1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later 2 /* 3 * Copyright 2008 - 2016 Freescale Semiconductor Inc. 4 * Copyright 2020 NXP 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/init.h> 10 #include <linux/module.h> 11 #include <linux/of_platform.h> 12 #include <linux/of_mdio.h> 13 #include <linux/of_net.h> 14 #include <linux/io.h> 15 #include <linux/if_arp.h> 16 #include <linux/if_vlan.h> 17 #include <linux/icmp.h> 18 #include <linux/ip.h> 19 #include <linux/ipv6.h> 20 #include <linux/udp.h> 21 #include <linux/tcp.h> 22 #include <linux/net.h> 23 #include <linux/skbuff.h> 24 #include <linux/etherdevice.h> 25 #include <linux/if_ether.h> 26 #include <linux/highmem.h> 27 #include <linux/percpu.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/sort.h> 30 #include <linux/phy_fixed.h> 31 #include <linux/bpf.h> 32 #include <linux/bpf_trace.h> 33 #include <soc/fsl/bman.h> 34 #include <soc/fsl/qman.h> 35 #include "fman.h" 36 #include "fman_port.h" 37 #include "mac.h" 38 #include "dpaa_eth.h" 39 40 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files 41 * using trace events only need to #include <trace/events/sched.h> 42 */ 43 #define CREATE_TRACE_POINTS 44 #include "dpaa_eth_trace.h" 45 46 static int debug = -1; 47 module_param(debug, int, 0444); 48 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)"); 49 50 static u16 tx_timeout = 1000; 51 module_param(tx_timeout, ushort, 0444); 52 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms"); 53 54 #define FM_FD_STAT_RX_ERRORS \ 55 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \ 56 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \ 57 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \ 58 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \ 59 FM_FD_ERR_PRS_HDR_ERR) 60 61 #define FM_FD_STAT_TX_ERRORS \ 62 (FM_FD_ERR_UNSUPPORTED_FORMAT | \ 63 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA) 64 65 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 66 NETIF_MSG_LINK | NETIF_MSG_IFUP | \ 67 NETIF_MSG_IFDOWN | NETIF_MSG_HW) 68 69 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000 70 /* Ingress congestion threshold on FMan ports 71 * The size in bytes of the ingress tail-drop threshold on FMan ports. 72 * Traffic piling up above this value will be rejected by QMan and discarded 73 * by FMan. 74 */ 75 76 /* Size in bytes of the FQ taildrop threshold */ 77 #define DPAA_FQ_TD 0x200000 78 79 #define DPAA_CS_THRESHOLD_1G 0x06000000 80 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000 81 * The size in bytes of the egress Congestion State notification threshold on 82 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a 83 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"), 84 * and the larger the frame size, the more acute the problem. 85 * So we have to find a balance between these factors: 86 * - avoiding the device staying congested for a prolonged time (risking 87 * the netdev watchdog to fire - see also the tx_timeout module param); 88 * - affecting performance of protocols such as TCP, which otherwise 89 * behave well under the congestion notification mechanism; 90 * - preventing the Tx cores from tightly-looping (as if the congestion 91 * threshold was too low to be effective); 92 * - running out of memory if the CS threshold is set too high. 93 */ 94 95 #define DPAA_CS_THRESHOLD_10G 0x10000000 96 /* The size in bytes of the egress Congestion State notification threshold on 97 * 10G ports, range 0x1000 .. 0x10000000 98 */ 99 100 /* Largest value that the FQD's OAL field can hold */ 101 #define FSL_QMAN_MAX_OAL 127 102 103 /* Default alignment for start of data in an Rx FD */ 104 #ifdef CONFIG_DPAA_ERRATUM_A050385 105 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer 106 * is crossing a 4k page boundary 107 */ 108 #define DPAA_FD_DATA_ALIGNMENT (fman_has_errata_a050385() ? 64 : 16) 109 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary 110 * crossings; also, all SG fragments except the last must have a size multiple 111 * of 256 to avoid DMA transaction splits 112 */ 113 #define DPAA_A050385_ALIGN 256 114 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \ 115 DPAA_A050385_ALIGN : 16) 116 #else 117 #define DPAA_FD_DATA_ALIGNMENT 16 118 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT 119 #endif 120 121 /* The DPAA requires 256 bytes reserved and mapped for the SGT */ 122 #define DPAA_SGT_SIZE 256 123 124 /* Values for the L3R field of the FM Parse Results 125 */ 126 /* L3 Type field: First IP Present IPv4 */ 127 #define FM_L3_PARSE_RESULT_IPV4 0x8000 128 /* L3 Type field: First IP Present IPv6 */ 129 #define FM_L3_PARSE_RESULT_IPV6 0x4000 130 /* Values for the L4R field of the FM Parse Results */ 131 /* L4 Type field: UDP */ 132 #define FM_L4_PARSE_RESULT_UDP 0x40 133 /* L4 Type field: TCP */ 134 #define FM_L4_PARSE_RESULT_TCP 0x20 135 136 /* FD status field indicating whether the FM Parser has attempted to validate 137 * the L4 csum of the frame. 138 * Note that having this bit set doesn't necessarily imply that the checksum 139 * is valid. One would have to check the parse results to find that out. 140 */ 141 #define FM_FD_STAT_L4CV 0x00000004 142 143 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */ 144 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */ 145 146 #define FSL_DPAA_BPID_INV 0xff 147 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128 148 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80 149 150 #define DPAA_TX_PRIV_DATA_SIZE 16 151 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result) 152 #define DPAA_TIME_STAMP_SIZE 8 153 #define DPAA_HASH_RESULTS_SIZE 8 154 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \ 155 + DPAA_HASH_RESULTS_SIZE) 156 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \ 157 XDP_PACKET_HEADROOM - DPAA_HWA_SIZE) 158 #ifdef CONFIG_DPAA_ERRATUM_A050385 159 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE) 160 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \ 161 DPAA_RX_PRIV_DATA_A050385_SIZE : \ 162 DPAA_RX_PRIV_DATA_DEFAULT_SIZE) 163 #else 164 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE 165 #endif 166 167 #define DPAA_ETH_PCD_RXQ_NUM 128 168 169 #define DPAA_ENQUEUE_RETRIES 100000 170 171 enum port_type {RX, TX}; 172 173 struct fm_port_fqs { 174 struct dpaa_fq *tx_defq; 175 struct dpaa_fq *tx_errq; 176 struct dpaa_fq *rx_defq; 177 struct dpaa_fq *rx_errq; 178 struct dpaa_fq *rx_pcdq; 179 }; 180 181 /* All the dpa bps in use at any moment */ 182 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS]; 183 184 #define DPAA_BP_RAW_SIZE 4096 185 186 #ifdef CONFIG_DPAA_ERRATUM_A050385 187 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \ 188 ~(DPAA_A050385_ALIGN - 1)) 189 #else 190 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size) 191 #endif 192 193 static int dpaa_max_frm; 194 195 static int dpaa_rx_extra_headroom; 196 197 #define dpaa_get_max_mtu() \ 198 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN)) 199 200 static int dpaa_netdev_init(struct net_device *net_dev, 201 const struct net_device_ops *dpaa_ops, 202 u16 tx_timeout) 203 { 204 struct dpaa_priv *priv = netdev_priv(net_dev); 205 struct device *dev = net_dev->dev.parent; 206 struct dpaa_percpu_priv *percpu_priv; 207 const u8 *mac_addr; 208 int i, err; 209 210 /* Although we access another CPU's private data here 211 * we do it at initialization so it is safe 212 */ 213 for_each_possible_cpu(i) { 214 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 215 percpu_priv->net_dev = net_dev; 216 } 217 218 net_dev->netdev_ops = dpaa_ops; 219 mac_addr = priv->mac_dev->addr; 220 221 net_dev->mem_start = priv->mac_dev->res->start; 222 net_dev->mem_end = priv->mac_dev->res->end; 223 224 net_dev->min_mtu = ETH_MIN_MTU; 225 net_dev->max_mtu = dpaa_get_max_mtu(); 226 227 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 228 NETIF_F_LLTX | NETIF_F_RXHASH); 229 230 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA; 231 /* The kernels enables GSO automatically, if we declare NETIF_F_SG. 232 * For conformity, we'll still declare GSO explicitly. 233 */ 234 net_dev->features |= NETIF_F_GSO; 235 net_dev->features |= NETIF_F_RXCSUM; 236 237 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 238 /* we do not want shared skbs on TX */ 239 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING; 240 241 net_dev->features |= net_dev->hw_features; 242 net_dev->vlan_features = net_dev->features; 243 244 if (is_valid_ether_addr(mac_addr)) { 245 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len); 246 eth_hw_addr_set(net_dev, mac_addr); 247 } else { 248 eth_hw_addr_random(net_dev); 249 err = priv->mac_dev->change_addr(priv->mac_dev->fman_mac, 250 (const enet_addr_t *)net_dev->dev_addr); 251 if (err) { 252 dev_err(dev, "Failed to set random MAC address\n"); 253 return -EINVAL; 254 } 255 dev_info(dev, "Using random MAC address: %pM\n", 256 net_dev->dev_addr); 257 } 258 259 net_dev->ethtool_ops = &dpaa_ethtool_ops; 260 261 net_dev->needed_headroom = priv->tx_headroom; 262 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout); 263 264 /* start without the RUNNING flag, phylib controls it later */ 265 netif_carrier_off(net_dev); 266 267 err = register_netdev(net_dev); 268 if (err < 0) { 269 dev_err(dev, "register_netdev() = %d\n", err); 270 return err; 271 } 272 273 return 0; 274 } 275 276 static int dpaa_stop(struct net_device *net_dev) 277 { 278 struct mac_device *mac_dev; 279 struct dpaa_priv *priv; 280 int i, err, error; 281 282 priv = netdev_priv(net_dev); 283 mac_dev = priv->mac_dev; 284 285 netif_tx_stop_all_queues(net_dev); 286 /* Allow the Fman (Tx) port to process in-flight frames before we 287 * try switching it off. 288 */ 289 msleep(200); 290 291 if (mac_dev->phy_dev) 292 phy_stop(mac_dev->phy_dev); 293 err = mac_dev->disable(mac_dev->fman_mac); 294 if (err < 0) 295 netif_err(priv, ifdown, net_dev, "mac_dev->disable() = %d\n", 296 err); 297 298 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 299 error = fman_port_disable(mac_dev->port[i]); 300 if (error) 301 err = error; 302 } 303 304 if (net_dev->phydev) 305 phy_disconnect(net_dev->phydev); 306 net_dev->phydev = NULL; 307 308 msleep(200); 309 310 return err; 311 } 312 313 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue) 314 { 315 struct dpaa_percpu_priv *percpu_priv; 316 const struct dpaa_priv *priv; 317 318 priv = netdev_priv(net_dev); 319 percpu_priv = this_cpu_ptr(priv->percpu_priv); 320 321 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n", 322 jiffies_to_msecs(jiffies - dev_trans_start(net_dev))); 323 324 percpu_priv->stats.tx_errors++; 325 } 326 327 /* Calculates the statistics for the given device by adding the statistics 328 * collected by each CPU. 329 */ 330 static void dpaa_get_stats64(struct net_device *net_dev, 331 struct rtnl_link_stats64 *s) 332 { 333 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64); 334 struct dpaa_priv *priv = netdev_priv(net_dev); 335 struct dpaa_percpu_priv *percpu_priv; 336 u64 *netstats = (u64 *)s; 337 u64 *cpustats; 338 int i, j; 339 340 for_each_possible_cpu(i) { 341 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 342 343 cpustats = (u64 *)&percpu_priv->stats; 344 345 /* add stats from all CPUs */ 346 for (j = 0; j < numstats; j++) 347 netstats[j] += cpustats[j]; 348 } 349 } 350 351 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type, 352 void *type_data) 353 { 354 struct dpaa_priv *priv = netdev_priv(net_dev); 355 struct tc_mqprio_qopt *mqprio = type_data; 356 u8 num_tc; 357 int i; 358 359 if (type != TC_SETUP_QDISC_MQPRIO) 360 return -EOPNOTSUPP; 361 362 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 363 num_tc = mqprio->num_tc; 364 365 if (num_tc == priv->num_tc) 366 return 0; 367 368 if (!num_tc) { 369 netdev_reset_tc(net_dev); 370 goto out; 371 } 372 373 if (num_tc > DPAA_TC_NUM) { 374 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n", 375 DPAA_TC_NUM); 376 return -EINVAL; 377 } 378 379 netdev_set_num_tc(net_dev, num_tc); 380 381 for (i = 0; i < num_tc; i++) 382 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM, 383 i * DPAA_TC_TXQ_NUM); 384 385 out: 386 priv->num_tc = num_tc ? : 1; 387 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM); 388 return 0; 389 } 390 391 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev) 392 { 393 struct dpaa_eth_data *eth_data; 394 struct device *dpaa_dev; 395 struct mac_device *mac_dev; 396 397 dpaa_dev = &pdev->dev; 398 eth_data = dpaa_dev->platform_data; 399 if (!eth_data) { 400 dev_err(dpaa_dev, "eth_data missing\n"); 401 return ERR_PTR(-ENODEV); 402 } 403 mac_dev = eth_data->mac_dev; 404 if (!mac_dev) { 405 dev_err(dpaa_dev, "mac_dev missing\n"); 406 return ERR_PTR(-EINVAL); 407 } 408 409 return mac_dev; 410 } 411 412 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr) 413 { 414 const struct dpaa_priv *priv; 415 struct mac_device *mac_dev; 416 struct sockaddr old_addr; 417 int err; 418 419 priv = netdev_priv(net_dev); 420 421 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN); 422 423 err = eth_mac_addr(net_dev, addr); 424 if (err < 0) { 425 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err); 426 return err; 427 } 428 429 mac_dev = priv->mac_dev; 430 431 err = mac_dev->change_addr(mac_dev->fman_mac, 432 (const enet_addr_t *)net_dev->dev_addr); 433 if (err < 0) { 434 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n", 435 err); 436 /* reverting to previous address */ 437 eth_mac_addr(net_dev, &old_addr); 438 439 return err; 440 } 441 442 return 0; 443 } 444 445 static void dpaa_set_rx_mode(struct net_device *net_dev) 446 { 447 const struct dpaa_priv *priv; 448 int err; 449 450 priv = netdev_priv(net_dev); 451 452 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) { 453 priv->mac_dev->promisc = !priv->mac_dev->promisc; 454 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac, 455 priv->mac_dev->promisc); 456 if (err < 0) 457 netif_err(priv, drv, net_dev, 458 "mac_dev->set_promisc() = %d\n", 459 err); 460 } 461 462 if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) { 463 priv->mac_dev->allmulti = !priv->mac_dev->allmulti; 464 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac, 465 priv->mac_dev->allmulti); 466 if (err < 0) 467 netif_err(priv, drv, net_dev, 468 "mac_dev->set_allmulti() = %d\n", 469 err); 470 } 471 472 err = priv->mac_dev->set_multi(net_dev, priv->mac_dev); 473 if (err < 0) 474 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n", 475 err); 476 } 477 478 static struct dpaa_bp *dpaa_bpid2pool(int bpid) 479 { 480 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS)) 481 return NULL; 482 483 return dpaa_bp_array[bpid]; 484 } 485 486 /* checks if this bpool is already allocated */ 487 static bool dpaa_bpid2pool_use(int bpid) 488 { 489 if (dpaa_bpid2pool(bpid)) { 490 refcount_inc(&dpaa_bp_array[bpid]->refs); 491 return true; 492 } 493 494 return false; 495 } 496 497 /* called only once per bpid by dpaa_bp_alloc_pool() */ 498 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp) 499 { 500 dpaa_bp_array[bpid] = dpaa_bp; 501 refcount_set(&dpaa_bp->refs, 1); 502 } 503 504 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp) 505 { 506 int err; 507 508 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) { 509 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n", 510 __func__); 511 return -EINVAL; 512 } 513 514 /* If the pool is already specified, we only create one per bpid */ 515 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV && 516 dpaa_bpid2pool_use(dpaa_bp->bpid)) 517 return 0; 518 519 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) { 520 dpaa_bp->pool = bman_new_pool(); 521 if (!dpaa_bp->pool) { 522 pr_err("%s: bman_new_pool() failed\n", 523 __func__); 524 return -ENODEV; 525 } 526 527 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool); 528 } 529 530 if (dpaa_bp->seed_cb) { 531 err = dpaa_bp->seed_cb(dpaa_bp); 532 if (err) 533 goto pool_seed_failed; 534 } 535 536 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp); 537 538 return 0; 539 540 pool_seed_failed: 541 pr_err("%s: pool seeding failed\n", __func__); 542 bman_free_pool(dpaa_bp->pool); 543 544 return err; 545 } 546 547 /* remove and free all the buffers from the given buffer pool */ 548 static void dpaa_bp_drain(struct dpaa_bp *bp) 549 { 550 u8 num = 8; 551 int ret; 552 553 do { 554 struct bm_buffer bmb[8]; 555 int i; 556 557 ret = bman_acquire(bp->pool, bmb, num); 558 if (ret < 0) { 559 if (num == 8) { 560 /* we have less than 8 buffers left; 561 * drain them one by one 562 */ 563 num = 1; 564 ret = 1; 565 continue; 566 } else { 567 /* Pool is fully drained */ 568 break; 569 } 570 } 571 572 if (bp->free_buf_cb) 573 for (i = 0; i < num; i++) 574 bp->free_buf_cb(bp, &bmb[i]); 575 } while (ret > 0); 576 } 577 578 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp) 579 { 580 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid); 581 582 /* the mapping between bpid and dpaa_bp is done very late in the 583 * allocation procedure; if something failed before the mapping, the bp 584 * was not configured, therefore we don't need the below instructions 585 */ 586 if (!bp) 587 return; 588 589 if (!refcount_dec_and_test(&bp->refs)) 590 return; 591 592 if (bp->free_buf_cb) 593 dpaa_bp_drain(bp); 594 595 dpaa_bp_array[bp->bpid] = NULL; 596 bman_free_pool(bp->pool); 597 } 598 599 static void dpaa_bps_free(struct dpaa_priv *priv) 600 { 601 dpaa_bp_free(priv->dpaa_bp); 602 } 603 604 /* Use multiple WQs for FQ assignment: 605 * - Tx Confirmation queues go to WQ1. 606 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance 607 * to be scheduled, in case there are many more FQs in WQ6). 608 * - Rx Default goes to WQ6. 609 * - Tx queues go to different WQs depending on their priority. Equal 610 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and 611 * WQ0 (highest priority). 612 * This ensures that Tx-confirmed buffers are timely released. In particular, 613 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they 614 * are greatly outnumbered by other FQs in the system, while 615 * dequeue scheduling is round-robin. 616 */ 617 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx) 618 { 619 switch (fq->fq_type) { 620 case FQ_TYPE_TX_CONFIRM: 621 case FQ_TYPE_TX_CONF_MQ: 622 fq->wq = 1; 623 break; 624 case FQ_TYPE_RX_ERROR: 625 case FQ_TYPE_TX_ERROR: 626 fq->wq = 5; 627 break; 628 case FQ_TYPE_RX_DEFAULT: 629 case FQ_TYPE_RX_PCD: 630 fq->wq = 6; 631 break; 632 case FQ_TYPE_TX: 633 switch (idx / DPAA_TC_TXQ_NUM) { 634 case 0: 635 /* Low priority (best effort) */ 636 fq->wq = 6; 637 break; 638 case 1: 639 /* Medium priority */ 640 fq->wq = 2; 641 break; 642 case 2: 643 /* High priority */ 644 fq->wq = 1; 645 break; 646 case 3: 647 /* Very high priority */ 648 fq->wq = 0; 649 break; 650 default: 651 WARN(1, "Too many TX FQs: more than %d!\n", 652 DPAA_ETH_TXQ_NUM); 653 } 654 break; 655 default: 656 WARN(1, "Invalid FQ type %d for FQID %d!\n", 657 fq->fq_type, fq->fqid); 658 } 659 } 660 661 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev, 662 u32 start, u32 count, 663 struct list_head *list, 664 enum dpaa_fq_type fq_type) 665 { 666 struct dpaa_fq *dpaa_fq; 667 int i; 668 669 dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq), 670 GFP_KERNEL); 671 if (!dpaa_fq) 672 return NULL; 673 674 for (i = 0; i < count; i++) { 675 dpaa_fq[i].fq_type = fq_type; 676 dpaa_fq[i].fqid = start ? start + i : 0; 677 list_add_tail(&dpaa_fq[i].list, list); 678 } 679 680 for (i = 0; i < count; i++) 681 dpaa_assign_wq(dpaa_fq + i, i); 682 683 return dpaa_fq; 684 } 685 686 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list, 687 struct fm_port_fqs *port_fqs) 688 { 689 struct dpaa_fq *dpaa_fq; 690 u32 fq_base, fq_base_aligned, i; 691 692 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR); 693 if (!dpaa_fq) 694 goto fq_alloc_failed; 695 696 port_fqs->rx_errq = &dpaa_fq[0]; 697 698 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT); 699 if (!dpaa_fq) 700 goto fq_alloc_failed; 701 702 port_fqs->rx_defq = &dpaa_fq[0]; 703 704 /* the PCD FQIDs range needs to be aligned for correct operation */ 705 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM)) 706 goto fq_alloc_failed; 707 708 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM); 709 710 for (i = fq_base; i < fq_base_aligned; i++) 711 qman_release_fqid(i); 712 713 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM; 714 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++) 715 qman_release_fqid(i); 716 717 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM, 718 list, FQ_TYPE_RX_PCD); 719 if (!dpaa_fq) 720 goto fq_alloc_failed; 721 722 port_fqs->rx_pcdq = &dpaa_fq[0]; 723 724 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ)) 725 goto fq_alloc_failed; 726 727 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR); 728 if (!dpaa_fq) 729 goto fq_alloc_failed; 730 731 port_fqs->tx_errq = &dpaa_fq[0]; 732 733 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM); 734 if (!dpaa_fq) 735 goto fq_alloc_failed; 736 737 port_fqs->tx_defq = &dpaa_fq[0]; 738 739 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX)) 740 goto fq_alloc_failed; 741 742 return 0; 743 744 fq_alloc_failed: 745 dev_err(dev, "dpaa_fq_alloc() failed\n"); 746 return -ENOMEM; 747 } 748 749 static u32 rx_pool_channel; 750 static DEFINE_SPINLOCK(rx_pool_channel_init); 751 752 static int dpaa_get_channel(void) 753 { 754 spin_lock(&rx_pool_channel_init); 755 if (!rx_pool_channel) { 756 u32 pool; 757 int ret; 758 759 ret = qman_alloc_pool(&pool); 760 761 if (!ret) 762 rx_pool_channel = pool; 763 } 764 spin_unlock(&rx_pool_channel_init); 765 if (!rx_pool_channel) 766 return -ENOMEM; 767 return rx_pool_channel; 768 } 769 770 static void dpaa_release_channel(void) 771 { 772 qman_release_pool(rx_pool_channel); 773 } 774 775 static void dpaa_eth_add_channel(u16 channel, struct device *dev) 776 { 777 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel); 778 const cpumask_t *cpus = qman_affine_cpus(); 779 struct qman_portal *portal; 780 int cpu; 781 782 for_each_cpu_and(cpu, cpus, cpu_online_mask) { 783 portal = qman_get_affine_portal(cpu); 784 qman_p_static_dequeue_add(portal, pool); 785 qman_start_using_portal(portal, dev); 786 } 787 } 788 789 /* Congestion group state change notification callback. 790 * Stops the device's egress queues while they are congested and 791 * wakes them upon exiting congested state. 792 * Also updates some CGR-related stats. 793 */ 794 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr, 795 int congested) 796 { 797 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr, 798 struct dpaa_priv, cgr_data.cgr); 799 800 if (congested) { 801 priv->cgr_data.congestion_start_jiffies = jiffies; 802 netif_tx_stop_all_queues(priv->net_dev); 803 priv->cgr_data.cgr_congested_count++; 804 } else { 805 priv->cgr_data.congested_jiffies += 806 (jiffies - priv->cgr_data.congestion_start_jiffies); 807 netif_tx_wake_all_queues(priv->net_dev); 808 } 809 } 810 811 static int dpaa_eth_cgr_init(struct dpaa_priv *priv) 812 { 813 struct qm_mcc_initcgr initcgr; 814 u32 cs_th; 815 int err; 816 817 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid); 818 if (err < 0) { 819 if (netif_msg_drv(priv)) 820 pr_err("%s: Error %d allocating CGR ID\n", 821 __func__, err); 822 goto out_error; 823 } 824 priv->cgr_data.cgr.cb = dpaa_eth_cgscn; 825 826 /* Enable Congestion State Change Notifications and CS taildrop */ 827 memset(&initcgr, 0, sizeof(initcgr)); 828 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES); 829 initcgr.cgr.cscn_en = QM_CGR_EN; 830 831 /* Set different thresholds based on the MAC speed. 832 * This may turn suboptimal if the MAC is reconfigured at a speed 833 * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link. 834 * In such cases, we ought to reconfigure the threshold, too. 835 */ 836 if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full) 837 cs_th = DPAA_CS_THRESHOLD_10G; 838 else 839 cs_th = DPAA_CS_THRESHOLD_1G; 840 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 841 842 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 843 initcgr.cgr.cstd_en = QM_CGR_EN; 844 845 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT, 846 &initcgr); 847 if (err < 0) { 848 if (netif_msg_drv(priv)) 849 pr_err("%s: Error %d creating CGR with ID %d\n", 850 __func__, err, priv->cgr_data.cgr.cgrid); 851 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 852 goto out_error; 853 } 854 if (netif_msg_drv(priv)) 855 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n", 856 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr, 857 priv->cgr_data.cgr.chan); 858 859 out_error: 860 return err; 861 } 862 863 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv, 864 struct dpaa_fq *fq, 865 const struct qman_fq *template) 866 { 867 fq->fq_base = *template; 868 fq->net_dev = priv->net_dev; 869 870 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE; 871 fq->channel = priv->channel; 872 } 873 874 static inline void dpaa_setup_egress(const struct dpaa_priv *priv, 875 struct dpaa_fq *fq, 876 struct fman_port *port, 877 const struct qman_fq *template) 878 { 879 fq->fq_base = *template; 880 fq->net_dev = priv->net_dev; 881 882 if (port) { 883 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL; 884 fq->channel = (u16)fman_port_get_qman_channel_id(port); 885 } else { 886 fq->flags = QMAN_FQ_FLAG_NO_MODIFY; 887 } 888 } 889 890 static void dpaa_fq_setup(struct dpaa_priv *priv, 891 const struct dpaa_fq_cbs *fq_cbs, 892 struct fman_port *tx_port) 893 { 894 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu; 895 const cpumask_t *affine_cpus = qman_affine_cpus(); 896 u16 channels[NR_CPUS]; 897 struct dpaa_fq *fq; 898 899 for_each_cpu_and(cpu, affine_cpus, cpu_online_mask) 900 channels[num_portals++] = qman_affine_channel(cpu); 901 902 if (num_portals == 0) 903 dev_err(priv->net_dev->dev.parent, 904 "No Qman software (affine) channels found\n"); 905 906 /* Initialize each FQ in the list */ 907 list_for_each_entry(fq, &priv->dpaa_fq_list, list) { 908 switch (fq->fq_type) { 909 case FQ_TYPE_RX_DEFAULT: 910 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 911 break; 912 case FQ_TYPE_RX_ERROR: 913 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq); 914 break; 915 case FQ_TYPE_RX_PCD: 916 if (!num_portals) 917 continue; 918 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 919 fq->channel = channels[portal_cnt++ % num_portals]; 920 break; 921 case FQ_TYPE_TX: 922 dpaa_setup_egress(priv, fq, tx_port, 923 &fq_cbs->egress_ern); 924 /* If we have more Tx queues than the number of cores, 925 * just ignore the extra ones. 926 */ 927 if (egress_cnt < DPAA_ETH_TXQ_NUM) 928 priv->egress_fqs[egress_cnt++] = &fq->fq_base; 929 break; 930 case FQ_TYPE_TX_CONF_MQ: 931 priv->conf_fqs[conf_cnt++] = &fq->fq_base; 932 fallthrough; 933 case FQ_TYPE_TX_CONFIRM: 934 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq); 935 break; 936 case FQ_TYPE_TX_ERROR: 937 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq); 938 break; 939 default: 940 dev_warn(priv->net_dev->dev.parent, 941 "Unknown FQ type detected!\n"); 942 break; 943 } 944 } 945 946 /* Make sure all CPUs receive a corresponding Tx queue. */ 947 while (egress_cnt < DPAA_ETH_TXQ_NUM) { 948 list_for_each_entry(fq, &priv->dpaa_fq_list, list) { 949 if (fq->fq_type != FQ_TYPE_TX) 950 continue; 951 priv->egress_fqs[egress_cnt++] = &fq->fq_base; 952 if (egress_cnt == DPAA_ETH_TXQ_NUM) 953 break; 954 } 955 } 956 } 957 958 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv, 959 struct qman_fq *tx_fq) 960 { 961 int i; 962 963 for (i = 0; i < DPAA_ETH_TXQ_NUM; i++) 964 if (priv->egress_fqs[i] == tx_fq) 965 return i; 966 967 return -EINVAL; 968 } 969 970 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable) 971 { 972 const struct dpaa_priv *priv; 973 struct qman_fq *confq = NULL; 974 struct qm_mcc_initfq initfq; 975 struct device *dev; 976 struct qman_fq *fq; 977 int queue_id; 978 int err; 979 980 priv = netdev_priv(dpaa_fq->net_dev); 981 dev = dpaa_fq->net_dev->dev.parent; 982 983 if (dpaa_fq->fqid == 0) 984 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID; 985 986 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY); 987 988 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base); 989 if (err) { 990 dev_err(dev, "qman_create_fq() failed\n"); 991 return err; 992 } 993 fq = &dpaa_fq->fq_base; 994 995 if (dpaa_fq->init) { 996 memset(&initfq, 0, sizeof(initfq)); 997 998 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL); 999 /* Note: we may get to keep an empty FQ in cache */ 1000 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE); 1001 1002 /* Try to reduce the number of portal interrupts for 1003 * Tx Confirmation FQs. 1004 */ 1005 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM) 1006 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK); 1007 1008 /* FQ placement */ 1009 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ); 1010 1011 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq); 1012 1013 /* Put all egress queues in a congestion group of their own. 1014 * Sensu stricto, the Tx confirmation queues are Rx FQs, 1015 * rather than Tx - but they nonetheless account for the 1016 * memory footprint on behalf of egress traffic. We therefore 1017 * place them in the netdev's CGR, along with the Tx FQs. 1018 */ 1019 if (dpaa_fq->fq_type == FQ_TYPE_TX || 1020 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM || 1021 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) { 1022 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1023 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1024 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid; 1025 /* Set a fixed overhead accounting, in an attempt to 1026 * reduce the impact of fixed-size skb shells and the 1027 * driver's needed headroom on system memory. This is 1028 * especially the case when the egress traffic is 1029 * composed of small datagrams. 1030 * Unfortunately, QMan's OAL value is capped to an 1031 * insufficient value, but even that is better than 1032 * no overhead accounting at all. 1033 */ 1034 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1035 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1036 qm_fqd_set_oal(&initfq.fqd, 1037 min(sizeof(struct sk_buff) + 1038 priv->tx_headroom, 1039 (size_t)FSL_QMAN_MAX_OAL)); 1040 } 1041 1042 if (td_enable) { 1043 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH); 1044 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1); 1045 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE); 1046 } 1047 1048 if (dpaa_fq->fq_type == FQ_TYPE_TX) { 1049 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base); 1050 if (queue_id >= 0) 1051 confq = priv->conf_fqs[queue_id]; 1052 if (confq) { 1053 initfq.we_mask |= 1054 cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1055 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD) 1056 * A2V=1 (contextA A2 field is valid) 1057 * A0V=1 (contextA A0 field is valid) 1058 * B0V=1 (contextB field is valid) 1059 * ContextA A2: EBD=1 (deallocate buffers inside FMan) 1060 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID) 1061 */ 1062 qm_fqd_context_a_set64(&initfq.fqd, 1063 0x1e00000080000000ULL); 1064 } 1065 } 1066 1067 /* Put all the ingress queues in our "ingress CGR". */ 1068 if (priv->use_ingress_cgr && 1069 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1070 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR || 1071 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) { 1072 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1073 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1074 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid; 1075 /* Set a fixed overhead accounting, just like for the 1076 * egress CGR. 1077 */ 1078 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1079 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1080 qm_fqd_set_oal(&initfq.fqd, 1081 min(sizeof(struct sk_buff) + 1082 priv->tx_headroom, 1083 (size_t)FSL_QMAN_MAX_OAL)); 1084 } 1085 1086 /* Initialization common to all ingress queues */ 1087 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) { 1088 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1089 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE | 1090 QM_FQCTRL_CTXASTASHING); 1091 initfq.fqd.context_a.stashing.exclusive = 1092 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX | 1093 QM_STASHING_EXCL_ANNOTATION; 1094 qm_fqd_set_stashing(&initfq.fqd, 1, 2, 1095 DIV_ROUND_UP(sizeof(struct qman_fq), 1096 64)); 1097 } 1098 1099 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq); 1100 if (err < 0) { 1101 dev_err(dev, "qman_init_fq(%u) = %d\n", 1102 qman_fq_fqid(fq), err); 1103 qman_destroy_fq(fq); 1104 return err; 1105 } 1106 } 1107 1108 dpaa_fq->fqid = qman_fq_fqid(fq); 1109 1110 if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1111 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) { 1112 err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev, 1113 dpaa_fq->fqid, 0); 1114 if (err) { 1115 dev_err(dev, "xdp_rxq_info_reg() = %d\n", err); 1116 return err; 1117 } 1118 1119 err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq, 1120 MEM_TYPE_PAGE_ORDER0, NULL); 1121 if (err) { 1122 dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n", 1123 err); 1124 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1125 return err; 1126 } 1127 } 1128 1129 return 0; 1130 } 1131 1132 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq) 1133 { 1134 const struct dpaa_priv *priv; 1135 struct dpaa_fq *dpaa_fq; 1136 int err, error; 1137 1138 err = 0; 1139 1140 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 1141 priv = netdev_priv(dpaa_fq->net_dev); 1142 1143 if (dpaa_fq->init) { 1144 err = qman_retire_fq(fq, NULL); 1145 if (err < 0 && netif_msg_drv(priv)) 1146 dev_err(dev, "qman_retire_fq(%u) = %d\n", 1147 qman_fq_fqid(fq), err); 1148 1149 error = qman_oos_fq(fq); 1150 if (error < 0 && netif_msg_drv(priv)) { 1151 dev_err(dev, "qman_oos_fq(%u) = %d\n", 1152 qman_fq_fqid(fq), error); 1153 if (err >= 0) 1154 err = error; 1155 } 1156 } 1157 1158 if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1159 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) && 1160 xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq)) 1161 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1162 1163 qman_destroy_fq(fq); 1164 list_del(&dpaa_fq->list); 1165 1166 return err; 1167 } 1168 1169 static int dpaa_fq_free(struct device *dev, struct list_head *list) 1170 { 1171 struct dpaa_fq *dpaa_fq, *tmp; 1172 int err, error; 1173 1174 err = 0; 1175 list_for_each_entry_safe(dpaa_fq, tmp, list, list) { 1176 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq); 1177 if (error < 0 && err >= 0) 1178 err = error; 1179 } 1180 1181 return err; 1182 } 1183 1184 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq, 1185 struct dpaa_fq *defq, 1186 struct dpaa_buffer_layout *buf_layout) 1187 { 1188 struct fman_buffer_prefix_content buf_prefix_content; 1189 struct fman_port_params params; 1190 int err; 1191 1192 memset(¶ms, 0, sizeof(params)); 1193 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1194 1195 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1196 buf_prefix_content.pass_prs_result = true; 1197 buf_prefix_content.pass_hash_result = true; 1198 buf_prefix_content.pass_time_stamp = true; 1199 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT; 1200 1201 params.specific_params.non_rx_params.err_fqid = errq->fqid; 1202 params.specific_params.non_rx_params.dflt_fqid = defq->fqid; 1203 1204 err = fman_port_config(port, ¶ms); 1205 if (err) { 1206 pr_err("%s: fman_port_config failed\n", __func__); 1207 return err; 1208 } 1209 1210 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1211 if (err) { 1212 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1213 __func__); 1214 return err; 1215 } 1216 1217 err = fman_port_init(port); 1218 if (err) 1219 pr_err("%s: fm_port_init failed\n", __func__); 1220 1221 return err; 1222 } 1223 1224 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp, 1225 struct dpaa_fq *errq, 1226 struct dpaa_fq *defq, struct dpaa_fq *pcdq, 1227 struct dpaa_buffer_layout *buf_layout) 1228 { 1229 struct fman_buffer_prefix_content buf_prefix_content; 1230 struct fman_port_rx_params *rx_p; 1231 struct fman_port_params params; 1232 int err; 1233 1234 memset(¶ms, 0, sizeof(params)); 1235 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1236 1237 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1238 buf_prefix_content.pass_prs_result = true; 1239 buf_prefix_content.pass_hash_result = true; 1240 buf_prefix_content.pass_time_stamp = true; 1241 buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT; 1242 1243 rx_p = ¶ms.specific_params.rx_params; 1244 rx_p->err_fqid = errq->fqid; 1245 rx_p->dflt_fqid = defq->fqid; 1246 if (pcdq) { 1247 rx_p->pcd_base_fqid = pcdq->fqid; 1248 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM; 1249 } 1250 1251 rx_p->ext_buf_pools.num_of_pools_used = 1; 1252 rx_p->ext_buf_pools.ext_buf_pool[0].id = bp->bpid; 1253 rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size; 1254 1255 err = fman_port_config(port, ¶ms); 1256 if (err) { 1257 pr_err("%s: fman_port_config failed\n", __func__); 1258 return err; 1259 } 1260 1261 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1262 if (err) { 1263 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1264 __func__); 1265 return err; 1266 } 1267 1268 err = fman_port_init(port); 1269 if (err) 1270 pr_err("%s: fm_port_init failed\n", __func__); 1271 1272 return err; 1273 } 1274 1275 static int dpaa_eth_init_ports(struct mac_device *mac_dev, 1276 struct dpaa_bp *bp, 1277 struct fm_port_fqs *port_fqs, 1278 struct dpaa_buffer_layout *buf_layout, 1279 struct device *dev) 1280 { 1281 struct fman_port *rxport = mac_dev->port[RX]; 1282 struct fman_port *txport = mac_dev->port[TX]; 1283 int err; 1284 1285 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq, 1286 port_fqs->tx_defq, &buf_layout[TX]); 1287 if (err) 1288 return err; 1289 1290 err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq, 1291 port_fqs->rx_defq, port_fqs->rx_pcdq, 1292 &buf_layout[RX]); 1293 1294 return err; 1295 } 1296 1297 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp, 1298 struct bm_buffer *bmb, int cnt) 1299 { 1300 int err; 1301 1302 err = bman_release(dpaa_bp->pool, bmb, cnt); 1303 /* Should never occur, address anyway to avoid leaking the buffers */ 1304 if (WARN_ON(err) && dpaa_bp->free_buf_cb) 1305 while (cnt-- > 0) 1306 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]); 1307 1308 return cnt; 1309 } 1310 1311 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt) 1312 { 1313 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX]; 1314 struct dpaa_bp *dpaa_bp; 1315 int i = 0, j; 1316 1317 memset(bmb, 0, sizeof(bmb)); 1318 1319 do { 1320 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1321 if (!dpaa_bp) 1322 return; 1323 1324 j = 0; 1325 do { 1326 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1327 1328 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i])); 1329 1330 j++; i++; 1331 } while (j < ARRAY_SIZE(bmb) && 1332 !qm_sg_entry_is_final(&sgt[i - 1]) && 1333 sgt[i - 1].bpid == sgt[i].bpid); 1334 1335 dpaa_bman_release(dpaa_bp, bmb, j); 1336 } while (!qm_sg_entry_is_final(&sgt[i - 1])); 1337 } 1338 1339 static void dpaa_fd_release(const struct net_device *net_dev, 1340 const struct qm_fd *fd) 1341 { 1342 struct qm_sg_entry *sgt; 1343 struct dpaa_bp *dpaa_bp; 1344 struct bm_buffer bmb; 1345 dma_addr_t addr; 1346 void *vaddr; 1347 1348 bmb.data = 0; 1349 bm_buffer_set64(&bmb, qm_fd_addr(fd)); 1350 1351 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1352 if (!dpaa_bp) 1353 return; 1354 1355 if (qm_fd_get_format(fd) == qm_fd_sg) { 1356 vaddr = phys_to_virt(qm_fd_addr(fd)); 1357 sgt = vaddr + qm_fd_get_offset(fd); 1358 1359 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd), 1360 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1361 1362 dpaa_release_sgt_members(sgt); 1363 1364 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, 1365 virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE, 1366 DMA_FROM_DEVICE); 1367 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) { 1368 netdev_err(net_dev, "DMA mapping failed\n"); 1369 return; 1370 } 1371 bm_buffer_set64(&bmb, addr); 1372 } 1373 1374 dpaa_bman_release(dpaa_bp, &bmb, 1); 1375 } 1376 1377 static void count_ern(struct dpaa_percpu_priv *percpu_priv, 1378 const union qm_mr_entry *msg) 1379 { 1380 switch (msg->ern.rc & QM_MR_RC_MASK) { 1381 case QM_MR_RC_CGR_TAILDROP: 1382 percpu_priv->ern_cnt.cg_tdrop++; 1383 break; 1384 case QM_MR_RC_WRED: 1385 percpu_priv->ern_cnt.wred++; 1386 break; 1387 case QM_MR_RC_ERROR: 1388 percpu_priv->ern_cnt.err_cond++; 1389 break; 1390 case QM_MR_RC_ORPWINDOW_EARLY: 1391 percpu_priv->ern_cnt.early_window++; 1392 break; 1393 case QM_MR_RC_ORPWINDOW_LATE: 1394 percpu_priv->ern_cnt.late_window++; 1395 break; 1396 case QM_MR_RC_FQ_TAILDROP: 1397 percpu_priv->ern_cnt.fq_tdrop++; 1398 break; 1399 case QM_MR_RC_ORPWINDOW_RETIRED: 1400 percpu_priv->ern_cnt.fq_retired++; 1401 break; 1402 case QM_MR_RC_ORP_ZERO: 1403 percpu_priv->ern_cnt.orp_zero++; 1404 break; 1405 } 1406 } 1407 1408 /* Turn on HW checksum computation for this outgoing frame. 1409 * If the current protocol is not something we support in this regard 1410 * (or if the stack has already computed the SW checksum), we do nothing. 1411 * 1412 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value 1413 * otherwise. 1414 * 1415 * Note that this function may modify the fd->cmd field and the skb data buffer 1416 * (the Parse Results area). 1417 */ 1418 static int dpaa_enable_tx_csum(struct dpaa_priv *priv, 1419 struct sk_buff *skb, 1420 struct qm_fd *fd, 1421 void *parse_results) 1422 { 1423 struct fman_prs_result *parse_result; 1424 u16 ethertype = ntohs(skb->protocol); 1425 struct ipv6hdr *ipv6h = NULL; 1426 struct iphdr *iph; 1427 int retval = 0; 1428 u8 l4_proto; 1429 1430 if (skb->ip_summed != CHECKSUM_PARTIAL) 1431 return 0; 1432 1433 /* Note: L3 csum seems to be already computed in sw, but we can't choose 1434 * L4 alone from the FM configuration anyway. 1435 */ 1436 1437 /* Fill in some fields of the Parse Results array, so the FMan 1438 * can find them as if they came from the FMan Parser. 1439 */ 1440 parse_result = (struct fman_prs_result *)parse_results; 1441 1442 /* If we're dealing with VLAN, get the real Ethernet type */ 1443 if (ethertype == ETH_P_8021Q) { 1444 /* We can't always assume the MAC header is set correctly 1445 * by the stack, so reset to beginning of skb->data 1446 */ 1447 skb_reset_mac_header(skb); 1448 ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto); 1449 } 1450 1451 /* Fill in the relevant L3 parse result fields 1452 * and read the L4 protocol type 1453 */ 1454 switch (ethertype) { 1455 case ETH_P_IP: 1456 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4); 1457 iph = ip_hdr(skb); 1458 WARN_ON(!iph); 1459 l4_proto = iph->protocol; 1460 break; 1461 case ETH_P_IPV6: 1462 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6); 1463 ipv6h = ipv6_hdr(skb); 1464 WARN_ON(!ipv6h); 1465 l4_proto = ipv6h->nexthdr; 1466 break; 1467 default: 1468 /* We shouldn't even be here */ 1469 if (net_ratelimit()) 1470 netif_alert(priv, tx_err, priv->net_dev, 1471 "Can't compute HW csum for L3 proto 0x%x\n", 1472 ntohs(skb->protocol)); 1473 retval = -EIO; 1474 goto return_error; 1475 } 1476 1477 /* Fill in the relevant L4 parse result fields */ 1478 switch (l4_proto) { 1479 case IPPROTO_UDP: 1480 parse_result->l4r = FM_L4_PARSE_RESULT_UDP; 1481 break; 1482 case IPPROTO_TCP: 1483 parse_result->l4r = FM_L4_PARSE_RESULT_TCP; 1484 break; 1485 default: 1486 if (net_ratelimit()) 1487 netif_alert(priv, tx_err, priv->net_dev, 1488 "Can't compute HW csum for L4 proto 0x%x\n", 1489 l4_proto); 1490 retval = -EIO; 1491 goto return_error; 1492 } 1493 1494 /* At index 0 is IPOffset_1 as defined in the Parse Results */ 1495 parse_result->ip_off[0] = (u8)skb_network_offset(skb); 1496 parse_result->l4_off = (u8)skb_transport_offset(skb); 1497 1498 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */ 1499 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC); 1500 1501 /* On P1023 and similar platforms fd->cmd interpretation could 1502 * be disabled by setting CONTEXT_A bit ICMD; currently this bit 1503 * is not set so we do not need to check; in the future, if/when 1504 * using context_a we need to check this bit 1505 */ 1506 1507 return_error: 1508 return retval; 1509 } 1510 1511 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp) 1512 { 1513 struct net_device *net_dev = dpaa_bp->priv->net_dev; 1514 struct bm_buffer bmb[8]; 1515 dma_addr_t addr; 1516 struct page *p; 1517 u8 i; 1518 1519 for (i = 0; i < 8; i++) { 1520 p = dev_alloc_pages(0); 1521 if (unlikely(!p)) { 1522 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 1523 goto release_previous_buffs; 1524 } 1525 1526 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0, 1527 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1528 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev, 1529 addr))) { 1530 netdev_err(net_dev, "DMA map failed\n"); 1531 goto release_previous_buffs; 1532 } 1533 1534 bmb[i].data = 0; 1535 bm_buffer_set64(&bmb[i], addr); 1536 } 1537 1538 release_bufs: 1539 return dpaa_bman_release(dpaa_bp, bmb, i); 1540 1541 release_previous_buffs: 1542 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n"); 1543 1544 bm_buffer_set64(&bmb[i], 0); 1545 /* Avoid releasing a completely null buffer; bman_release() requires 1546 * at least one buffer. 1547 */ 1548 if (likely(i)) 1549 goto release_bufs; 1550 1551 return 0; 1552 } 1553 1554 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp) 1555 { 1556 int i; 1557 1558 /* Give each CPU an allotment of "config_count" buffers */ 1559 for_each_possible_cpu(i) { 1560 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i); 1561 int j; 1562 1563 /* Although we access another CPU's counters here 1564 * we do it at boot time so it is safe 1565 */ 1566 for (j = 0; j < dpaa_bp->config_count; j += 8) 1567 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp); 1568 } 1569 return 0; 1570 } 1571 1572 /* Add buffers/(pages) for Rx processing whenever bpool count falls below 1573 * REFILL_THRESHOLD. 1574 */ 1575 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr) 1576 { 1577 int count = *countptr; 1578 int new_bufs; 1579 1580 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) { 1581 do { 1582 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp); 1583 if (unlikely(!new_bufs)) { 1584 /* Avoid looping forever if we've temporarily 1585 * run out of memory. We'll try again at the 1586 * next NAPI cycle. 1587 */ 1588 break; 1589 } 1590 count += new_bufs; 1591 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT); 1592 1593 *countptr = count; 1594 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT)) 1595 return -ENOMEM; 1596 } 1597 1598 return 0; 1599 } 1600 1601 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv) 1602 { 1603 struct dpaa_bp *dpaa_bp; 1604 int *countptr; 1605 1606 dpaa_bp = priv->dpaa_bp; 1607 if (!dpaa_bp) 1608 return -EINVAL; 1609 countptr = this_cpu_ptr(dpaa_bp->percpu_count); 1610 1611 return dpaa_eth_refill_bpool(dpaa_bp, countptr); 1612 } 1613 1614 /* Cleanup function for outgoing frame descriptors that were built on Tx path, 1615 * either contiguous frames or scatter/gather ones. 1616 * Skb freeing is not handled here. 1617 * 1618 * This function may be called on error paths in the Tx function, so guard 1619 * against cases when not all fd relevant fields were filled in. To avoid 1620 * reading the invalid transmission timestamp for the error paths set ts to 1621 * false. 1622 * 1623 * Return the skb backpointer, since for S/G frames the buffer containing it 1624 * gets freed here. 1625 * 1626 * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer 1627 * and return NULL in this case. 1628 */ 1629 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv, 1630 const struct qm_fd *fd, bool ts) 1631 { 1632 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1633 struct device *dev = priv->net_dev->dev.parent; 1634 struct skb_shared_hwtstamps shhwtstamps; 1635 dma_addr_t addr = qm_fd_addr(fd); 1636 void *vaddr = phys_to_virt(addr); 1637 const struct qm_sg_entry *sgt; 1638 struct dpaa_eth_swbp *swbp; 1639 struct sk_buff *skb; 1640 u64 ns; 1641 int i; 1642 1643 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) { 1644 dma_unmap_page(priv->tx_dma_dev, addr, 1645 qm_fd_get_offset(fd) + DPAA_SGT_SIZE, 1646 dma_dir); 1647 1648 /* The sgt buffer has been allocated with netdev_alloc_frag(), 1649 * it's from lowmem. 1650 */ 1651 sgt = vaddr + qm_fd_get_offset(fd); 1652 1653 /* sgt[0] is from lowmem, was dma_map_single()-ed */ 1654 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]), 1655 qm_sg_entry_get_len(&sgt[0]), dma_dir); 1656 1657 /* remaining pages were mapped with skb_frag_dma_map() */ 1658 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) && 1659 !qm_sg_entry_is_final(&sgt[i - 1]); i++) { 1660 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1661 1662 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]), 1663 qm_sg_entry_get_len(&sgt[i]), dma_dir); 1664 } 1665 } else { 1666 dma_unmap_single(priv->tx_dma_dev, addr, 1667 qm_fd_get_offset(fd) + qm_fd_get_length(fd), 1668 dma_dir); 1669 } 1670 1671 swbp = (struct dpaa_eth_swbp *)vaddr; 1672 skb = swbp->skb; 1673 1674 /* No skb backpointer is set when running XDP. An xdp_frame 1675 * backpointer is saved instead. 1676 */ 1677 if (!skb) { 1678 xdp_return_frame(swbp->xdpf); 1679 return NULL; 1680 } 1681 1682 /* DMA unmapping is required before accessing the HW provided info */ 1683 if (ts && priv->tx_tstamp && 1684 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 1685 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 1686 1687 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr, 1688 &ns)) { 1689 shhwtstamps.hwtstamp = ns_to_ktime(ns); 1690 skb_tstamp_tx(skb, &shhwtstamps); 1691 } else { 1692 dev_warn(dev, "fman_port_get_tstamp failed!\n"); 1693 } 1694 } 1695 1696 if (qm_fd_get_format(fd) == qm_fd_sg) 1697 /* Free the page that we allocated on Tx for the SGT */ 1698 free_pages((unsigned long)vaddr, 0); 1699 1700 return skb; 1701 } 1702 1703 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd) 1704 { 1705 /* The parser has run and performed L4 checksum validation. 1706 * We know there were no parser errors (and implicitly no 1707 * L4 csum error), otherwise we wouldn't be here. 1708 */ 1709 if ((priv->net_dev->features & NETIF_F_RXCSUM) && 1710 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV)) 1711 return CHECKSUM_UNNECESSARY; 1712 1713 /* We're here because either the parser didn't run or the L4 checksum 1714 * was not verified. This may include the case of a UDP frame with 1715 * checksum zero or an L4 proto other than TCP/UDP 1716 */ 1717 return CHECKSUM_NONE; 1718 } 1719 1720 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a))) 1721 1722 /* Build a linear skb around the received buffer. 1723 * We are guaranteed there is enough room at the end of the data buffer to 1724 * accommodate the shared info area of the skb. 1725 */ 1726 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv, 1727 const struct qm_fd *fd) 1728 { 1729 ssize_t fd_off = qm_fd_get_offset(fd); 1730 dma_addr_t addr = qm_fd_addr(fd); 1731 struct dpaa_bp *dpaa_bp; 1732 struct sk_buff *skb; 1733 void *vaddr; 1734 1735 vaddr = phys_to_virt(addr); 1736 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1737 1738 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1739 if (!dpaa_bp) 1740 goto free_buffer; 1741 1742 skb = build_skb(vaddr, dpaa_bp->size + 1743 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); 1744 if (WARN_ONCE(!skb, "Build skb failure on Rx\n")) 1745 goto free_buffer; 1746 skb_reserve(skb, fd_off); 1747 skb_put(skb, qm_fd_get_length(fd)); 1748 1749 skb->ip_summed = rx_csum_offload(priv, fd); 1750 1751 return skb; 1752 1753 free_buffer: 1754 free_pages((unsigned long)vaddr, 0); 1755 return NULL; 1756 } 1757 1758 /* Build an skb with the data of the first S/G entry in the linear portion and 1759 * the rest of the frame as skb fragments. 1760 * 1761 * The page fragment holding the S/G Table is recycled here. 1762 */ 1763 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv, 1764 const struct qm_fd *fd) 1765 { 1766 ssize_t fd_off = qm_fd_get_offset(fd); 1767 dma_addr_t addr = qm_fd_addr(fd); 1768 const struct qm_sg_entry *sgt; 1769 struct page *page, *head_page; 1770 struct dpaa_bp *dpaa_bp; 1771 void *vaddr, *sg_vaddr; 1772 int frag_off, frag_len; 1773 struct sk_buff *skb; 1774 dma_addr_t sg_addr; 1775 int page_offset; 1776 unsigned int sz; 1777 int *count_ptr; 1778 int i, j; 1779 1780 vaddr = phys_to_virt(addr); 1781 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1782 1783 /* Iterate through the SGT entries and add data buffers to the skb */ 1784 sgt = vaddr + fd_off; 1785 skb = NULL; 1786 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) { 1787 /* Extension bit is not supported */ 1788 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1789 1790 sg_addr = qm_sg_addr(&sgt[i]); 1791 sg_vaddr = phys_to_virt(sg_addr); 1792 WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES)); 1793 1794 dma_unmap_page(priv->rx_dma_dev, sg_addr, 1795 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1796 1797 /* We may use multiple Rx pools */ 1798 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1799 if (!dpaa_bp) 1800 goto free_buffers; 1801 1802 if (!skb) { 1803 sz = dpaa_bp->size + 1804 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1805 skb = build_skb(sg_vaddr, sz); 1806 if (WARN_ON(!skb)) 1807 goto free_buffers; 1808 1809 skb->ip_summed = rx_csum_offload(priv, fd); 1810 1811 /* Make sure forwarded skbs will have enough space 1812 * on Tx, if extra headers are added. 1813 */ 1814 WARN_ON(fd_off != priv->rx_headroom); 1815 skb_reserve(skb, fd_off); 1816 skb_put(skb, qm_sg_entry_get_len(&sgt[i])); 1817 } else { 1818 /* Not the first S/G entry; all data from buffer will 1819 * be added in an skb fragment; fragment index is offset 1820 * by one since first S/G entry was incorporated in the 1821 * linear part of the skb. 1822 * 1823 * Caution: 'page' may be a tail page. 1824 */ 1825 page = virt_to_page(sg_vaddr); 1826 head_page = virt_to_head_page(sg_vaddr); 1827 1828 /* Compute offset in (possibly tail) page */ 1829 page_offset = ((unsigned long)sg_vaddr & 1830 (PAGE_SIZE - 1)) + 1831 (page_address(page) - page_address(head_page)); 1832 /* page_offset only refers to the beginning of sgt[i]; 1833 * but the buffer itself may have an internal offset. 1834 */ 1835 frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset; 1836 frag_len = qm_sg_entry_get_len(&sgt[i]); 1837 /* skb_add_rx_frag() does no checking on the page; if 1838 * we pass it a tail page, we'll end up with 1839 * bad page accounting and eventually with segafults. 1840 */ 1841 skb_add_rx_frag(skb, i - 1, head_page, frag_off, 1842 frag_len, dpaa_bp->size); 1843 } 1844 1845 /* Update the pool count for the current {cpu x bpool} */ 1846 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1847 (*count_ptr)--; 1848 1849 if (qm_sg_entry_is_final(&sgt[i])) 1850 break; 1851 } 1852 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n"); 1853 1854 /* free the SG table buffer */ 1855 free_pages((unsigned long)vaddr, 0); 1856 1857 return skb; 1858 1859 free_buffers: 1860 /* free all the SG entries */ 1861 for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) { 1862 sg_addr = qm_sg_addr(&sgt[j]); 1863 sg_vaddr = phys_to_virt(sg_addr); 1864 /* all pages 0..i were unmaped */ 1865 if (j > i) 1866 dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]), 1867 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1868 free_pages((unsigned long)sg_vaddr, 0); 1869 /* counters 0..i-1 were decremented */ 1870 if (j >= i) { 1871 dpaa_bp = dpaa_bpid2pool(sgt[j].bpid); 1872 if (dpaa_bp) { 1873 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1874 (*count_ptr)--; 1875 } 1876 } 1877 1878 if (qm_sg_entry_is_final(&sgt[j])) 1879 break; 1880 } 1881 /* free the SGT fragment */ 1882 free_pages((unsigned long)vaddr, 0); 1883 1884 return NULL; 1885 } 1886 1887 static int skb_to_contig_fd(struct dpaa_priv *priv, 1888 struct sk_buff *skb, struct qm_fd *fd, 1889 int *offset) 1890 { 1891 struct net_device *net_dev = priv->net_dev; 1892 enum dma_data_direction dma_dir; 1893 struct dpaa_eth_swbp *swbp; 1894 unsigned char *buff_start; 1895 dma_addr_t addr; 1896 int err; 1897 1898 /* We are guaranteed to have at least tx_headroom bytes 1899 * available, so just use that for offset. 1900 */ 1901 fd->bpid = FSL_DPAA_BPID_INV; 1902 buff_start = skb->data - priv->tx_headroom; 1903 dma_dir = DMA_TO_DEVICE; 1904 1905 swbp = (struct dpaa_eth_swbp *)buff_start; 1906 swbp->skb = skb; 1907 1908 /* Enable L3/L4 hardware checksum computation. 1909 * 1910 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 1911 * need to write into the skb. 1912 */ 1913 err = dpaa_enable_tx_csum(priv, skb, fd, 1914 buff_start + DPAA_TX_PRIV_DATA_SIZE); 1915 if (unlikely(err < 0)) { 1916 if (net_ratelimit()) 1917 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 1918 err); 1919 return err; 1920 } 1921 1922 /* Fill in the rest of the FD fields */ 1923 qm_fd_set_contig(fd, priv->tx_headroom, skb->len); 1924 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 1925 1926 /* Map the entire buffer size that may be seen by FMan, but no more */ 1927 addr = dma_map_single(priv->tx_dma_dev, buff_start, 1928 priv->tx_headroom + skb->len, dma_dir); 1929 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 1930 if (net_ratelimit()) 1931 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n"); 1932 return -EINVAL; 1933 } 1934 qm_fd_addr_set64(fd, addr); 1935 1936 return 0; 1937 } 1938 1939 static int skb_to_sg_fd(struct dpaa_priv *priv, 1940 struct sk_buff *skb, struct qm_fd *fd) 1941 { 1942 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1943 const int nr_frags = skb_shinfo(skb)->nr_frags; 1944 struct net_device *net_dev = priv->net_dev; 1945 struct dpaa_eth_swbp *swbp; 1946 struct qm_sg_entry *sgt; 1947 void *buff_start; 1948 skb_frag_t *frag; 1949 dma_addr_t addr; 1950 size_t frag_len; 1951 struct page *p; 1952 int i, j, err; 1953 1954 /* get a page to store the SGTable */ 1955 p = dev_alloc_pages(0); 1956 if (unlikely(!p)) { 1957 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 1958 return -ENOMEM; 1959 } 1960 buff_start = page_address(p); 1961 1962 /* Enable L3/L4 hardware checksum computation. 1963 * 1964 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 1965 * need to write into the skb. 1966 */ 1967 err = dpaa_enable_tx_csum(priv, skb, fd, 1968 buff_start + DPAA_TX_PRIV_DATA_SIZE); 1969 if (unlikely(err < 0)) { 1970 if (net_ratelimit()) 1971 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 1972 err); 1973 goto csum_failed; 1974 } 1975 1976 /* SGT[0] is used by the linear part */ 1977 sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom); 1978 frag_len = skb_headlen(skb); 1979 qm_sg_entry_set_len(&sgt[0], frag_len); 1980 sgt[0].bpid = FSL_DPAA_BPID_INV; 1981 sgt[0].offset = 0; 1982 addr = dma_map_single(priv->tx_dma_dev, skb->data, 1983 skb_headlen(skb), dma_dir); 1984 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 1985 netdev_err(priv->net_dev, "DMA mapping failed\n"); 1986 err = -EINVAL; 1987 goto sg0_map_failed; 1988 } 1989 qm_sg_entry_set64(&sgt[0], addr); 1990 1991 /* populate the rest of SGT entries */ 1992 for (i = 0; i < nr_frags; i++) { 1993 frag = &skb_shinfo(skb)->frags[i]; 1994 frag_len = skb_frag_size(frag); 1995 WARN_ON(!skb_frag_page(frag)); 1996 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0, 1997 frag_len, dma_dir); 1998 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 1999 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2000 err = -EINVAL; 2001 goto sg_map_failed; 2002 } 2003 2004 qm_sg_entry_set_len(&sgt[i + 1], frag_len); 2005 sgt[i + 1].bpid = FSL_DPAA_BPID_INV; 2006 sgt[i + 1].offset = 0; 2007 2008 /* keep the offset in the address */ 2009 qm_sg_entry_set64(&sgt[i + 1], addr); 2010 } 2011 2012 /* Set the final bit in the last used entry of the SGT */ 2013 qm_sg_entry_set_f(&sgt[nr_frags], frag_len); 2014 2015 /* set fd offset to priv->tx_headroom */ 2016 qm_fd_set_sg(fd, priv->tx_headroom, skb->len); 2017 2018 /* DMA map the SGT page */ 2019 swbp = (struct dpaa_eth_swbp *)buff_start; 2020 swbp->skb = skb; 2021 2022 addr = dma_map_page(priv->tx_dma_dev, p, 0, 2023 priv->tx_headroom + DPAA_SGT_SIZE, dma_dir); 2024 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2025 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2026 err = -EINVAL; 2027 goto sgt_map_failed; 2028 } 2029 2030 fd->bpid = FSL_DPAA_BPID_INV; 2031 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2032 qm_fd_addr_set64(fd, addr); 2033 2034 return 0; 2035 2036 sgt_map_failed: 2037 sg_map_failed: 2038 for (j = 0; j < i; j++) 2039 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]), 2040 qm_sg_entry_get_len(&sgt[j]), dma_dir); 2041 sg0_map_failed: 2042 csum_failed: 2043 free_pages((unsigned long)buff_start, 0); 2044 2045 return err; 2046 } 2047 2048 static inline int dpaa_xmit(struct dpaa_priv *priv, 2049 struct rtnl_link_stats64 *percpu_stats, 2050 int queue, 2051 struct qm_fd *fd) 2052 { 2053 struct qman_fq *egress_fq; 2054 int err, i; 2055 2056 egress_fq = priv->egress_fqs[queue]; 2057 if (fd->bpid == FSL_DPAA_BPID_INV) 2058 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue])); 2059 2060 /* Trace this Tx fd */ 2061 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd); 2062 2063 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) { 2064 err = qman_enqueue(egress_fq, fd); 2065 if (err != -EBUSY) 2066 break; 2067 } 2068 2069 if (unlikely(err < 0)) { 2070 percpu_stats->tx_fifo_errors++; 2071 return err; 2072 } 2073 2074 percpu_stats->tx_packets++; 2075 percpu_stats->tx_bytes += qm_fd_get_length(fd); 2076 2077 return 0; 2078 } 2079 2080 #ifdef CONFIG_DPAA_ERRATUM_A050385 2081 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s) 2082 { 2083 struct dpaa_priv *priv = netdev_priv(net_dev); 2084 struct sk_buff *new_skb, *skb = *s; 2085 unsigned char *start, i; 2086 2087 /* check linear buffer alignment */ 2088 if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN)) 2089 goto workaround; 2090 2091 /* linear buffers just need to have an aligned start */ 2092 if (!skb_is_nonlinear(skb)) 2093 return 0; 2094 2095 /* linear data size for nonlinear skbs needs to be aligned */ 2096 if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN)) 2097 goto workaround; 2098 2099 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2100 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2101 2102 /* all fragments need to have aligned start addresses */ 2103 if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN)) 2104 goto workaround; 2105 2106 /* all but last fragment need to have aligned sizes */ 2107 if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) && 2108 (i < skb_shinfo(skb)->nr_frags - 1)) 2109 goto workaround; 2110 } 2111 2112 return 0; 2113 2114 workaround: 2115 /* copy all the skb content into a new linear buffer */ 2116 new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 + 2117 priv->tx_headroom); 2118 if (!new_skb) 2119 return -ENOMEM; 2120 2121 /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */ 2122 skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD); 2123 2124 /* Workaround for DPAA_A050385 requires data start to be aligned */ 2125 start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN); 2126 if (start - new_skb->data) 2127 skb_reserve(new_skb, start - new_skb->data); 2128 2129 skb_put(new_skb, skb->len); 2130 skb_copy_bits(skb, 0, new_skb->data, skb->len); 2131 skb_copy_header(new_skb, skb); 2132 new_skb->dev = skb->dev; 2133 2134 /* Copy relevant timestamp info from the old skb to the new */ 2135 if (priv->tx_tstamp) { 2136 skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags; 2137 skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps; 2138 skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey; 2139 if (skb->sk) 2140 skb_set_owner_w(new_skb, skb->sk); 2141 } 2142 2143 /* We move the headroom when we align it so we have to reset the 2144 * network and transport header offsets relative to the new data 2145 * pointer. The checksum offload relies on these offsets. 2146 */ 2147 skb_set_network_header(new_skb, skb_network_offset(skb)); 2148 skb_set_transport_header(new_skb, skb_transport_offset(skb)); 2149 2150 dev_kfree_skb(skb); 2151 *s = new_skb; 2152 2153 return 0; 2154 } 2155 2156 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv, 2157 struct xdp_frame **init_xdpf) 2158 { 2159 struct xdp_frame *new_xdpf, *xdpf = *init_xdpf; 2160 void *new_buff, *aligned_data; 2161 struct page *p; 2162 u32 data_shift; 2163 int headroom; 2164 2165 /* Check the data alignment and make sure the headroom is large 2166 * enough to store the xdpf backpointer. Use an aligned headroom 2167 * value. 2168 * 2169 * Due to alignment constraints, we give XDP access to the full 256 2170 * byte frame headroom. If the XDP program uses all of it, copy the 2171 * data to a new buffer and make room for storing the backpointer. 2172 */ 2173 if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) && 2174 xdpf->headroom >= priv->tx_headroom) { 2175 xdpf->headroom = priv->tx_headroom; 2176 return 0; 2177 } 2178 2179 /* Try to move the data inside the buffer just enough to align it and 2180 * store the xdpf backpointer. If the available headroom isn't large 2181 * enough, resort to allocating a new buffer and copying the data. 2182 */ 2183 aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT); 2184 data_shift = xdpf->data - aligned_data; 2185 2186 /* The XDP frame's headroom needs to be large enough to accommodate 2187 * shifting the data as well as storing the xdpf backpointer. 2188 */ 2189 if (xdpf->headroom >= data_shift + priv->tx_headroom) { 2190 memmove(aligned_data, xdpf->data, xdpf->len); 2191 xdpf->data = aligned_data; 2192 xdpf->headroom = priv->tx_headroom; 2193 return 0; 2194 } 2195 2196 /* The new xdp_frame is stored in the new buffer. Reserve enough space 2197 * in the headroom for storing it along with the driver's private 2198 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to 2199 * guarantee the data's alignment in the buffer. 2200 */ 2201 headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom, 2202 DPAA_FD_DATA_ALIGNMENT); 2203 2204 /* Assure the extended headroom and data don't overflow the buffer, 2205 * while maintaining the mandatory tailroom. 2206 */ 2207 if (headroom + xdpf->len > DPAA_BP_RAW_SIZE - 2208 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 2209 return -ENOMEM; 2210 2211 p = dev_alloc_pages(0); 2212 if (unlikely(!p)) 2213 return -ENOMEM; 2214 2215 /* Copy the data to the new buffer at a properly aligned offset */ 2216 new_buff = page_address(p); 2217 memcpy(new_buff + headroom, xdpf->data, xdpf->len); 2218 2219 /* Create an XDP frame around the new buffer in a similar fashion 2220 * to xdp_convert_buff_to_frame. 2221 */ 2222 new_xdpf = new_buff; 2223 new_xdpf->data = new_buff + headroom; 2224 new_xdpf->len = xdpf->len; 2225 new_xdpf->headroom = priv->tx_headroom; 2226 new_xdpf->frame_sz = DPAA_BP_RAW_SIZE; 2227 new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 2228 2229 /* Release the initial buffer */ 2230 xdp_return_frame_rx_napi(xdpf); 2231 2232 *init_xdpf = new_xdpf; 2233 return 0; 2234 } 2235 #endif 2236 2237 static netdev_tx_t 2238 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev) 2239 { 2240 const int queue_mapping = skb_get_queue_mapping(skb); 2241 bool nonlinear = skb_is_nonlinear(skb); 2242 struct rtnl_link_stats64 *percpu_stats; 2243 struct dpaa_percpu_priv *percpu_priv; 2244 struct netdev_queue *txq; 2245 struct dpaa_priv *priv; 2246 struct qm_fd fd; 2247 int offset = 0; 2248 int err = 0; 2249 2250 priv = netdev_priv(net_dev); 2251 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2252 percpu_stats = &percpu_priv->stats; 2253 2254 qm_fd_clear_fd(&fd); 2255 2256 if (!nonlinear) { 2257 /* We're going to store the skb backpointer at the beginning 2258 * of the data buffer, so we need a privately owned skb 2259 * 2260 * We've made sure skb is not shared in dev->priv_flags, 2261 * we need to verify the skb head is not cloned 2262 */ 2263 if (skb_cow_head(skb, priv->tx_headroom)) 2264 goto enomem; 2265 2266 WARN_ON(skb_is_nonlinear(skb)); 2267 } 2268 2269 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES; 2270 * make sure we don't feed FMan with more fragments than it supports. 2271 */ 2272 if (unlikely(nonlinear && 2273 (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) { 2274 /* If the egress skb contains more fragments than we support 2275 * we have no choice but to linearize it ourselves. 2276 */ 2277 if (__skb_linearize(skb)) 2278 goto enomem; 2279 2280 nonlinear = skb_is_nonlinear(skb); 2281 } 2282 2283 #ifdef CONFIG_DPAA_ERRATUM_A050385 2284 if (unlikely(fman_has_errata_a050385())) { 2285 if (dpaa_a050385_wa_skb(net_dev, &skb)) 2286 goto enomem; 2287 nonlinear = skb_is_nonlinear(skb); 2288 } 2289 #endif 2290 2291 if (nonlinear) { 2292 /* Just create a S/G fd based on the skb */ 2293 err = skb_to_sg_fd(priv, skb, &fd); 2294 percpu_priv->tx_frag_skbuffs++; 2295 } else { 2296 /* Create a contig FD from this skb */ 2297 err = skb_to_contig_fd(priv, skb, &fd, &offset); 2298 } 2299 if (unlikely(err < 0)) 2300 goto skb_to_fd_failed; 2301 2302 txq = netdev_get_tx_queue(net_dev, queue_mapping); 2303 2304 /* LLTX requires to do our own update of trans_start */ 2305 txq_trans_cond_update(txq); 2306 2307 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 2308 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD); 2309 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2310 } 2311 2312 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0)) 2313 return NETDEV_TX_OK; 2314 2315 dpaa_cleanup_tx_fd(priv, &fd, false); 2316 skb_to_fd_failed: 2317 enomem: 2318 percpu_stats->tx_errors++; 2319 dev_kfree_skb(skb); 2320 return NETDEV_TX_OK; 2321 } 2322 2323 static void dpaa_rx_error(struct net_device *net_dev, 2324 const struct dpaa_priv *priv, 2325 struct dpaa_percpu_priv *percpu_priv, 2326 const struct qm_fd *fd, 2327 u32 fqid) 2328 { 2329 if (net_ratelimit()) 2330 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n", 2331 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS); 2332 2333 percpu_priv->stats.rx_errors++; 2334 2335 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA) 2336 percpu_priv->rx_errors.dme++; 2337 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL) 2338 percpu_priv->rx_errors.fpe++; 2339 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE) 2340 percpu_priv->rx_errors.fse++; 2341 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR) 2342 percpu_priv->rx_errors.phe++; 2343 2344 dpaa_fd_release(net_dev, fd); 2345 } 2346 2347 static void dpaa_tx_error(struct net_device *net_dev, 2348 const struct dpaa_priv *priv, 2349 struct dpaa_percpu_priv *percpu_priv, 2350 const struct qm_fd *fd, 2351 u32 fqid) 2352 { 2353 struct sk_buff *skb; 2354 2355 if (net_ratelimit()) 2356 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2357 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS); 2358 2359 percpu_priv->stats.tx_errors++; 2360 2361 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2362 dev_kfree_skb(skb); 2363 } 2364 2365 static int dpaa_eth_poll(struct napi_struct *napi, int budget) 2366 { 2367 struct dpaa_napi_portal *np = 2368 container_of(napi, struct dpaa_napi_portal, napi); 2369 int cleaned; 2370 2371 np->xdp_act = 0; 2372 2373 cleaned = qman_p_poll_dqrr(np->p, budget); 2374 2375 if (cleaned < budget) { 2376 napi_complete_done(napi, cleaned); 2377 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2378 } else if (np->down) { 2379 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2380 } 2381 2382 if (np->xdp_act & XDP_REDIRECT) 2383 xdp_do_flush(); 2384 2385 return cleaned; 2386 } 2387 2388 static void dpaa_tx_conf(struct net_device *net_dev, 2389 const struct dpaa_priv *priv, 2390 struct dpaa_percpu_priv *percpu_priv, 2391 const struct qm_fd *fd, 2392 u32 fqid) 2393 { 2394 struct sk_buff *skb; 2395 2396 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) { 2397 if (net_ratelimit()) 2398 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2399 be32_to_cpu(fd->status) & 2400 FM_FD_STAT_TX_ERRORS); 2401 2402 percpu_priv->stats.tx_errors++; 2403 } 2404 2405 percpu_priv->tx_confirm++; 2406 2407 skb = dpaa_cleanup_tx_fd(priv, fd, true); 2408 2409 consume_skb(skb); 2410 } 2411 2412 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv, 2413 struct qman_portal *portal, bool sched_napi) 2414 { 2415 if (sched_napi) { 2416 /* Disable QMan IRQ and invoke NAPI */ 2417 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI); 2418 2419 percpu_priv->np.p = portal; 2420 napi_schedule(&percpu_priv->np.napi); 2421 percpu_priv->in_interrupt++; 2422 return 1; 2423 } 2424 return 0; 2425 } 2426 2427 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal, 2428 struct qman_fq *fq, 2429 const struct qm_dqrr_entry *dq, 2430 bool sched_napi) 2431 { 2432 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2433 struct dpaa_percpu_priv *percpu_priv; 2434 struct net_device *net_dev; 2435 struct dpaa_bp *dpaa_bp; 2436 struct dpaa_priv *priv; 2437 2438 net_dev = dpaa_fq->net_dev; 2439 priv = netdev_priv(net_dev); 2440 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2441 if (!dpaa_bp) 2442 return qman_cb_dqrr_consume; 2443 2444 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2445 2446 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2447 return qman_cb_dqrr_stop; 2448 2449 dpaa_eth_refill_bpools(priv); 2450 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2451 2452 return qman_cb_dqrr_consume; 2453 } 2454 2455 static int dpaa_xdp_xmit_frame(struct net_device *net_dev, 2456 struct xdp_frame *xdpf) 2457 { 2458 struct dpaa_priv *priv = netdev_priv(net_dev); 2459 struct rtnl_link_stats64 *percpu_stats; 2460 struct dpaa_percpu_priv *percpu_priv; 2461 struct dpaa_eth_swbp *swbp; 2462 struct netdev_queue *txq; 2463 void *buff_start; 2464 struct qm_fd fd; 2465 dma_addr_t addr; 2466 int err; 2467 2468 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2469 percpu_stats = &percpu_priv->stats; 2470 2471 #ifdef CONFIG_DPAA_ERRATUM_A050385 2472 if (unlikely(fman_has_errata_a050385())) { 2473 if (dpaa_a050385_wa_xdpf(priv, &xdpf)) { 2474 err = -ENOMEM; 2475 goto out_error; 2476 } 2477 } 2478 #endif 2479 2480 if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) { 2481 err = -EINVAL; 2482 goto out_error; 2483 } 2484 2485 buff_start = xdpf->data - xdpf->headroom; 2486 2487 /* Leave empty the skb backpointer at the start of the buffer. 2488 * Save the XDP frame for easy cleanup on confirmation. 2489 */ 2490 swbp = (struct dpaa_eth_swbp *)buff_start; 2491 swbp->skb = NULL; 2492 swbp->xdpf = xdpf; 2493 2494 qm_fd_clear_fd(&fd); 2495 fd.bpid = FSL_DPAA_BPID_INV; 2496 fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2497 qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len); 2498 2499 addr = dma_map_single(priv->tx_dma_dev, buff_start, 2500 xdpf->headroom + xdpf->len, 2501 DMA_TO_DEVICE); 2502 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2503 err = -EINVAL; 2504 goto out_error; 2505 } 2506 2507 qm_fd_addr_set64(&fd, addr); 2508 2509 /* Bump the trans_start */ 2510 txq = netdev_get_tx_queue(net_dev, smp_processor_id()); 2511 txq_trans_cond_update(txq); 2512 2513 err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd); 2514 if (err) { 2515 dma_unmap_single(priv->tx_dma_dev, addr, 2516 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd), 2517 DMA_TO_DEVICE); 2518 goto out_error; 2519 } 2520 2521 return 0; 2522 2523 out_error: 2524 percpu_stats->tx_errors++; 2525 return err; 2526 } 2527 2528 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr, 2529 struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len) 2530 { 2531 ssize_t fd_off = qm_fd_get_offset(fd); 2532 struct bpf_prog *xdp_prog; 2533 struct xdp_frame *xdpf; 2534 struct xdp_buff xdp; 2535 u32 xdp_act; 2536 int err; 2537 2538 xdp_prog = READ_ONCE(priv->xdp_prog); 2539 if (!xdp_prog) 2540 return XDP_PASS; 2541 2542 xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE, 2543 &dpaa_fq->xdp_rxq); 2544 xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM, 2545 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true); 2546 2547 /* We reserve a fixed headroom of 256 bytes under the erratum and we 2548 * offer it all to XDP programs to use. If no room is left for the 2549 * xdpf backpointer on TX, we will need to copy the data. 2550 * Disable metadata support since data realignments might be required 2551 * and the information can be lost. 2552 */ 2553 #ifdef CONFIG_DPAA_ERRATUM_A050385 2554 if (unlikely(fman_has_errata_a050385())) { 2555 xdp_set_data_meta_invalid(&xdp); 2556 xdp.data_hard_start = vaddr; 2557 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2558 } 2559 #endif 2560 2561 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 2562 2563 /* Update the length and the offset of the FD */ 2564 qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data); 2565 2566 switch (xdp_act) { 2567 case XDP_PASS: 2568 #ifdef CONFIG_DPAA_ERRATUM_A050385 2569 *xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 : 2570 xdp.data - xdp.data_meta; 2571 #else 2572 *xdp_meta_len = xdp.data - xdp.data_meta; 2573 #endif 2574 break; 2575 case XDP_TX: 2576 /* We can access the full headroom when sending the frame 2577 * back out 2578 */ 2579 xdp.data_hard_start = vaddr; 2580 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2581 xdpf = xdp_convert_buff_to_frame(&xdp); 2582 if (unlikely(!xdpf)) { 2583 free_pages((unsigned long)vaddr, 0); 2584 break; 2585 } 2586 2587 if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf)) 2588 xdp_return_frame_rx_napi(xdpf); 2589 2590 break; 2591 case XDP_REDIRECT: 2592 /* Allow redirect to use the full headroom */ 2593 xdp.data_hard_start = vaddr; 2594 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2595 2596 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 2597 if (err) { 2598 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2599 free_pages((unsigned long)vaddr, 0); 2600 } 2601 break; 2602 default: 2603 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act); 2604 fallthrough; 2605 case XDP_ABORTED: 2606 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2607 fallthrough; 2608 case XDP_DROP: 2609 /* Free the buffer */ 2610 free_pages((unsigned long)vaddr, 0); 2611 break; 2612 } 2613 2614 return xdp_act; 2615 } 2616 2617 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal, 2618 struct qman_fq *fq, 2619 const struct qm_dqrr_entry *dq, 2620 bool sched_napi) 2621 { 2622 bool ts_valid = false, hash_valid = false; 2623 struct skb_shared_hwtstamps *shhwtstamps; 2624 unsigned int skb_len, xdp_meta_len = 0; 2625 struct rtnl_link_stats64 *percpu_stats; 2626 struct dpaa_percpu_priv *percpu_priv; 2627 const struct qm_fd *fd = &dq->fd; 2628 dma_addr_t addr = qm_fd_addr(fd); 2629 struct dpaa_napi_portal *np; 2630 enum qm_fd_format fd_format; 2631 struct net_device *net_dev; 2632 u32 fd_status, hash_offset; 2633 struct qm_sg_entry *sgt; 2634 struct dpaa_bp *dpaa_bp; 2635 struct dpaa_fq *dpaa_fq; 2636 struct dpaa_priv *priv; 2637 struct sk_buff *skb; 2638 int *count_ptr; 2639 u32 xdp_act; 2640 void *vaddr; 2641 u32 hash; 2642 u64 ns; 2643 2644 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2645 fd_status = be32_to_cpu(fd->status); 2646 fd_format = qm_fd_get_format(fd); 2647 net_dev = dpaa_fq->net_dev; 2648 priv = netdev_priv(net_dev); 2649 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2650 if (!dpaa_bp) 2651 return qman_cb_dqrr_consume; 2652 2653 /* Trace the Rx fd */ 2654 trace_dpaa_rx_fd(net_dev, fq, &dq->fd); 2655 2656 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2657 percpu_stats = &percpu_priv->stats; 2658 np = &percpu_priv->np; 2659 2660 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))) 2661 return qman_cb_dqrr_stop; 2662 2663 /* Make sure we didn't run out of buffers */ 2664 if (unlikely(dpaa_eth_refill_bpools(priv))) { 2665 /* Unable to refill the buffer pool due to insufficient 2666 * system memory. Just release the frame back into the pool, 2667 * otherwise we'll soon end up with an empty buffer pool. 2668 */ 2669 dpaa_fd_release(net_dev, &dq->fd); 2670 return qman_cb_dqrr_consume; 2671 } 2672 2673 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) { 2674 if (net_ratelimit()) 2675 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2676 fd_status & FM_FD_STAT_RX_ERRORS); 2677 2678 percpu_stats->rx_errors++; 2679 dpaa_fd_release(net_dev, fd); 2680 return qman_cb_dqrr_consume; 2681 } 2682 2683 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 2684 DMA_FROM_DEVICE); 2685 2686 /* prefetch the first 64 bytes of the frame or the SGT start */ 2687 vaddr = phys_to_virt(addr); 2688 prefetch(vaddr + qm_fd_get_offset(fd)); 2689 2690 /* The only FD types that we may receive are contig and S/G */ 2691 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg)); 2692 2693 /* Account for either the contig buffer or the SGT buffer (depending on 2694 * which case we were in) having been removed from the pool. 2695 */ 2696 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 2697 (*count_ptr)--; 2698 2699 /* Extract the timestamp stored in the headroom before running XDP */ 2700 if (priv->rx_tstamp) { 2701 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns)) 2702 ts_valid = true; 2703 else 2704 WARN_ONCE(1, "fman_port_get_tstamp failed!\n"); 2705 } 2706 2707 /* Extract the hash stored in the headroom before running XDP */ 2708 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use && 2709 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX], 2710 &hash_offset)) { 2711 hash = be32_to_cpu(*(u32 *)(vaddr + hash_offset)); 2712 hash_valid = true; 2713 } 2714 2715 if (likely(fd_format == qm_fd_contig)) { 2716 xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr, 2717 dpaa_fq, &xdp_meta_len); 2718 np->xdp_act |= xdp_act; 2719 if (xdp_act != XDP_PASS) { 2720 percpu_stats->rx_packets++; 2721 percpu_stats->rx_bytes += qm_fd_get_length(fd); 2722 return qman_cb_dqrr_consume; 2723 } 2724 skb = contig_fd_to_skb(priv, fd); 2725 } else { 2726 /* XDP doesn't support S/G frames. Return the fragments to the 2727 * buffer pool and release the SGT. 2728 */ 2729 if (READ_ONCE(priv->xdp_prog)) { 2730 WARN_ONCE(1, "S/G frames not supported under XDP\n"); 2731 sgt = vaddr + qm_fd_get_offset(fd); 2732 dpaa_release_sgt_members(sgt); 2733 free_pages((unsigned long)vaddr, 0); 2734 return qman_cb_dqrr_consume; 2735 } 2736 skb = sg_fd_to_skb(priv, fd); 2737 } 2738 if (!skb) 2739 return qman_cb_dqrr_consume; 2740 2741 if (xdp_meta_len) 2742 skb_metadata_set(skb, xdp_meta_len); 2743 2744 /* Set the previously extracted timestamp */ 2745 if (ts_valid) { 2746 shhwtstamps = skb_hwtstamps(skb); 2747 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2748 shhwtstamps->hwtstamp = ns_to_ktime(ns); 2749 } 2750 2751 skb->protocol = eth_type_trans(skb, net_dev); 2752 2753 /* Set the previously extracted hash */ 2754 if (hash_valid) { 2755 enum pkt_hash_types type; 2756 2757 /* if L4 exists, it was used in the hash generation */ 2758 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ? 2759 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 2760 skb_set_hash(skb, hash, type); 2761 } 2762 2763 skb_len = skb->len; 2764 2765 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) { 2766 percpu_stats->rx_dropped++; 2767 return qman_cb_dqrr_consume; 2768 } 2769 2770 percpu_stats->rx_packets++; 2771 percpu_stats->rx_bytes += skb_len; 2772 2773 return qman_cb_dqrr_consume; 2774 } 2775 2776 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal, 2777 struct qman_fq *fq, 2778 const struct qm_dqrr_entry *dq, 2779 bool sched_napi) 2780 { 2781 struct dpaa_percpu_priv *percpu_priv; 2782 struct net_device *net_dev; 2783 struct dpaa_priv *priv; 2784 2785 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2786 priv = netdev_priv(net_dev); 2787 2788 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2789 2790 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2791 return qman_cb_dqrr_stop; 2792 2793 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2794 2795 return qman_cb_dqrr_consume; 2796 } 2797 2798 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal, 2799 struct qman_fq *fq, 2800 const struct qm_dqrr_entry *dq, 2801 bool sched_napi) 2802 { 2803 struct dpaa_percpu_priv *percpu_priv; 2804 struct net_device *net_dev; 2805 struct dpaa_priv *priv; 2806 2807 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2808 priv = netdev_priv(net_dev); 2809 2810 /* Trace the fd */ 2811 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd); 2812 2813 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2814 2815 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2816 return qman_cb_dqrr_stop; 2817 2818 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2819 2820 return qman_cb_dqrr_consume; 2821 } 2822 2823 static void egress_ern(struct qman_portal *portal, 2824 struct qman_fq *fq, 2825 const union qm_mr_entry *msg) 2826 { 2827 const struct qm_fd *fd = &msg->ern.fd; 2828 struct dpaa_percpu_priv *percpu_priv; 2829 const struct dpaa_priv *priv; 2830 struct net_device *net_dev; 2831 struct sk_buff *skb; 2832 2833 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2834 priv = netdev_priv(net_dev); 2835 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2836 2837 percpu_priv->stats.tx_dropped++; 2838 percpu_priv->stats.tx_fifo_errors++; 2839 count_ern(percpu_priv, msg); 2840 2841 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2842 dev_kfree_skb_any(skb); 2843 } 2844 2845 static const struct dpaa_fq_cbs dpaa_fq_cbs = { 2846 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } }, 2847 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } }, 2848 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } }, 2849 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } }, 2850 .egress_ern = { .cb = { .ern = egress_ern } } 2851 }; 2852 2853 static void dpaa_eth_napi_enable(struct dpaa_priv *priv) 2854 { 2855 struct dpaa_percpu_priv *percpu_priv; 2856 int i; 2857 2858 for_each_online_cpu(i) { 2859 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2860 2861 percpu_priv->np.down = false; 2862 napi_enable(&percpu_priv->np.napi); 2863 } 2864 } 2865 2866 static void dpaa_eth_napi_disable(struct dpaa_priv *priv) 2867 { 2868 struct dpaa_percpu_priv *percpu_priv; 2869 int i; 2870 2871 for_each_online_cpu(i) { 2872 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2873 2874 percpu_priv->np.down = true; 2875 napi_disable(&percpu_priv->np.napi); 2876 } 2877 } 2878 2879 static void dpaa_adjust_link(struct net_device *net_dev) 2880 { 2881 struct mac_device *mac_dev; 2882 struct dpaa_priv *priv; 2883 2884 priv = netdev_priv(net_dev); 2885 mac_dev = priv->mac_dev; 2886 mac_dev->adjust_link(mac_dev); 2887 } 2888 2889 /* The Aquantia PHYs are capable of performing rate adaptation */ 2890 #define PHY_VEND_AQUANTIA 0x03a1b400 2891 #define PHY_VEND_AQUANTIA2 0x31c31c00 2892 2893 static int dpaa_phy_init(struct net_device *net_dev) 2894 { 2895 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 2896 struct mac_device *mac_dev; 2897 struct phy_device *phy_dev; 2898 struct dpaa_priv *priv; 2899 u32 phy_vendor; 2900 2901 priv = netdev_priv(net_dev); 2902 mac_dev = priv->mac_dev; 2903 2904 phy_dev = of_phy_connect(net_dev, mac_dev->phy_node, 2905 &dpaa_adjust_link, 0, 2906 mac_dev->phy_if); 2907 if (!phy_dev) { 2908 netif_err(priv, ifup, net_dev, "init_phy() failed\n"); 2909 return -ENODEV; 2910 } 2911 2912 phy_vendor = phy_dev->drv->phy_id & GENMASK(31, 10); 2913 /* Unless the PHY is capable of rate adaptation */ 2914 if (mac_dev->phy_if != PHY_INTERFACE_MODE_XGMII || 2915 (phy_vendor != PHY_VEND_AQUANTIA && 2916 phy_vendor != PHY_VEND_AQUANTIA2)) { 2917 /* remove any features not supported by the controller */ 2918 ethtool_convert_legacy_u32_to_link_mode(mask, 2919 mac_dev->if_support); 2920 linkmode_and(phy_dev->supported, phy_dev->supported, mask); 2921 } 2922 2923 phy_support_asym_pause(phy_dev); 2924 2925 mac_dev->phy_dev = phy_dev; 2926 net_dev->phydev = phy_dev; 2927 2928 return 0; 2929 } 2930 2931 static int dpaa_open(struct net_device *net_dev) 2932 { 2933 struct mac_device *mac_dev; 2934 struct dpaa_priv *priv; 2935 int err, i; 2936 2937 priv = netdev_priv(net_dev); 2938 mac_dev = priv->mac_dev; 2939 dpaa_eth_napi_enable(priv); 2940 2941 err = dpaa_phy_init(net_dev); 2942 if (err) 2943 goto phy_init_failed; 2944 2945 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 2946 err = fman_port_enable(mac_dev->port[i]); 2947 if (err) 2948 goto mac_start_failed; 2949 } 2950 2951 err = priv->mac_dev->enable(mac_dev->fman_mac); 2952 if (err < 0) { 2953 netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err); 2954 goto mac_start_failed; 2955 } 2956 phy_start(priv->mac_dev->phy_dev); 2957 2958 netif_tx_start_all_queues(net_dev); 2959 2960 return 0; 2961 2962 mac_start_failed: 2963 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) 2964 fman_port_disable(mac_dev->port[i]); 2965 2966 phy_init_failed: 2967 dpaa_eth_napi_disable(priv); 2968 2969 return err; 2970 } 2971 2972 static int dpaa_eth_stop(struct net_device *net_dev) 2973 { 2974 struct dpaa_priv *priv; 2975 int err; 2976 2977 err = dpaa_stop(net_dev); 2978 2979 priv = netdev_priv(net_dev); 2980 dpaa_eth_napi_disable(priv); 2981 2982 return err; 2983 } 2984 2985 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu) 2986 { 2987 int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom; 2988 2989 /* We do not support S/G fragments when XDP is enabled. 2990 * Limit the MTU in relation to the buffer size. 2991 */ 2992 if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) { 2993 dev_warn(priv->net_dev->dev.parent, 2994 "The maximum MTU for XDP is %d\n", 2995 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN); 2996 return false; 2997 } 2998 2999 return true; 3000 } 3001 3002 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu) 3003 { 3004 struct dpaa_priv *priv = netdev_priv(net_dev); 3005 3006 if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu)) 3007 return -EINVAL; 3008 3009 net_dev->mtu = new_mtu; 3010 return 0; 3011 } 3012 3013 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf) 3014 { 3015 struct dpaa_priv *priv = netdev_priv(net_dev); 3016 struct bpf_prog *old_prog; 3017 int err; 3018 bool up; 3019 3020 /* S/G fragments are not supported in XDP-mode */ 3021 if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) { 3022 NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP"); 3023 return -EINVAL; 3024 } 3025 3026 up = netif_running(net_dev); 3027 3028 if (up) 3029 dpaa_eth_stop(net_dev); 3030 3031 old_prog = xchg(&priv->xdp_prog, bpf->prog); 3032 if (old_prog) 3033 bpf_prog_put(old_prog); 3034 3035 if (up) { 3036 err = dpaa_open(net_dev); 3037 if (err) { 3038 NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed"); 3039 return err; 3040 } 3041 } 3042 3043 return 0; 3044 } 3045 3046 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp) 3047 { 3048 switch (xdp->command) { 3049 case XDP_SETUP_PROG: 3050 return dpaa_setup_xdp(net_dev, xdp); 3051 default: 3052 return -EINVAL; 3053 } 3054 } 3055 3056 static int dpaa_xdp_xmit(struct net_device *net_dev, int n, 3057 struct xdp_frame **frames, u32 flags) 3058 { 3059 struct xdp_frame *xdpf; 3060 int i, nxmit = 0; 3061 3062 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 3063 return -EINVAL; 3064 3065 if (!netif_running(net_dev)) 3066 return -ENETDOWN; 3067 3068 for (i = 0; i < n; i++) { 3069 xdpf = frames[i]; 3070 if (dpaa_xdp_xmit_frame(net_dev, xdpf)) 3071 break; 3072 nxmit++; 3073 } 3074 3075 return nxmit; 3076 } 3077 3078 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3079 { 3080 struct dpaa_priv *priv = netdev_priv(dev); 3081 struct hwtstamp_config config; 3082 3083 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 3084 return -EFAULT; 3085 3086 switch (config.tx_type) { 3087 case HWTSTAMP_TX_OFF: 3088 /* Couldn't disable rx/tx timestamping separately. 3089 * Do nothing here. 3090 */ 3091 priv->tx_tstamp = false; 3092 break; 3093 case HWTSTAMP_TX_ON: 3094 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3095 priv->tx_tstamp = true; 3096 break; 3097 default: 3098 return -ERANGE; 3099 } 3100 3101 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 3102 /* Couldn't disable rx/tx timestamping separately. 3103 * Do nothing here. 3104 */ 3105 priv->rx_tstamp = false; 3106 } else { 3107 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3108 priv->rx_tstamp = true; 3109 /* TS is set for all frame types, not only those requested */ 3110 config.rx_filter = HWTSTAMP_FILTER_ALL; 3111 } 3112 3113 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 3114 -EFAULT : 0; 3115 } 3116 3117 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) 3118 { 3119 int ret = -EINVAL; 3120 3121 if (cmd == SIOCGMIIREG) { 3122 if (net_dev->phydev) 3123 return phy_mii_ioctl(net_dev->phydev, rq, cmd); 3124 } 3125 3126 if (cmd == SIOCSHWTSTAMP) 3127 return dpaa_ts_ioctl(net_dev, rq, cmd); 3128 3129 return ret; 3130 } 3131 3132 static const struct net_device_ops dpaa_ops = { 3133 .ndo_open = dpaa_open, 3134 .ndo_start_xmit = dpaa_start_xmit, 3135 .ndo_stop = dpaa_eth_stop, 3136 .ndo_tx_timeout = dpaa_tx_timeout, 3137 .ndo_get_stats64 = dpaa_get_stats64, 3138 .ndo_change_carrier = fixed_phy_change_carrier, 3139 .ndo_set_mac_address = dpaa_set_mac_address, 3140 .ndo_validate_addr = eth_validate_addr, 3141 .ndo_set_rx_mode = dpaa_set_rx_mode, 3142 .ndo_eth_ioctl = dpaa_ioctl, 3143 .ndo_setup_tc = dpaa_setup_tc, 3144 .ndo_change_mtu = dpaa_change_mtu, 3145 .ndo_bpf = dpaa_xdp, 3146 .ndo_xdp_xmit = dpaa_xdp_xmit, 3147 }; 3148 3149 static int dpaa_napi_add(struct net_device *net_dev) 3150 { 3151 struct dpaa_priv *priv = netdev_priv(net_dev); 3152 struct dpaa_percpu_priv *percpu_priv; 3153 int cpu; 3154 3155 for_each_possible_cpu(cpu) { 3156 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3157 3158 netif_napi_add(net_dev, &percpu_priv->np.napi, 3159 dpaa_eth_poll, NAPI_POLL_WEIGHT); 3160 } 3161 3162 return 0; 3163 } 3164 3165 static void dpaa_napi_del(struct net_device *net_dev) 3166 { 3167 struct dpaa_priv *priv = netdev_priv(net_dev); 3168 struct dpaa_percpu_priv *percpu_priv; 3169 int cpu; 3170 3171 for_each_possible_cpu(cpu) { 3172 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3173 3174 netif_napi_del(&percpu_priv->np.napi); 3175 } 3176 } 3177 3178 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp, 3179 struct bm_buffer *bmb) 3180 { 3181 dma_addr_t addr = bm_buf_addr(bmb); 3182 3183 dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 3184 DMA_FROM_DEVICE); 3185 3186 skb_free_frag(phys_to_virt(addr)); 3187 } 3188 3189 /* Alloc the dpaa_bp struct and configure default values */ 3190 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev) 3191 { 3192 struct dpaa_bp *dpaa_bp; 3193 3194 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL); 3195 if (!dpaa_bp) 3196 return ERR_PTR(-ENOMEM); 3197 3198 dpaa_bp->bpid = FSL_DPAA_BPID_INV; 3199 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count); 3200 if (!dpaa_bp->percpu_count) 3201 return ERR_PTR(-ENOMEM); 3202 3203 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT; 3204 3205 dpaa_bp->seed_cb = dpaa_bp_seed; 3206 dpaa_bp->free_buf_cb = dpaa_bp_free_pf; 3207 3208 return dpaa_bp; 3209 } 3210 3211 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR. 3212 * We won't be sending congestion notifications to FMan; for now, we just use 3213 * this CGR to generate enqueue rejections to FMan in order to drop the frames 3214 * before they reach our ingress queues and eat up memory. 3215 */ 3216 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv) 3217 { 3218 struct qm_mcc_initcgr initcgr; 3219 u32 cs_th; 3220 int err; 3221 3222 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid); 3223 if (err < 0) { 3224 if (netif_msg_drv(priv)) 3225 pr_err("Error %d allocating CGR ID\n", err); 3226 goto out_error; 3227 } 3228 3229 /* Enable CS TD, but disable Congestion State Change Notifications. */ 3230 memset(&initcgr, 0, sizeof(initcgr)); 3231 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 3232 initcgr.cgr.cscn_en = QM_CGR_EN; 3233 cs_th = DPAA_INGRESS_CS_THRESHOLD; 3234 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 3235 3236 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 3237 initcgr.cgr.cstd_en = QM_CGR_EN; 3238 3239 /* This CGR will be associated with the SWP affined to the current CPU. 3240 * However, we'll place all our ingress FQs in it. 3241 */ 3242 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT, 3243 &initcgr); 3244 if (err < 0) { 3245 if (netif_msg_drv(priv)) 3246 pr_err("Error %d creating ingress CGR with ID %d\n", 3247 err, priv->ingress_cgr.cgrid); 3248 qman_release_cgrid(priv->ingress_cgr.cgrid); 3249 goto out_error; 3250 } 3251 if (netif_msg_drv(priv)) 3252 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n", 3253 priv->ingress_cgr.cgrid, priv->mac_dev->addr); 3254 3255 priv->use_ingress_cgr = true; 3256 3257 out_error: 3258 return err; 3259 } 3260 3261 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl, 3262 enum port_type port) 3263 { 3264 u16 headroom; 3265 3266 /* The frame headroom must accommodate: 3267 * - the driver private data area 3268 * - parse results, hash results, timestamp if selected 3269 * If either hash results or time stamp are selected, both will 3270 * be copied to/from the frame headroom, as TS is located between PR and 3271 * HR in the IC and IC copy size has a granularity of 16bytes 3272 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM) 3273 * 3274 * Also make sure the headroom is a multiple of data_align bytes 3275 */ 3276 headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE); 3277 3278 if (port == RX) { 3279 #ifdef CONFIG_DPAA_ERRATUM_A050385 3280 if (unlikely(fman_has_errata_a050385())) 3281 headroom = XDP_PACKET_HEADROOM; 3282 #endif 3283 3284 return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT); 3285 } else { 3286 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT); 3287 } 3288 } 3289 3290 static int dpaa_eth_probe(struct platform_device *pdev) 3291 { 3292 struct net_device *net_dev = NULL; 3293 struct dpaa_bp *dpaa_bp = NULL; 3294 struct dpaa_fq *dpaa_fq, *tmp; 3295 struct dpaa_priv *priv = NULL; 3296 struct fm_port_fqs port_fqs; 3297 struct mac_device *mac_dev; 3298 int err = 0, channel; 3299 struct device *dev; 3300 3301 dev = &pdev->dev; 3302 3303 err = bman_is_probed(); 3304 if (!err) 3305 return -EPROBE_DEFER; 3306 if (err < 0) { 3307 dev_err(dev, "failing probe due to bman probe error\n"); 3308 return -ENODEV; 3309 } 3310 err = qman_is_probed(); 3311 if (!err) 3312 return -EPROBE_DEFER; 3313 if (err < 0) { 3314 dev_err(dev, "failing probe due to qman probe error\n"); 3315 return -ENODEV; 3316 } 3317 err = bman_portals_probed(); 3318 if (!err) 3319 return -EPROBE_DEFER; 3320 if (err < 0) { 3321 dev_err(dev, 3322 "failing probe due to bman portals probe error\n"); 3323 return -ENODEV; 3324 } 3325 err = qman_portals_probed(); 3326 if (!err) 3327 return -EPROBE_DEFER; 3328 if (err < 0) { 3329 dev_err(dev, 3330 "failing probe due to qman portals probe error\n"); 3331 return -ENODEV; 3332 } 3333 3334 /* Allocate this early, so we can store relevant information in 3335 * the private area 3336 */ 3337 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM); 3338 if (!net_dev) { 3339 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3340 return -ENOMEM; 3341 } 3342 3343 /* Do this here, so we can be verbose early */ 3344 SET_NETDEV_DEV(net_dev, dev->parent); 3345 dev_set_drvdata(dev, net_dev); 3346 3347 priv = netdev_priv(net_dev); 3348 priv->net_dev = net_dev; 3349 3350 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT); 3351 3352 mac_dev = dpaa_mac_dev_get(pdev); 3353 if (IS_ERR(mac_dev)) { 3354 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n"); 3355 err = PTR_ERR(mac_dev); 3356 goto free_netdev; 3357 } 3358 3359 /* Devices used for DMA mapping */ 3360 priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]); 3361 priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]); 3362 err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40)); 3363 if (!err) 3364 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev, 3365 DMA_BIT_MASK(40)); 3366 if (err) { 3367 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n"); 3368 goto free_netdev; 3369 } 3370 3371 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500, 3372 * we choose conservatively and let the user explicitly set a higher 3373 * MTU via ifconfig. Otherwise, the user may end up with different MTUs 3374 * in the same LAN. 3375 * If on the other hand fsl_fm_max_frm has been chosen below 1500, 3376 * start with the maximum allowed. 3377 */ 3378 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN); 3379 3380 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n", 3381 net_dev->mtu); 3382 3383 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */ 3384 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */ 3385 3386 /* bp init */ 3387 dpaa_bp = dpaa_bp_alloc(dev); 3388 if (IS_ERR(dpaa_bp)) { 3389 err = PTR_ERR(dpaa_bp); 3390 goto free_dpaa_bps; 3391 } 3392 /* the raw size of the buffers used for reception */ 3393 dpaa_bp->raw_size = DPAA_BP_RAW_SIZE; 3394 /* avoid runtime computations by keeping the usable size here */ 3395 dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size); 3396 dpaa_bp->priv = priv; 3397 3398 err = dpaa_bp_alloc_pool(dpaa_bp); 3399 if (err < 0) 3400 goto free_dpaa_bps; 3401 priv->dpaa_bp = dpaa_bp; 3402 3403 INIT_LIST_HEAD(&priv->dpaa_fq_list); 3404 3405 memset(&port_fqs, 0, sizeof(port_fqs)); 3406 3407 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs); 3408 if (err < 0) { 3409 dev_err(dev, "dpaa_alloc_all_fqs() failed\n"); 3410 goto free_dpaa_bps; 3411 } 3412 3413 priv->mac_dev = mac_dev; 3414 3415 channel = dpaa_get_channel(); 3416 if (channel < 0) { 3417 dev_err(dev, "dpaa_get_channel() failed\n"); 3418 err = channel; 3419 goto free_dpaa_bps; 3420 } 3421 3422 priv->channel = (u16)channel; 3423 3424 /* Walk the CPUs with affine portals 3425 * and add this pool channel to each's dequeue mask. 3426 */ 3427 dpaa_eth_add_channel(priv->channel, &pdev->dev); 3428 3429 dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]); 3430 3431 /* Create a congestion group for this netdev, with 3432 * dynamically-allocated CGR ID. 3433 * Must be executed after probing the MAC, but before 3434 * assigning the egress FQs to the CGRs. 3435 */ 3436 err = dpaa_eth_cgr_init(priv); 3437 if (err < 0) { 3438 dev_err(dev, "Error initializing CGR\n"); 3439 goto free_dpaa_bps; 3440 } 3441 3442 err = dpaa_ingress_cgr_init(priv); 3443 if (err < 0) { 3444 dev_err(dev, "Error initializing ingress CGR\n"); 3445 goto delete_egress_cgr; 3446 } 3447 3448 /* Add the FQs to the interface, and make them active */ 3449 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) { 3450 err = dpaa_fq_init(dpaa_fq, false); 3451 if (err < 0) 3452 goto free_dpaa_fqs; 3453 } 3454 3455 priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX); 3456 priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX); 3457 3458 /* All real interfaces need their ports initialized */ 3459 err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs, 3460 &priv->buf_layout[0], dev); 3461 if (err) 3462 goto free_dpaa_fqs; 3463 3464 /* Rx traffic distribution based on keygen hashing defaults to on */ 3465 priv->keygen_in_use = true; 3466 3467 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv); 3468 if (!priv->percpu_priv) { 3469 dev_err(dev, "devm_alloc_percpu() failed\n"); 3470 err = -ENOMEM; 3471 goto free_dpaa_fqs; 3472 } 3473 3474 priv->num_tc = 1; 3475 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM); 3476 3477 /* Initialize NAPI */ 3478 err = dpaa_napi_add(net_dev); 3479 if (err < 0) 3480 goto delete_dpaa_napi; 3481 3482 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout); 3483 if (err < 0) 3484 goto delete_dpaa_napi; 3485 3486 dpaa_eth_sysfs_init(&net_dev->dev); 3487 3488 netif_info(priv, probe, net_dev, "Probed interface %s\n", 3489 net_dev->name); 3490 3491 return 0; 3492 3493 delete_dpaa_napi: 3494 dpaa_napi_del(net_dev); 3495 free_dpaa_fqs: 3496 dpaa_fq_free(dev, &priv->dpaa_fq_list); 3497 qman_delete_cgr_safe(&priv->ingress_cgr); 3498 qman_release_cgrid(priv->ingress_cgr.cgrid); 3499 delete_egress_cgr: 3500 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3501 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3502 free_dpaa_bps: 3503 dpaa_bps_free(priv); 3504 free_netdev: 3505 dev_set_drvdata(dev, NULL); 3506 free_netdev(net_dev); 3507 3508 return err; 3509 } 3510 3511 static int dpaa_remove(struct platform_device *pdev) 3512 { 3513 struct net_device *net_dev; 3514 struct dpaa_priv *priv; 3515 struct device *dev; 3516 int err; 3517 3518 dev = &pdev->dev; 3519 net_dev = dev_get_drvdata(dev); 3520 3521 priv = netdev_priv(net_dev); 3522 3523 dpaa_eth_sysfs_remove(dev); 3524 3525 dev_set_drvdata(dev, NULL); 3526 unregister_netdev(net_dev); 3527 3528 err = dpaa_fq_free(dev, &priv->dpaa_fq_list); 3529 3530 qman_delete_cgr_safe(&priv->ingress_cgr); 3531 qman_release_cgrid(priv->ingress_cgr.cgrid); 3532 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3533 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3534 3535 dpaa_napi_del(net_dev); 3536 3537 dpaa_bps_free(priv); 3538 3539 free_netdev(net_dev); 3540 3541 return err; 3542 } 3543 3544 static const struct platform_device_id dpaa_devtype[] = { 3545 { 3546 .name = "dpaa-ethernet", 3547 .driver_data = 0, 3548 }, { 3549 } 3550 }; 3551 MODULE_DEVICE_TABLE(platform, dpaa_devtype); 3552 3553 static struct platform_driver dpaa_driver = { 3554 .driver = { 3555 .name = KBUILD_MODNAME, 3556 }, 3557 .id_table = dpaa_devtype, 3558 .probe = dpaa_eth_probe, 3559 .remove = dpaa_remove 3560 }; 3561 3562 static int __init dpaa_load(void) 3563 { 3564 int err; 3565 3566 pr_debug("FSL DPAA Ethernet driver\n"); 3567 3568 /* initialize dpaa_eth mirror values */ 3569 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom(); 3570 dpaa_max_frm = fman_get_max_frm(); 3571 3572 err = platform_driver_register(&dpaa_driver); 3573 if (err < 0) 3574 pr_err("Error, platform_driver_register() = %d\n", err); 3575 3576 return err; 3577 } 3578 module_init(dpaa_load); 3579 3580 static void __exit dpaa_unload(void) 3581 { 3582 platform_driver_unregister(&dpaa_driver); 3583 3584 /* Only one channel is used and needs to be released after all 3585 * interfaces are removed 3586 */ 3587 dpaa_release_channel(); 3588 } 3589 module_exit(dpaa_unload); 3590 3591 MODULE_LICENSE("Dual BSD/GPL"); 3592 MODULE_DESCRIPTION("FSL DPAA Ethernet driver"); 3593