1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later 2 /* 3 * Copyright 2008 - 2016 Freescale Semiconductor Inc. 4 * Copyright 2020 NXP 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/init.h> 10 #include <linux/module.h> 11 #include <linux/of_platform.h> 12 #include <linux/of_mdio.h> 13 #include <linux/of_net.h> 14 #include <linux/io.h> 15 #include <linux/if_arp.h> 16 #include <linux/if_vlan.h> 17 #include <linux/icmp.h> 18 #include <linux/ip.h> 19 #include <linux/ipv6.h> 20 #include <linux/udp.h> 21 #include <linux/tcp.h> 22 #include <linux/net.h> 23 #include <linux/skbuff.h> 24 #include <linux/etherdevice.h> 25 #include <linux/if_ether.h> 26 #include <linux/highmem.h> 27 #include <linux/percpu.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/sort.h> 30 #include <linux/phy_fixed.h> 31 #include <linux/bpf.h> 32 #include <linux/bpf_trace.h> 33 #include <soc/fsl/bman.h> 34 #include <soc/fsl/qman.h> 35 #include "fman.h" 36 #include "fman_port.h" 37 #include "mac.h" 38 #include "dpaa_eth.h" 39 40 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files 41 * using trace events only need to #include <trace/events/sched.h> 42 */ 43 #define CREATE_TRACE_POINTS 44 #include "dpaa_eth_trace.h" 45 46 static int debug = -1; 47 module_param(debug, int, 0444); 48 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)"); 49 50 static u16 tx_timeout = 1000; 51 module_param(tx_timeout, ushort, 0444); 52 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms"); 53 54 #define FM_FD_STAT_RX_ERRORS \ 55 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \ 56 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \ 57 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \ 58 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \ 59 FM_FD_ERR_PRS_HDR_ERR) 60 61 #define FM_FD_STAT_TX_ERRORS \ 62 (FM_FD_ERR_UNSUPPORTED_FORMAT | \ 63 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA) 64 65 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 66 NETIF_MSG_LINK | NETIF_MSG_IFUP | \ 67 NETIF_MSG_IFDOWN | NETIF_MSG_HW) 68 69 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000 70 /* Ingress congestion threshold on FMan ports 71 * The size in bytes of the ingress tail-drop threshold on FMan ports. 72 * Traffic piling up above this value will be rejected by QMan and discarded 73 * by FMan. 74 */ 75 76 /* Size in bytes of the FQ taildrop threshold */ 77 #define DPAA_FQ_TD 0x200000 78 79 #define DPAA_CS_THRESHOLD_1G 0x06000000 80 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000 81 * The size in bytes of the egress Congestion State notification threshold on 82 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a 83 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"), 84 * and the larger the frame size, the more acute the problem. 85 * So we have to find a balance between these factors: 86 * - avoiding the device staying congested for a prolonged time (risking 87 * the netdev watchdog to fire - see also the tx_timeout module param); 88 * - affecting performance of protocols such as TCP, which otherwise 89 * behave well under the congestion notification mechanism; 90 * - preventing the Tx cores from tightly-looping (as if the congestion 91 * threshold was too low to be effective); 92 * - running out of memory if the CS threshold is set too high. 93 */ 94 95 #define DPAA_CS_THRESHOLD_10G 0x10000000 96 /* The size in bytes of the egress Congestion State notification threshold on 97 * 10G ports, range 0x1000 .. 0x10000000 98 */ 99 100 /* Largest value that the FQD's OAL field can hold */ 101 #define FSL_QMAN_MAX_OAL 127 102 103 /* Default alignment for start of data in an Rx FD */ 104 #ifdef CONFIG_DPAA_ERRATUM_A050385 105 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer 106 * is crossing a 4k page boundary 107 */ 108 #define DPAA_FD_DATA_ALIGNMENT (fman_has_errata_a050385() ? 64 : 16) 109 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary 110 * crossings; also, all SG fragments except the last must have a size multiple 111 * of 256 to avoid DMA transaction splits 112 */ 113 #define DPAA_A050385_ALIGN 256 114 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \ 115 DPAA_A050385_ALIGN : 16) 116 #else 117 #define DPAA_FD_DATA_ALIGNMENT 16 118 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT 119 #endif 120 121 /* The DPAA requires 256 bytes reserved and mapped for the SGT */ 122 #define DPAA_SGT_SIZE 256 123 124 /* Values for the L3R field of the FM Parse Results 125 */ 126 /* L3 Type field: First IP Present IPv4 */ 127 #define FM_L3_PARSE_RESULT_IPV4 0x8000 128 /* L3 Type field: First IP Present IPv6 */ 129 #define FM_L3_PARSE_RESULT_IPV6 0x4000 130 /* Values for the L4R field of the FM Parse Results */ 131 /* L4 Type field: UDP */ 132 #define FM_L4_PARSE_RESULT_UDP 0x40 133 /* L4 Type field: TCP */ 134 #define FM_L4_PARSE_RESULT_TCP 0x20 135 136 /* FD status field indicating whether the FM Parser has attempted to validate 137 * the L4 csum of the frame. 138 * Note that having this bit set doesn't necessarily imply that the checksum 139 * is valid. One would have to check the parse results to find that out. 140 */ 141 #define FM_FD_STAT_L4CV 0x00000004 142 143 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */ 144 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */ 145 146 #define FSL_DPAA_BPID_INV 0xff 147 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128 148 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80 149 150 #define DPAA_TX_PRIV_DATA_SIZE 16 151 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result) 152 #define DPAA_TIME_STAMP_SIZE 8 153 #define DPAA_HASH_RESULTS_SIZE 8 154 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \ 155 + DPAA_HASH_RESULTS_SIZE) 156 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \ 157 XDP_PACKET_HEADROOM - DPAA_HWA_SIZE) 158 #ifdef CONFIG_DPAA_ERRATUM_A050385 159 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE) 160 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \ 161 DPAA_RX_PRIV_DATA_A050385_SIZE : \ 162 DPAA_RX_PRIV_DATA_DEFAULT_SIZE) 163 #else 164 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE 165 #endif 166 167 #define DPAA_ETH_PCD_RXQ_NUM 128 168 169 #define DPAA_ENQUEUE_RETRIES 100000 170 171 enum port_type {RX, TX}; 172 173 struct fm_port_fqs { 174 struct dpaa_fq *tx_defq; 175 struct dpaa_fq *tx_errq; 176 struct dpaa_fq *rx_defq; 177 struct dpaa_fq *rx_errq; 178 struct dpaa_fq *rx_pcdq; 179 }; 180 181 /* All the dpa bps in use at any moment */ 182 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS]; 183 184 #define DPAA_BP_RAW_SIZE 4096 185 186 #ifdef CONFIG_DPAA_ERRATUM_A050385 187 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \ 188 ~(DPAA_A050385_ALIGN - 1)) 189 #else 190 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size) 191 #endif 192 193 static int dpaa_max_frm; 194 195 static int dpaa_rx_extra_headroom; 196 197 #define dpaa_get_max_mtu() \ 198 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN)) 199 200 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed); 201 202 static int dpaa_netdev_init(struct net_device *net_dev, 203 const struct net_device_ops *dpaa_ops, 204 u16 tx_timeout) 205 { 206 struct dpaa_priv *priv = netdev_priv(net_dev); 207 struct device *dev = net_dev->dev.parent; 208 struct mac_device *mac_dev = priv->mac_dev; 209 struct dpaa_percpu_priv *percpu_priv; 210 const u8 *mac_addr; 211 int i, err; 212 213 /* Although we access another CPU's private data here 214 * we do it at initialization so it is safe 215 */ 216 for_each_possible_cpu(i) { 217 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 218 percpu_priv->net_dev = net_dev; 219 } 220 221 net_dev->netdev_ops = dpaa_ops; 222 mac_addr = mac_dev->addr; 223 224 net_dev->mem_start = (unsigned long)priv->mac_dev->res->start; 225 net_dev->mem_end = (unsigned long)priv->mac_dev->res->end; 226 227 net_dev->min_mtu = ETH_MIN_MTU; 228 net_dev->max_mtu = dpaa_get_max_mtu(); 229 230 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 231 NETIF_F_LLTX | NETIF_F_RXHASH); 232 233 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA; 234 /* The kernels enables GSO automatically, if we declare NETIF_F_SG. 235 * For conformity, we'll still declare GSO explicitly. 236 */ 237 net_dev->features |= NETIF_F_GSO; 238 net_dev->features |= NETIF_F_RXCSUM; 239 240 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 241 /* we do not want shared skbs on TX */ 242 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING; 243 244 net_dev->features |= net_dev->hw_features; 245 net_dev->vlan_features = net_dev->features; 246 247 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC | 248 NETDEV_XDP_ACT_REDIRECT | 249 NETDEV_XDP_ACT_NDO_XMIT; 250 251 if (is_valid_ether_addr(mac_addr)) { 252 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len); 253 eth_hw_addr_set(net_dev, mac_addr); 254 } else { 255 eth_hw_addr_random(net_dev); 256 err = mac_dev->change_addr(mac_dev->fman_mac, 257 (const enet_addr_t *)net_dev->dev_addr); 258 if (err) { 259 dev_err(dev, "Failed to set random MAC address\n"); 260 return -EINVAL; 261 } 262 dev_info(dev, "Using random MAC address: %pM\n", 263 net_dev->dev_addr); 264 } 265 266 net_dev->ethtool_ops = &dpaa_ethtool_ops; 267 268 net_dev->needed_headroom = priv->tx_headroom; 269 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout); 270 271 /* The rest of the config is filled in by the mac device already */ 272 mac_dev->phylink_config.dev = &net_dev->dev; 273 mac_dev->phylink_config.type = PHYLINK_NETDEV; 274 mac_dev->update_speed = dpaa_eth_cgr_set_speed; 275 mac_dev->phylink = phylink_create(&mac_dev->phylink_config, 276 dev_fwnode(mac_dev->dev), 277 mac_dev->phy_if, 278 mac_dev->phylink_ops); 279 if (IS_ERR(mac_dev->phylink)) { 280 err = PTR_ERR(mac_dev->phylink); 281 dev_err_probe(dev, err, "Could not create phylink\n"); 282 return err; 283 } 284 285 /* start without the RUNNING flag, phylib controls it later */ 286 netif_carrier_off(net_dev); 287 288 err = register_netdev(net_dev); 289 if (err < 0) { 290 dev_err(dev, "register_netdev() = %d\n", err); 291 phylink_destroy(mac_dev->phylink); 292 return err; 293 } 294 295 return 0; 296 } 297 298 static int dpaa_stop(struct net_device *net_dev) 299 { 300 struct mac_device *mac_dev; 301 struct dpaa_priv *priv; 302 int i, error; 303 int err = 0; 304 305 priv = netdev_priv(net_dev); 306 mac_dev = priv->mac_dev; 307 308 netif_tx_stop_all_queues(net_dev); 309 /* Allow the Fman (Tx) port to process in-flight frames before we 310 * try switching it off. 311 */ 312 msleep(200); 313 314 phylink_stop(mac_dev->phylink); 315 mac_dev->disable(mac_dev->fman_mac); 316 317 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 318 error = fman_port_disable(mac_dev->port[i]); 319 if (error) 320 err = error; 321 } 322 323 phylink_disconnect_phy(mac_dev->phylink); 324 net_dev->phydev = NULL; 325 326 msleep(200); 327 328 return err; 329 } 330 331 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue) 332 { 333 struct dpaa_percpu_priv *percpu_priv; 334 const struct dpaa_priv *priv; 335 336 priv = netdev_priv(net_dev); 337 percpu_priv = this_cpu_ptr(priv->percpu_priv); 338 339 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n", 340 jiffies_to_msecs(jiffies - dev_trans_start(net_dev))); 341 342 percpu_priv->stats.tx_errors++; 343 } 344 345 /* Calculates the statistics for the given device by adding the statistics 346 * collected by each CPU. 347 */ 348 static void dpaa_get_stats64(struct net_device *net_dev, 349 struct rtnl_link_stats64 *s) 350 { 351 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64); 352 struct dpaa_priv *priv = netdev_priv(net_dev); 353 struct dpaa_percpu_priv *percpu_priv; 354 u64 *netstats = (u64 *)s; 355 u64 *cpustats; 356 int i, j; 357 358 for_each_possible_cpu(i) { 359 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 360 361 cpustats = (u64 *)&percpu_priv->stats; 362 363 /* add stats from all CPUs */ 364 for (j = 0; j < numstats; j++) 365 netstats[j] += cpustats[j]; 366 } 367 } 368 369 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type, 370 void *type_data) 371 { 372 struct dpaa_priv *priv = netdev_priv(net_dev); 373 struct tc_mqprio_qopt *mqprio = type_data; 374 u8 num_tc; 375 int i; 376 377 if (type != TC_SETUP_QDISC_MQPRIO) 378 return -EOPNOTSUPP; 379 380 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 381 num_tc = mqprio->num_tc; 382 383 if (num_tc == priv->num_tc) 384 return 0; 385 386 if (!num_tc) { 387 netdev_reset_tc(net_dev); 388 goto out; 389 } 390 391 if (num_tc > DPAA_TC_NUM) { 392 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n", 393 DPAA_TC_NUM); 394 return -EINVAL; 395 } 396 397 netdev_set_num_tc(net_dev, num_tc); 398 399 for (i = 0; i < num_tc; i++) 400 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM, 401 i * DPAA_TC_TXQ_NUM); 402 403 out: 404 priv->num_tc = num_tc ? : 1; 405 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM); 406 return 0; 407 } 408 409 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev) 410 { 411 struct dpaa_eth_data *eth_data; 412 struct device *dpaa_dev; 413 struct mac_device *mac_dev; 414 415 dpaa_dev = &pdev->dev; 416 eth_data = dpaa_dev->platform_data; 417 if (!eth_data) { 418 dev_err(dpaa_dev, "eth_data missing\n"); 419 return ERR_PTR(-ENODEV); 420 } 421 mac_dev = eth_data->mac_dev; 422 if (!mac_dev) { 423 dev_err(dpaa_dev, "mac_dev missing\n"); 424 return ERR_PTR(-EINVAL); 425 } 426 427 return mac_dev; 428 } 429 430 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr) 431 { 432 const struct dpaa_priv *priv; 433 struct mac_device *mac_dev; 434 struct sockaddr old_addr; 435 int err; 436 437 priv = netdev_priv(net_dev); 438 439 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN); 440 441 err = eth_mac_addr(net_dev, addr); 442 if (err < 0) { 443 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err); 444 return err; 445 } 446 447 mac_dev = priv->mac_dev; 448 449 err = mac_dev->change_addr(mac_dev->fman_mac, 450 (const enet_addr_t *)net_dev->dev_addr); 451 if (err < 0) { 452 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n", 453 err); 454 /* reverting to previous address */ 455 eth_mac_addr(net_dev, &old_addr); 456 457 return err; 458 } 459 460 return 0; 461 } 462 463 static void dpaa_set_rx_mode(struct net_device *net_dev) 464 { 465 const struct dpaa_priv *priv; 466 int err; 467 468 priv = netdev_priv(net_dev); 469 470 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) { 471 priv->mac_dev->promisc = !priv->mac_dev->promisc; 472 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac, 473 priv->mac_dev->promisc); 474 if (err < 0) 475 netif_err(priv, drv, net_dev, 476 "mac_dev->set_promisc() = %d\n", 477 err); 478 } 479 480 if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) { 481 priv->mac_dev->allmulti = !priv->mac_dev->allmulti; 482 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac, 483 priv->mac_dev->allmulti); 484 if (err < 0) 485 netif_err(priv, drv, net_dev, 486 "mac_dev->set_allmulti() = %d\n", 487 err); 488 } 489 490 err = priv->mac_dev->set_multi(net_dev, priv->mac_dev); 491 if (err < 0) 492 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n", 493 err); 494 } 495 496 static struct dpaa_bp *dpaa_bpid2pool(int bpid) 497 { 498 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS)) 499 return NULL; 500 501 return dpaa_bp_array[bpid]; 502 } 503 504 /* checks if this bpool is already allocated */ 505 static bool dpaa_bpid2pool_use(int bpid) 506 { 507 if (dpaa_bpid2pool(bpid)) { 508 refcount_inc(&dpaa_bp_array[bpid]->refs); 509 return true; 510 } 511 512 return false; 513 } 514 515 /* called only once per bpid by dpaa_bp_alloc_pool() */ 516 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp) 517 { 518 dpaa_bp_array[bpid] = dpaa_bp; 519 refcount_set(&dpaa_bp->refs, 1); 520 } 521 522 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp) 523 { 524 int err; 525 526 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) { 527 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n", 528 __func__); 529 return -EINVAL; 530 } 531 532 /* If the pool is already specified, we only create one per bpid */ 533 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV && 534 dpaa_bpid2pool_use(dpaa_bp->bpid)) 535 return 0; 536 537 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) { 538 dpaa_bp->pool = bman_new_pool(); 539 if (!dpaa_bp->pool) { 540 pr_err("%s: bman_new_pool() failed\n", 541 __func__); 542 return -ENODEV; 543 } 544 545 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool); 546 } 547 548 if (dpaa_bp->seed_cb) { 549 err = dpaa_bp->seed_cb(dpaa_bp); 550 if (err) 551 goto pool_seed_failed; 552 } 553 554 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp); 555 556 return 0; 557 558 pool_seed_failed: 559 pr_err("%s: pool seeding failed\n", __func__); 560 bman_free_pool(dpaa_bp->pool); 561 562 return err; 563 } 564 565 /* remove and free all the buffers from the given buffer pool */ 566 static void dpaa_bp_drain(struct dpaa_bp *bp) 567 { 568 u8 num = 8; 569 int ret; 570 571 do { 572 struct bm_buffer bmb[8]; 573 int i; 574 575 ret = bman_acquire(bp->pool, bmb, num); 576 if (ret < 0) { 577 if (num == 8) { 578 /* we have less than 8 buffers left; 579 * drain them one by one 580 */ 581 num = 1; 582 ret = 1; 583 continue; 584 } else { 585 /* Pool is fully drained */ 586 break; 587 } 588 } 589 590 if (bp->free_buf_cb) 591 for (i = 0; i < num; i++) 592 bp->free_buf_cb(bp, &bmb[i]); 593 } while (ret > 0); 594 } 595 596 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp) 597 { 598 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid); 599 600 /* the mapping between bpid and dpaa_bp is done very late in the 601 * allocation procedure; if something failed before the mapping, the bp 602 * was not configured, therefore we don't need the below instructions 603 */ 604 if (!bp) 605 return; 606 607 if (!refcount_dec_and_test(&bp->refs)) 608 return; 609 610 if (bp->free_buf_cb) 611 dpaa_bp_drain(bp); 612 613 dpaa_bp_array[bp->bpid] = NULL; 614 bman_free_pool(bp->pool); 615 } 616 617 static void dpaa_bps_free(struct dpaa_priv *priv) 618 { 619 dpaa_bp_free(priv->dpaa_bp); 620 } 621 622 /* Use multiple WQs for FQ assignment: 623 * - Tx Confirmation queues go to WQ1. 624 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance 625 * to be scheduled, in case there are many more FQs in WQ6). 626 * - Rx Default goes to WQ6. 627 * - Tx queues go to different WQs depending on their priority. Equal 628 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and 629 * WQ0 (highest priority). 630 * This ensures that Tx-confirmed buffers are timely released. In particular, 631 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they 632 * are greatly outnumbered by other FQs in the system, while 633 * dequeue scheduling is round-robin. 634 */ 635 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx) 636 { 637 switch (fq->fq_type) { 638 case FQ_TYPE_TX_CONFIRM: 639 case FQ_TYPE_TX_CONF_MQ: 640 fq->wq = 1; 641 break; 642 case FQ_TYPE_RX_ERROR: 643 case FQ_TYPE_TX_ERROR: 644 fq->wq = 5; 645 break; 646 case FQ_TYPE_RX_DEFAULT: 647 case FQ_TYPE_RX_PCD: 648 fq->wq = 6; 649 break; 650 case FQ_TYPE_TX: 651 switch (idx / DPAA_TC_TXQ_NUM) { 652 case 0: 653 /* Low priority (best effort) */ 654 fq->wq = 6; 655 break; 656 case 1: 657 /* Medium priority */ 658 fq->wq = 2; 659 break; 660 case 2: 661 /* High priority */ 662 fq->wq = 1; 663 break; 664 case 3: 665 /* Very high priority */ 666 fq->wq = 0; 667 break; 668 default: 669 WARN(1, "Too many TX FQs: more than %d!\n", 670 DPAA_ETH_TXQ_NUM); 671 } 672 break; 673 default: 674 WARN(1, "Invalid FQ type %d for FQID %d!\n", 675 fq->fq_type, fq->fqid); 676 } 677 } 678 679 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev, 680 u32 start, u32 count, 681 struct list_head *list, 682 enum dpaa_fq_type fq_type) 683 { 684 struct dpaa_fq *dpaa_fq; 685 int i; 686 687 dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq), 688 GFP_KERNEL); 689 if (!dpaa_fq) 690 return NULL; 691 692 for (i = 0; i < count; i++) { 693 dpaa_fq[i].fq_type = fq_type; 694 dpaa_fq[i].fqid = start ? start + i : 0; 695 list_add_tail(&dpaa_fq[i].list, list); 696 } 697 698 for (i = 0; i < count; i++) 699 dpaa_assign_wq(dpaa_fq + i, i); 700 701 return dpaa_fq; 702 } 703 704 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list, 705 struct fm_port_fqs *port_fqs) 706 { 707 struct dpaa_fq *dpaa_fq; 708 u32 fq_base, fq_base_aligned, i; 709 710 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR); 711 if (!dpaa_fq) 712 goto fq_alloc_failed; 713 714 port_fqs->rx_errq = &dpaa_fq[0]; 715 716 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT); 717 if (!dpaa_fq) 718 goto fq_alloc_failed; 719 720 port_fqs->rx_defq = &dpaa_fq[0]; 721 722 /* the PCD FQIDs range needs to be aligned for correct operation */ 723 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM)) 724 goto fq_alloc_failed; 725 726 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM); 727 728 for (i = fq_base; i < fq_base_aligned; i++) 729 qman_release_fqid(i); 730 731 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM; 732 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++) 733 qman_release_fqid(i); 734 735 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM, 736 list, FQ_TYPE_RX_PCD); 737 if (!dpaa_fq) 738 goto fq_alloc_failed; 739 740 port_fqs->rx_pcdq = &dpaa_fq[0]; 741 742 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ)) 743 goto fq_alloc_failed; 744 745 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR); 746 if (!dpaa_fq) 747 goto fq_alloc_failed; 748 749 port_fqs->tx_errq = &dpaa_fq[0]; 750 751 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM); 752 if (!dpaa_fq) 753 goto fq_alloc_failed; 754 755 port_fqs->tx_defq = &dpaa_fq[0]; 756 757 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX)) 758 goto fq_alloc_failed; 759 760 return 0; 761 762 fq_alloc_failed: 763 dev_err(dev, "dpaa_fq_alloc() failed\n"); 764 return -ENOMEM; 765 } 766 767 static u32 rx_pool_channel; 768 static DEFINE_SPINLOCK(rx_pool_channel_init); 769 770 static int dpaa_get_channel(void) 771 { 772 spin_lock(&rx_pool_channel_init); 773 if (!rx_pool_channel) { 774 u32 pool; 775 int ret; 776 777 ret = qman_alloc_pool(&pool); 778 779 if (!ret) 780 rx_pool_channel = pool; 781 } 782 spin_unlock(&rx_pool_channel_init); 783 if (!rx_pool_channel) 784 return -ENOMEM; 785 return rx_pool_channel; 786 } 787 788 static void dpaa_release_channel(void) 789 { 790 qman_release_pool(rx_pool_channel); 791 } 792 793 static void dpaa_eth_add_channel(u16 channel, struct device *dev) 794 { 795 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel); 796 const cpumask_t *cpus = qman_affine_cpus(); 797 struct qman_portal *portal; 798 int cpu; 799 800 for_each_cpu_and(cpu, cpus, cpu_online_mask) { 801 portal = qman_get_affine_portal(cpu); 802 qman_p_static_dequeue_add(portal, pool); 803 qman_start_using_portal(portal, dev); 804 } 805 } 806 807 /* Congestion group state change notification callback. 808 * Stops the device's egress queues while they are congested and 809 * wakes them upon exiting congested state. 810 * Also updates some CGR-related stats. 811 */ 812 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr, 813 int congested) 814 { 815 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr, 816 struct dpaa_priv, cgr_data.cgr); 817 818 if (congested) { 819 priv->cgr_data.congestion_start_jiffies = jiffies; 820 netif_tx_stop_all_queues(priv->net_dev); 821 priv->cgr_data.cgr_congested_count++; 822 } else { 823 priv->cgr_data.congested_jiffies += 824 (jiffies - priv->cgr_data.congestion_start_jiffies); 825 netif_tx_wake_all_queues(priv->net_dev); 826 } 827 } 828 829 static int dpaa_eth_cgr_init(struct dpaa_priv *priv) 830 { 831 struct qm_mcc_initcgr initcgr; 832 u32 cs_th; 833 int err; 834 835 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid); 836 if (err < 0) { 837 if (netif_msg_drv(priv)) 838 pr_err("%s: Error %d allocating CGR ID\n", 839 __func__, err); 840 goto out_error; 841 } 842 priv->cgr_data.cgr.cb = dpaa_eth_cgscn; 843 844 /* Enable Congestion State Change Notifications and CS taildrop */ 845 memset(&initcgr, 0, sizeof(initcgr)); 846 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES); 847 initcgr.cgr.cscn_en = QM_CGR_EN; 848 849 /* Set different thresholds based on the configured MAC speed. 850 * This may turn suboptimal if the MAC is reconfigured at another 851 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up 852 * callback. 853 */ 854 if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD) 855 cs_th = DPAA_CS_THRESHOLD_10G; 856 else 857 cs_th = DPAA_CS_THRESHOLD_1G; 858 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 859 860 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 861 initcgr.cgr.cstd_en = QM_CGR_EN; 862 863 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT, 864 &initcgr); 865 if (err < 0) { 866 if (netif_msg_drv(priv)) 867 pr_err("%s: Error %d creating CGR with ID %d\n", 868 __func__, err, priv->cgr_data.cgr.cgrid); 869 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 870 goto out_error; 871 } 872 if (netif_msg_drv(priv)) 873 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n", 874 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr, 875 priv->cgr_data.cgr.chan); 876 877 out_error: 878 return err; 879 } 880 881 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed) 882 { 883 struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev); 884 struct dpaa_priv *priv = netdev_priv(net_dev); 885 struct qm_mcc_initcgr opts = { }; 886 u32 cs_th; 887 int err; 888 889 opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 890 switch (speed) { 891 case SPEED_10000: 892 cs_th = DPAA_CS_THRESHOLD_10G; 893 break; 894 case SPEED_1000: 895 default: 896 cs_th = DPAA_CS_THRESHOLD_1G; 897 break; 898 } 899 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1); 900 901 err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts); 902 if (err) 903 netdev_err(net_dev, "could not update speed: %d\n", err); 904 } 905 906 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv, 907 struct dpaa_fq *fq, 908 const struct qman_fq *template) 909 { 910 fq->fq_base = *template; 911 fq->net_dev = priv->net_dev; 912 913 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE; 914 fq->channel = priv->channel; 915 } 916 917 static inline void dpaa_setup_egress(const struct dpaa_priv *priv, 918 struct dpaa_fq *fq, 919 struct fman_port *port, 920 const struct qman_fq *template) 921 { 922 fq->fq_base = *template; 923 fq->net_dev = priv->net_dev; 924 925 if (port) { 926 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL; 927 fq->channel = (u16)fman_port_get_qman_channel_id(port); 928 } else { 929 fq->flags = QMAN_FQ_FLAG_NO_MODIFY; 930 } 931 } 932 933 static void dpaa_fq_setup(struct dpaa_priv *priv, 934 const struct dpaa_fq_cbs *fq_cbs, 935 struct fman_port *tx_port) 936 { 937 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu; 938 const cpumask_t *affine_cpus = qman_affine_cpus(); 939 u16 channels[NR_CPUS]; 940 struct dpaa_fq *fq; 941 942 for_each_cpu_and(cpu, affine_cpus, cpu_online_mask) 943 channels[num_portals++] = qman_affine_channel(cpu); 944 945 if (num_portals == 0) 946 dev_err(priv->net_dev->dev.parent, 947 "No Qman software (affine) channels found\n"); 948 949 /* Initialize each FQ in the list */ 950 list_for_each_entry(fq, &priv->dpaa_fq_list, list) { 951 switch (fq->fq_type) { 952 case FQ_TYPE_RX_DEFAULT: 953 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 954 break; 955 case FQ_TYPE_RX_ERROR: 956 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq); 957 break; 958 case FQ_TYPE_RX_PCD: 959 if (!num_portals) 960 continue; 961 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 962 fq->channel = channels[portal_cnt++ % num_portals]; 963 break; 964 case FQ_TYPE_TX: 965 dpaa_setup_egress(priv, fq, tx_port, 966 &fq_cbs->egress_ern); 967 /* If we have more Tx queues than the number of cores, 968 * just ignore the extra ones. 969 */ 970 if (egress_cnt < DPAA_ETH_TXQ_NUM) 971 priv->egress_fqs[egress_cnt++] = &fq->fq_base; 972 break; 973 case FQ_TYPE_TX_CONF_MQ: 974 priv->conf_fqs[conf_cnt++] = &fq->fq_base; 975 fallthrough; 976 case FQ_TYPE_TX_CONFIRM: 977 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq); 978 break; 979 case FQ_TYPE_TX_ERROR: 980 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq); 981 break; 982 default: 983 dev_warn(priv->net_dev->dev.parent, 984 "Unknown FQ type detected!\n"); 985 break; 986 } 987 } 988 989 /* Make sure all CPUs receive a corresponding Tx queue. */ 990 while (egress_cnt < DPAA_ETH_TXQ_NUM) { 991 list_for_each_entry(fq, &priv->dpaa_fq_list, list) { 992 if (fq->fq_type != FQ_TYPE_TX) 993 continue; 994 priv->egress_fqs[egress_cnt++] = &fq->fq_base; 995 if (egress_cnt == DPAA_ETH_TXQ_NUM) 996 break; 997 } 998 } 999 } 1000 1001 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv, 1002 struct qman_fq *tx_fq) 1003 { 1004 int i; 1005 1006 for (i = 0; i < DPAA_ETH_TXQ_NUM; i++) 1007 if (priv->egress_fqs[i] == tx_fq) 1008 return i; 1009 1010 return -EINVAL; 1011 } 1012 1013 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable) 1014 { 1015 const struct dpaa_priv *priv; 1016 struct qman_fq *confq = NULL; 1017 struct qm_mcc_initfq initfq; 1018 struct device *dev; 1019 struct qman_fq *fq; 1020 int queue_id; 1021 int err; 1022 1023 priv = netdev_priv(dpaa_fq->net_dev); 1024 dev = dpaa_fq->net_dev->dev.parent; 1025 1026 if (dpaa_fq->fqid == 0) 1027 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID; 1028 1029 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY); 1030 1031 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base); 1032 if (err) { 1033 dev_err(dev, "qman_create_fq() failed\n"); 1034 return err; 1035 } 1036 fq = &dpaa_fq->fq_base; 1037 1038 if (dpaa_fq->init) { 1039 memset(&initfq, 0, sizeof(initfq)); 1040 1041 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL); 1042 /* Note: we may get to keep an empty FQ in cache */ 1043 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE); 1044 1045 /* Try to reduce the number of portal interrupts for 1046 * Tx Confirmation FQs. 1047 */ 1048 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM) 1049 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK); 1050 1051 /* FQ placement */ 1052 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ); 1053 1054 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq); 1055 1056 /* Put all egress queues in a congestion group of their own. 1057 * Sensu stricto, the Tx confirmation queues are Rx FQs, 1058 * rather than Tx - but they nonetheless account for the 1059 * memory footprint on behalf of egress traffic. We therefore 1060 * place them in the netdev's CGR, along with the Tx FQs. 1061 */ 1062 if (dpaa_fq->fq_type == FQ_TYPE_TX || 1063 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM || 1064 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) { 1065 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1066 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1067 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid; 1068 /* Set a fixed overhead accounting, in an attempt to 1069 * reduce the impact of fixed-size skb shells and the 1070 * driver's needed headroom on system memory. This is 1071 * especially the case when the egress traffic is 1072 * composed of small datagrams. 1073 * Unfortunately, QMan's OAL value is capped to an 1074 * insufficient value, but even that is better than 1075 * no overhead accounting at all. 1076 */ 1077 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1078 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1079 qm_fqd_set_oal(&initfq.fqd, 1080 min(sizeof(struct sk_buff) + 1081 priv->tx_headroom, 1082 (size_t)FSL_QMAN_MAX_OAL)); 1083 } 1084 1085 if (td_enable) { 1086 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH); 1087 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1); 1088 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE); 1089 } 1090 1091 if (dpaa_fq->fq_type == FQ_TYPE_TX) { 1092 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base); 1093 if (queue_id >= 0) 1094 confq = priv->conf_fqs[queue_id]; 1095 if (confq) { 1096 initfq.we_mask |= 1097 cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1098 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD) 1099 * A2V=1 (contextA A2 field is valid) 1100 * A0V=1 (contextA A0 field is valid) 1101 * B0V=1 (contextB field is valid) 1102 * ContextA A2: EBD=1 (deallocate buffers inside FMan) 1103 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID) 1104 */ 1105 qm_fqd_context_a_set64(&initfq.fqd, 1106 0x1e00000080000000ULL); 1107 } 1108 } 1109 1110 /* Put all the ingress queues in our "ingress CGR". */ 1111 if (priv->use_ingress_cgr && 1112 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1113 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR || 1114 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) { 1115 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1116 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1117 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid; 1118 /* Set a fixed overhead accounting, just like for the 1119 * egress CGR. 1120 */ 1121 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1122 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1123 qm_fqd_set_oal(&initfq.fqd, 1124 min(sizeof(struct sk_buff) + 1125 priv->tx_headroom, 1126 (size_t)FSL_QMAN_MAX_OAL)); 1127 } 1128 1129 /* Initialization common to all ingress queues */ 1130 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) { 1131 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1132 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE | 1133 QM_FQCTRL_CTXASTASHING); 1134 initfq.fqd.context_a.stashing.exclusive = 1135 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX | 1136 QM_STASHING_EXCL_ANNOTATION; 1137 qm_fqd_set_stashing(&initfq.fqd, 1, 2, 1138 DIV_ROUND_UP(sizeof(struct qman_fq), 1139 64)); 1140 } 1141 1142 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq); 1143 if (err < 0) { 1144 dev_err(dev, "qman_init_fq(%u) = %d\n", 1145 qman_fq_fqid(fq), err); 1146 qman_destroy_fq(fq); 1147 return err; 1148 } 1149 } 1150 1151 dpaa_fq->fqid = qman_fq_fqid(fq); 1152 1153 if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1154 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) { 1155 err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev, 1156 dpaa_fq->fqid, 0); 1157 if (err) { 1158 dev_err(dev, "xdp_rxq_info_reg() = %d\n", err); 1159 return err; 1160 } 1161 1162 err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq, 1163 MEM_TYPE_PAGE_ORDER0, NULL); 1164 if (err) { 1165 dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n", 1166 err); 1167 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1168 return err; 1169 } 1170 } 1171 1172 return 0; 1173 } 1174 1175 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq) 1176 { 1177 const struct dpaa_priv *priv; 1178 struct dpaa_fq *dpaa_fq; 1179 int err, error; 1180 1181 err = 0; 1182 1183 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 1184 priv = netdev_priv(dpaa_fq->net_dev); 1185 1186 if (dpaa_fq->init) { 1187 err = qman_retire_fq(fq, NULL); 1188 if (err < 0 && netif_msg_drv(priv)) 1189 dev_err(dev, "qman_retire_fq(%u) = %d\n", 1190 qman_fq_fqid(fq), err); 1191 1192 error = qman_oos_fq(fq); 1193 if (error < 0 && netif_msg_drv(priv)) { 1194 dev_err(dev, "qman_oos_fq(%u) = %d\n", 1195 qman_fq_fqid(fq), error); 1196 if (err >= 0) 1197 err = error; 1198 } 1199 } 1200 1201 if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1202 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) && 1203 xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq)) 1204 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1205 1206 qman_destroy_fq(fq); 1207 list_del(&dpaa_fq->list); 1208 1209 return err; 1210 } 1211 1212 static int dpaa_fq_free(struct device *dev, struct list_head *list) 1213 { 1214 struct dpaa_fq *dpaa_fq, *tmp; 1215 int err, error; 1216 1217 err = 0; 1218 list_for_each_entry_safe(dpaa_fq, tmp, list, list) { 1219 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq); 1220 if (error < 0 && err >= 0) 1221 err = error; 1222 } 1223 1224 return err; 1225 } 1226 1227 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq, 1228 struct dpaa_fq *defq, 1229 struct dpaa_buffer_layout *buf_layout) 1230 { 1231 struct fman_buffer_prefix_content buf_prefix_content; 1232 struct fman_port_params params; 1233 int err; 1234 1235 memset(¶ms, 0, sizeof(params)); 1236 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1237 1238 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1239 buf_prefix_content.pass_prs_result = true; 1240 buf_prefix_content.pass_hash_result = true; 1241 buf_prefix_content.pass_time_stamp = true; 1242 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT; 1243 1244 params.specific_params.non_rx_params.err_fqid = errq->fqid; 1245 params.specific_params.non_rx_params.dflt_fqid = defq->fqid; 1246 1247 err = fman_port_config(port, ¶ms); 1248 if (err) { 1249 pr_err("%s: fman_port_config failed\n", __func__); 1250 return err; 1251 } 1252 1253 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1254 if (err) { 1255 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1256 __func__); 1257 return err; 1258 } 1259 1260 err = fman_port_init(port); 1261 if (err) 1262 pr_err("%s: fm_port_init failed\n", __func__); 1263 1264 return err; 1265 } 1266 1267 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp, 1268 struct dpaa_fq *errq, 1269 struct dpaa_fq *defq, struct dpaa_fq *pcdq, 1270 struct dpaa_buffer_layout *buf_layout) 1271 { 1272 struct fman_buffer_prefix_content buf_prefix_content; 1273 struct fman_port_rx_params *rx_p; 1274 struct fman_port_params params; 1275 int err; 1276 1277 memset(¶ms, 0, sizeof(params)); 1278 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1279 1280 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1281 buf_prefix_content.pass_prs_result = true; 1282 buf_prefix_content.pass_hash_result = true; 1283 buf_prefix_content.pass_time_stamp = true; 1284 buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT; 1285 1286 rx_p = ¶ms.specific_params.rx_params; 1287 rx_p->err_fqid = errq->fqid; 1288 rx_p->dflt_fqid = defq->fqid; 1289 if (pcdq) { 1290 rx_p->pcd_base_fqid = pcdq->fqid; 1291 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM; 1292 } 1293 1294 rx_p->ext_buf_pools.num_of_pools_used = 1; 1295 rx_p->ext_buf_pools.ext_buf_pool[0].id = bp->bpid; 1296 rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size; 1297 1298 err = fman_port_config(port, ¶ms); 1299 if (err) { 1300 pr_err("%s: fman_port_config failed\n", __func__); 1301 return err; 1302 } 1303 1304 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1305 if (err) { 1306 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1307 __func__); 1308 return err; 1309 } 1310 1311 err = fman_port_init(port); 1312 if (err) 1313 pr_err("%s: fm_port_init failed\n", __func__); 1314 1315 return err; 1316 } 1317 1318 static int dpaa_eth_init_ports(struct mac_device *mac_dev, 1319 struct dpaa_bp *bp, 1320 struct fm_port_fqs *port_fqs, 1321 struct dpaa_buffer_layout *buf_layout, 1322 struct device *dev) 1323 { 1324 struct fman_port *rxport = mac_dev->port[RX]; 1325 struct fman_port *txport = mac_dev->port[TX]; 1326 int err; 1327 1328 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq, 1329 port_fqs->tx_defq, &buf_layout[TX]); 1330 if (err) 1331 return err; 1332 1333 err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq, 1334 port_fqs->rx_defq, port_fqs->rx_pcdq, 1335 &buf_layout[RX]); 1336 1337 return err; 1338 } 1339 1340 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp, 1341 struct bm_buffer *bmb, int cnt) 1342 { 1343 int err; 1344 1345 err = bman_release(dpaa_bp->pool, bmb, cnt); 1346 /* Should never occur, address anyway to avoid leaking the buffers */ 1347 if (WARN_ON(err) && dpaa_bp->free_buf_cb) 1348 while (cnt-- > 0) 1349 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]); 1350 1351 return cnt; 1352 } 1353 1354 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt) 1355 { 1356 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX]; 1357 struct dpaa_bp *dpaa_bp; 1358 int i = 0, j; 1359 1360 memset(bmb, 0, sizeof(bmb)); 1361 1362 do { 1363 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1364 if (!dpaa_bp) 1365 return; 1366 1367 j = 0; 1368 do { 1369 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1370 1371 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i])); 1372 1373 j++; i++; 1374 } while (j < ARRAY_SIZE(bmb) && 1375 !qm_sg_entry_is_final(&sgt[i - 1]) && 1376 sgt[i - 1].bpid == sgt[i].bpid); 1377 1378 dpaa_bman_release(dpaa_bp, bmb, j); 1379 } while (!qm_sg_entry_is_final(&sgt[i - 1])); 1380 } 1381 1382 static void dpaa_fd_release(const struct net_device *net_dev, 1383 const struct qm_fd *fd) 1384 { 1385 struct qm_sg_entry *sgt; 1386 struct dpaa_bp *dpaa_bp; 1387 struct bm_buffer bmb; 1388 dma_addr_t addr; 1389 void *vaddr; 1390 1391 bmb.data = 0; 1392 bm_buffer_set64(&bmb, qm_fd_addr(fd)); 1393 1394 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1395 if (!dpaa_bp) 1396 return; 1397 1398 if (qm_fd_get_format(fd) == qm_fd_sg) { 1399 vaddr = phys_to_virt(qm_fd_addr(fd)); 1400 sgt = vaddr + qm_fd_get_offset(fd); 1401 1402 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd), 1403 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1404 1405 dpaa_release_sgt_members(sgt); 1406 1407 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, 1408 virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE, 1409 DMA_FROM_DEVICE); 1410 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) { 1411 netdev_err(net_dev, "DMA mapping failed\n"); 1412 return; 1413 } 1414 bm_buffer_set64(&bmb, addr); 1415 } 1416 1417 dpaa_bman_release(dpaa_bp, &bmb, 1); 1418 } 1419 1420 static void count_ern(struct dpaa_percpu_priv *percpu_priv, 1421 const union qm_mr_entry *msg) 1422 { 1423 switch (msg->ern.rc & QM_MR_RC_MASK) { 1424 case QM_MR_RC_CGR_TAILDROP: 1425 percpu_priv->ern_cnt.cg_tdrop++; 1426 break; 1427 case QM_MR_RC_WRED: 1428 percpu_priv->ern_cnt.wred++; 1429 break; 1430 case QM_MR_RC_ERROR: 1431 percpu_priv->ern_cnt.err_cond++; 1432 break; 1433 case QM_MR_RC_ORPWINDOW_EARLY: 1434 percpu_priv->ern_cnt.early_window++; 1435 break; 1436 case QM_MR_RC_ORPWINDOW_LATE: 1437 percpu_priv->ern_cnt.late_window++; 1438 break; 1439 case QM_MR_RC_FQ_TAILDROP: 1440 percpu_priv->ern_cnt.fq_tdrop++; 1441 break; 1442 case QM_MR_RC_ORPWINDOW_RETIRED: 1443 percpu_priv->ern_cnt.fq_retired++; 1444 break; 1445 case QM_MR_RC_ORP_ZERO: 1446 percpu_priv->ern_cnt.orp_zero++; 1447 break; 1448 } 1449 } 1450 1451 /* Turn on HW checksum computation for this outgoing frame. 1452 * If the current protocol is not something we support in this regard 1453 * (or if the stack has already computed the SW checksum), we do nothing. 1454 * 1455 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value 1456 * otherwise. 1457 * 1458 * Note that this function may modify the fd->cmd field and the skb data buffer 1459 * (the Parse Results area). 1460 */ 1461 static int dpaa_enable_tx_csum(struct dpaa_priv *priv, 1462 struct sk_buff *skb, 1463 struct qm_fd *fd, 1464 void *parse_results) 1465 { 1466 struct fman_prs_result *parse_result; 1467 u16 ethertype = ntohs(skb->protocol); 1468 struct ipv6hdr *ipv6h = NULL; 1469 struct iphdr *iph; 1470 int retval = 0; 1471 u8 l4_proto; 1472 1473 if (skb->ip_summed != CHECKSUM_PARTIAL) 1474 return 0; 1475 1476 /* Note: L3 csum seems to be already computed in sw, but we can't choose 1477 * L4 alone from the FM configuration anyway. 1478 */ 1479 1480 /* Fill in some fields of the Parse Results array, so the FMan 1481 * can find them as if they came from the FMan Parser. 1482 */ 1483 parse_result = (struct fman_prs_result *)parse_results; 1484 1485 /* If we're dealing with VLAN, get the real Ethernet type */ 1486 if (ethertype == ETH_P_8021Q) 1487 ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto); 1488 1489 /* Fill in the relevant L3 parse result fields 1490 * and read the L4 protocol type 1491 */ 1492 switch (ethertype) { 1493 case ETH_P_IP: 1494 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4); 1495 iph = ip_hdr(skb); 1496 WARN_ON(!iph); 1497 l4_proto = iph->protocol; 1498 break; 1499 case ETH_P_IPV6: 1500 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6); 1501 ipv6h = ipv6_hdr(skb); 1502 WARN_ON(!ipv6h); 1503 l4_proto = ipv6h->nexthdr; 1504 break; 1505 default: 1506 /* We shouldn't even be here */ 1507 if (net_ratelimit()) 1508 netif_alert(priv, tx_err, priv->net_dev, 1509 "Can't compute HW csum for L3 proto 0x%x\n", 1510 ntohs(skb->protocol)); 1511 retval = -EIO; 1512 goto return_error; 1513 } 1514 1515 /* Fill in the relevant L4 parse result fields */ 1516 switch (l4_proto) { 1517 case IPPROTO_UDP: 1518 parse_result->l4r = FM_L4_PARSE_RESULT_UDP; 1519 break; 1520 case IPPROTO_TCP: 1521 parse_result->l4r = FM_L4_PARSE_RESULT_TCP; 1522 break; 1523 default: 1524 if (net_ratelimit()) 1525 netif_alert(priv, tx_err, priv->net_dev, 1526 "Can't compute HW csum for L4 proto 0x%x\n", 1527 l4_proto); 1528 retval = -EIO; 1529 goto return_error; 1530 } 1531 1532 /* At index 0 is IPOffset_1 as defined in the Parse Results */ 1533 parse_result->ip_off[0] = (u8)skb_network_offset(skb); 1534 parse_result->l4_off = (u8)skb_transport_offset(skb); 1535 1536 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */ 1537 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC); 1538 1539 /* On P1023 and similar platforms fd->cmd interpretation could 1540 * be disabled by setting CONTEXT_A bit ICMD; currently this bit 1541 * is not set so we do not need to check; in the future, if/when 1542 * using context_a we need to check this bit 1543 */ 1544 1545 return_error: 1546 return retval; 1547 } 1548 1549 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp) 1550 { 1551 struct net_device *net_dev = dpaa_bp->priv->net_dev; 1552 struct bm_buffer bmb[8]; 1553 dma_addr_t addr; 1554 struct page *p; 1555 u8 i; 1556 1557 for (i = 0; i < 8; i++) { 1558 p = dev_alloc_pages(0); 1559 if (unlikely(!p)) { 1560 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 1561 goto release_previous_buffs; 1562 } 1563 1564 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0, 1565 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1566 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev, 1567 addr))) { 1568 netdev_err(net_dev, "DMA map failed\n"); 1569 goto release_previous_buffs; 1570 } 1571 1572 bmb[i].data = 0; 1573 bm_buffer_set64(&bmb[i], addr); 1574 } 1575 1576 release_bufs: 1577 return dpaa_bman_release(dpaa_bp, bmb, i); 1578 1579 release_previous_buffs: 1580 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n"); 1581 1582 bm_buffer_set64(&bmb[i], 0); 1583 /* Avoid releasing a completely null buffer; bman_release() requires 1584 * at least one buffer. 1585 */ 1586 if (likely(i)) 1587 goto release_bufs; 1588 1589 return 0; 1590 } 1591 1592 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp) 1593 { 1594 int i; 1595 1596 /* Give each CPU an allotment of "config_count" buffers */ 1597 for_each_possible_cpu(i) { 1598 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i); 1599 int j; 1600 1601 /* Although we access another CPU's counters here 1602 * we do it at boot time so it is safe 1603 */ 1604 for (j = 0; j < dpaa_bp->config_count; j += 8) 1605 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp); 1606 } 1607 return 0; 1608 } 1609 1610 /* Add buffers/(pages) for Rx processing whenever bpool count falls below 1611 * REFILL_THRESHOLD. 1612 */ 1613 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr) 1614 { 1615 int count = *countptr; 1616 int new_bufs; 1617 1618 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) { 1619 do { 1620 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp); 1621 if (unlikely(!new_bufs)) { 1622 /* Avoid looping forever if we've temporarily 1623 * run out of memory. We'll try again at the 1624 * next NAPI cycle. 1625 */ 1626 break; 1627 } 1628 count += new_bufs; 1629 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT); 1630 1631 *countptr = count; 1632 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT)) 1633 return -ENOMEM; 1634 } 1635 1636 return 0; 1637 } 1638 1639 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv) 1640 { 1641 struct dpaa_bp *dpaa_bp; 1642 int *countptr; 1643 1644 dpaa_bp = priv->dpaa_bp; 1645 if (!dpaa_bp) 1646 return -EINVAL; 1647 countptr = this_cpu_ptr(dpaa_bp->percpu_count); 1648 1649 return dpaa_eth_refill_bpool(dpaa_bp, countptr); 1650 } 1651 1652 /* Cleanup function for outgoing frame descriptors that were built on Tx path, 1653 * either contiguous frames or scatter/gather ones. 1654 * Skb freeing is not handled here. 1655 * 1656 * This function may be called on error paths in the Tx function, so guard 1657 * against cases when not all fd relevant fields were filled in. To avoid 1658 * reading the invalid transmission timestamp for the error paths set ts to 1659 * false. 1660 * 1661 * Return the skb backpointer, since for S/G frames the buffer containing it 1662 * gets freed here. 1663 * 1664 * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer 1665 * and return NULL in this case. 1666 */ 1667 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv, 1668 const struct qm_fd *fd, bool ts) 1669 { 1670 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1671 struct device *dev = priv->net_dev->dev.parent; 1672 struct skb_shared_hwtstamps shhwtstamps; 1673 dma_addr_t addr = qm_fd_addr(fd); 1674 void *vaddr = phys_to_virt(addr); 1675 const struct qm_sg_entry *sgt; 1676 struct dpaa_eth_swbp *swbp; 1677 struct sk_buff *skb; 1678 u64 ns; 1679 int i; 1680 1681 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) { 1682 dma_unmap_page(priv->tx_dma_dev, addr, 1683 qm_fd_get_offset(fd) + DPAA_SGT_SIZE, 1684 dma_dir); 1685 1686 /* The sgt buffer has been allocated with netdev_alloc_frag(), 1687 * it's from lowmem. 1688 */ 1689 sgt = vaddr + qm_fd_get_offset(fd); 1690 1691 /* sgt[0] is from lowmem, was dma_map_single()-ed */ 1692 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]), 1693 qm_sg_entry_get_len(&sgt[0]), dma_dir); 1694 1695 /* remaining pages were mapped with skb_frag_dma_map() */ 1696 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) && 1697 !qm_sg_entry_is_final(&sgt[i - 1]); i++) { 1698 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1699 1700 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]), 1701 qm_sg_entry_get_len(&sgt[i]), dma_dir); 1702 } 1703 } else { 1704 dma_unmap_single(priv->tx_dma_dev, addr, 1705 qm_fd_get_offset(fd) + qm_fd_get_length(fd), 1706 dma_dir); 1707 } 1708 1709 swbp = (struct dpaa_eth_swbp *)vaddr; 1710 skb = swbp->skb; 1711 1712 /* No skb backpointer is set when running XDP. An xdp_frame 1713 * backpointer is saved instead. 1714 */ 1715 if (!skb) { 1716 xdp_return_frame(swbp->xdpf); 1717 return NULL; 1718 } 1719 1720 /* DMA unmapping is required before accessing the HW provided info */ 1721 if (ts && priv->tx_tstamp && 1722 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 1723 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 1724 1725 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr, 1726 &ns)) { 1727 shhwtstamps.hwtstamp = ns_to_ktime(ns); 1728 skb_tstamp_tx(skb, &shhwtstamps); 1729 } else { 1730 dev_warn(dev, "fman_port_get_tstamp failed!\n"); 1731 } 1732 } 1733 1734 if (qm_fd_get_format(fd) == qm_fd_sg) 1735 /* Free the page that we allocated on Tx for the SGT */ 1736 free_pages((unsigned long)vaddr, 0); 1737 1738 return skb; 1739 } 1740 1741 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd) 1742 { 1743 /* The parser has run and performed L4 checksum validation. 1744 * We know there were no parser errors (and implicitly no 1745 * L4 csum error), otherwise we wouldn't be here. 1746 */ 1747 if ((priv->net_dev->features & NETIF_F_RXCSUM) && 1748 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV)) 1749 return CHECKSUM_UNNECESSARY; 1750 1751 /* We're here because either the parser didn't run or the L4 checksum 1752 * was not verified. This may include the case of a UDP frame with 1753 * checksum zero or an L4 proto other than TCP/UDP 1754 */ 1755 return CHECKSUM_NONE; 1756 } 1757 1758 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a))) 1759 1760 /* Build a linear skb around the received buffer. 1761 * We are guaranteed there is enough room at the end of the data buffer to 1762 * accommodate the shared info area of the skb. 1763 */ 1764 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv, 1765 const struct qm_fd *fd) 1766 { 1767 ssize_t fd_off = qm_fd_get_offset(fd); 1768 dma_addr_t addr = qm_fd_addr(fd); 1769 struct dpaa_bp *dpaa_bp; 1770 struct sk_buff *skb; 1771 void *vaddr; 1772 1773 vaddr = phys_to_virt(addr); 1774 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1775 1776 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1777 if (!dpaa_bp) 1778 goto free_buffer; 1779 1780 skb = build_skb(vaddr, dpaa_bp->size + 1781 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); 1782 if (WARN_ONCE(!skb, "Build skb failure on Rx\n")) 1783 goto free_buffer; 1784 skb_reserve(skb, fd_off); 1785 skb_put(skb, qm_fd_get_length(fd)); 1786 1787 skb->ip_summed = rx_csum_offload(priv, fd); 1788 1789 return skb; 1790 1791 free_buffer: 1792 free_pages((unsigned long)vaddr, 0); 1793 return NULL; 1794 } 1795 1796 /* Build an skb with the data of the first S/G entry in the linear portion and 1797 * the rest of the frame as skb fragments. 1798 * 1799 * The page fragment holding the S/G Table is recycled here. 1800 */ 1801 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv, 1802 const struct qm_fd *fd) 1803 { 1804 ssize_t fd_off = qm_fd_get_offset(fd); 1805 dma_addr_t addr = qm_fd_addr(fd); 1806 const struct qm_sg_entry *sgt; 1807 struct page *page, *head_page; 1808 struct dpaa_bp *dpaa_bp; 1809 void *vaddr, *sg_vaddr; 1810 int frag_off, frag_len; 1811 struct sk_buff *skb; 1812 dma_addr_t sg_addr; 1813 int page_offset; 1814 unsigned int sz; 1815 int *count_ptr; 1816 int i, j; 1817 1818 vaddr = phys_to_virt(addr); 1819 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1820 1821 /* Iterate through the SGT entries and add data buffers to the skb */ 1822 sgt = vaddr + fd_off; 1823 skb = NULL; 1824 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) { 1825 /* Extension bit is not supported */ 1826 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1827 1828 sg_addr = qm_sg_addr(&sgt[i]); 1829 sg_vaddr = phys_to_virt(sg_addr); 1830 WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES)); 1831 1832 dma_unmap_page(priv->rx_dma_dev, sg_addr, 1833 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1834 1835 /* We may use multiple Rx pools */ 1836 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1837 if (!dpaa_bp) 1838 goto free_buffers; 1839 1840 if (!skb) { 1841 sz = dpaa_bp->size + 1842 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1843 skb = build_skb(sg_vaddr, sz); 1844 if (WARN_ON(!skb)) 1845 goto free_buffers; 1846 1847 skb->ip_summed = rx_csum_offload(priv, fd); 1848 1849 /* Make sure forwarded skbs will have enough space 1850 * on Tx, if extra headers are added. 1851 */ 1852 WARN_ON(fd_off != priv->rx_headroom); 1853 skb_reserve(skb, fd_off); 1854 skb_put(skb, qm_sg_entry_get_len(&sgt[i])); 1855 } else { 1856 /* Not the first S/G entry; all data from buffer will 1857 * be added in an skb fragment; fragment index is offset 1858 * by one since first S/G entry was incorporated in the 1859 * linear part of the skb. 1860 * 1861 * Caution: 'page' may be a tail page. 1862 */ 1863 page = virt_to_page(sg_vaddr); 1864 head_page = virt_to_head_page(sg_vaddr); 1865 1866 /* Compute offset in (possibly tail) page */ 1867 page_offset = ((unsigned long)sg_vaddr & 1868 (PAGE_SIZE - 1)) + 1869 (page_address(page) - page_address(head_page)); 1870 /* page_offset only refers to the beginning of sgt[i]; 1871 * but the buffer itself may have an internal offset. 1872 */ 1873 frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset; 1874 frag_len = qm_sg_entry_get_len(&sgt[i]); 1875 /* skb_add_rx_frag() does no checking on the page; if 1876 * we pass it a tail page, we'll end up with 1877 * bad page accounting and eventually with segafults. 1878 */ 1879 skb_add_rx_frag(skb, i - 1, head_page, frag_off, 1880 frag_len, dpaa_bp->size); 1881 } 1882 1883 /* Update the pool count for the current {cpu x bpool} */ 1884 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1885 (*count_ptr)--; 1886 1887 if (qm_sg_entry_is_final(&sgt[i])) 1888 break; 1889 } 1890 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n"); 1891 1892 /* free the SG table buffer */ 1893 free_pages((unsigned long)vaddr, 0); 1894 1895 return skb; 1896 1897 free_buffers: 1898 /* free all the SG entries */ 1899 for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) { 1900 sg_addr = qm_sg_addr(&sgt[j]); 1901 sg_vaddr = phys_to_virt(sg_addr); 1902 /* all pages 0..i were unmaped */ 1903 if (j > i) 1904 dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]), 1905 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1906 free_pages((unsigned long)sg_vaddr, 0); 1907 /* counters 0..i-1 were decremented */ 1908 if (j >= i) { 1909 dpaa_bp = dpaa_bpid2pool(sgt[j].bpid); 1910 if (dpaa_bp) { 1911 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1912 (*count_ptr)--; 1913 } 1914 } 1915 1916 if (qm_sg_entry_is_final(&sgt[j])) 1917 break; 1918 } 1919 /* free the SGT fragment */ 1920 free_pages((unsigned long)vaddr, 0); 1921 1922 return NULL; 1923 } 1924 1925 static int skb_to_contig_fd(struct dpaa_priv *priv, 1926 struct sk_buff *skb, struct qm_fd *fd, 1927 int *offset) 1928 { 1929 struct net_device *net_dev = priv->net_dev; 1930 enum dma_data_direction dma_dir; 1931 struct dpaa_eth_swbp *swbp; 1932 unsigned char *buff_start; 1933 dma_addr_t addr; 1934 int err; 1935 1936 /* We are guaranteed to have at least tx_headroom bytes 1937 * available, so just use that for offset. 1938 */ 1939 fd->bpid = FSL_DPAA_BPID_INV; 1940 buff_start = skb->data - priv->tx_headroom; 1941 dma_dir = DMA_TO_DEVICE; 1942 1943 swbp = (struct dpaa_eth_swbp *)buff_start; 1944 swbp->skb = skb; 1945 1946 /* Enable L3/L4 hardware checksum computation. 1947 * 1948 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 1949 * need to write into the skb. 1950 */ 1951 err = dpaa_enable_tx_csum(priv, skb, fd, 1952 buff_start + DPAA_TX_PRIV_DATA_SIZE); 1953 if (unlikely(err < 0)) { 1954 if (net_ratelimit()) 1955 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 1956 err); 1957 return err; 1958 } 1959 1960 /* Fill in the rest of the FD fields */ 1961 qm_fd_set_contig(fd, priv->tx_headroom, skb->len); 1962 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 1963 1964 /* Map the entire buffer size that may be seen by FMan, but no more */ 1965 addr = dma_map_single(priv->tx_dma_dev, buff_start, 1966 priv->tx_headroom + skb->len, dma_dir); 1967 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 1968 if (net_ratelimit()) 1969 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n"); 1970 return -EINVAL; 1971 } 1972 qm_fd_addr_set64(fd, addr); 1973 1974 return 0; 1975 } 1976 1977 static int skb_to_sg_fd(struct dpaa_priv *priv, 1978 struct sk_buff *skb, struct qm_fd *fd) 1979 { 1980 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1981 const int nr_frags = skb_shinfo(skb)->nr_frags; 1982 struct net_device *net_dev = priv->net_dev; 1983 struct dpaa_eth_swbp *swbp; 1984 struct qm_sg_entry *sgt; 1985 void *buff_start; 1986 skb_frag_t *frag; 1987 dma_addr_t addr; 1988 size_t frag_len; 1989 struct page *p; 1990 int i, j, err; 1991 1992 /* get a page to store the SGTable */ 1993 p = dev_alloc_pages(0); 1994 if (unlikely(!p)) { 1995 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 1996 return -ENOMEM; 1997 } 1998 buff_start = page_address(p); 1999 2000 /* Enable L3/L4 hardware checksum computation. 2001 * 2002 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 2003 * need to write into the skb. 2004 */ 2005 err = dpaa_enable_tx_csum(priv, skb, fd, 2006 buff_start + DPAA_TX_PRIV_DATA_SIZE); 2007 if (unlikely(err < 0)) { 2008 if (net_ratelimit()) 2009 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 2010 err); 2011 goto csum_failed; 2012 } 2013 2014 /* SGT[0] is used by the linear part */ 2015 sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom); 2016 frag_len = skb_headlen(skb); 2017 qm_sg_entry_set_len(&sgt[0], frag_len); 2018 sgt[0].bpid = FSL_DPAA_BPID_INV; 2019 sgt[0].offset = 0; 2020 addr = dma_map_single(priv->tx_dma_dev, skb->data, 2021 skb_headlen(skb), dma_dir); 2022 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2023 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2024 err = -EINVAL; 2025 goto sg0_map_failed; 2026 } 2027 qm_sg_entry_set64(&sgt[0], addr); 2028 2029 /* populate the rest of SGT entries */ 2030 for (i = 0; i < nr_frags; i++) { 2031 frag = &skb_shinfo(skb)->frags[i]; 2032 frag_len = skb_frag_size(frag); 2033 WARN_ON(!skb_frag_page(frag)); 2034 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0, 2035 frag_len, dma_dir); 2036 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2037 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2038 err = -EINVAL; 2039 goto sg_map_failed; 2040 } 2041 2042 qm_sg_entry_set_len(&sgt[i + 1], frag_len); 2043 sgt[i + 1].bpid = FSL_DPAA_BPID_INV; 2044 sgt[i + 1].offset = 0; 2045 2046 /* keep the offset in the address */ 2047 qm_sg_entry_set64(&sgt[i + 1], addr); 2048 } 2049 2050 /* Set the final bit in the last used entry of the SGT */ 2051 qm_sg_entry_set_f(&sgt[nr_frags], frag_len); 2052 2053 /* set fd offset to priv->tx_headroom */ 2054 qm_fd_set_sg(fd, priv->tx_headroom, skb->len); 2055 2056 /* DMA map the SGT page */ 2057 swbp = (struct dpaa_eth_swbp *)buff_start; 2058 swbp->skb = skb; 2059 2060 addr = dma_map_page(priv->tx_dma_dev, p, 0, 2061 priv->tx_headroom + DPAA_SGT_SIZE, dma_dir); 2062 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2063 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2064 err = -EINVAL; 2065 goto sgt_map_failed; 2066 } 2067 2068 fd->bpid = FSL_DPAA_BPID_INV; 2069 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2070 qm_fd_addr_set64(fd, addr); 2071 2072 return 0; 2073 2074 sgt_map_failed: 2075 sg_map_failed: 2076 for (j = 0; j < i; j++) 2077 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]), 2078 qm_sg_entry_get_len(&sgt[j]), dma_dir); 2079 sg0_map_failed: 2080 csum_failed: 2081 free_pages((unsigned long)buff_start, 0); 2082 2083 return err; 2084 } 2085 2086 static inline int dpaa_xmit(struct dpaa_priv *priv, 2087 struct rtnl_link_stats64 *percpu_stats, 2088 int queue, 2089 struct qm_fd *fd) 2090 { 2091 struct qman_fq *egress_fq; 2092 int err, i; 2093 2094 egress_fq = priv->egress_fqs[queue]; 2095 if (fd->bpid == FSL_DPAA_BPID_INV) 2096 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue])); 2097 2098 /* Trace this Tx fd */ 2099 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd); 2100 2101 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) { 2102 err = qman_enqueue(egress_fq, fd); 2103 if (err != -EBUSY) 2104 break; 2105 } 2106 2107 if (unlikely(err < 0)) { 2108 percpu_stats->tx_fifo_errors++; 2109 return err; 2110 } 2111 2112 percpu_stats->tx_packets++; 2113 percpu_stats->tx_bytes += qm_fd_get_length(fd); 2114 2115 return 0; 2116 } 2117 2118 #ifdef CONFIG_DPAA_ERRATUM_A050385 2119 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s) 2120 { 2121 struct dpaa_priv *priv = netdev_priv(net_dev); 2122 struct sk_buff *new_skb, *skb = *s; 2123 unsigned char *start, i; 2124 2125 /* check linear buffer alignment */ 2126 if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN)) 2127 goto workaround; 2128 2129 /* linear buffers just need to have an aligned start */ 2130 if (!skb_is_nonlinear(skb)) 2131 return 0; 2132 2133 /* linear data size for nonlinear skbs needs to be aligned */ 2134 if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN)) 2135 goto workaround; 2136 2137 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2138 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2139 2140 /* all fragments need to have aligned start addresses */ 2141 if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN)) 2142 goto workaround; 2143 2144 /* all but last fragment need to have aligned sizes */ 2145 if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) && 2146 (i < skb_shinfo(skb)->nr_frags - 1)) 2147 goto workaround; 2148 } 2149 2150 return 0; 2151 2152 workaround: 2153 /* copy all the skb content into a new linear buffer */ 2154 new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 + 2155 priv->tx_headroom); 2156 if (!new_skb) 2157 return -ENOMEM; 2158 2159 /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */ 2160 skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD); 2161 2162 /* Workaround for DPAA_A050385 requires data start to be aligned */ 2163 start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN); 2164 if (start - new_skb->data) 2165 skb_reserve(new_skb, start - new_skb->data); 2166 2167 skb_put(new_skb, skb->len); 2168 skb_copy_bits(skb, 0, new_skb->data, skb->len); 2169 skb_copy_header(new_skb, skb); 2170 new_skb->dev = skb->dev; 2171 2172 /* Copy relevant timestamp info from the old skb to the new */ 2173 if (priv->tx_tstamp) { 2174 skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags; 2175 skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps; 2176 skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey; 2177 if (skb->sk) 2178 skb_set_owner_w(new_skb, skb->sk); 2179 } 2180 2181 /* We move the headroom when we align it so we have to reset the 2182 * network and transport header offsets relative to the new data 2183 * pointer. The checksum offload relies on these offsets. 2184 */ 2185 skb_set_network_header(new_skb, skb_network_offset(skb)); 2186 skb_set_transport_header(new_skb, skb_transport_offset(skb)); 2187 2188 dev_kfree_skb(skb); 2189 *s = new_skb; 2190 2191 return 0; 2192 } 2193 2194 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv, 2195 struct xdp_frame **init_xdpf) 2196 { 2197 struct xdp_frame *new_xdpf, *xdpf = *init_xdpf; 2198 void *new_buff, *aligned_data; 2199 struct page *p; 2200 u32 data_shift; 2201 int headroom; 2202 2203 /* Check the data alignment and make sure the headroom is large 2204 * enough to store the xdpf backpointer. Use an aligned headroom 2205 * value. 2206 * 2207 * Due to alignment constraints, we give XDP access to the full 256 2208 * byte frame headroom. If the XDP program uses all of it, copy the 2209 * data to a new buffer and make room for storing the backpointer. 2210 */ 2211 if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) && 2212 xdpf->headroom >= priv->tx_headroom) { 2213 xdpf->headroom = priv->tx_headroom; 2214 return 0; 2215 } 2216 2217 /* Try to move the data inside the buffer just enough to align it and 2218 * store the xdpf backpointer. If the available headroom isn't large 2219 * enough, resort to allocating a new buffer and copying the data. 2220 */ 2221 aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT); 2222 data_shift = xdpf->data - aligned_data; 2223 2224 /* The XDP frame's headroom needs to be large enough to accommodate 2225 * shifting the data as well as storing the xdpf backpointer. 2226 */ 2227 if (xdpf->headroom >= data_shift + priv->tx_headroom) { 2228 memmove(aligned_data, xdpf->data, xdpf->len); 2229 xdpf->data = aligned_data; 2230 xdpf->headroom = priv->tx_headroom; 2231 return 0; 2232 } 2233 2234 /* The new xdp_frame is stored in the new buffer. Reserve enough space 2235 * in the headroom for storing it along with the driver's private 2236 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to 2237 * guarantee the data's alignment in the buffer. 2238 */ 2239 headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom, 2240 DPAA_FD_DATA_ALIGNMENT); 2241 2242 /* Assure the extended headroom and data don't overflow the buffer, 2243 * while maintaining the mandatory tailroom. 2244 */ 2245 if (headroom + xdpf->len > DPAA_BP_RAW_SIZE - 2246 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 2247 return -ENOMEM; 2248 2249 p = dev_alloc_pages(0); 2250 if (unlikely(!p)) 2251 return -ENOMEM; 2252 2253 /* Copy the data to the new buffer at a properly aligned offset */ 2254 new_buff = page_address(p); 2255 memcpy(new_buff + headroom, xdpf->data, xdpf->len); 2256 2257 /* Create an XDP frame around the new buffer in a similar fashion 2258 * to xdp_convert_buff_to_frame. 2259 */ 2260 new_xdpf = new_buff; 2261 new_xdpf->data = new_buff + headroom; 2262 new_xdpf->len = xdpf->len; 2263 new_xdpf->headroom = priv->tx_headroom; 2264 new_xdpf->frame_sz = DPAA_BP_RAW_SIZE; 2265 new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 2266 2267 /* Release the initial buffer */ 2268 xdp_return_frame_rx_napi(xdpf); 2269 2270 *init_xdpf = new_xdpf; 2271 return 0; 2272 } 2273 #endif 2274 2275 static netdev_tx_t 2276 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev) 2277 { 2278 const int queue_mapping = skb_get_queue_mapping(skb); 2279 bool nonlinear = skb_is_nonlinear(skb); 2280 struct rtnl_link_stats64 *percpu_stats; 2281 struct dpaa_percpu_priv *percpu_priv; 2282 struct netdev_queue *txq; 2283 struct dpaa_priv *priv; 2284 struct qm_fd fd; 2285 int offset = 0; 2286 int err = 0; 2287 2288 priv = netdev_priv(net_dev); 2289 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2290 percpu_stats = &percpu_priv->stats; 2291 2292 qm_fd_clear_fd(&fd); 2293 2294 if (!nonlinear) { 2295 /* We're going to store the skb backpointer at the beginning 2296 * of the data buffer, so we need a privately owned skb 2297 * 2298 * We've made sure skb is not shared in dev->priv_flags, 2299 * we need to verify the skb head is not cloned 2300 */ 2301 if (skb_cow_head(skb, priv->tx_headroom)) 2302 goto enomem; 2303 2304 WARN_ON(skb_is_nonlinear(skb)); 2305 } 2306 2307 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES; 2308 * make sure we don't feed FMan with more fragments than it supports. 2309 */ 2310 if (unlikely(nonlinear && 2311 (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) { 2312 /* If the egress skb contains more fragments than we support 2313 * we have no choice but to linearize it ourselves. 2314 */ 2315 if (__skb_linearize(skb)) 2316 goto enomem; 2317 2318 nonlinear = skb_is_nonlinear(skb); 2319 } 2320 2321 #ifdef CONFIG_DPAA_ERRATUM_A050385 2322 if (unlikely(fman_has_errata_a050385())) { 2323 if (dpaa_a050385_wa_skb(net_dev, &skb)) 2324 goto enomem; 2325 nonlinear = skb_is_nonlinear(skb); 2326 } 2327 #endif 2328 2329 if (nonlinear) { 2330 /* Just create a S/G fd based on the skb */ 2331 err = skb_to_sg_fd(priv, skb, &fd); 2332 percpu_priv->tx_frag_skbuffs++; 2333 } else { 2334 /* Create a contig FD from this skb */ 2335 err = skb_to_contig_fd(priv, skb, &fd, &offset); 2336 } 2337 if (unlikely(err < 0)) 2338 goto skb_to_fd_failed; 2339 2340 txq = netdev_get_tx_queue(net_dev, queue_mapping); 2341 2342 /* LLTX requires to do our own update of trans_start */ 2343 txq_trans_cond_update(txq); 2344 2345 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 2346 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD); 2347 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2348 } 2349 2350 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0)) 2351 return NETDEV_TX_OK; 2352 2353 dpaa_cleanup_tx_fd(priv, &fd, false); 2354 skb_to_fd_failed: 2355 enomem: 2356 percpu_stats->tx_errors++; 2357 dev_kfree_skb(skb); 2358 return NETDEV_TX_OK; 2359 } 2360 2361 static void dpaa_rx_error(struct net_device *net_dev, 2362 const struct dpaa_priv *priv, 2363 struct dpaa_percpu_priv *percpu_priv, 2364 const struct qm_fd *fd, 2365 u32 fqid) 2366 { 2367 if (net_ratelimit()) 2368 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n", 2369 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS); 2370 2371 percpu_priv->stats.rx_errors++; 2372 2373 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA) 2374 percpu_priv->rx_errors.dme++; 2375 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL) 2376 percpu_priv->rx_errors.fpe++; 2377 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE) 2378 percpu_priv->rx_errors.fse++; 2379 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR) 2380 percpu_priv->rx_errors.phe++; 2381 2382 dpaa_fd_release(net_dev, fd); 2383 } 2384 2385 static void dpaa_tx_error(struct net_device *net_dev, 2386 const struct dpaa_priv *priv, 2387 struct dpaa_percpu_priv *percpu_priv, 2388 const struct qm_fd *fd, 2389 u32 fqid) 2390 { 2391 struct sk_buff *skb; 2392 2393 if (net_ratelimit()) 2394 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2395 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS); 2396 2397 percpu_priv->stats.tx_errors++; 2398 2399 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2400 dev_kfree_skb(skb); 2401 } 2402 2403 static int dpaa_eth_poll(struct napi_struct *napi, int budget) 2404 { 2405 struct dpaa_napi_portal *np = 2406 container_of(napi, struct dpaa_napi_portal, napi); 2407 int cleaned; 2408 2409 np->xdp_act = 0; 2410 2411 cleaned = qman_p_poll_dqrr(np->p, budget); 2412 2413 if (np->xdp_act & XDP_REDIRECT) 2414 xdp_do_flush(); 2415 2416 if (cleaned < budget) { 2417 napi_complete_done(napi, cleaned); 2418 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2419 } else if (np->down) { 2420 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2421 } 2422 2423 return cleaned; 2424 } 2425 2426 static void dpaa_tx_conf(struct net_device *net_dev, 2427 const struct dpaa_priv *priv, 2428 struct dpaa_percpu_priv *percpu_priv, 2429 const struct qm_fd *fd, 2430 u32 fqid) 2431 { 2432 struct sk_buff *skb; 2433 2434 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) { 2435 if (net_ratelimit()) 2436 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2437 be32_to_cpu(fd->status) & 2438 FM_FD_STAT_TX_ERRORS); 2439 2440 percpu_priv->stats.tx_errors++; 2441 } 2442 2443 percpu_priv->tx_confirm++; 2444 2445 skb = dpaa_cleanup_tx_fd(priv, fd, true); 2446 2447 consume_skb(skb); 2448 } 2449 2450 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv, 2451 struct qman_portal *portal, bool sched_napi) 2452 { 2453 if (sched_napi) { 2454 /* Disable QMan IRQ and invoke NAPI */ 2455 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI); 2456 2457 percpu_priv->np.p = portal; 2458 napi_schedule(&percpu_priv->np.napi); 2459 percpu_priv->in_interrupt++; 2460 return 1; 2461 } 2462 return 0; 2463 } 2464 2465 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal, 2466 struct qman_fq *fq, 2467 const struct qm_dqrr_entry *dq, 2468 bool sched_napi) 2469 { 2470 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2471 struct dpaa_percpu_priv *percpu_priv; 2472 struct net_device *net_dev; 2473 struct dpaa_bp *dpaa_bp; 2474 struct dpaa_priv *priv; 2475 2476 net_dev = dpaa_fq->net_dev; 2477 priv = netdev_priv(net_dev); 2478 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2479 if (!dpaa_bp) 2480 return qman_cb_dqrr_consume; 2481 2482 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2483 2484 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2485 return qman_cb_dqrr_stop; 2486 2487 dpaa_eth_refill_bpools(priv); 2488 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2489 2490 return qman_cb_dqrr_consume; 2491 } 2492 2493 static int dpaa_xdp_xmit_frame(struct net_device *net_dev, 2494 struct xdp_frame *xdpf) 2495 { 2496 struct dpaa_priv *priv = netdev_priv(net_dev); 2497 struct rtnl_link_stats64 *percpu_stats; 2498 struct dpaa_percpu_priv *percpu_priv; 2499 struct dpaa_eth_swbp *swbp; 2500 struct netdev_queue *txq; 2501 void *buff_start; 2502 struct qm_fd fd; 2503 dma_addr_t addr; 2504 int err; 2505 2506 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2507 percpu_stats = &percpu_priv->stats; 2508 2509 #ifdef CONFIG_DPAA_ERRATUM_A050385 2510 if (unlikely(fman_has_errata_a050385())) { 2511 if (dpaa_a050385_wa_xdpf(priv, &xdpf)) { 2512 err = -ENOMEM; 2513 goto out_error; 2514 } 2515 } 2516 #endif 2517 2518 if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) { 2519 err = -EINVAL; 2520 goto out_error; 2521 } 2522 2523 buff_start = xdpf->data - xdpf->headroom; 2524 2525 /* Leave empty the skb backpointer at the start of the buffer. 2526 * Save the XDP frame for easy cleanup on confirmation. 2527 */ 2528 swbp = (struct dpaa_eth_swbp *)buff_start; 2529 swbp->skb = NULL; 2530 swbp->xdpf = xdpf; 2531 2532 qm_fd_clear_fd(&fd); 2533 fd.bpid = FSL_DPAA_BPID_INV; 2534 fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2535 qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len); 2536 2537 addr = dma_map_single(priv->tx_dma_dev, buff_start, 2538 xdpf->headroom + xdpf->len, 2539 DMA_TO_DEVICE); 2540 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2541 err = -EINVAL; 2542 goto out_error; 2543 } 2544 2545 qm_fd_addr_set64(&fd, addr); 2546 2547 /* Bump the trans_start */ 2548 txq = netdev_get_tx_queue(net_dev, smp_processor_id()); 2549 txq_trans_cond_update(txq); 2550 2551 err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd); 2552 if (err) { 2553 dma_unmap_single(priv->tx_dma_dev, addr, 2554 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd), 2555 DMA_TO_DEVICE); 2556 goto out_error; 2557 } 2558 2559 return 0; 2560 2561 out_error: 2562 percpu_stats->tx_errors++; 2563 return err; 2564 } 2565 2566 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr, 2567 struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len) 2568 { 2569 ssize_t fd_off = qm_fd_get_offset(fd); 2570 struct bpf_prog *xdp_prog; 2571 struct xdp_frame *xdpf; 2572 struct xdp_buff xdp; 2573 u32 xdp_act; 2574 int err; 2575 2576 xdp_prog = READ_ONCE(priv->xdp_prog); 2577 if (!xdp_prog) 2578 return XDP_PASS; 2579 2580 xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE, 2581 &dpaa_fq->xdp_rxq); 2582 xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM, 2583 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true); 2584 2585 /* We reserve a fixed headroom of 256 bytes under the erratum and we 2586 * offer it all to XDP programs to use. If no room is left for the 2587 * xdpf backpointer on TX, we will need to copy the data. 2588 * Disable metadata support since data realignments might be required 2589 * and the information can be lost. 2590 */ 2591 #ifdef CONFIG_DPAA_ERRATUM_A050385 2592 if (unlikely(fman_has_errata_a050385())) { 2593 xdp_set_data_meta_invalid(&xdp); 2594 xdp.data_hard_start = vaddr; 2595 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2596 } 2597 #endif 2598 2599 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 2600 2601 /* Update the length and the offset of the FD */ 2602 qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data); 2603 2604 switch (xdp_act) { 2605 case XDP_PASS: 2606 #ifdef CONFIG_DPAA_ERRATUM_A050385 2607 *xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 : 2608 xdp.data - xdp.data_meta; 2609 #else 2610 *xdp_meta_len = xdp.data - xdp.data_meta; 2611 #endif 2612 break; 2613 case XDP_TX: 2614 /* We can access the full headroom when sending the frame 2615 * back out 2616 */ 2617 xdp.data_hard_start = vaddr; 2618 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2619 xdpf = xdp_convert_buff_to_frame(&xdp); 2620 if (unlikely(!xdpf)) { 2621 free_pages((unsigned long)vaddr, 0); 2622 break; 2623 } 2624 2625 if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf)) 2626 xdp_return_frame_rx_napi(xdpf); 2627 2628 break; 2629 case XDP_REDIRECT: 2630 /* Allow redirect to use the full headroom */ 2631 xdp.data_hard_start = vaddr; 2632 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2633 2634 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 2635 if (err) { 2636 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2637 free_pages((unsigned long)vaddr, 0); 2638 } 2639 break; 2640 default: 2641 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act); 2642 fallthrough; 2643 case XDP_ABORTED: 2644 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2645 fallthrough; 2646 case XDP_DROP: 2647 /* Free the buffer */ 2648 free_pages((unsigned long)vaddr, 0); 2649 break; 2650 } 2651 2652 return xdp_act; 2653 } 2654 2655 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal, 2656 struct qman_fq *fq, 2657 const struct qm_dqrr_entry *dq, 2658 bool sched_napi) 2659 { 2660 bool ts_valid = false, hash_valid = false; 2661 struct skb_shared_hwtstamps *shhwtstamps; 2662 unsigned int skb_len, xdp_meta_len = 0; 2663 struct rtnl_link_stats64 *percpu_stats; 2664 struct dpaa_percpu_priv *percpu_priv; 2665 const struct qm_fd *fd = &dq->fd; 2666 dma_addr_t addr = qm_fd_addr(fd); 2667 struct dpaa_napi_portal *np; 2668 enum qm_fd_format fd_format; 2669 struct net_device *net_dev; 2670 u32 fd_status, hash_offset; 2671 struct qm_sg_entry *sgt; 2672 struct dpaa_bp *dpaa_bp; 2673 struct dpaa_fq *dpaa_fq; 2674 struct dpaa_priv *priv; 2675 struct sk_buff *skb; 2676 int *count_ptr; 2677 u32 xdp_act; 2678 void *vaddr; 2679 u32 hash; 2680 u64 ns; 2681 2682 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2683 fd_status = be32_to_cpu(fd->status); 2684 fd_format = qm_fd_get_format(fd); 2685 net_dev = dpaa_fq->net_dev; 2686 priv = netdev_priv(net_dev); 2687 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2688 if (!dpaa_bp) 2689 return qman_cb_dqrr_consume; 2690 2691 /* Trace the Rx fd */ 2692 trace_dpaa_rx_fd(net_dev, fq, &dq->fd); 2693 2694 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2695 percpu_stats = &percpu_priv->stats; 2696 np = &percpu_priv->np; 2697 2698 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))) 2699 return qman_cb_dqrr_stop; 2700 2701 /* Make sure we didn't run out of buffers */ 2702 if (unlikely(dpaa_eth_refill_bpools(priv))) { 2703 /* Unable to refill the buffer pool due to insufficient 2704 * system memory. Just release the frame back into the pool, 2705 * otherwise we'll soon end up with an empty buffer pool. 2706 */ 2707 dpaa_fd_release(net_dev, &dq->fd); 2708 return qman_cb_dqrr_consume; 2709 } 2710 2711 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) { 2712 if (net_ratelimit()) 2713 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2714 fd_status & FM_FD_STAT_RX_ERRORS); 2715 2716 percpu_stats->rx_errors++; 2717 dpaa_fd_release(net_dev, fd); 2718 return qman_cb_dqrr_consume; 2719 } 2720 2721 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 2722 DMA_FROM_DEVICE); 2723 2724 /* prefetch the first 64 bytes of the frame or the SGT start */ 2725 vaddr = phys_to_virt(addr); 2726 prefetch(vaddr + qm_fd_get_offset(fd)); 2727 2728 /* The only FD types that we may receive are contig and S/G */ 2729 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg)); 2730 2731 /* Account for either the contig buffer or the SGT buffer (depending on 2732 * which case we were in) having been removed from the pool. 2733 */ 2734 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 2735 (*count_ptr)--; 2736 2737 /* Extract the timestamp stored in the headroom before running XDP */ 2738 if (priv->rx_tstamp) { 2739 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns)) 2740 ts_valid = true; 2741 else 2742 WARN_ONCE(1, "fman_port_get_tstamp failed!\n"); 2743 } 2744 2745 /* Extract the hash stored in the headroom before running XDP */ 2746 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use && 2747 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX], 2748 &hash_offset)) { 2749 hash = be32_to_cpu(*(u32 *)(vaddr + hash_offset)); 2750 hash_valid = true; 2751 } 2752 2753 if (likely(fd_format == qm_fd_contig)) { 2754 xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr, 2755 dpaa_fq, &xdp_meta_len); 2756 np->xdp_act |= xdp_act; 2757 if (xdp_act != XDP_PASS) { 2758 percpu_stats->rx_packets++; 2759 percpu_stats->rx_bytes += qm_fd_get_length(fd); 2760 return qman_cb_dqrr_consume; 2761 } 2762 skb = contig_fd_to_skb(priv, fd); 2763 } else { 2764 /* XDP doesn't support S/G frames. Return the fragments to the 2765 * buffer pool and release the SGT. 2766 */ 2767 if (READ_ONCE(priv->xdp_prog)) { 2768 WARN_ONCE(1, "S/G frames not supported under XDP\n"); 2769 sgt = vaddr + qm_fd_get_offset(fd); 2770 dpaa_release_sgt_members(sgt); 2771 free_pages((unsigned long)vaddr, 0); 2772 return qman_cb_dqrr_consume; 2773 } 2774 skb = sg_fd_to_skb(priv, fd); 2775 } 2776 if (!skb) 2777 return qman_cb_dqrr_consume; 2778 2779 if (xdp_meta_len) 2780 skb_metadata_set(skb, xdp_meta_len); 2781 2782 /* Set the previously extracted timestamp */ 2783 if (ts_valid) { 2784 shhwtstamps = skb_hwtstamps(skb); 2785 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2786 shhwtstamps->hwtstamp = ns_to_ktime(ns); 2787 } 2788 2789 skb->protocol = eth_type_trans(skb, net_dev); 2790 2791 /* Set the previously extracted hash */ 2792 if (hash_valid) { 2793 enum pkt_hash_types type; 2794 2795 /* if L4 exists, it was used in the hash generation */ 2796 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ? 2797 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 2798 skb_set_hash(skb, hash, type); 2799 } 2800 2801 skb_len = skb->len; 2802 2803 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) { 2804 percpu_stats->rx_dropped++; 2805 return qman_cb_dqrr_consume; 2806 } 2807 2808 percpu_stats->rx_packets++; 2809 percpu_stats->rx_bytes += skb_len; 2810 2811 return qman_cb_dqrr_consume; 2812 } 2813 2814 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal, 2815 struct qman_fq *fq, 2816 const struct qm_dqrr_entry *dq, 2817 bool sched_napi) 2818 { 2819 struct dpaa_percpu_priv *percpu_priv; 2820 struct net_device *net_dev; 2821 struct dpaa_priv *priv; 2822 2823 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2824 priv = netdev_priv(net_dev); 2825 2826 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2827 2828 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2829 return qman_cb_dqrr_stop; 2830 2831 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2832 2833 return qman_cb_dqrr_consume; 2834 } 2835 2836 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal, 2837 struct qman_fq *fq, 2838 const struct qm_dqrr_entry *dq, 2839 bool sched_napi) 2840 { 2841 struct dpaa_percpu_priv *percpu_priv; 2842 struct net_device *net_dev; 2843 struct dpaa_priv *priv; 2844 2845 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2846 priv = netdev_priv(net_dev); 2847 2848 /* Trace the fd */ 2849 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd); 2850 2851 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2852 2853 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2854 return qman_cb_dqrr_stop; 2855 2856 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2857 2858 return qman_cb_dqrr_consume; 2859 } 2860 2861 static void egress_ern(struct qman_portal *portal, 2862 struct qman_fq *fq, 2863 const union qm_mr_entry *msg) 2864 { 2865 const struct qm_fd *fd = &msg->ern.fd; 2866 struct dpaa_percpu_priv *percpu_priv; 2867 const struct dpaa_priv *priv; 2868 struct net_device *net_dev; 2869 struct sk_buff *skb; 2870 2871 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2872 priv = netdev_priv(net_dev); 2873 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2874 2875 percpu_priv->stats.tx_dropped++; 2876 percpu_priv->stats.tx_fifo_errors++; 2877 count_ern(percpu_priv, msg); 2878 2879 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2880 dev_kfree_skb_any(skb); 2881 } 2882 2883 static const struct dpaa_fq_cbs dpaa_fq_cbs = { 2884 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } }, 2885 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } }, 2886 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } }, 2887 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } }, 2888 .egress_ern = { .cb = { .ern = egress_ern } } 2889 }; 2890 2891 static void dpaa_eth_napi_enable(struct dpaa_priv *priv) 2892 { 2893 struct dpaa_percpu_priv *percpu_priv; 2894 int i; 2895 2896 for_each_online_cpu(i) { 2897 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2898 2899 percpu_priv->np.down = false; 2900 napi_enable(&percpu_priv->np.napi); 2901 } 2902 } 2903 2904 static void dpaa_eth_napi_disable(struct dpaa_priv *priv) 2905 { 2906 struct dpaa_percpu_priv *percpu_priv; 2907 int i; 2908 2909 for_each_online_cpu(i) { 2910 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2911 2912 percpu_priv->np.down = true; 2913 napi_disable(&percpu_priv->np.napi); 2914 } 2915 } 2916 2917 static int dpaa_open(struct net_device *net_dev) 2918 { 2919 struct mac_device *mac_dev; 2920 struct dpaa_priv *priv; 2921 int err, i; 2922 2923 priv = netdev_priv(net_dev); 2924 mac_dev = priv->mac_dev; 2925 dpaa_eth_napi_enable(priv); 2926 2927 err = phylink_of_phy_connect(mac_dev->phylink, 2928 mac_dev->dev->of_node, 0); 2929 if (err) 2930 goto phy_init_failed; 2931 2932 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 2933 err = fman_port_enable(mac_dev->port[i]); 2934 if (err) 2935 goto mac_start_failed; 2936 } 2937 2938 err = priv->mac_dev->enable(mac_dev->fman_mac); 2939 if (err < 0) { 2940 netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err); 2941 goto mac_start_failed; 2942 } 2943 phylink_start(mac_dev->phylink); 2944 2945 netif_tx_start_all_queues(net_dev); 2946 2947 return 0; 2948 2949 mac_start_failed: 2950 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) 2951 fman_port_disable(mac_dev->port[i]); 2952 phylink_disconnect_phy(mac_dev->phylink); 2953 2954 phy_init_failed: 2955 dpaa_eth_napi_disable(priv); 2956 2957 return err; 2958 } 2959 2960 static int dpaa_eth_stop(struct net_device *net_dev) 2961 { 2962 struct dpaa_priv *priv; 2963 int err; 2964 2965 err = dpaa_stop(net_dev); 2966 2967 priv = netdev_priv(net_dev); 2968 dpaa_eth_napi_disable(priv); 2969 2970 return err; 2971 } 2972 2973 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu) 2974 { 2975 int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom; 2976 2977 /* We do not support S/G fragments when XDP is enabled. 2978 * Limit the MTU in relation to the buffer size. 2979 */ 2980 if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) { 2981 dev_warn(priv->net_dev->dev.parent, 2982 "The maximum MTU for XDP is %d\n", 2983 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN); 2984 return false; 2985 } 2986 2987 return true; 2988 } 2989 2990 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu) 2991 { 2992 struct dpaa_priv *priv = netdev_priv(net_dev); 2993 2994 if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu)) 2995 return -EINVAL; 2996 2997 net_dev->mtu = new_mtu; 2998 return 0; 2999 } 3000 3001 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf) 3002 { 3003 struct dpaa_priv *priv = netdev_priv(net_dev); 3004 struct bpf_prog *old_prog; 3005 int err; 3006 bool up; 3007 3008 /* S/G fragments are not supported in XDP-mode */ 3009 if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) { 3010 NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP"); 3011 return -EINVAL; 3012 } 3013 3014 up = netif_running(net_dev); 3015 3016 if (up) 3017 dpaa_eth_stop(net_dev); 3018 3019 old_prog = xchg(&priv->xdp_prog, bpf->prog); 3020 if (old_prog) 3021 bpf_prog_put(old_prog); 3022 3023 if (up) { 3024 err = dpaa_open(net_dev); 3025 if (err) { 3026 NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed"); 3027 return err; 3028 } 3029 } 3030 3031 return 0; 3032 } 3033 3034 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp) 3035 { 3036 switch (xdp->command) { 3037 case XDP_SETUP_PROG: 3038 return dpaa_setup_xdp(net_dev, xdp); 3039 default: 3040 return -EINVAL; 3041 } 3042 } 3043 3044 static int dpaa_xdp_xmit(struct net_device *net_dev, int n, 3045 struct xdp_frame **frames, u32 flags) 3046 { 3047 struct xdp_frame *xdpf; 3048 int i, nxmit = 0; 3049 3050 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 3051 return -EINVAL; 3052 3053 if (!netif_running(net_dev)) 3054 return -ENETDOWN; 3055 3056 for (i = 0; i < n; i++) { 3057 xdpf = frames[i]; 3058 if (dpaa_xdp_xmit_frame(net_dev, xdpf)) 3059 break; 3060 nxmit++; 3061 } 3062 3063 return nxmit; 3064 } 3065 3066 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3067 { 3068 struct dpaa_priv *priv = netdev_priv(dev); 3069 struct hwtstamp_config config; 3070 3071 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 3072 return -EFAULT; 3073 3074 switch (config.tx_type) { 3075 case HWTSTAMP_TX_OFF: 3076 /* Couldn't disable rx/tx timestamping separately. 3077 * Do nothing here. 3078 */ 3079 priv->tx_tstamp = false; 3080 break; 3081 case HWTSTAMP_TX_ON: 3082 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3083 priv->tx_tstamp = true; 3084 break; 3085 default: 3086 return -ERANGE; 3087 } 3088 3089 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 3090 /* Couldn't disable rx/tx timestamping separately. 3091 * Do nothing here. 3092 */ 3093 priv->rx_tstamp = false; 3094 } else { 3095 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3096 priv->rx_tstamp = true; 3097 /* TS is set for all frame types, not only those requested */ 3098 config.rx_filter = HWTSTAMP_FILTER_ALL; 3099 } 3100 3101 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 3102 -EFAULT : 0; 3103 } 3104 3105 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) 3106 { 3107 int ret = -EINVAL; 3108 struct dpaa_priv *priv = netdev_priv(net_dev); 3109 3110 if (cmd == SIOCGMIIREG) { 3111 if (net_dev->phydev) 3112 return phylink_mii_ioctl(priv->mac_dev->phylink, rq, 3113 cmd); 3114 } 3115 3116 if (cmd == SIOCSHWTSTAMP) 3117 return dpaa_ts_ioctl(net_dev, rq, cmd); 3118 3119 return ret; 3120 } 3121 3122 static const struct net_device_ops dpaa_ops = { 3123 .ndo_open = dpaa_open, 3124 .ndo_start_xmit = dpaa_start_xmit, 3125 .ndo_stop = dpaa_eth_stop, 3126 .ndo_tx_timeout = dpaa_tx_timeout, 3127 .ndo_get_stats64 = dpaa_get_stats64, 3128 .ndo_change_carrier = fixed_phy_change_carrier, 3129 .ndo_set_mac_address = dpaa_set_mac_address, 3130 .ndo_validate_addr = eth_validate_addr, 3131 .ndo_set_rx_mode = dpaa_set_rx_mode, 3132 .ndo_eth_ioctl = dpaa_ioctl, 3133 .ndo_setup_tc = dpaa_setup_tc, 3134 .ndo_change_mtu = dpaa_change_mtu, 3135 .ndo_bpf = dpaa_xdp, 3136 .ndo_xdp_xmit = dpaa_xdp_xmit, 3137 }; 3138 3139 static int dpaa_napi_add(struct net_device *net_dev) 3140 { 3141 struct dpaa_priv *priv = netdev_priv(net_dev); 3142 struct dpaa_percpu_priv *percpu_priv; 3143 int cpu; 3144 3145 for_each_possible_cpu(cpu) { 3146 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3147 3148 netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll); 3149 } 3150 3151 return 0; 3152 } 3153 3154 static void dpaa_napi_del(struct net_device *net_dev) 3155 { 3156 struct dpaa_priv *priv = netdev_priv(net_dev); 3157 struct dpaa_percpu_priv *percpu_priv; 3158 int cpu; 3159 3160 for_each_possible_cpu(cpu) { 3161 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3162 3163 netif_napi_del(&percpu_priv->np.napi); 3164 } 3165 } 3166 3167 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp, 3168 struct bm_buffer *bmb) 3169 { 3170 dma_addr_t addr = bm_buf_addr(bmb); 3171 3172 dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 3173 DMA_FROM_DEVICE); 3174 3175 skb_free_frag(phys_to_virt(addr)); 3176 } 3177 3178 /* Alloc the dpaa_bp struct and configure default values */ 3179 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev) 3180 { 3181 struct dpaa_bp *dpaa_bp; 3182 3183 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL); 3184 if (!dpaa_bp) 3185 return ERR_PTR(-ENOMEM); 3186 3187 dpaa_bp->bpid = FSL_DPAA_BPID_INV; 3188 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count); 3189 if (!dpaa_bp->percpu_count) 3190 return ERR_PTR(-ENOMEM); 3191 3192 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT; 3193 3194 dpaa_bp->seed_cb = dpaa_bp_seed; 3195 dpaa_bp->free_buf_cb = dpaa_bp_free_pf; 3196 3197 return dpaa_bp; 3198 } 3199 3200 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR. 3201 * We won't be sending congestion notifications to FMan; for now, we just use 3202 * this CGR to generate enqueue rejections to FMan in order to drop the frames 3203 * before they reach our ingress queues and eat up memory. 3204 */ 3205 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv) 3206 { 3207 struct qm_mcc_initcgr initcgr; 3208 u32 cs_th; 3209 int err; 3210 3211 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid); 3212 if (err < 0) { 3213 if (netif_msg_drv(priv)) 3214 pr_err("Error %d allocating CGR ID\n", err); 3215 goto out_error; 3216 } 3217 3218 /* Enable CS TD, but disable Congestion State Change Notifications. */ 3219 memset(&initcgr, 0, sizeof(initcgr)); 3220 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 3221 initcgr.cgr.cscn_en = QM_CGR_EN; 3222 cs_th = DPAA_INGRESS_CS_THRESHOLD; 3223 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 3224 3225 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 3226 initcgr.cgr.cstd_en = QM_CGR_EN; 3227 3228 /* This CGR will be associated with the SWP affined to the current CPU. 3229 * However, we'll place all our ingress FQs in it. 3230 */ 3231 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT, 3232 &initcgr); 3233 if (err < 0) { 3234 if (netif_msg_drv(priv)) 3235 pr_err("Error %d creating ingress CGR with ID %d\n", 3236 err, priv->ingress_cgr.cgrid); 3237 qman_release_cgrid(priv->ingress_cgr.cgrid); 3238 goto out_error; 3239 } 3240 if (netif_msg_drv(priv)) 3241 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n", 3242 priv->ingress_cgr.cgrid, priv->mac_dev->addr); 3243 3244 priv->use_ingress_cgr = true; 3245 3246 out_error: 3247 return err; 3248 } 3249 3250 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl, 3251 enum port_type port) 3252 { 3253 u16 headroom; 3254 3255 /* The frame headroom must accommodate: 3256 * - the driver private data area 3257 * - parse results, hash results, timestamp if selected 3258 * If either hash results or time stamp are selected, both will 3259 * be copied to/from the frame headroom, as TS is located between PR and 3260 * HR in the IC and IC copy size has a granularity of 16bytes 3261 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM) 3262 * 3263 * Also make sure the headroom is a multiple of data_align bytes 3264 */ 3265 headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE); 3266 3267 if (port == RX) { 3268 #ifdef CONFIG_DPAA_ERRATUM_A050385 3269 if (unlikely(fman_has_errata_a050385())) 3270 headroom = XDP_PACKET_HEADROOM; 3271 #endif 3272 3273 return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT); 3274 } else { 3275 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT); 3276 } 3277 } 3278 3279 static int dpaa_eth_probe(struct platform_device *pdev) 3280 { 3281 struct net_device *net_dev = NULL; 3282 struct dpaa_bp *dpaa_bp = NULL; 3283 struct dpaa_fq *dpaa_fq, *tmp; 3284 struct dpaa_priv *priv = NULL; 3285 struct fm_port_fqs port_fqs; 3286 struct mac_device *mac_dev; 3287 int err = 0, channel; 3288 struct device *dev; 3289 3290 dev = &pdev->dev; 3291 3292 err = bman_is_probed(); 3293 if (!err) 3294 return -EPROBE_DEFER; 3295 if (err < 0) { 3296 dev_err(dev, "failing probe due to bman probe error\n"); 3297 return -ENODEV; 3298 } 3299 err = qman_is_probed(); 3300 if (!err) 3301 return -EPROBE_DEFER; 3302 if (err < 0) { 3303 dev_err(dev, "failing probe due to qman probe error\n"); 3304 return -ENODEV; 3305 } 3306 err = bman_portals_probed(); 3307 if (!err) 3308 return -EPROBE_DEFER; 3309 if (err < 0) { 3310 dev_err(dev, 3311 "failing probe due to bman portals probe error\n"); 3312 return -ENODEV; 3313 } 3314 err = qman_portals_probed(); 3315 if (!err) 3316 return -EPROBE_DEFER; 3317 if (err < 0) { 3318 dev_err(dev, 3319 "failing probe due to qman portals probe error\n"); 3320 return -ENODEV; 3321 } 3322 3323 /* Allocate this early, so we can store relevant information in 3324 * the private area 3325 */ 3326 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM); 3327 if (!net_dev) { 3328 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3329 return -ENOMEM; 3330 } 3331 3332 /* Do this here, so we can be verbose early */ 3333 SET_NETDEV_DEV(net_dev, dev->parent); 3334 dev_set_drvdata(dev, net_dev); 3335 3336 priv = netdev_priv(net_dev); 3337 priv->net_dev = net_dev; 3338 3339 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT); 3340 3341 mac_dev = dpaa_mac_dev_get(pdev); 3342 if (IS_ERR(mac_dev)) { 3343 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n"); 3344 err = PTR_ERR(mac_dev); 3345 goto free_netdev; 3346 } 3347 3348 /* Devices used for DMA mapping */ 3349 priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]); 3350 priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]); 3351 err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40)); 3352 if (!err) 3353 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev, 3354 DMA_BIT_MASK(40)); 3355 if (err) { 3356 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n"); 3357 goto free_netdev; 3358 } 3359 3360 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500, 3361 * we choose conservatively and let the user explicitly set a higher 3362 * MTU via ifconfig. Otherwise, the user may end up with different MTUs 3363 * in the same LAN. 3364 * If on the other hand fsl_fm_max_frm has been chosen below 1500, 3365 * start with the maximum allowed. 3366 */ 3367 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN); 3368 3369 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n", 3370 net_dev->mtu); 3371 3372 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */ 3373 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */ 3374 3375 /* bp init */ 3376 dpaa_bp = dpaa_bp_alloc(dev); 3377 if (IS_ERR(dpaa_bp)) { 3378 err = PTR_ERR(dpaa_bp); 3379 goto free_dpaa_bps; 3380 } 3381 /* the raw size of the buffers used for reception */ 3382 dpaa_bp->raw_size = DPAA_BP_RAW_SIZE; 3383 /* avoid runtime computations by keeping the usable size here */ 3384 dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size); 3385 dpaa_bp->priv = priv; 3386 3387 err = dpaa_bp_alloc_pool(dpaa_bp); 3388 if (err < 0) 3389 goto free_dpaa_bps; 3390 priv->dpaa_bp = dpaa_bp; 3391 3392 INIT_LIST_HEAD(&priv->dpaa_fq_list); 3393 3394 memset(&port_fqs, 0, sizeof(port_fqs)); 3395 3396 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs); 3397 if (err < 0) { 3398 dev_err(dev, "dpaa_alloc_all_fqs() failed\n"); 3399 goto free_dpaa_bps; 3400 } 3401 3402 priv->mac_dev = mac_dev; 3403 3404 channel = dpaa_get_channel(); 3405 if (channel < 0) { 3406 dev_err(dev, "dpaa_get_channel() failed\n"); 3407 err = channel; 3408 goto free_dpaa_bps; 3409 } 3410 3411 priv->channel = (u16)channel; 3412 3413 /* Walk the CPUs with affine portals 3414 * and add this pool channel to each's dequeue mask. 3415 */ 3416 dpaa_eth_add_channel(priv->channel, &pdev->dev); 3417 3418 dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]); 3419 3420 /* Create a congestion group for this netdev, with 3421 * dynamically-allocated CGR ID. 3422 * Must be executed after probing the MAC, but before 3423 * assigning the egress FQs to the CGRs. 3424 */ 3425 err = dpaa_eth_cgr_init(priv); 3426 if (err < 0) { 3427 dev_err(dev, "Error initializing CGR\n"); 3428 goto free_dpaa_bps; 3429 } 3430 3431 err = dpaa_ingress_cgr_init(priv); 3432 if (err < 0) { 3433 dev_err(dev, "Error initializing ingress CGR\n"); 3434 goto delete_egress_cgr; 3435 } 3436 3437 /* Add the FQs to the interface, and make them active */ 3438 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) { 3439 err = dpaa_fq_init(dpaa_fq, false); 3440 if (err < 0) 3441 goto free_dpaa_fqs; 3442 } 3443 3444 priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX); 3445 priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX); 3446 3447 /* All real interfaces need their ports initialized */ 3448 err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs, 3449 &priv->buf_layout[0], dev); 3450 if (err) 3451 goto free_dpaa_fqs; 3452 3453 /* Rx traffic distribution based on keygen hashing defaults to on */ 3454 priv->keygen_in_use = true; 3455 3456 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv); 3457 if (!priv->percpu_priv) { 3458 dev_err(dev, "devm_alloc_percpu() failed\n"); 3459 err = -ENOMEM; 3460 goto free_dpaa_fqs; 3461 } 3462 3463 priv->num_tc = 1; 3464 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM); 3465 3466 /* Initialize NAPI */ 3467 err = dpaa_napi_add(net_dev); 3468 if (err < 0) 3469 goto delete_dpaa_napi; 3470 3471 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout); 3472 if (err < 0) 3473 goto delete_dpaa_napi; 3474 3475 dpaa_eth_sysfs_init(&net_dev->dev); 3476 3477 netif_info(priv, probe, net_dev, "Probed interface %s\n", 3478 net_dev->name); 3479 3480 return 0; 3481 3482 delete_dpaa_napi: 3483 dpaa_napi_del(net_dev); 3484 free_dpaa_fqs: 3485 dpaa_fq_free(dev, &priv->dpaa_fq_list); 3486 qman_delete_cgr_safe(&priv->ingress_cgr); 3487 qman_release_cgrid(priv->ingress_cgr.cgrid); 3488 delete_egress_cgr: 3489 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3490 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3491 free_dpaa_bps: 3492 dpaa_bps_free(priv); 3493 free_netdev: 3494 dev_set_drvdata(dev, NULL); 3495 free_netdev(net_dev); 3496 3497 return err; 3498 } 3499 3500 static int dpaa_remove(struct platform_device *pdev) 3501 { 3502 struct net_device *net_dev; 3503 struct dpaa_priv *priv; 3504 struct device *dev; 3505 int err; 3506 3507 dev = &pdev->dev; 3508 net_dev = dev_get_drvdata(dev); 3509 3510 priv = netdev_priv(net_dev); 3511 3512 dpaa_eth_sysfs_remove(dev); 3513 3514 dev_set_drvdata(dev, NULL); 3515 unregister_netdev(net_dev); 3516 phylink_destroy(priv->mac_dev->phylink); 3517 3518 err = dpaa_fq_free(dev, &priv->dpaa_fq_list); 3519 3520 qman_delete_cgr_safe(&priv->ingress_cgr); 3521 qman_release_cgrid(priv->ingress_cgr.cgrid); 3522 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3523 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3524 3525 dpaa_napi_del(net_dev); 3526 3527 dpaa_bps_free(priv); 3528 3529 free_netdev(net_dev); 3530 3531 return err; 3532 } 3533 3534 static const struct platform_device_id dpaa_devtype[] = { 3535 { 3536 .name = "dpaa-ethernet", 3537 .driver_data = 0, 3538 }, { 3539 } 3540 }; 3541 MODULE_DEVICE_TABLE(platform, dpaa_devtype); 3542 3543 static struct platform_driver dpaa_driver = { 3544 .driver = { 3545 .name = KBUILD_MODNAME, 3546 }, 3547 .id_table = dpaa_devtype, 3548 .probe = dpaa_eth_probe, 3549 .remove = dpaa_remove 3550 }; 3551 3552 static int __init dpaa_load(void) 3553 { 3554 int err; 3555 3556 pr_debug("FSL DPAA Ethernet driver\n"); 3557 3558 /* initialize dpaa_eth mirror values */ 3559 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom(); 3560 dpaa_max_frm = fman_get_max_frm(); 3561 3562 err = platform_driver_register(&dpaa_driver); 3563 if (err < 0) 3564 pr_err("Error, platform_driver_register() = %d\n", err); 3565 3566 return err; 3567 } 3568 module_init(dpaa_load); 3569 3570 static void __exit dpaa_unload(void) 3571 { 3572 platform_driver_unregister(&dpaa_driver); 3573 3574 /* Only one channel is used and needs to be released after all 3575 * interfaces are removed 3576 */ 3577 dpaa_release_channel(); 3578 } 3579 module_exit(dpaa_unload); 3580 3581 MODULE_LICENSE("Dual BSD/GPL"); 3582 MODULE_DESCRIPTION("FSL DPAA Ethernet driver"); 3583