1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later 2 /* 3 * Copyright 2008 - 2016 Freescale Semiconductor Inc. 4 * Copyright 2020 NXP 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/init.h> 10 #include <linux/module.h> 11 #include <linux/of_platform.h> 12 #include <linux/of_mdio.h> 13 #include <linux/of_net.h> 14 #include <linux/io.h> 15 #include <linux/if_arp.h> 16 #include <linux/if_vlan.h> 17 #include <linux/icmp.h> 18 #include <linux/ip.h> 19 #include <linux/ipv6.h> 20 #include <linux/udp.h> 21 #include <linux/tcp.h> 22 #include <linux/net.h> 23 #include <linux/skbuff.h> 24 #include <linux/etherdevice.h> 25 #include <linux/if_ether.h> 26 #include <linux/highmem.h> 27 #include <linux/percpu.h> 28 #include <linux/dma-mapping.h> 29 #include <linux/sort.h> 30 #include <linux/phy_fixed.h> 31 #include <linux/bpf.h> 32 #include <linux/bpf_trace.h> 33 #include <soc/fsl/bman.h> 34 #include <soc/fsl/qman.h> 35 #include "fman.h" 36 #include "fman_port.h" 37 #include "mac.h" 38 #include "dpaa_eth.h" 39 40 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files 41 * using trace events only need to #include <trace/events/sched.h> 42 */ 43 #define CREATE_TRACE_POINTS 44 #include "dpaa_eth_trace.h" 45 46 static int debug = -1; 47 module_param(debug, int, 0444); 48 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)"); 49 50 static u16 tx_timeout = 1000; 51 module_param(tx_timeout, ushort, 0444); 52 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms"); 53 54 #define FM_FD_STAT_RX_ERRORS \ 55 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \ 56 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \ 57 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \ 58 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \ 59 FM_FD_ERR_PRS_HDR_ERR) 60 61 #define FM_FD_STAT_TX_ERRORS \ 62 (FM_FD_ERR_UNSUPPORTED_FORMAT | \ 63 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA) 64 65 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 66 NETIF_MSG_LINK | NETIF_MSG_IFUP | \ 67 NETIF_MSG_IFDOWN | NETIF_MSG_HW) 68 69 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000 70 /* Ingress congestion threshold on FMan ports 71 * The size in bytes of the ingress tail-drop threshold on FMan ports. 72 * Traffic piling up above this value will be rejected by QMan and discarded 73 * by FMan. 74 */ 75 76 /* Size in bytes of the FQ taildrop threshold */ 77 #define DPAA_FQ_TD 0x200000 78 79 #define DPAA_CS_THRESHOLD_1G 0x06000000 80 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000 81 * The size in bytes of the egress Congestion State notification threshold on 82 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a 83 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"), 84 * and the larger the frame size, the more acute the problem. 85 * So we have to find a balance between these factors: 86 * - avoiding the device staying congested for a prolonged time (risking 87 * the netdev watchdog to fire - see also the tx_timeout module param); 88 * - affecting performance of protocols such as TCP, which otherwise 89 * behave well under the congestion notification mechanism; 90 * - preventing the Tx cores from tightly-looping (as if the congestion 91 * threshold was too low to be effective); 92 * - running out of memory if the CS threshold is set too high. 93 */ 94 95 #define DPAA_CS_THRESHOLD_10G 0x10000000 96 /* The size in bytes of the egress Congestion State notification threshold on 97 * 10G ports, range 0x1000 .. 0x10000000 98 */ 99 100 /* Largest value that the FQD's OAL field can hold */ 101 #define FSL_QMAN_MAX_OAL 127 102 103 /* Default alignment for start of data in an Rx FD */ 104 #ifdef CONFIG_DPAA_ERRATUM_A050385 105 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer 106 * is crossing a 4k page boundary 107 */ 108 #define DPAA_FD_DATA_ALIGNMENT (fman_has_errata_a050385() ? 64 : 16) 109 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary 110 * crossings; also, all SG fragments except the last must have a size multiple 111 * of 256 to avoid DMA transaction splits 112 */ 113 #define DPAA_A050385_ALIGN 256 114 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \ 115 DPAA_A050385_ALIGN : 16) 116 #else 117 #define DPAA_FD_DATA_ALIGNMENT 16 118 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT 119 #endif 120 121 /* The DPAA requires 256 bytes reserved and mapped for the SGT */ 122 #define DPAA_SGT_SIZE 256 123 124 /* Values for the L3R field of the FM Parse Results 125 */ 126 /* L3 Type field: First IP Present IPv4 */ 127 #define FM_L3_PARSE_RESULT_IPV4 0x8000 128 /* L3 Type field: First IP Present IPv6 */ 129 #define FM_L3_PARSE_RESULT_IPV6 0x4000 130 /* Values for the L4R field of the FM Parse Results */ 131 /* L4 Type field: UDP */ 132 #define FM_L4_PARSE_RESULT_UDP 0x40 133 /* L4 Type field: TCP */ 134 #define FM_L4_PARSE_RESULT_TCP 0x20 135 136 /* FD status field indicating whether the FM Parser has attempted to validate 137 * the L4 csum of the frame. 138 * Note that having this bit set doesn't necessarily imply that the checksum 139 * is valid. One would have to check the parse results to find that out. 140 */ 141 #define FM_FD_STAT_L4CV 0x00000004 142 143 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */ 144 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */ 145 146 #define FSL_DPAA_BPID_INV 0xff 147 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128 148 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80 149 150 #define DPAA_TX_PRIV_DATA_SIZE 16 151 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result) 152 #define DPAA_TIME_STAMP_SIZE 8 153 #define DPAA_HASH_RESULTS_SIZE 8 154 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \ 155 + DPAA_HASH_RESULTS_SIZE) 156 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \ 157 XDP_PACKET_HEADROOM - DPAA_HWA_SIZE) 158 #ifdef CONFIG_DPAA_ERRATUM_A050385 159 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE) 160 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \ 161 DPAA_RX_PRIV_DATA_A050385_SIZE : \ 162 DPAA_RX_PRIV_DATA_DEFAULT_SIZE) 163 #else 164 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE 165 #endif 166 167 #define DPAA_ETH_PCD_RXQ_NUM 128 168 169 #define DPAA_ENQUEUE_RETRIES 100000 170 171 enum port_type {RX, TX}; 172 173 struct fm_port_fqs { 174 struct dpaa_fq *tx_defq; 175 struct dpaa_fq *tx_errq; 176 struct dpaa_fq *rx_defq; 177 struct dpaa_fq *rx_errq; 178 struct dpaa_fq *rx_pcdq; 179 }; 180 181 /* All the dpa bps in use at any moment */ 182 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS]; 183 184 #define DPAA_BP_RAW_SIZE 4096 185 186 #ifdef CONFIG_DPAA_ERRATUM_A050385 187 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \ 188 ~(DPAA_A050385_ALIGN - 1)) 189 #else 190 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size) 191 #endif 192 193 static int dpaa_max_frm; 194 195 static int dpaa_rx_extra_headroom; 196 197 #define dpaa_get_max_mtu() \ 198 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN)) 199 200 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed); 201 202 static int dpaa_netdev_init(struct net_device *net_dev, 203 const struct net_device_ops *dpaa_ops, 204 u16 tx_timeout) 205 { 206 struct dpaa_priv *priv = netdev_priv(net_dev); 207 struct device *dev = net_dev->dev.parent; 208 struct mac_device *mac_dev = priv->mac_dev; 209 struct dpaa_percpu_priv *percpu_priv; 210 const u8 *mac_addr; 211 int i, err; 212 213 /* Although we access another CPU's private data here 214 * we do it at initialization so it is safe 215 */ 216 for_each_possible_cpu(i) { 217 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 218 percpu_priv->net_dev = net_dev; 219 } 220 221 net_dev->netdev_ops = dpaa_ops; 222 mac_addr = mac_dev->addr; 223 224 net_dev->mem_start = (unsigned long)priv->mac_dev->res->start; 225 net_dev->mem_end = (unsigned long)priv->mac_dev->res->end; 226 227 net_dev->min_mtu = ETH_MIN_MTU; 228 net_dev->max_mtu = dpaa_get_max_mtu(); 229 230 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 231 NETIF_F_LLTX | NETIF_F_RXHASH); 232 233 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA; 234 /* The kernels enables GSO automatically, if we declare NETIF_F_SG. 235 * For conformity, we'll still declare GSO explicitly. 236 */ 237 net_dev->features |= NETIF_F_GSO; 238 net_dev->features |= NETIF_F_RXCSUM; 239 240 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 241 /* we do not want shared skbs on TX */ 242 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING; 243 244 net_dev->features |= net_dev->hw_features; 245 net_dev->vlan_features = net_dev->features; 246 247 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC | 248 NETDEV_XDP_ACT_REDIRECT | 249 NETDEV_XDP_ACT_NDO_XMIT; 250 251 if (is_valid_ether_addr(mac_addr)) { 252 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len); 253 eth_hw_addr_set(net_dev, mac_addr); 254 } else { 255 eth_hw_addr_random(net_dev); 256 err = mac_dev->change_addr(mac_dev->fman_mac, 257 (const enet_addr_t *)net_dev->dev_addr); 258 if (err) { 259 dev_err(dev, "Failed to set random MAC address\n"); 260 return -EINVAL; 261 } 262 dev_info(dev, "Using random MAC address: %pM\n", 263 net_dev->dev_addr); 264 } 265 266 net_dev->ethtool_ops = &dpaa_ethtool_ops; 267 268 net_dev->needed_headroom = priv->tx_headroom; 269 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout); 270 271 /* The rest of the config is filled in by the mac device already */ 272 mac_dev->phylink_config.dev = &net_dev->dev; 273 mac_dev->phylink_config.type = PHYLINK_NETDEV; 274 mac_dev->update_speed = dpaa_eth_cgr_set_speed; 275 mac_dev->phylink = phylink_create(&mac_dev->phylink_config, 276 dev_fwnode(mac_dev->dev), 277 mac_dev->phy_if, 278 mac_dev->phylink_ops); 279 if (IS_ERR(mac_dev->phylink)) { 280 err = PTR_ERR(mac_dev->phylink); 281 dev_err_probe(dev, err, "Could not create phylink\n"); 282 return err; 283 } 284 285 /* start without the RUNNING flag, phylib controls it later */ 286 netif_carrier_off(net_dev); 287 288 err = register_netdev(net_dev); 289 if (err < 0) { 290 dev_err(dev, "register_netdev() = %d\n", err); 291 phylink_destroy(mac_dev->phylink); 292 return err; 293 } 294 295 return 0; 296 } 297 298 static int dpaa_stop(struct net_device *net_dev) 299 { 300 struct mac_device *mac_dev; 301 struct dpaa_priv *priv; 302 int i, err, error; 303 304 priv = netdev_priv(net_dev); 305 mac_dev = priv->mac_dev; 306 307 netif_tx_stop_all_queues(net_dev); 308 /* Allow the Fman (Tx) port to process in-flight frames before we 309 * try switching it off. 310 */ 311 msleep(200); 312 313 phylink_stop(mac_dev->phylink); 314 mac_dev->disable(mac_dev->fman_mac); 315 316 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 317 error = fman_port_disable(mac_dev->port[i]); 318 if (error) 319 err = error; 320 } 321 322 phylink_disconnect_phy(mac_dev->phylink); 323 net_dev->phydev = NULL; 324 325 msleep(200); 326 327 return err; 328 } 329 330 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue) 331 { 332 struct dpaa_percpu_priv *percpu_priv; 333 const struct dpaa_priv *priv; 334 335 priv = netdev_priv(net_dev); 336 percpu_priv = this_cpu_ptr(priv->percpu_priv); 337 338 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n", 339 jiffies_to_msecs(jiffies - dev_trans_start(net_dev))); 340 341 percpu_priv->stats.tx_errors++; 342 } 343 344 /* Calculates the statistics for the given device by adding the statistics 345 * collected by each CPU. 346 */ 347 static void dpaa_get_stats64(struct net_device *net_dev, 348 struct rtnl_link_stats64 *s) 349 { 350 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64); 351 struct dpaa_priv *priv = netdev_priv(net_dev); 352 struct dpaa_percpu_priv *percpu_priv; 353 u64 *netstats = (u64 *)s; 354 u64 *cpustats; 355 int i, j; 356 357 for_each_possible_cpu(i) { 358 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 359 360 cpustats = (u64 *)&percpu_priv->stats; 361 362 /* add stats from all CPUs */ 363 for (j = 0; j < numstats; j++) 364 netstats[j] += cpustats[j]; 365 } 366 } 367 368 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type, 369 void *type_data) 370 { 371 struct dpaa_priv *priv = netdev_priv(net_dev); 372 struct tc_mqprio_qopt *mqprio = type_data; 373 u8 num_tc; 374 int i; 375 376 if (type != TC_SETUP_QDISC_MQPRIO) 377 return -EOPNOTSUPP; 378 379 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 380 num_tc = mqprio->num_tc; 381 382 if (num_tc == priv->num_tc) 383 return 0; 384 385 if (!num_tc) { 386 netdev_reset_tc(net_dev); 387 goto out; 388 } 389 390 if (num_tc > DPAA_TC_NUM) { 391 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n", 392 DPAA_TC_NUM); 393 return -EINVAL; 394 } 395 396 netdev_set_num_tc(net_dev, num_tc); 397 398 for (i = 0; i < num_tc; i++) 399 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM, 400 i * DPAA_TC_TXQ_NUM); 401 402 out: 403 priv->num_tc = num_tc ? : 1; 404 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM); 405 return 0; 406 } 407 408 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev) 409 { 410 struct dpaa_eth_data *eth_data; 411 struct device *dpaa_dev; 412 struct mac_device *mac_dev; 413 414 dpaa_dev = &pdev->dev; 415 eth_data = dpaa_dev->platform_data; 416 if (!eth_data) { 417 dev_err(dpaa_dev, "eth_data missing\n"); 418 return ERR_PTR(-ENODEV); 419 } 420 mac_dev = eth_data->mac_dev; 421 if (!mac_dev) { 422 dev_err(dpaa_dev, "mac_dev missing\n"); 423 return ERR_PTR(-EINVAL); 424 } 425 426 return mac_dev; 427 } 428 429 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr) 430 { 431 const struct dpaa_priv *priv; 432 struct mac_device *mac_dev; 433 struct sockaddr old_addr; 434 int err; 435 436 priv = netdev_priv(net_dev); 437 438 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN); 439 440 err = eth_mac_addr(net_dev, addr); 441 if (err < 0) { 442 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err); 443 return err; 444 } 445 446 mac_dev = priv->mac_dev; 447 448 err = mac_dev->change_addr(mac_dev->fman_mac, 449 (const enet_addr_t *)net_dev->dev_addr); 450 if (err < 0) { 451 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n", 452 err); 453 /* reverting to previous address */ 454 eth_mac_addr(net_dev, &old_addr); 455 456 return err; 457 } 458 459 return 0; 460 } 461 462 static void dpaa_set_rx_mode(struct net_device *net_dev) 463 { 464 const struct dpaa_priv *priv; 465 int err; 466 467 priv = netdev_priv(net_dev); 468 469 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) { 470 priv->mac_dev->promisc = !priv->mac_dev->promisc; 471 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac, 472 priv->mac_dev->promisc); 473 if (err < 0) 474 netif_err(priv, drv, net_dev, 475 "mac_dev->set_promisc() = %d\n", 476 err); 477 } 478 479 if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) { 480 priv->mac_dev->allmulti = !priv->mac_dev->allmulti; 481 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac, 482 priv->mac_dev->allmulti); 483 if (err < 0) 484 netif_err(priv, drv, net_dev, 485 "mac_dev->set_allmulti() = %d\n", 486 err); 487 } 488 489 err = priv->mac_dev->set_multi(net_dev, priv->mac_dev); 490 if (err < 0) 491 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n", 492 err); 493 } 494 495 static struct dpaa_bp *dpaa_bpid2pool(int bpid) 496 { 497 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS)) 498 return NULL; 499 500 return dpaa_bp_array[bpid]; 501 } 502 503 /* checks if this bpool is already allocated */ 504 static bool dpaa_bpid2pool_use(int bpid) 505 { 506 if (dpaa_bpid2pool(bpid)) { 507 refcount_inc(&dpaa_bp_array[bpid]->refs); 508 return true; 509 } 510 511 return false; 512 } 513 514 /* called only once per bpid by dpaa_bp_alloc_pool() */ 515 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp) 516 { 517 dpaa_bp_array[bpid] = dpaa_bp; 518 refcount_set(&dpaa_bp->refs, 1); 519 } 520 521 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp) 522 { 523 int err; 524 525 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) { 526 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n", 527 __func__); 528 return -EINVAL; 529 } 530 531 /* If the pool is already specified, we only create one per bpid */ 532 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV && 533 dpaa_bpid2pool_use(dpaa_bp->bpid)) 534 return 0; 535 536 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) { 537 dpaa_bp->pool = bman_new_pool(); 538 if (!dpaa_bp->pool) { 539 pr_err("%s: bman_new_pool() failed\n", 540 __func__); 541 return -ENODEV; 542 } 543 544 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool); 545 } 546 547 if (dpaa_bp->seed_cb) { 548 err = dpaa_bp->seed_cb(dpaa_bp); 549 if (err) 550 goto pool_seed_failed; 551 } 552 553 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp); 554 555 return 0; 556 557 pool_seed_failed: 558 pr_err("%s: pool seeding failed\n", __func__); 559 bman_free_pool(dpaa_bp->pool); 560 561 return err; 562 } 563 564 /* remove and free all the buffers from the given buffer pool */ 565 static void dpaa_bp_drain(struct dpaa_bp *bp) 566 { 567 u8 num = 8; 568 int ret; 569 570 do { 571 struct bm_buffer bmb[8]; 572 int i; 573 574 ret = bman_acquire(bp->pool, bmb, num); 575 if (ret < 0) { 576 if (num == 8) { 577 /* we have less than 8 buffers left; 578 * drain them one by one 579 */ 580 num = 1; 581 ret = 1; 582 continue; 583 } else { 584 /* Pool is fully drained */ 585 break; 586 } 587 } 588 589 if (bp->free_buf_cb) 590 for (i = 0; i < num; i++) 591 bp->free_buf_cb(bp, &bmb[i]); 592 } while (ret > 0); 593 } 594 595 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp) 596 { 597 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid); 598 599 /* the mapping between bpid and dpaa_bp is done very late in the 600 * allocation procedure; if something failed before the mapping, the bp 601 * was not configured, therefore we don't need the below instructions 602 */ 603 if (!bp) 604 return; 605 606 if (!refcount_dec_and_test(&bp->refs)) 607 return; 608 609 if (bp->free_buf_cb) 610 dpaa_bp_drain(bp); 611 612 dpaa_bp_array[bp->bpid] = NULL; 613 bman_free_pool(bp->pool); 614 } 615 616 static void dpaa_bps_free(struct dpaa_priv *priv) 617 { 618 dpaa_bp_free(priv->dpaa_bp); 619 } 620 621 /* Use multiple WQs for FQ assignment: 622 * - Tx Confirmation queues go to WQ1. 623 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance 624 * to be scheduled, in case there are many more FQs in WQ6). 625 * - Rx Default goes to WQ6. 626 * - Tx queues go to different WQs depending on their priority. Equal 627 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and 628 * WQ0 (highest priority). 629 * This ensures that Tx-confirmed buffers are timely released. In particular, 630 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they 631 * are greatly outnumbered by other FQs in the system, while 632 * dequeue scheduling is round-robin. 633 */ 634 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx) 635 { 636 switch (fq->fq_type) { 637 case FQ_TYPE_TX_CONFIRM: 638 case FQ_TYPE_TX_CONF_MQ: 639 fq->wq = 1; 640 break; 641 case FQ_TYPE_RX_ERROR: 642 case FQ_TYPE_TX_ERROR: 643 fq->wq = 5; 644 break; 645 case FQ_TYPE_RX_DEFAULT: 646 case FQ_TYPE_RX_PCD: 647 fq->wq = 6; 648 break; 649 case FQ_TYPE_TX: 650 switch (idx / DPAA_TC_TXQ_NUM) { 651 case 0: 652 /* Low priority (best effort) */ 653 fq->wq = 6; 654 break; 655 case 1: 656 /* Medium priority */ 657 fq->wq = 2; 658 break; 659 case 2: 660 /* High priority */ 661 fq->wq = 1; 662 break; 663 case 3: 664 /* Very high priority */ 665 fq->wq = 0; 666 break; 667 default: 668 WARN(1, "Too many TX FQs: more than %d!\n", 669 DPAA_ETH_TXQ_NUM); 670 } 671 break; 672 default: 673 WARN(1, "Invalid FQ type %d for FQID %d!\n", 674 fq->fq_type, fq->fqid); 675 } 676 } 677 678 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev, 679 u32 start, u32 count, 680 struct list_head *list, 681 enum dpaa_fq_type fq_type) 682 { 683 struct dpaa_fq *dpaa_fq; 684 int i; 685 686 dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq), 687 GFP_KERNEL); 688 if (!dpaa_fq) 689 return NULL; 690 691 for (i = 0; i < count; i++) { 692 dpaa_fq[i].fq_type = fq_type; 693 dpaa_fq[i].fqid = start ? start + i : 0; 694 list_add_tail(&dpaa_fq[i].list, list); 695 } 696 697 for (i = 0; i < count; i++) 698 dpaa_assign_wq(dpaa_fq + i, i); 699 700 return dpaa_fq; 701 } 702 703 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list, 704 struct fm_port_fqs *port_fqs) 705 { 706 struct dpaa_fq *dpaa_fq; 707 u32 fq_base, fq_base_aligned, i; 708 709 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR); 710 if (!dpaa_fq) 711 goto fq_alloc_failed; 712 713 port_fqs->rx_errq = &dpaa_fq[0]; 714 715 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT); 716 if (!dpaa_fq) 717 goto fq_alloc_failed; 718 719 port_fqs->rx_defq = &dpaa_fq[0]; 720 721 /* the PCD FQIDs range needs to be aligned for correct operation */ 722 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM)) 723 goto fq_alloc_failed; 724 725 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM); 726 727 for (i = fq_base; i < fq_base_aligned; i++) 728 qman_release_fqid(i); 729 730 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM; 731 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++) 732 qman_release_fqid(i); 733 734 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM, 735 list, FQ_TYPE_RX_PCD); 736 if (!dpaa_fq) 737 goto fq_alloc_failed; 738 739 port_fqs->rx_pcdq = &dpaa_fq[0]; 740 741 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ)) 742 goto fq_alloc_failed; 743 744 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR); 745 if (!dpaa_fq) 746 goto fq_alloc_failed; 747 748 port_fqs->tx_errq = &dpaa_fq[0]; 749 750 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM); 751 if (!dpaa_fq) 752 goto fq_alloc_failed; 753 754 port_fqs->tx_defq = &dpaa_fq[0]; 755 756 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX)) 757 goto fq_alloc_failed; 758 759 return 0; 760 761 fq_alloc_failed: 762 dev_err(dev, "dpaa_fq_alloc() failed\n"); 763 return -ENOMEM; 764 } 765 766 static u32 rx_pool_channel; 767 static DEFINE_SPINLOCK(rx_pool_channel_init); 768 769 static int dpaa_get_channel(void) 770 { 771 spin_lock(&rx_pool_channel_init); 772 if (!rx_pool_channel) { 773 u32 pool; 774 int ret; 775 776 ret = qman_alloc_pool(&pool); 777 778 if (!ret) 779 rx_pool_channel = pool; 780 } 781 spin_unlock(&rx_pool_channel_init); 782 if (!rx_pool_channel) 783 return -ENOMEM; 784 return rx_pool_channel; 785 } 786 787 static void dpaa_release_channel(void) 788 { 789 qman_release_pool(rx_pool_channel); 790 } 791 792 static void dpaa_eth_add_channel(u16 channel, struct device *dev) 793 { 794 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel); 795 const cpumask_t *cpus = qman_affine_cpus(); 796 struct qman_portal *portal; 797 int cpu; 798 799 for_each_cpu_and(cpu, cpus, cpu_online_mask) { 800 portal = qman_get_affine_portal(cpu); 801 qman_p_static_dequeue_add(portal, pool); 802 qman_start_using_portal(portal, dev); 803 } 804 } 805 806 /* Congestion group state change notification callback. 807 * Stops the device's egress queues while they are congested and 808 * wakes them upon exiting congested state. 809 * Also updates some CGR-related stats. 810 */ 811 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr, 812 int congested) 813 { 814 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr, 815 struct dpaa_priv, cgr_data.cgr); 816 817 if (congested) { 818 priv->cgr_data.congestion_start_jiffies = jiffies; 819 netif_tx_stop_all_queues(priv->net_dev); 820 priv->cgr_data.cgr_congested_count++; 821 } else { 822 priv->cgr_data.congested_jiffies += 823 (jiffies - priv->cgr_data.congestion_start_jiffies); 824 netif_tx_wake_all_queues(priv->net_dev); 825 } 826 } 827 828 static int dpaa_eth_cgr_init(struct dpaa_priv *priv) 829 { 830 struct qm_mcc_initcgr initcgr; 831 u32 cs_th; 832 int err; 833 834 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid); 835 if (err < 0) { 836 if (netif_msg_drv(priv)) 837 pr_err("%s: Error %d allocating CGR ID\n", 838 __func__, err); 839 goto out_error; 840 } 841 priv->cgr_data.cgr.cb = dpaa_eth_cgscn; 842 843 /* Enable Congestion State Change Notifications and CS taildrop */ 844 memset(&initcgr, 0, sizeof(initcgr)); 845 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES); 846 initcgr.cgr.cscn_en = QM_CGR_EN; 847 848 /* Set different thresholds based on the configured MAC speed. 849 * This may turn suboptimal if the MAC is reconfigured at another 850 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up 851 * callback. 852 */ 853 if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD) 854 cs_th = DPAA_CS_THRESHOLD_10G; 855 else 856 cs_th = DPAA_CS_THRESHOLD_1G; 857 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 858 859 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 860 initcgr.cgr.cstd_en = QM_CGR_EN; 861 862 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT, 863 &initcgr); 864 if (err < 0) { 865 if (netif_msg_drv(priv)) 866 pr_err("%s: Error %d creating CGR with ID %d\n", 867 __func__, err, priv->cgr_data.cgr.cgrid); 868 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 869 goto out_error; 870 } 871 if (netif_msg_drv(priv)) 872 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n", 873 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr, 874 priv->cgr_data.cgr.chan); 875 876 out_error: 877 return err; 878 } 879 880 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed) 881 { 882 struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev); 883 struct dpaa_priv *priv = netdev_priv(net_dev); 884 struct qm_mcc_initcgr opts = { }; 885 u32 cs_th; 886 int err; 887 888 opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 889 switch (speed) { 890 case SPEED_10000: 891 cs_th = DPAA_CS_THRESHOLD_10G; 892 break; 893 case SPEED_1000: 894 default: 895 cs_th = DPAA_CS_THRESHOLD_1G; 896 break; 897 } 898 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1); 899 900 err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts); 901 if (err) 902 netdev_err(net_dev, "could not update speed: %d\n", err); 903 } 904 905 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv, 906 struct dpaa_fq *fq, 907 const struct qman_fq *template) 908 { 909 fq->fq_base = *template; 910 fq->net_dev = priv->net_dev; 911 912 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE; 913 fq->channel = priv->channel; 914 } 915 916 static inline void dpaa_setup_egress(const struct dpaa_priv *priv, 917 struct dpaa_fq *fq, 918 struct fman_port *port, 919 const struct qman_fq *template) 920 { 921 fq->fq_base = *template; 922 fq->net_dev = priv->net_dev; 923 924 if (port) { 925 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL; 926 fq->channel = (u16)fman_port_get_qman_channel_id(port); 927 } else { 928 fq->flags = QMAN_FQ_FLAG_NO_MODIFY; 929 } 930 } 931 932 static void dpaa_fq_setup(struct dpaa_priv *priv, 933 const struct dpaa_fq_cbs *fq_cbs, 934 struct fman_port *tx_port) 935 { 936 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu; 937 const cpumask_t *affine_cpus = qman_affine_cpus(); 938 u16 channels[NR_CPUS]; 939 struct dpaa_fq *fq; 940 941 for_each_cpu_and(cpu, affine_cpus, cpu_online_mask) 942 channels[num_portals++] = qman_affine_channel(cpu); 943 944 if (num_portals == 0) 945 dev_err(priv->net_dev->dev.parent, 946 "No Qman software (affine) channels found\n"); 947 948 /* Initialize each FQ in the list */ 949 list_for_each_entry(fq, &priv->dpaa_fq_list, list) { 950 switch (fq->fq_type) { 951 case FQ_TYPE_RX_DEFAULT: 952 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 953 break; 954 case FQ_TYPE_RX_ERROR: 955 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq); 956 break; 957 case FQ_TYPE_RX_PCD: 958 if (!num_portals) 959 continue; 960 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 961 fq->channel = channels[portal_cnt++ % num_portals]; 962 break; 963 case FQ_TYPE_TX: 964 dpaa_setup_egress(priv, fq, tx_port, 965 &fq_cbs->egress_ern); 966 /* If we have more Tx queues than the number of cores, 967 * just ignore the extra ones. 968 */ 969 if (egress_cnt < DPAA_ETH_TXQ_NUM) 970 priv->egress_fqs[egress_cnt++] = &fq->fq_base; 971 break; 972 case FQ_TYPE_TX_CONF_MQ: 973 priv->conf_fqs[conf_cnt++] = &fq->fq_base; 974 fallthrough; 975 case FQ_TYPE_TX_CONFIRM: 976 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq); 977 break; 978 case FQ_TYPE_TX_ERROR: 979 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq); 980 break; 981 default: 982 dev_warn(priv->net_dev->dev.parent, 983 "Unknown FQ type detected!\n"); 984 break; 985 } 986 } 987 988 /* Make sure all CPUs receive a corresponding Tx queue. */ 989 while (egress_cnt < DPAA_ETH_TXQ_NUM) { 990 list_for_each_entry(fq, &priv->dpaa_fq_list, list) { 991 if (fq->fq_type != FQ_TYPE_TX) 992 continue; 993 priv->egress_fqs[egress_cnt++] = &fq->fq_base; 994 if (egress_cnt == DPAA_ETH_TXQ_NUM) 995 break; 996 } 997 } 998 } 999 1000 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv, 1001 struct qman_fq *tx_fq) 1002 { 1003 int i; 1004 1005 for (i = 0; i < DPAA_ETH_TXQ_NUM; i++) 1006 if (priv->egress_fqs[i] == tx_fq) 1007 return i; 1008 1009 return -EINVAL; 1010 } 1011 1012 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable) 1013 { 1014 const struct dpaa_priv *priv; 1015 struct qman_fq *confq = NULL; 1016 struct qm_mcc_initfq initfq; 1017 struct device *dev; 1018 struct qman_fq *fq; 1019 int queue_id; 1020 int err; 1021 1022 priv = netdev_priv(dpaa_fq->net_dev); 1023 dev = dpaa_fq->net_dev->dev.parent; 1024 1025 if (dpaa_fq->fqid == 0) 1026 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID; 1027 1028 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY); 1029 1030 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base); 1031 if (err) { 1032 dev_err(dev, "qman_create_fq() failed\n"); 1033 return err; 1034 } 1035 fq = &dpaa_fq->fq_base; 1036 1037 if (dpaa_fq->init) { 1038 memset(&initfq, 0, sizeof(initfq)); 1039 1040 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL); 1041 /* Note: we may get to keep an empty FQ in cache */ 1042 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE); 1043 1044 /* Try to reduce the number of portal interrupts for 1045 * Tx Confirmation FQs. 1046 */ 1047 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM) 1048 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK); 1049 1050 /* FQ placement */ 1051 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ); 1052 1053 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq); 1054 1055 /* Put all egress queues in a congestion group of their own. 1056 * Sensu stricto, the Tx confirmation queues are Rx FQs, 1057 * rather than Tx - but they nonetheless account for the 1058 * memory footprint on behalf of egress traffic. We therefore 1059 * place them in the netdev's CGR, along with the Tx FQs. 1060 */ 1061 if (dpaa_fq->fq_type == FQ_TYPE_TX || 1062 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM || 1063 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) { 1064 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1065 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1066 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid; 1067 /* Set a fixed overhead accounting, in an attempt to 1068 * reduce the impact of fixed-size skb shells and the 1069 * driver's needed headroom on system memory. This is 1070 * especially the case when the egress traffic is 1071 * composed of small datagrams. 1072 * Unfortunately, QMan's OAL value is capped to an 1073 * insufficient value, but even that is better than 1074 * no overhead accounting at all. 1075 */ 1076 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1077 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1078 qm_fqd_set_oal(&initfq.fqd, 1079 min(sizeof(struct sk_buff) + 1080 priv->tx_headroom, 1081 (size_t)FSL_QMAN_MAX_OAL)); 1082 } 1083 1084 if (td_enable) { 1085 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH); 1086 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1); 1087 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE); 1088 } 1089 1090 if (dpaa_fq->fq_type == FQ_TYPE_TX) { 1091 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base); 1092 if (queue_id >= 0) 1093 confq = priv->conf_fqs[queue_id]; 1094 if (confq) { 1095 initfq.we_mask |= 1096 cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1097 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD) 1098 * A2V=1 (contextA A2 field is valid) 1099 * A0V=1 (contextA A0 field is valid) 1100 * B0V=1 (contextB field is valid) 1101 * ContextA A2: EBD=1 (deallocate buffers inside FMan) 1102 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID) 1103 */ 1104 qm_fqd_context_a_set64(&initfq.fqd, 1105 0x1e00000080000000ULL); 1106 } 1107 } 1108 1109 /* Put all the ingress queues in our "ingress CGR". */ 1110 if (priv->use_ingress_cgr && 1111 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1112 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR || 1113 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) { 1114 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1115 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1116 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid; 1117 /* Set a fixed overhead accounting, just like for the 1118 * egress CGR. 1119 */ 1120 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1121 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1122 qm_fqd_set_oal(&initfq.fqd, 1123 min(sizeof(struct sk_buff) + 1124 priv->tx_headroom, 1125 (size_t)FSL_QMAN_MAX_OAL)); 1126 } 1127 1128 /* Initialization common to all ingress queues */ 1129 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) { 1130 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1131 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE | 1132 QM_FQCTRL_CTXASTASHING); 1133 initfq.fqd.context_a.stashing.exclusive = 1134 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX | 1135 QM_STASHING_EXCL_ANNOTATION; 1136 qm_fqd_set_stashing(&initfq.fqd, 1, 2, 1137 DIV_ROUND_UP(sizeof(struct qman_fq), 1138 64)); 1139 } 1140 1141 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq); 1142 if (err < 0) { 1143 dev_err(dev, "qman_init_fq(%u) = %d\n", 1144 qman_fq_fqid(fq), err); 1145 qman_destroy_fq(fq); 1146 return err; 1147 } 1148 } 1149 1150 dpaa_fq->fqid = qman_fq_fqid(fq); 1151 1152 if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1153 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) { 1154 err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev, 1155 dpaa_fq->fqid, 0); 1156 if (err) { 1157 dev_err(dev, "xdp_rxq_info_reg() = %d\n", err); 1158 return err; 1159 } 1160 1161 err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq, 1162 MEM_TYPE_PAGE_ORDER0, NULL); 1163 if (err) { 1164 dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n", 1165 err); 1166 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1167 return err; 1168 } 1169 } 1170 1171 return 0; 1172 } 1173 1174 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq) 1175 { 1176 const struct dpaa_priv *priv; 1177 struct dpaa_fq *dpaa_fq; 1178 int err, error; 1179 1180 err = 0; 1181 1182 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 1183 priv = netdev_priv(dpaa_fq->net_dev); 1184 1185 if (dpaa_fq->init) { 1186 err = qman_retire_fq(fq, NULL); 1187 if (err < 0 && netif_msg_drv(priv)) 1188 dev_err(dev, "qman_retire_fq(%u) = %d\n", 1189 qman_fq_fqid(fq), err); 1190 1191 error = qman_oos_fq(fq); 1192 if (error < 0 && netif_msg_drv(priv)) { 1193 dev_err(dev, "qman_oos_fq(%u) = %d\n", 1194 qman_fq_fqid(fq), error); 1195 if (err >= 0) 1196 err = error; 1197 } 1198 } 1199 1200 if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1201 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) && 1202 xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq)) 1203 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1204 1205 qman_destroy_fq(fq); 1206 list_del(&dpaa_fq->list); 1207 1208 return err; 1209 } 1210 1211 static int dpaa_fq_free(struct device *dev, struct list_head *list) 1212 { 1213 struct dpaa_fq *dpaa_fq, *tmp; 1214 int err, error; 1215 1216 err = 0; 1217 list_for_each_entry_safe(dpaa_fq, tmp, list, list) { 1218 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq); 1219 if (error < 0 && err >= 0) 1220 err = error; 1221 } 1222 1223 return err; 1224 } 1225 1226 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq, 1227 struct dpaa_fq *defq, 1228 struct dpaa_buffer_layout *buf_layout) 1229 { 1230 struct fman_buffer_prefix_content buf_prefix_content; 1231 struct fman_port_params params; 1232 int err; 1233 1234 memset(¶ms, 0, sizeof(params)); 1235 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1236 1237 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1238 buf_prefix_content.pass_prs_result = true; 1239 buf_prefix_content.pass_hash_result = true; 1240 buf_prefix_content.pass_time_stamp = true; 1241 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT; 1242 1243 params.specific_params.non_rx_params.err_fqid = errq->fqid; 1244 params.specific_params.non_rx_params.dflt_fqid = defq->fqid; 1245 1246 err = fman_port_config(port, ¶ms); 1247 if (err) { 1248 pr_err("%s: fman_port_config failed\n", __func__); 1249 return err; 1250 } 1251 1252 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1253 if (err) { 1254 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1255 __func__); 1256 return err; 1257 } 1258 1259 err = fman_port_init(port); 1260 if (err) 1261 pr_err("%s: fm_port_init failed\n", __func__); 1262 1263 return err; 1264 } 1265 1266 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp, 1267 struct dpaa_fq *errq, 1268 struct dpaa_fq *defq, struct dpaa_fq *pcdq, 1269 struct dpaa_buffer_layout *buf_layout) 1270 { 1271 struct fman_buffer_prefix_content buf_prefix_content; 1272 struct fman_port_rx_params *rx_p; 1273 struct fman_port_params params; 1274 int err; 1275 1276 memset(¶ms, 0, sizeof(params)); 1277 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1278 1279 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1280 buf_prefix_content.pass_prs_result = true; 1281 buf_prefix_content.pass_hash_result = true; 1282 buf_prefix_content.pass_time_stamp = true; 1283 buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT; 1284 1285 rx_p = ¶ms.specific_params.rx_params; 1286 rx_p->err_fqid = errq->fqid; 1287 rx_p->dflt_fqid = defq->fqid; 1288 if (pcdq) { 1289 rx_p->pcd_base_fqid = pcdq->fqid; 1290 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM; 1291 } 1292 1293 rx_p->ext_buf_pools.num_of_pools_used = 1; 1294 rx_p->ext_buf_pools.ext_buf_pool[0].id = bp->bpid; 1295 rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size; 1296 1297 err = fman_port_config(port, ¶ms); 1298 if (err) { 1299 pr_err("%s: fman_port_config failed\n", __func__); 1300 return err; 1301 } 1302 1303 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1304 if (err) { 1305 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1306 __func__); 1307 return err; 1308 } 1309 1310 err = fman_port_init(port); 1311 if (err) 1312 pr_err("%s: fm_port_init failed\n", __func__); 1313 1314 return err; 1315 } 1316 1317 static int dpaa_eth_init_ports(struct mac_device *mac_dev, 1318 struct dpaa_bp *bp, 1319 struct fm_port_fqs *port_fqs, 1320 struct dpaa_buffer_layout *buf_layout, 1321 struct device *dev) 1322 { 1323 struct fman_port *rxport = mac_dev->port[RX]; 1324 struct fman_port *txport = mac_dev->port[TX]; 1325 int err; 1326 1327 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq, 1328 port_fqs->tx_defq, &buf_layout[TX]); 1329 if (err) 1330 return err; 1331 1332 err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq, 1333 port_fqs->rx_defq, port_fqs->rx_pcdq, 1334 &buf_layout[RX]); 1335 1336 return err; 1337 } 1338 1339 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp, 1340 struct bm_buffer *bmb, int cnt) 1341 { 1342 int err; 1343 1344 err = bman_release(dpaa_bp->pool, bmb, cnt); 1345 /* Should never occur, address anyway to avoid leaking the buffers */ 1346 if (WARN_ON(err) && dpaa_bp->free_buf_cb) 1347 while (cnt-- > 0) 1348 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]); 1349 1350 return cnt; 1351 } 1352 1353 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt) 1354 { 1355 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX]; 1356 struct dpaa_bp *dpaa_bp; 1357 int i = 0, j; 1358 1359 memset(bmb, 0, sizeof(bmb)); 1360 1361 do { 1362 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1363 if (!dpaa_bp) 1364 return; 1365 1366 j = 0; 1367 do { 1368 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1369 1370 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i])); 1371 1372 j++; i++; 1373 } while (j < ARRAY_SIZE(bmb) && 1374 !qm_sg_entry_is_final(&sgt[i - 1]) && 1375 sgt[i - 1].bpid == sgt[i].bpid); 1376 1377 dpaa_bman_release(dpaa_bp, bmb, j); 1378 } while (!qm_sg_entry_is_final(&sgt[i - 1])); 1379 } 1380 1381 static void dpaa_fd_release(const struct net_device *net_dev, 1382 const struct qm_fd *fd) 1383 { 1384 struct qm_sg_entry *sgt; 1385 struct dpaa_bp *dpaa_bp; 1386 struct bm_buffer bmb; 1387 dma_addr_t addr; 1388 void *vaddr; 1389 1390 bmb.data = 0; 1391 bm_buffer_set64(&bmb, qm_fd_addr(fd)); 1392 1393 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1394 if (!dpaa_bp) 1395 return; 1396 1397 if (qm_fd_get_format(fd) == qm_fd_sg) { 1398 vaddr = phys_to_virt(qm_fd_addr(fd)); 1399 sgt = vaddr + qm_fd_get_offset(fd); 1400 1401 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd), 1402 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1403 1404 dpaa_release_sgt_members(sgt); 1405 1406 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, 1407 virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE, 1408 DMA_FROM_DEVICE); 1409 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) { 1410 netdev_err(net_dev, "DMA mapping failed\n"); 1411 return; 1412 } 1413 bm_buffer_set64(&bmb, addr); 1414 } 1415 1416 dpaa_bman_release(dpaa_bp, &bmb, 1); 1417 } 1418 1419 static void count_ern(struct dpaa_percpu_priv *percpu_priv, 1420 const union qm_mr_entry *msg) 1421 { 1422 switch (msg->ern.rc & QM_MR_RC_MASK) { 1423 case QM_MR_RC_CGR_TAILDROP: 1424 percpu_priv->ern_cnt.cg_tdrop++; 1425 break; 1426 case QM_MR_RC_WRED: 1427 percpu_priv->ern_cnt.wred++; 1428 break; 1429 case QM_MR_RC_ERROR: 1430 percpu_priv->ern_cnt.err_cond++; 1431 break; 1432 case QM_MR_RC_ORPWINDOW_EARLY: 1433 percpu_priv->ern_cnt.early_window++; 1434 break; 1435 case QM_MR_RC_ORPWINDOW_LATE: 1436 percpu_priv->ern_cnt.late_window++; 1437 break; 1438 case QM_MR_RC_FQ_TAILDROP: 1439 percpu_priv->ern_cnt.fq_tdrop++; 1440 break; 1441 case QM_MR_RC_ORPWINDOW_RETIRED: 1442 percpu_priv->ern_cnt.fq_retired++; 1443 break; 1444 case QM_MR_RC_ORP_ZERO: 1445 percpu_priv->ern_cnt.orp_zero++; 1446 break; 1447 } 1448 } 1449 1450 /* Turn on HW checksum computation for this outgoing frame. 1451 * If the current protocol is not something we support in this regard 1452 * (or if the stack has already computed the SW checksum), we do nothing. 1453 * 1454 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value 1455 * otherwise. 1456 * 1457 * Note that this function may modify the fd->cmd field and the skb data buffer 1458 * (the Parse Results area). 1459 */ 1460 static int dpaa_enable_tx_csum(struct dpaa_priv *priv, 1461 struct sk_buff *skb, 1462 struct qm_fd *fd, 1463 void *parse_results) 1464 { 1465 struct fman_prs_result *parse_result; 1466 u16 ethertype = ntohs(skb->protocol); 1467 struct ipv6hdr *ipv6h = NULL; 1468 struct iphdr *iph; 1469 int retval = 0; 1470 u8 l4_proto; 1471 1472 if (skb->ip_summed != CHECKSUM_PARTIAL) 1473 return 0; 1474 1475 /* Note: L3 csum seems to be already computed in sw, but we can't choose 1476 * L4 alone from the FM configuration anyway. 1477 */ 1478 1479 /* Fill in some fields of the Parse Results array, so the FMan 1480 * can find them as if they came from the FMan Parser. 1481 */ 1482 parse_result = (struct fman_prs_result *)parse_results; 1483 1484 /* If we're dealing with VLAN, get the real Ethernet type */ 1485 if (ethertype == ETH_P_8021Q) { 1486 /* We can't always assume the MAC header is set correctly 1487 * by the stack, so reset to beginning of skb->data 1488 */ 1489 skb_reset_mac_header(skb); 1490 ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto); 1491 } 1492 1493 /* Fill in the relevant L3 parse result fields 1494 * and read the L4 protocol type 1495 */ 1496 switch (ethertype) { 1497 case ETH_P_IP: 1498 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4); 1499 iph = ip_hdr(skb); 1500 WARN_ON(!iph); 1501 l4_proto = iph->protocol; 1502 break; 1503 case ETH_P_IPV6: 1504 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6); 1505 ipv6h = ipv6_hdr(skb); 1506 WARN_ON(!ipv6h); 1507 l4_proto = ipv6h->nexthdr; 1508 break; 1509 default: 1510 /* We shouldn't even be here */ 1511 if (net_ratelimit()) 1512 netif_alert(priv, tx_err, priv->net_dev, 1513 "Can't compute HW csum for L3 proto 0x%x\n", 1514 ntohs(skb->protocol)); 1515 retval = -EIO; 1516 goto return_error; 1517 } 1518 1519 /* Fill in the relevant L4 parse result fields */ 1520 switch (l4_proto) { 1521 case IPPROTO_UDP: 1522 parse_result->l4r = FM_L4_PARSE_RESULT_UDP; 1523 break; 1524 case IPPROTO_TCP: 1525 parse_result->l4r = FM_L4_PARSE_RESULT_TCP; 1526 break; 1527 default: 1528 if (net_ratelimit()) 1529 netif_alert(priv, tx_err, priv->net_dev, 1530 "Can't compute HW csum for L4 proto 0x%x\n", 1531 l4_proto); 1532 retval = -EIO; 1533 goto return_error; 1534 } 1535 1536 /* At index 0 is IPOffset_1 as defined in the Parse Results */ 1537 parse_result->ip_off[0] = (u8)skb_network_offset(skb); 1538 parse_result->l4_off = (u8)skb_transport_offset(skb); 1539 1540 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */ 1541 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC); 1542 1543 /* On P1023 and similar platforms fd->cmd interpretation could 1544 * be disabled by setting CONTEXT_A bit ICMD; currently this bit 1545 * is not set so we do not need to check; in the future, if/when 1546 * using context_a we need to check this bit 1547 */ 1548 1549 return_error: 1550 return retval; 1551 } 1552 1553 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp) 1554 { 1555 struct net_device *net_dev = dpaa_bp->priv->net_dev; 1556 struct bm_buffer bmb[8]; 1557 dma_addr_t addr; 1558 struct page *p; 1559 u8 i; 1560 1561 for (i = 0; i < 8; i++) { 1562 p = dev_alloc_pages(0); 1563 if (unlikely(!p)) { 1564 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 1565 goto release_previous_buffs; 1566 } 1567 1568 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0, 1569 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1570 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev, 1571 addr))) { 1572 netdev_err(net_dev, "DMA map failed\n"); 1573 goto release_previous_buffs; 1574 } 1575 1576 bmb[i].data = 0; 1577 bm_buffer_set64(&bmb[i], addr); 1578 } 1579 1580 release_bufs: 1581 return dpaa_bman_release(dpaa_bp, bmb, i); 1582 1583 release_previous_buffs: 1584 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n"); 1585 1586 bm_buffer_set64(&bmb[i], 0); 1587 /* Avoid releasing a completely null buffer; bman_release() requires 1588 * at least one buffer. 1589 */ 1590 if (likely(i)) 1591 goto release_bufs; 1592 1593 return 0; 1594 } 1595 1596 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp) 1597 { 1598 int i; 1599 1600 /* Give each CPU an allotment of "config_count" buffers */ 1601 for_each_possible_cpu(i) { 1602 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i); 1603 int j; 1604 1605 /* Although we access another CPU's counters here 1606 * we do it at boot time so it is safe 1607 */ 1608 for (j = 0; j < dpaa_bp->config_count; j += 8) 1609 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp); 1610 } 1611 return 0; 1612 } 1613 1614 /* Add buffers/(pages) for Rx processing whenever bpool count falls below 1615 * REFILL_THRESHOLD. 1616 */ 1617 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr) 1618 { 1619 int count = *countptr; 1620 int new_bufs; 1621 1622 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) { 1623 do { 1624 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp); 1625 if (unlikely(!new_bufs)) { 1626 /* Avoid looping forever if we've temporarily 1627 * run out of memory. We'll try again at the 1628 * next NAPI cycle. 1629 */ 1630 break; 1631 } 1632 count += new_bufs; 1633 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT); 1634 1635 *countptr = count; 1636 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT)) 1637 return -ENOMEM; 1638 } 1639 1640 return 0; 1641 } 1642 1643 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv) 1644 { 1645 struct dpaa_bp *dpaa_bp; 1646 int *countptr; 1647 1648 dpaa_bp = priv->dpaa_bp; 1649 if (!dpaa_bp) 1650 return -EINVAL; 1651 countptr = this_cpu_ptr(dpaa_bp->percpu_count); 1652 1653 return dpaa_eth_refill_bpool(dpaa_bp, countptr); 1654 } 1655 1656 /* Cleanup function for outgoing frame descriptors that were built on Tx path, 1657 * either contiguous frames or scatter/gather ones. 1658 * Skb freeing is not handled here. 1659 * 1660 * This function may be called on error paths in the Tx function, so guard 1661 * against cases when not all fd relevant fields were filled in. To avoid 1662 * reading the invalid transmission timestamp for the error paths set ts to 1663 * false. 1664 * 1665 * Return the skb backpointer, since for S/G frames the buffer containing it 1666 * gets freed here. 1667 * 1668 * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer 1669 * and return NULL in this case. 1670 */ 1671 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv, 1672 const struct qm_fd *fd, bool ts) 1673 { 1674 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1675 struct device *dev = priv->net_dev->dev.parent; 1676 struct skb_shared_hwtstamps shhwtstamps; 1677 dma_addr_t addr = qm_fd_addr(fd); 1678 void *vaddr = phys_to_virt(addr); 1679 const struct qm_sg_entry *sgt; 1680 struct dpaa_eth_swbp *swbp; 1681 struct sk_buff *skb; 1682 u64 ns; 1683 int i; 1684 1685 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) { 1686 dma_unmap_page(priv->tx_dma_dev, addr, 1687 qm_fd_get_offset(fd) + DPAA_SGT_SIZE, 1688 dma_dir); 1689 1690 /* The sgt buffer has been allocated with netdev_alloc_frag(), 1691 * it's from lowmem. 1692 */ 1693 sgt = vaddr + qm_fd_get_offset(fd); 1694 1695 /* sgt[0] is from lowmem, was dma_map_single()-ed */ 1696 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]), 1697 qm_sg_entry_get_len(&sgt[0]), dma_dir); 1698 1699 /* remaining pages were mapped with skb_frag_dma_map() */ 1700 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) && 1701 !qm_sg_entry_is_final(&sgt[i - 1]); i++) { 1702 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1703 1704 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]), 1705 qm_sg_entry_get_len(&sgt[i]), dma_dir); 1706 } 1707 } else { 1708 dma_unmap_single(priv->tx_dma_dev, addr, 1709 qm_fd_get_offset(fd) + qm_fd_get_length(fd), 1710 dma_dir); 1711 } 1712 1713 swbp = (struct dpaa_eth_swbp *)vaddr; 1714 skb = swbp->skb; 1715 1716 /* No skb backpointer is set when running XDP. An xdp_frame 1717 * backpointer is saved instead. 1718 */ 1719 if (!skb) { 1720 xdp_return_frame(swbp->xdpf); 1721 return NULL; 1722 } 1723 1724 /* DMA unmapping is required before accessing the HW provided info */ 1725 if (ts && priv->tx_tstamp && 1726 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 1727 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 1728 1729 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr, 1730 &ns)) { 1731 shhwtstamps.hwtstamp = ns_to_ktime(ns); 1732 skb_tstamp_tx(skb, &shhwtstamps); 1733 } else { 1734 dev_warn(dev, "fman_port_get_tstamp failed!\n"); 1735 } 1736 } 1737 1738 if (qm_fd_get_format(fd) == qm_fd_sg) 1739 /* Free the page that we allocated on Tx for the SGT */ 1740 free_pages((unsigned long)vaddr, 0); 1741 1742 return skb; 1743 } 1744 1745 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd) 1746 { 1747 /* The parser has run and performed L4 checksum validation. 1748 * We know there were no parser errors (and implicitly no 1749 * L4 csum error), otherwise we wouldn't be here. 1750 */ 1751 if ((priv->net_dev->features & NETIF_F_RXCSUM) && 1752 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV)) 1753 return CHECKSUM_UNNECESSARY; 1754 1755 /* We're here because either the parser didn't run or the L4 checksum 1756 * was not verified. This may include the case of a UDP frame with 1757 * checksum zero or an L4 proto other than TCP/UDP 1758 */ 1759 return CHECKSUM_NONE; 1760 } 1761 1762 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a))) 1763 1764 /* Build a linear skb around the received buffer. 1765 * We are guaranteed there is enough room at the end of the data buffer to 1766 * accommodate the shared info area of the skb. 1767 */ 1768 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv, 1769 const struct qm_fd *fd) 1770 { 1771 ssize_t fd_off = qm_fd_get_offset(fd); 1772 dma_addr_t addr = qm_fd_addr(fd); 1773 struct dpaa_bp *dpaa_bp; 1774 struct sk_buff *skb; 1775 void *vaddr; 1776 1777 vaddr = phys_to_virt(addr); 1778 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1779 1780 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1781 if (!dpaa_bp) 1782 goto free_buffer; 1783 1784 skb = build_skb(vaddr, dpaa_bp->size + 1785 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); 1786 if (WARN_ONCE(!skb, "Build skb failure on Rx\n")) 1787 goto free_buffer; 1788 skb_reserve(skb, fd_off); 1789 skb_put(skb, qm_fd_get_length(fd)); 1790 1791 skb->ip_summed = rx_csum_offload(priv, fd); 1792 1793 return skb; 1794 1795 free_buffer: 1796 free_pages((unsigned long)vaddr, 0); 1797 return NULL; 1798 } 1799 1800 /* Build an skb with the data of the first S/G entry in the linear portion and 1801 * the rest of the frame as skb fragments. 1802 * 1803 * The page fragment holding the S/G Table is recycled here. 1804 */ 1805 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv, 1806 const struct qm_fd *fd) 1807 { 1808 ssize_t fd_off = qm_fd_get_offset(fd); 1809 dma_addr_t addr = qm_fd_addr(fd); 1810 const struct qm_sg_entry *sgt; 1811 struct page *page, *head_page; 1812 struct dpaa_bp *dpaa_bp; 1813 void *vaddr, *sg_vaddr; 1814 int frag_off, frag_len; 1815 struct sk_buff *skb; 1816 dma_addr_t sg_addr; 1817 int page_offset; 1818 unsigned int sz; 1819 int *count_ptr; 1820 int i, j; 1821 1822 vaddr = phys_to_virt(addr); 1823 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1824 1825 /* Iterate through the SGT entries and add data buffers to the skb */ 1826 sgt = vaddr + fd_off; 1827 skb = NULL; 1828 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) { 1829 /* Extension bit is not supported */ 1830 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1831 1832 sg_addr = qm_sg_addr(&sgt[i]); 1833 sg_vaddr = phys_to_virt(sg_addr); 1834 WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES)); 1835 1836 dma_unmap_page(priv->rx_dma_dev, sg_addr, 1837 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1838 1839 /* We may use multiple Rx pools */ 1840 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1841 if (!dpaa_bp) 1842 goto free_buffers; 1843 1844 if (!skb) { 1845 sz = dpaa_bp->size + 1846 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1847 skb = build_skb(sg_vaddr, sz); 1848 if (WARN_ON(!skb)) 1849 goto free_buffers; 1850 1851 skb->ip_summed = rx_csum_offload(priv, fd); 1852 1853 /* Make sure forwarded skbs will have enough space 1854 * on Tx, if extra headers are added. 1855 */ 1856 WARN_ON(fd_off != priv->rx_headroom); 1857 skb_reserve(skb, fd_off); 1858 skb_put(skb, qm_sg_entry_get_len(&sgt[i])); 1859 } else { 1860 /* Not the first S/G entry; all data from buffer will 1861 * be added in an skb fragment; fragment index is offset 1862 * by one since first S/G entry was incorporated in the 1863 * linear part of the skb. 1864 * 1865 * Caution: 'page' may be a tail page. 1866 */ 1867 page = virt_to_page(sg_vaddr); 1868 head_page = virt_to_head_page(sg_vaddr); 1869 1870 /* Compute offset in (possibly tail) page */ 1871 page_offset = ((unsigned long)sg_vaddr & 1872 (PAGE_SIZE - 1)) + 1873 (page_address(page) - page_address(head_page)); 1874 /* page_offset only refers to the beginning of sgt[i]; 1875 * but the buffer itself may have an internal offset. 1876 */ 1877 frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset; 1878 frag_len = qm_sg_entry_get_len(&sgt[i]); 1879 /* skb_add_rx_frag() does no checking on the page; if 1880 * we pass it a tail page, we'll end up with 1881 * bad page accounting and eventually with segafults. 1882 */ 1883 skb_add_rx_frag(skb, i - 1, head_page, frag_off, 1884 frag_len, dpaa_bp->size); 1885 } 1886 1887 /* Update the pool count for the current {cpu x bpool} */ 1888 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1889 (*count_ptr)--; 1890 1891 if (qm_sg_entry_is_final(&sgt[i])) 1892 break; 1893 } 1894 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n"); 1895 1896 /* free the SG table buffer */ 1897 free_pages((unsigned long)vaddr, 0); 1898 1899 return skb; 1900 1901 free_buffers: 1902 /* free all the SG entries */ 1903 for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) { 1904 sg_addr = qm_sg_addr(&sgt[j]); 1905 sg_vaddr = phys_to_virt(sg_addr); 1906 /* all pages 0..i were unmaped */ 1907 if (j > i) 1908 dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]), 1909 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1910 free_pages((unsigned long)sg_vaddr, 0); 1911 /* counters 0..i-1 were decremented */ 1912 if (j >= i) { 1913 dpaa_bp = dpaa_bpid2pool(sgt[j].bpid); 1914 if (dpaa_bp) { 1915 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1916 (*count_ptr)--; 1917 } 1918 } 1919 1920 if (qm_sg_entry_is_final(&sgt[j])) 1921 break; 1922 } 1923 /* free the SGT fragment */ 1924 free_pages((unsigned long)vaddr, 0); 1925 1926 return NULL; 1927 } 1928 1929 static int skb_to_contig_fd(struct dpaa_priv *priv, 1930 struct sk_buff *skb, struct qm_fd *fd, 1931 int *offset) 1932 { 1933 struct net_device *net_dev = priv->net_dev; 1934 enum dma_data_direction dma_dir; 1935 struct dpaa_eth_swbp *swbp; 1936 unsigned char *buff_start; 1937 dma_addr_t addr; 1938 int err; 1939 1940 /* We are guaranteed to have at least tx_headroom bytes 1941 * available, so just use that for offset. 1942 */ 1943 fd->bpid = FSL_DPAA_BPID_INV; 1944 buff_start = skb->data - priv->tx_headroom; 1945 dma_dir = DMA_TO_DEVICE; 1946 1947 swbp = (struct dpaa_eth_swbp *)buff_start; 1948 swbp->skb = skb; 1949 1950 /* Enable L3/L4 hardware checksum computation. 1951 * 1952 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 1953 * need to write into the skb. 1954 */ 1955 err = dpaa_enable_tx_csum(priv, skb, fd, 1956 buff_start + DPAA_TX_PRIV_DATA_SIZE); 1957 if (unlikely(err < 0)) { 1958 if (net_ratelimit()) 1959 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 1960 err); 1961 return err; 1962 } 1963 1964 /* Fill in the rest of the FD fields */ 1965 qm_fd_set_contig(fd, priv->tx_headroom, skb->len); 1966 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 1967 1968 /* Map the entire buffer size that may be seen by FMan, but no more */ 1969 addr = dma_map_single(priv->tx_dma_dev, buff_start, 1970 priv->tx_headroom + skb->len, dma_dir); 1971 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 1972 if (net_ratelimit()) 1973 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n"); 1974 return -EINVAL; 1975 } 1976 qm_fd_addr_set64(fd, addr); 1977 1978 return 0; 1979 } 1980 1981 static int skb_to_sg_fd(struct dpaa_priv *priv, 1982 struct sk_buff *skb, struct qm_fd *fd) 1983 { 1984 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1985 const int nr_frags = skb_shinfo(skb)->nr_frags; 1986 struct net_device *net_dev = priv->net_dev; 1987 struct dpaa_eth_swbp *swbp; 1988 struct qm_sg_entry *sgt; 1989 void *buff_start; 1990 skb_frag_t *frag; 1991 dma_addr_t addr; 1992 size_t frag_len; 1993 struct page *p; 1994 int i, j, err; 1995 1996 /* get a page to store the SGTable */ 1997 p = dev_alloc_pages(0); 1998 if (unlikely(!p)) { 1999 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 2000 return -ENOMEM; 2001 } 2002 buff_start = page_address(p); 2003 2004 /* Enable L3/L4 hardware checksum computation. 2005 * 2006 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 2007 * need to write into the skb. 2008 */ 2009 err = dpaa_enable_tx_csum(priv, skb, fd, 2010 buff_start + DPAA_TX_PRIV_DATA_SIZE); 2011 if (unlikely(err < 0)) { 2012 if (net_ratelimit()) 2013 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 2014 err); 2015 goto csum_failed; 2016 } 2017 2018 /* SGT[0] is used by the linear part */ 2019 sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom); 2020 frag_len = skb_headlen(skb); 2021 qm_sg_entry_set_len(&sgt[0], frag_len); 2022 sgt[0].bpid = FSL_DPAA_BPID_INV; 2023 sgt[0].offset = 0; 2024 addr = dma_map_single(priv->tx_dma_dev, skb->data, 2025 skb_headlen(skb), dma_dir); 2026 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2027 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2028 err = -EINVAL; 2029 goto sg0_map_failed; 2030 } 2031 qm_sg_entry_set64(&sgt[0], addr); 2032 2033 /* populate the rest of SGT entries */ 2034 for (i = 0; i < nr_frags; i++) { 2035 frag = &skb_shinfo(skb)->frags[i]; 2036 frag_len = skb_frag_size(frag); 2037 WARN_ON(!skb_frag_page(frag)); 2038 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0, 2039 frag_len, dma_dir); 2040 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2041 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2042 err = -EINVAL; 2043 goto sg_map_failed; 2044 } 2045 2046 qm_sg_entry_set_len(&sgt[i + 1], frag_len); 2047 sgt[i + 1].bpid = FSL_DPAA_BPID_INV; 2048 sgt[i + 1].offset = 0; 2049 2050 /* keep the offset in the address */ 2051 qm_sg_entry_set64(&sgt[i + 1], addr); 2052 } 2053 2054 /* Set the final bit in the last used entry of the SGT */ 2055 qm_sg_entry_set_f(&sgt[nr_frags], frag_len); 2056 2057 /* set fd offset to priv->tx_headroom */ 2058 qm_fd_set_sg(fd, priv->tx_headroom, skb->len); 2059 2060 /* DMA map the SGT page */ 2061 swbp = (struct dpaa_eth_swbp *)buff_start; 2062 swbp->skb = skb; 2063 2064 addr = dma_map_page(priv->tx_dma_dev, p, 0, 2065 priv->tx_headroom + DPAA_SGT_SIZE, dma_dir); 2066 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2067 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2068 err = -EINVAL; 2069 goto sgt_map_failed; 2070 } 2071 2072 fd->bpid = FSL_DPAA_BPID_INV; 2073 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2074 qm_fd_addr_set64(fd, addr); 2075 2076 return 0; 2077 2078 sgt_map_failed: 2079 sg_map_failed: 2080 for (j = 0; j < i; j++) 2081 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]), 2082 qm_sg_entry_get_len(&sgt[j]), dma_dir); 2083 sg0_map_failed: 2084 csum_failed: 2085 free_pages((unsigned long)buff_start, 0); 2086 2087 return err; 2088 } 2089 2090 static inline int dpaa_xmit(struct dpaa_priv *priv, 2091 struct rtnl_link_stats64 *percpu_stats, 2092 int queue, 2093 struct qm_fd *fd) 2094 { 2095 struct qman_fq *egress_fq; 2096 int err, i; 2097 2098 egress_fq = priv->egress_fqs[queue]; 2099 if (fd->bpid == FSL_DPAA_BPID_INV) 2100 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue])); 2101 2102 /* Trace this Tx fd */ 2103 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd); 2104 2105 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) { 2106 err = qman_enqueue(egress_fq, fd); 2107 if (err != -EBUSY) 2108 break; 2109 } 2110 2111 if (unlikely(err < 0)) { 2112 percpu_stats->tx_fifo_errors++; 2113 return err; 2114 } 2115 2116 percpu_stats->tx_packets++; 2117 percpu_stats->tx_bytes += qm_fd_get_length(fd); 2118 2119 return 0; 2120 } 2121 2122 #ifdef CONFIG_DPAA_ERRATUM_A050385 2123 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s) 2124 { 2125 struct dpaa_priv *priv = netdev_priv(net_dev); 2126 struct sk_buff *new_skb, *skb = *s; 2127 unsigned char *start, i; 2128 2129 /* check linear buffer alignment */ 2130 if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN)) 2131 goto workaround; 2132 2133 /* linear buffers just need to have an aligned start */ 2134 if (!skb_is_nonlinear(skb)) 2135 return 0; 2136 2137 /* linear data size for nonlinear skbs needs to be aligned */ 2138 if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN)) 2139 goto workaround; 2140 2141 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2142 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2143 2144 /* all fragments need to have aligned start addresses */ 2145 if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN)) 2146 goto workaround; 2147 2148 /* all but last fragment need to have aligned sizes */ 2149 if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) && 2150 (i < skb_shinfo(skb)->nr_frags - 1)) 2151 goto workaround; 2152 } 2153 2154 return 0; 2155 2156 workaround: 2157 /* copy all the skb content into a new linear buffer */ 2158 new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 + 2159 priv->tx_headroom); 2160 if (!new_skb) 2161 return -ENOMEM; 2162 2163 /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */ 2164 skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD); 2165 2166 /* Workaround for DPAA_A050385 requires data start to be aligned */ 2167 start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN); 2168 if (start - new_skb->data) 2169 skb_reserve(new_skb, start - new_skb->data); 2170 2171 skb_put(new_skb, skb->len); 2172 skb_copy_bits(skb, 0, new_skb->data, skb->len); 2173 skb_copy_header(new_skb, skb); 2174 new_skb->dev = skb->dev; 2175 2176 /* Copy relevant timestamp info from the old skb to the new */ 2177 if (priv->tx_tstamp) { 2178 skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags; 2179 skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps; 2180 skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey; 2181 if (skb->sk) 2182 skb_set_owner_w(new_skb, skb->sk); 2183 } 2184 2185 /* We move the headroom when we align it so we have to reset the 2186 * network and transport header offsets relative to the new data 2187 * pointer. The checksum offload relies on these offsets. 2188 */ 2189 skb_set_network_header(new_skb, skb_network_offset(skb)); 2190 skb_set_transport_header(new_skb, skb_transport_offset(skb)); 2191 2192 dev_kfree_skb(skb); 2193 *s = new_skb; 2194 2195 return 0; 2196 } 2197 2198 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv, 2199 struct xdp_frame **init_xdpf) 2200 { 2201 struct xdp_frame *new_xdpf, *xdpf = *init_xdpf; 2202 void *new_buff, *aligned_data; 2203 struct page *p; 2204 u32 data_shift; 2205 int headroom; 2206 2207 /* Check the data alignment and make sure the headroom is large 2208 * enough to store the xdpf backpointer. Use an aligned headroom 2209 * value. 2210 * 2211 * Due to alignment constraints, we give XDP access to the full 256 2212 * byte frame headroom. If the XDP program uses all of it, copy the 2213 * data to a new buffer and make room for storing the backpointer. 2214 */ 2215 if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) && 2216 xdpf->headroom >= priv->tx_headroom) { 2217 xdpf->headroom = priv->tx_headroom; 2218 return 0; 2219 } 2220 2221 /* Try to move the data inside the buffer just enough to align it and 2222 * store the xdpf backpointer. If the available headroom isn't large 2223 * enough, resort to allocating a new buffer and copying the data. 2224 */ 2225 aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT); 2226 data_shift = xdpf->data - aligned_data; 2227 2228 /* The XDP frame's headroom needs to be large enough to accommodate 2229 * shifting the data as well as storing the xdpf backpointer. 2230 */ 2231 if (xdpf->headroom >= data_shift + priv->tx_headroom) { 2232 memmove(aligned_data, xdpf->data, xdpf->len); 2233 xdpf->data = aligned_data; 2234 xdpf->headroom = priv->tx_headroom; 2235 return 0; 2236 } 2237 2238 /* The new xdp_frame is stored in the new buffer. Reserve enough space 2239 * in the headroom for storing it along with the driver's private 2240 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to 2241 * guarantee the data's alignment in the buffer. 2242 */ 2243 headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom, 2244 DPAA_FD_DATA_ALIGNMENT); 2245 2246 /* Assure the extended headroom and data don't overflow the buffer, 2247 * while maintaining the mandatory tailroom. 2248 */ 2249 if (headroom + xdpf->len > DPAA_BP_RAW_SIZE - 2250 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 2251 return -ENOMEM; 2252 2253 p = dev_alloc_pages(0); 2254 if (unlikely(!p)) 2255 return -ENOMEM; 2256 2257 /* Copy the data to the new buffer at a properly aligned offset */ 2258 new_buff = page_address(p); 2259 memcpy(new_buff + headroom, xdpf->data, xdpf->len); 2260 2261 /* Create an XDP frame around the new buffer in a similar fashion 2262 * to xdp_convert_buff_to_frame. 2263 */ 2264 new_xdpf = new_buff; 2265 new_xdpf->data = new_buff + headroom; 2266 new_xdpf->len = xdpf->len; 2267 new_xdpf->headroom = priv->tx_headroom; 2268 new_xdpf->frame_sz = DPAA_BP_RAW_SIZE; 2269 new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 2270 2271 /* Release the initial buffer */ 2272 xdp_return_frame_rx_napi(xdpf); 2273 2274 *init_xdpf = new_xdpf; 2275 return 0; 2276 } 2277 #endif 2278 2279 static netdev_tx_t 2280 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev) 2281 { 2282 const int queue_mapping = skb_get_queue_mapping(skb); 2283 bool nonlinear = skb_is_nonlinear(skb); 2284 struct rtnl_link_stats64 *percpu_stats; 2285 struct dpaa_percpu_priv *percpu_priv; 2286 struct netdev_queue *txq; 2287 struct dpaa_priv *priv; 2288 struct qm_fd fd; 2289 int offset = 0; 2290 int err = 0; 2291 2292 priv = netdev_priv(net_dev); 2293 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2294 percpu_stats = &percpu_priv->stats; 2295 2296 qm_fd_clear_fd(&fd); 2297 2298 if (!nonlinear) { 2299 /* We're going to store the skb backpointer at the beginning 2300 * of the data buffer, so we need a privately owned skb 2301 * 2302 * We've made sure skb is not shared in dev->priv_flags, 2303 * we need to verify the skb head is not cloned 2304 */ 2305 if (skb_cow_head(skb, priv->tx_headroom)) 2306 goto enomem; 2307 2308 WARN_ON(skb_is_nonlinear(skb)); 2309 } 2310 2311 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES; 2312 * make sure we don't feed FMan with more fragments than it supports. 2313 */ 2314 if (unlikely(nonlinear && 2315 (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) { 2316 /* If the egress skb contains more fragments than we support 2317 * we have no choice but to linearize it ourselves. 2318 */ 2319 if (__skb_linearize(skb)) 2320 goto enomem; 2321 2322 nonlinear = skb_is_nonlinear(skb); 2323 } 2324 2325 #ifdef CONFIG_DPAA_ERRATUM_A050385 2326 if (unlikely(fman_has_errata_a050385())) { 2327 if (dpaa_a050385_wa_skb(net_dev, &skb)) 2328 goto enomem; 2329 nonlinear = skb_is_nonlinear(skb); 2330 } 2331 #endif 2332 2333 if (nonlinear) { 2334 /* Just create a S/G fd based on the skb */ 2335 err = skb_to_sg_fd(priv, skb, &fd); 2336 percpu_priv->tx_frag_skbuffs++; 2337 } else { 2338 /* Create a contig FD from this skb */ 2339 err = skb_to_contig_fd(priv, skb, &fd, &offset); 2340 } 2341 if (unlikely(err < 0)) 2342 goto skb_to_fd_failed; 2343 2344 txq = netdev_get_tx_queue(net_dev, queue_mapping); 2345 2346 /* LLTX requires to do our own update of trans_start */ 2347 txq_trans_cond_update(txq); 2348 2349 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 2350 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD); 2351 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2352 } 2353 2354 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0)) 2355 return NETDEV_TX_OK; 2356 2357 dpaa_cleanup_tx_fd(priv, &fd, false); 2358 skb_to_fd_failed: 2359 enomem: 2360 percpu_stats->tx_errors++; 2361 dev_kfree_skb(skb); 2362 return NETDEV_TX_OK; 2363 } 2364 2365 static void dpaa_rx_error(struct net_device *net_dev, 2366 const struct dpaa_priv *priv, 2367 struct dpaa_percpu_priv *percpu_priv, 2368 const struct qm_fd *fd, 2369 u32 fqid) 2370 { 2371 if (net_ratelimit()) 2372 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n", 2373 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS); 2374 2375 percpu_priv->stats.rx_errors++; 2376 2377 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA) 2378 percpu_priv->rx_errors.dme++; 2379 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL) 2380 percpu_priv->rx_errors.fpe++; 2381 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE) 2382 percpu_priv->rx_errors.fse++; 2383 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR) 2384 percpu_priv->rx_errors.phe++; 2385 2386 dpaa_fd_release(net_dev, fd); 2387 } 2388 2389 static void dpaa_tx_error(struct net_device *net_dev, 2390 const struct dpaa_priv *priv, 2391 struct dpaa_percpu_priv *percpu_priv, 2392 const struct qm_fd *fd, 2393 u32 fqid) 2394 { 2395 struct sk_buff *skb; 2396 2397 if (net_ratelimit()) 2398 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2399 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS); 2400 2401 percpu_priv->stats.tx_errors++; 2402 2403 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2404 dev_kfree_skb(skb); 2405 } 2406 2407 static int dpaa_eth_poll(struct napi_struct *napi, int budget) 2408 { 2409 struct dpaa_napi_portal *np = 2410 container_of(napi, struct dpaa_napi_portal, napi); 2411 int cleaned; 2412 2413 np->xdp_act = 0; 2414 2415 cleaned = qman_p_poll_dqrr(np->p, budget); 2416 2417 if (np->xdp_act & XDP_REDIRECT) 2418 xdp_do_flush(); 2419 2420 if (cleaned < budget) { 2421 napi_complete_done(napi, cleaned); 2422 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2423 } else if (np->down) { 2424 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2425 } 2426 2427 return cleaned; 2428 } 2429 2430 static void dpaa_tx_conf(struct net_device *net_dev, 2431 const struct dpaa_priv *priv, 2432 struct dpaa_percpu_priv *percpu_priv, 2433 const struct qm_fd *fd, 2434 u32 fqid) 2435 { 2436 struct sk_buff *skb; 2437 2438 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) { 2439 if (net_ratelimit()) 2440 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2441 be32_to_cpu(fd->status) & 2442 FM_FD_STAT_TX_ERRORS); 2443 2444 percpu_priv->stats.tx_errors++; 2445 } 2446 2447 percpu_priv->tx_confirm++; 2448 2449 skb = dpaa_cleanup_tx_fd(priv, fd, true); 2450 2451 consume_skb(skb); 2452 } 2453 2454 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv, 2455 struct qman_portal *portal, bool sched_napi) 2456 { 2457 if (sched_napi) { 2458 /* Disable QMan IRQ and invoke NAPI */ 2459 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI); 2460 2461 percpu_priv->np.p = portal; 2462 napi_schedule(&percpu_priv->np.napi); 2463 percpu_priv->in_interrupt++; 2464 return 1; 2465 } 2466 return 0; 2467 } 2468 2469 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal, 2470 struct qman_fq *fq, 2471 const struct qm_dqrr_entry *dq, 2472 bool sched_napi) 2473 { 2474 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2475 struct dpaa_percpu_priv *percpu_priv; 2476 struct net_device *net_dev; 2477 struct dpaa_bp *dpaa_bp; 2478 struct dpaa_priv *priv; 2479 2480 net_dev = dpaa_fq->net_dev; 2481 priv = netdev_priv(net_dev); 2482 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2483 if (!dpaa_bp) 2484 return qman_cb_dqrr_consume; 2485 2486 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2487 2488 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2489 return qman_cb_dqrr_stop; 2490 2491 dpaa_eth_refill_bpools(priv); 2492 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2493 2494 return qman_cb_dqrr_consume; 2495 } 2496 2497 static int dpaa_xdp_xmit_frame(struct net_device *net_dev, 2498 struct xdp_frame *xdpf) 2499 { 2500 struct dpaa_priv *priv = netdev_priv(net_dev); 2501 struct rtnl_link_stats64 *percpu_stats; 2502 struct dpaa_percpu_priv *percpu_priv; 2503 struct dpaa_eth_swbp *swbp; 2504 struct netdev_queue *txq; 2505 void *buff_start; 2506 struct qm_fd fd; 2507 dma_addr_t addr; 2508 int err; 2509 2510 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2511 percpu_stats = &percpu_priv->stats; 2512 2513 #ifdef CONFIG_DPAA_ERRATUM_A050385 2514 if (unlikely(fman_has_errata_a050385())) { 2515 if (dpaa_a050385_wa_xdpf(priv, &xdpf)) { 2516 err = -ENOMEM; 2517 goto out_error; 2518 } 2519 } 2520 #endif 2521 2522 if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) { 2523 err = -EINVAL; 2524 goto out_error; 2525 } 2526 2527 buff_start = xdpf->data - xdpf->headroom; 2528 2529 /* Leave empty the skb backpointer at the start of the buffer. 2530 * Save the XDP frame for easy cleanup on confirmation. 2531 */ 2532 swbp = (struct dpaa_eth_swbp *)buff_start; 2533 swbp->skb = NULL; 2534 swbp->xdpf = xdpf; 2535 2536 qm_fd_clear_fd(&fd); 2537 fd.bpid = FSL_DPAA_BPID_INV; 2538 fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2539 qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len); 2540 2541 addr = dma_map_single(priv->tx_dma_dev, buff_start, 2542 xdpf->headroom + xdpf->len, 2543 DMA_TO_DEVICE); 2544 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2545 err = -EINVAL; 2546 goto out_error; 2547 } 2548 2549 qm_fd_addr_set64(&fd, addr); 2550 2551 /* Bump the trans_start */ 2552 txq = netdev_get_tx_queue(net_dev, smp_processor_id()); 2553 txq_trans_cond_update(txq); 2554 2555 err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd); 2556 if (err) { 2557 dma_unmap_single(priv->tx_dma_dev, addr, 2558 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd), 2559 DMA_TO_DEVICE); 2560 goto out_error; 2561 } 2562 2563 return 0; 2564 2565 out_error: 2566 percpu_stats->tx_errors++; 2567 return err; 2568 } 2569 2570 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr, 2571 struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len) 2572 { 2573 ssize_t fd_off = qm_fd_get_offset(fd); 2574 struct bpf_prog *xdp_prog; 2575 struct xdp_frame *xdpf; 2576 struct xdp_buff xdp; 2577 u32 xdp_act; 2578 int err; 2579 2580 xdp_prog = READ_ONCE(priv->xdp_prog); 2581 if (!xdp_prog) 2582 return XDP_PASS; 2583 2584 xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE, 2585 &dpaa_fq->xdp_rxq); 2586 xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM, 2587 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true); 2588 2589 /* We reserve a fixed headroom of 256 bytes under the erratum and we 2590 * offer it all to XDP programs to use. If no room is left for the 2591 * xdpf backpointer on TX, we will need to copy the data. 2592 * Disable metadata support since data realignments might be required 2593 * and the information can be lost. 2594 */ 2595 #ifdef CONFIG_DPAA_ERRATUM_A050385 2596 if (unlikely(fman_has_errata_a050385())) { 2597 xdp_set_data_meta_invalid(&xdp); 2598 xdp.data_hard_start = vaddr; 2599 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2600 } 2601 #endif 2602 2603 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 2604 2605 /* Update the length and the offset of the FD */ 2606 qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data); 2607 2608 switch (xdp_act) { 2609 case XDP_PASS: 2610 #ifdef CONFIG_DPAA_ERRATUM_A050385 2611 *xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 : 2612 xdp.data - xdp.data_meta; 2613 #else 2614 *xdp_meta_len = xdp.data - xdp.data_meta; 2615 #endif 2616 break; 2617 case XDP_TX: 2618 /* We can access the full headroom when sending the frame 2619 * back out 2620 */ 2621 xdp.data_hard_start = vaddr; 2622 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2623 xdpf = xdp_convert_buff_to_frame(&xdp); 2624 if (unlikely(!xdpf)) { 2625 free_pages((unsigned long)vaddr, 0); 2626 break; 2627 } 2628 2629 if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf)) 2630 xdp_return_frame_rx_napi(xdpf); 2631 2632 break; 2633 case XDP_REDIRECT: 2634 /* Allow redirect to use the full headroom */ 2635 xdp.data_hard_start = vaddr; 2636 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2637 2638 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 2639 if (err) { 2640 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2641 free_pages((unsigned long)vaddr, 0); 2642 } 2643 break; 2644 default: 2645 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act); 2646 fallthrough; 2647 case XDP_ABORTED: 2648 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2649 fallthrough; 2650 case XDP_DROP: 2651 /* Free the buffer */ 2652 free_pages((unsigned long)vaddr, 0); 2653 break; 2654 } 2655 2656 return xdp_act; 2657 } 2658 2659 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal, 2660 struct qman_fq *fq, 2661 const struct qm_dqrr_entry *dq, 2662 bool sched_napi) 2663 { 2664 bool ts_valid = false, hash_valid = false; 2665 struct skb_shared_hwtstamps *shhwtstamps; 2666 unsigned int skb_len, xdp_meta_len = 0; 2667 struct rtnl_link_stats64 *percpu_stats; 2668 struct dpaa_percpu_priv *percpu_priv; 2669 const struct qm_fd *fd = &dq->fd; 2670 dma_addr_t addr = qm_fd_addr(fd); 2671 struct dpaa_napi_portal *np; 2672 enum qm_fd_format fd_format; 2673 struct net_device *net_dev; 2674 u32 fd_status, hash_offset; 2675 struct qm_sg_entry *sgt; 2676 struct dpaa_bp *dpaa_bp; 2677 struct dpaa_fq *dpaa_fq; 2678 struct dpaa_priv *priv; 2679 struct sk_buff *skb; 2680 int *count_ptr; 2681 u32 xdp_act; 2682 void *vaddr; 2683 u32 hash; 2684 u64 ns; 2685 2686 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2687 fd_status = be32_to_cpu(fd->status); 2688 fd_format = qm_fd_get_format(fd); 2689 net_dev = dpaa_fq->net_dev; 2690 priv = netdev_priv(net_dev); 2691 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2692 if (!dpaa_bp) 2693 return qman_cb_dqrr_consume; 2694 2695 /* Trace the Rx fd */ 2696 trace_dpaa_rx_fd(net_dev, fq, &dq->fd); 2697 2698 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2699 percpu_stats = &percpu_priv->stats; 2700 np = &percpu_priv->np; 2701 2702 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))) 2703 return qman_cb_dqrr_stop; 2704 2705 /* Make sure we didn't run out of buffers */ 2706 if (unlikely(dpaa_eth_refill_bpools(priv))) { 2707 /* Unable to refill the buffer pool due to insufficient 2708 * system memory. Just release the frame back into the pool, 2709 * otherwise we'll soon end up with an empty buffer pool. 2710 */ 2711 dpaa_fd_release(net_dev, &dq->fd); 2712 return qman_cb_dqrr_consume; 2713 } 2714 2715 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) { 2716 if (net_ratelimit()) 2717 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2718 fd_status & FM_FD_STAT_RX_ERRORS); 2719 2720 percpu_stats->rx_errors++; 2721 dpaa_fd_release(net_dev, fd); 2722 return qman_cb_dqrr_consume; 2723 } 2724 2725 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 2726 DMA_FROM_DEVICE); 2727 2728 /* prefetch the first 64 bytes of the frame or the SGT start */ 2729 vaddr = phys_to_virt(addr); 2730 prefetch(vaddr + qm_fd_get_offset(fd)); 2731 2732 /* The only FD types that we may receive are contig and S/G */ 2733 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg)); 2734 2735 /* Account for either the contig buffer or the SGT buffer (depending on 2736 * which case we were in) having been removed from the pool. 2737 */ 2738 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 2739 (*count_ptr)--; 2740 2741 /* Extract the timestamp stored in the headroom before running XDP */ 2742 if (priv->rx_tstamp) { 2743 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns)) 2744 ts_valid = true; 2745 else 2746 WARN_ONCE(1, "fman_port_get_tstamp failed!\n"); 2747 } 2748 2749 /* Extract the hash stored in the headroom before running XDP */ 2750 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use && 2751 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX], 2752 &hash_offset)) { 2753 hash = be32_to_cpu(*(u32 *)(vaddr + hash_offset)); 2754 hash_valid = true; 2755 } 2756 2757 if (likely(fd_format == qm_fd_contig)) { 2758 xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr, 2759 dpaa_fq, &xdp_meta_len); 2760 np->xdp_act |= xdp_act; 2761 if (xdp_act != XDP_PASS) { 2762 percpu_stats->rx_packets++; 2763 percpu_stats->rx_bytes += qm_fd_get_length(fd); 2764 return qman_cb_dqrr_consume; 2765 } 2766 skb = contig_fd_to_skb(priv, fd); 2767 } else { 2768 /* XDP doesn't support S/G frames. Return the fragments to the 2769 * buffer pool and release the SGT. 2770 */ 2771 if (READ_ONCE(priv->xdp_prog)) { 2772 WARN_ONCE(1, "S/G frames not supported under XDP\n"); 2773 sgt = vaddr + qm_fd_get_offset(fd); 2774 dpaa_release_sgt_members(sgt); 2775 free_pages((unsigned long)vaddr, 0); 2776 return qman_cb_dqrr_consume; 2777 } 2778 skb = sg_fd_to_skb(priv, fd); 2779 } 2780 if (!skb) 2781 return qman_cb_dqrr_consume; 2782 2783 if (xdp_meta_len) 2784 skb_metadata_set(skb, xdp_meta_len); 2785 2786 /* Set the previously extracted timestamp */ 2787 if (ts_valid) { 2788 shhwtstamps = skb_hwtstamps(skb); 2789 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2790 shhwtstamps->hwtstamp = ns_to_ktime(ns); 2791 } 2792 2793 skb->protocol = eth_type_trans(skb, net_dev); 2794 2795 /* Set the previously extracted hash */ 2796 if (hash_valid) { 2797 enum pkt_hash_types type; 2798 2799 /* if L4 exists, it was used in the hash generation */ 2800 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ? 2801 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 2802 skb_set_hash(skb, hash, type); 2803 } 2804 2805 skb_len = skb->len; 2806 2807 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) { 2808 percpu_stats->rx_dropped++; 2809 return qman_cb_dqrr_consume; 2810 } 2811 2812 percpu_stats->rx_packets++; 2813 percpu_stats->rx_bytes += skb_len; 2814 2815 return qman_cb_dqrr_consume; 2816 } 2817 2818 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal, 2819 struct qman_fq *fq, 2820 const struct qm_dqrr_entry *dq, 2821 bool sched_napi) 2822 { 2823 struct dpaa_percpu_priv *percpu_priv; 2824 struct net_device *net_dev; 2825 struct dpaa_priv *priv; 2826 2827 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2828 priv = netdev_priv(net_dev); 2829 2830 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2831 2832 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2833 return qman_cb_dqrr_stop; 2834 2835 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2836 2837 return qman_cb_dqrr_consume; 2838 } 2839 2840 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal, 2841 struct qman_fq *fq, 2842 const struct qm_dqrr_entry *dq, 2843 bool sched_napi) 2844 { 2845 struct dpaa_percpu_priv *percpu_priv; 2846 struct net_device *net_dev; 2847 struct dpaa_priv *priv; 2848 2849 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2850 priv = netdev_priv(net_dev); 2851 2852 /* Trace the fd */ 2853 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd); 2854 2855 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2856 2857 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2858 return qman_cb_dqrr_stop; 2859 2860 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2861 2862 return qman_cb_dqrr_consume; 2863 } 2864 2865 static void egress_ern(struct qman_portal *portal, 2866 struct qman_fq *fq, 2867 const union qm_mr_entry *msg) 2868 { 2869 const struct qm_fd *fd = &msg->ern.fd; 2870 struct dpaa_percpu_priv *percpu_priv; 2871 const struct dpaa_priv *priv; 2872 struct net_device *net_dev; 2873 struct sk_buff *skb; 2874 2875 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2876 priv = netdev_priv(net_dev); 2877 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2878 2879 percpu_priv->stats.tx_dropped++; 2880 percpu_priv->stats.tx_fifo_errors++; 2881 count_ern(percpu_priv, msg); 2882 2883 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2884 dev_kfree_skb_any(skb); 2885 } 2886 2887 static const struct dpaa_fq_cbs dpaa_fq_cbs = { 2888 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } }, 2889 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } }, 2890 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } }, 2891 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } }, 2892 .egress_ern = { .cb = { .ern = egress_ern } } 2893 }; 2894 2895 static void dpaa_eth_napi_enable(struct dpaa_priv *priv) 2896 { 2897 struct dpaa_percpu_priv *percpu_priv; 2898 int i; 2899 2900 for_each_online_cpu(i) { 2901 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2902 2903 percpu_priv->np.down = false; 2904 napi_enable(&percpu_priv->np.napi); 2905 } 2906 } 2907 2908 static void dpaa_eth_napi_disable(struct dpaa_priv *priv) 2909 { 2910 struct dpaa_percpu_priv *percpu_priv; 2911 int i; 2912 2913 for_each_online_cpu(i) { 2914 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2915 2916 percpu_priv->np.down = true; 2917 napi_disable(&percpu_priv->np.napi); 2918 } 2919 } 2920 2921 static int dpaa_open(struct net_device *net_dev) 2922 { 2923 struct mac_device *mac_dev; 2924 struct dpaa_priv *priv; 2925 int err, i; 2926 2927 priv = netdev_priv(net_dev); 2928 mac_dev = priv->mac_dev; 2929 dpaa_eth_napi_enable(priv); 2930 2931 err = phylink_of_phy_connect(mac_dev->phylink, 2932 mac_dev->dev->of_node, 0); 2933 if (err) 2934 goto phy_init_failed; 2935 2936 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 2937 err = fman_port_enable(mac_dev->port[i]); 2938 if (err) 2939 goto mac_start_failed; 2940 } 2941 2942 err = priv->mac_dev->enable(mac_dev->fman_mac); 2943 if (err < 0) { 2944 netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err); 2945 goto mac_start_failed; 2946 } 2947 phylink_start(mac_dev->phylink); 2948 2949 netif_tx_start_all_queues(net_dev); 2950 2951 return 0; 2952 2953 mac_start_failed: 2954 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) 2955 fman_port_disable(mac_dev->port[i]); 2956 phylink_disconnect_phy(mac_dev->phylink); 2957 2958 phy_init_failed: 2959 dpaa_eth_napi_disable(priv); 2960 2961 return err; 2962 } 2963 2964 static int dpaa_eth_stop(struct net_device *net_dev) 2965 { 2966 struct dpaa_priv *priv; 2967 int err; 2968 2969 err = dpaa_stop(net_dev); 2970 2971 priv = netdev_priv(net_dev); 2972 dpaa_eth_napi_disable(priv); 2973 2974 return err; 2975 } 2976 2977 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu) 2978 { 2979 int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom; 2980 2981 /* We do not support S/G fragments when XDP is enabled. 2982 * Limit the MTU in relation to the buffer size. 2983 */ 2984 if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) { 2985 dev_warn(priv->net_dev->dev.parent, 2986 "The maximum MTU for XDP is %d\n", 2987 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN); 2988 return false; 2989 } 2990 2991 return true; 2992 } 2993 2994 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu) 2995 { 2996 struct dpaa_priv *priv = netdev_priv(net_dev); 2997 2998 if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu)) 2999 return -EINVAL; 3000 3001 net_dev->mtu = new_mtu; 3002 return 0; 3003 } 3004 3005 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf) 3006 { 3007 struct dpaa_priv *priv = netdev_priv(net_dev); 3008 struct bpf_prog *old_prog; 3009 int err; 3010 bool up; 3011 3012 /* S/G fragments are not supported in XDP-mode */ 3013 if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) { 3014 NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP"); 3015 return -EINVAL; 3016 } 3017 3018 up = netif_running(net_dev); 3019 3020 if (up) 3021 dpaa_eth_stop(net_dev); 3022 3023 old_prog = xchg(&priv->xdp_prog, bpf->prog); 3024 if (old_prog) 3025 bpf_prog_put(old_prog); 3026 3027 if (up) { 3028 err = dpaa_open(net_dev); 3029 if (err) { 3030 NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed"); 3031 return err; 3032 } 3033 } 3034 3035 return 0; 3036 } 3037 3038 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp) 3039 { 3040 switch (xdp->command) { 3041 case XDP_SETUP_PROG: 3042 return dpaa_setup_xdp(net_dev, xdp); 3043 default: 3044 return -EINVAL; 3045 } 3046 } 3047 3048 static int dpaa_xdp_xmit(struct net_device *net_dev, int n, 3049 struct xdp_frame **frames, u32 flags) 3050 { 3051 struct xdp_frame *xdpf; 3052 int i, nxmit = 0; 3053 3054 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 3055 return -EINVAL; 3056 3057 if (!netif_running(net_dev)) 3058 return -ENETDOWN; 3059 3060 for (i = 0; i < n; i++) { 3061 xdpf = frames[i]; 3062 if (dpaa_xdp_xmit_frame(net_dev, xdpf)) 3063 break; 3064 nxmit++; 3065 } 3066 3067 return nxmit; 3068 } 3069 3070 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3071 { 3072 struct dpaa_priv *priv = netdev_priv(dev); 3073 struct hwtstamp_config config; 3074 3075 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 3076 return -EFAULT; 3077 3078 switch (config.tx_type) { 3079 case HWTSTAMP_TX_OFF: 3080 /* Couldn't disable rx/tx timestamping separately. 3081 * Do nothing here. 3082 */ 3083 priv->tx_tstamp = false; 3084 break; 3085 case HWTSTAMP_TX_ON: 3086 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3087 priv->tx_tstamp = true; 3088 break; 3089 default: 3090 return -ERANGE; 3091 } 3092 3093 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 3094 /* Couldn't disable rx/tx timestamping separately. 3095 * Do nothing here. 3096 */ 3097 priv->rx_tstamp = false; 3098 } else { 3099 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3100 priv->rx_tstamp = true; 3101 /* TS is set for all frame types, not only those requested */ 3102 config.rx_filter = HWTSTAMP_FILTER_ALL; 3103 } 3104 3105 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 3106 -EFAULT : 0; 3107 } 3108 3109 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) 3110 { 3111 int ret = -EINVAL; 3112 struct dpaa_priv *priv = netdev_priv(net_dev); 3113 3114 if (cmd == SIOCGMIIREG) { 3115 if (net_dev->phydev) 3116 return phylink_mii_ioctl(priv->mac_dev->phylink, rq, 3117 cmd); 3118 } 3119 3120 if (cmd == SIOCSHWTSTAMP) 3121 return dpaa_ts_ioctl(net_dev, rq, cmd); 3122 3123 return ret; 3124 } 3125 3126 static const struct net_device_ops dpaa_ops = { 3127 .ndo_open = dpaa_open, 3128 .ndo_start_xmit = dpaa_start_xmit, 3129 .ndo_stop = dpaa_eth_stop, 3130 .ndo_tx_timeout = dpaa_tx_timeout, 3131 .ndo_get_stats64 = dpaa_get_stats64, 3132 .ndo_change_carrier = fixed_phy_change_carrier, 3133 .ndo_set_mac_address = dpaa_set_mac_address, 3134 .ndo_validate_addr = eth_validate_addr, 3135 .ndo_set_rx_mode = dpaa_set_rx_mode, 3136 .ndo_eth_ioctl = dpaa_ioctl, 3137 .ndo_setup_tc = dpaa_setup_tc, 3138 .ndo_change_mtu = dpaa_change_mtu, 3139 .ndo_bpf = dpaa_xdp, 3140 .ndo_xdp_xmit = dpaa_xdp_xmit, 3141 }; 3142 3143 static int dpaa_napi_add(struct net_device *net_dev) 3144 { 3145 struct dpaa_priv *priv = netdev_priv(net_dev); 3146 struct dpaa_percpu_priv *percpu_priv; 3147 int cpu; 3148 3149 for_each_possible_cpu(cpu) { 3150 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3151 3152 netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll); 3153 } 3154 3155 return 0; 3156 } 3157 3158 static void dpaa_napi_del(struct net_device *net_dev) 3159 { 3160 struct dpaa_priv *priv = netdev_priv(net_dev); 3161 struct dpaa_percpu_priv *percpu_priv; 3162 int cpu; 3163 3164 for_each_possible_cpu(cpu) { 3165 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3166 3167 netif_napi_del(&percpu_priv->np.napi); 3168 } 3169 } 3170 3171 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp, 3172 struct bm_buffer *bmb) 3173 { 3174 dma_addr_t addr = bm_buf_addr(bmb); 3175 3176 dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 3177 DMA_FROM_DEVICE); 3178 3179 skb_free_frag(phys_to_virt(addr)); 3180 } 3181 3182 /* Alloc the dpaa_bp struct and configure default values */ 3183 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev) 3184 { 3185 struct dpaa_bp *dpaa_bp; 3186 3187 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL); 3188 if (!dpaa_bp) 3189 return ERR_PTR(-ENOMEM); 3190 3191 dpaa_bp->bpid = FSL_DPAA_BPID_INV; 3192 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count); 3193 if (!dpaa_bp->percpu_count) 3194 return ERR_PTR(-ENOMEM); 3195 3196 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT; 3197 3198 dpaa_bp->seed_cb = dpaa_bp_seed; 3199 dpaa_bp->free_buf_cb = dpaa_bp_free_pf; 3200 3201 return dpaa_bp; 3202 } 3203 3204 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR. 3205 * We won't be sending congestion notifications to FMan; for now, we just use 3206 * this CGR to generate enqueue rejections to FMan in order to drop the frames 3207 * before they reach our ingress queues and eat up memory. 3208 */ 3209 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv) 3210 { 3211 struct qm_mcc_initcgr initcgr; 3212 u32 cs_th; 3213 int err; 3214 3215 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid); 3216 if (err < 0) { 3217 if (netif_msg_drv(priv)) 3218 pr_err("Error %d allocating CGR ID\n", err); 3219 goto out_error; 3220 } 3221 3222 /* Enable CS TD, but disable Congestion State Change Notifications. */ 3223 memset(&initcgr, 0, sizeof(initcgr)); 3224 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 3225 initcgr.cgr.cscn_en = QM_CGR_EN; 3226 cs_th = DPAA_INGRESS_CS_THRESHOLD; 3227 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 3228 3229 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 3230 initcgr.cgr.cstd_en = QM_CGR_EN; 3231 3232 /* This CGR will be associated with the SWP affined to the current CPU. 3233 * However, we'll place all our ingress FQs in it. 3234 */ 3235 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT, 3236 &initcgr); 3237 if (err < 0) { 3238 if (netif_msg_drv(priv)) 3239 pr_err("Error %d creating ingress CGR with ID %d\n", 3240 err, priv->ingress_cgr.cgrid); 3241 qman_release_cgrid(priv->ingress_cgr.cgrid); 3242 goto out_error; 3243 } 3244 if (netif_msg_drv(priv)) 3245 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n", 3246 priv->ingress_cgr.cgrid, priv->mac_dev->addr); 3247 3248 priv->use_ingress_cgr = true; 3249 3250 out_error: 3251 return err; 3252 } 3253 3254 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl, 3255 enum port_type port) 3256 { 3257 u16 headroom; 3258 3259 /* The frame headroom must accommodate: 3260 * - the driver private data area 3261 * - parse results, hash results, timestamp if selected 3262 * If either hash results or time stamp are selected, both will 3263 * be copied to/from the frame headroom, as TS is located between PR and 3264 * HR in the IC and IC copy size has a granularity of 16bytes 3265 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM) 3266 * 3267 * Also make sure the headroom is a multiple of data_align bytes 3268 */ 3269 headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE); 3270 3271 if (port == RX) { 3272 #ifdef CONFIG_DPAA_ERRATUM_A050385 3273 if (unlikely(fman_has_errata_a050385())) 3274 headroom = XDP_PACKET_HEADROOM; 3275 #endif 3276 3277 return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT); 3278 } else { 3279 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT); 3280 } 3281 } 3282 3283 static int dpaa_eth_probe(struct platform_device *pdev) 3284 { 3285 struct net_device *net_dev = NULL; 3286 struct dpaa_bp *dpaa_bp = NULL; 3287 struct dpaa_fq *dpaa_fq, *tmp; 3288 struct dpaa_priv *priv = NULL; 3289 struct fm_port_fqs port_fqs; 3290 struct mac_device *mac_dev; 3291 int err = 0, channel; 3292 struct device *dev; 3293 3294 dev = &pdev->dev; 3295 3296 err = bman_is_probed(); 3297 if (!err) 3298 return -EPROBE_DEFER; 3299 if (err < 0) { 3300 dev_err(dev, "failing probe due to bman probe error\n"); 3301 return -ENODEV; 3302 } 3303 err = qman_is_probed(); 3304 if (!err) 3305 return -EPROBE_DEFER; 3306 if (err < 0) { 3307 dev_err(dev, "failing probe due to qman probe error\n"); 3308 return -ENODEV; 3309 } 3310 err = bman_portals_probed(); 3311 if (!err) 3312 return -EPROBE_DEFER; 3313 if (err < 0) { 3314 dev_err(dev, 3315 "failing probe due to bman portals probe error\n"); 3316 return -ENODEV; 3317 } 3318 err = qman_portals_probed(); 3319 if (!err) 3320 return -EPROBE_DEFER; 3321 if (err < 0) { 3322 dev_err(dev, 3323 "failing probe due to qman portals probe error\n"); 3324 return -ENODEV; 3325 } 3326 3327 /* Allocate this early, so we can store relevant information in 3328 * the private area 3329 */ 3330 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM); 3331 if (!net_dev) { 3332 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3333 return -ENOMEM; 3334 } 3335 3336 /* Do this here, so we can be verbose early */ 3337 SET_NETDEV_DEV(net_dev, dev->parent); 3338 dev_set_drvdata(dev, net_dev); 3339 3340 priv = netdev_priv(net_dev); 3341 priv->net_dev = net_dev; 3342 3343 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT); 3344 3345 mac_dev = dpaa_mac_dev_get(pdev); 3346 if (IS_ERR(mac_dev)) { 3347 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n"); 3348 err = PTR_ERR(mac_dev); 3349 goto free_netdev; 3350 } 3351 3352 /* Devices used for DMA mapping */ 3353 priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]); 3354 priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]); 3355 err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40)); 3356 if (!err) 3357 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev, 3358 DMA_BIT_MASK(40)); 3359 if (err) { 3360 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n"); 3361 goto free_netdev; 3362 } 3363 3364 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500, 3365 * we choose conservatively and let the user explicitly set a higher 3366 * MTU via ifconfig. Otherwise, the user may end up with different MTUs 3367 * in the same LAN. 3368 * If on the other hand fsl_fm_max_frm has been chosen below 1500, 3369 * start with the maximum allowed. 3370 */ 3371 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN); 3372 3373 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n", 3374 net_dev->mtu); 3375 3376 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */ 3377 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */ 3378 3379 /* bp init */ 3380 dpaa_bp = dpaa_bp_alloc(dev); 3381 if (IS_ERR(dpaa_bp)) { 3382 err = PTR_ERR(dpaa_bp); 3383 goto free_dpaa_bps; 3384 } 3385 /* the raw size of the buffers used for reception */ 3386 dpaa_bp->raw_size = DPAA_BP_RAW_SIZE; 3387 /* avoid runtime computations by keeping the usable size here */ 3388 dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size); 3389 dpaa_bp->priv = priv; 3390 3391 err = dpaa_bp_alloc_pool(dpaa_bp); 3392 if (err < 0) 3393 goto free_dpaa_bps; 3394 priv->dpaa_bp = dpaa_bp; 3395 3396 INIT_LIST_HEAD(&priv->dpaa_fq_list); 3397 3398 memset(&port_fqs, 0, sizeof(port_fqs)); 3399 3400 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs); 3401 if (err < 0) { 3402 dev_err(dev, "dpaa_alloc_all_fqs() failed\n"); 3403 goto free_dpaa_bps; 3404 } 3405 3406 priv->mac_dev = mac_dev; 3407 3408 channel = dpaa_get_channel(); 3409 if (channel < 0) { 3410 dev_err(dev, "dpaa_get_channel() failed\n"); 3411 err = channel; 3412 goto free_dpaa_bps; 3413 } 3414 3415 priv->channel = (u16)channel; 3416 3417 /* Walk the CPUs with affine portals 3418 * and add this pool channel to each's dequeue mask. 3419 */ 3420 dpaa_eth_add_channel(priv->channel, &pdev->dev); 3421 3422 dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]); 3423 3424 /* Create a congestion group for this netdev, with 3425 * dynamically-allocated CGR ID. 3426 * Must be executed after probing the MAC, but before 3427 * assigning the egress FQs to the CGRs. 3428 */ 3429 err = dpaa_eth_cgr_init(priv); 3430 if (err < 0) { 3431 dev_err(dev, "Error initializing CGR\n"); 3432 goto free_dpaa_bps; 3433 } 3434 3435 err = dpaa_ingress_cgr_init(priv); 3436 if (err < 0) { 3437 dev_err(dev, "Error initializing ingress CGR\n"); 3438 goto delete_egress_cgr; 3439 } 3440 3441 /* Add the FQs to the interface, and make them active */ 3442 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) { 3443 err = dpaa_fq_init(dpaa_fq, false); 3444 if (err < 0) 3445 goto free_dpaa_fqs; 3446 } 3447 3448 priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX); 3449 priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX); 3450 3451 /* All real interfaces need their ports initialized */ 3452 err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs, 3453 &priv->buf_layout[0], dev); 3454 if (err) 3455 goto free_dpaa_fqs; 3456 3457 /* Rx traffic distribution based on keygen hashing defaults to on */ 3458 priv->keygen_in_use = true; 3459 3460 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv); 3461 if (!priv->percpu_priv) { 3462 dev_err(dev, "devm_alloc_percpu() failed\n"); 3463 err = -ENOMEM; 3464 goto free_dpaa_fqs; 3465 } 3466 3467 priv->num_tc = 1; 3468 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM); 3469 3470 /* Initialize NAPI */ 3471 err = dpaa_napi_add(net_dev); 3472 if (err < 0) 3473 goto delete_dpaa_napi; 3474 3475 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout); 3476 if (err < 0) 3477 goto delete_dpaa_napi; 3478 3479 dpaa_eth_sysfs_init(&net_dev->dev); 3480 3481 netif_info(priv, probe, net_dev, "Probed interface %s\n", 3482 net_dev->name); 3483 3484 return 0; 3485 3486 delete_dpaa_napi: 3487 dpaa_napi_del(net_dev); 3488 free_dpaa_fqs: 3489 dpaa_fq_free(dev, &priv->dpaa_fq_list); 3490 qman_delete_cgr_safe(&priv->ingress_cgr); 3491 qman_release_cgrid(priv->ingress_cgr.cgrid); 3492 delete_egress_cgr: 3493 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3494 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3495 free_dpaa_bps: 3496 dpaa_bps_free(priv); 3497 free_netdev: 3498 dev_set_drvdata(dev, NULL); 3499 free_netdev(net_dev); 3500 3501 return err; 3502 } 3503 3504 static int dpaa_remove(struct platform_device *pdev) 3505 { 3506 struct net_device *net_dev; 3507 struct dpaa_priv *priv; 3508 struct device *dev; 3509 int err; 3510 3511 dev = &pdev->dev; 3512 net_dev = dev_get_drvdata(dev); 3513 3514 priv = netdev_priv(net_dev); 3515 3516 dpaa_eth_sysfs_remove(dev); 3517 3518 dev_set_drvdata(dev, NULL); 3519 unregister_netdev(net_dev); 3520 phylink_destroy(priv->mac_dev->phylink); 3521 3522 err = dpaa_fq_free(dev, &priv->dpaa_fq_list); 3523 3524 qman_delete_cgr_safe(&priv->ingress_cgr); 3525 qman_release_cgrid(priv->ingress_cgr.cgrid); 3526 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3527 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3528 3529 dpaa_napi_del(net_dev); 3530 3531 dpaa_bps_free(priv); 3532 3533 free_netdev(net_dev); 3534 3535 return err; 3536 } 3537 3538 static const struct platform_device_id dpaa_devtype[] = { 3539 { 3540 .name = "dpaa-ethernet", 3541 .driver_data = 0, 3542 }, { 3543 } 3544 }; 3545 MODULE_DEVICE_TABLE(platform, dpaa_devtype); 3546 3547 static struct platform_driver dpaa_driver = { 3548 .driver = { 3549 .name = KBUILD_MODNAME, 3550 }, 3551 .id_table = dpaa_devtype, 3552 .probe = dpaa_eth_probe, 3553 .remove = dpaa_remove 3554 }; 3555 3556 static int __init dpaa_load(void) 3557 { 3558 int err; 3559 3560 pr_debug("FSL DPAA Ethernet driver\n"); 3561 3562 /* initialize dpaa_eth mirror values */ 3563 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom(); 3564 dpaa_max_frm = fman_get_max_frm(); 3565 3566 err = platform_driver_register(&dpaa_driver); 3567 if (err < 0) 3568 pr_err("Error, platform_driver_register() = %d\n", err); 3569 3570 return err; 3571 } 3572 module_init(dpaa_load); 3573 3574 static void __exit dpaa_unload(void) 3575 { 3576 platform_driver_unregister(&dpaa_driver); 3577 3578 /* Only one channel is used and needs to be released after all 3579 * interfaces are removed 3580 */ 3581 dpaa_release_channel(); 3582 } 3583 module_exit(dpaa_unload); 3584 3585 MODULE_LICENSE("Dual BSD/GPL"); 3586 MODULE_DESCRIPTION("FSL DPAA Ethernet driver"); 3587