1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *	 notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *	 notice, this list of conditions and the following disclaimer in the
9  *	 documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *	 names of its contributors may be used to endorse or promote products
12  *	 derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/of_platform.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/io.h>
39 #include <linux/if_arp.h>
40 #include <linux/if_vlan.h>
41 #include <linux/icmp.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/udp.h>
45 #include <linux/tcp.h>
46 #include <linux/net.h>
47 #include <linux/skbuff.h>
48 #include <linux/etherdevice.h>
49 #include <linux/if_ether.h>
50 #include <linux/highmem.h>
51 #include <linux/percpu.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/sort.h>
54 #include <soc/fsl/bman.h>
55 #include <soc/fsl/qman.h>
56 
57 #include "fman.h"
58 #include "fman_port.h"
59 #include "mac.h"
60 #include "dpaa_eth.h"
61 
62 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
63  * using trace events only need to #include <trace/events/sched.h>
64  */
65 #define CREATE_TRACE_POINTS
66 #include "dpaa_eth_trace.h"
67 
68 static int debug = -1;
69 module_param(debug, int, 0444);
70 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
71 
72 static u16 tx_timeout = 1000;
73 module_param(tx_timeout, ushort, 0444);
74 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
75 
76 #define FM_FD_STAT_RX_ERRORS						\
77 	(FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL	| \
78 	 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
79 	 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME	| \
80 	 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
81 	 FM_FD_ERR_PRS_HDR_ERR)
82 
83 #define FM_FD_STAT_TX_ERRORS \
84 	(FM_FD_ERR_UNSUPPORTED_FORMAT | \
85 	 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
86 
87 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
88 			  NETIF_MSG_LINK | NETIF_MSG_IFUP | \
89 			  NETIF_MSG_IFDOWN)
90 
91 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
92 /* Ingress congestion threshold on FMan ports
93  * The size in bytes of the ingress tail-drop threshold on FMan ports.
94  * Traffic piling up above this value will be rejected by QMan and discarded
95  * by FMan.
96  */
97 
98 /* Size in bytes of the FQ taildrop threshold */
99 #define DPAA_FQ_TD 0x200000
100 
101 #define DPAA_CS_THRESHOLD_1G 0x06000000
102 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
103  * The size in bytes of the egress Congestion State notification threshold on
104  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
105  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
106  * and the larger the frame size, the more acute the problem.
107  * So we have to find a balance between these factors:
108  * - avoiding the device staying congested for a prolonged time (risking
109  *   the netdev watchdog to fire - see also the tx_timeout module param);
110  * - affecting performance of protocols such as TCP, which otherwise
111  *   behave well under the congestion notification mechanism;
112  * - preventing the Tx cores from tightly-looping (as if the congestion
113  *   threshold was too low to be effective);
114  * - running out of memory if the CS threshold is set too high.
115  */
116 
117 #define DPAA_CS_THRESHOLD_10G 0x10000000
118 /* The size in bytes of the egress Congestion State notification threshold on
119  * 10G ports, range 0x1000 .. 0x10000000
120  */
121 
122 /* Largest value that the FQD's OAL field can hold */
123 #define FSL_QMAN_MAX_OAL	127
124 
125 /* Default alignment for start of data in an Rx FD */
126 #define DPAA_FD_DATA_ALIGNMENT  16
127 
128 /* Values for the L3R field of the FM Parse Results
129  */
130 /* L3 Type field: First IP Present IPv4 */
131 #define FM_L3_PARSE_RESULT_IPV4	0x8000
132 /* L3 Type field: First IP Present IPv6 */
133 #define FM_L3_PARSE_RESULT_IPV6	0x4000
134 /* Values for the L4R field of the FM Parse Results */
135 /* L4 Type field: UDP */
136 #define FM_L4_PARSE_RESULT_UDP	0x40
137 /* L4 Type field: TCP */
138 #define FM_L4_PARSE_RESULT_TCP	0x20
139 
140 /* FD status field indicating whether the FM Parser has attempted to validate
141  * the L4 csum of the frame.
142  * Note that having this bit set doesn't necessarily imply that the checksum
143  * is valid. One would have to check the parse results to find that out.
144  */
145 #define FM_FD_STAT_L4CV         0x00000004
146 
147 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
148 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
149 
150 #define FSL_DPAA_BPID_INV		0xff
151 #define FSL_DPAA_ETH_MAX_BUF_COUNT	128
152 #define FSL_DPAA_ETH_REFILL_THRESHOLD	80
153 
154 #define DPAA_TX_PRIV_DATA_SIZE	16
155 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
156 #define DPAA_TIME_STAMP_SIZE 8
157 #define DPAA_HASH_RESULTS_SIZE 8
158 #define DPAA_RX_PRIV_DATA_SIZE	(u16)(DPAA_TX_PRIV_DATA_SIZE + \
159 					dpaa_rx_extra_headroom)
160 
161 #define DPAA_ETH_PCD_RXQ_NUM	128
162 
163 #define DPAA_ENQUEUE_RETRIES	100000
164 
165 enum port_type {RX, TX};
166 
167 struct fm_port_fqs {
168 	struct dpaa_fq *tx_defq;
169 	struct dpaa_fq *tx_errq;
170 	struct dpaa_fq *rx_defq;
171 	struct dpaa_fq *rx_errq;
172 	struct dpaa_fq *rx_pcdq;
173 };
174 
175 /* All the dpa bps in use at any moment */
176 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
177 
178 /* The raw buffer size must be cacheline aligned */
179 #define DPAA_BP_RAW_SIZE 4096
180 /* When using more than one buffer pool, the raw sizes are as follows:
181  * 1 bp: 4KB
182  * 2 bp: 2KB, 4KB
183  * 3 bp: 1KB, 2KB, 4KB
184  * 4 bp: 1KB, 2KB, 4KB, 8KB
185  */
186 static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt)
187 {
188 	size_t res = DPAA_BP_RAW_SIZE / 4;
189 	u8 i;
190 
191 	for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++)
192 		res *= 2;
193 	return res;
194 }
195 
196 /* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is
197  * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that,
198  * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us
199  * half-page-aligned buffers, so we reserve some more space for start-of-buffer
200  * alignment.
201  */
202 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES)
203 
204 static int dpaa_max_frm;
205 
206 static int dpaa_rx_extra_headroom;
207 
208 #define dpaa_get_max_mtu()	\
209 	(dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
210 
211 static int dpaa_netdev_init(struct net_device *net_dev,
212 			    const struct net_device_ops *dpaa_ops,
213 			    u16 tx_timeout)
214 {
215 	struct dpaa_priv *priv = netdev_priv(net_dev);
216 	struct device *dev = net_dev->dev.parent;
217 	struct dpaa_percpu_priv *percpu_priv;
218 	const u8 *mac_addr;
219 	int i, err;
220 
221 	/* Although we access another CPU's private data here
222 	 * we do it at initialization so it is safe
223 	 */
224 	for_each_possible_cpu(i) {
225 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
226 		percpu_priv->net_dev = net_dev;
227 	}
228 
229 	net_dev->netdev_ops = dpaa_ops;
230 	mac_addr = priv->mac_dev->addr;
231 
232 	net_dev->mem_start = priv->mac_dev->res->start;
233 	net_dev->mem_end = priv->mac_dev->res->end;
234 
235 	net_dev->min_mtu = ETH_MIN_MTU;
236 	net_dev->max_mtu = dpaa_get_max_mtu();
237 
238 	net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
239 				 NETIF_F_LLTX | NETIF_F_RXHASH);
240 
241 	net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
242 	/* The kernels enables GSO automatically, if we declare NETIF_F_SG.
243 	 * For conformity, we'll still declare GSO explicitly.
244 	 */
245 	net_dev->features |= NETIF_F_GSO;
246 	net_dev->features |= NETIF_F_RXCSUM;
247 
248 	net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
249 	/* we do not want shared skbs on TX */
250 	net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
251 
252 	net_dev->features |= net_dev->hw_features;
253 	net_dev->vlan_features = net_dev->features;
254 
255 	memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
256 	memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
257 
258 	net_dev->ethtool_ops = &dpaa_ethtool_ops;
259 
260 	net_dev->needed_headroom = priv->tx_headroom;
261 	net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
262 
263 	/* start without the RUNNING flag, phylib controls it later */
264 	netif_carrier_off(net_dev);
265 
266 	err = register_netdev(net_dev);
267 	if (err < 0) {
268 		dev_err(dev, "register_netdev() = %d\n", err);
269 		return err;
270 	}
271 
272 	return 0;
273 }
274 
275 static int dpaa_stop(struct net_device *net_dev)
276 {
277 	struct mac_device *mac_dev;
278 	struct dpaa_priv *priv;
279 	int i, err, error;
280 
281 	priv = netdev_priv(net_dev);
282 	mac_dev = priv->mac_dev;
283 
284 	netif_tx_stop_all_queues(net_dev);
285 	/* Allow the Fman (Tx) port to process in-flight frames before we
286 	 * try switching it off.
287 	 */
288 	usleep_range(5000, 10000);
289 
290 	err = mac_dev->stop(mac_dev);
291 	if (err < 0)
292 		netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
293 			  err);
294 
295 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
296 		error = fman_port_disable(mac_dev->port[i]);
297 		if (error)
298 			err = error;
299 	}
300 
301 	if (net_dev->phydev)
302 		phy_disconnect(net_dev->phydev);
303 	net_dev->phydev = NULL;
304 
305 	return err;
306 }
307 
308 static void dpaa_tx_timeout(struct net_device *net_dev)
309 {
310 	struct dpaa_percpu_priv *percpu_priv;
311 	const struct dpaa_priv	*priv;
312 
313 	priv = netdev_priv(net_dev);
314 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
315 
316 	netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
317 		   jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
318 
319 	percpu_priv->stats.tx_errors++;
320 }
321 
322 /* Calculates the statistics for the given device by adding the statistics
323  * collected by each CPU.
324  */
325 static void dpaa_get_stats64(struct net_device *net_dev,
326 			     struct rtnl_link_stats64 *s)
327 {
328 	int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
329 	struct dpaa_priv *priv = netdev_priv(net_dev);
330 	struct dpaa_percpu_priv *percpu_priv;
331 	u64 *netstats = (u64 *)s;
332 	u64 *cpustats;
333 	int i, j;
334 
335 	for_each_possible_cpu(i) {
336 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
337 
338 		cpustats = (u64 *)&percpu_priv->stats;
339 
340 		/* add stats from all CPUs */
341 		for (j = 0; j < numstats; j++)
342 			netstats[j] += cpustats[j];
343 	}
344 }
345 
346 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
347 			 void *type_data)
348 {
349 	struct dpaa_priv *priv = netdev_priv(net_dev);
350 	struct tc_mqprio_qopt *mqprio = type_data;
351 	u8 num_tc;
352 	int i;
353 
354 	if (type != TC_SETUP_QDISC_MQPRIO)
355 		return -EOPNOTSUPP;
356 
357 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
358 	num_tc = mqprio->num_tc;
359 
360 	if (num_tc == priv->num_tc)
361 		return 0;
362 
363 	if (!num_tc) {
364 		netdev_reset_tc(net_dev);
365 		goto out;
366 	}
367 
368 	if (num_tc > DPAA_TC_NUM) {
369 		netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
370 			   DPAA_TC_NUM);
371 		return -EINVAL;
372 	}
373 
374 	netdev_set_num_tc(net_dev, num_tc);
375 
376 	for (i = 0; i < num_tc; i++)
377 		netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
378 				    i * DPAA_TC_TXQ_NUM);
379 
380 out:
381 	priv->num_tc = num_tc ? : 1;
382 	netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
383 	return 0;
384 }
385 
386 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
387 {
388 	struct dpaa_eth_data *eth_data;
389 	struct device *dpaa_dev;
390 	struct mac_device *mac_dev;
391 
392 	dpaa_dev = &pdev->dev;
393 	eth_data = dpaa_dev->platform_data;
394 	if (!eth_data) {
395 		dev_err(dpaa_dev, "eth_data missing\n");
396 		return ERR_PTR(-ENODEV);
397 	}
398 	mac_dev = eth_data->mac_dev;
399 	if (!mac_dev) {
400 		dev_err(dpaa_dev, "mac_dev missing\n");
401 		return ERR_PTR(-EINVAL);
402 	}
403 
404 	return mac_dev;
405 }
406 
407 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
408 {
409 	const struct dpaa_priv *priv;
410 	struct mac_device *mac_dev;
411 	struct sockaddr old_addr;
412 	int err;
413 
414 	priv = netdev_priv(net_dev);
415 
416 	memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
417 
418 	err = eth_mac_addr(net_dev, addr);
419 	if (err < 0) {
420 		netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
421 		return err;
422 	}
423 
424 	mac_dev = priv->mac_dev;
425 
426 	err = mac_dev->change_addr(mac_dev->fman_mac,
427 				   (enet_addr_t *)net_dev->dev_addr);
428 	if (err < 0) {
429 		netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
430 			  err);
431 		/* reverting to previous address */
432 		eth_mac_addr(net_dev, &old_addr);
433 
434 		return err;
435 	}
436 
437 	return 0;
438 }
439 
440 static void dpaa_set_rx_mode(struct net_device *net_dev)
441 {
442 	const struct dpaa_priv	*priv;
443 	int err;
444 
445 	priv = netdev_priv(net_dev);
446 
447 	if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
448 		priv->mac_dev->promisc = !priv->mac_dev->promisc;
449 		err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
450 						 priv->mac_dev->promisc);
451 		if (err < 0)
452 			netif_err(priv, drv, net_dev,
453 				  "mac_dev->set_promisc() = %d\n",
454 				  err);
455 	}
456 
457 	err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
458 	if (err < 0)
459 		netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
460 			  err);
461 }
462 
463 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
464 {
465 	if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
466 		return NULL;
467 
468 	return dpaa_bp_array[bpid];
469 }
470 
471 /* checks if this bpool is already allocated */
472 static bool dpaa_bpid2pool_use(int bpid)
473 {
474 	if (dpaa_bpid2pool(bpid)) {
475 		atomic_inc(&dpaa_bp_array[bpid]->refs);
476 		return true;
477 	}
478 
479 	return false;
480 }
481 
482 /* called only once per bpid by dpaa_bp_alloc_pool() */
483 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
484 {
485 	dpaa_bp_array[bpid] = dpaa_bp;
486 	atomic_set(&dpaa_bp->refs, 1);
487 }
488 
489 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
490 {
491 	int err;
492 
493 	if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
494 		pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
495 		       __func__);
496 		return -EINVAL;
497 	}
498 
499 	/* If the pool is already specified, we only create one per bpid */
500 	if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
501 	    dpaa_bpid2pool_use(dpaa_bp->bpid))
502 		return 0;
503 
504 	if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
505 		dpaa_bp->pool = bman_new_pool();
506 		if (!dpaa_bp->pool) {
507 			pr_err("%s: bman_new_pool() failed\n",
508 			       __func__);
509 			return -ENODEV;
510 		}
511 
512 		dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
513 	}
514 
515 	if (dpaa_bp->seed_cb) {
516 		err = dpaa_bp->seed_cb(dpaa_bp);
517 		if (err)
518 			goto pool_seed_failed;
519 	}
520 
521 	dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
522 
523 	return 0;
524 
525 pool_seed_failed:
526 	pr_err("%s: pool seeding failed\n", __func__);
527 	bman_free_pool(dpaa_bp->pool);
528 
529 	return err;
530 }
531 
532 /* remove and free all the buffers from the given buffer pool */
533 static void dpaa_bp_drain(struct dpaa_bp *bp)
534 {
535 	u8 num = 8;
536 	int ret;
537 
538 	do {
539 		struct bm_buffer bmb[8];
540 		int i;
541 
542 		ret = bman_acquire(bp->pool, bmb, num);
543 		if (ret < 0) {
544 			if (num == 8) {
545 				/* we have less than 8 buffers left;
546 				 * drain them one by one
547 				 */
548 				num = 1;
549 				ret = 1;
550 				continue;
551 			} else {
552 				/* Pool is fully drained */
553 				break;
554 			}
555 		}
556 
557 		if (bp->free_buf_cb)
558 			for (i = 0; i < num; i++)
559 				bp->free_buf_cb(bp, &bmb[i]);
560 	} while (ret > 0);
561 }
562 
563 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
564 {
565 	struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
566 
567 	/* the mapping between bpid and dpaa_bp is done very late in the
568 	 * allocation procedure; if something failed before the mapping, the bp
569 	 * was not configured, therefore we don't need the below instructions
570 	 */
571 	if (!bp)
572 		return;
573 
574 	if (!atomic_dec_and_test(&bp->refs))
575 		return;
576 
577 	if (bp->free_buf_cb)
578 		dpaa_bp_drain(bp);
579 
580 	dpaa_bp_array[bp->bpid] = NULL;
581 	bman_free_pool(bp->pool);
582 }
583 
584 static void dpaa_bps_free(struct dpaa_priv *priv)
585 {
586 	int i;
587 
588 	for (i = 0; i < DPAA_BPS_NUM; i++)
589 		dpaa_bp_free(priv->dpaa_bps[i]);
590 }
591 
592 /* Use multiple WQs for FQ assignment:
593  *	- Tx Confirmation queues go to WQ1.
594  *	- Rx Error and Tx Error queues go to WQ5 (giving them a better chance
595  *	  to be scheduled, in case there are many more FQs in WQ6).
596  *	- Rx Default goes to WQ6.
597  *	- Tx queues go to different WQs depending on their priority. Equal
598  *	  chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
599  *	  WQ0 (highest priority).
600  * This ensures that Tx-confirmed buffers are timely released. In particular,
601  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
602  * are greatly outnumbered by other FQs in the system, while
603  * dequeue scheduling is round-robin.
604  */
605 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
606 {
607 	switch (fq->fq_type) {
608 	case FQ_TYPE_TX_CONFIRM:
609 	case FQ_TYPE_TX_CONF_MQ:
610 		fq->wq = 1;
611 		break;
612 	case FQ_TYPE_RX_ERROR:
613 	case FQ_TYPE_TX_ERROR:
614 		fq->wq = 5;
615 		break;
616 	case FQ_TYPE_RX_DEFAULT:
617 	case FQ_TYPE_RX_PCD:
618 		fq->wq = 6;
619 		break;
620 	case FQ_TYPE_TX:
621 		switch (idx / DPAA_TC_TXQ_NUM) {
622 		case 0:
623 			/* Low priority (best effort) */
624 			fq->wq = 6;
625 			break;
626 		case 1:
627 			/* Medium priority */
628 			fq->wq = 2;
629 			break;
630 		case 2:
631 			/* High priority */
632 			fq->wq = 1;
633 			break;
634 		case 3:
635 			/* Very high priority */
636 			fq->wq = 0;
637 			break;
638 		default:
639 			WARN(1, "Too many TX FQs: more than %d!\n",
640 			     DPAA_ETH_TXQ_NUM);
641 		}
642 		break;
643 	default:
644 		WARN(1, "Invalid FQ type %d for FQID %d!\n",
645 		     fq->fq_type, fq->fqid);
646 	}
647 }
648 
649 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
650 				     u32 start, u32 count,
651 				     struct list_head *list,
652 				     enum dpaa_fq_type fq_type)
653 {
654 	struct dpaa_fq *dpaa_fq;
655 	int i;
656 
657 	dpaa_fq = devm_kzalloc(dev, sizeof(*dpaa_fq) * count,
658 			       GFP_KERNEL);
659 	if (!dpaa_fq)
660 		return NULL;
661 
662 	for (i = 0; i < count; i++) {
663 		dpaa_fq[i].fq_type = fq_type;
664 		dpaa_fq[i].fqid = start ? start + i : 0;
665 		list_add_tail(&dpaa_fq[i].list, list);
666 	}
667 
668 	for (i = 0; i < count; i++)
669 		dpaa_assign_wq(dpaa_fq + i, i);
670 
671 	return dpaa_fq;
672 }
673 
674 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
675 			      struct fm_port_fqs *port_fqs)
676 {
677 	struct dpaa_fq *dpaa_fq;
678 	u32 fq_base, fq_base_aligned, i;
679 
680 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
681 	if (!dpaa_fq)
682 		goto fq_alloc_failed;
683 
684 	port_fqs->rx_errq = &dpaa_fq[0];
685 
686 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
687 	if (!dpaa_fq)
688 		goto fq_alloc_failed;
689 
690 	port_fqs->rx_defq = &dpaa_fq[0];
691 
692 	/* the PCD FQIDs range needs to be aligned for correct operation */
693 	if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
694 		goto fq_alloc_failed;
695 
696 	fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
697 
698 	for (i = fq_base; i < fq_base_aligned; i++)
699 		qman_release_fqid(i);
700 
701 	for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
702 	     i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
703 		qman_release_fqid(i);
704 
705 	dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
706 				list, FQ_TYPE_RX_PCD);
707 	if (!dpaa_fq)
708 		goto fq_alloc_failed;
709 
710 	port_fqs->rx_pcdq = &dpaa_fq[0];
711 
712 	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
713 		goto fq_alloc_failed;
714 
715 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
716 	if (!dpaa_fq)
717 		goto fq_alloc_failed;
718 
719 	port_fqs->tx_errq = &dpaa_fq[0];
720 
721 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
722 	if (!dpaa_fq)
723 		goto fq_alloc_failed;
724 
725 	port_fqs->tx_defq = &dpaa_fq[0];
726 
727 	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
728 		goto fq_alloc_failed;
729 
730 	return 0;
731 
732 fq_alloc_failed:
733 	dev_err(dev, "dpaa_fq_alloc() failed\n");
734 	return -ENOMEM;
735 }
736 
737 static u32 rx_pool_channel;
738 static DEFINE_SPINLOCK(rx_pool_channel_init);
739 
740 static int dpaa_get_channel(void)
741 {
742 	spin_lock(&rx_pool_channel_init);
743 	if (!rx_pool_channel) {
744 		u32 pool;
745 		int ret;
746 
747 		ret = qman_alloc_pool(&pool);
748 
749 		if (!ret)
750 			rx_pool_channel = pool;
751 	}
752 	spin_unlock(&rx_pool_channel_init);
753 	if (!rx_pool_channel)
754 		return -ENOMEM;
755 	return rx_pool_channel;
756 }
757 
758 static void dpaa_release_channel(void)
759 {
760 	qman_release_pool(rx_pool_channel);
761 }
762 
763 static void dpaa_eth_add_channel(u16 channel)
764 {
765 	u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
766 	const cpumask_t *cpus = qman_affine_cpus();
767 	struct qman_portal *portal;
768 	int cpu;
769 
770 	for_each_cpu(cpu, cpus) {
771 		portal = qman_get_affine_portal(cpu);
772 		qman_p_static_dequeue_add(portal, pool);
773 	}
774 }
775 
776 /* Congestion group state change notification callback.
777  * Stops the device's egress queues while they are congested and
778  * wakes them upon exiting congested state.
779  * Also updates some CGR-related stats.
780  */
781 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
782 			   int congested)
783 {
784 	struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
785 		struct dpaa_priv, cgr_data.cgr);
786 
787 	if (congested) {
788 		priv->cgr_data.congestion_start_jiffies = jiffies;
789 		netif_tx_stop_all_queues(priv->net_dev);
790 		priv->cgr_data.cgr_congested_count++;
791 	} else {
792 		priv->cgr_data.congested_jiffies +=
793 			(jiffies - priv->cgr_data.congestion_start_jiffies);
794 		netif_tx_wake_all_queues(priv->net_dev);
795 	}
796 }
797 
798 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
799 {
800 	struct qm_mcc_initcgr initcgr;
801 	u32 cs_th;
802 	int err;
803 
804 	err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
805 	if (err < 0) {
806 		if (netif_msg_drv(priv))
807 			pr_err("%s: Error %d allocating CGR ID\n",
808 			       __func__, err);
809 		goto out_error;
810 	}
811 	priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
812 
813 	/* Enable Congestion State Change Notifications and CS taildrop */
814 	memset(&initcgr, 0, sizeof(initcgr));
815 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
816 	initcgr.cgr.cscn_en = QM_CGR_EN;
817 
818 	/* Set different thresholds based on the MAC speed.
819 	 * This may turn suboptimal if the MAC is reconfigured at a speed
820 	 * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
821 	 * In such cases, we ought to reconfigure the threshold, too.
822 	 */
823 	if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
824 		cs_th = DPAA_CS_THRESHOLD_10G;
825 	else
826 		cs_th = DPAA_CS_THRESHOLD_1G;
827 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
828 
829 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
830 	initcgr.cgr.cstd_en = QM_CGR_EN;
831 
832 	err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
833 			      &initcgr);
834 	if (err < 0) {
835 		if (netif_msg_drv(priv))
836 			pr_err("%s: Error %d creating CGR with ID %d\n",
837 			       __func__, err, priv->cgr_data.cgr.cgrid);
838 		qman_release_cgrid(priv->cgr_data.cgr.cgrid);
839 		goto out_error;
840 	}
841 	if (netif_msg_drv(priv))
842 		pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
843 			 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
844 			 priv->cgr_data.cgr.chan);
845 
846 out_error:
847 	return err;
848 }
849 
850 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
851 				      struct dpaa_fq *fq,
852 				      const struct qman_fq *template)
853 {
854 	fq->fq_base = *template;
855 	fq->net_dev = priv->net_dev;
856 
857 	fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
858 	fq->channel = priv->channel;
859 }
860 
861 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
862 				     struct dpaa_fq *fq,
863 				     struct fman_port *port,
864 				     const struct qman_fq *template)
865 {
866 	fq->fq_base = *template;
867 	fq->net_dev = priv->net_dev;
868 
869 	if (port) {
870 		fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
871 		fq->channel = (u16)fman_port_get_qman_channel_id(port);
872 	} else {
873 		fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
874 	}
875 }
876 
877 static void dpaa_fq_setup(struct dpaa_priv *priv,
878 			  const struct dpaa_fq_cbs *fq_cbs,
879 			  struct fman_port *tx_port)
880 {
881 	int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
882 	const cpumask_t *affine_cpus = qman_affine_cpus();
883 	u16 channels[NR_CPUS];
884 	struct dpaa_fq *fq;
885 
886 	for_each_cpu(cpu, affine_cpus)
887 		channels[num_portals++] = qman_affine_channel(cpu);
888 
889 	if (num_portals == 0)
890 		dev_err(priv->net_dev->dev.parent,
891 			"No Qman software (affine) channels found");
892 
893 	/* Initialize each FQ in the list */
894 	list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
895 		switch (fq->fq_type) {
896 		case FQ_TYPE_RX_DEFAULT:
897 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
898 			break;
899 		case FQ_TYPE_RX_ERROR:
900 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
901 			break;
902 		case FQ_TYPE_RX_PCD:
903 			if (!num_portals)
904 				continue;
905 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
906 			fq->channel = channels[portal_cnt++ % num_portals];
907 			break;
908 		case FQ_TYPE_TX:
909 			dpaa_setup_egress(priv, fq, tx_port,
910 					  &fq_cbs->egress_ern);
911 			/* If we have more Tx queues than the number of cores,
912 			 * just ignore the extra ones.
913 			 */
914 			if (egress_cnt < DPAA_ETH_TXQ_NUM)
915 				priv->egress_fqs[egress_cnt++] = &fq->fq_base;
916 			break;
917 		case FQ_TYPE_TX_CONF_MQ:
918 			priv->conf_fqs[conf_cnt++] = &fq->fq_base;
919 			/* fall through */
920 		case FQ_TYPE_TX_CONFIRM:
921 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
922 			break;
923 		case FQ_TYPE_TX_ERROR:
924 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
925 			break;
926 		default:
927 			dev_warn(priv->net_dev->dev.parent,
928 				 "Unknown FQ type detected!\n");
929 			break;
930 		}
931 	}
932 
933 	 /* Make sure all CPUs receive a corresponding Tx queue. */
934 	while (egress_cnt < DPAA_ETH_TXQ_NUM) {
935 		list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
936 			if (fq->fq_type != FQ_TYPE_TX)
937 				continue;
938 			priv->egress_fqs[egress_cnt++] = &fq->fq_base;
939 			if (egress_cnt == DPAA_ETH_TXQ_NUM)
940 				break;
941 		}
942 	}
943 }
944 
945 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
946 				   struct qman_fq *tx_fq)
947 {
948 	int i;
949 
950 	for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
951 		if (priv->egress_fqs[i] == tx_fq)
952 			return i;
953 
954 	return -EINVAL;
955 }
956 
957 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
958 {
959 	const struct dpaa_priv	*priv;
960 	struct qman_fq *confq = NULL;
961 	struct qm_mcc_initfq initfq;
962 	struct device *dev;
963 	struct qman_fq *fq;
964 	int queue_id;
965 	int err;
966 
967 	priv = netdev_priv(dpaa_fq->net_dev);
968 	dev = dpaa_fq->net_dev->dev.parent;
969 
970 	if (dpaa_fq->fqid == 0)
971 		dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
972 
973 	dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
974 
975 	err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
976 	if (err) {
977 		dev_err(dev, "qman_create_fq() failed\n");
978 		return err;
979 	}
980 	fq = &dpaa_fq->fq_base;
981 
982 	if (dpaa_fq->init) {
983 		memset(&initfq, 0, sizeof(initfq));
984 
985 		initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
986 		/* Note: we may get to keep an empty FQ in cache */
987 		initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
988 
989 		/* Try to reduce the number of portal interrupts for
990 		 * Tx Confirmation FQs.
991 		 */
992 		if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
993 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
994 
995 		/* FQ placement */
996 		initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
997 
998 		qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
999 
1000 		/* Put all egress queues in a congestion group of their own.
1001 		 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1002 		 * rather than Tx - but they nonetheless account for the
1003 		 * memory footprint on behalf of egress traffic. We therefore
1004 		 * place them in the netdev's CGR, along with the Tx FQs.
1005 		 */
1006 		if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1007 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1008 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1009 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1010 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1011 			initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1012 			/* Set a fixed overhead accounting, in an attempt to
1013 			 * reduce the impact of fixed-size skb shells and the
1014 			 * driver's needed headroom on system memory. This is
1015 			 * especially the case when the egress traffic is
1016 			 * composed of small datagrams.
1017 			 * Unfortunately, QMan's OAL value is capped to an
1018 			 * insufficient value, but even that is better than
1019 			 * no overhead accounting at all.
1020 			 */
1021 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1022 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1023 			qm_fqd_set_oal(&initfq.fqd,
1024 				       min(sizeof(struct sk_buff) +
1025 				       priv->tx_headroom,
1026 				       (size_t)FSL_QMAN_MAX_OAL));
1027 		}
1028 
1029 		if (td_enable) {
1030 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1031 			qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1032 			initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1033 		}
1034 
1035 		if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1036 			queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1037 			if (queue_id >= 0)
1038 				confq = priv->conf_fqs[queue_id];
1039 			if (confq) {
1040 				initfq.we_mask |=
1041 					cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1042 			/* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1043 			 *	     A2V=1 (contextA A2 field is valid)
1044 			 *	     A0V=1 (contextA A0 field is valid)
1045 			 *	     B0V=1 (contextB field is valid)
1046 			 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1047 			 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1048 			 */
1049 				qm_fqd_context_a_set64(&initfq.fqd,
1050 						       0x1e00000080000000ULL);
1051 			}
1052 		}
1053 
1054 		/* Put all the ingress queues in our "ingress CGR". */
1055 		if (priv->use_ingress_cgr &&
1056 		    (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1057 		     dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1058 		     dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1059 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1060 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1061 			initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1062 			/* Set a fixed overhead accounting, just like for the
1063 			 * egress CGR.
1064 			 */
1065 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1066 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1067 			qm_fqd_set_oal(&initfq.fqd,
1068 				       min(sizeof(struct sk_buff) +
1069 				       priv->tx_headroom,
1070 				       (size_t)FSL_QMAN_MAX_OAL));
1071 		}
1072 
1073 		/* Initialization common to all ingress queues */
1074 		if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1075 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1076 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1077 						QM_FQCTRL_CTXASTASHING);
1078 			initfq.fqd.context_a.stashing.exclusive =
1079 				QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1080 				QM_STASHING_EXCL_ANNOTATION;
1081 			qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1082 					    DIV_ROUND_UP(sizeof(struct qman_fq),
1083 							 64));
1084 		}
1085 
1086 		err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1087 		if (err < 0) {
1088 			dev_err(dev, "qman_init_fq(%u) = %d\n",
1089 				qman_fq_fqid(fq), err);
1090 			qman_destroy_fq(fq);
1091 			return err;
1092 		}
1093 	}
1094 
1095 	dpaa_fq->fqid = qman_fq_fqid(fq);
1096 
1097 	return 0;
1098 }
1099 
1100 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1101 {
1102 	const struct dpaa_priv  *priv;
1103 	struct dpaa_fq *dpaa_fq;
1104 	int err, error;
1105 
1106 	err = 0;
1107 
1108 	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1109 	priv = netdev_priv(dpaa_fq->net_dev);
1110 
1111 	if (dpaa_fq->init) {
1112 		err = qman_retire_fq(fq, NULL);
1113 		if (err < 0 && netif_msg_drv(priv))
1114 			dev_err(dev, "qman_retire_fq(%u) = %d\n",
1115 				qman_fq_fqid(fq), err);
1116 
1117 		error = qman_oos_fq(fq);
1118 		if (error < 0 && netif_msg_drv(priv)) {
1119 			dev_err(dev, "qman_oos_fq(%u) = %d\n",
1120 				qman_fq_fqid(fq), error);
1121 			if (err >= 0)
1122 				err = error;
1123 		}
1124 	}
1125 
1126 	qman_destroy_fq(fq);
1127 	list_del(&dpaa_fq->list);
1128 
1129 	return err;
1130 }
1131 
1132 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1133 {
1134 	struct dpaa_fq *dpaa_fq, *tmp;
1135 	int err, error;
1136 
1137 	err = 0;
1138 	list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1139 		error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1140 		if (error < 0 && err >= 0)
1141 			err = error;
1142 	}
1143 
1144 	return err;
1145 }
1146 
1147 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1148 				 struct dpaa_fq *defq,
1149 				 struct dpaa_buffer_layout *buf_layout)
1150 {
1151 	struct fman_buffer_prefix_content buf_prefix_content;
1152 	struct fman_port_params params;
1153 	int err;
1154 
1155 	memset(&params, 0, sizeof(params));
1156 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1157 
1158 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1159 	buf_prefix_content.pass_prs_result = true;
1160 	buf_prefix_content.pass_hash_result = true;
1161 	buf_prefix_content.pass_time_stamp = false;
1162 	buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1163 
1164 	params.specific_params.non_rx_params.err_fqid = errq->fqid;
1165 	params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1166 
1167 	err = fman_port_config(port, &params);
1168 	if (err) {
1169 		pr_err("%s: fman_port_config failed\n", __func__);
1170 		return err;
1171 	}
1172 
1173 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1174 	if (err) {
1175 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1176 		       __func__);
1177 		return err;
1178 	}
1179 
1180 	err = fman_port_init(port);
1181 	if (err)
1182 		pr_err("%s: fm_port_init failed\n", __func__);
1183 
1184 	return err;
1185 }
1186 
1187 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps,
1188 				 size_t count, struct dpaa_fq *errq,
1189 				 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1190 				 struct dpaa_buffer_layout *buf_layout)
1191 {
1192 	struct fman_buffer_prefix_content buf_prefix_content;
1193 	struct fman_port_rx_params *rx_p;
1194 	struct fman_port_params params;
1195 	int i, err;
1196 
1197 	memset(&params, 0, sizeof(params));
1198 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1199 
1200 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1201 	buf_prefix_content.pass_prs_result = true;
1202 	buf_prefix_content.pass_hash_result = true;
1203 	buf_prefix_content.pass_time_stamp = false;
1204 	buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1205 
1206 	rx_p = &params.specific_params.rx_params;
1207 	rx_p->err_fqid = errq->fqid;
1208 	rx_p->dflt_fqid = defq->fqid;
1209 	if (pcdq) {
1210 		rx_p->pcd_base_fqid = pcdq->fqid;
1211 		rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1212 	}
1213 
1214 	count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count);
1215 	rx_p->ext_buf_pools.num_of_pools_used = (u8)count;
1216 	for (i = 0; i < count; i++) {
1217 		rx_p->ext_buf_pools.ext_buf_pool[i].id =  bps[i]->bpid;
1218 		rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size;
1219 	}
1220 
1221 	err = fman_port_config(port, &params);
1222 	if (err) {
1223 		pr_err("%s: fman_port_config failed\n", __func__);
1224 		return err;
1225 	}
1226 
1227 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1228 	if (err) {
1229 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1230 		       __func__);
1231 		return err;
1232 	}
1233 
1234 	err = fman_port_init(port);
1235 	if (err)
1236 		pr_err("%s: fm_port_init failed\n", __func__);
1237 
1238 	return err;
1239 }
1240 
1241 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1242 			       struct dpaa_bp **bps, size_t count,
1243 			       struct fm_port_fqs *port_fqs,
1244 			       struct dpaa_buffer_layout *buf_layout,
1245 			       struct device *dev)
1246 {
1247 	struct fman_port *rxport = mac_dev->port[RX];
1248 	struct fman_port *txport = mac_dev->port[TX];
1249 	int err;
1250 
1251 	err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1252 				    port_fqs->tx_defq, &buf_layout[TX]);
1253 	if (err)
1254 		return err;
1255 
1256 	err = dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq,
1257 				    port_fqs->rx_defq, port_fqs->rx_pcdq,
1258 				    &buf_layout[RX]);
1259 
1260 	return err;
1261 }
1262 
1263 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1264 			     struct bm_buffer *bmb, int cnt)
1265 {
1266 	int err;
1267 
1268 	err = bman_release(dpaa_bp->pool, bmb, cnt);
1269 	/* Should never occur, address anyway to avoid leaking the buffers */
1270 	if (unlikely(WARN_ON(err)) && dpaa_bp->free_buf_cb)
1271 		while (cnt-- > 0)
1272 			dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1273 
1274 	return cnt;
1275 }
1276 
1277 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1278 {
1279 	struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1280 	struct dpaa_bp *dpaa_bp;
1281 	int i = 0, j;
1282 
1283 	memset(bmb, 0, sizeof(bmb));
1284 
1285 	do {
1286 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1287 		if (!dpaa_bp)
1288 			return;
1289 
1290 		j = 0;
1291 		do {
1292 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1293 
1294 			bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1295 
1296 			j++; i++;
1297 		} while (j < ARRAY_SIZE(bmb) &&
1298 				!qm_sg_entry_is_final(&sgt[i - 1]) &&
1299 				sgt[i - 1].bpid == sgt[i].bpid);
1300 
1301 		dpaa_bman_release(dpaa_bp, bmb, j);
1302 	} while (!qm_sg_entry_is_final(&sgt[i - 1]));
1303 }
1304 
1305 static void dpaa_fd_release(const struct net_device *net_dev,
1306 			    const struct qm_fd *fd)
1307 {
1308 	struct qm_sg_entry *sgt;
1309 	struct dpaa_bp *dpaa_bp;
1310 	struct bm_buffer bmb;
1311 	dma_addr_t addr;
1312 	void *vaddr;
1313 
1314 	bmb.data = 0;
1315 	bm_buffer_set64(&bmb, qm_fd_addr(fd));
1316 
1317 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1318 	if (!dpaa_bp)
1319 		return;
1320 
1321 	if (qm_fd_get_format(fd) == qm_fd_sg) {
1322 		vaddr = phys_to_virt(qm_fd_addr(fd));
1323 		sgt = vaddr + qm_fd_get_offset(fd);
1324 
1325 		dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size,
1326 				 DMA_FROM_DEVICE);
1327 
1328 		dpaa_release_sgt_members(sgt);
1329 
1330 		addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size,
1331 				      DMA_FROM_DEVICE);
1332 		if (dma_mapping_error(dpaa_bp->dev, addr)) {
1333 			dev_err(dpaa_bp->dev, "DMA mapping failed");
1334 			return;
1335 		}
1336 		bm_buffer_set64(&bmb, addr);
1337 	}
1338 
1339 	dpaa_bman_release(dpaa_bp, &bmb, 1);
1340 }
1341 
1342 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1343 		      const union qm_mr_entry *msg)
1344 {
1345 	switch (msg->ern.rc & QM_MR_RC_MASK) {
1346 	case QM_MR_RC_CGR_TAILDROP:
1347 		percpu_priv->ern_cnt.cg_tdrop++;
1348 		break;
1349 	case QM_MR_RC_WRED:
1350 		percpu_priv->ern_cnt.wred++;
1351 		break;
1352 	case QM_MR_RC_ERROR:
1353 		percpu_priv->ern_cnt.err_cond++;
1354 		break;
1355 	case QM_MR_RC_ORPWINDOW_EARLY:
1356 		percpu_priv->ern_cnt.early_window++;
1357 		break;
1358 	case QM_MR_RC_ORPWINDOW_LATE:
1359 		percpu_priv->ern_cnt.late_window++;
1360 		break;
1361 	case QM_MR_RC_FQ_TAILDROP:
1362 		percpu_priv->ern_cnt.fq_tdrop++;
1363 		break;
1364 	case QM_MR_RC_ORPWINDOW_RETIRED:
1365 		percpu_priv->ern_cnt.fq_retired++;
1366 		break;
1367 	case QM_MR_RC_ORP_ZERO:
1368 		percpu_priv->ern_cnt.orp_zero++;
1369 		break;
1370 	}
1371 }
1372 
1373 /* Turn on HW checksum computation for this outgoing frame.
1374  * If the current protocol is not something we support in this regard
1375  * (or if the stack has already computed the SW checksum), we do nothing.
1376  *
1377  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1378  * otherwise.
1379  *
1380  * Note that this function may modify the fd->cmd field and the skb data buffer
1381  * (the Parse Results area).
1382  */
1383 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1384 			       struct sk_buff *skb,
1385 			       struct qm_fd *fd,
1386 			       char *parse_results)
1387 {
1388 	struct fman_prs_result *parse_result;
1389 	u16 ethertype = ntohs(skb->protocol);
1390 	struct ipv6hdr *ipv6h = NULL;
1391 	struct iphdr *iph;
1392 	int retval = 0;
1393 	u8 l4_proto;
1394 
1395 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1396 		return 0;
1397 
1398 	/* Note: L3 csum seems to be already computed in sw, but we can't choose
1399 	 * L4 alone from the FM configuration anyway.
1400 	 */
1401 
1402 	/* Fill in some fields of the Parse Results array, so the FMan
1403 	 * can find them as if they came from the FMan Parser.
1404 	 */
1405 	parse_result = (struct fman_prs_result *)parse_results;
1406 
1407 	/* If we're dealing with VLAN, get the real Ethernet type */
1408 	if (ethertype == ETH_P_8021Q) {
1409 		/* We can't always assume the MAC header is set correctly
1410 		 * by the stack, so reset to beginning of skb->data
1411 		 */
1412 		skb_reset_mac_header(skb);
1413 		ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1414 	}
1415 
1416 	/* Fill in the relevant L3 parse result fields
1417 	 * and read the L4 protocol type
1418 	 */
1419 	switch (ethertype) {
1420 	case ETH_P_IP:
1421 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1422 		iph = ip_hdr(skb);
1423 		WARN_ON(!iph);
1424 		l4_proto = iph->protocol;
1425 		break;
1426 	case ETH_P_IPV6:
1427 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1428 		ipv6h = ipv6_hdr(skb);
1429 		WARN_ON(!ipv6h);
1430 		l4_proto = ipv6h->nexthdr;
1431 		break;
1432 	default:
1433 		/* We shouldn't even be here */
1434 		if (net_ratelimit())
1435 			netif_alert(priv, tx_err, priv->net_dev,
1436 				    "Can't compute HW csum for L3 proto 0x%x\n",
1437 				    ntohs(skb->protocol));
1438 		retval = -EIO;
1439 		goto return_error;
1440 	}
1441 
1442 	/* Fill in the relevant L4 parse result fields */
1443 	switch (l4_proto) {
1444 	case IPPROTO_UDP:
1445 		parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1446 		break;
1447 	case IPPROTO_TCP:
1448 		parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1449 		break;
1450 	default:
1451 		if (net_ratelimit())
1452 			netif_alert(priv, tx_err, priv->net_dev,
1453 				    "Can't compute HW csum for L4 proto 0x%x\n",
1454 				    l4_proto);
1455 		retval = -EIO;
1456 		goto return_error;
1457 	}
1458 
1459 	/* At index 0 is IPOffset_1 as defined in the Parse Results */
1460 	parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1461 	parse_result->l4_off = (u8)skb_transport_offset(skb);
1462 
1463 	/* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1464 	fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1465 
1466 	/* On P1023 and similar platforms fd->cmd interpretation could
1467 	 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1468 	 * is not set so we do not need to check; in the future, if/when
1469 	 * using context_a we need to check this bit
1470 	 */
1471 
1472 return_error:
1473 	return retval;
1474 }
1475 
1476 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1477 {
1478 	struct device *dev = dpaa_bp->dev;
1479 	struct bm_buffer bmb[8];
1480 	dma_addr_t addr;
1481 	void *new_buf;
1482 	u8 i;
1483 
1484 	for (i = 0; i < 8; i++) {
1485 		new_buf = netdev_alloc_frag(dpaa_bp->raw_size);
1486 		if (unlikely(!new_buf)) {
1487 			dev_err(dev, "netdev_alloc_frag() failed, size %zu\n",
1488 				dpaa_bp->raw_size);
1489 			goto release_previous_buffs;
1490 		}
1491 		new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES);
1492 
1493 		addr = dma_map_single(dev, new_buf,
1494 				      dpaa_bp->size, DMA_FROM_DEVICE);
1495 		if (unlikely(dma_mapping_error(dev, addr))) {
1496 			dev_err(dpaa_bp->dev, "DMA map failed");
1497 			goto release_previous_buffs;
1498 		}
1499 
1500 		bmb[i].data = 0;
1501 		bm_buffer_set64(&bmb[i], addr);
1502 	}
1503 
1504 release_bufs:
1505 	return dpaa_bman_release(dpaa_bp, bmb, i);
1506 
1507 release_previous_buffs:
1508 	WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1509 
1510 	bm_buffer_set64(&bmb[i], 0);
1511 	/* Avoid releasing a completely null buffer; bman_release() requires
1512 	 * at least one buffer.
1513 	 */
1514 	if (likely(i))
1515 		goto release_bufs;
1516 
1517 	return 0;
1518 }
1519 
1520 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1521 {
1522 	int i;
1523 
1524 	/* Give each CPU an allotment of "config_count" buffers */
1525 	for_each_possible_cpu(i) {
1526 		int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1527 		int j;
1528 
1529 		/* Although we access another CPU's counters here
1530 		 * we do it at boot time so it is safe
1531 		 */
1532 		for (j = 0; j < dpaa_bp->config_count; j += 8)
1533 			*count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1534 	}
1535 	return 0;
1536 }
1537 
1538 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1539  * REFILL_THRESHOLD.
1540  */
1541 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1542 {
1543 	int count = *countptr;
1544 	int new_bufs;
1545 
1546 	if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1547 		do {
1548 			new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1549 			if (unlikely(!new_bufs)) {
1550 				/* Avoid looping forever if we've temporarily
1551 				 * run out of memory. We'll try again at the
1552 				 * next NAPI cycle.
1553 				 */
1554 				break;
1555 			}
1556 			count += new_bufs;
1557 		} while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1558 
1559 		*countptr = count;
1560 		if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1561 			return -ENOMEM;
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1568 {
1569 	struct dpaa_bp *dpaa_bp;
1570 	int *countptr;
1571 	int res, i;
1572 
1573 	for (i = 0; i < DPAA_BPS_NUM; i++) {
1574 		dpaa_bp = priv->dpaa_bps[i];
1575 		if (!dpaa_bp)
1576 			return -EINVAL;
1577 		countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1578 		res  = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1579 		if (res)
1580 			return res;
1581 	}
1582 	return 0;
1583 }
1584 
1585 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1586  * either contiguous frames or scatter/gather ones.
1587  * Skb freeing is not handled here.
1588  *
1589  * This function may be called on error paths in the Tx function, so guard
1590  * against cases when not all fd relevant fields were filled in.
1591  *
1592  * Return the skb backpointer, since for S/G frames the buffer containing it
1593  * gets freed here.
1594  */
1595 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1596 					  const struct qm_fd *fd)
1597 {
1598 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1599 	struct device *dev = priv->net_dev->dev.parent;
1600 	dma_addr_t addr = qm_fd_addr(fd);
1601 	const struct qm_sg_entry *sgt;
1602 	struct sk_buff **skbh, *skb;
1603 	int nr_frags, i;
1604 
1605 	skbh = (struct sk_buff **)phys_to_virt(addr);
1606 	skb = *skbh;
1607 
1608 	if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1609 		nr_frags = skb_shinfo(skb)->nr_frags;
1610 		dma_unmap_single(dev, addr, qm_fd_get_offset(fd) +
1611 				 sizeof(struct qm_sg_entry) * (1 + nr_frags),
1612 				 dma_dir);
1613 
1614 		/* The sgt buffer has been allocated with netdev_alloc_frag(),
1615 		 * it's from lowmem.
1616 		 */
1617 		sgt = phys_to_virt(addr + qm_fd_get_offset(fd));
1618 
1619 		/* sgt[0] is from lowmem, was dma_map_single()-ed */
1620 		dma_unmap_single(dev, qm_sg_addr(&sgt[0]),
1621 				 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1622 
1623 		/* remaining pages were mapped with skb_frag_dma_map() */
1624 		for (i = 1; i < nr_frags; i++) {
1625 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1626 
1627 			dma_unmap_page(dev, qm_sg_addr(&sgt[i]),
1628 				       qm_sg_entry_get_len(&sgt[i]), dma_dir);
1629 		}
1630 
1631 		/* Free the page frag that we allocated on Tx */
1632 		skb_free_frag(phys_to_virt(addr));
1633 	} else {
1634 		dma_unmap_single(dev, addr,
1635 				 skb_tail_pointer(skb) - (u8 *)skbh, dma_dir);
1636 	}
1637 
1638 	return skb;
1639 }
1640 
1641 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1642 {
1643 	/* The parser has run and performed L4 checksum validation.
1644 	 * We know there were no parser errors (and implicitly no
1645 	 * L4 csum error), otherwise we wouldn't be here.
1646 	 */
1647 	if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1648 	    (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1649 		return CHECKSUM_UNNECESSARY;
1650 
1651 	/* We're here because either the parser didn't run or the L4 checksum
1652 	 * was not verified. This may include the case of a UDP frame with
1653 	 * checksum zero or an L4 proto other than TCP/UDP
1654 	 */
1655 	return CHECKSUM_NONE;
1656 }
1657 
1658 /* Build a linear skb around the received buffer.
1659  * We are guaranteed there is enough room at the end of the data buffer to
1660  * accommodate the shared info area of the skb.
1661  */
1662 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1663 					const struct qm_fd *fd)
1664 {
1665 	ssize_t fd_off = qm_fd_get_offset(fd);
1666 	dma_addr_t addr = qm_fd_addr(fd);
1667 	struct dpaa_bp *dpaa_bp;
1668 	struct sk_buff *skb;
1669 	void *vaddr;
1670 
1671 	vaddr = phys_to_virt(addr);
1672 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1673 
1674 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1675 	if (!dpaa_bp)
1676 		goto free_buffer;
1677 
1678 	skb = build_skb(vaddr, dpaa_bp->size +
1679 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1680 	if (unlikely(!skb)) {
1681 		WARN_ONCE(1, "Build skb failure on Rx\n");
1682 		goto free_buffer;
1683 	}
1684 	WARN_ON(fd_off != priv->rx_headroom);
1685 	skb_reserve(skb, fd_off);
1686 	skb_put(skb, qm_fd_get_length(fd));
1687 
1688 	skb->ip_summed = rx_csum_offload(priv, fd);
1689 
1690 	return skb;
1691 
1692 free_buffer:
1693 	skb_free_frag(vaddr);
1694 	return NULL;
1695 }
1696 
1697 /* Build an skb with the data of the first S/G entry in the linear portion and
1698  * the rest of the frame as skb fragments.
1699  *
1700  * The page fragment holding the S/G Table is recycled here.
1701  */
1702 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1703 				    const struct qm_fd *fd)
1704 {
1705 	ssize_t fd_off = qm_fd_get_offset(fd);
1706 	dma_addr_t addr = qm_fd_addr(fd);
1707 	const struct qm_sg_entry *sgt;
1708 	struct page *page, *head_page;
1709 	struct dpaa_bp *dpaa_bp;
1710 	void *vaddr, *sg_vaddr;
1711 	int frag_off, frag_len;
1712 	struct sk_buff *skb;
1713 	dma_addr_t sg_addr;
1714 	int page_offset;
1715 	unsigned int sz;
1716 	int *count_ptr;
1717 	int i;
1718 
1719 	vaddr = phys_to_virt(addr);
1720 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1721 
1722 	/* Iterate through the SGT entries and add data buffers to the skb */
1723 	sgt = vaddr + fd_off;
1724 	skb = NULL;
1725 	for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1726 		/* Extension bit is not supported */
1727 		WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1728 
1729 		sg_addr = qm_sg_addr(&sgt[i]);
1730 		sg_vaddr = phys_to_virt(sg_addr);
1731 		WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
1732 				    SMP_CACHE_BYTES));
1733 
1734 		/* We may use multiple Rx pools */
1735 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1736 		if (!dpaa_bp)
1737 			goto free_buffers;
1738 
1739 		count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1740 		dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size,
1741 				 DMA_FROM_DEVICE);
1742 		if (!skb) {
1743 			sz = dpaa_bp->size +
1744 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1745 			skb = build_skb(sg_vaddr, sz);
1746 			if (WARN_ON(unlikely(!skb)))
1747 				goto free_buffers;
1748 
1749 			skb->ip_summed = rx_csum_offload(priv, fd);
1750 
1751 			/* Make sure forwarded skbs will have enough space
1752 			 * on Tx, if extra headers are added.
1753 			 */
1754 			WARN_ON(fd_off != priv->rx_headroom);
1755 			skb_reserve(skb, fd_off);
1756 			skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1757 		} else {
1758 			/* Not the first S/G entry; all data from buffer will
1759 			 * be added in an skb fragment; fragment index is offset
1760 			 * by one since first S/G entry was incorporated in the
1761 			 * linear part of the skb.
1762 			 *
1763 			 * Caution: 'page' may be a tail page.
1764 			 */
1765 			page = virt_to_page(sg_vaddr);
1766 			head_page = virt_to_head_page(sg_vaddr);
1767 
1768 			/* Compute offset in (possibly tail) page */
1769 			page_offset = ((unsigned long)sg_vaddr &
1770 					(PAGE_SIZE - 1)) +
1771 				(page_address(page) - page_address(head_page));
1772 			/* page_offset only refers to the beginning of sgt[i];
1773 			 * but the buffer itself may have an internal offset.
1774 			 */
1775 			frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1776 			frag_len = qm_sg_entry_get_len(&sgt[i]);
1777 			/* skb_add_rx_frag() does no checking on the page; if
1778 			 * we pass it a tail page, we'll end up with
1779 			 * bad page accounting and eventually with segafults.
1780 			 */
1781 			skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1782 					frag_len, dpaa_bp->size);
1783 		}
1784 		/* Update the pool count for the current {cpu x bpool} */
1785 		(*count_ptr)--;
1786 
1787 		if (qm_sg_entry_is_final(&sgt[i]))
1788 			break;
1789 	}
1790 	WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1791 
1792 	/* free the SG table buffer */
1793 	skb_free_frag(vaddr);
1794 
1795 	return skb;
1796 
1797 free_buffers:
1798 	/* compensate sw bpool counter changes */
1799 	for (i--; i >= 0; i--) {
1800 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1801 		if (dpaa_bp) {
1802 			count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1803 			(*count_ptr)++;
1804 		}
1805 	}
1806 	/* free all the SG entries */
1807 	for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) {
1808 		sg_addr = qm_sg_addr(&sgt[i]);
1809 		sg_vaddr = phys_to_virt(sg_addr);
1810 		skb_free_frag(sg_vaddr);
1811 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1812 		if (dpaa_bp) {
1813 			count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1814 			(*count_ptr)--;
1815 		}
1816 
1817 		if (qm_sg_entry_is_final(&sgt[i]))
1818 			break;
1819 	}
1820 	/* free the SGT fragment */
1821 	skb_free_frag(vaddr);
1822 
1823 	return NULL;
1824 }
1825 
1826 static int skb_to_contig_fd(struct dpaa_priv *priv,
1827 			    struct sk_buff *skb, struct qm_fd *fd,
1828 			    int *offset)
1829 {
1830 	struct net_device *net_dev = priv->net_dev;
1831 	struct device *dev = net_dev->dev.parent;
1832 	enum dma_data_direction dma_dir;
1833 	unsigned char *buffer_start;
1834 	struct sk_buff **skbh;
1835 	dma_addr_t addr;
1836 	int err;
1837 
1838 	/* We are guaranteed to have at least tx_headroom bytes
1839 	 * available, so just use that for offset.
1840 	 */
1841 	fd->bpid = FSL_DPAA_BPID_INV;
1842 	buffer_start = skb->data - priv->tx_headroom;
1843 	dma_dir = DMA_TO_DEVICE;
1844 
1845 	skbh = (struct sk_buff **)buffer_start;
1846 	*skbh = skb;
1847 
1848 	/* Enable L3/L4 hardware checksum computation.
1849 	 *
1850 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1851 	 * need to write into the skb.
1852 	 */
1853 	err = dpaa_enable_tx_csum(priv, skb, fd,
1854 				  ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE);
1855 	if (unlikely(err < 0)) {
1856 		if (net_ratelimit())
1857 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1858 				  err);
1859 		return err;
1860 	}
1861 
1862 	/* Fill in the rest of the FD fields */
1863 	qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1864 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1865 
1866 	/* Map the entire buffer size that may be seen by FMan, but no more */
1867 	addr = dma_map_single(dev, skbh,
1868 			      skb_tail_pointer(skb) - buffer_start, dma_dir);
1869 	if (unlikely(dma_mapping_error(dev, addr))) {
1870 		if (net_ratelimit())
1871 			netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1872 		return -EINVAL;
1873 	}
1874 	qm_fd_addr_set64(fd, addr);
1875 
1876 	return 0;
1877 }
1878 
1879 static int skb_to_sg_fd(struct dpaa_priv *priv,
1880 			struct sk_buff *skb, struct qm_fd *fd)
1881 {
1882 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1883 	const int nr_frags = skb_shinfo(skb)->nr_frags;
1884 	struct net_device *net_dev = priv->net_dev;
1885 	struct device *dev = net_dev->dev.parent;
1886 	struct qm_sg_entry *sgt;
1887 	struct sk_buff **skbh;
1888 	int i, j, err, sz;
1889 	void *buffer_start;
1890 	skb_frag_t *frag;
1891 	dma_addr_t addr;
1892 	size_t frag_len;
1893 	void *sgt_buf;
1894 
1895 	/* get a page frag to store the SGTable */
1896 	sz = SKB_DATA_ALIGN(priv->tx_headroom +
1897 		sizeof(struct qm_sg_entry) * (1 + nr_frags));
1898 	sgt_buf = netdev_alloc_frag(sz);
1899 	if (unlikely(!sgt_buf)) {
1900 		netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n",
1901 			   sz);
1902 		return -ENOMEM;
1903 	}
1904 
1905 	/* Enable L3/L4 hardware checksum computation.
1906 	 *
1907 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1908 	 * need to write into the skb.
1909 	 */
1910 	err = dpaa_enable_tx_csum(priv, skb, fd,
1911 				  sgt_buf + DPAA_TX_PRIV_DATA_SIZE);
1912 	if (unlikely(err < 0)) {
1913 		if (net_ratelimit())
1914 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1915 				  err);
1916 		goto csum_failed;
1917 	}
1918 
1919 	sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom);
1920 	qm_sg_entry_set_len(&sgt[0], skb_headlen(skb));
1921 	sgt[0].bpid = FSL_DPAA_BPID_INV;
1922 	sgt[0].offset = 0;
1923 	addr = dma_map_single(dev, skb->data,
1924 			      skb_headlen(skb), dma_dir);
1925 	if (unlikely(dma_mapping_error(dev, addr))) {
1926 		dev_err(dev, "DMA mapping failed");
1927 		err = -EINVAL;
1928 		goto sg0_map_failed;
1929 	}
1930 	qm_sg_entry_set64(&sgt[0], addr);
1931 
1932 	/* populate the rest of SGT entries */
1933 	frag = &skb_shinfo(skb)->frags[0];
1934 	frag_len = frag->size;
1935 	for (i = 1; i <= nr_frags; i++, frag++) {
1936 		WARN_ON(!skb_frag_page(frag));
1937 		addr = skb_frag_dma_map(dev, frag, 0,
1938 					frag_len, dma_dir);
1939 		if (unlikely(dma_mapping_error(dev, addr))) {
1940 			dev_err(dev, "DMA mapping failed");
1941 			err = -EINVAL;
1942 			goto sg_map_failed;
1943 		}
1944 
1945 		qm_sg_entry_set_len(&sgt[i], frag_len);
1946 		sgt[i].bpid = FSL_DPAA_BPID_INV;
1947 		sgt[i].offset = 0;
1948 
1949 		/* keep the offset in the address */
1950 		qm_sg_entry_set64(&sgt[i], addr);
1951 		frag_len = frag->size;
1952 	}
1953 	qm_sg_entry_set_f(&sgt[i - 1], frag_len);
1954 
1955 	qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
1956 
1957 	/* DMA map the SGT page */
1958 	buffer_start = (void *)sgt - priv->tx_headroom;
1959 	skbh = (struct sk_buff **)buffer_start;
1960 	*skbh = skb;
1961 
1962 	addr = dma_map_single(dev, buffer_start, priv->tx_headroom +
1963 			      sizeof(struct qm_sg_entry) * (1 + nr_frags),
1964 			      dma_dir);
1965 	if (unlikely(dma_mapping_error(dev, addr))) {
1966 		dev_err(dev, "DMA mapping failed");
1967 		err = -EINVAL;
1968 		goto sgt_map_failed;
1969 	}
1970 
1971 	fd->bpid = FSL_DPAA_BPID_INV;
1972 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1973 	qm_fd_addr_set64(fd, addr);
1974 
1975 	return 0;
1976 
1977 sgt_map_failed:
1978 sg_map_failed:
1979 	for (j = 0; j < i; j++)
1980 		dma_unmap_page(dev, qm_sg_addr(&sgt[j]),
1981 			       qm_sg_entry_get_len(&sgt[j]), dma_dir);
1982 sg0_map_failed:
1983 csum_failed:
1984 	skb_free_frag(sgt_buf);
1985 
1986 	return err;
1987 }
1988 
1989 static inline int dpaa_xmit(struct dpaa_priv *priv,
1990 			    struct rtnl_link_stats64 *percpu_stats,
1991 			    int queue,
1992 			    struct qm_fd *fd)
1993 {
1994 	struct qman_fq *egress_fq;
1995 	int err, i;
1996 
1997 	egress_fq = priv->egress_fqs[queue];
1998 	if (fd->bpid == FSL_DPAA_BPID_INV)
1999 		fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2000 
2001 	/* Trace this Tx fd */
2002 	trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2003 
2004 	for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2005 		err = qman_enqueue(egress_fq, fd);
2006 		if (err != -EBUSY)
2007 			break;
2008 	}
2009 
2010 	if (unlikely(err < 0)) {
2011 		percpu_stats->tx_errors++;
2012 		percpu_stats->tx_fifo_errors++;
2013 		return err;
2014 	}
2015 
2016 	percpu_stats->tx_packets++;
2017 	percpu_stats->tx_bytes += qm_fd_get_length(fd);
2018 
2019 	return 0;
2020 }
2021 
2022 static int dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2023 {
2024 	const int queue_mapping = skb_get_queue_mapping(skb);
2025 	bool nonlinear = skb_is_nonlinear(skb);
2026 	struct rtnl_link_stats64 *percpu_stats;
2027 	struct dpaa_percpu_priv *percpu_priv;
2028 	struct dpaa_priv *priv;
2029 	struct qm_fd fd;
2030 	int offset = 0;
2031 	int err = 0;
2032 
2033 	priv = netdev_priv(net_dev);
2034 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2035 	percpu_stats = &percpu_priv->stats;
2036 
2037 	qm_fd_clear_fd(&fd);
2038 
2039 	if (!nonlinear) {
2040 		/* We're going to store the skb backpointer at the beginning
2041 		 * of the data buffer, so we need a privately owned skb
2042 		 *
2043 		 * We've made sure skb is not shared in dev->priv_flags,
2044 		 * we need to verify the skb head is not cloned
2045 		 */
2046 		if (skb_cow_head(skb, priv->tx_headroom))
2047 			goto enomem;
2048 
2049 		WARN_ON(skb_is_nonlinear(skb));
2050 	}
2051 
2052 	/* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2053 	 * make sure we don't feed FMan with more fragments than it supports.
2054 	 */
2055 	if (nonlinear &&
2056 	    likely(skb_shinfo(skb)->nr_frags < DPAA_SGT_MAX_ENTRIES)) {
2057 		/* Just create a S/G fd based on the skb */
2058 		err = skb_to_sg_fd(priv, skb, &fd);
2059 		percpu_priv->tx_frag_skbuffs++;
2060 	} else {
2061 		/* If the egress skb contains more fragments than we support
2062 		 * we have no choice but to linearize it ourselves.
2063 		 */
2064 		if (unlikely(nonlinear) && __skb_linearize(skb))
2065 			goto enomem;
2066 
2067 		/* Finally, create a contig FD from this skb */
2068 		err = skb_to_contig_fd(priv, skb, &fd, &offset);
2069 	}
2070 	if (unlikely(err < 0))
2071 		goto skb_to_fd_failed;
2072 
2073 	if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2074 		return NETDEV_TX_OK;
2075 
2076 	dpaa_cleanup_tx_fd(priv, &fd);
2077 skb_to_fd_failed:
2078 enomem:
2079 	percpu_stats->tx_errors++;
2080 	dev_kfree_skb(skb);
2081 	return NETDEV_TX_OK;
2082 }
2083 
2084 static void dpaa_rx_error(struct net_device *net_dev,
2085 			  const struct dpaa_priv *priv,
2086 			  struct dpaa_percpu_priv *percpu_priv,
2087 			  const struct qm_fd *fd,
2088 			  u32 fqid)
2089 {
2090 	if (net_ratelimit())
2091 		netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2092 			  be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2093 
2094 	percpu_priv->stats.rx_errors++;
2095 
2096 	if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2097 		percpu_priv->rx_errors.dme++;
2098 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2099 		percpu_priv->rx_errors.fpe++;
2100 	if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2101 		percpu_priv->rx_errors.fse++;
2102 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2103 		percpu_priv->rx_errors.phe++;
2104 
2105 	dpaa_fd_release(net_dev, fd);
2106 }
2107 
2108 static void dpaa_tx_error(struct net_device *net_dev,
2109 			  const struct dpaa_priv *priv,
2110 			  struct dpaa_percpu_priv *percpu_priv,
2111 			  const struct qm_fd *fd,
2112 			  u32 fqid)
2113 {
2114 	struct sk_buff *skb;
2115 
2116 	if (net_ratelimit())
2117 		netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2118 			   be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2119 
2120 	percpu_priv->stats.tx_errors++;
2121 
2122 	skb = dpaa_cleanup_tx_fd(priv, fd);
2123 	dev_kfree_skb(skb);
2124 }
2125 
2126 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2127 {
2128 	struct dpaa_napi_portal *np =
2129 			container_of(napi, struct dpaa_napi_portal, napi);
2130 
2131 	int cleaned = qman_p_poll_dqrr(np->p, budget);
2132 
2133 	if (cleaned < budget) {
2134 		napi_complete_done(napi, cleaned);
2135 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2136 
2137 	} else if (np->down) {
2138 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2139 	}
2140 
2141 	return cleaned;
2142 }
2143 
2144 static void dpaa_tx_conf(struct net_device *net_dev,
2145 			 const struct dpaa_priv *priv,
2146 			 struct dpaa_percpu_priv *percpu_priv,
2147 			 const struct qm_fd *fd,
2148 			 u32 fqid)
2149 {
2150 	struct sk_buff	*skb;
2151 
2152 	if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2153 		if (net_ratelimit())
2154 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2155 				   be32_to_cpu(fd->status) &
2156 				   FM_FD_STAT_TX_ERRORS);
2157 
2158 		percpu_priv->stats.tx_errors++;
2159 	}
2160 
2161 	percpu_priv->tx_confirm++;
2162 
2163 	skb = dpaa_cleanup_tx_fd(priv, fd);
2164 
2165 	consume_skb(skb);
2166 }
2167 
2168 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2169 					 struct qman_portal *portal)
2170 {
2171 	if (unlikely(in_irq() || !in_serving_softirq())) {
2172 		/* Disable QMan IRQ and invoke NAPI */
2173 		qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2174 
2175 		percpu_priv->np.p = portal;
2176 		napi_schedule(&percpu_priv->np.napi);
2177 		percpu_priv->in_interrupt++;
2178 		return 1;
2179 	}
2180 	return 0;
2181 }
2182 
2183 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2184 					      struct qman_fq *fq,
2185 					      const struct qm_dqrr_entry *dq)
2186 {
2187 	struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2188 	struct dpaa_percpu_priv *percpu_priv;
2189 	struct net_device *net_dev;
2190 	struct dpaa_bp *dpaa_bp;
2191 	struct dpaa_priv *priv;
2192 
2193 	net_dev = dpaa_fq->net_dev;
2194 	priv = netdev_priv(net_dev);
2195 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2196 	if (!dpaa_bp)
2197 		return qman_cb_dqrr_consume;
2198 
2199 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2200 
2201 	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2202 		return qman_cb_dqrr_stop;
2203 
2204 	if (dpaa_eth_refill_bpools(priv))
2205 		/* Unable to refill the buffer pool due to insufficient
2206 		 * system memory. Just release the frame back into the pool,
2207 		 * otherwise we'll soon end up with an empty buffer pool.
2208 		 */
2209 		dpaa_fd_release(net_dev, &dq->fd);
2210 	else
2211 		dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2212 
2213 	return qman_cb_dqrr_consume;
2214 }
2215 
2216 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2217 						struct qman_fq *fq,
2218 						const struct qm_dqrr_entry *dq)
2219 {
2220 	struct rtnl_link_stats64 *percpu_stats;
2221 	struct dpaa_percpu_priv *percpu_priv;
2222 	const struct qm_fd *fd = &dq->fd;
2223 	dma_addr_t addr = qm_fd_addr(fd);
2224 	enum qm_fd_format fd_format;
2225 	struct net_device *net_dev;
2226 	u32 fd_status, hash_offset;
2227 	struct dpaa_bp *dpaa_bp;
2228 	struct dpaa_priv *priv;
2229 	unsigned int skb_len;
2230 	struct sk_buff *skb;
2231 	int *count_ptr;
2232 	void *vaddr;
2233 
2234 	fd_status = be32_to_cpu(fd->status);
2235 	fd_format = qm_fd_get_format(fd);
2236 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2237 	priv = netdev_priv(net_dev);
2238 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2239 	if (!dpaa_bp)
2240 		return qman_cb_dqrr_consume;
2241 
2242 	/* Trace the Rx fd */
2243 	trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2244 
2245 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2246 	percpu_stats = &percpu_priv->stats;
2247 
2248 	if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2249 		return qman_cb_dqrr_stop;
2250 
2251 	/* Make sure we didn't run out of buffers */
2252 	if (unlikely(dpaa_eth_refill_bpools(priv))) {
2253 		/* Unable to refill the buffer pool due to insufficient
2254 		 * system memory. Just release the frame back into the pool,
2255 		 * otherwise we'll soon end up with an empty buffer pool.
2256 		 */
2257 		dpaa_fd_release(net_dev, &dq->fd);
2258 		return qman_cb_dqrr_consume;
2259 	}
2260 
2261 	if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2262 		if (net_ratelimit())
2263 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2264 				   fd_status & FM_FD_STAT_RX_ERRORS);
2265 
2266 		percpu_stats->rx_errors++;
2267 		dpaa_fd_release(net_dev, fd);
2268 		return qman_cb_dqrr_consume;
2269 	}
2270 
2271 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
2272 	if (!dpaa_bp)
2273 		return qman_cb_dqrr_consume;
2274 
2275 	dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE);
2276 
2277 	/* prefetch the first 64 bytes of the frame or the SGT start */
2278 	vaddr = phys_to_virt(addr);
2279 	prefetch(vaddr + qm_fd_get_offset(fd));
2280 
2281 	fd_format = qm_fd_get_format(fd);
2282 	/* The only FD types that we may receive are contig and S/G */
2283 	WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2284 
2285 	/* Account for either the contig buffer or the SGT buffer (depending on
2286 	 * which case we were in) having been removed from the pool.
2287 	 */
2288 	count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2289 	(*count_ptr)--;
2290 
2291 	if (likely(fd_format == qm_fd_contig))
2292 		skb = contig_fd_to_skb(priv, fd);
2293 	else
2294 		skb = sg_fd_to_skb(priv, fd);
2295 	if (!skb)
2296 		return qman_cb_dqrr_consume;
2297 
2298 	skb->protocol = eth_type_trans(skb, net_dev);
2299 
2300 	if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2301 	    !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2302 					      &hash_offset)) {
2303 		enum pkt_hash_types type;
2304 
2305 		/* if L4 exists, it was used in the hash generation */
2306 		type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2307 			PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2308 		skb_set_hash(skb, be32_to_cpu(*(u32 *)(vaddr + hash_offset)),
2309 			     type);
2310 	}
2311 
2312 	skb_len = skb->len;
2313 
2314 	if (unlikely(netif_receive_skb(skb) == NET_RX_DROP))
2315 		return qman_cb_dqrr_consume;
2316 
2317 	percpu_stats->rx_packets++;
2318 	percpu_stats->rx_bytes += skb_len;
2319 
2320 	return qman_cb_dqrr_consume;
2321 }
2322 
2323 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2324 						struct qman_fq *fq,
2325 						const struct qm_dqrr_entry *dq)
2326 {
2327 	struct dpaa_percpu_priv *percpu_priv;
2328 	struct net_device *net_dev;
2329 	struct dpaa_priv *priv;
2330 
2331 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2332 	priv = netdev_priv(net_dev);
2333 
2334 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2335 
2336 	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2337 		return qman_cb_dqrr_stop;
2338 
2339 	dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2340 
2341 	return qman_cb_dqrr_consume;
2342 }
2343 
2344 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2345 					       struct qman_fq *fq,
2346 					       const struct qm_dqrr_entry *dq)
2347 {
2348 	struct dpaa_percpu_priv *percpu_priv;
2349 	struct net_device *net_dev;
2350 	struct dpaa_priv *priv;
2351 
2352 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2353 	priv = netdev_priv(net_dev);
2354 
2355 	/* Trace the fd */
2356 	trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2357 
2358 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2359 
2360 	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2361 		return qman_cb_dqrr_stop;
2362 
2363 	dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2364 
2365 	return qman_cb_dqrr_consume;
2366 }
2367 
2368 static void egress_ern(struct qman_portal *portal,
2369 		       struct qman_fq *fq,
2370 		       const union qm_mr_entry *msg)
2371 {
2372 	const struct qm_fd *fd = &msg->ern.fd;
2373 	struct dpaa_percpu_priv *percpu_priv;
2374 	const struct dpaa_priv *priv;
2375 	struct net_device *net_dev;
2376 	struct sk_buff *skb;
2377 
2378 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2379 	priv = netdev_priv(net_dev);
2380 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2381 
2382 	percpu_priv->stats.tx_dropped++;
2383 	percpu_priv->stats.tx_fifo_errors++;
2384 	count_ern(percpu_priv, msg);
2385 
2386 	skb = dpaa_cleanup_tx_fd(priv, fd);
2387 	dev_kfree_skb_any(skb);
2388 }
2389 
2390 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2391 	.rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2392 	.tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2393 	.rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2394 	.tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2395 	.egress_ern = { .cb = { .ern = egress_ern } }
2396 };
2397 
2398 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2399 {
2400 	struct dpaa_percpu_priv *percpu_priv;
2401 	int i;
2402 
2403 	for_each_possible_cpu(i) {
2404 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2405 
2406 		percpu_priv->np.down = 0;
2407 		napi_enable(&percpu_priv->np.napi);
2408 	}
2409 }
2410 
2411 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2412 {
2413 	struct dpaa_percpu_priv *percpu_priv;
2414 	int i;
2415 
2416 	for_each_possible_cpu(i) {
2417 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2418 
2419 		percpu_priv->np.down = 1;
2420 		napi_disable(&percpu_priv->np.napi);
2421 	}
2422 }
2423 
2424 static void dpaa_adjust_link(struct net_device *net_dev)
2425 {
2426 	struct mac_device *mac_dev;
2427 	struct dpaa_priv *priv;
2428 
2429 	priv = netdev_priv(net_dev);
2430 	mac_dev = priv->mac_dev;
2431 	mac_dev->adjust_link(mac_dev);
2432 }
2433 
2434 static int dpaa_phy_init(struct net_device *net_dev)
2435 {
2436 	struct mac_device *mac_dev;
2437 	struct phy_device *phy_dev;
2438 	struct dpaa_priv *priv;
2439 
2440 	priv = netdev_priv(net_dev);
2441 	mac_dev = priv->mac_dev;
2442 
2443 	phy_dev = of_phy_connect(net_dev, mac_dev->phy_node,
2444 				 &dpaa_adjust_link, 0,
2445 				 mac_dev->phy_if);
2446 	if (!phy_dev) {
2447 		netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2448 		return -ENODEV;
2449 	}
2450 
2451 	/* Remove any features not supported by the controller */
2452 	phy_dev->supported &= mac_dev->if_support;
2453 	phy_dev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
2454 	phy_dev->advertising = phy_dev->supported;
2455 
2456 	mac_dev->phy_dev = phy_dev;
2457 	net_dev->phydev = phy_dev;
2458 
2459 	return 0;
2460 }
2461 
2462 static int dpaa_open(struct net_device *net_dev)
2463 {
2464 	struct mac_device *mac_dev;
2465 	struct dpaa_priv *priv;
2466 	int err, i;
2467 
2468 	priv = netdev_priv(net_dev);
2469 	mac_dev = priv->mac_dev;
2470 	dpaa_eth_napi_enable(priv);
2471 
2472 	err = dpaa_phy_init(net_dev);
2473 	if (err)
2474 		goto phy_init_failed;
2475 
2476 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2477 		err = fman_port_enable(mac_dev->port[i]);
2478 		if (err)
2479 			goto mac_start_failed;
2480 	}
2481 
2482 	err = priv->mac_dev->start(mac_dev);
2483 	if (err < 0) {
2484 		netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2485 		goto mac_start_failed;
2486 	}
2487 
2488 	netif_tx_start_all_queues(net_dev);
2489 
2490 	return 0;
2491 
2492 mac_start_failed:
2493 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2494 		fman_port_disable(mac_dev->port[i]);
2495 
2496 phy_init_failed:
2497 	dpaa_eth_napi_disable(priv);
2498 
2499 	return err;
2500 }
2501 
2502 static int dpaa_eth_stop(struct net_device *net_dev)
2503 {
2504 	struct dpaa_priv *priv;
2505 	int err;
2506 
2507 	err = dpaa_stop(net_dev);
2508 
2509 	priv = netdev_priv(net_dev);
2510 	dpaa_eth_napi_disable(priv);
2511 
2512 	return err;
2513 }
2514 
2515 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2516 {
2517 	if (!net_dev->phydev)
2518 		return -EINVAL;
2519 	return phy_mii_ioctl(net_dev->phydev, rq, cmd);
2520 }
2521 
2522 static const struct net_device_ops dpaa_ops = {
2523 	.ndo_open = dpaa_open,
2524 	.ndo_start_xmit = dpaa_start_xmit,
2525 	.ndo_stop = dpaa_eth_stop,
2526 	.ndo_tx_timeout = dpaa_tx_timeout,
2527 	.ndo_get_stats64 = dpaa_get_stats64,
2528 	.ndo_set_mac_address = dpaa_set_mac_address,
2529 	.ndo_validate_addr = eth_validate_addr,
2530 	.ndo_set_rx_mode = dpaa_set_rx_mode,
2531 	.ndo_do_ioctl = dpaa_ioctl,
2532 	.ndo_setup_tc = dpaa_setup_tc,
2533 };
2534 
2535 static int dpaa_napi_add(struct net_device *net_dev)
2536 {
2537 	struct dpaa_priv *priv = netdev_priv(net_dev);
2538 	struct dpaa_percpu_priv *percpu_priv;
2539 	int cpu;
2540 
2541 	for_each_possible_cpu(cpu) {
2542 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2543 
2544 		netif_napi_add(net_dev, &percpu_priv->np.napi,
2545 			       dpaa_eth_poll, NAPI_POLL_WEIGHT);
2546 	}
2547 
2548 	return 0;
2549 }
2550 
2551 static void dpaa_napi_del(struct net_device *net_dev)
2552 {
2553 	struct dpaa_priv *priv = netdev_priv(net_dev);
2554 	struct dpaa_percpu_priv *percpu_priv;
2555 	int cpu;
2556 
2557 	for_each_possible_cpu(cpu) {
2558 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2559 
2560 		netif_napi_del(&percpu_priv->np.napi);
2561 	}
2562 }
2563 
2564 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2565 				   struct bm_buffer *bmb)
2566 {
2567 	dma_addr_t addr = bm_buf_addr(bmb);
2568 
2569 	dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE);
2570 
2571 	skb_free_frag(phys_to_virt(addr));
2572 }
2573 
2574 /* Alloc the dpaa_bp struct and configure default values */
2575 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2576 {
2577 	struct dpaa_bp *dpaa_bp;
2578 
2579 	dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2580 	if (!dpaa_bp)
2581 		return ERR_PTR(-ENOMEM);
2582 
2583 	dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2584 	dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2585 	if (!dpaa_bp->percpu_count)
2586 		return ERR_PTR(-ENOMEM);
2587 
2588 	dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2589 
2590 	dpaa_bp->seed_cb = dpaa_bp_seed;
2591 	dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2592 
2593 	return dpaa_bp;
2594 }
2595 
2596 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2597  * We won't be sending congestion notifications to FMan; for now, we just use
2598  * this CGR to generate enqueue rejections to FMan in order to drop the frames
2599  * before they reach our ingress queues and eat up memory.
2600  */
2601 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2602 {
2603 	struct qm_mcc_initcgr initcgr;
2604 	u32 cs_th;
2605 	int err;
2606 
2607 	err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2608 	if (err < 0) {
2609 		if (netif_msg_drv(priv))
2610 			pr_err("Error %d allocating CGR ID\n", err);
2611 		goto out_error;
2612 	}
2613 
2614 	/* Enable CS TD, but disable Congestion State Change Notifications. */
2615 	memset(&initcgr, 0, sizeof(initcgr));
2616 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
2617 	initcgr.cgr.cscn_en = QM_CGR_EN;
2618 	cs_th = DPAA_INGRESS_CS_THRESHOLD;
2619 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2620 
2621 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
2622 	initcgr.cgr.cstd_en = QM_CGR_EN;
2623 
2624 	/* This CGR will be associated with the SWP affined to the current CPU.
2625 	 * However, we'll place all our ingress FQs in it.
2626 	 */
2627 	err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2628 			      &initcgr);
2629 	if (err < 0) {
2630 		if (netif_msg_drv(priv))
2631 			pr_err("Error %d creating ingress CGR with ID %d\n",
2632 			       err, priv->ingress_cgr.cgrid);
2633 		qman_release_cgrid(priv->ingress_cgr.cgrid);
2634 		goto out_error;
2635 	}
2636 	if (netif_msg_drv(priv))
2637 		pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2638 			 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2639 
2640 	priv->use_ingress_cgr = true;
2641 
2642 out_error:
2643 	return err;
2644 }
2645 
2646 static const struct of_device_id dpaa_match[];
2647 
2648 static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
2649 {
2650 	u16 headroom;
2651 
2652 	/* The frame headroom must accommodate:
2653 	 * - the driver private data area
2654 	 * - parse results, hash results, timestamp if selected
2655 	 * If either hash results or time stamp are selected, both will
2656 	 * be copied to/from the frame headroom, as TS is located between PR and
2657 	 * HR in the IC and IC copy size has a granularity of 16bytes
2658 	 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2659 	 *
2660 	 * Also make sure the headroom is a multiple of data_align bytes
2661 	 */
2662 	headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
2663 		DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
2664 
2665 	return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom,
2666 					      DPAA_FD_DATA_ALIGNMENT) :
2667 					headroom;
2668 }
2669 
2670 static int dpaa_eth_probe(struct platform_device *pdev)
2671 {
2672 	struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL};
2673 	struct net_device *net_dev = NULL;
2674 	struct dpaa_fq *dpaa_fq, *tmp;
2675 	struct dpaa_priv *priv = NULL;
2676 	struct fm_port_fqs port_fqs;
2677 	struct mac_device *mac_dev;
2678 	int err = 0, i, channel;
2679 	struct device *dev;
2680 
2681 	/* device used for DMA mapping */
2682 	dev = pdev->dev.parent;
2683 	err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40));
2684 	if (err) {
2685 		dev_err(dev, "dma_coerce_mask_and_coherent() failed\n");
2686 		return err;
2687 	}
2688 
2689 	/* Allocate this early, so we can store relevant information in
2690 	 * the private area
2691 	 */
2692 	net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2693 	if (!net_dev) {
2694 		dev_err(dev, "alloc_etherdev_mq() failed\n");
2695 		return -ENOMEM;
2696 	}
2697 
2698 	/* Do this here, so we can be verbose early */
2699 	SET_NETDEV_DEV(net_dev, dev);
2700 	dev_set_drvdata(dev, net_dev);
2701 
2702 	priv = netdev_priv(net_dev);
2703 	priv->net_dev = net_dev;
2704 
2705 	priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2706 
2707 	mac_dev = dpaa_mac_dev_get(pdev);
2708 	if (IS_ERR(mac_dev)) {
2709 		dev_err(dev, "dpaa_mac_dev_get() failed\n");
2710 		err = PTR_ERR(mac_dev);
2711 		goto free_netdev;
2712 	}
2713 
2714 	/* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2715 	 * we choose conservatively and let the user explicitly set a higher
2716 	 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2717 	 * in the same LAN.
2718 	 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2719 	 * start with the maximum allowed.
2720 	 */
2721 	net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2722 
2723 	netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2724 		   net_dev->mtu);
2725 
2726 	priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2727 	priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2728 
2729 	/* bp init */
2730 	for (i = 0; i < DPAA_BPS_NUM; i++) {
2731 		dpaa_bps[i] = dpaa_bp_alloc(dev);
2732 		if (IS_ERR(dpaa_bps[i])) {
2733 			err = PTR_ERR(dpaa_bps[i]);
2734 			goto free_dpaa_bps;
2735 		}
2736 		/* the raw size of the buffers used for reception */
2737 		dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM);
2738 		/* avoid runtime computations by keeping the usable size here */
2739 		dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size);
2740 		dpaa_bps[i]->dev = dev;
2741 
2742 		err = dpaa_bp_alloc_pool(dpaa_bps[i]);
2743 		if (err < 0)
2744 			goto free_dpaa_bps;
2745 		priv->dpaa_bps[i] = dpaa_bps[i];
2746 	}
2747 
2748 	INIT_LIST_HEAD(&priv->dpaa_fq_list);
2749 
2750 	memset(&port_fqs, 0, sizeof(port_fqs));
2751 
2752 	err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2753 	if (err < 0) {
2754 		dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2755 		goto free_dpaa_bps;
2756 	}
2757 
2758 	priv->mac_dev = mac_dev;
2759 
2760 	channel = dpaa_get_channel();
2761 	if (channel < 0) {
2762 		dev_err(dev, "dpaa_get_channel() failed\n");
2763 		err = channel;
2764 		goto free_dpaa_bps;
2765 	}
2766 
2767 	priv->channel = (u16)channel;
2768 
2769 	/* Start a thread that will walk the CPUs with affine portals
2770 	 * and add this pool channel to each's dequeue mask.
2771 	 */
2772 	dpaa_eth_add_channel(priv->channel);
2773 
2774 	dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
2775 
2776 	/* Create a congestion group for this netdev, with
2777 	 * dynamically-allocated CGR ID.
2778 	 * Must be executed after probing the MAC, but before
2779 	 * assigning the egress FQs to the CGRs.
2780 	 */
2781 	err = dpaa_eth_cgr_init(priv);
2782 	if (err < 0) {
2783 		dev_err(dev, "Error initializing CGR\n");
2784 		goto free_dpaa_bps;
2785 	}
2786 
2787 	err = dpaa_ingress_cgr_init(priv);
2788 	if (err < 0) {
2789 		dev_err(dev, "Error initializing ingress CGR\n");
2790 		goto delete_egress_cgr;
2791 	}
2792 
2793 	/* Add the FQs to the interface, and make them active */
2794 	list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
2795 		err = dpaa_fq_init(dpaa_fq, false);
2796 		if (err < 0)
2797 			goto free_dpaa_fqs;
2798 	}
2799 
2800 	priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
2801 	priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
2802 
2803 	/* All real interfaces need their ports initialized */
2804 	err = dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs,
2805 				  &priv->buf_layout[0], dev);
2806 	if (err)
2807 		goto free_dpaa_fqs;
2808 
2809 	/* Rx traffic distribution based on keygen hashing defaults to on */
2810 	priv->keygen_in_use = true;
2811 
2812 	priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
2813 	if (!priv->percpu_priv) {
2814 		dev_err(dev, "devm_alloc_percpu() failed\n");
2815 		err = -ENOMEM;
2816 		goto free_dpaa_fqs;
2817 	}
2818 
2819 	priv->num_tc = 1;
2820 	netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
2821 
2822 	/* Initialize NAPI */
2823 	err = dpaa_napi_add(net_dev);
2824 	if (err < 0)
2825 		goto delete_dpaa_napi;
2826 
2827 	err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
2828 	if (err < 0)
2829 		goto delete_dpaa_napi;
2830 
2831 	dpaa_eth_sysfs_init(&net_dev->dev);
2832 
2833 	netif_info(priv, probe, net_dev, "Probed interface %s\n",
2834 		   net_dev->name);
2835 
2836 	return 0;
2837 
2838 delete_dpaa_napi:
2839 	dpaa_napi_del(net_dev);
2840 free_dpaa_fqs:
2841 	dpaa_fq_free(dev, &priv->dpaa_fq_list);
2842 	qman_delete_cgr_safe(&priv->ingress_cgr);
2843 	qman_release_cgrid(priv->ingress_cgr.cgrid);
2844 delete_egress_cgr:
2845 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
2846 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2847 free_dpaa_bps:
2848 	dpaa_bps_free(priv);
2849 free_netdev:
2850 	dev_set_drvdata(dev, NULL);
2851 	free_netdev(net_dev);
2852 
2853 	return err;
2854 }
2855 
2856 static int dpaa_remove(struct platform_device *pdev)
2857 {
2858 	struct net_device *net_dev;
2859 	struct dpaa_priv *priv;
2860 	struct device *dev;
2861 	int err;
2862 
2863 	dev = &pdev->dev;
2864 	net_dev = dev_get_drvdata(dev);
2865 
2866 	priv = netdev_priv(net_dev);
2867 
2868 	dpaa_eth_sysfs_remove(dev);
2869 
2870 	dev_set_drvdata(dev, NULL);
2871 	unregister_netdev(net_dev);
2872 
2873 	err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
2874 
2875 	qman_delete_cgr_safe(&priv->ingress_cgr);
2876 	qman_release_cgrid(priv->ingress_cgr.cgrid);
2877 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
2878 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2879 
2880 	dpaa_napi_del(net_dev);
2881 
2882 	dpaa_bps_free(priv);
2883 
2884 	free_netdev(net_dev);
2885 
2886 	return err;
2887 }
2888 
2889 static const struct platform_device_id dpaa_devtype[] = {
2890 	{
2891 		.name = "dpaa-ethernet",
2892 		.driver_data = 0,
2893 	}, {
2894 	}
2895 };
2896 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
2897 
2898 static struct platform_driver dpaa_driver = {
2899 	.driver = {
2900 		.name = KBUILD_MODNAME,
2901 	},
2902 	.id_table = dpaa_devtype,
2903 	.probe = dpaa_eth_probe,
2904 	.remove = dpaa_remove
2905 };
2906 
2907 static int __init dpaa_load(void)
2908 {
2909 	int err;
2910 
2911 	pr_debug("FSL DPAA Ethernet driver\n");
2912 
2913 	/* initialize dpaa_eth mirror values */
2914 	dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
2915 	dpaa_max_frm = fman_get_max_frm();
2916 
2917 	err = platform_driver_register(&dpaa_driver);
2918 	if (err < 0)
2919 		pr_err("Error, platform_driver_register() = %d\n", err);
2920 
2921 	return err;
2922 }
2923 module_init(dpaa_load);
2924 
2925 static void __exit dpaa_unload(void)
2926 {
2927 	platform_driver_unregister(&dpaa_driver);
2928 
2929 	/* Only one channel is used and needs to be released after all
2930 	 * interfaces are removed
2931 	 */
2932 	dpaa_release_channel();
2933 }
2934 module_exit(dpaa_unload);
2935 
2936 MODULE_LICENSE("Dual BSD/GPL");
2937 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
2938