1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc. 2 * Copyright 2020 NXP 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions are met: 6 * * Redistributions of source code must retain the above copyright 7 * notice, this list of conditions and the following disclaimer. 8 * * Redistributions in binary form must reproduce the above copyright 9 * notice, this list of conditions and the following disclaimer in the 10 * documentation and/or other materials provided with the distribution. 11 * * Neither the name of Freescale Semiconductor nor the 12 * names of its contributors may be used to endorse or promote products 13 * derived from this software without specific prior written permission. 14 * 15 * ALTERNATIVELY, this software may be distributed under the terms of the 16 * GNU General Public License ("GPL") as published by the Free Software 17 * Foundation, either version 2 of that License or (at your option) any 18 * later version. 19 * 20 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY 21 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 22 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 23 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY 24 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 25 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 26 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 33 34 #include <linux/init.h> 35 #include <linux/module.h> 36 #include <linux/of_platform.h> 37 #include <linux/of_mdio.h> 38 #include <linux/of_net.h> 39 #include <linux/io.h> 40 #include <linux/if_arp.h> 41 #include <linux/if_vlan.h> 42 #include <linux/icmp.h> 43 #include <linux/ip.h> 44 #include <linux/ipv6.h> 45 #include <linux/udp.h> 46 #include <linux/tcp.h> 47 #include <linux/net.h> 48 #include <linux/skbuff.h> 49 #include <linux/etherdevice.h> 50 #include <linux/if_ether.h> 51 #include <linux/highmem.h> 52 #include <linux/percpu.h> 53 #include <linux/dma-mapping.h> 54 #include <linux/sort.h> 55 #include <linux/phy_fixed.h> 56 #include <linux/bpf.h> 57 #include <linux/bpf_trace.h> 58 #include <soc/fsl/bman.h> 59 #include <soc/fsl/qman.h> 60 #include "fman.h" 61 #include "fman_port.h" 62 #include "mac.h" 63 #include "dpaa_eth.h" 64 65 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files 66 * using trace events only need to #include <trace/events/sched.h> 67 */ 68 #define CREATE_TRACE_POINTS 69 #include "dpaa_eth_trace.h" 70 71 static int debug = -1; 72 module_param(debug, int, 0444); 73 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)"); 74 75 static u16 tx_timeout = 1000; 76 module_param(tx_timeout, ushort, 0444); 77 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms"); 78 79 #define FM_FD_STAT_RX_ERRORS \ 80 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \ 81 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \ 82 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \ 83 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \ 84 FM_FD_ERR_PRS_HDR_ERR) 85 86 #define FM_FD_STAT_TX_ERRORS \ 87 (FM_FD_ERR_UNSUPPORTED_FORMAT | \ 88 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA) 89 90 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 91 NETIF_MSG_LINK | NETIF_MSG_IFUP | \ 92 NETIF_MSG_IFDOWN | NETIF_MSG_HW) 93 94 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000 95 /* Ingress congestion threshold on FMan ports 96 * The size in bytes of the ingress tail-drop threshold on FMan ports. 97 * Traffic piling up above this value will be rejected by QMan and discarded 98 * by FMan. 99 */ 100 101 /* Size in bytes of the FQ taildrop threshold */ 102 #define DPAA_FQ_TD 0x200000 103 104 #define DPAA_CS_THRESHOLD_1G 0x06000000 105 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000 106 * The size in bytes of the egress Congestion State notification threshold on 107 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a 108 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"), 109 * and the larger the frame size, the more acute the problem. 110 * So we have to find a balance between these factors: 111 * - avoiding the device staying congested for a prolonged time (risking 112 * the netdev watchdog to fire - see also the tx_timeout module param); 113 * - affecting performance of protocols such as TCP, which otherwise 114 * behave well under the congestion notification mechanism; 115 * - preventing the Tx cores from tightly-looping (as if the congestion 116 * threshold was too low to be effective); 117 * - running out of memory if the CS threshold is set too high. 118 */ 119 120 #define DPAA_CS_THRESHOLD_10G 0x10000000 121 /* The size in bytes of the egress Congestion State notification threshold on 122 * 10G ports, range 0x1000 .. 0x10000000 123 */ 124 125 /* Largest value that the FQD's OAL field can hold */ 126 #define FSL_QMAN_MAX_OAL 127 127 128 /* Default alignment for start of data in an Rx FD */ 129 #ifdef CONFIG_DPAA_ERRATUM_A050385 130 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer 131 * is crossing a 4k page boundary 132 */ 133 #define DPAA_FD_DATA_ALIGNMENT (fman_has_errata_a050385() ? 64 : 16) 134 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary 135 * crossings; also, all SG fragments except the last must have a size multiple 136 * of 256 to avoid DMA transaction splits 137 */ 138 #define DPAA_A050385_ALIGN 256 139 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \ 140 DPAA_A050385_ALIGN : 16) 141 #else 142 #define DPAA_FD_DATA_ALIGNMENT 16 143 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT 144 #endif 145 146 /* The DPAA requires 256 bytes reserved and mapped for the SGT */ 147 #define DPAA_SGT_SIZE 256 148 149 /* Values for the L3R field of the FM Parse Results 150 */ 151 /* L3 Type field: First IP Present IPv4 */ 152 #define FM_L3_PARSE_RESULT_IPV4 0x8000 153 /* L3 Type field: First IP Present IPv6 */ 154 #define FM_L3_PARSE_RESULT_IPV6 0x4000 155 /* Values for the L4R field of the FM Parse Results */ 156 /* L4 Type field: UDP */ 157 #define FM_L4_PARSE_RESULT_UDP 0x40 158 /* L4 Type field: TCP */ 159 #define FM_L4_PARSE_RESULT_TCP 0x20 160 161 /* FD status field indicating whether the FM Parser has attempted to validate 162 * the L4 csum of the frame. 163 * Note that having this bit set doesn't necessarily imply that the checksum 164 * is valid. One would have to check the parse results to find that out. 165 */ 166 #define FM_FD_STAT_L4CV 0x00000004 167 168 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */ 169 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */ 170 171 #define FSL_DPAA_BPID_INV 0xff 172 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128 173 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80 174 175 #define DPAA_TX_PRIV_DATA_SIZE 16 176 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result) 177 #define DPAA_TIME_STAMP_SIZE 8 178 #define DPAA_HASH_RESULTS_SIZE 8 179 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \ 180 + DPAA_HASH_RESULTS_SIZE) 181 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \ 182 XDP_PACKET_HEADROOM - DPAA_HWA_SIZE) 183 #ifdef CONFIG_DPAA_ERRATUM_A050385 184 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE) 185 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \ 186 DPAA_RX_PRIV_DATA_A050385_SIZE : \ 187 DPAA_RX_PRIV_DATA_DEFAULT_SIZE) 188 #else 189 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE 190 #endif 191 192 #define DPAA_ETH_PCD_RXQ_NUM 128 193 194 #define DPAA_ENQUEUE_RETRIES 100000 195 196 enum port_type {RX, TX}; 197 198 struct fm_port_fqs { 199 struct dpaa_fq *tx_defq; 200 struct dpaa_fq *tx_errq; 201 struct dpaa_fq *rx_defq; 202 struct dpaa_fq *rx_errq; 203 struct dpaa_fq *rx_pcdq; 204 }; 205 206 /* All the dpa bps in use at any moment */ 207 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS]; 208 209 #define DPAA_BP_RAW_SIZE 4096 210 211 #ifdef CONFIG_DPAA_ERRATUM_A050385 212 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \ 213 ~(DPAA_A050385_ALIGN - 1)) 214 #else 215 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size) 216 #endif 217 218 static int dpaa_max_frm; 219 220 static int dpaa_rx_extra_headroom; 221 222 #define dpaa_get_max_mtu() \ 223 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN)) 224 225 static int dpaa_netdev_init(struct net_device *net_dev, 226 const struct net_device_ops *dpaa_ops, 227 u16 tx_timeout) 228 { 229 struct dpaa_priv *priv = netdev_priv(net_dev); 230 struct device *dev = net_dev->dev.parent; 231 struct dpaa_percpu_priv *percpu_priv; 232 const u8 *mac_addr; 233 int i, err; 234 235 /* Although we access another CPU's private data here 236 * we do it at initialization so it is safe 237 */ 238 for_each_possible_cpu(i) { 239 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 240 percpu_priv->net_dev = net_dev; 241 } 242 243 net_dev->netdev_ops = dpaa_ops; 244 mac_addr = priv->mac_dev->addr; 245 246 net_dev->mem_start = priv->mac_dev->res->start; 247 net_dev->mem_end = priv->mac_dev->res->end; 248 249 net_dev->min_mtu = ETH_MIN_MTU; 250 net_dev->max_mtu = dpaa_get_max_mtu(); 251 252 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 253 NETIF_F_LLTX | NETIF_F_RXHASH); 254 255 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA; 256 /* The kernels enables GSO automatically, if we declare NETIF_F_SG. 257 * For conformity, we'll still declare GSO explicitly. 258 */ 259 net_dev->features |= NETIF_F_GSO; 260 net_dev->features |= NETIF_F_RXCSUM; 261 262 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 263 /* we do not want shared skbs on TX */ 264 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING; 265 266 net_dev->features |= net_dev->hw_features; 267 net_dev->vlan_features = net_dev->features; 268 269 if (is_valid_ether_addr(mac_addr)) { 270 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len); 271 eth_hw_addr_set(net_dev, mac_addr); 272 } else { 273 eth_hw_addr_random(net_dev); 274 err = priv->mac_dev->change_addr(priv->mac_dev->fman_mac, 275 (const enet_addr_t *)net_dev->dev_addr); 276 if (err) { 277 dev_err(dev, "Failed to set random MAC address\n"); 278 return -EINVAL; 279 } 280 dev_info(dev, "Using random MAC address: %pM\n", 281 net_dev->dev_addr); 282 } 283 284 net_dev->ethtool_ops = &dpaa_ethtool_ops; 285 286 net_dev->needed_headroom = priv->tx_headroom; 287 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout); 288 289 /* start without the RUNNING flag, phylib controls it later */ 290 netif_carrier_off(net_dev); 291 292 err = register_netdev(net_dev); 293 if (err < 0) { 294 dev_err(dev, "register_netdev() = %d\n", err); 295 return err; 296 } 297 298 return 0; 299 } 300 301 static int dpaa_stop(struct net_device *net_dev) 302 { 303 struct mac_device *mac_dev; 304 struct dpaa_priv *priv; 305 int i, err, error; 306 307 priv = netdev_priv(net_dev); 308 mac_dev = priv->mac_dev; 309 310 netif_tx_stop_all_queues(net_dev); 311 /* Allow the Fman (Tx) port to process in-flight frames before we 312 * try switching it off. 313 */ 314 msleep(200); 315 316 err = mac_dev->stop(mac_dev); 317 if (err < 0) 318 netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n", 319 err); 320 321 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 322 error = fman_port_disable(mac_dev->port[i]); 323 if (error) 324 err = error; 325 } 326 327 if (net_dev->phydev) 328 phy_disconnect(net_dev->phydev); 329 net_dev->phydev = NULL; 330 331 msleep(200); 332 333 return err; 334 } 335 336 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue) 337 { 338 struct dpaa_percpu_priv *percpu_priv; 339 const struct dpaa_priv *priv; 340 341 priv = netdev_priv(net_dev); 342 percpu_priv = this_cpu_ptr(priv->percpu_priv); 343 344 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n", 345 jiffies_to_msecs(jiffies - dev_trans_start(net_dev))); 346 347 percpu_priv->stats.tx_errors++; 348 } 349 350 /* Calculates the statistics for the given device by adding the statistics 351 * collected by each CPU. 352 */ 353 static void dpaa_get_stats64(struct net_device *net_dev, 354 struct rtnl_link_stats64 *s) 355 { 356 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64); 357 struct dpaa_priv *priv = netdev_priv(net_dev); 358 struct dpaa_percpu_priv *percpu_priv; 359 u64 *netstats = (u64 *)s; 360 u64 *cpustats; 361 int i, j; 362 363 for_each_possible_cpu(i) { 364 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 365 366 cpustats = (u64 *)&percpu_priv->stats; 367 368 /* add stats from all CPUs */ 369 for (j = 0; j < numstats; j++) 370 netstats[j] += cpustats[j]; 371 } 372 } 373 374 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type, 375 void *type_data) 376 { 377 struct dpaa_priv *priv = netdev_priv(net_dev); 378 struct tc_mqprio_qopt *mqprio = type_data; 379 u8 num_tc; 380 int i; 381 382 if (type != TC_SETUP_QDISC_MQPRIO) 383 return -EOPNOTSUPP; 384 385 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 386 num_tc = mqprio->num_tc; 387 388 if (num_tc == priv->num_tc) 389 return 0; 390 391 if (!num_tc) { 392 netdev_reset_tc(net_dev); 393 goto out; 394 } 395 396 if (num_tc > DPAA_TC_NUM) { 397 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n", 398 DPAA_TC_NUM); 399 return -EINVAL; 400 } 401 402 netdev_set_num_tc(net_dev, num_tc); 403 404 for (i = 0; i < num_tc; i++) 405 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM, 406 i * DPAA_TC_TXQ_NUM); 407 408 out: 409 priv->num_tc = num_tc ? : 1; 410 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM); 411 return 0; 412 } 413 414 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev) 415 { 416 struct dpaa_eth_data *eth_data; 417 struct device *dpaa_dev; 418 struct mac_device *mac_dev; 419 420 dpaa_dev = &pdev->dev; 421 eth_data = dpaa_dev->platform_data; 422 if (!eth_data) { 423 dev_err(dpaa_dev, "eth_data missing\n"); 424 return ERR_PTR(-ENODEV); 425 } 426 mac_dev = eth_data->mac_dev; 427 if (!mac_dev) { 428 dev_err(dpaa_dev, "mac_dev missing\n"); 429 return ERR_PTR(-EINVAL); 430 } 431 432 return mac_dev; 433 } 434 435 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr) 436 { 437 const struct dpaa_priv *priv; 438 struct mac_device *mac_dev; 439 struct sockaddr old_addr; 440 int err; 441 442 priv = netdev_priv(net_dev); 443 444 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN); 445 446 err = eth_mac_addr(net_dev, addr); 447 if (err < 0) { 448 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err); 449 return err; 450 } 451 452 mac_dev = priv->mac_dev; 453 454 err = mac_dev->change_addr(mac_dev->fman_mac, 455 (const enet_addr_t *)net_dev->dev_addr); 456 if (err < 0) { 457 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n", 458 err); 459 /* reverting to previous address */ 460 eth_mac_addr(net_dev, &old_addr); 461 462 return err; 463 } 464 465 return 0; 466 } 467 468 static void dpaa_set_rx_mode(struct net_device *net_dev) 469 { 470 const struct dpaa_priv *priv; 471 int err; 472 473 priv = netdev_priv(net_dev); 474 475 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) { 476 priv->mac_dev->promisc = !priv->mac_dev->promisc; 477 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac, 478 priv->mac_dev->promisc); 479 if (err < 0) 480 netif_err(priv, drv, net_dev, 481 "mac_dev->set_promisc() = %d\n", 482 err); 483 } 484 485 if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) { 486 priv->mac_dev->allmulti = !priv->mac_dev->allmulti; 487 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac, 488 priv->mac_dev->allmulti); 489 if (err < 0) 490 netif_err(priv, drv, net_dev, 491 "mac_dev->set_allmulti() = %d\n", 492 err); 493 } 494 495 err = priv->mac_dev->set_multi(net_dev, priv->mac_dev); 496 if (err < 0) 497 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n", 498 err); 499 } 500 501 static struct dpaa_bp *dpaa_bpid2pool(int bpid) 502 { 503 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS)) 504 return NULL; 505 506 return dpaa_bp_array[bpid]; 507 } 508 509 /* checks if this bpool is already allocated */ 510 static bool dpaa_bpid2pool_use(int bpid) 511 { 512 if (dpaa_bpid2pool(bpid)) { 513 refcount_inc(&dpaa_bp_array[bpid]->refs); 514 return true; 515 } 516 517 return false; 518 } 519 520 /* called only once per bpid by dpaa_bp_alloc_pool() */ 521 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp) 522 { 523 dpaa_bp_array[bpid] = dpaa_bp; 524 refcount_set(&dpaa_bp->refs, 1); 525 } 526 527 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp) 528 { 529 int err; 530 531 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) { 532 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n", 533 __func__); 534 return -EINVAL; 535 } 536 537 /* If the pool is already specified, we only create one per bpid */ 538 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV && 539 dpaa_bpid2pool_use(dpaa_bp->bpid)) 540 return 0; 541 542 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) { 543 dpaa_bp->pool = bman_new_pool(); 544 if (!dpaa_bp->pool) { 545 pr_err("%s: bman_new_pool() failed\n", 546 __func__); 547 return -ENODEV; 548 } 549 550 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool); 551 } 552 553 if (dpaa_bp->seed_cb) { 554 err = dpaa_bp->seed_cb(dpaa_bp); 555 if (err) 556 goto pool_seed_failed; 557 } 558 559 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp); 560 561 return 0; 562 563 pool_seed_failed: 564 pr_err("%s: pool seeding failed\n", __func__); 565 bman_free_pool(dpaa_bp->pool); 566 567 return err; 568 } 569 570 /* remove and free all the buffers from the given buffer pool */ 571 static void dpaa_bp_drain(struct dpaa_bp *bp) 572 { 573 u8 num = 8; 574 int ret; 575 576 do { 577 struct bm_buffer bmb[8]; 578 int i; 579 580 ret = bman_acquire(bp->pool, bmb, num); 581 if (ret < 0) { 582 if (num == 8) { 583 /* we have less than 8 buffers left; 584 * drain them one by one 585 */ 586 num = 1; 587 ret = 1; 588 continue; 589 } else { 590 /* Pool is fully drained */ 591 break; 592 } 593 } 594 595 if (bp->free_buf_cb) 596 for (i = 0; i < num; i++) 597 bp->free_buf_cb(bp, &bmb[i]); 598 } while (ret > 0); 599 } 600 601 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp) 602 { 603 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid); 604 605 /* the mapping between bpid and dpaa_bp is done very late in the 606 * allocation procedure; if something failed before the mapping, the bp 607 * was not configured, therefore we don't need the below instructions 608 */ 609 if (!bp) 610 return; 611 612 if (!refcount_dec_and_test(&bp->refs)) 613 return; 614 615 if (bp->free_buf_cb) 616 dpaa_bp_drain(bp); 617 618 dpaa_bp_array[bp->bpid] = NULL; 619 bman_free_pool(bp->pool); 620 } 621 622 static void dpaa_bps_free(struct dpaa_priv *priv) 623 { 624 dpaa_bp_free(priv->dpaa_bp); 625 } 626 627 /* Use multiple WQs for FQ assignment: 628 * - Tx Confirmation queues go to WQ1. 629 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance 630 * to be scheduled, in case there are many more FQs in WQ6). 631 * - Rx Default goes to WQ6. 632 * - Tx queues go to different WQs depending on their priority. Equal 633 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and 634 * WQ0 (highest priority). 635 * This ensures that Tx-confirmed buffers are timely released. In particular, 636 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they 637 * are greatly outnumbered by other FQs in the system, while 638 * dequeue scheduling is round-robin. 639 */ 640 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx) 641 { 642 switch (fq->fq_type) { 643 case FQ_TYPE_TX_CONFIRM: 644 case FQ_TYPE_TX_CONF_MQ: 645 fq->wq = 1; 646 break; 647 case FQ_TYPE_RX_ERROR: 648 case FQ_TYPE_TX_ERROR: 649 fq->wq = 5; 650 break; 651 case FQ_TYPE_RX_DEFAULT: 652 case FQ_TYPE_RX_PCD: 653 fq->wq = 6; 654 break; 655 case FQ_TYPE_TX: 656 switch (idx / DPAA_TC_TXQ_NUM) { 657 case 0: 658 /* Low priority (best effort) */ 659 fq->wq = 6; 660 break; 661 case 1: 662 /* Medium priority */ 663 fq->wq = 2; 664 break; 665 case 2: 666 /* High priority */ 667 fq->wq = 1; 668 break; 669 case 3: 670 /* Very high priority */ 671 fq->wq = 0; 672 break; 673 default: 674 WARN(1, "Too many TX FQs: more than %d!\n", 675 DPAA_ETH_TXQ_NUM); 676 } 677 break; 678 default: 679 WARN(1, "Invalid FQ type %d for FQID %d!\n", 680 fq->fq_type, fq->fqid); 681 } 682 } 683 684 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev, 685 u32 start, u32 count, 686 struct list_head *list, 687 enum dpaa_fq_type fq_type) 688 { 689 struct dpaa_fq *dpaa_fq; 690 int i; 691 692 dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq), 693 GFP_KERNEL); 694 if (!dpaa_fq) 695 return NULL; 696 697 for (i = 0; i < count; i++) { 698 dpaa_fq[i].fq_type = fq_type; 699 dpaa_fq[i].fqid = start ? start + i : 0; 700 list_add_tail(&dpaa_fq[i].list, list); 701 } 702 703 for (i = 0; i < count; i++) 704 dpaa_assign_wq(dpaa_fq + i, i); 705 706 return dpaa_fq; 707 } 708 709 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list, 710 struct fm_port_fqs *port_fqs) 711 { 712 struct dpaa_fq *dpaa_fq; 713 u32 fq_base, fq_base_aligned, i; 714 715 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR); 716 if (!dpaa_fq) 717 goto fq_alloc_failed; 718 719 port_fqs->rx_errq = &dpaa_fq[0]; 720 721 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT); 722 if (!dpaa_fq) 723 goto fq_alloc_failed; 724 725 port_fqs->rx_defq = &dpaa_fq[0]; 726 727 /* the PCD FQIDs range needs to be aligned for correct operation */ 728 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM)) 729 goto fq_alloc_failed; 730 731 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM); 732 733 for (i = fq_base; i < fq_base_aligned; i++) 734 qman_release_fqid(i); 735 736 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM; 737 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++) 738 qman_release_fqid(i); 739 740 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM, 741 list, FQ_TYPE_RX_PCD); 742 if (!dpaa_fq) 743 goto fq_alloc_failed; 744 745 port_fqs->rx_pcdq = &dpaa_fq[0]; 746 747 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ)) 748 goto fq_alloc_failed; 749 750 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR); 751 if (!dpaa_fq) 752 goto fq_alloc_failed; 753 754 port_fqs->tx_errq = &dpaa_fq[0]; 755 756 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM); 757 if (!dpaa_fq) 758 goto fq_alloc_failed; 759 760 port_fqs->tx_defq = &dpaa_fq[0]; 761 762 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX)) 763 goto fq_alloc_failed; 764 765 return 0; 766 767 fq_alloc_failed: 768 dev_err(dev, "dpaa_fq_alloc() failed\n"); 769 return -ENOMEM; 770 } 771 772 static u32 rx_pool_channel; 773 static DEFINE_SPINLOCK(rx_pool_channel_init); 774 775 static int dpaa_get_channel(void) 776 { 777 spin_lock(&rx_pool_channel_init); 778 if (!rx_pool_channel) { 779 u32 pool; 780 int ret; 781 782 ret = qman_alloc_pool(&pool); 783 784 if (!ret) 785 rx_pool_channel = pool; 786 } 787 spin_unlock(&rx_pool_channel_init); 788 if (!rx_pool_channel) 789 return -ENOMEM; 790 return rx_pool_channel; 791 } 792 793 static void dpaa_release_channel(void) 794 { 795 qman_release_pool(rx_pool_channel); 796 } 797 798 static void dpaa_eth_add_channel(u16 channel, struct device *dev) 799 { 800 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel); 801 const cpumask_t *cpus = qman_affine_cpus(); 802 struct qman_portal *portal; 803 int cpu; 804 805 for_each_cpu_and(cpu, cpus, cpu_online_mask) { 806 portal = qman_get_affine_portal(cpu); 807 qman_p_static_dequeue_add(portal, pool); 808 qman_start_using_portal(portal, dev); 809 } 810 } 811 812 /* Congestion group state change notification callback. 813 * Stops the device's egress queues while they are congested and 814 * wakes them upon exiting congested state. 815 * Also updates some CGR-related stats. 816 */ 817 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr, 818 int congested) 819 { 820 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr, 821 struct dpaa_priv, cgr_data.cgr); 822 823 if (congested) { 824 priv->cgr_data.congestion_start_jiffies = jiffies; 825 netif_tx_stop_all_queues(priv->net_dev); 826 priv->cgr_data.cgr_congested_count++; 827 } else { 828 priv->cgr_data.congested_jiffies += 829 (jiffies - priv->cgr_data.congestion_start_jiffies); 830 netif_tx_wake_all_queues(priv->net_dev); 831 } 832 } 833 834 static int dpaa_eth_cgr_init(struct dpaa_priv *priv) 835 { 836 struct qm_mcc_initcgr initcgr; 837 u32 cs_th; 838 int err; 839 840 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid); 841 if (err < 0) { 842 if (netif_msg_drv(priv)) 843 pr_err("%s: Error %d allocating CGR ID\n", 844 __func__, err); 845 goto out_error; 846 } 847 priv->cgr_data.cgr.cb = dpaa_eth_cgscn; 848 849 /* Enable Congestion State Change Notifications and CS taildrop */ 850 memset(&initcgr, 0, sizeof(initcgr)); 851 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES); 852 initcgr.cgr.cscn_en = QM_CGR_EN; 853 854 /* Set different thresholds based on the MAC speed. 855 * This may turn suboptimal if the MAC is reconfigured at a speed 856 * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link. 857 * In such cases, we ought to reconfigure the threshold, too. 858 */ 859 if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full) 860 cs_th = DPAA_CS_THRESHOLD_10G; 861 else 862 cs_th = DPAA_CS_THRESHOLD_1G; 863 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 864 865 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 866 initcgr.cgr.cstd_en = QM_CGR_EN; 867 868 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT, 869 &initcgr); 870 if (err < 0) { 871 if (netif_msg_drv(priv)) 872 pr_err("%s: Error %d creating CGR with ID %d\n", 873 __func__, err, priv->cgr_data.cgr.cgrid); 874 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 875 goto out_error; 876 } 877 if (netif_msg_drv(priv)) 878 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n", 879 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr, 880 priv->cgr_data.cgr.chan); 881 882 out_error: 883 return err; 884 } 885 886 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv, 887 struct dpaa_fq *fq, 888 const struct qman_fq *template) 889 { 890 fq->fq_base = *template; 891 fq->net_dev = priv->net_dev; 892 893 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE; 894 fq->channel = priv->channel; 895 } 896 897 static inline void dpaa_setup_egress(const struct dpaa_priv *priv, 898 struct dpaa_fq *fq, 899 struct fman_port *port, 900 const struct qman_fq *template) 901 { 902 fq->fq_base = *template; 903 fq->net_dev = priv->net_dev; 904 905 if (port) { 906 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL; 907 fq->channel = (u16)fman_port_get_qman_channel_id(port); 908 } else { 909 fq->flags = QMAN_FQ_FLAG_NO_MODIFY; 910 } 911 } 912 913 static void dpaa_fq_setup(struct dpaa_priv *priv, 914 const struct dpaa_fq_cbs *fq_cbs, 915 struct fman_port *tx_port) 916 { 917 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu; 918 const cpumask_t *affine_cpus = qman_affine_cpus(); 919 u16 channels[NR_CPUS]; 920 struct dpaa_fq *fq; 921 922 for_each_cpu_and(cpu, affine_cpus, cpu_online_mask) 923 channels[num_portals++] = qman_affine_channel(cpu); 924 925 if (num_portals == 0) 926 dev_err(priv->net_dev->dev.parent, 927 "No Qman software (affine) channels found\n"); 928 929 /* Initialize each FQ in the list */ 930 list_for_each_entry(fq, &priv->dpaa_fq_list, list) { 931 switch (fq->fq_type) { 932 case FQ_TYPE_RX_DEFAULT: 933 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 934 break; 935 case FQ_TYPE_RX_ERROR: 936 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq); 937 break; 938 case FQ_TYPE_RX_PCD: 939 if (!num_portals) 940 continue; 941 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 942 fq->channel = channels[portal_cnt++ % num_portals]; 943 break; 944 case FQ_TYPE_TX: 945 dpaa_setup_egress(priv, fq, tx_port, 946 &fq_cbs->egress_ern); 947 /* If we have more Tx queues than the number of cores, 948 * just ignore the extra ones. 949 */ 950 if (egress_cnt < DPAA_ETH_TXQ_NUM) 951 priv->egress_fqs[egress_cnt++] = &fq->fq_base; 952 break; 953 case FQ_TYPE_TX_CONF_MQ: 954 priv->conf_fqs[conf_cnt++] = &fq->fq_base; 955 fallthrough; 956 case FQ_TYPE_TX_CONFIRM: 957 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq); 958 break; 959 case FQ_TYPE_TX_ERROR: 960 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq); 961 break; 962 default: 963 dev_warn(priv->net_dev->dev.parent, 964 "Unknown FQ type detected!\n"); 965 break; 966 } 967 } 968 969 /* Make sure all CPUs receive a corresponding Tx queue. */ 970 while (egress_cnt < DPAA_ETH_TXQ_NUM) { 971 list_for_each_entry(fq, &priv->dpaa_fq_list, list) { 972 if (fq->fq_type != FQ_TYPE_TX) 973 continue; 974 priv->egress_fqs[egress_cnt++] = &fq->fq_base; 975 if (egress_cnt == DPAA_ETH_TXQ_NUM) 976 break; 977 } 978 } 979 } 980 981 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv, 982 struct qman_fq *tx_fq) 983 { 984 int i; 985 986 for (i = 0; i < DPAA_ETH_TXQ_NUM; i++) 987 if (priv->egress_fqs[i] == tx_fq) 988 return i; 989 990 return -EINVAL; 991 } 992 993 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable) 994 { 995 const struct dpaa_priv *priv; 996 struct qman_fq *confq = NULL; 997 struct qm_mcc_initfq initfq; 998 struct device *dev; 999 struct qman_fq *fq; 1000 int queue_id; 1001 int err; 1002 1003 priv = netdev_priv(dpaa_fq->net_dev); 1004 dev = dpaa_fq->net_dev->dev.parent; 1005 1006 if (dpaa_fq->fqid == 0) 1007 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID; 1008 1009 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY); 1010 1011 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base); 1012 if (err) { 1013 dev_err(dev, "qman_create_fq() failed\n"); 1014 return err; 1015 } 1016 fq = &dpaa_fq->fq_base; 1017 1018 if (dpaa_fq->init) { 1019 memset(&initfq, 0, sizeof(initfq)); 1020 1021 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL); 1022 /* Note: we may get to keep an empty FQ in cache */ 1023 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE); 1024 1025 /* Try to reduce the number of portal interrupts for 1026 * Tx Confirmation FQs. 1027 */ 1028 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM) 1029 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK); 1030 1031 /* FQ placement */ 1032 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ); 1033 1034 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq); 1035 1036 /* Put all egress queues in a congestion group of their own. 1037 * Sensu stricto, the Tx confirmation queues are Rx FQs, 1038 * rather than Tx - but they nonetheless account for the 1039 * memory footprint on behalf of egress traffic. We therefore 1040 * place them in the netdev's CGR, along with the Tx FQs. 1041 */ 1042 if (dpaa_fq->fq_type == FQ_TYPE_TX || 1043 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM || 1044 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) { 1045 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1046 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1047 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid; 1048 /* Set a fixed overhead accounting, in an attempt to 1049 * reduce the impact of fixed-size skb shells and the 1050 * driver's needed headroom on system memory. This is 1051 * especially the case when the egress traffic is 1052 * composed of small datagrams. 1053 * Unfortunately, QMan's OAL value is capped to an 1054 * insufficient value, but even that is better than 1055 * no overhead accounting at all. 1056 */ 1057 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1058 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1059 qm_fqd_set_oal(&initfq.fqd, 1060 min(sizeof(struct sk_buff) + 1061 priv->tx_headroom, 1062 (size_t)FSL_QMAN_MAX_OAL)); 1063 } 1064 1065 if (td_enable) { 1066 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH); 1067 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1); 1068 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE); 1069 } 1070 1071 if (dpaa_fq->fq_type == FQ_TYPE_TX) { 1072 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base); 1073 if (queue_id >= 0) 1074 confq = priv->conf_fqs[queue_id]; 1075 if (confq) { 1076 initfq.we_mask |= 1077 cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1078 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD) 1079 * A2V=1 (contextA A2 field is valid) 1080 * A0V=1 (contextA A0 field is valid) 1081 * B0V=1 (contextB field is valid) 1082 * ContextA A2: EBD=1 (deallocate buffers inside FMan) 1083 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID) 1084 */ 1085 qm_fqd_context_a_set64(&initfq.fqd, 1086 0x1e00000080000000ULL); 1087 } 1088 } 1089 1090 /* Put all the ingress queues in our "ingress CGR". */ 1091 if (priv->use_ingress_cgr && 1092 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1093 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR || 1094 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) { 1095 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1096 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1097 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid; 1098 /* Set a fixed overhead accounting, just like for the 1099 * egress CGR. 1100 */ 1101 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1102 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1103 qm_fqd_set_oal(&initfq.fqd, 1104 min(sizeof(struct sk_buff) + 1105 priv->tx_headroom, 1106 (size_t)FSL_QMAN_MAX_OAL)); 1107 } 1108 1109 /* Initialization common to all ingress queues */ 1110 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) { 1111 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1112 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE | 1113 QM_FQCTRL_CTXASTASHING); 1114 initfq.fqd.context_a.stashing.exclusive = 1115 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX | 1116 QM_STASHING_EXCL_ANNOTATION; 1117 qm_fqd_set_stashing(&initfq.fqd, 1, 2, 1118 DIV_ROUND_UP(sizeof(struct qman_fq), 1119 64)); 1120 } 1121 1122 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq); 1123 if (err < 0) { 1124 dev_err(dev, "qman_init_fq(%u) = %d\n", 1125 qman_fq_fqid(fq), err); 1126 qman_destroy_fq(fq); 1127 return err; 1128 } 1129 } 1130 1131 dpaa_fq->fqid = qman_fq_fqid(fq); 1132 1133 if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1134 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) { 1135 err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev, 1136 dpaa_fq->fqid, 0); 1137 if (err) { 1138 dev_err(dev, "xdp_rxq_info_reg() = %d\n", err); 1139 return err; 1140 } 1141 1142 err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq, 1143 MEM_TYPE_PAGE_ORDER0, NULL); 1144 if (err) { 1145 dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n", 1146 err); 1147 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1148 return err; 1149 } 1150 } 1151 1152 return 0; 1153 } 1154 1155 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq) 1156 { 1157 const struct dpaa_priv *priv; 1158 struct dpaa_fq *dpaa_fq; 1159 int err, error; 1160 1161 err = 0; 1162 1163 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 1164 priv = netdev_priv(dpaa_fq->net_dev); 1165 1166 if (dpaa_fq->init) { 1167 err = qman_retire_fq(fq, NULL); 1168 if (err < 0 && netif_msg_drv(priv)) 1169 dev_err(dev, "qman_retire_fq(%u) = %d\n", 1170 qman_fq_fqid(fq), err); 1171 1172 error = qman_oos_fq(fq); 1173 if (error < 0 && netif_msg_drv(priv)) { 1174 dev_err(dev, "qman_oos_fq(%u) = %d\n", 1175 qman_fq_fqid(fq), error); 1176 if (err >= 0) 1177 err = error; 1178 } 1179 } 1180 1181 if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1182 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) && 1183 xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq)) 1184 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1185 1186 qman_destroy_fq(fq); 1187 list_del(&dpaa_fq->list); 1188 1189 return err; 1190 } 1191 1192 static int dpaa_fq_free(struct device *dev, struct list_head *list) 1193 { 1194 struct dpaa_fq *dpaa_fq, *tmp; 1195 int err, error; 1196 1197 err = 0; 1198 list_for_each_entry_safe(dpaa_fq, tmp, list, list) { 1199 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq); 1200 if (error < 0 && err >= 0) 1201 err = error; 1202 } 1203 1204 return err; 1205 } 1206 1207 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq, 1208 struct dpaa_fq *defq, 1209 struct dpaa_buffer_layout *buf_layout) 1210 { 1211 struct fman_buffer_prefix_content buf_prefix_content; 1212 struct fman_port_params params; 1213 int err; 1214 1215 memset(¶ms, 0, sizeof(params)); 1216 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1217 1218 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1219 buf_prefix_content.pass_prs_result = true; 1220 buf_prefix_content.pass_hash_result = true; 1221 buf_prefix_content.pass_time_stamp = true; 1222 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT; 1223 1224 params.specific_params.non_rx_params.err_fqid = errq->fqid; 1225 params.specific_params.non_rx_params.dflt_fqid = defq->fqid; 1226 1227 err = fman_port_config(port, ¶ms); 1228 if (err) { 1229 pr_err("%s: fman_port_config failed\n", __func__); 1230 return err; 1231 } 1232 1233 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1234 if (err) { 1235 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1236 __func__); 1237 return err; 1238 } 1239 1240 err = fman_port_init(port); 1241 if (err) 1242 pr_err("%s: fm_port_init failed\n", __func__); 1243 1244 return err; 1245 } 1246 1247 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp, 1248 struct dpaa_fq *errq, 1249 struct dpaa_fq *defq, struct dpaa_fq *pcdq, 1250 struct dpaa_buffer_layout *buf_layout) 1251 { 1252 struct fman_buffer_prefix_content buf_prefix_content; 1253 struct fman_port_rx_params *rx_p; 1254 struct fman_port_params params; 1255 int err; 1256 1257 memset(¶ms, 0, sizeof(params)); 1258 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1259 1260 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1261 buf_prefix_content.pass_prs_result = true; 1262 buf_prefix_content.pass_hash_result = true; 1263 buf_prefix_content.pass_time_stamp = true; 1264 buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT; 1265 1266 rx_p = ¶ms.specific_params.rx_params; 1267 rx_p->err_fqid = errq->fqid; 1268 rx_p->dflt_fqid = defq->fqid; 1269 if (pcdq) { 1270 rx_p->pcd_base_fqid = pcdq->fqid; 1271 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM; 1272 } 1273 1274 rx_p->ext_buf_pools.num_of_pools_used = 1; 1275 rx_p->ext_buf_pools.ext_buf_pool[0].id = bp->bpid; 1276 rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size; 1277 1278 err = fman_port_config(port, ¶ms); 1279 if (err) { 1280 pr_err("%s: fman_port_config failed\n", __func__); 1281 return err; 1282 } 1283 1284 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1285 if (err) { 1286 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1287 __func__); 1288 return err; 1289 } 1290 1291 err = fman_port_init(port); 1292 if (err) 1293 pr_err("%s: fm_port_init failed\n", __func__); 1294 1295 return err; 1296 } 1297 1298 static int dpaa_eth_init_ports(struct mac_device *mac_dev, 1299 struct dpaa_bp *bp, 1300 struct fm_port_fqs *port_fqs, 1301 struct dpaa_buffer_layout *buf_layout, 1302 struct device *dev) 1303 { 1304 struct fman_port *rxport = mac_dev->port[RX]; 1305 struct fman_port *txport = mac_dev->port[TX]; 1306 int err; 1307 1308 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq, 1309 port_fqs->tx_defq, &buf_layout[TX]); 1310 if (err) 1311 return err; 1312 1313 err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq, 1314 port_fqs->rx_defq, port_fqs->rx_pcdq, 1315 &buf_layout[RX]); 1316 1317 return err; 1318 } 1319 1320 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp, 1321 struct bm_buffer *bmb, int cnt) 1322 { 1323 int err; 1324 1325 err = bman_release(dpaa_bp->pool, bmb, cnt); 1326 /* Should never occur, address anyway to avoid leaking the buffers */ 1327 if (WARN_ON(err) && dpaa_bp->free_buf_cb) 1328 while (cnt-- > 0) 1329 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]); 1330 1331 return cnt; 1332 } 1333 1334 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt) 1335 { 1336 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX]; 1337 struct dpaa_bp *dpaa_bp; 1338 int i = 0, j; 1339 1340 memset(bmb, 0, sizeof(bmb)); 1341 1342 do { 1343 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1344 if (!dpaa_bp) 1345 return; 1346 1347 j = 0; 1348 do { 1349 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1350 1351 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i])); 1352 1353 j++; i++; 1354 } while (j < ARRAY_SIZE(bmb) && 1355 !qm_sg_entry_is_final(&sgt[i - 1]) && 1356 sgt[i - 1].bpid == sgt[i].bpid); 1357 1358 dpaa_bman_release(dpaa_bp, bmb, j); 1359 } while (!qm_sg_entry_is_final(&sgt[i - 1])); 1360 } 1361 1362 static void dpaa_fd_release(const struct net_device *net_dev, 1363 const struct qm_fd *fd) 1364 { 1365 struct qm_sg_entry *sgt; 1366 struct dpaa_bp *dpaa_bp; 1367 struct bm_buffer bmb; 1368 dma_addr_t addr; 1369 void *vaddr; 1370 1371 bmb.data = 0; 1372 bm_buffer_set64(&bmb, qm_fd_addr(fd)); 1373 1374 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1375 if (!dpaa_bp) 1376 return; 1377 1378 if (qm_fd_get_format(fd) == qm_fd_sg) { 1379 vaddr = phys_to_virt(qm_fd_addr(fd)); 1380 sgt = vaddr + qm_fd_get_offset(fd); 1381 1382 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd), 1383 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1384 1385 dpaa_release_sgt_members(sgt); 1386 1387 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, 1388 virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE, 1389 DMA_FROM_DEVICE); 1390 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) { 1391 netdev_err(net_dev, "DMA mapping failed\n"); 1392 return; 1393 } 1394 bm_buffer_set64(&bmb, addr); 1395 } 1396 1397 dpaa_bman_release(dpaa_bp, &bmb, 1); 1398 } 1399 1400 static void count_ern(struct dpaa_percpu_priv *percpu_priv, 1401 const union qm_mr_entry *msg) 1402 { 1403 switch (msg->ern.rc & QM_MR_RC_MASK) { 1404 case QM_MR_RC_CGR_TAILDROP: 1405 percpu_priv->ern_cnt.cg_tdrop++; 1406 break; 1407 case QM_MR_RC_WRED: 1408 percpu_priv->ern_cnt.wred++; 1409 break; 1410 case QM_MR_RC_ERROR: 1411 percpu_priv->ern_cnt.err_cond++; 1412 break; 1413 case QM_MR_RC_ORPWINDOW_EARLY: 1414 percpu_priv->ern_cnt.early_window++; 1415 break; 1416 case QM_MR_RC_ORPWINDOW_LATE: 1417 percpu_priv->ern_cnt.late_window++; 1418 break; 1419 case QM_MR_RC_FQ_TAILDROP: 1420 percpu_priv->ern_cnt.fq_tdrop++; 1421 break; 1422 case QM_MR_RC_ORPWINDOW_RETIRED: 1423 percpu_priv->ern_cnt.fq_retired++; 1424 break; 1425 case QM_MR_RC_ORP_ZERO: 1426 percpu_priv->ern_cnt.orp_zero++; 1427 break; 1428 } 1429 } 1430 1431 /* Turn on HW checksum computation for this outgoing frame. 1432 * If the current protocol is not something we support in this regard 1433 * (or if the stack has already computed the SW checksum), we do nothing. 1434 * 1435 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value 1436 * otherwise. 1437 * 1438 * Note that this function may modify the fd->cmd field and the skb data buffer 1439 * (the Parse Results area). 1440 */ 1441 static int dpaa_enable_tx_csum(struct dpaa_priv *priv, 1442 struct sk_buff *skb, 1443 struct qm_fd *fd, 1444 void *parse_results) 1445 { 1446 struct fman_prs_result *parse_result; 1447 u16 ethertype = ntohs(skb->protocol); 1448 struct ipv6hdr *ipv6h = NULL; 1449 struct iphdr *iph; 1450 int retval = 0; 1451 u8 l4_proto; 1452 1453 if (skb->ip_summed != CHECKSUM_PARTIAL) 1454 return 0; 1455 1456 /* Note: L3 csum seems to be already computed in sw, but we can't choose 1457 * L4 alone from the FM configuration anyway. 1458 */ 1459 1460 /* Fill in some fields of the Parse Results array, so the FMan 1461 * can find them as if they came from the FMan Parser. 1462 */ 1463 parse_result = (struct fman_prs_result *)parse_results; 1464 1465 /* If we're dealing with VLAN, get the real Ethernet type */ 1466 if (ethertype == ETH_P_8021Q) { 1467 /* We can't always assume the MAC header is set correctly 1468 * by the stack, so reset to beginning of skb->data 1469 */ 1470 skb_reset_mac_header(skb); 1471 ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto); 1472 } 1473 1474 /* Fill in the relevant L3 parse result fields 1475 * and read the L4 protocol type 1476 */ 1477 switch (ethertype) { 1478 case ETH_P_IP: 1479 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4); 1480 iph = ip_hdr(skb); 1481 WARN_ON(!iph); 1482 l4_proto = iph->protocol; 1483 break; 1484 case ETH_P_IPV6: 1485 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6); 1486 ipv6h = ipv6_hdr(skb); 1487 WARN_ON(!ipv6h); 1488 l4_proto = ipv6h->nexthdr; 1489 break; 1490 default: 1491 /* We shouldn't even be here */ 1492 if (net_ratelimit()) 1493 netif_alert(priv, tx_err, priv->net_dev, 1494 "Can't compute HW csum for L3 proto 0x%x\n", 1495 ntohs(skb->protocol)); 1496 retval = -EIO; 1497 goto return_error; 1498 } 1499 1500 /* Fill in the relevant L4 parse result fields */ 1501 switch (l4_proto) { 1502 case IPPROTO_UDP: 1503 parse_result->l4r = FM_L4_PARSE_RESULT_UDP; 1504 break; 1505 case IPPROTO_TCP: 1506 parse_result->l4r = FM_L4_PARSE_RESULT_TCP; 1507 break; 1508 default: 1509 if (net_ratelimit()) 1510 netif_alert(priv, tx_err, priv->net_dev, 1511 "Can't compute HW csum for L4 proto 0x%x\n", 1512 l4_proto); 1513 retval = -EIO; 1514 goto return_error; 1515 } 1516 1517 /* At index 0 is IPOffset_1 as defined in the Parse Results */ 1518 parse_result->ip_off[0] = (u8)skb_network_offset(skb); 1519 parse_result->l4_off = (u8)skb_transport_offset(skb); 1520 1521 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */ 1522 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC); 1523 1524 /* On P1023 and similar platforms fd->cmd interpretation could 1525 * be disabled by setting CONTEXT_A bit ICMD; currently this bit 1526 * is not set so we do not need to check; in the future, if/when 1527 * using context_a we need to check this bit 1528 */ 1529 1530 return_error: 1531 return retval; 1532 } 1533 1534 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp) 1535 { 1536 struct net_device *net_dev = dpaa_bp->priv->net_dev; 1537 struct bm_buffer bmb[8]; 1538 dma_addr_t addr; 1539 struct page *p; 1540 u8 i; 1541 1542 for (i = 0; i < 8; i++) { 1543 p = dev_alloc_pages(0); 1544 if (unlikely(!p)) { 1545 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 1546 goto release_previous_buffs; 1547 } 1548 1549 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0, 1550 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1551 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev, 1552 addr))) { 1553 netdev_err(net_dev, "DMA map failed\n"); 1554 goto release_previous_buffs; 1555 } 1556 1557 bmb[i].data = 0; 1558 bm_buffer_set64(&bmb[i], addr); 1559 } 1560 1561 release_bufs: 1562 return dpaa_bman_release(dpaa_bp, bmb, i); 1563 1564 release_previous_buffs: 1565 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n"); 1566 1567 bm_buffer_set64(&bmb[i], 0); 1568 /* Avoid releasing a completely null buffer; bman_release() requires 1569 * at least one buffer. 1570 */ 1571 if (likely(i)) 1572 goto release_bufs; 1573 1574 return 0; 1575 } 1576 1577 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp) 1578 { 1579 int i; 1580 1581 /* Give each CPU an allotment of "config_count" buffers */ 1582 for_each_possible_cpu(i) { 1583 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i); 1584 int j; 1585 1586 /* Although we access another CPU's counters here 1587 * we do it at boot time so it is safe 1588 */ 1589 for (j = 0; j < dpaa_bp->config_count; j += 8) 1590 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp); 1591 } 1592 return 0; 1593 } 1594 1595 /* Add buffers/(pages) for Rx processing whenever bpool count falls below 1596 * REFILL_THRESHOLD. 1597 */ 1598 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr) 1599 { 1600 int count = *countptr; 1601 int new_bufs; 1602 1603 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) { 1604 do { 1605 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp); 1606 if (unlikely(!new_bufs)) { 1607 /* Avoid looping forever if we've temporarily 1608 * run out of memory. We'll try again at the 1609 * next NAPI cycle. 1610 */ 1611 break; 1612 } 1613 count += new_bufs; 1614 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT); 1615 1616 *countptr = count; 1617 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT)) 1618 return -ENOMEM; 1619 } 1620 1621 return 0; 1622 } 1623 1624 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv) 1625 { 1626 struct dpaa_bp *dpaa_bp; 1627 int *countptr; 1628 1629 dpaa_bp = priv->dpaa_bp; 1630 if (!dpaa_bp) 1631 return -EINVAL; 1632 countptr = this_cpu_ptr(dpaa_bp->percpu_count); 1633 1634 return dpaa_eth_refill_bpool(dpaa_bp, countptr); 1635 } 1636 1637 /* Cleanup function for outgoing frame descriptors that were built on Tx path, 1638 * either contiguous frames or scatter/gather ones. 1639 * Skb freeing is not handled here. 1640 * 1641 * This function may be called on error paths in the Tx function, so guard 1642 * against cases when not all fd relevant fields were filled in. To avoid 1643 * reading the invalid transmission timestamp for the error paths set ts to 1644 * false. 1645 * 1646 * Return the skb backpointer, since for S/G frames the buffer containing it 1647 * gets freed here. 1648 * 1649 * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer 1650 * and return NULL in this case. 1651 */ 1652 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv, 1653 const struct qm_fd *fd, bool ts) 1654 { 1655 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1656 struct device *dev = priv->net_dev->dev.parent; 1657 struct skb_shared_hwtstamps shhwtstamps; 1658 dma_addr_t addr = qm_fd_addr(fd); 1659 void *vaddr = phys_to_virt(addr); 1660 const struct qm_sg_entry *sgt; 1661 struct dpaa_eth_swbp *swbp; 1662 struct sk_buff *skb; 1663 u64 ns; 1664 int i; 1665 1666 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) { 1667 dma_unmap_page(priv->tx_dma_dev, addr, 1668 qm_fd_get_offset(fd) + DPAA_SGT_SIZE, 1669 dma_dir); 1670 1671 /* The sgt buffer has been allocated with netdev_alloc_frag(), 1672 * it's from lowmem. 1673 */ 1674 sgt = vaddr + qm_fd_get_offset(fd); 1675 1676 /* sgt[0] is from lowmem, was dma_map_single()-ed */ 1677 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]), 1678 qm_sg_entry_get_len(&sgt[0]), dma_dir); 1679 1680 /* remaining pages were mapped with skb_frag_dma_map() */ 1681 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) && 1682 !qm_sg_entry_is_final(&sgt[i - 1]); i++) { 1683 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1684 1685 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]), 1686 qm_sg_entry_get_len(&sgt[i]), dma_dir); 1687 } 1688 } else { 1689 dma_unmap_single(priv->tx_dma_dev, addr, 1690 qm_fd_get_offset(fd) + qm_fd_get_length(fd), 1691 dma_dir); 1692 } 1693 1694 swbp = (struct dpaa_eth_swbp *)vaddr; 1695 skb = swbp->skb; 1696 1697 /* No skb backpointer is set when running XDP. An xdp_frame 1698 * backpointer is saved instead. 1699 */ 1700 if (!skb) { 1701 xdp_return_frame(swbp->xdpf); 1702 return NULL; 1703 } 1704 1705 /* DMA unmapping is required before accessing the HW provided info */ 1706 if (ts && priv->tx_tstamp && 1707 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 1708 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 1709 1710 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr, 1711 &ns)) { 1712 shhwtstamps.hwtstamp = ns_to_ktime(ns); 1713 skb_tstamp_tx(skb, &shhwtstamps); 1714 } else { 1715 dev_warn(dev, "fman_port_get_tstamp failed!\n"); 1716 } 1717 } 1718 1719 if (qm_fd_get_format(fd) == qm_fd_sg) 1720 /* Free the page that we allocated on Tx for the SGT */ 1721 free_pages((unsigned long)vaddr, 0); 1722 1723 return skb; 1724 } 1725 1726 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd) 1727 { 1728 /* The parser has run and performed L4 checksum validation. 1729 * We know there were no parser errors (and implicitly no 1730 * L4 csum error), otherwise we wouldn't be here. 1731 */ 1732 if ((priv->net_dev->features & NETIF_F_RXCSUM) && 1733 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV)) 1734 return CHECKSUM_UNNECESSARY; 1735 1736 /* We're here because either the parser didn't run or the L4 checksum 1737 * was not verified. This may include the case of a UDP frame with 1738 * checksum zero or an L4 proto other than TCP/UDP 1739 */ 1740 return CHECKSUM_NONE; 1741 } 1742 1743 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a))) 1744 1745 /* Build a linear skb around the received buffer. 1746 * We are guaranteed there is enough room at the end of the data buffer to 1747 * accommodate the shared info area of the skb. 1748 */ 1749 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv, 1750 const struct qm_fd *fd) 1751 { 1752 ssize_t fd_off = qm_fd_get_offset(fd); 1753 dma_addr_t addr = qm_fd_addr(fd); 1754 struct dpaa_bp *dpaa_bp; 1755 struct sk_buff *skb; 1756 void *vaddr; 1757 1758 vaddr = phys_to_virt(addr); 1759 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1760 1761 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1762 if (!dpaa_bp) 1763 goto free_buffer; 1764 1765 skb = build_skb(vaddr, dpaa_bp->size + 1766 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); 1767 if (WARN_ONCE(!skb, "Build skb failure on Rx\n")) 1768 goto free_buffer; 1769 skb_reserve(skb, fd_off); 1770 skb_put(skb, qm_fd_get_length(fd)); 1771 1772 skb->ip_summed = rx_csum_offload(priv, fd); 1773 1774 return skb; 1775 1776 free_buffer: 1777 free_pages((unsigned long)vaddr, 0); 1778 return NULL; 1779 } 1780 1781 /* Build an skb with the data of the first S/G entry in the linear portion and 1782 * the rest of the frame as skb fragments. 1783 * 1784 * The page fragment holding the S/G Table is recycled here. 1785 */ 1786 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv, 1787 const struct qm_fd *fd) 1788 { 1789 ssize_t fd_off = qm_fd_get_offset(fd); 1790 dma_addr_t addr = qm_fd_addr(fd); 1791 const struct qm_sg_entry *sgt; 1792 struct page *page, *head_page; 1793 struct dpaa_bp *dpaa_bp; 1794 void *vaddr, *sg_vaddr; 1795 int frag_off, frag_len; 1796 struct sk_buff *skb; 1797 dma_addr_t sg_addr; 1798 int page_offset; 1799 unsigned int sz; 1800 int *count_ptr; 1801 int i, j; 1802 1803 vaddr = phys_to_virt(addr); 1804 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1805 1806 /* Iterate through the SGT entries and add data buffers to the skb */ 1807 sgt = vaddr + fd_off; 1808 skb = NULL; 1809 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) { 1810 /* Extension bit is not supported */ 1811 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1812 1813 sg_addr = qm_sg_addr(&sgt[i]); 1814 sg_vaddr = phys_to_virt(sg_addr); 1815 WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES)); 1816 1817 dma_unmap_page(priv->rx_dma_dev, sg_addr, 1818 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1819 1820 /* We may use multiple Rx pools */ 1821 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1822 if (!dpaa_bp) 1823 goto free_buffers; 1824 1825 if (!skb) { 1826 sz = dpaa_bp->size + 1827 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1828 skb = build_skb(sg_vaddr, sz); 1829 if (WARN_ON(!skb)) 1830 goto free_buffers; 1831 1832 skb->ip_summed = rx_csum_offload(priv, fd); 1833 1834 /* Make sure forwarded skbs will have enough space 1835 * on Tx, if extra headers are added. 1836 */ 1837 WARN_ON(fd_off != priv->rx_headroom); 1838 skb_reserve(skb, fd_off); 1839 skb_put(skb, qm_sg_entry_get_len(&sgt[i])); 1840 } else { 1841 /* Not the first S/G entry; all data from buffer will 1842 * be added in an skb fragment; fragment index is offset 1843 * by one since first S/G entry was incorporated in the 1844 * linear part of the skb. 1845 * 1846 * Caution: 'page' may be a tail page. 1847 */ 1848 page = virt_to_page(sg_vaddr); 1849 head_page = virt_to_head_page(sg_vaddr); 1850 1851 /* Compute offset in (possibly tail) page */ 1852 page_offset = ((unsigned long)sg_vaddr & 1853 (PAGE_SIZE - 1)) + 1854 (page_address(page) - page_address(head_page)); 1855 /* page_offset only refers to the beginning of sgt[i]; 1856 * but the buffer itself may have an internal offset. 1857 */ 1858 frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset; 1859 frag_len = qm_sg_entry_get_len(&sgt[i]); 1860 /* skb_add_rx_frag() does no checking on the page; if 1861 * we pass it a tail page, we'll end up with 1862 * bad page accounting and eventually with segafults. 1863 */ 1864 skb_add_rx_frag(skb, i - 1, head_page, frag_off, 1865 frag_len, dpaa_bp->size); 1866 } 1867 1868 /* Update the pool count for the current {cpu x bpool} */ 1869 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1870 (*count_ptr)--; 1871 1872 if (qm_sg_entry_is_final(&sgt[i])) 1873 break; 1874 } 1875 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n"); 1876 1877 /* free the SG table buffer */ 1878 free_pages((unsigned long)vaddr, 0); 1879 1880 return skb; 1881 1882 free_buffers: 1883 /* free all the SG entries */ 1884 for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) { 1885 sg_addr = qm_sg_addr(&sgt[j]); 1886 sg_vaddr = phys_to_virt(sg_addr); 1887 /* all pages 0..i were unmaped */ 1888 if (j > i) 1889 dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]), 1890 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1891 free_pages((unsigned long)sg_vaddr, 0); 1892 /* counters 0..i-1 were decremented */ 1893 if (j >= i) { 1894 dpaa_bp = dpaa_bpid2pool(sgt[j].bpid); 1895 if (dpaa_bp) { 1896 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1897 (*count_ptr)--; 1898 } 1899 } 1900 1901 if (qm_sg_entry_is_final(&sgt[j])) 1902 break; 1903 } 1904 /* free the SGT fragment */ 1905 free_pages((unsigned long)vaddr, 0); 1906 1907 return NULL; 1908 } 1909 1910 static int skb_to_contig_fd(struct dpaa_priv *priv, 1911 struct sk_buff *skb, struct qm_fd *fd, 1912 int *offset) 1913 { 1914 struct net_device *net_dev = priv->net_dev; 1915 enum dma_data_direction dma_dir; 1916 struct dpaa_eth_swbp *swbp; 1917 unsigned char *buff_start; 1918 dma_addr_t addr; 1919 int err; 1920 1921 /* We are guaranteed to have at least tx_headroom bytes 1922 * available, so just use that for offset. 1923 */ 1924 fd->bpid = FSL_DPAA_BPID_INV; 1925 buff_start = skb->data - priv->tx_headroom; 1926 dma_dir = DMA_TO_DEVICE; 1927 1928 swbp = (struct dpaa_eth_swbp *)buff_start; 1929 swbp->skb = skb; 1930 1931 /* Enable L3/L4 hardware checksum computation. 1932 * 1933 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 1934 * need to write into the skb. 1935 */ 1936 err = dpaa_enable_tx_csum(priv, skb, fd, 1937 buff_start + DPAA_TX_PRIV_DATA_SIZE); 1938 if (unlikely(err < 0)) { 1939 if (net_ratelimit()) 1940 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 1941 err); 1942 return err; 1943 } 1944 1945 /* Fill in the rest of the FD fields */ 1946 qm_fd_set_contig(fd, priv->tx_headroom, skb->len); 1947 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 1948 1949 /* Map the entire buffer size that may be seen by FMan, but no more */ 1950 addr = dma_map_single(priv->tx_dma_dev, buff_start, 1951 priv->tx_headroom + skb->len, dma_dir); 1952 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 1953 if (net_ratelimit()) 1954 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n"); 1955 return -EINVAL; 1956 } 1957 qm_fd_addr_set64(fd, addr); 1958 1959 return 0; 1960 } 1961 1962 static int skb_to_sg_fd(struct dpaa_priv *priv, 1963 struct sk_buff *skb, struct qm_fd *fd) 1964 { 1965 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1966 const int nr_frags = skb_shinfo(skb)->nr_frags; 1967 struct net_device *net_dev = priv->net_dev; 1968 struct dpaa_eth_swbp *swbp; 1969 struct qm_sg_entry *sgt; 1970 void *buff_start; 1971 skb_frag_t *frag; 1972 dma_addr_t addr; 1973 size_t frag_len; 1974 struct page *p; 1975 int i, j, err; 1976 1977 /* get a page to store the SGTable */ 1978 p = dev_alloc_pages(0); 1979 if (unlikely(!p)) { 1980 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 1981 return -ENOMEM; 1982 } 1983 buff_start = page_address(p); 1984 1985 /* Enable L3/L4 hardware checksum computation. 1986 * 1987 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 1988 * need to write into the skb. 1989 */ 1990 err = dpaa_enable_tx_csum(priv, skb, fd, 1991 buff_start + DPAA_TX_PRIV_DATA_SIZE); 1992 if (unlikely(err < 0)) { 1993 if (net_ratelimit()) 1994 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 1995 err); 1996 goto csum_failed; 1997 } 1998 1999 /* SGT[0] is used by the linear part */ 2000 sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom); 2001 frag_len = skb_headlen(skb); 2002 qm_sg_entry_set_len(&sgt[0], frag_len); 2003 sgt[0].bpid = FSL_DPAA_BPID_INV; 2004 sgt[0].offset = 0; 2005 addr = dma_map_single(priv->tx_dma_dev, skb->data, 2006 skb_headlen(skb), dma_dir); 2007 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2008 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2009 err = -EINVAL; 2010 goto sg0_map_failed; 2011 } 2012 qm_sg_entry_set64(&sgt[0], addr); 2013 2014 /* populate the rest of SGT entries */ 2015 for (i = 0; i < nr_frags; i++) { 2016 frag = &skb_shinfo(skb)->frags[i]; 2017 frag_len = skb_frag_size(frag); 2018 WARN_ON(!skb_frag_page(frag)); 2019 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0, 2020 frag_len, dma_dir); 2021 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2022 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2023 err = -EINVAL; 2024 goto sg_map_failed; 2025 } 2026 2027 qm_sg_entry_set_len(&sgt[i + 1], frag_len); 2028 sgt[i + 1].bpid = FSL_DPAA_BPID_INV; 2029 sgt[i + 1].offset = 0; 2030 2031 /* keep the offset in the address */ 2032 qm_sg_entry_set64(&sgt[i + 1], addr); 2033 } 2034 2035 /* Set the final bit in the last used entry of the SGT */ 2036 qm_sg_entry_set_f(&sgt[nr_frags], frag_len); 2037 2038 /* set fd offset to priv->tx_headroom */ 2039 qm_fd_set_sg(fd, priv->tx_headroom, skb->len); 2040 2041 /* DMA map the SGT page */ 2042 swbp = (struct dpaa_eth_swbp *)buff_start; 2043 swbp->skb = skb; 2044 2045 addr = dma_map_page(priv->tx_dma_dev, p, 0, 2046 priv->tx_headroom + DPAA_SGT_SIZE, dma_dir); 2047 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2048 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2049 err = -EINVAL; 2050 goto sgt_map_failed; 2051 } 2052 2053 fd->bpid = FSL_DPAA_BPID_INV; 2054 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2055 qm_fd_addr_set64(fd, addr); 2056 2057 return 0; 2058 2059 sgt_map_failed: 2060 sg_map_failed: 2061 for (j = 0; j < i; j++) 2062 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]), 2063 qm_sg_entry_get_len(&sgt[j]), dma_dir); 2064 sg0_map_failed: 2065 csum_failed: 2066 free_pages((unsigned long)buff_start, 0); 2067 2068 return err; 2069 } 2070 2071 static inline int dpaa_xmit(struct dpaa_priv *priv, 2072 struct rtnl_link_stats64 *percpu_stats, 2073 int queue, 2074 struct qm_fd *fd) 2075 { 2076 struct qman_fq *egress_fq; 2077 int err, i; 2078 2079 egress_fq = priv->egress_fqs[queue]; 2080 if (fd->bpid == FSL_DPAA_BPID_INV) 2081 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue])); 2082 2083 /* Trace this Tx fd */ 2084 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd); 2085 2086 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) { 2087 err = qman_enqueue(egress_fq, fd); 2088 if (err != -EBUSY) 2089 break; 2090 } 2091 2092 if (unlikely(err < 0)) { 2093 percpu_stats->tx_fifo_errors++; 2094 return err; 2095 } 2096 2097 percpu_stats->tx_packets++; 2098 percpu_stats->tx_bytes += qm_fd_get_length(fd); 2099 2100 return 0; 2101 } 2102 2103 #ifdef CONFIG_DPAA_ERRATUM_A050385 2104 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s) 2105 { 2106 struct dpaa_priv *priv = netdev_priv(net_dev); 2107 struct sk_buff *new_skb, *skb = *s; 2108 unsigned char *start, i; 2109 2110 /* check linear buffer alignment */ 2111 if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN)) 2112 goto workaround; 2113 2114 /* linear buffers just need to have an aligned start */ 2115 if (!skb_is_nonlinear(skb)) 2116 return 0; 2117 2118 /* linear data size for nonlinear skbs needs to be aligned */ 2119 if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN)) 2120 goto workaround; 2121 2122 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2123 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2124 2125 /* all fragments need to have aligned start addresses */ 2126 if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN)) 2127 goto workaround; 2128 2129 /* all but last fragment need to have aligned sizes */ 2130 if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) && 2131 (i < skb_shinfo(skb)->nr_frags - 1)) 2132 goto workaround; 2133 } 2134 2135 return 0; 2136 2137 workaround: 2138 /* copy all the skb content into a new linear buffer */ 2139 new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 + 2140 priv->tx_headroom); 2141 if (!new_skb) 2142 return -ENOMEM; 2143 2144 /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */ 2145 skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD); 2146 2147 /* Workaround for DPAA_A050385 requires data start to be aligned */ 2148 start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN); 2149 if (start - new_skb->data) 2150 skb_reserve(new_skb, start - new_skb->data); 2151 2152 skb_put(new_skb, skb->len); 2153 skb_copy_bits(skb, 0, new_skb->data, skb->len); 2154 skb_copy_header(new_skb, skb); 2155 new_skb->dev = skb->dev; 2156 2157 /* Copy relevant timestamp info from the old skb to the new */ 2158 if (priv->tx_tstamp) { 2159 skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags; 2160 skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps; 2161 skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey; 2162 if (skb->sk) 2163 skb_set_owner_w(new_skb, skb->sk); 2164 } 2165 2166 /* We move the headroom when we align it so we have to reset the 2167 * network and transport header offsets relative to the new data 2168 * pointer. The checksum offload relies on these offsets. 2169 */ 2170 skb_set_network_header(new_skb, skb_network_offset(skb)); 2171 skb_set_transport_header(new_skb, skb_transport_offset(skb)); 2172 2173 dev_kfree_skb(skb); 2174 *s = new_skb; 2175 2176 return 0; 2177 } 2178 2179 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv, 2180 struct xdp_frame **init_xdpf) 2181 { 2182 struct xdp_frame *new_xdpf, *xdpf = *init_xdpf; 2183 void *new_buff, *aligned_data; 2184 struct page *p; 2185 u32 data_shift; 2186 int headroom; 2187 2188 /* Check the data alignment and make sure the headroom is large 2189 * enough to store the xdpf backpointer. Use an aligned headroom 2190 * value. 2191 * 2192 * Due to alignment constraints, we give XDP access to the full 256 2193 * byte frame headroom. If the XDP program uses all of it, copy the 2194 * data to a new buffer and make room for storing the backpointer. 2195 */ 2196 if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) && 2197 xdpf->headroom >= priv->tx_headroom) { 2198 xdpf->headroom = priv->tx_headroom; 2199 return 0; 2200 } 2201 2202 /* Try to move the data inside the buffer just enough to align it and 2203 * store the xdpf backpointer. If the available headroom isn't large 2204 * enough, resort to allocating a new buffer and copying the data. 2205 */ 2206 aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT); 2207 data_shift = xdpf->data - aligned_data; 2208 2209 /* The XDP frame's headroom needs to be large enough to accommodate 2210 * shifting the data as well as storing the xdpf backpointer. 2211 */ 2212 if (xdpf->headroom >= data_shift + priv->tx_headroom) { 2213 memmove(aligned_data, xdpf->data, xdpf->len); 2214 xdpf->data = aligned_data; 2215 xdpf->headroom = priv->tx_headroom; 2216 return 0; 2217 } 2218 2219 /* The new xdp_frame is stored in the new buffer. Reserve enough space 2220 * in the headroom for storing it along with the driver's private 2221 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to 2222 * guarantee the data's alignment in the buffer. 2223 */ 2224 headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom, 2225 DPAA_FD_DATA_ALIGNMENT); 2226 2227 /* Assure the extended headroom and data don't overflow the buffer, 2228 * while maintaining the mandatory tailroom. 2229 */ 2230 if (headroom + xdpf->len > DPAA_BP_RAW_SIZE - 2231 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 2232 return -ENOMEM; 2233 2234 p = dev_alloc_pages(0); 2235 if (unlikely(!p)) 2236 return -ENOMEM; 2237 2238 /* Copy the data to the new buffer at a properly aligned offset */ 2239 new_buff = page_address(p); 2240 memcpy(new_buff + headroom, xdpf->data, xdpf->len); 2241 2242 /* Create an XDP frame around the new buffer in a similar fashion 2243 * to xdp_convert_buff_to_frame. 2244 */ 2245 new_xdpf = new_buff; 2246 new_xdpf->data = new_buff + headroom; 2247 new_xdpf->len = xdpf->len; 2248 new_xdpf->headroom = priv->tx_headroom; 2249 new_xdpf->frame_sz = DPAA_BP_RAW_SIZE; 2250 new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 2251 2252 /* Release the initial buffer */ 2253 xdp_return_frame_rx_napi(xdpf); 2254 2255 *init_xdpf = new_xdpf; 2256 return 0; 2257 } 2258 #endif 2259 2260 static netdev_tx_t 2261 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev) 2262 { 2263 const int queue_mapping = skb_get_queue_mapping(skb); 2264 bool nonlinear = skb_is_nonlinear(skb); 2265 struct rtnl_link_stats64 *percpu_stats; 2266 struct dpaa_percpu_priv *percpu_priv; 2267 struct netdev_queue *txq; 2268 struct dpaa_priv *priv; 2269 struct qm_fd fd; 2270 int offset = 0; 2271 int err = 0; 2272 2273 priv = netdev_priv(net_dev); 2274 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2275 percpu_stats = &percpu_priv->stats; 2276 2277 qm_fd_clear_fd(&fd); 2278 2279 if (!nonlinear) { 2280 /* We're going to store the skb backpointer at the beginning 2281 * of the data buffer, so we need a privately owned skb 2282 * 2283 * We've made sure skb is not shared in dev->priv_flags, 2284 * we need to verify the skb head is not cloned 2285 */ 2286 if (skb_cow_head(skb, priv->tx_headroom)) 2287 goto enomem; 2288 2289 WARN_ON(skb_is_nonlinear(skb)); 2290 } 2291 2292 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES; 2293 * make sure we don't feed FMan with more fragments than it supports. 2294 */ 2295 if (unlikely(nonlinear && 2296 (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) { 2297 /* If the egress skb contains more fragments than we support 2298 * we have no choice but to linearize it ourselves. 2299 */ 2300 if (__skb_linearize(skb)) 2301 goto enomem; 2302 2303 nonlinear = skb_is_nonlinear(skb); 2304 } 2305 2306 #ifdef CONFIG_DPAA_ERRATUM_A050385 2307 if (unlikely(fman_has_errata_a050385())) { 2308 if (dpaa_a050385_wa_skb(net_dev, &skb)) 2309 goto enomem; 2310 nonlinear = skb_is_nonlinear(skb); 2311 } 2312 #endif 2313 2314 if (nonlinear) { 2315 /* Just create a S/G fd based on the skb */ 2316 err = skb_to_sg_fd(priv, skb, &fd); 2317 percpu_priv->tx_frag_skbuffs++; 2318 } else { 2319 /* Create a contig FD from this skb */ 2320 err = skb_to_contig_fd(priv, skb, &fd, &offset); 2321 } 2322 if (unlikely(err < 0)) 2323 goto skb_to_fd_failed; 2324 2325 txq = netdev_get_tx_queue(net_dev, queue_mapping); 2326 2327 /* LLTX requires to do our own update of trans_start */ 2328 txq->trans_start = jiffies; 2329 2330 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 2331 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD); 2332 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2333 } 2334 2335 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0)) 2336 return NETDEV_TX_OK; 2337 2338 dpaa_cleanup_tx_fd(priv, &fd, false); 2339 skb_to_fd_failed: 2340 enomem: 2341 percpu_stats->tx_errors++; 2342 dev_kfree_skb(skb); 2343 return NETDEV_TX_OK; 2344 } 2345 2346 static void dpaa_rx_error(struct net_device *net_dev, 2347 const struct dpaa_priv *priv, 2348 struct dpaa_percpu_priv *percpu_priv, 2349 const struct qm_fd *fd, 2350 u32 fqid) 2351 { 2352 if (net_ratelimit()) 2353 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n", 2354 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS); 2355 2356 percpu_priv->stats.rx_errors++; 2357 2358 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA) 2359 percpu_priv->rx_errors.dme++; 2360 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL) 2361 percpu_priv->rx_errors.fpe++; 2362 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE) 2363 percpu_priv->rx_errors.fse++; 2364 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR) 2365 percpu_priv->rx_errors.phe++; 2366 2367 dpaa_fd_release(net_dev, fd); 2368 } 2369 2370 static void dpaa_tx_error(struct net_device *net_dev, 2371 const struct dpaa_priv *priv, 2372 struct dpaa_percpu_priv *percpu_priv, 2373 const struct qm_fd *fd, 2374 u32 fqid) 2375 { 2376 struct sk_buff *skb; 2377 2378 if (net_ratelimit()) 2379 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2380 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS); 2381 2382 percpu_priv->stats.tx_errors++; 2383 2384 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2385 dev_kfree_skb(skb); 2386 } 2387 2388 static int dpaa_eth_poll(struct napi_struct *napi, int budget) 2389 { 2390 struct dpaa_napi_portal *np = 2391 container_of(napi, struct dpaa_napi_portal, napi); 2392 int cleaned; 2393 2394 np->xdp_act = 0; 2395 2396 cleaned = qman_p_poll_dqrr(np->p, budget); 2397 2398 if (cleaned < budget) { 2399 napi_complete_done(napi, cleaned); 2400 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2401 } else if (np->down) { 2402 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2403 } 2404 2405 if (np->xdp_act & XDP_REDIRECT) 2406 xdp_do_flush(); 2407 2408 return cleaned; 2409 } 2410 2411 static void dpaa_tx_conf(struct net_device *net_dev, 2412 const struct dpaa_priv *priv, 2413 struct dpaa_percpu_priv *percpu_priv, 2414 const struct qm_fd *fd, 2415 u32 fqid) 2416 { 2417 struct sk_buff *skb; 2418 2419 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) { 2420 if (net_ratelimit()) 2421 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2422 be32_to_cpu(fd->status) & 2423 FM_FD_STAT_TX_ERRORS); 2424 2425 percpu_priv->stats.tx_errors++; 2426 } 2427 2428 percpu_priv->tx_confirm++; 2429 2430 skb = dpaa_cleanup_tx_fd(priv, fd, true); 2431 2432 consume_skb(skb); 2433 } 2434 2435 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv, 2436 struct qman_portal *portal, bool sched_napi) 2437 { 2438 if (sched_napi) { 2439 /* Disable QMan IRQ and invoke NAPI */ 2440 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI); 2441 2442 percpu_priv->np.p = portal; 2443 napi_schedule(&percpu_priv->np.napi); 2444 percpu_priv->in_interrupt++; 2445 return 1; 2446 } 2447 return 0; 2448 } 2449 2450 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal, 2451 struct qman_fq *fq, 2452 const struct qm_dqrr_entry *dq, 2453 bool sched_napi) 2454 { 2455 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2456 struct dpaa_percpu_priv *percpu_priv; 2457 struct net_device *net_dev; 2458 struct dpaa_bp *dpaa_bp; 2459 struct dpaa_priv *priv; 2460 2461 net_dev = dpaa_fq->net_dev; 2462 priv = netdev_priv(net_dev); 2463 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2464 if (!dpaa_bp) 2465 return qman_cb_dqrr_consume; 2466 2467 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2468 2469 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2470 return qman_cb_dqrr_stop; 2471 2472 dpaa_eth_refill_bpools(priv); 2473 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2474 2475 return qman_cb_dqrr_consume; 2476 } 2477 2478 static int dpaa_xdp_xmit_frame(struct net_device *net_dev, 2479 struct xdp_frame *xdpf) 2480 { 2481 struct dpaa_priv *priv = netdev_priv(net_dev); 2482 struct rtnl_link_stats64 *percpu_stats; 2483 struct dpaa_percpu_priv *percpu_priv; 2484 struct dpaa_eth_swbp *swbp; 2485 struct netdev_queue *txq; 2486 void *buff_start; 2487 struct qm_fd fd; 2488 dma_addr_t addr; 2489 int err; 2490 2491 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2492 percpu_stats = &percpu_priv->stats; 2493 2494 #ifdef CONFIG_DPAA_ERRATUM_A050385 2495 if (unlikely(fman_has_errata_a050385())) { 2496 if (dpaa_a050385_wa_xdpf(priv, &xdpf)) { 2497 err = -ENOMEM; 2498 goto out_error; 2499 } 2500 } 2501 #endif 2502 2503 if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) { 2504 err = -EINVAL; 2505 goto out_error; 2506 } 2507 2508 buff_start = xdpf->data - xdpf->headroom; 2509 2510 /* Leave empty the skb backpointer at the start of the buffer. 2511 * Save the XDP frame for easy cleanup on confirmation. 2512 */ 2513 swbp = (struct dpaa_eth_swbp *)buff_start; 2514 swbp->skb = NULL; 2515 swbp->xdpf = xdpf; 2516 2517 qm_fd_clear_fd(&fd); 2518 fd.bpid = FSL_DPAA_BPID_INV; 2519 fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2520 qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len); 2521 2522 addr = dma_map_single(priv->tx_dma_dev, buff_start, 2523 xdpf->headroom + xdpf->len, 2524 DMA_TO_DEVICE); 2525 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2526 err = -EINVAL; 2527 goto out_error; 2528 } 2529 2530 qm_fd_addr_set64(&fd, addr); 2531 2532 /* Bump the trans_start */ 2533 txq = netdev_get_tx_queue(net_dev, smp_processor_id()); 2534 txq->trans_start = jiffies; 2535 2536 err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd); 2537 if (err) { 2538 dma_unmap_single(priv->tx_dma_dev, addr, 2539 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd), 2540 DMA_TO_DEVICE); 2541 goto out_error; 2542 } 2543 2544 return 0; 2545 2546 out_error: 2547 percpu_stats->tx_errors++; 2548 return err; 2549 } 2550 2551 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr, 2552 struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len) 2553 { 2554 ssize_t fd_off = qm_fd_get_offset(fd); 2555 struct bpf_prog *xdp_prog; 2556 struct xdp_frame *xdpf; 2557 struct xdp_buff xdp; 2558 u32 xdp_act; 2559 int err; 2560 2561 xdp_prog = READ_ONCE(priv->xdp_prog); 2562 if (!xdp_prog) 2563 return XDP_PASS; 2564 2565 xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE, 2566 &dpaa_fq->xdp_rxq); 2567 xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM, 2568 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true); 2569 2570 /* We reserve a fixed headroom of 256 bytes under the erratum and we 2571 * offer it all to XDP programs to use. If no room is left for the 2572 * xdpf backpointer on TX, we will need to copy the data. 2573 * Disable metadata support since data realignments might be required 2574 * and the information can be lost. 2575 */ 2576 #ifdef CONFIG_DPAA_ERRATUM_A050385 2577 if (unlikely(fman_has_errata_a050385())) { 2578 xdp_set_data_meta_invalid(&xdp); 2579 xdp.data_hard_start = vaddr; 2580 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2581 } 2582 #endif 2583 2584 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 2585 2586 /* Update the length and the offset of the FD */ 2587 qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data); 2588 2589 switch (xdp_act) { 2590 case XDP_PASS: 2591 #ifdef CONFIG_DPAA_ERRATUM_A050385 2592 *xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 : 2593 xdp.data - xdp.data_meta; 2594 #else 2595 *xdp_meta_len = xdp.data - xdp.data_meta; 2596 #endif 2597 break; 2598 case XDP_TX: 2599 /* We can access the full headroom when sending the frame 2600 * back out 2601 */ 2602 xdp.data_hard_start = vaddr; 2603 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2604 xdpf = xdp_convert_buff_to_frame(&xdp); 2605 if (unlikely(!xdpf)) { 2606 free_pages((unsigned long)vaddr, 0); 2607 break; 2608 } 2609 2610 if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf)) 2611 xdp_return_frame_rx_napi(xdpf); 2612 2613 break; 2614 case XDP_REDIRECT: 2615 /* Allow redirect to use the full headroom */ 2616 xdp.data_hard_start = vaddr; 2617 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2618 2619 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 2620 if (err) { 2621 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2622 free_pages((unsigned long)vaddr, 0); 2623 } 2624 break; 2625 default: 2626 bpf_warn_invalid_xdp_action(xdp_act); 2627 fallthrough; 2628 case XDP_ABORTED: 2629 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2630 fallthrough; 2631 case XDP_DROP: 2632 /* Free the buffer */ 2633 free_pages((unsigned long)vaddr, 0); 2634 break; 2635 } 2636 2637 return xdp_act; 2638 } 2639 2640 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal, 2641 struct qman_fq *fq, 2642 const struct qm_dqrr_entry *dq, 2643 bool sched_napi) 2644 { 2645 bool ts_valid = false, hash_valid = false; 2646 struct skb_shared_hwtstamps *shhwtstamps; 2647 unsigned int skb_len, xdp_meta_len = 0; 2648 struct rtnl_link_stats64 *percpu_stats; 2649 struct dpaa_percpu_priv *percpu_priv; 2650 const struct qm_fd *fd = &dq->fd; 2651 dma_addr_t addr = qm_fd_addr(fd); 2652 struct dpaa_napi_portal *np; 2653 enum qm_fd_format fd_format; 2654 struct net_device *net_dev; 2655 u32 fd_status, hash_offset; 2656 struct qm_sg_entry *sgt; 2657 struct dpaa_bp *dpaa_bp; 2658 struct dpaa_fq *dpaa_fq; 2659 struct dpaa_priv *priv; 2660 struct sk_buff *skb; 2661 int *count_ptr; 2662 u32 xdp_act; 2663 void *vaddr; 2664 u32 hash; 2665 u64 ns; 2666 2667 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2668 fd_status = be32_to_cpu(fd->status); 2669 fd_format = qm_fd_get_format(fd); 2670 net_dev = dpaa_fq->net_dev; 2671 priv = netdev_priv(net_dev); 2672 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2673 if (!dpaa_bp) 2674 return qman_cb_dqrr_consume; 2675 2676 /* Trace the Rx fd */ 2677 trace_dpaa_rx_fd(net_dev, fq, &dq->fd); 2678 2679 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2680 percpu_stats = &percpu_priv->stats; 2681 np = &percpu_priv->np; 2682 2683 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))) 2684 return qman_cb_dqrr_stop; 2685 2686 /* Make sure we didn't run out of buffers */ 2687 if (unlikely(dpaa_eth_refill_bpools(priv))) { 2688 /* Unable to refill the buffer pool due to insufficient 2689 * system memory. Just release the frame back into the pool, 2690 * otherwise we'll soon end up with an empty buffer pool. 2691 */ 2692 dpaa_fd_release(net_dev, &dq->fd); 2693 return qman_cb_dqrr_consume; 2694 } 2695 2696 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) { 2697 if (net_ratelimit()) 2698 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2699 fd_status & FM_FD_STAT_RX_ERRORS); 2700 2701 percpu_stats->rx_errors++; 2702 dpaa_fd_release(net_dev, fd); 2703 return qman_cb_dqrr_consume; 2704 } 2705 2706 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 2707 DMA_FROM_DEVICE); 2708 2709 /* prefetch the first 64 bytes of the frame or the SGT start */ 2710 vaddr = phys_to_virt(addr); 2711 prefetch(vaddr + qm_fd_get_offset(fd)); 2712 2713 /* The only FD types that we may receive are contig and S/G */ 2714 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg)); 2715 2716 /* Account for either the contig buffer or the SGT buffer (depending on 2717 * which case we were in) having been removed from the pool. 2718 */ 2719 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 2720 (*count_ptr)--; 2721 2722 /* Extract the timestamp stored in the headroom before running XDP */ 2723 if (priv->rx_tstamp) { 2724 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns)) 2725 ts_valid = true; 2726 else 2727 WARN_ONCE(1, "fman_port_get_tstamp failed!\n"); 2728 } 2729 2730 /* Extract the hash stored in the headroom before running XDP */ 2731 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use && 2732 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX], 2733 &hash_offset)) { 2734 hash = be32_to_cpu(*(u32 *)(vaddr + hash_offset)); 2735 hash_valid = true; 2736 } 2737 2738 if (likely(fd_format == qm_fd_contig)) { 2739 xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr, 2740 dpaa_fq, &xdp_meta_len); 2741 np->xdp_act |= xdp_act; 2742 if (xdp_act != XDP_PASS) { 2743 percpu_stats->rx_packets++; 2744 percpu_stats->rx_bytes += qm_fd_get_length(fd); 2745 return qman_cb_dqrr_consume; 2746 } 2747 skb = contig_fd_to_skb(priv, fd); 2748 } else { 2749 /* XDP doesn't support S/G frames. Return the fragments to the 2750 * buffer pool and release the SGT. 2751 */ 2752 if (READ_ONCE(priv->xdp_prog)) { 2753 WARN_ONCE(1, "S/G frames not supported under XDP\n"); 2754 sgt = vaddr + qm_fd_get_offset(fd); 2755 dpaa_release_sgt_members(sgt); 2756 free_pages((unsigned long)vaddr, 0); 2757 return qman_cb_dqrr_consume; 2758 } 2759 skb = sg_fd_to_skb(priv, fd); 2760 } 2761 if (!skb) 2762 return qman_cb_dqrr_consume; 2763 2764 if (xdp_meta_len) 2765 skb_metadata_set(skb, xdp_meta_len); 2766 2767 /* Set the previously extracted timestamp */ 2768 if (ts_valid) { 2769 shhwtstamps = skb_hwtstamps(skb); 2770 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2771 shhwtstamps->hwtstamp = ns_to_ktime(ns); 2772 } 2773 2774 skb->protocol = eth_type_trans(skb, net_dev); 2775 2776 /* Set the previously extracted hash */ 2777 if (hash_valid) { 2778 enum pkt_hash_types type; 2779 2780 /* if L4 exists, it was used in the hash generation */ 2781 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ? 2782 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 2783 skb_set_hash(skb, hash, type); 2784 } 2785 2786 skb_len = skb->len; 2787 2788 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) { 2789 percpu_stats->rx_dropped++; 2790 return qman_cb_dqrr_consume; 2791 } 2792 2793 percpu_stats->rx_packets++; 2794 percpu_stats->rx_bytes += skb_len; 2795 2796 return qman_cb_dqrr_consume; 2797 } 2798 2799 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal, 2800 struct qman_fq *fq, 2801 const struct qm_dqrr_entry *dq, 2802 bool sched_napi) 2803 { 2804 struct dpaa_percpu_priv *percpu_priv; 2805 struct net_device *net_dev; 2806 struct dpaa_priv *priv; 2807 2808 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2809 priv = netdev_priv(net_dev); 2810 2811 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2812 2813 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2814 return qman_cb_dqrr_stop; 2815 2816 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2817 2818 return qman_cb_dqrr_consume; 2819 } 2820 2821 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal, 2822 struct qman_fq *fq, 2823 const struct qm_dqrr_entry *dq, 2824 bool sched_napi) 2825 { 2826 struct dpaa_percpu_priv *percpu_priv; 2827 struct net_device *net_dev; 2828 struct dpaa_priv *priv; 2829 2830 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2831 priv = netdev_priv(net_dev); 2832 2833 /* Trace the fd */ 2834 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd); 2835 2836 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2837 2838 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2839 return qman_cb_dqrr_stop; 2840 2841 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2842 2843 return qman_cb_dqrr_consume; 2844 } 2845 2846 static void egress_ern(struct qman_portal *portal, 2847 struct qman_fq *fq, 2848 const union qm_mr_entry *msg) 2849 { 2850 const struct qm_fd *fd = &msg->ern.fd; 2851 struct dpaa_percpu_priv *percpu_priv; 2852 const struct dpaa_priv *priv; 2853 struct net_device *net_dev; 2854 struct sk_buff *skb; 2855 2856 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2857 priv = netdev_priv(net_dev); 2858 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2859 2860 percpu_priv->stats.tx_dropped++; 2861 percpu_priv->stats.tx_fifo_errors++; 2862 count_ern(percpu_priv, msg); 2863 2864 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2865 dev_kfree_skb_any(skb); 2866 } 2867 2868 static const struct dpaa_fq_cbs dpaa_fq_cbs = { 2869 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } }, 2870 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } }, 2871 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } }, 2872 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } }, 2873 .egress_ern = { .cb = { .ern = egress_ern } } 2874 }; 2875 2876 static void dpaa_eth_napi_enable(struct dpaa_priv *priv) 2877 { 2878 struct dpaa_percpu_priv *percpu_priv; 2879 int i; 2880 2881 for_each_online_cpu(i) { 2882 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2883 2884 percpu_priv->np.down = false; 2885 napi_enable(&percpu_priv->np.napi); 2886 } 2887 } 2888 2889 static void dpaa_eth_napi_disable(struct dpaa_priv *priv) 2890 { 2891 struct dpaa_percpu_priv *percpu_priv; 2892 int i; 2893 2894 for_each_online_cpu(i) { 2895 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2896 2897 percpu_priv->np.down = true; 2898 napi_disable(&percpu_priv->np.napi); 2899 } 2900 } 2901 2902 static void dpaa_adjust_link(struct net_device *net_dev) 2903 { 2904 struct mac_device *mac_dev; 2905 struct dpaa_priv *priv; 2906 2907 priv = netdev_priv(net_dev); 2908 mac_dev = priv->mac_dev; 2909 mac_dev->adjust_link(mac_dev); 2910 } 2911 2912 /* The Aquantia PHYs are capable of performing rate adaptation */ 2913 #define PHY_VEND_AQUANTIA 0x03a1b400 2914 2915 static int dpaa_phy_init(struct net_device *net_dev) 2916 { 2917 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 2918 struct mac_device *mac_dev; 2919 struct phy_device *phy_dev; 2920 struct dpaa_priv *priv; 2921 2922 priv = netdev_priv(net_dev); 2923 mac_dev = priv->mac_dev; 2924 2925 phy_dev = of_phy_connect(net_dev, mac_dev->phy_node, 2926 &dpaa_adjust_link, 0, 2927 mac_dev->phy_if); 2928 if (!phy_dev) { 2929 netif_err(priv, ifup, net_dev, "init_phy() failed\n"); 2930 return -ENODEV; 2931 } 2932 2933 /* Unless the PHY is capable of rate adaptation */ 2934 if (mac_dev->phy_if != PHY_INTERFACE_MODE_XGMII || 2935 ((phy_dev->drv->phy_id & GENMASK(31, 10)) != PHY_VEND_AQUANTIA)) { 2936 /* remove any features not supported by the controller */ 2937 ethtool_convert_legacy_u32_to_link_mode(mask, 2938 mac_dev->if_support); 2939 linkmode_and(phy_dev->supported, phy_dev->supported, mask); 2940 } 2941 2942 phy_support_asym_pause(phy_dev); 2943 2944 mac_dev->phy_dev = phy_dev; 2945 net_dev->phydev = phy_dev; 2946 2947 return 0; 2948 } 2949 2950 static int dpaa_open(struct net_device *net_dev) 2951 { 2952 struct mac_device *mac_dev; 2953 struct dpaa_priv *priv; 2954 int err, i; 2955 2956 priv = netdev_priv(net_dev); 2957 mac_dev = priv->mac_dev; 2958 dpaa_eth_napi_enable(priv); 2959 2960 err = dpaa_phy_init(net_dev); 2961 if (err) 2962 goto phy_init_failed; 2963 2964 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 2965 err = fman_port_enable(mac_dev->port[i]); 2966 if (err) 2967 goto mac_start_failed; 2968 } 2969 2970 err = priv->mac_dev->start(mac_dev); 2971 if (err < 0) { 2972 netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err); 2973 goto mac_start_failed; 2974 } 2975 2976 netif_tx_start_all_queues(net_dev); 2977 2978 return 0; 2979 2980 mac_start_failed: 2981 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) 2982 fman_port_disable(mac_dev->port[i]); 2983 2984 phy_init_failed: 2985 dpaa_eth_napi_disable(priv); 2986 2987 return err; 2988 } 2989 2990 static int dpaa_eth_stop(struct net_device *net_dev) 2991 { 2992 struct dpaa_priv *priv; 2993 int err; 2994 2995 err = dpaa_stop(net_dev); 2996 2997 priv = netdev_priv(net_dev); 2998 dpaa_eth_napi_disable(priv); 2999 3000 return err; 3001 } 3002 3003 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu) 3004 { 3005 int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom; 3006 3007 /* We do not support S/G fragments when XDP is enabled. 3008 * Limit the MTU in relation to the buffer size. 3009 */ 3010 if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) { 3011 dev_warn(priv->net_dev->dev.parent, 3012 "The maximum MTU for XDP is %d\n", 3013 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN); 3014 return false; 3015 } 3016 3017 return true; 3018 } 3019 3020 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu) 3021 { 3022 struct dpaa_priv *priv = netdev_priv(net_dev); 3023 3024 if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu)) 3025 return -EINVAL; 3026 3027 net_dev->mtu = new_mtu; 3028 return 0; 3029 } 3030 3031 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf) 3032 { 3033 struct dpaa_priv *priv = netdev_priv(net_dev); 3034 struct bpf_prog *old_prog; 3035 int err; 3036 bool up; 3037 3038 /* S/G fragments are not supported in XDP-mode */ 3039 if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) { 3040 NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP"); 3041 return -EINVAL; 3042 } 3043 3044 up = netif_running(net_dev); 3045 3046 if (up) 3047 dpaa_eth_stop(net_dev); 3048 3049 old_prog = xchg(&priv->xdp_prog, bpf->prog); 3050 if (old_prog) 3051 bpf_prog_put(old_prog); 3052 3053 if (up) { 3054 err = dpaa_open(net_dev); 3055 if (err) { 3056 NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed"); 3057 return err; 3058 } 3059 } 3060 3061 return 0; 3062 } 3063 3064 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp) 3065 { 3066 switch (xdp->command) { 3067 case XDP_SETUP_PROG: 3068 return dpaa_setup_xdp(net_dev, xdp); 3069 default: 3070 return -EINVAL; 3071 } 3072 } 3073 3074 static int dpaa_xdp_xmit(struct net_device *net_dev, int n, 3075 struct xdp_frame **frames, u32 flags) 3076 { 3077 struct xdp_frame *xdpf; 3078 int i, nxmit = 0; 3079 3080 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 3081 return -EINVAL; 3082 3083 if (!netif_running(net_dev)) 3084 return -ENETDOWN; 3085 3086 for (i = 0; i < n; i++) { 3087 xdpf = frames[i]; 3088 if (dpaa_xdp_xmit_frame(net_dev, xdpf)) 3089 break; 3090 nxmit++; 3091 } 3092 3093 return nxmit; 3094 } 3095 3096 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3097 { 3098 struct dpaa_priv *priv = netdev_priv(dev); 3099 struct hwtstamp_config config; 3100 3101 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 3102 return -EFAULT; 3103 3104 switch (config.tx_type) { 3105 case HWTSTAMP_TX_OFF: 3106 /* Couldn't disable rx/tx timestamping separately. 3107 * Do nothing here. 3108 */ 3109 priv->tx_tstamp = false; 3110 break; 3111 case HWTSTAMP_TX_ON: 3112 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3113 priv->tx_tstamp = true; 3114 break; 3115 default: 3116 return -ERANGE; 3117 } 3118 3119 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 3120 /* Couldn't disable rx/tx timestamping separately. 3121 * Do nothing here. 3122 */ 3123 priv->rx_tstamp = false; 3124 } else { 3125 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3126 priv->rx_tstamp = true; 3127 /* TS is set for all frame types, not only those requested */ 3128 config.rx_filter = HWTSTAMP_FILTER_ALL; 3129 } 3130 3131 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 3132 -EFAULT : 0; 3133 } 3134 3135 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) 3136 { 3137 int ret = -EINVAL; 3138 3139 if (cmd == SIOCGMIIREG) { 3140 if (net_dev->phydev) 3141 return phy_mii_ioctl(net_dev->phydev, rq, cmd); 3142 } 3143 3144 if (cmd == SIOCSHWTSTAMP) 3145 return dpaa_ts_ioctl(net_dev, rq, cmd); 3146 3147 return ret; 3148 } 3149 3150 static const struct net_device_ops dpaa_ops = { 3151 .ndo_open = dpaa_open, 3152 .ndo_start_xmit = dpaa_start_xmit, 3153 .ndo_stop = dpaa_eth_stop, 3154 .ndo_tx_timeout = dpaa_tx_timeout, 3155 .ndo_get_stats64 = dpaa_get_stats64, 3156 .ndo_change_carrier = fixed_phy_change_carrier, 3157 .ndo_set_mac_address = dpaa_set_mac_address, 3158 .ndo_validate_addr = eth_validate_addr, 3159 .ndo_set_rx_mode = dpaa_set_rx_mode, 3160 .ndo_eth_ioctl = dpaa_ioctl, 3161 .ndo_setup_tc = dpaa_setup_tc, 3162 .ndo_change_mtu = dpaa_change_mtu, 3163 .ndo_bpf = dpaa_xdp, 3164 .ndo_xdp_xmit = dpaa_xdp_xmit, 3165 }; 3166 3167 static int dpaa_napi_add(struct net_device *net_dev) 3168 { 3169 struct dpaa_priv *priv = netdev_priv(net_dev); 3170 struct dpaa_percpu_priv *percpu_priv; 3171 int cpu; 3172 3173 for_each_possible_cpu(cpu) { 3174 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3175 3176 netif_napi_add(net_dev, &percpu_priv->np.napi, 3177 dpaa_eth_poll, NAPI_POLL_WEIGHT); 3178 } 3179 3180 return 0; 3181 } 3182 3183 static void dpaa_napi_del(struct net_device *net_dev) 3184 { 3185 struct dpaa_priv *priv = netdev_priv(net_dev); 3186 struct dpaa_percpu_priv *percpu_priv; 3187 int cpu; 3188 3189 for_each_possible_cpu(cpu) { 3190 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3191 3192 netif_napi_del(&percpu_priv->np.napi); 3193 } 3194 } 3195 3196 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp, 3197 struct bm_buffer *bmb) 3198 { 3199 dma_addr_t addr = bm_buf_addr(bmb); 3200 3201 dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 3202 DMA_FROM_DEVICE); 3203 3204 skb_free_frag(phys_to_virt(addr)); 3205 } 3206 3207 /* Alloc the dpaa_bp struct and configure default values */ 3208 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev) 3209 { 3210 struct dpaa_bp *dpaa_bp; 3211 3212 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL); 3213 if (!dpaa_bp) 3214 return ERR_PTR(-ENOMEM); 3215 3216 dpaa_bp->bpid = FSL_DPAA_BPID_INV; 3217 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count); 3218 if (!dpaa_bp->percpu_count) 3219 return ERR_PTR(-ENOMEM); 3220 3221 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT; 3222 3223 dpaa_bp->seed_cb = dpaa_bp_seed; 3224 dpaa_bp->free_buf_cb = dpaa_bp_free_pf; 3225 3226 return dpaa_bp; 3227 } 3228 3229 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR. 3230 * We won't be sending congestion notifications to FMan; for now, we just use 3231 * this CGR to generate enqueue rejections to FMan in order to drop the frames 3232 * before they reach our ingress queues and eat up memory. 3233 */ 3234 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv) 3235 { 3236 struct qm_mcc_initcgr initcgr; 3237 u32 cs_th; 3238 int err; 3239 3240 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid); 3241 if (err < 0) { 3242 if (netif_msg_drv(priv)) 3243 pr_err("Error %d allocating CGR ID\n", err); 3244 goto out_error; 3245 } 3246 3247 /* Enable CS TD, but disable Congestion State Change Notifications. */ 3248 memset(&initcgr, 0, sizeof(initcgr)); 3249 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 3250 initcgr.cgr.cscn_en = QM_CGR_EN; 3251 cs_th = DPAA_INGRESS_CS_THRESHOLD; 3252 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 3253 3254 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 3255 initcgr.cgr.cstd_en = QM_CGR_EN; 3256 3257 /* This CGR will be associated with the SWP affined to the current CPU. 3258 * However, we'll place all our ingress FQs in it. 3259 */ 3260 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT, 3261 &initcgr); 3262 if (err < 0) { 3263 if (netif_msg_drv(priv)) 3264 pr_err("Error %d creating ingress CGR with ID %d\n", 3265 err, priv->ingress_cgr.cgrid); 3266 qman_release_cgrid(priv->ingress_cgr.cgrid); 3267 goto out_error; 3268 } 3269 if (netif_msg_drv(priv)) 3270 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n", 3271 priv->ingress_cgr.cgrid, priv->mac_dev->addr); 3272 3273 priv->use_ingress_cgr = true; 3274 3275 out_error: 3276 return err; 3277 } 3278 3279 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl, 3280 enum port_type port) 3281 { 3282 u16 headroom; 3283 3284 /* The frame headroom must accommodate: 3285 * - the driver private data area 3286 * - parse results, hash results, timestamp if selected 3287 * If either hash results or time stamp are selected, both will 3288 * be copied to/from the frame headroom, as TS is located between PR and 3289 * HR in the IC and IC copy size has a granularity of 16bytes 3290 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM) 3291 * 3292 * Also make sure the headroom is a multiple of data_align bytes 3293 */ 3294 headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE); 3295 3296 if (port == RX) { 3297 #ifdef CONFIG_DPAA_ERRATUM_A050385 3298 if (unlikely(fman_has_errata_a050385())) 3299 headroom = XDP_PACKET_HEADROOM; 3300 #endif 3301 3302 return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT); 3303 } else { 3304 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT); 3305 } 3306 } 3307 3308 static int dpaa_eth_probe(struct platform_device *pdev) 3309 { 3310 struct net_device *net_dev = NULL; 3311 struct dpaa_bp *dpaa_bp = NULL; 3312 struct dpaa_fq *dpaa_fq, *tmp; 3313 struct dpaa_priv *priv = NULL; 3314 struct fm_port_fqs port_fqs; 3315 struct mac_device *mac_dev; 3316 int err = 0, channel; 3317 struct device *dev; 3318 3319 dev = &pdev->dev; 3320 3321 err = bman_is_probed(); 3322 if (!err) 3323 return -EPROBE_DEFER; 3324 if (err < 0) { 3325 dev_err(dev, "failing probe due to bman probe error\n"); 3326 return -ENODEV; 3327 } 3328 err = qman_is_probed(); 3329 if (!err) 3330 return -EPROBE_DEFER; 3331 if (err < 0) { 3332 dev_err(dev, "failing probe due to qman probe error\n"); 3333 return -ENODEV; 3334 } 3335 err = bman_portals_probed(); 3336 if (!err) 3337 return -EPROBE_DEFER; 3338 if (err < 0) { 3339 dev_err(dev, 3340 "failing probe due to bman portals probe error\n"); 3341 return -ENODEV; 3342 } 3343 err = qman_portals_probed(); 3344 if (!err) 3345 return -EPROBE_DEFER; 3346 if (err < 0) { 3347 dev_err(dev, 3348 "failing probe due to qman portals probe error\n"); 3349 return -ENODEV; 3350 } 3351 3352 /* Allocate this early, so we can store relevant information in 3353 * the private area 3354 */ 3355 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM); 3356 if (!net_dev) { 3357 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3358 return -ENOMEM; 3359 } 3360 3361 /* Do this here, so we can be verbose early */ 3362 SET_NETDEV_DEV(net_dev, dev->parent); 3363 dev_set_drvdata(dev, net_dev); 3364 3365 priv = netdev_priv(net_dev); 3366 priv->net_dev = net_dev; 3367 3368 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT); 3369 3370 mac_dev = dpaa_mac_dev_get(pdev); 3371 if (IS_ERR(mac_dev)) { 3372 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n"); 3373 err = PTR_ERR(mac_dev); 3374 goto free_netdev; 3375 } 3376 3377 /* Devices used for DMA mapping */ 3378 priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]); 3379 priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]); 3380 err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40)); 3381 if (!err) 3382 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev, 3383 DMA_BIT_MASK(40)); 3384 if (err) { 3385 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n"); 3386 goto free_netdev; 3387 } 3388 3389 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500, 3390 * we choose conservatively and let the user explicitly set a higher 3391 * MTU via ifconfig. Otherwise, the user may end up with different MTUs 3392 * in the same LAN. 3393 * If on the other hand fsl_fm_max_frm has been chosen below 1500, 3394 * start with the maximum allowed. 3395 */ 3396 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN); 3397 3398 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n", 3399 net_dev->mtu); 3400 3401 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */ 3402 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */ 3403 3404 /* bp init */ 3405 dpaa_bp = dpaa_bp_alloc(dev); 3406 if (IS_ERR(dpaa_bp)) { 3407 err = PTR_ERR(dpaa_bp); 3408 goto free_dpaa_bps; 3409 } 3410 /* the raw size of the buffers used for reception */ 3411 dpaa_bp->raw_size = DPAA_BP_RAW_SIZE; 3412 /* avoid runtime computations by keeping the usable size here */ 3413 dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size); 3414 dpaa_bp->priv = priv; 3415 3416 err = dpaa_bp_alloc_pool(dpaa_bp); 3417 if (err < 0) 3418 goto free_dpaa_bps; 3419 priv->dpaa_bp = dpaa_bp; 3420 3421 INIT_LIST_HEAD(&priv->dpaa_fq_list); 3422 3423 memset(&port_fqs, 0, sizeof(port_fqs)); 3424 3425 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs); 3426 if (err < 0) { 3427 dev_err(dev, "dpaa_alloc_all_fqs() failed\n"); 3428 goto free_dpaa_bps; 3429 } 3430 3431 priv->mac_dev = mac_dev; 3432 3433 channel = dpaa_get_channel(); 3434 if (channel < 0) { 3435 dev_err(dev, "dpaa_get_channel() failed\n"); 3436 err = channel; 3437 goto free_dpaa_bps; 3438 } 3439 3440 priv->channel = (u16)channel; 3441 3442 /* Walk the CPUs with affine portals 3443 * and add this pool channel to each's dequeue mask. 3444 */ 3445 dpaa_eth_add_channel(priv->channel, &pdev->dev); 3446 3447 dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]); 3448 3449 /* Create a congestion group for this netdev, with 3450 * dynamically-allocated CGR ID. 3451 * Must be executed after probing the MAC, but before 3452 * assigning the egress FQs to the CGRs. 3453 */ 3454 err = dpaa_eth_cgr_init(priv); 3455 if (err < 0) { 3456 dev_err(dev, "Error initializing CGR\n"); 3457 goto free_dpaa_bps; 3458 } 3459 3460 err = dpaa_ingress_cgr_init(priv); 3461 if (err < 0) { 3462 dev_err(dev, "Error initializing ingress CGR\n"); 3463 goto delete_egress_cgr; 3464 } 3465 3466 /* Add the FQs to the interface, and make them active */ 3467 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) { 3468 err = dpaa_fq_init(dpaa_fq, false); 3469 if (err < 0) 3470 goto free_dpaa_fqs; 3471 } 3472 3473 priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX); 3474 priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX); 3475 3476 /* All real interfaces need their ports initialized */ 3477 err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs, 3478 &priv->buf_layout[0], dev); 3479 if (err) 3480 goto free_dpaa_fqs; 3481 3482 /* Rx traffic distribution based on keygen hashing defaults to on */ 3483 priv->keygen_in_use = true; 3484 3485 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv); 3486 if (!priv->percpu_priv) { 3487 dev_err(dev, "devm_alloc_percpu() failed\n"); 3488 err = -ENOMEM; 3489 goto free_dpaa_fqs; 3490 } 3491 3492 priv->num_tc = 1; 3493 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM); 3494 3495 /* Initialize NAPI */ 3496 err = dpaa_napi_add(net_dev); 3497 if (err < 0) 3498 goto delete_dpaa_napi; 3499 3500 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout); 3501 if (err < 0) 3502 goto delete_dpaa_napi; 3503 3504 dpaa_eth_sysfs_init(&net_dev->dev); 3505 3506 netif_info(priv, probe, net_dev, "Probed interface %s\n", 3507 net_dev->name); 3508 3509 return 0; 3510 3511 delete_dpaa_napi: 3512 dpaa_napi_del(net_dev); 3513 free_dpaa_fqs: 3514 dpaa_fq_free(dev, &priv->dpaa_fq_list); 3515 qman_delete_cgr_safe(&priv->ingress_cgr); 3516 qman_release_cgrid(priv->ingress_cgr.cgrid); 3517 delete_egress_cgr: 3518 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3519 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3520 free_dpaa_bps: 3521 dpaa_bps_free(priv); 3522 free_netdev: 3523 dev_set_drvdata(dev, NULL); 3524 free_netdev(net_dev); 3525 3526 return err; 3527 } 3528 3529 static int dpaa_remove(struct platform_device *pdev) 3530 { 3531 struct net_device *net_dev; 3532 struct dpaa_priv *priv; 3533 struct device *dev; 3534 int err; 3535 3536 dev = &pdev->dev; 3537 net_dev = dev_get_drvdata(dev); 3538 3539 priv = netdev_priv(net_dev); 3540 3541 dpaa_eth_sysfs_remove(dev); 3542 3543 dev_set_drvdata(dev, NULL); 3544 unregister_netdev(net_dev); 3545 3546 err = dpaa_fq_free(dev, &priv->dpaa_fq_list); 3547 3548 qman_delete_cgr_safe(&priv->ingress_cgr); 3549 qman_release_cgrid(priv->ingress_cgr.cgrid); 3550 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3551 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3552 3553 dpaa_napi_del(net_dev); 3554 3555 dpaa_bps_free(priv); 3556 3557 free_netdev(net_dev); 3558 3559 return err; 3560 } 3561 3562 static const struct platform_device_id dpaa_devtype[] = { 3563 { 3564 .name = "dpaa-ethernet", 3565 .driver_data = 0, 3566 }, { 3567 } 3568 }; 3569 MODULE_DEVICE_TABLE(platform, dpaa_devtype); 3570 3571 static struct platform_driver dpaa_driver = { 3572 .driver = { 3573 .name = KBUILD_MODNAME, 3574 }, 3575 .id_table = dpaa_devtype, 3576 .probe = dpaa_eth_probe, 3577 .remove = dpaa_remove 3578 }; 3579 3580 static int __init dpaa_load(void) 3581 { 3582 int err; 3583 3584 pr_debug("FSL DPAA Ethernet driver\n"); 3585 3586 /* initialize dpaa_eth mirror values */ 3587 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom(); 3588 dpaa_max_frm = fman_get_max_frm(); 3589 3590 err = platform_driver_register(&dpaa_driver); 3591 if (err < 0) 3592 pr_err("Error, platform_driver_register() = %d\n", err); 3593 3594 return err; 3595 } 3596 module_init(dpaa_load); 3597 3598 static void __exit dpaa_unload(void) 3599 { 3600 platform_driver_unregister(&dpaa_driver); 3601 3602 /* Only one channel is used and needs to be released after all 3603 * interfaces are removed 3604 */ 3605 dpaa_release_channel(); 3606 } 3607 module_exit(dpaa_unload); 3608 3609 MODULE_LICENSE("Dual BSD/GPL"); 3610 MODULE_DESCRIPTION("FSL DPAA Ethernet driver"); 3611