that we can release it 641 * on Tx confirm 642 */ 643 swa = (struct dpaa2_eth_swa *)buffer_start; 644 swa->type = DPAA2_ETH_SWA_SINGLE; 645 swa->single.skb = skb; 646 647 addr = dma_map_single(dev, buffer_start, 648 skb_tail_pointer(skb) - buffer_start, 649 DMA_BIDIRECTIONAL); 650 if (unlikely(dma_mapping_error(dev, addr))) 651 return -ENOMEM; 652 653 dpaa2_fd_set_addr(fd, addr); 654 dpaa2_fd_set_offset(fd, (u16)(skb->data - buffer_start)); 655 dpaa2_fd_set_len(fd, skb->len); 656 dpaa2_fd_set_format(fd, dpaa2_fd_single); 657 dpaa2_fd_set_ctrl(fd, FD_CTRL_PTA); 658 659 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) 660 enable_tx_tstamp(fd, buffer_start); 661 662 return 0; 663 } 664 665 /* FD freeing routine on the Tx path 666 * 667 * DMA-unmap and free FD and possibly SGT buffer allocated on Tx. The skb 668 * back-pointed to is also freed. 669 * This can be called either from dpaa2_eth_tx_conf() or on the error path of 670 * dpaa2_eth_tx(). 671 */ 672 static void free_tx_fd(const struct dpaa2_eth_priv *priv, 673 struct dpaa2_eth_fq *fq, 674 const struct dpaa2_fd *fd, bool in_napi) 675 { 676 struct device *dev = priv->net_dev->dev.parent; 677 dma_addr_t fd_addr; 678 struct sk_buff *skb = NULL; 679 unsigned char *buffer_start; 680 struct dpaa2_eth_swa *swa; 681 u8 fd_format = dpaa2_fd_get_format(fd); 682 u32 fd_len = dpaa2_fd_get_len(fd); 683 684 fd_addr = dpaa2_fd_get_addr(fd); 685 buffer_start = dpaa2_iova_to_virt(priv->iommu_domain, fd_addr); 686 swa = (struct dpaa2_eth_swa *)buffer_start; 687 688 if (fd_format == dpaa2_fd_single) { 689 if (swa->type == DPAA2_ETH_SWA_SINGLE) { 690 skb = swa->single.skb; 691 /* Accessing the skb buffer is safe before dma unmap, 692 * because we didn't map the actual skb shell. 693 */ 694 dma_unmap_single(dev, fd_addr, 695 skb_tail_pointer(skb) - buffer_start, 696 DMA_BIDIRECTIONAL); 697 } else { 698 WARN_ONCE(swa->type != DPAA2_ETH_SWA_XDP, "Wrong SWA type"); 699 dma_unmap_single(dev, fd_addr, swa->xdp.dma_size, 700 DMA_BIDIRECTIONAL); 701 } 702 } else if (fd_format == dpaa2_fd_sg) { 703 skb = swa->sg.skb; 704 705 /* Unmap the scatterlist */ 706 dma_unmap_sg(dev, swa->sg.scl, swa->sg.num_sg, 707 DMA_BIDIRECTIONAL); 708 kfree(swa->sg.scl); 709 710 /* Unmap the SGT buffer */ 711 dma_unmap_single(dev, fd_addr, swa->sg.sgt_size, 712 DMA_BIDIRECTIONAL); 713 } else { 714 netdev_dbg(priv->net_dev, "Invalid FD format\n"); 715 return; 716 } 717 718 if (swa->type != DPAA2_ETH_SWA_XDP && in_napi) { 719 fq->dq_frames++; 720 fq->dq_bytes += fd_len; 721 } 722 723 if (swa->type == DPAA2_ETH_SWA_XDP) { 724 xdp_return_frame(swa->xdp.xdpf); 725 return; 726 } 727 728 /* Get the timestamp value */ 729 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 730 struct skb_shared_hwtstamps shhwtstamps; 731 __le64 *ts = dpaa2_get_ts(buffer_start, true); 732 u64 ns; 733 734 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 735 736 ns = DPAA2_PTP_CLK_PERIOD_NS * le64_to_cpup(ts); 737 shhwtstamps.hwtstamp = ns_to_ktime(ns); 738 skb_tstamp_tx(skb, &shhwtstamps); 739 } 740 741 /* Free SGT buffer allocated on tx */ 742 if (fd_format != dpaa2_fd_single) 743 skb_free_frag(buffer_start); 744 745 /* Move on with skb release */ 746 napi_consume_skb(skb, in_napi); 747 } 748 749 static netdev_tx_t dpaa2_eth_tx(struct sk_buff *skb, struct net_device *net_dev) 750 { 751 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 752 struct dpaa2_fd fd; 753 struct rtnl_link_stats64 *percpu_stats; 754 struct dpaa2_eth_drv_stats *percpu_extras; 755 struct dpaa2_eth_fq *fq; 756 struct netdev_queue *nq; 757 u16 queue_mapping; 758 unsigned int needed_headroom; 759 u32 fd_len; 760 int err, i; 761 762 percpu_stats = this_cpu_ptr(priv->percpu_stats); 763 percpu_extras = this_cpu_ptr(priv->percpu_extras); 764 765 needed_headroom = dpaa2_eth_needed_headroom(priv, skb); 766 if (skb_headroom(skb) < needed_headroom) { 767 struct sk_buff *ns; 768 769 ns = skb_realloc_headroom(skb, needed_headroom); 770 if (unlikely(!ns)) { 771 percpu_stats->tx_dropped++; 772 goto err_alloc_headroom; 773 } 774 percpu_extras->tx_reallocs++; 775 776 if (skb->sk) 777 skb_set_owner_w(ns, skb->sk); 778 779 dev_kfree_skb(skb); 780 skb = ns; 781 } 782 783 /* We'll be holding a back-reference to the skb until Tx Confirmation; 784 * we don't want that overwritten by a concurrent Tx with a cloned skb. 785 */ 786 skb = skb_unshare(skb, GFP_ATOMIC); 787 if (unlikely(!skb)) { 788 /* skb_unshare() has already freed the skb */ 789 percpu_stats->tx_dropped++; 790 return NETDEV_TX_OK; 791 } 792 793 /* Setup the FD fields */ 794 memset(&fd, 0, sizeof(fd)); 795 796 if (skb_is_nonlinear(skb)) { 797 err = build_sg_fd(priv, skb, &fd); 798 percpu_extras->tx_sg_frames++; 799 percpu_extras->tx_sg_bytes += skb->len; 800 } else { 801 err = build_single_fd(priv, skb, &fd); 802 } 803 804 if (unlikely(err)) { 805 percpu_stats->tx_dropped++; 806 goto err_build_fd; 807 } 808 809 /* Tracing point */ 810 trace_dpaa2_tx_fd(net_dev, &fd); 811 812 /* TxConf FQ selection relies on queue id from the stack. 813 * In case of a forwarded frame from another DPNI interface, we choose 814 * a queue affined to the same core that processed the Rx frame 815 */ 816 queue_mapping = skb_get_queue_mapping(skb); 817 fq = &priv->fq[queue_mapping]; 818 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 819 err = priv->enqueue(priv, fq, &fd, 0); 820 if (err != -EBUSY) 821 break; 822 } 823 percpu_extras->tx_portal_busy += i; 824 if (unlikely(err < 0)) { 825 percpu_stats->tx_errors++; 826 /* Clean up everything, including freeing the skb */ 827 free_tx_fd(priv, fq, &fd, false); 828 } else { 829 fd_len = dpaa2_fd_get_len(&fd); 830 percpu_stats->tx_packets++; 831 percpu_stats->tx_bytes += fd_len; 832 833 nq = netdev_get_tx_queue(net_dev, queue_mapping); 834 netdev_tx_sent_queue(nq, fd_len); 835 } 836 837 return NETDEV_TX_OK; 838 839 err_build_fd: 840 err_alloc_headroom: 841 dev_kfree_skb(skb); 842 843 return NETDEV_TX_OK; 844 } 845 846 /* Tx confirmation frame processing routine */ 847 static void dpaa2_eth_tx_conf(struct dpaa2_eth_priv *priv, 848 struct dpaa2_eth_channel *ch __always_unused, 849 const struct dpaa2_fd *fd, 850 struct dpaa2_eth_fq *fq) 851 { 852 struct rtnl_link_stats64 *percpu_stats; 853 struct dpaa2_eth_drv_stats *percpu_extras; 854 u32 fd_len = dpaa2_fd_get_len(fd); 855 u32 fd_errors; 856 857 /* Tracing point */ 858 trace_dpaa2_tx_conf_fd(priv->net_dev, fd); 859 860 percpu_extras = this_cpu_ptr(priv->percpu_extras); 861 percpu_extras->tx_conf_frames++; 862 percpu_extras->tx_conf_bytes += fd_len; 863 864 /* Check frame errors in the FD field */ 865 fd_errors = dpaa2_fd_get_ctrl(fd) & DPAA2_FD_TX_ERR_MASK; 866 free_tx_fd(priv, fq, fd, true); 867 868 if (likely(!fd_errors)) 869 return; 870 871 if (net_ratelimit()) 872 netdev_dbg(priv->net_dev, "TX frame FD error: 0x%08x\n", 873 fd_errors); 874 875 percpu_stats = this_cpu_ptr(priv->percpu_stats); 876 /* Tx-conf logically pertains to the egress path. */ 877 percpu_stats->tx_errors++; 878 } 879 880 static int set_rx_csum(struct dpaa2_eth_priv *priv, bool enable) 881 { 882 int err; 883 884 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 885 DPNI_OFF_RX_L3_CSUM, enable); 886 if (err) { 887 netdev_err(priv->net_dev, 888 "dpni_set_offload(RX_L3_CSUM) failed\n"); 889 return err; 890 } 891 892 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 893 DPNI_OFF_RX_L4_CSUM, enable); 894 if (err) { 895 netdev_err(priv->net_dev, 896 "dpni_set_offload(RX_L4_CSUM) failed\n"); 897 return err; 898 } 899 900 return 0; 901 } 902 903 static int set_tx_csum(struct dpaa2_eth_priv *priv, bool enable) 904 { 905 int err; 906 907 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 908 DPNI_OFF_TX_L3_CSUM, enable); 909 if (err) { 910 netdev_err(priv->net_dev, "dpni_set_offload(TX_L3_CSUM) failed\n"); 911 return err; 912 } 913 914 err = dpni_set_offload(priv->mc_io, 0, priv->mc_token, 915 DPNI_OFF_TX_L4_CSUM, enable); 916 if (err) { 917 netdev_err(priv->net_dev, "dpni_set_offload(TX_L4_CSUM) failed\n"); 918 return err; 919 } 920 921 return 0; 922 } 923 924 /* Perform a single release command to add buffers 925 * to the specified buffer pool 926 */ 927 static int add_bufs(struct dpaa2_eth_priv *priv, 928 struct dpaa2_eth_channel *ch, u16 bpid) 929 { 930 struct device *dev = priv->net_dev->dev.parent; 931 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 932 struct page *page; 933 dma_addr_t addr; 934 int i, err; 935 936 for (i = 0; i < DPAA2_ETH_BUFS_PER_CMD; i++) { 937 /* Allocate buffer visible to WRIOP + skb shared info + 938 * alignment padding 939 */ 940 /* allocate one page for each Rx buffer. WRIOP sees 941 * the entire page except for a tailroom reserved for 942 * skb shared info 943 */ 944 page = dev_alloc_pages(0); 945 if (!page) 946 goto err_alloc; 947 948 addr = dma_map_page(dev, page, 0, DPAA2_ETH_RX_BUF_SIZE, 949 DMA_BIDIRECTIONAL); 950 if (unlikely(dma_mapping_error(dev, addr))) 951 goto err_map; 952 953 buf_array[i] = addr; 954 955 /* tracing point */ 956 trace_dpaa2_eth_buf_seed(priv->net_dev, 957 page, DPAA2_ETH_RX_BUF_RAW_SIZE, 958 addr, DPAA2_ETH_RX_BUF_SIZE, 959 bpid); 960 } 961 962 release_bufs: 963 /* In case the portal is busy, retry until successful */ 964 while ((err = dpaa2_io_service_release(ch->dpio, bpid, 965 buf_array, i)) == -EBUSY) 966 cpu_relax(); 967 968 /* If release command failed, clean up and bail out; 969 * not much else we can do about it 970 */ 971 if (err) { 972 free_bufs(priv, buf_array, i); 973 return 0; 974 } 975 976 return i; 977 978 err_map: 979 __free_pages(page, 0); 980 err_alloc: 981 /* If we managed to allocate at least some buffers, 982 * release them to hardware 983 */ 984 if (i) 985 goto release_bufs; 986 987 return 0; 988 } 989 990 static int seed_pool(struct dpaa2_eth_priv *priv, u16 bpid) 991 { 992 int i, j; 993 int new_count; 994 995 /* This is the lazy seeding of Rx buffer pools. 996 * dpaa2_add_bufs() is also used on the Rx hotpath and calls 997 * napi_alloc_frag(). The trouble with that is that it in turn ends up 998 * calling this_cpu_ptr(), which mandates execution in atomic context. 999 * Rather than splitting up the code, do a one-off preempt disable. 1000 */ 1001 preempt_disable(); 1002 for (j = 0; j < priv->num_channels; j++) { 1003 for (i = 0; i < DPAA2_ETH_NUM_BUFS; 1004 i += DPAA2_ETH_BUFS_PER_CMD) { 1005 new_count = add_bufs(priv, priv->channel[j], bpid); 1006 priv->channel[j]->buf_count += new_count; 1007 1008 if (new_count < DPAA2_ETH_BUFS_PER_CMD) { 1009 preempt_enable(); 1010 return -ENOMEM; 1011 } 1012 } 1013 } 1014 preempt_enable(); 1015 1016 return 0; 1017 } 1018 1019 /** 1020 * Drain the specified number of buffers from the DPNI's private buffer pool. 1021 * @count must not exceeed DPAA2_ETH_BUFS_PER_CMD 1022 */ 1023 static void drain_bufs(struct dpaa2_eth_priv *priv, int count) 1024 { 1025 u64 buf_array[DPAA2_ETH_BUFS_PER_CMD]; 1026 int ret; 1027 1028 do { 1029 ret = dpaa2_io_service_acquire(NULL, priv->bpid, 1030 buf_array, count); 1031 if (ret < 0) { 1032 netdev_err(priv->net_dev, "dpaa2_io_service_acquire() failed\n"); 1033 return; 1034 } 1035 free_bufs(priv, buf_array, ret); 1036 } while (ret); 1037 } 1038 1039 static void drain_pool(struct dpaa2_eth_priv *priv) 1040 { 1041 int i; 1042 1043 drain_bufs(priv, DPAA2_ETH_BUFS_PER_CMD); 1044 drain_bufs(priv, 1); 1045 1046 for (i = 0; i < priv->num_channels; i++) 1047 priv->channel[i]->buf_count = 0; 1048 } 1049 1050 /* Function is called from softirq context only, so we don't need to guard 1051 * the access to percpu count 1052 */ 1053 static int refill_pool(struct dpaa2_eth_priv *priv, 1054 struct dpaa2_eth_channel *ch, 1055 u16 bpid) 1056 { 1057 int new_count; 1058 1059 if (likely(ch->buf_count >= DPAA2_ETH_REFILL_THRESH)) 1060 return 0; 1061 1062 do { 1063 new_count = add_bufs(priv, ch, bpid); 1064 if (unlikely(!new_count)) { 1065 /* Out of memory; abort for now, we'll try later on */ 1066 break; 1067 } 1068 ch->buf_count += new_count; 1069 } while (ch->buf_count < DPAA2_ETH_NUM_BUFS); 1070 1071 if (unlikely(ch->buf_count < DPAA2_ETH_NUM_BUFS)) 1072 return -ENOMEM; 1073 1074 return 0; 1075 } 1076 1077 static int pull_channel(struct dpaa2_eth_channel *ch) 1078 { 1079 int err; 1080 int dequeues = -1; 1081 1082 /* Retry while portal is busy */ 1083 do { 1084 err = dpaa2_io_service_pull_channel(ch->dpio, ch->ch_id, 1085 ch->store); 1086 dequeues++; 1087 cpu_relax(); 1088 } while (err == -EBUSY); 1089 1090 ch->stats.dequeue_portal_busy += dequeues; 1091 if (unlikely(err)) 1092 ch->stats.pull_err++; 1093 1094 return err; 1095 } 1096 1097 /* NAPI poll routine 1098 * 1099 * Frames are dequeued from the QMan channel associated with this NAPI context. 1100 * Rx, Tx confirmation and (if configured) Rx error frames all count 1101 * towards the NAPI budget. 1102 */ 1103 static int dpaa2_eth_poll(struct napi_struct *napi, int budget) 1104 { 1105 struct dpaa2_eth_channel *ch; 1106 struct dpaa2_eth_priv *priv; 1107 int rx_cleaned = 0, txconf_cleaned = 0; 1108 struct dpaa2_eth_fq *fq, *txc_fq = NULL; 1109 struct netdev_queue *nq; 1110 int store_cleaned, work_done; 1111 struct list_head rx_list; 1112 int err; 1113 1114 ch = container_of(napi, struct dpaa2_eth_channel, napi); 1115 ch->xdp.res = 0; 1116 priv = ch->priv; 1117 1118 INIT_LIST_HEAD(&rx_list); 1119 ch->rx_list = &rx_list; 1120 1121 do { 1122 err = pull_channel(ch); 1123 if (unlikely(err)) 1124 break; 1125 1126 /* Refill pool if appropriate */ 1127 refill_pool(priv, ch, priv->bpid); 1128 1129 store_cleaned = consume_frames(ch, &fq); 1130 if (!store_cleaned) 1131 break; 1132 if (fq->type == DPAA2_RX_FQ) { 1133 rx_cleaned += store_cleaned; 1134 } else { 1135 txconf_cleaned += store_cleaned; 1136 /* We have a single Tx conf FQ on this channel */ 1137 txc_fq = fq; 1138 } 1139 1140 /* If we either consumed the whole NAPI budget with Rx frames 1141 * or we reached the Tx confirmations threshold, we're done. 1142 */ 1143 if (rx_cleaned >= budget || 1144 txconf_cleaned >= DPAA2_ETH_TXCONF_PER_NAPI) { 1145 work_done = budget; 1146 goto out; 1147 } 1148 } while (store_cleaned); 1149 1150 /* We didn't consume the entire budget, so finish napi and 1151 * re-enable data availability notifications 1152 */ 1153 napi_complete_done(napi, rx_cleaned); 1154 do { 1155 err = dpaa2_io_service_rearm(ch->dpio, &ch->nctx); 1156 cpu_relax(); 1157 } while (err == -EBUSY); 1158 WARN_ONCE(err, "CDAN notifications rearm failed on core %d", 1159 ch->nctx.desired_cpu); 1160 1161 work_done = max(rx_cleaned, 1); 1162 1163 out: 1164 netif_receive_skb_list(ch->rx_list); 1165 1166 if (txc_fq && txc_fq->dq_frames) { 1167 nq = netdev_get_tx_queue(priv->net_dev, txc_fq->flowid); 1168 netdev_tx_completed_queue(nq, txc_fq->dq_frames, 1169 txc_fq->dq_bytes); 1170 txc_fq->dq_frames = 0; 1171 txc_fq->dq_bytes = 0; 1172 } 1173 1174 if (ch->xdp.res & XDP_REDIRECT) 1175 xdp_do_flush_map(); 1176 1177 return work_done; 1178 } 1179 1180 static void enable_ch_napi(struct dpaa2_eth_priv *priv) 1181 { 1182 struct dpaa2_eth_channel *ch; 1183 int i; 1184 1185 for (i = 0; i < priv->num_channels; i++) { 1186 ch = priv->channel[i]; 1187 napi_enable(&ch->napi); 1188 } 1189 } 1190 1191 static void disable_ch_napi(struct dpaa2_eth_priv *priv) 1192 { 1193 struct dpaa2_eth_channel *ch; 1194 int i; 1195 1196 for (i = 0; i < priv->num_channels; i++) { 1197 ch = priv->channel[i]; 1198 napi_disable(&ch->napi); 1199 } 1200 } 1201 1202 static int link_state_update(struct dpaa2_eth_priv *priv) 1203 { 1204 struct dpni_link_state state = {0}; 1205 int err; 1206 1207 err = dpni_get_link_state(priv->mc_io, 0, priv->mc_token, &state); 1208 if (unlikely(err)) { 1209 netdev_err(priv->net_dev, 1210 "dpni_get_link_state() failed\n"); 1211 return err; 1212 } 1213 1214 /* Chech link state; speed / duplex changes are not treated yet */ 1215 if (priv->link_state.up == state.up) 1216 return 0; 1217 1218 priv->link_state = state; 1219 if (state.up) { 1220 netif_carrier_on(priv->net_dev); 1221 netif_tx_start_all_queues(priv->net_dev); 1222 } else { 1223 netif_tx_stop_all_queues(priv->net_dev); 1224 netif_carrier_off(priv->net_dev); 1225 } 1226 1227 netdev_info(priv->net_dev, "Link Event: state %s\n", 1228 state.up ? "up" : "down"); 1229 1230 return 0; 1231 } 1232 1233 static int dpaa2_eth_open(struct net_device *net_dev) 1234 { 1235 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1236 int err; 1237 1238 err = seed_pool(priv, priv->bpid); 1239 if (err) { 1240 /* Not much to do; the buffer pool, though not filled up, 1241 * may still contain some buffers which would enable us 1242 * to limp on. 1243 */ 1244 netdev_err(net_dev, "Buffer seeding failed for DPBP %d (bpid=%d)\n", 1245 priv->dpbp_dev->obj_desc.id, priv->bpid); 1246 } 1247 1248 /* We'll only start the txqs when the link is actually ready; make sure 1249 * we don't race against the link up notification, which may come 1250 * immediately after dpni_enable(); 1251 */ 1252 netif_tx_stop_all_queues(net_dev); 1253 enable_ch_napi(priv); 1254 /* Also, explicitly set carrier off, otherwise netif_carrier_ok() will 1255 * return true and cause 'ip link show' to report the LOWER_UP flag, 1256 * even though the link notification wasn't even received. 1257 */ 1258 netif_carrier_off(net_dev); 1259 1260 err = dpni_enable(priv->mc_io, 0, priv->mc_token); 1261 if (err < 0) { 1262 netdev_err(net_dev, "dpni_enable() failed\n"); 1263 goto enable_err; 1264 } 1265 1266 /* If the DPMAC object has already processed the link up interrupt, 1267 * we have to learn the link state ourselves. 1268 */ 1269 err = link_state_update(priv); 1270 if (err < 0) { 1271 netdev_err(net_dev, "Can't update link state\n"); 1272 goto link_state_err; 1273 } 1274 1275 return 0; 1276 1277 link_state_err: 1278 enable_err: 1279 disable_ch_napi(priv); 1280 drain_pool(priv); 1281 return err; 1282 } 1283 1284 /* Total number of in-flight frames on ingress queues */ 1285 static u32 ingress_fq_count(struct dpaa2_eth_priv *priv) 1286 { 1287 struct dpaa2_eth_fq *fq; 1288 u32 fcnt = 0, bcnt = 0, total = 0; 1289 int i, err; 1290 1291 for (i = 0; i < priv->num_fqs; i++) { 1292 fq = &priv->fq[i]; 1293 err = dpaa2_io_query_fq_count(NULL, fq->fqid, &fcnt, &bcnt); 1294 if (err) { 1295 netdev_warn(priv->net_dev, "query_fq_count failed"); 1296 break; 1297 } 1298 total += fcnt; 1299 } 1300 1301 return total; 1302 } 1303 1304 static void wait_for_fq_empty(struct dpaa2_eth_priv *priv) 1305 { 1306 int retries = 10; 1307 u32 pending; 1308 1309 do { 1310 pending = ingress_fq_count(priv); 1311 if (pending) 1312 msleep(100); 1313 } while (pending && --retries); 1314 } 1315 1316 static int dpaa2_eth_stop(struct net_device *net_dev) 1317 { 1318 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1319 int dpni_enabled = 0; 1320 int retries = 10; 1321 1322 netif_tx_stop_all_queues(net_dev); 1323 netif_carrier_off(net_dev); 1324 1325 /* On dpni_disable(), the MC firmware will: 1326 * - stop MAC Rx and wait for all Rx frames to be enqueued to software 1327 * - cut off WRIOP dequeues from egress FQs and wait until transmission 1328 * of all in flight Tx frames is finished (and corresponding Tx conf 1329 * frames are enqueued back to software) 1330 * 1331 * Before calling dpni_disable(), we wait for all Tx frames to arrive 1332 * on WRIOP. After it finishes, wait until all remaining frames on Rx 1333 * and Tx conf queues are consumed on NAPI poll. 1334 */ 1335 msleep(500); 1336 1337 do { 1338 dpni_disable(priv->mc_io, 0, priv->mc_token); 1339 dpni_is_enabled(priv->mc_io, 0, priv->mc_token, &dpni_enabled); 1340 if (dpni_enabled) 1341 /* Allow the hardware some slack */ 1342 msleep(100); 1343 } while (dpni_enabled && --retries); 1344 if (!retries) { 1345 netdev_warn(net_dev, "Retry count exceeded disabling DPNI\n"); 1346 /* Must go on and disable NAPI nonetheless, so we don't crash at 1347 * the next "ifconfig up" 1348 */ 1349 } 1350 1351 wait_for_fq_empty(priv); 1352 disable_ch_napi(priv); 1353 1354 /* Empty the buffer pool */ 1355 drain_pool(priv); 1356 1357 return 0; 1358 } 1359 1360 static int dpaa2_eth_set_addr(struct net_device *net_dev, void *addr) 1361 { 1362 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1363 struct device *dev = net_dev->dev.parent; 1364 int err; 1365 1366 err = eth_mac_addr(net_dev, addr); 1367 if (err < 0) { 1368 dev_err(dev, "eth_mac_addr() failed (%d)\n", err); 1369 return err; 1370 } 1371 1372 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 1373 net_dev->dev_addr); 1374 if (err) { 1375 dev_err(dev, "dpni_set_primary_mac_addr() failed (%d)\n", err); 1376 return err; 1377 } 1378 1379 return 0; 1380 } 1381 1382 /** Fill in counters maintained by the GPP driver. These may be different from 1383 * the hardware counters obtained by ethtool. 1384 */ 1385 static void dpaa2_eth_get_stats(struct net_device *net_dev, 1386 struct rtnl_link_stats64 *stats) 1387 { 1388 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1389 struct rtnl_link_stats64 *percpu_stats; 1390 u64 *cpustats; 1391 u64 *netstats = (u64 *)stats; 1392 int i, j; 1393 int num = sizeof(struct rtnl_link_stats64) / sizeof(u64); 1394 1395 for_each_possible_cpu(i) { 1396 percpu_stats = per_cpu_ptr(priv->percpu_stats, i); 1397 cpustats = (u64 *)percpu_stats; 1398 for (j = 0; j < num; j++) 1399 netstats[j] += cpustats[j]; 1400 } 1401 } 1402 1403 /* Copy mac unicast addresses from @net_dev to @priv. 1404 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1405 */ 1406 static void add_uc_hw_addr(const struct net_device *net_dev, 1407 struct dpaa2_eth_priv *priv) 1408 { 1409 struct netdev_hw_addr *ha; 1410 int err; 1411 1412 netdev_for_each_uc_addr(ha, net_dev) { 1413 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1414 ha->addr); 1415 if (err) 1416 netdev_warn(priv->net_dev, 1417 "Could not add ucast MAC %pM to the filtering table (err %d)\n", 1418 ha->addr, err); 1419 } 1420 } 1421 1422 /* Copy mac multicast addresses from @net_dev to @priv 1423 * Its sole purpose is to make dpaa2_eth_set_rx_mode() more readable. 1424 */ 1425 static void add_mc_hw_addr(const struct net_device *net_dev, 1426 struct dpaa2_eth_priv *priv) 1427 { 1428 struct netdev_hw_addr *ha; 1429 int err; 1430 1431 netdev_for_each_mc_addr(ha, net_dev) { 1432 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, 1433 ha->addr); 1434 if (err) 1435 netdev_warn(priv->net_dev, 1436 "Could not add mcast MAC %pM to the filtering table (err %d)\n", 1437 ha->addr, err); 1438 } 1439 } 1440 1441 static void dpaa2_eth_set_rx_mode(struct net_device *net_dev) 1442 { 1443 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1444 int uc_count = netdev_uc_count(net_dev); 1445 int mc_count = netdev_mc_count(net_dev); 1446 u8 max_mac = priv->dpni_attrs.mac_filter_entries; 1447 u32 options = priv->dpni_attrs.options; 1448 u16 mc_token = priv->mc_token; 1449 struct fsl_mc_io *mc_io = priv->mc_io; 1450 int err; 1451 1452 /* Basic sanity checks; these probably indicate a misconfiguration */ 1453 if (options & DPNI_OPT_NO_MAC_FILTER && max_mac != 0) 1454 netdev_info(net_dev, 1455 "mac_filter_entries=%d, DPNI_OPT_NO_MAC_FILTER option must be disabled\n", 1456 max_mac); 1457 1458 /* Force promiscuous if the uc or mc counts exceed our capabilities. */ 1459 if (uc_count > max_mac) { 1460 netdev_info(net_dev, 1461 "Unicast addr count reached %d, max allowed is %d; forcing promisc\n", 1462 uc_count, max_mac); 1463 goto force_promisc; 1464 } 1465 if (mc_count + uc_count > max_mac) { 1466 netdev_info(net_dev, 1467 "Unicast + multicast addr count reached %d, max allowed is %d; forcing promisc\n", 1468 uc_count + mc_count, max_mac); 1469 goto force_mc_promisc; 1470 } 1471 1472 /* Adjust promisc settings due to flag combinations */ 1473 if (net_dev->flags & IFF_PROMISC) 1474 goto force_promisc; 1475 if (net_dev->flags & IFF_ALLMULTI) { 1476 /* First, rebuild unicast filtering table. This should be done 1477 * in promisc mode, in order to avoid frame loss while we 1478 * progressively add entries to the table. 1479 * We don't know whether we had been in promisc already, and 1480 * making an MC call to find out is expensive; so set uc promisc 1481 * nonetheless. 1482 */ 1483 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1484 if (err) 1485 netdev_warn(net_dev, "Can't set uc promisc\n"); 1486 1487 /* Actual uc table reconstruction. */ 1488 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 0); 1489 if (err) 1490 netdev_warn(net_dev, "Can't clear uc filters\n"); 1491 add_uc_hw_addr(net_dev, priv); 1492 1493 /* Finally, clear uc promisc and set mc promisc as requested. */ 1494 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1495 if (err) 1496 netdev_warn(net_dev, "Can't clear uc promisc\n"); 1497 goto force_mc_promisc; 1498 } 1499 1500 /* Neither unicast, nor multicast promisc will be on... eventually. 1501 * For now, rebuild mac filtering tables while forcing both of them on. 1502 */ 1503 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1504 if (err) 1505 netdev_warn(net_dev, "Can't set uc promisc (%d)\n", err); 1506 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1507 if (err) 1508 netdev_warn(net_dev, "Can't set mc promisc (%d)\n", err); 1509 1510 /* Actual mac filtering tables reconstruction */ 1511 err = dpni_clear_mac_filters(mc_io, 0, mc_token, 1, 1); 1512 if (err) 1513 netdev_warn(net_dev, "Can't clear mac filters\n"); 1514 add_mc_hw_addr(net_dev, priv); 1515 add_uc_hw_addr(net_dev, priv); 1516 1517 /* Now we can clear both ucast and mcast promisc, without risking 1518 * to drop legitimate frames anymore. 1519 */ 1520 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 0); 1521 if (err) 1522 netdev_warn(net_dev, "Can't clear ucast promisc\n"); 1523 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 0); 1524 if (err) 1525 netdev_warn(net_dev, "Can't clear mcast promisc\n"); 1526 1527 return; 1528 1529 force_promisc: 1530 err = dpni_set_unicast_promisc(mc_io, 0, mc_token, 1); 1531 if (err) 1532 netdev_warn(net_dev, "Can't set ucast promisc\n"); 1533 force_mc_promisc: 1534 err = dpni_set_multicast_promisc(mc_io, 0, mc_token, 1); 1535 if (err) 1536 netdev_warn(net_dev, "Can't set mcast promisc\n"); 1537 } 1538 1539 static int dpaa2_eth_set_features(struct net_device *net_dev, 1540 netdev_features_t features) 1541 { 1542 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1543 netdev_features_t changed = features ^ net_dev->features; 1544 bool enable; 1545 int err; 1546 1547 if (changed & NETIF_F_RXCSUM) { 1548 enable = !!(features & NETIF_F_RXCSUM); 1549 err = set_rx_csum(priv, enable); 1550 if (err) 1551 return err; 1552 } 1553 1554 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 1555 enable = !!(features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); 1556 err = set_tx_csum(priv, enable); 1557 if (err) 1558 return err; 1559 } 1560 1561 return 0; 1562 } 1563 1564 static int dpaa2_eth_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1565 { 1566 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1567 struct hwtstamp_config config; 1568 1569 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 1570 return -EFAULT; 1571 1572 switch (config.tx_type) { 1573 case HWTSTAMP_TX_OFF: 1574 priv->tx_tstamp = false; 1575 break; 1576 case HWTSTAMP_TX_ON: 1577 priv->tx_tstamp = true; 1578 break; 1579 default: 1580 return -ERANGE; 1581 } 1582 1583 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 1584 priv->rx_tstamp = false; 1585 } else { 1586 priv->rx_tstamp = true; 1587 /* TS is set for all frame types, not only those requested */ 1588 config.rx_filter = HWTSTAMP_FILTER_ALL; 1589 } 1590 1591 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 1592 -EFAULT : 0; 1593 } 1594 1595 static int dpaa2_eth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1596 { 1597 if (cmd == SIOCSHWTSTAMP) 1598 return dpaa2_eth_ts_ioctl(dev, rq, cmd); 1599 1600 return -EINVAL; 1601 } 1602 1603 static bool xdp_mtu_valid(struct dpaa2_eth_priv *priv, int mtu) 1604 { 1605 int mfl, linear_mfl; 1606 1607 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1608 linear_mfl = DPAA2_ETH_RX_BUF_SIZE - DPAA2_ETH_RX_HWA_SIZE - 1609 dpaa2_eth_rx_head_room(priv) - XDP_PACKET_HEADROOM; 1610 1611 if (mfl > linear_mfl) { 1612 netdev_warn(priv->net_dev, "Maximum MTU for XDP is %d\n", 1613 linear_mfl - VLAN_ETH_HLEN); 1614 return false; 1615 } 1616 1617 return true; 1618 } 1619 1620 static int set_rx_mfl(struct dpaa2_eth_priv *priv, int mtu, bool has_xdp) 1621 { 1622 int mfl, err; 1623 1624 /* We enforce a maximum Rx frame length based on MTU only if we have 1625 * an XDP program attached (in order to avoid Rx S/G frames). 1626 * Otherwise, we accept all incoming frames as long as they are not 1627 * larger than maximum size supported in hardware 1628 */ 1629 if (has_xdp) 1630 mfl = DPAA2_ETH_L2_MAX_FRM(mtu); 1631 else 1632 mfl = DPAA2_ETH_MFL; 1633 1634 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, mfl); 1635 if (err) { 1636 netdev_err(priv->net_dev, "dpni_set_max_frame_length failed\n"); 1637 return err; 1638 } 1639 1640 return 0; 1641 } 1642 1643 static int dpaa2_eth_change_mtu(struct net_device *dev, int new_mtu) 1644 { 1645 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1646 int err; 1647 1648 if (!priv->xdp_prog) 1649 goto out; 1650 1651 if (!xdp_mtu_valid(priv, new_mtu)) 1652 return -EINVAL; 1653 1654 err = set_rx_mfl(priv, new_mtu, true); 1655 if (err) 1656 return err; 1657 1658 out: 1659 dev->mtu = new_mtu; 1660 return 0; 1661 } 1662 1663 static int update_rx_buffer_headroom(struct dpaa2_eth_priv *priv, bool has_xdp) 1664 { 1665 struct dpni_buffer_layout buf_layout = {0}; 1666 int err; 1667 1668 err = dpni_get_buffer_layout(priv->mc_io, 0, priv->mc_token, 1669 DPNI_QUEUE_RX, &buf_layout); 1670 if (err) { 1671 netdev_err(priv->net_dev, "dpni_get_buffer_layout failed\n"); 1672 return err; 1673 } 1674 1675 /* Reserve extra headroom for XDP header size changes */ 1676 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv) + 1677 (has_xdp ? XDP_PACKET_HEADROOM : 0); 1678 buf_layout.options = DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM; 1679 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 1680 DPNI_QUEUE_RX, &buf_layout); 1681 if (err) { 1682 netdev_err(priv->net_dev, "dpni_set_buffer_layout failed\n"); 1683 return err; 1684 } 1685 1686 return 0; 1687 } 1688 1689 static int setup_xdp(struct net_device *dev, struct bpf_prog *prog) 1690 { 1691 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1692 struct dpaa2_eth_channel *ch; 1693 struct bpf_prog *old; 1694 bool up, need_update; 1695 int i, err; 1696 1697 if (prog && !xdp_mtu_valid(priv, dev->mtu)) 1698 return -EINVAL; 1699 1700 if (prog) { 1701 prog = bpf_prog_add(prog, priv->num_channels); 1702 if (IS_ERR(prog)) 1703 return PTR_ERR(prog); 1704 } 1705 1706 up = netif_running(dev); 1707 need_update = (!!priv->xdp_prog != !!prog); 1708 1709 if (up) 1710 dpaa2_eth_stop(dev); 1711 1712 /* While in xdp mode, enforce a maximum Rx frame size based on MTU. 1713 * Also, when switching between xdp/non-xdp modes we need to reconfigure 1714 * our Rx buffer layout. Buffer pool was drained on dpaa2_eth_stop, 1715 * so we are sure no old format buffers will be used from now on. 1716 */ 1717 if (need_update) { 1718 err = set_rx_mfl(priv, dev->mtu, !!prog); 1719 if (err) 1720 goto out_err; 1721 err = update_rx_buffer_headroom(priv, !!prog); 1722 if (err) 1723 goto out_err; 1724 } 1725 1726 old = xchg(&priv->xdp_prog, prog); 1727 if (old) 1728 bpf_prog_put(old); 1729 1730 for (i = 0; i < priv->num_channels; i++) { 1731 ch = priv->channel[i]; 1732 old = xchg(&ch->xdp.prog, prog); 1733 if (old) 1734 bpf_prog_put(old); 1735 } 1736 1737 if (up) { 1738 err = dpaa2_eth_open(dev); 1739 if (err) 1740 return err; 1741 } 1742 1743 return 0; 1744 1745 out_err: 1746 if (prog) 1747 bpf_prog_sub(prog, priv->num_channels); 1748 if (up) 1749 dpaa2_eth_open(dev); 1750 1751 return err; 1752 } 1753 1754 static int dpaa2_eth_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1755 { 1756 struct dpaa2_eth_priv *priv = netdev_priv(dev); 1757 1758 switch (xdp->command) { 1759 case XDP_SETUP_PROG: 1760 return setup_xdp(dev, xdp->prog); 1761 case XDP_QUERY_PROG: 1762 xdp->prog_id = priv->xdp_prog ? priv->xdp_prog->aux->id : 0; 1763 break; 1764 default: 1765 return -EINVAL; 1766 } 1767 1768 return 0; 1769 } 1770 1771 static int dpaa2_eth_xdp_xmit_frame(struct net_device *net_dev, 1772 struct xdp_frame *xdpf) 1773 { 1774 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 1775 struct device *dev = net_dev->dev.parent; 1776 struct rtnl_link_stats64 *percpu_stats; 1777 struct dpaa2_eth_drv_stats *percpu_extras; 1778 unsigned int needed_headroom; 1779 struct dpaa2_eth_swa *swa; 1780 struct dpaa2_eth_fq *fq; 1781 struct dpaa2_fd fd; 1782 void *buffer_start, *aligned_start; 1783 dma_addr_t addr; 1784 int err, i; 1785 1786 /* We require a minimum headroom to be able to transmit the frame. 1787 * Otherwise return an error and let the original net_device handle it 1788 */ 1789 needed_headroom = dpaa2_eth_needed_headroom(priv, NULL); 1790 if (xdpf->headroom < needed_headroom) 1791 return -EINVAL; 1792 1793 percpu_stats = this_cpu_ptr(priv->percpu_stats); 1794 percpu_extras = this_cpu_ptr(priv->percpu_extras); 1795 1796 /* Setup the FD fields */ 1797 memset(&fd, 0, sizeof(fd)); 1798 1799 /* Align FD address, if possible */ 1800 buffer_start = xdpf->data - needed_headroom; 1801 aligned_start = PTR_ALIGN(buffer_start - DPAA2_ETH_TX_BUF_ALIGN, 1802 DPAA2_ETH_TX_BUF_ALIGN); 1803 if (aligned_start >= xdpf->data - xdpf->headroom) 1804 buffer_start = aligned_start; 1805 1806 swa = (struct dpaa2_eth_swa *)buffer_start; 1807 /* fill in necessary fields here */ 1808 swa->type = DPAA2_ETH_SWA_XDP; 1809 swa->xdp.dma_size = xdpf->data + xdpf->len - buffer_start; 1810 swa->xdp.xdpf = xdpf; 1811 1812 addr = dma_map_single(dev, buffer_start, 1813 swa->xdp.dma_size, 1814 DMA_BIDIRECTIONAL); 1815 if (unlikely(dma_mapping_error(dev, addr))) { 1816 percpu_stats->tx_dropped++; 1817 return -ENOMEM; 1818 } 1819 1820 dpaa2_fd_set_addr(&fd, addr); 1821 dpaa2_fd_set_offset(&fd, xdpf->data - buffer_start); 1822 dpaa2_fd_set_len(&fd, xdpf->len); 1823 dpaa2_fd_set_format(&fd, dpaa2_fd_single); 1824 dpaa2_fd_set_ctrl(&fd, FD_CTRL_PTA); 1825 1826 fq = &priv->fq[smp_processor_id()]; 1827 for (i = 0; i < DPAA2_ETH_ENQUEUE_RETRIES; i++) { 1828 err = priv->enqueue(priv, fq, &fd, 0); 1829 if (err != -EBUSY) 1830 break; 1831 } 1832 percpu_extras->tx_portal_busy += i; 1833 if (unlikely(err < 0)) { 1834 percpu_stats->tx_errors++; 1835 /* let the Rx device handle the cleanup */ 1836 return err; 1837 } 1838 1839 percpu_stats->tx_packets++; 1840 percpu_stats->tx_bytes += dpaa2_fd_get_len(&fd); 1841 1842 return 0; 1843 } 1844 1845 static int dpaa2_eth_xdp_xmit(struct net_device *net_dev, int n, 1846 struct xdp_frame **frames, u32 flags) 1847 { 1848 int drops = 0; 1849 int i, err; 1850 1851 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 1852 return -EINVAL; 1853 1854 if (!netif_running(net_dev)) 1855 return -ENETDOWN; 1856 1857 for (i = 0; i < n; i++) { 1858 struct xdp_frame *xdpf = frames[i]; 1859 1860 err = dpaa2_eth_xdp_xmit_frame(net_dev, xdpf); 1861 if (err) { 1862 xdp_return_frame_rx_napi(xdpf); 1863 drops++; 1864 } 1865 } 1866 1867 return n - drops; 1868 } 1869 1870 static const struct net_device_ops dpaa2_eth_ops = { 1871 .ndo_open = dpaa2_eth_open, 1872 .ndo_start_xmit = dpaa2_eth_tx, 1873 .ndo_stop = dpaa2_eth_stop, 1874 .ndo_set_mac_address = dpaa2_eth_set_addr, 1875 .ndo_get_stats64 = dpaa2_eth_get_stats, 1876 .ndo_set_rx_mode = dpaa2_eth_set_rx_mode, 1877 .ndo_set_features = dpaa2_eth_set_features, 1878 .ndo_do_ioctl = dpaa2_eth_ioctl, 1879 .ndo_change_mtu = dpaa2_eth_change_mtu, 1880 .ndo_bpf = dpaa2_eth_xdp, 1881 .ndo_xdp_xmit = dpaa2_eth_xdp_xmit, 1882 }; 1883 1884 static void cdan_cb(struct dpaa2_io_notification_ctx *ctx) 1885 { 1886 struct dpaa2_eth_channel *ch; 1887 1888 ch = container_of(ctx, struct dpaa2_eth_channel, nctx); 1889 1890 /* Update NAPI statistics */ 1891 ch->stats.cdan++; 1892 1893 napi_schedule_irqoff(&ch->napi); 1894 } 1895 1896 /* Allocate and configure a DPCON object */ 1897 static struct fsl_mc_device *setup_dpcon(struct dpaa2_eth_priv *priv) 1898 { 1899 struct fsl_mc_device *dpcon; 1900 struct device *dev = priv->net_dev->dev.parent; 1901 struct dpcon_attr attrs; 1902 int err; 1903 1904 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), 1905 FSL_MC_POOL_DPCON, &dpcon); 1906 if (err) { 1907 if (err == -ENXIO) 1908 err = -EPROBE_DEFER; 1909 else 1910 dev_info(dev, "Not enough DPCONs, will go on as-is\n"); 1911 return ERR_PTR(err); 1912 } 1913 1914 err = dpcon_open(priv->mc_io, 0, dpcon->obj_desc.id, &dpcon->mc_handle); 1915 if (err) { 1916 dev_err(dev, "dpcon_open() failed\n"); 1917 goto free; 1918 } 1919 1920 err = dpcon_reset(priv->mc_io, 0, dpcon->mc_handle); 1921 if (err) { 1922 dev_err(dev, "dpcon_reset() failed\n"); 1923 goto close; 1924 } 1925 1926 err = dpcon_get_attributes(priv->mc_io, 0, dpcon->mc_handle, &attrs); 1927 if (err) { 1928 dev_err(dev, "dpcon_get_attributes() failed\n"); 1929 goto close; 1930 } 1931 1932 err = dpcon_enable(priv->mc_io, 0, dpcon->mc_handle); 1933 if (err) { 1934 dev_err(dev, "dpcon_enable() failed\n"); 1935 goto close; 1936 } 1937 1938 return dpcon; 1939 1940 close: 1941 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 1942 free: 1943 fsl_mc_object_free(dpcon); 1944 1945 return NULL; 1946 } 1947 1948 static void free_dpcon(struct dpaa2_eth_priv *priv, 1949 struct fsl_mc_device *dpcon) 1950 { 1951 dpcon_disable(priv->mc_io, 0, dpcon->mc_handle); 1952 dpcon_close(priv->mc_io, 0, dpcon->mc_handle); 1953 fsl_mc_object_free(dpcon); 1954 } 1955 1956 static struct dpaa2_eth_channel * 1957 alloc_channel(struct dpaa2_eth_priv *priv) 1958 { 1959 struct dpaa2_eth_channel *channel; 1960 struct dpcon_attr attr; 1961 struct device *dev = priv->net_dev->dev.parent; 1962 int err; 1963 1964 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 1965 if (!channel) 1966 return NULL; 1967 1968 channel->dpcon = setup_dpcon(priv); 1969 if (IS_ERR_OR_NULL(channel->dpcon)) { 1970 err = PTR_ERR(channel->dpcon); 1971 goto err_setup; 1972 } 1973 1974 err = dpcon_get_attributes(priv->mc_io, 0, channel->dpcon->mc_handle, 1975 &attr); 1976 if (err) { 1977 dev_err(dev, "dpcon_get_attributes() failed\n"); 1978 goto err_get_attr; 1979 } 1980 1981 channel->dpcon_id = attr.id; 1982 channel->ch_id = attr.qbman_ch_id; 1983 channel->priv = priv; 1984 1985 return channel; 1986 1987 err_get_attr: 1988 free_dpcon(priv, channel->dpcon); 1989 err_setup: 1990 kfree(channel); 1991 return ERR_PTR(err); 1992 } 1993 1994 static void free_channel(struct dpaa2_eth_priv *priv, 1995 struct dpaa2_eth_channel *channel) 1996 { 1997 free_dpcon(priv, channel->dpcon); 1998 kfree(channel); 1999 } 2000 2001 /* DPIO setup: allocate and configure QBMan channels, setup core affinity 2002 * and register data availability notifications 2003 */ 2004 static int setup_dpio(struct dpaa2_eth_priv *priv) 2005 { 2006 struct dpaa2_io_notification_ctx *nctx; 2007 struct dpaa2_eth_channel *channel; 2008 struct dpcon_notification_cfg dpcon_notif_cfg; 2009 struct device *dev = priv->net_dev->dev.parent; 2010 int i, err; 2011 2012 /* We want the ability to spread ingress traffic (RX, TX conf) to as 2013 * many cores as possible, so we need one channel for each core 2014 * (unless there's fewer queues than cores, in which case the extra 2015 * channels would be wasted). 2016 * Allocate one channel per core and register it to the core's 2017 * affine DPIO. If not enough channels are available for all cores 2018 * or if some cores don't have an affine DPIO, there will be no 2019 * ingress frame processing on those cores. 2020 */ 2021 cpumask_clear(&priv->dpio_cpumask); 2022 for_each_online_cpu(i) { 2023 /* Try to allocate a channel */ 2024 channel = alloc_channel(priv); 2025 if (IS_ERR_OR_NULL(channel)) { 2026 err = PTR_ERR(channel); 2027 if (err != -EPROBE_DEFER) 2028 dev_info(dev, 2029 "No affine channel for cpu %d and above\n", i); 2030 goto err_alloc_ch; 2031 } 2032 2033 priv->channel[priv->num_channels] = channel; 2034 2035 nctx = &channel->nctx; 2036 nctx->is_cdan = 1; 2037 nctx->cb = cdan_cb; 2038 nctx->id = channel->ch_id; 2039 nctx->desired_cpu = i; 2040 2041 /* Register the new context */ 2042 channel->dpio = dpaa2_io_service_select(i); 2043 err = dpaa2_io_service_register(channel->dpio, nctx, dev); 2044 if (err) { 2045 dev_dbg(dev, "No affine DPIO for cpu %d\n", i); 2046 /* If no affine DPIO for this core, there's probably 2047 * none available for next cores either. Signal we want 2048 * to retry later, in case the DPIO devices weren't 2049 * probed yet. 2050 */ 2051 err = -EPROBE_DEFER; 2052 goto err_service_reg; 2053 } 2054 2055 /* Register DPCON notification with MC */ 2056 dpcon_notif_cfg.dpio_id = nctx->dpio_id; 2057 dpcon_notif_cfg.priority = 0; 2058 dpcon_notif_cfg.user_ctx = nctx->qman64; 2059 err = dpcon_set_notification(priv->mc_io, 0, 2060 channel->dpcon->mc_handle, 2061 &dpcon_notif_cfg); 2062 if (err) { 2063 dev_err(dev, "dpcon_set_notification failed()\n"); 2064 goto err_set_cdan; 2065 } 2066 2067 /* If we managed to allocate a channel and also found an affine 2068 * DPIO for this core, add it to the final mask 2069 */ 2070 cpumask_set_cpu(i, &priv->dpio_cpumask); 2071 priv->num_channels++; 2072 2073 /* Stop if we already have enough channels to accommodate all 2074 * RX and TX conf queues 2075 */ 2076 if (priv->num_channels == priv->dpni_attrs.num_queues) 2077 break; 2078 } 2079 2080 return 0; 2081 2082 err_set_cdan: 2083 dpaa2_io_service_deregister(channel->dpio, nctx, dev); 2084 err_service_reg: 2085 free_channel(priv, channel); 2086 err_alloc_ch: 2087 if (err == -EPROBE_DEFER) 2088 return err; 2089 2090 if (cpumask_empty(&priv->dpio_cpumask)) { 2091 dev_err(dev, "No cpu with an affine DPIO/DPCON\n"); 2092 return -ENODEV; 2093 } 2094 2095 dev_info(dev, "Cores %*pbl available for processing ingress traffic\n", 2096 cpumask_pr_args(&priv->dpio_cpumask)); 2097 2098 return 0; 2099 } 2100 2101 static void free_dpio(struct dpaa2_eth_priv *priv) 2102 { 2103 struct device *dev = priv->net_dev->dev.parent; 2104 struct dpaa2_eth_channel *ch; 2105 int i; 2106 2107 /* deregister CDAN notifications and free channels */ 2108 for (i = 0; i < priv->num_channels; i++) { 2109 ch = priv->channel[i]; 2110 dpaa2_io_service_deregister(ch->dpio, &ch->nctx, dev); 2111 free_channel(priv, ch); 2112 } 2113 } 2114 2115 static struct dpaa2_eth_channel *get_affine_channel(struct dpaa2_eth_priv *priv, 2116 int cpu) 2117 { 2118 struct device *dev = priv->net_dev->dev.parent; 2119 int i; 2120 2121 for (i = 0; i < priv->num_channels; i++) 2122 if (priv->channel[i]->nctx.desired_cpu == cpu) 2123 return priv->channel[i]; 2124 2125 /* We should never get here. Issue a warning and return 2126 * the first channel, because it's still better than nothing 2127 */ 2128 dev_warn(dev, "No affine channel found for cpu %d\n", cpu); 2129 2130 return priv->channel[0]; 2131 } 2132 2133 static void set_fq_affinity(struct dpaa2_eth_priv *priv) 2134 { 2135 struct device *dev = priv->net_dev->dev.parent; 2136 struct cpumask xps_mask; 2137 struct dpaa2_eth_fq *fq; 2138 int rx_cpu, txc_cpu; 2139 int i, err; 2140 2141 /* For each FQ, pick one channel/CPU to deliver frames to. 2142 * This may well change at runtime, either through irqbalance or 2143 * through direct user intervention. 2144 */ 2145 rx_cpu = txc_cpu = cpumask_first(&priv->dpio_cpumask); 2146 2147 for (i = 0; i < priv->num_fqs; i++) { 2148 fq = &priv->fq[i]; 2149 switch (fq->type) { 2150 case DPAA2_RX_FQ: 2151 fq->target_cpu = rx_cpu; 2152 rx_cpu = cpumask_next(rx_cpu, &priv->dpio_cpumask); 2153 if (rx_cpu >= nr_cpu_ids) 2154 rx_cpu = cpumask_first(&priv->dpio_cpumask); 2155 break; 2156 case DPAA2_TX_CONF_FQ: 2157 fq->target_cpu = txc_cpu; 2158 2159 /* Tell the stack to affine to txc_cpu the Tx queue 2160 * associated with the confirmation one 2161 */ 2162 cpumask_clear(&xps_mask); 2163 cpumask_set_cpu(txc_cpu, &xps_mask); 2164 err = netif_set_xps_queue(priv->net_dev, &xps_mask, 2165 fq->flowid); 2166 if (err) 2167 dev_err(dev, "Error setting XPS queue\n"); 2168 2169 txc_cpu = cpumask_next(txc_cpu, &priv->dpio_cpumask); 2170 if (txc_cpu >= nr_cpu_ids) 2171 txc_cpu = cpumask_first(&priv->dpio_cpumask); 2172 break; 2173 default: 2174 dev_err(dev, "Unknown FQ type: %d\n", fq->type); 2175 } 2176 fq->channel = get_affine_channel(priv, fq->target_cpu); 2177 } 2178 } 2179 2180 static void setup_fqs(struct dpaa2_eth_priv *priv) 2181 { 2182 int i; 2183 2184 /* We have one TxConf FQ per Tx flow. 2185 * The number of Tx and Rx queues is the same. 2186 * Tx queues come first in the fq array. 2187 */ 2188 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2189 priv->fq[priv->num_fqs].type = DPAA2_TX_CONF_FQ; 2190 priv->fq[priv->num_fqs].consume = dpaa2_eth_tx_conf; 2191 priv->fq[priv->num_fqs++].flowid = (u16)i; 2192 } 2193 2194 for (i = 0; i < dpaa2_eth_queue_count(priv); i++) { 2195 priv->fq[priv->num_fqs].type = DPAA2_RX_FQ; 2196 priv->fq[priv->num_fqs].consume = dpaa2_eth_rx; 2197 priv->fq[priv->num_fqs++].flowid = (u16)i; 2198 } 2199 2200 /* For each FQ, decide on which core to process incoming frames */ 2201 set_fq_affinity(priv); 2202 } 2203 2204 /* Allocate and configure one buffer pool for each interface */ 2205 static int setup_dpbp(struct dpaa2_eth_priv *priv) 2206 { 2207 int err; 2208 struct fsl_mc_device *dpbp_dev; 2209 struct device *dev = priv->net_dev->dev.parent; 2210 struct dpbp_attr dpbp_attrs; 2211 2212 err = fsl_mc_object_allocate(to_fsl_mc_device(dev), FSL_MC_POOL_DPBP, 2213 &dpbp_dev); 2214 if (err) { 2215 if (err == -ENXIO) 2216 err = -EPROBE_DEFER; 2217 else 2218 dev_err(dev, "DPBP device allocation failed\n"); 2219 return err; 2220 } 2221 2222 priv->dpbp_dev = dpbp_dev; 2223 2224 err = dpbp_open(priv->mc_io, 0, priv->dpbp_dev->obj_desc.id, 2225 &dpbp_dev->mc_handle); 2226 if (err) { 2227 dev_err(dev, "dpbp_open() failed\n"); 2228 goto err_open; 2229 } 2230 2231 err = dpbp_reset(priv->mc_io, 0, dpbp_dev->mc_handle); 2232 if (err) { 2233 dev_err(dev, "dpbp_reset() failed\n"); 2234 goto err_reset; 2235 } 2236 2237 err = dpbp_enable(priv->mc_io, 0, dpbp_dev->mc_handle); 2238 if (err) { 2239 dev_err(dev, "dpbp_enable() failed\n"); 2240 goto err_enable; 2241 } 2242 2243 err = dpbp_get_attributes(priv->mc_io, 0, dpbp_dev->mc_handle, 2244 &dpbp_attrs); 2245 if (err) { 2246 dev_err(dev, "dpbp_get_attributes() failed\n"); 2247 goto err_get_attr; 2248 } 2249 priv->bpid = dpbp_attrs.bpid; 2250 2251 return 0; 2252 2253 err_get_attr: 2254 dpbp_disable(priv->mc_io, 0, dpbp_dev->mc_handle); 2255 err_enable: 2256 err_reset: 2257 dpbp_close(priv->mc_io, 0, dpbp_dev->mc_handle); 2258 err_open: 2259 fsl_mc_object_free(dpbp_dev); 2260 2261 return err; 2262 } 2263 2264 static void free_dpbp(struct dpaa2_eth_priv *priv) 2265 { 2266 drain_pool(priv); 2267 dpbp_disable(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2268 dpbp_close(priv->mc_io, 0, priv->dpbp_dev->mc_handle); 2269 fsl_mc_object_free(priv->dpbp_dev); 2270 } 2271 2272 static int set_buffer_layout(struct dpaa2_eth_priv *priv) 2273 { 2274 struct device *dev = priv->net_dev->dev.parent; 2275 struct dpni_buffer_layout buf_layout = {0}; 2276 u16 rx_buf_align; 2277 int err; 2278 2279 /* We need to check for WRIOP version 1.0.0, but depending on the MC 2280 * version, this number is not always provided correctly on rev1. 2281 * We need to check for both alternatives in this situation. 2282 */ 2283 if (priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(0, 0, 0) || 2284 priv->dpni_attrs.wriop_version == DPAA2_WRIOP_VERSION(1, 0, 0)) 2285 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN_REV1; 2286 else 2287 rx_buf_align = DPAA2_ETH_RX_BUF_ALIGN; 2288 2289 /* tx buffer */ 2290 buf_layout.private_data_size = DPAA2_ETH_SWA_SIZE; 2291 buf_layout.pass_timestamp = true; 2292 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PRIVATE_DATA_SIZE | 2293 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2294 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2295 DPNI_QUEUE_TX, &buf_layout); 2296 if (err) { 2297 dev_err(dev, "dpni_set_buffer_layout(TX) failed\n"); 2298 return err; 2299 } 2300 2301 /* tx-confirm buffer */ 2302 buf_layout.options = DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2303 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2304 DPNI_QUEUE_TX_CONFIRM, &buf_layout); 2305 if (err) { 2306 dev_err(dev, "dpni_set_buffer_layout(TX_CONF) failed\n"); 2307 return err; 2308 } 2309 2310 /* Now that we've set our tx buffer layout, retrieve the minimum 2311 * required tx data offset. 2312 */ 2313 err = dpni_get_tx_data_offset(priv->mc_io, 0, priv->mc_token, 2314 &priv->tx_data_offset); 2315 if (err) { 2316 dev_err(dev, "dpni_get_tx_data_offset() failed\n"); 2317 return err; 2318 } 2319 2320 if ((priv->tx_data_offset % 64) != 0) 2321 dev_warn(dev, "Tx data offset (%d) not a multiple of 64B\n", 2322 priv->tx_data_offset); 2323 2324 /* rx buffer */ 2325 buf_layout.pass_frame_status = true; 2326 buf_layout.pass_parser_result = true; 2327 buf_layout.data_align = rx_buf_align; 2328 buf_layout.data_head_room = dpaa2_eth_rx_head_room(priv); 2329 buf_layout.private_data_size = 0; 2330 buf_layout.options = DPNI_BUF_LAYOUT_OPT_PARSER_RESULT | 2331 DPNI_BUF_LAYOUT_OPT_FRAME_STATUS | 2332 DPNI_BUF_LAYOUT_OPT_DATA_ALIGN | 2333 DPNI_BUF_LAYOUT_OPT_DATA_HEAD_ROOM | 2334 DPNI_BUF_LAYOUT_OPT_TIMESTAMP; 2335 err = dpni_set_buffer_layout(priv->mc_io, 0, priv->mc_token, 2336 DPNI_QUEUE_RX, &buf_layout); 2337 if (err) { 2338 dev_err(dev, "dpni_set_buffer_layout(RX) failed\n"); 2339 return err; 2340 } 2341 2342 return 0; 2343 } 2344 2345 #define DPNI_ENQUEUE_FQID_VER_MAJOR 7 2346 #define DPNI_ENQUEUE_FQID_VER_MINOR 9 2347 2348 static inline int dpaa2_eth_enqueue_qd(struct dpaa2_eth_priv *priv, 2349 struct dpaa2_eth_fq *fq, 2350 struct dpaa2_fd *fd, u8 prio) 2351 { 2352 return dpaa2_io_service_enqueue_qd(fq->channel->dpio, 2353 priv->tx_qdid, prio, 2354 fq->tx_qdbin, fd); 2355 } 2356 2357 static inline int dpaa2_eth_enqueue_fq(struct dpaa2_eth_priv *priv, 2358 struct dpaa2_eth_fq *fq, 2359 struct dpaa2_fd *fd, 2360 u8 prio __always_unused) 2361 { 2362 return dpaa2_io_service_enqueue_fq(fq->channel->dpio, 2363 fq->tx_fqid, fd); 2364 } 2365 2366 static void set_enqueue_mode(struct dpaa2_eth_priv *priv) 2367 { 2368 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_ENQUEUE_FQID_VER_MAJOR, 2369 DPNI_ENQUEUE_FQID_VER_MINOR) < 0) 2370 priv->enqueue = dpaa2_eth_enqueue_qd; 2371 else 2372 priv->enqueue = dpaa2_eth_enqueue_fq; 2373 } 2374 2375 /* Configure the DPNI object this interface is associated with */ 2376 static int setup_dpni(struct fsl_mc_device *ls_dev) 2377 { 2378 struct device *dev = &ls_dev->dev; 2379 struct dpaa2_eth_priv *priv; 2380 struct net_device *net_dev; 2381 int err; 2382 2383 net_dev = dev_get_drvdata(dev); 2384 priv = netdev_priv(net_dev); 2385 2386 /* get a handle for the DPNI object */ 2387 err = dpni_open(priv->mc_io, 0, ls_dev->obj_desc.id, &priv->mc_token); 2388 if (err) { 2389 dev_err(dev, "dpni_open() failed\n"); 2390 return err; 2391 } 2392 2393 /* Check if we can work with this DPNI object */ 2394 err = dpni_get_api_version(priv->mc_io, 0, &priv->dpni_ver_major, 2395 &priv->dpni_ver_minor); 2396 if (err) { 2397 dev_err(dev, "dpni_get_api_version() failed\n"); 2398 goto close; 2399 } 2400 if (dpaa2_eth_cmp_dpni_ver(priv, DPNI_VER_MAJOR, DPNI_VER_MINOR) < 0) { 2401 dev_err(dev, "DPNI version %u.%u not supported, need >= %u.%u\n", 2402 priv->dpni_ver_major, priv->dpni_ver_minor, 2403 DPNI_VER_MAJOR, DPNI_VER_MINOR); 2404 err = -ENOTSUPP; 2405 goto close; 2406 } 2407 2408 ls_dev->mc_io = priv->mc_io; 2409 ls_dev->mc_handle = priv->mc_token; 2410 2411 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2412 if (err) { 2413 dev_err(dev, "dpni_reset() failed\n"); 2414 goto close; 2415 } 2416 2417 err = dpni_get_attributes(priv->mc_io, 0, priv->mc_token, 2418 &priv->dpni_attrs); 2419 if (err) { 2420 dev_err(dev, "dpni_get_attributes() failed (err=%d)\n", err); 2421 goto close; 2422 } 2423 2424 err = set_buffer_layout(priv); 2425 if (err) 2426 goto close; 2427 2428 set_enqueue_mode(priv); 2429 2430 priv->cls_rules = devm_kzalloc(dev, sizeof(struct dpaa2_eth_cls_rule) * 2431 dpaa2_eth_fs_count(priv), GFP_KERNEL); 2432 if (!priv->cls_rules) 2433 goto close; 2434 2435 return 0; 2436 2437 close: 2438 dpni_close(priv->mc_io, 0, priv->mc_token); 2439 2440 return err; 2441 } 2442 2443 static void free_dpni(struct dpaa2_eth_priv *priv) 2444 { 2445 int err; 2446 2447 err = dpni_reset(priv->mc_io, 0, priv->mc_token); 2448 if (err) 2449 netdev_warn(priv->net_dev, "dpni_reset() failed (err %d)\n", 2450 err); 2451 2452 dpni_close(priv->mc_io, 0, priv->mc_token); 2453 } 2454 2455 static int setup_rx_flow(struct dpaa2_eth_priv *priv, 2456 struct dpaa2_eth_fq *fq) 2457 { 2458 struct device *dev = priv->net_dev->dev.parent; 2459 struct dpni_queue queue; 2460 struct dpni_queue_id qid; 2461 struct dpni_taildrop td; 2462 int err; 2463 2464 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2465 DPNI_QUEUE_RX, 0, fq->flowid, &queue, &qid); 2466 if (err) { 2467 dev_err(dev, "dpni_get_queue(RX) failed\n"); 2468 return err; 2469 } 2470 2471 fq->fqid = qid.fqid; 2472 2473 queue.destination.id = fq->channel->dpcon_id; 2474 queue.destination.type = DPNI_DEST_DPCON; 2475 queue.destination.priority = 1; 2476 queue.user_context = (u64)(uintptr_t)fq; 2477 queue.flc.stash_control = 1; 2478 queue.flc.value &= 0xFFFFFFFFFFFFFFC0; 2479 /* 01 01 00 - data, annotation, flow context */ 2480 queue.flc.value |= 0x14; 2481 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2482 DPNI_QUEUE_RX, 0, fq->flowid, 2483 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST | 2484 DPNI_QUEUE_OPT_FLC, 2485 &queue); 2486 if (err) { 2487 dev_err(dev, "dpni_set_queue(RX) failed\n"); 2488 return err; 2489 } 2490 2491 td.enable = 1; 2492 td.threshold = DPAA2_ETH_TAILDROP_THRESH; 2493 err = dpni_set_taildrop(priv->mc_io, 0, priv->mc_token, DPNI_CP_QUEUE, 2494 DPNI_QUEUE_RX, 0, fq->flowid, &td); 2495 if (err) { 2496 dev_err(dev, "dpni_set_threshold() failed\n"); 2497 return err; 2498 } 2499 2500 /* xdp_rxq setup */ 2501 err = xdp_rxq_info_reg(&fq->channel->xdp_rxq, priv->net_dev, 2502 fq->flowid); 2503 if (err) { 2504 dev_err(dev, "xdp_rxq_info_reg failed\n"); 2505 return err; 2506 } 2507 2508 err = xdp_rxq_info_reg_mem_model(&fq->channel->xdp_rxq, 2509 MEM_TYPE_PAGE_ORDER0, NULL); 2510 if (err) { 2511 dev_err(dev, "xdp_rxq_info_reg_mem_model failed\n"); 2512 return err; 2513 } 2514 2515 return 0; 2516 } 2517 2518 static int setup_tx_flow(struct dpaa2_eth_priv *priv, 2519 struct dpaa2_eth_fq *fq) 2520 { 2521 struct device *dev = priv->net_dev->dev.parent; 2522 struct dpni_queue queue; 2523 struct dpni_queue_id qid; 2524 int err; 2525 2526 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2527 DPNI_QUEUE_TX, 0, fq->flowid, &queue, &qid); 2528 if (err) { 2529 dev_err(dev, "dpni_get_queue(TX) failed\n"); 2530 return err; 2531 } 2532 2533 fq->tx_qdbin = qid.qdbin; 2534 fq->tx_fqid = qid.fqid; 2535 2536 err = dpni_get_queue(priv->mc_io, 0, priv->mc_token, 2537 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 2538 &queue, &qid); 2539 if (err) { 2540 dev_err(dev, "dpni_get_queue(TX_CONF) failed\n"); 2541 return err; 2542 } 2543 2544 fq->fqid = qid.fqid; 2545 2546 queue.destination.id = fq->channel->dpcon_id; 2547 queue.destination.type = DPNI_DEST_DPCON; 2548 queue.destination.priority = 0; 2549 queue.user_context = (u64)(uintptr_t)fq; 2550 err = dpni_set_queue(priv->mc_io, 0, priv->mc_token, 2551 DPNI_QUEUE_TX_CONFIRM, 0, fq->flowid, 2552 DPNI_QUEUE_OPT_USER_CTX | DPNI_QUEUE_OPT_DEST, 2553 &queue); 2554 if (err) { 2555 dev_err(dev, "dpni_set_queue(TX_CONF) failed\n"); 2556 return err; 2557 } 2558 2559 return 0; 2560 } 2561 2562 /* Supported header fields for Rx hash distribution key */ 2563 static const struct dpaa2_eth_dist_fields dist_fields[] = { 2564 { 2565 /* L2 header */ 2566 .rxnfc_field = RXH_L2DA, 2567 .cls_prot = NET_PROT_ETH, 2568 .cls_field = NH_FLD_ETH_DA, 2569 .size = 6, 2570 }, { 2571 .cls_prot = NET_PROT_ETH, 2572 .cls_field = NH_FLD_ETH_SA, 2573 .size = 6, 2574 }, { 2575 /* This is the last ethertype field parsed: 2576 * depending on frame format, it can be the MAC ethertype 2577 * or the VLAN etype. 2578 */ 2579 .cls_prot = NET_PROT_ETH, 2580 .cls_field = NH_FLD_ETH_TYPE, 2581 .size = 2, 2582 }, { 2583 /* VLAN header */ 2584 .rxnfc_field = RXH_VLAN, 2585 .cls_prot = NET_PROT_VLAN, 2586 .cls_field = NH_FLD_VLAN_TCI, 2587 .size = 2, 2588 }, { 2589 /* IP header */ 2590 .rxnfc_field = RXH_IP_SRC, 2591 .cls_prot = NET_PROT_IP, 2592 .cls_field = NH_FLD_IP_SRC, 2593 .size = 4, 2594 }, { 2595 .rxnfc_field = RXH_IP_DST, 2596 .cls_prot = NET_PROT_IP, 2597 .cls_field = NH_FLD_IP_DST, 2598 .size = 4, 2599 }, { 2600 .rxnfc_field = RXH_L3_PROTO, 2601 .cls_prot = NET_PROT_IP, 2602 .cls_field = NH_FLD_IP_PROTO, 2603 .size = 1, 2604 }, { 2605 /* Using UDP ports, this is functionally equivalent to raw 2606 * byte pairs from L4 header. 2607 */ 2608 .rxnfc_field = RXH_L4_B_0_1, 2609 .cls_prot = NET_PROT_UDP, 2610 .cls_field = NH_FLD_UDP_PORT_SRC, 2611 .size = 2, 2612 }, { 2613 .rxnfc_field = RXH_L4_B_2_3, 2614 .cls_prot = NET_PROT_UDP, 2615 .cls_field = NH_FLD_UDP_PORT_DST, 2616 .size = 2, 2617 }, 2618 }; 2619 2620 /* Configure the Rx hash key using the legacy API */ 2621 static int config_legacy_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2622 { 2623 struct device *dev = priv->net_dev->dev.parent; 2624 struct dpni_rx_tc_dist_cfg dist_cfg; 2625 int err; 2626 2627 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2628 2629 dist_cfg.key_cfg_iova = key; 2630 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2631 dist_cfg.dist_mode = DPNI_DIST_MODE_HASH; 2632 2633 err = dpni_set_rx_tc_dist(priv->mc_io, 0, priv->mc_token, 0, &dist_cfg); 2634 if (err) 2635 dev_err(dev, "dpni_set_rx_tc_dist failed\n"); 2636 2637 return err; 2638 } 2639 2640 /* Configure the Rx hash key using the new API */ 2641 static int config_hash_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2642 { 2643 struct device *dev = priv->net_dev->dev.parent; 2644 struct dpni_rx_dist_cfg dist_cfg; 2645 int err; 2646 2647 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2648 2649 dist_cfg.key_cfg_iova = key; 2650 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2651 dist_cfg.enable = 1; 2652 2653 err = dpni_set_rx_hash_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2654 if (err) 2655 dev_err(dev, "dpni_set_rx_hash_dist failed\n"); 2656 2657 return err; 2658 } 2659 2660 /* Configure the Rx flow classification key */ 2661 static int config_cls_key(struct dpaa2_eth_priv *priv, dma_addr_t key) 2662 { 2663 struct device *dev = priv->net_dev->dev.parent; 2664 struct dpni_rx_dist_cfg dist_cfg; 2665 int err; 2666 2667 memset(&dist_cfg, 0, sizeof(dist_cfg)); 2668 2669 dist_cfg.key_cfg_iova = key; 2670 dist_cfg.dist_size = dpaa2_eth_queue_count(priv); 2671 dist_cfg.enable = 1; 2672 2673 err = dpni_set_rx_fs_dist(priv->mc_io, 0, priv->mc_token, &dist_cfg); 2674 if (err) 2675 dev_err(dev, "dpni_set_rx_fs_dist failed\n"); 2676 2677 return err; 2678 } 2679 2680 /* Size of the Rx flow classification key */ 2681 int dpaa2_eth_cls_key_size(void) 2682 { 2683 int i, size = 0; 2684 2685 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) 2686 size += dist_fields[i].size; 2687 2688 return size; 2689 } 2690 2691 /* Offset of header field in Rx classification key */ 2692 int dpaa2_eth_cls_fld_off(int prot, int field) 2693 { 2694 int i, off = 0; 2695 2696 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2697 if (dist_fields[i].cls_prot == prot && 2698 dist_fields[i].cls_field == field) 2699 return off; 2700 off += dist_fields[i].size; 2701 } 2702 2703 WARN_ONCE(1, "Unsupported header field used for Rx flow cls\n"); 2704 return 0; 2705 } 2706 2707 /* Set Rx distribution (hash or flow classification) key 2708 * flags is a combination of RXH_ bits 2709 */ 2710 static int dpaa2_eth_set_dist_key(struct net_device *net_dev, 2711 enum dpaa2_eth_rx_dist type, u64 flags) 2712 { 2713 struct device *dev = net_dev->dev.parent; 2714 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2715 struct dpkg_profile_cfg cls_cfg; 2716 u32 rx_hash_fields = 0; 2717 dma_addr_t key_iova; 2718 u8 *dma_mem; 2719 int i; 2720 int err = 0; 2721 2722 memset(&cls_cfg, 0, sizeof(cls_cfg)); 2723 2724 for (i = 0; i < ARRAY_SIZE(dist_fields); i++) { 2725 struct dpkg_extract *key = 2726 &cls_cfg.extracts[cls_cfg.num_extracts]; 2727 2728 /* For Rx hashing key we set only the selected fields. 2729 * For Rx flow classification key we set all supported fields 2730 */ 2731 if (type == DPAA2_ETH_RX_DIST_HASH) { 2732 if (!(flags & dist_fields[i].rxnfc_field)) 2733 continue; 2734 rx_hash_fields |= dist_fields[i].rxnfc_field; 2735 } 2736 2737 if (cls_cfg.num_extracts >= DPKG_MAX_NUM_OF_EXTRACTS) { 2738 dev_err(dev, "error adding key extraction rule, too many rules?\n"); 2739 return -E2BIG; 2740 } 2741 2742 key->type = DPKG_EXTRACT_FROM_HDR; 2743 key->extract.from_hdr.prot = dist_fields[i].cls_prot; 2744 key->extract.from_hdr.type = DPKG_FULL_FIELD; 2745 key->extract.from_hdr.field = dist_fields[i].cls_field; 2746 cls_cfg.num_extracts++; 2747 } 2748 2749 dma_mem = kzalloc(DPAA2_CLASSIFIER_DMA_SIZE, GFP_KERNEL); 2750 if (!dma_mem) 2751 return -ENOMEM; 2752 2753 err = dpni_prepare_key_cfg(&cls_cfg, dma_mem); 2754 if (err) { 2755 dev_err(dev, "dpni_prepare_key_cfg error %d\n", err); 2756 goto free_key; 2757 } 2758 2759 /* Prepare for setting the rx dist */ 2760 key_iova = dma_map_single(dev, dma_mem, DPAA2_CLASSIFIER_DMA_SIZE, 2761 DMA_TO_DEVICE); 2762 if (dma_mapping_error(dev, key_iova)) { 2763 dev_err(dev, "DMA mapping failed\n"); 2764 err = -ENOMEM; 2765 goto free_key; 2766 } 2767 2768 if (type == DPAA2_ETH_RX_DIST_HASH) { 2769 if (dpaa2_eth_has_legacy_dist(priv)) 2770 err = config_legacy_hash_key(priv, key_iova); 2771 else 2772 err = config_hash_key(priv, key_iova); 2773 } else { 2774 err = config_cls_key(priv, key_iova); 2775 } 2776 2777 dma_unmap_single(dev, key_iova, DPAA2_CLASSIFIER_DMA_SIZE, 2778 DMA_TO_DEVICE); 2779 if (!err && type == DPAA2_ETH_RX_DIST_HASH) 2780 priv->rx_hash_fields = rx_hash_fields; 2781 2782 free_key: 2783 kfree(dma_mem); 2784 return err; 2785 } 2786 2787 int dpaa2_eth_set_hash(struct net_device *net_dev, u64 flags) 2788 { 2789 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 2790 2791 if (!dpaa2_eth_hash_enabled(priv)) 2792 return -EOPNOTSUPP; 2793 2794 return dpaa2_eth_set_dist_key(net_dev, DPAA2_ETH_RX_DIST_HASH, flags); 2795 } 2796 2797 static int dpaa2_eth_set_cls(struct dpaa2_eth_priv *priv) 2798 { 2799 struct device *dev = priv->net_dev->dev.parent; 2800 2801 /* Check if we actually support Rx flow classification */ 2802 if (dpaa2_eth_has_legacy_dist(priv)) { 2803 dev_dbg(dev, "Rx cls not supported by current MC version\n"); 2804 return -EOPNOTSUPP; 2805 } 2806 2807 if (priv->dpni_attrs.options & DPNI_OPT_NO_FS || 2808 !(priv->dpni_attrs.options & DPNI_OPT_HAS_KEY_MASKING)) { 2809 dev_dbg(dev, "Rx cls disabled in DPNI options\n"); 2810 return -EOPNOTSUPP; 2811 } 2812 2813 if (!dpaa2_eth_hash_enabled(priv)) { 2814 dev_dbg(dev, "Rx cls disabled for single queue DPNIs\n"); 2815 return -EOPNOTSUPP; 2816 } 2817 2818 priv->rx_cls_enabled = 1; 2819 2820 return dpaa2_eth_set_dist_key(priv->net_dev, DPAA2_ETH_RX_DIST_CLS, 0); 2821 } 2822 2823 /* Bind the DPNI to its needed objects and resources: buffer pool, DPIOs, 2824 * frame queues and channels 2825 */ 2826 static int bind_dpni(struct dpaa2_eth_priv *priv) 2827 { 2828 struct net_device *net_dev = priv->net_dev; 2829 struct device *dev = net_dev->dev.parent; 2830 struct dpni_pools_cfg pools_params; 2831 struct dpni_error_cfg err_cfg; 2832 int err = 0; 2833 int i; 2834 2835 pools_params.num_dpbp = 1; 2836 pools_params.pools[0].dpbp_id = priv->dpbp_dev->obj_desc.id; 2837 pools_params.pools[0].backup_pool = 0; 2838 pools_params.pools[0].buffer_size = DPAA2_ETH_RX_BUF_SIZE; 2839 err = dpni_set_pools(priv->mc_io, 0, priv->mc_token, &pools_params); 2840 if (err) { 2841 dev_err(dev, "dpni_set_pools() failed\n"); 2842 return err; 2843 } 2844 2845 /* have the interface implicitly distribute traffic based on 2846 * the default hash key 2847 */ 2848 err = dpaa2_eth_set_hash(net_dev, DPAA2_RXH_DEFAULT); 2849 if (err && err != -EOPNOTSUPP) 2850 dev_err(dev, "Failed to configure hashing\n"); 2851 2852 /* Configure the flow classification key; it includes all 2853 * supported header fields and cannot be modified at runtime 2854 */ 2855 err = dpaa2_eth_set_cls(priv); 2856 if (err && err != -EOPNOTSUPP) 2857 dev_err(dev, "Failed to configure Rx classification key\n"); 2858 2859 /* Configure handling of error frames */ 2860 err_cfg.errors = DPAA2_FAS_RX_ERR_MASK; 2861 err_cfg.set_frame_annotation = 1; 2862 err_cfg.error_action = DPNI_ERROR_ACTION_DISCARD; 2863 err = dpni_set_errors_behavior(priv->mc_io, 0, priv->mc_token, 2864 &err_cfg); 2865 if (err) { 2866 dev_err(dev, "dpni_set_errors_behavior failed\n"); 2867 return err; 2868 } 2869 2870 /* Configure Rx and Tx conf queues to generate CDANs */ 2871 for (i = 0; i < priv->num_fqs; i++) { 2872 switch (priv->fq[i].type) { 2873 case DPAA2_RX_FQ: 2874 err = setup_rx_flow(priv, &priv->fq[i]); 2875 break; 2876 case DPAA2_TX_CONF_FQ: 2877 err = setup_tx_flow(priv, &priv->fq[i]); 2878 break; 2879 default: 2880 dev_err(dev, "Invalid FQ type %d\n", priv->fq[i].type); 2881 return -EINVAL; 2882 } 2883 if (err) 2884 return err; 2885 } 2886 2887 err = dpni_get_qdid(priv->mc_io, 0, priv->mc_token, 2888 DPNI_QUEUE_TX, &priv->tx_qdid); 2889 if (err) { 2890 dev_err(dev, "dpni_get_qdid() failed\n"); 2891 return err; 2892 } 2893 2894 return 0; 2895 } 2896 2897 /* Allocate rings for storing incoming frame descriptors */ 2898 static int alloc_rings(struct dpaa2_eth_priv *priv) 2899 { 2900 struct net_device *net_dev = priv->net_dev; 2901 struct device *dev = net_dev->dev.parent; 2902 int i; 2903 2904 for (i = 0; i < priv->num_channels; i++) { 2905 priv->channel[i]->store = 2906 dpaa2_io_store_create(DPAA2_ETH_STORE_SIZE, dev); 2907 if (!priv->channel[i]->store) { 2908 netdev_err(net_dev, "dpaa2_io_store_create() failed\n"); 2909 goto err_ring; 2910 } 2911 } 2912 2913 return 0; 2914 2915 err_ring: 2916 for (i = 0; i < priv->num_channels; i++) { 2917 if (!priv->channel[i]->store) 2918 break; 2919 dpaa2_io_store_destroy(priv->channel[i]->store); 2920 } 2921 2922 return -ENOMEM; 2923 } 2924 2925 static void free_rings(struct dpaa2_eth_priv *priv) 2926 { 2927 int i; 2928 2929 for (i = 0; i < priv->num_channels; i++) 2930 dpaa2_io_store_destroy(priv->channel[i]->store); 2931 } 2932 2933 static int set_mac_addr(struct dpaa2_eth_priv *priv) 2934 { 2935 struct net_device *net_dev = priv->net_dev; 2936 struct device *dev = net_dev->dev.parent; 2937 u8 mac_addr[ETH_ALEN], dpni_mac_addr[ETH_ALEN]; 2938 int err; 2939 2940 /* Get firmware address, if any */ 2941 err = dpni_get_port_mac_addr(priv->mc_io, 0, priv->mc_token, mac_addr); 2942 if (err) { 2943 dev_err(dev, "dpni_get_port_mac_addr() failed\n"); 2944 return err; 2945 } 2946 2947 /* Get DPNI attributes address, if any */ 2948 err = dpni_get_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 2949 dpni_mac_addr); 2950 if (err) { 2951 dev_err(dev, "dpni_get_primary_mac_addr() failed\n"); 2952 return err; 2953 } 2954 2955 /* First check if firmware has any address configured by bootloader */ 2956 if (!is_zero_ether_addr(mac_addr)) { 2957 /* If the DPMAC addr != DPNI addr, update it */ 2958 if (!ether_addr_equal(mac_addr, dpni_mac_addr)) { 2959 err = dpni_set_primary_mac_addr(priv->mc_io, 0, 2960 priv->mc_token, 2961 mac_addr); 2962 if (err) { 2963 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 2964 return err; 2965 } 2966 } 2967 memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len); 2968 } else if (is_zero_ether_addr(dpni_mac_addr)) { 2969 /* No MAC address configured, fill in net_dev->dev_addr 2970 * with a random one 2971 */ 2972 eth_hw_addr_random(net_dev); 2973 dev_dbg_once(dev, "device(s) have all-zero hwaddr, replaced with random\n"); 2974 2975 err = dpni_set_primary_mac_addr(priv->mc_io, 0, priv->mc_token, 2976 net_dev->dev_addr); 2977 if (err) { 2978 dev_err(dev, "dpni_set_primary_mac_addr() failed\n"); 2979 return err; 2980 } 2981 2982 /* Override NET_ADDR_RANDOM set by eth_hw_addr_random(); for all 2983 * practical purposes, this will be our "permanent" mac address, 2984 * at least until the next reboot. This move will also permit 2985 * register_netdevice() to properly fill up net_dev->perm_addr. 2986 */ 2987 net_dev->addr_assign_type = NET_ADDR_PERM; 2988 } else { 2989 /* NET_ADDR_PERM is default, all we have to do is 2990 * fill in the device addr. 2991 */ 2992 memcpy(net_dev->dev_addr, dpni_mac_addr, net_dev->addr_len); 2993 } 2994 2995 return 0; 2996 } 2997 2998 static int netdev_init(struct net_device *net_dev) 2999 { 3000 struct device *dev = net_dev->dev.parent; 3001 struct dpaa2_eth_priv *priv = netdev_priv(net_dev); 3002 u32 options = priv->dpni_attrs.options; 3003 u64 supported = 0, not_supported = 0; 3004 u8 bcast_addr[ETH_ALEN]; 3005 u8 num_queues; 3006 int err; 3007 3008 net_dev->netdev_ops = &dpaa2_eth_ops; 3009 net_dev->ethtool_ops = &dpaa2_ethtool_ops; 3010 3011 err = set_mac_addr(priv); 3012 if (err) 3013 return err; 3014 3015 /* Explicitly add the broadcast address to the MAC filtering table */ 3016 eth_broadcast_addr(bcast_addr); 3017 err = dpni_add_mac_addr(priv->mc_io, 0, priv->mc_token, bcast_addr); 3018 if (err) { 3019 dev_err(dev, "dpni_add_mac_addr() failed\n"); 3020 return err; 3021 } 3022 3023 /* Set MTU upper limit; lower limit is 68B (default value) */ 3024 net_dev->max_mtu = DPAA2_ETH_MAX_MTU; 3025 err = dpni_set_max_frame_length(priv->mc_io, 0, priv->mc_token, 3026 DPAA2_ETH_MFL); 3027 if (err) { 3028 dev_err(dev, "dpni_set_max_frame_length() failed\n"); 3029 return err; 3030 } 3031 3032 /* Set actual number of queues in the net device */ 3033 num_queues = dpaa2_eth_queue_count(priv); 3034 err = netif_set_real_num_tx_queues(net_dev, num_queues); 3035 if (err) { 3036 dev_err(dev, "netif_set_real_num_tx_queues() failed\n"); 3037 return err; 3038 } 3039 err = netif_set_real_num_rx_queues(net_dev, num_queues); 3040 if (err) { 3041 dev_err(dev, "netif_set_real_num_rx_queues() failed\n"); 3042 return err; 3043 } 3044 3045 /* Capabilities listing */ 3046 supported |= IFF_LIVE_ADDR_CHANGE; 3047 3048 if (options & DPNI_OPT_NO_MAC_FILTER) 3049 not_supported |= IFF_UNICAST_FLT; 3050 else 3051 supported |= IFF_UNICAST_FLT; 3052 3053 net_dev->priv_flags |= supported; 3054 net_dev->priv_flags &= ~not_supported; 3055 3056 /* Features */ 3057 net_dev->features = NETIF_F_RXCSUM | 3058 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3059 NETIF_F_SG | NETIF_F_HIGHDMA | 3060 NETIF_F_LLTX; 3061 net_dev->hw_features = net_dev->features; 3062 3063 return 0; 3064 } 3065 3066 static int poll_link_state(void *arg) 3067 { 3068 struct dpaa2_eth_priv *priv = (struct dpaa2_eth_priv *)arg; 3069 int err; 3070 3071 while (!kthread_should_stop()) { 3072 err = link_state_update(priv); 3073 if (unlikely(err)) 3074 return err; 3075 3076 msleep(DPAA2_ETH_LINK_STATE_REFRESH); 3077 } 3078 3079 return 0; 3080 } 3081 3082 static irqreturn_t dpni_irq0_handler_thread(int irq_num, void *arg) 3083 { 3084 u32 status = ~0; 3085 struct device *dev = (struct device *)arg; 3086 struct fsl_mc_device *dpni_dev = to_fsl_mc_device(dev); 3087 struct net_device *net_dev = dev_get_drvdata(dev); 3088 int err; 3089 3090 err = dpni_get_irq_status(dpni_dev->mc_io, 0, dpni_dev->mc_handle, 3091 DPNI_IRQ_INDEX, &status); 3092 if (unlikely(err)) { 3093 netdev_err(net_dev, "Can't get irq status (err %d)\n", err); 3094 return IRQ_HANDLED; 3095 } 3096 3097 if (status & DPNI_IRQ_EVENT_LINK_CHANGED) 3098 link_state_update(netdev_priv(net_dev)); 3099 3100 return IRQ_HANDLED; 3101 } 3102 3103 static int setup_irqs(struct fsl_mc_device *ls_dev) 3104 { 3105 int err = 0; 3106 struct fsl_mc_device_irq *irq; 3107 3108 err = fsl_mc_allocate_irqs(ls_dev); 3109 if (err) { 3110 dev_err(&ls_dev->dev, "MC irqs allocation failed\n"); 3111 return err; 3112 } 3113 3114 irq = ls_dev->irqs[0]; 3115 err = devm_request_threaded_irq(&ls_dev->dev, irq->msi_desc->irq, 3116 NULL, dpni_irq0_handler_thread, 3117 IRQF_NO_SUSPEND | IRQF_ONESHOT, 3118 dev_name(&ls_dev->dev), &ls_dev->dev); 3119 if (err < 0) { 3120 dev_err(&ls_dev->dev, "devm_request_threaded_irq(): %d\n", err); 3121 goto free_mc_irq; 3122 } 3123 3124 err = dpni_set_irq_mask(ls_dev->mc_io, 0, ls_dev->mc_handle, 3125 DPNI_IRQ_INDEX, DPNI_IRQ_EVENT_LINK_CHANGED); 3126 if (err < 0) { 3127 dev_err(&ls_dev->dev, "dpni_set_irq_mask(): %d\n", err); 3128 goto free_irq; 3129 } 3130 3131 err = dpni_set_irq_enable(ls_dev->mc_io, 0, ls_dev->mc_handle, 3132 DPNI_IRQ_INDEX, 1); 3133 if (err < 0) { 3134 dev_err(&ls_dev->dev, "dpni_set_irq_enable(): %d\n", err); 3135 goto free_irq; 3136 } 3137 3138 return 0; 3139 3140 free_irq: 3141 devm_free_irq(&ls_dev->dev, irq->msi_desc->irq, &ls_dev->dev); 3142 free_mc_irq: 3143 fsl_mc_free_irqs(ls_dev); 3144 3145 return err; 3146 } 3147 3148 static void add_ch_napi(struct dpaa2_eth_priv *priv) 3149 { 3150 int i; 3151 struct dpaa2_eth_channel *ch; 3152 3153 for (i = 0; i < priv->num_channels; i++) { 3154 ch = priv->channel[i]; 3155 /* NAPI weight *MUST* be a multiple of DPAA2_ETH_STORE_SIZE */ 3156 netif_napi_add(priv->net_dev, &ch->napi, dpaa2_eth_poll, 3157 NAPI_POLL_WEIGHT); 3158 } 3159 } 3160 3161 static void del_ch_napi(struct dpaa2_eth_priv *priv) 3162 { 3163 int i; 3164 struct dpaa2_eth_channel *ch; 3165 3166 for (i = 0; i < priv->num_channels; i++) { 3167 ch = priv->channel[i]; 3168 netif_napi_del(&ch->napi); 3169 } 3170 } 3171 3172 static int dpaa2_eth_probe(struct fsl_mc_device *dpni_dev) 3173 { 3174 struct device *dev; 3175 struct net_device *net_dev = NULL; 3176 struct dpaa2_eth_priv *priv = NULL; 3177 int err = 0; 3178 3179 dev = &dpni_dev->dev; 3180 3181 /* Net device */ 3182 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA2_ETH_MAX_TX_QUEUES); 3183 if (!net_dev) { 3184 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3185 return -ENOMEM; 3186 } 3187 3188 SET_NETDEV_DEV(net_dev, dev); 3189 dev_set_drvdata(dev, net_dev); 3190 3191 priv = netdev_priv(net_dev); 3192 priv->net_dev = net_dev; 3193 3194 priv->iommu_domain = iommu_get_domain_for_dev(dev); 3195 3196 /* Obtain a MC portal */ 3197 err = fsl_mc_portal_allocate(dpni_dev, FSL_MC_IO_ATOMIC_CONTEXT_PORTAL, 3198 &priv->mc_io); 3199 if (err) { 3200 if (err == -ENXIO) 3201 err = -EPROBE_DEFER; 3202 else 3203 dev_err(dev, "MC portal allocation failed\n"); 3204 goto err_portal_alloc; 3205 } 3206 3207 /* MC objects initialization and configuration */ 3208 err = setup_dpni(dpni_dev); 3209 if (err) 3210 goto err_dpni_setup; 3211 3212 err = setup_dpio(priv); 3213 if (err) 3214 goto err_dpio_setup; 3215 3216 setup_fqs(priv); 3217 3218 err = setup_dpbp(priv); 3219 if (err) 3220 goto err_dpbp_setup; 3221 3222 err = bind_dpni(priv); 3223 if (err) 3224 goto err_bind; 3225 3226 /* Add a NAPI context for each channel */ 3227 add_ch_napi(priv); 3228 3229 /* Percpu statistics */ 3230 priv->percpu_stats = alloc_percpu(*priv->percpu_stats); 3231 if (!priv->percpu_stats) { 3232 dev_err(dev, "alloc_percpu(percpu_stats) failed\n"); 3233 err = -ENOMEM; 3234 goto err_alloc_percpu_stats; 3235 } 3236 priv->percpu_extras = alloc_percpu(*priv->percpu_extras); 3237 if (!priv->percpu_extras) { 3238 dev_err(dev, "alloc_percpu(percpu_extras) failed\n"); 3239 err = -ENOMEM; 3240 goto err_alloc_percpu_extras; 3241 } 3242 3243 err = netdev_init(net_dev); 3244 if (err) 3245 goto err_netdev_init; 3246 3247 /* Configure checksum offload based on current interface flags */ 3248 err = set_rx_csum(priv, !!(net_dev->features & NETIF_F_RXCSUM)); 3249 if (err) 3250 goto err_csum; 3251 3252 err = set_tx_csum(priv, !!(net_dev->features & 3253 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))); 3254 if (err) 3255 goto err_csum; 3256 3257 err = alloc_rings(priv); 3258 if (err) 3259 goto err_alloc_rings; 3260 3261 err = setup_irqs(dpni_dev); 3262 if (err) { 3263 netdev_warn(net_dev, "Failed to set link interrupt, fall back to polling\n"); 3264 priv->poll_thread = kthread_run(poll_link_state, priv, 3265 "%s_poll_link", net_dev->name); 3266 if (IS_ERR(priv->poll_thread)) { 3267 dev_err(dev, "Error starting polling thread\n"); 3268 goto err_poll_thread; 3269 } 3270 priv->do_link_poll = true; 3271 } 3272 3273 err = register_netdev(net_dev); 3274 if (err < 0) { 3275 dev_err(dev, "register_netdev() failed\n"); 3276 goto err_netdev_reg; 3277 } 3278 3279 #ifdef CONFIG_DEBUG_FS 3280 dpaa2_dbg_add(priv); 3281 #endif 3282 3283 dev_info(dev, "Probed interface %s\n", net_dev->name); 3284 return 0; 3285 3286 err_netdev_reg: 3287 if (priv->do_link_poll) 3288 kthread_stop(priv->poll_thread); 3289 else 3290 fsl_mc_free_irqs(dpni_dev); 3291 err_poll_thread: 3292 free_rings(priv); 3293 err_alloc_rings: 3294 err_csum: 3295 err_netdev_init: 3296 free_percpu(priv->percpu_extras); 3297 err_alloc_percpu_extras: 3298 free_percpu(priv->percpu_stats); 3299 err_alloc_percpu_stats: 3300 del_ch_napi(priv); 3301 err_bind: 3302 free_dpbp(priv); 3303 err_dpbp_setup: 3304 free_dpio(priv); 3305 err_dpio_setup: 3306 free_dpni(priv); 3307 err_dpni_setup: 3308 fsl_mc_portal_free(priv->mc_io); 3309 err_portal_alloc: 3310 dev_set_drvdata(dev, NULL); 3311 free_netdev(net_dev); 3312 3313 return err; 3314 } 3315 3316 static int dpaa2_eth_remove(struct fsl_mc_device *ls_dev) 3317 { 3318 struct device *dev; 3319 struct net_device *net_dev; 3320 struct dpaa2_eth_priv *priv; 3321 3322 dev = &ls_dev->dev; 3323 net_dev = dev_get_drvdata(dev); 3324 priv = netdev_priv(net_dev); 3325 3326 #ifdef CONFIG_DEBUG_FS 3327 dpaa2_dbg_remove(priv); 3328 #endif 3329 unregister_netdev(net_dev); 3330 3331 if (priv->do_link_poll) 3332 kthread_stop(priv->poll_thread); 3333 else 3334 fsl_mc_free_irqs(ls_dev); 3335 3336 free_rings(priv); 3337 free_percpu(priv->percpu_stats); 3338 free_percpu(priv->percpu_extras); 3339 3340 del_ch_napi(priv); 3341 free_dpbp(priv); 3342 free_dpio(priv); 3343 free_dpni(priv); 3344 3345 fsl_mc_portal_free(priv->mc_io); 3346 3347 free_netdev(net_dev); 3348 3349 dev_dbg(net_dev->dev.parent, "Removed interface %s\n", net_dev->name); 3350 3351 return 0; 3352 } 3353 3354 static const struct fsl_mc_device_id dpaa2_eth_match_id_table[] = { 3355 { 3356 .vendor = FSL_MC_VENDOR_FREESCALE, 3357 .obj_type = "dpni", 3358 }, 3359 { .vendor = 0x0 } 3360 }; 3361 MODULE_DEVICE_TABLE(fslmc, dpaa2_eth_match_id_table); 3362 3363 static struct fsl_mc_driver dpaa2_eth_driver = { 3364 .driver = { 3365 .name = KBUILD_MODNAME, 3366 .owner = THIS_MODULE, 3367 }, 3368 .probe = dpaa2_eth_probe, 3369 .remove = dpaa2_eth_remove, 3370 .match_id_table = dpaa2_eth_match_id_table 3371 }; 3372 3373 static int __init dpaa2_eth_driver_init(void) 3374 { 3375 int err; 3376 3377 dpaa2_eth_dbg_init(); 3378 err = fsl_mc_driver_register(&dpaa2_eth_driver); 3379 if (err) { 3380 dpaa2_eth_dbg_exit(); 3381 return err; 3382 } 3383 3384 return 0; 3385 } 3386 3387 static void __exit dpaa2_eth_driver_exit(void) 3388 { 3389 dpaa2_eth_dbg_exit(); 3390 fsl_mc_driver_unregister(&dpaa2_eth_driver); 3391 } 3392 3393 module_init(dpaa2_eth_driver_init); 3394 module_exit(dpaa2_eth_driver_exit); 3395