xref: /openbmc/linux/drivers/net/ethernet/freescale/dpaa/dpaa_eth.c (revision c83eeec79ff64f777cbd59a8bd15d0a3fe1f92c0)
1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2  * Copyright 2020 NXP
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *     * Redistributions of source code must retain the above copyright
7  *	 notice, this list of conditions and the following disclaimer.
8  *     * Redistributions in binary form must reproduce the above copyright
9  *	 notice, this list of conditions and the following disclaimer in the
10  *	 documentation and/or other materials provided with the distribution.
11  *     * Neither the name of Freescale Semiconductor nor the
12  *	 names of its contributors may be used to endorse or promote products
13  *	 derived from this software without specific prior written permission.
14  *
15  * ALTERNATIVELY, this software may be distributed under the terms of the
16  * GNU General Public License ("GPL") as published by the Free Software
17  * Foundation, either version 2 of that License or (at your option) any
18  * later version.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
21  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
22  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
24  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
25  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/of_platform.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/io.h>
40 #include <linux/if_arp.h>
41 #include <linux/if_vlan.h>
42 #include <linux/icmp.h>
43 #include <linux/ip.h>
44 #include <linux/ipv6.h>
45 #include <linux/udp.h>
46 #include <linux/tcp.h>
47 #include <linux/net.h>
48 #include <linux/skbuff.h>
49 #include <linux/etherdevice.h>
50 #include <linux/if_ether.h>
51 #include <linux/highmem.h>
52 #include <linux/percpu.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/sort.h>
55 #include <linux/phy_fixed.h>
56 #include <linux/bpf.h>
57 #include <linux/bpf_trace.h>
58 #include <soc/fsl/bman.h>
59 #include <soc/fsl/qman.h>
60 #include "fman.h"
61 #include "fman_port.h"
62 #include "mac.h"
63 #include "dpaa_eth.h"
64 
65 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
66  * using trace events only need to #include <trace/events/sched.h>
67  */
68 #define CREATE_TRACE_POINTS
69 #include "dpaa_eth_trace.h"
70 
71 static int debug = -1;
72 module_param(debug, int, 0444);
73 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
74 
75 static u16 tx_timeout = 1000;
76 module_param(tx_timeout, ushort, 0444);
77 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
78 
79 #define FM_FD_STAT_RX_ERRORS						\
80 	(FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL	| \
81 	 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
82 	 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME	| \
83 	 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
84 	 FM_FD_ERR_PRS_HDR_ERR)
85 
86 #define FM_FD_STAT_TX_ERRORS \
87 	(FM_FD_ERR_UNSUPPORTED_FORMAT | \
88 	 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
89 
90 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
91 			  NETIF_MSG_LINK | NETIF_MSG_IFUP | \
92 			  NETIF_MSG_IFDOWN | NETIF_MSG_HW)
93 
94 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
95 /* Ingress congestion threshold on FMan ports
96  * The size in bytes of the ingress tail-drop threshold on FMan ports.
97  * Traffic piling up above this value will be rejected by QMan and discarded
98  * by FMan.
99  */
100 
101 /* Size in bytes of the FQ taildrop threshold */
102 #define DPAA_FQ_TD 0x200000
103 
104 #define DPAA_CS_THRESHOLD_1G 0x06000000
105 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
106  * The size in bytes of the egress Congestion State notification threshold on
107  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
108  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
109  * and the larger the frame size, the more acute the problem.
110  * So we have to find a balance between these factors:
111  * - avoiding the device staying congested for a prolonged time (risking
112  *   the netdev watchdog to fire - see also the tx_timeout module param);
113  * - affecting performance of protocols such as TCP, which otherwise
114  *   behave well under the congestion notification mechanism;
115  * - preventing the Tx cores from tightly-looping (as if the congestion
116  *   threshold was too low to be effective);
117  * - running out of memory if the CS threshold is set too high.
118  */
119 
120 #define DPAA_CS_THRESHOLD_10G 0x10000000
121 /* The size in bytes of the egress Congestion State notification threshold on
122  * 10G ports, range 0x1000 .. 0x10000000
123  */
124 
125 /* Largest value that the FQD's OAL field can hold */
126 #define FSL_QMAN_MAX_OAL	127
127 
128 /* Default alignment for start of data in an Rx FD */
129 #ifdef CONFIG_DPAA_ERRATUM_A050385
130 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer
131  * is crossing a 4k page boundary
132  */
133 #define DPAA_FD_DATA_ALIGNMENT  (fman_has_errata_a050385() ? 64 : 16)
134 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary
135  * crossings; also, all SG fragments except the last must have a size multiple
136  * of 256 to avoid DMA transaction splits
137  */
138 #define DPAA_A050385_ALIGN 256
139 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \
140 				   DPAA_A050385_ALIGN : 16)
141 #else
142 #define DPAA_FD_DATA_ALIGNMENT  16
143 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT
144 #endif
145 
146 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
147 #define DPAA_SGT_SIZE 256
148 
149 /* Values for the L3R field of the FM Parse Results
150  */
151 /* L3 Type field: First IP Present IPv4 */
152 #define FM_L3_PARSE_RESULT_IPV4	0x8000
153 /* L3 Type field: First IP Present IPv6 */
154 #define FM_L3_PARSE_RESULT_IPV6	0x4000
155 /* Values for the L4R field of the FM Parse Results */
156 /* L4 Type field: UDP */
157 #define FM_L4_PARSE_RESULT_UDP	0x40
158 /* L4 Type field: TCP */
159 #define FM_L4_PARSE_RESULT_TCP	0x20
160 
161 /* FD status field indicating whether the FM Parser has attempted to validate
162  * the L4 csum of the frame.
163  * Note that having this bit set doesn't necessarily imply that the checksum
164  * is valid. One would have to check the parse results to find that out.
165  */
166 #define FM_FD_STAT_L4CV         0x00000004
167 
168 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
169 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
170 
171 #define FSL_DPAA_BPID_INV		0xff
172 #define FSL_DPAA_ETH_MAX_BUF_COUNT	128
173 #define FSL_DPAA_ETH_REFILL_THRESHOLD	80
174 
175 #define DPAA_TX_PRIV_DATA_SIZE	16
176 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
177 #define DPAA_TIME_STAMP_SIZE 8
178 #define DPAA_HASH_RESULTS_SIZE 8
179 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \
180 		       + DPAA_HASH_RESULTS_SIZE)
181 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \
182 					XDP_PACKET_HEADROOM - DPAA_HWA_SIZE)
183 #ifdef CONFIG_DPAA_ERRATUM_A050385
184 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE)
185 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \
186 				DPAA_RX_PRIV_DATA_A050385_SIZE : \
187 				DPAA_RX_PRIV_DATA_DEFAULT_SIZE)
188 #else
189 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE
190 #endif
191 
192 #define DPAA_ETH_PCD_RXQ_NUM	128
193 
194 #define DPAA_ENQUEUE_RETRIES	100000
195 
196 enum port_type {RX, TX};
197 
198 struct fm_port_fqs {
199 	struct dpaa_fq *tx_defq;
200 	struct dpaa_fq *tx_errq;
201 	struct dpaa_fq *rx_defq;
202 	struct dpaa_fq *rx_errq;
203 	struct dpaa_fq *rx_pcdq;
204 };
205 
206 /* All the dpa bps in use at any moment */
207 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
208 
209 #define DPAA_BP_RAW_SIZE 4096
210 
211 #ifdef CONFIG_DPAA_ERRATUM_A050385
212 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \
213 				~(DPAA_A050385_ALIGN - 1))
214 #else
215 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
216 #endif
217 
218 static int dpaa_max_frm;
219 
220 static int dpaa_rx_extra_headroom;
221 
222 #define dpaa_get_max_mtu()	\
223 	(dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
224 
225 static int dpaa_netdev_init(struct net_device *net_dev,
226 			    const struct net_device_ops *dpaa_ops,
227 			    u16 tx_timeout)
228 {
229 	struct dpaa_priv *priv = netdev_priv(net_dev);
230 	struct device *dev = net_dev->dev.parent;
231 	struct dpaa_percpu_priv *percpu_priv;
232 	const u8 *mac_addr;
233 	int i, err;
234 
235 	/* Although we access another CPU's private data here
236 	 * we do it at initialization so it is safe
237 	 */
238 	for_each_possible_cpu(i) {
239 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
240 		percpu_priv->net_dev = net_dev;
241 	}
242 
243 	net_dev->netdev_ops = dpaa_ops;
244 	mac_addr = priv->mac_dev->addr;
245 
246 	net_dev->mem_start = priv->mac_dev->res->start;
247 	net_dev->mem_end = priv->mac_dev->res->end;
248 
249 	net_dev->min_mtu = ETH_MIN_MTU;
250 	net_dev->max_mtu = dpaa_get_max_mtu();
251 
252 	net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
253 				 NETIF_F_LLTX | NETIF_F_RXHASH);
254 
255 	net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
256 	/* The kernels enables GSO automatically, if we declare NETIF_F_SG.
257 	 * For conformity, we'll still declare GSO explicitly.
258 	 */
259 	net_dev->features |= NETIF_F_GSO;
260 	net_dev->features |= NETIF_F_RXCSUM;
261 
262 	net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
263 	/* we do not want shared skbs on TX */
264 	net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
265 
266 	net_dev->features |= net_dev->hw_features;
267 	net_dev->vlan_features = net_dev->features;
268 
269 	if (is_valid_ether_addr(mac_addr)) {
270 		memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
271 		eth_hw_addr_set(net_dev, mac_addr);
272 	} else {
273 		eth_hw_addr_random(net_dev);
274 		err = priv->mac_dev->change_addr(priv->mac_dev->fman_mac,
275 			(const enet_addr_t *)net_dev->dev_addr);
276 		if (err) {
277 			dev_err(dev, "Failed to set random MAC address\n");
278 			return -EINVAL;
279 		}
280 		dev_info(dev, "Using random MAC address: %pM\n",
281 			 net_dev->dev_addr);
282 	}
283 
284 	net_dev->ethtool_ops = &dpaa_ethtool_ops;
285 
286 	net_dev->needed_headroom = priv->tx_headroom;
287 	net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
288 
289 	/* start without the RUNNING flag, phylib controls it later */
290 	netif_carrier_off(net_dev);
291 
292 	err = register_netdev(net_dev);
293 	if (err < 0) {
294 		dev_err(dev, "register_netdev() = %d\n", err);
295 		return err;
296 	}
297 
298 	return 0;
299 }
300 
301 static int dpaa_stop(struct net_device *net_dev)
302 {
303 	struct mac_device *mac_dev;
304 	struct dpaa_priv *priv;
305 	int i, err, error;
306 
307 	priv = netdev_priv(net_dev);
308 	mac_dev = priv->mac_dev;
309 
310 	netif_tx_stop_all_queues(net_dev);
311 	/* Allow the Fman (Tx) port to process in-flight frames before we
312 	 * try switching it off.
313 	 */
314 	msleep(200);
315 
316 	err = mac_dev->stop(mac_dev);
317 	if (err < 0)
318 		netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
319 			  err);
320 
321 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
322 		error = fman_port_disable(mac_dev->port[i]);
323 		if (error)
324 			err = error;
325 	}
326 
327 	if (net_dev->phydev)
328 		phy_disconnect(net_dev->phydev);
329 	net_dev->phydev = NULL;
330 
331 	msleep(200);
332 
333 	return err;
334 }
335 
336 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
337 {
338 	struct dpaa_percpu_priv *percpu_priv;
339 	const struct dpaa_priv	*priv;
340 
341 	priv = netdev_priv(net_dev);
342 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
343 
344 	netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
345 		   jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
346 
347 	percpu_priv->stats.tx_errors++;
348 }
349 
350 /* Calculates the statistics for the given device by adding the statistics
351  * collected by each CPU.
352  */
353 static void dpaa_get_stats64(struct net_device *net_dev,
354 			     struct rtnl_link_stats64 *s)
355 {
356 	int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
357 	struct dpaa_priv *priv = netdev_priv(net_dev);
358 	struct dpaa_percpu_priv *percpu_priv;
359 	u64 *netstats = (u64 *)s;
360 	u64 *cpustats;
361 	int i, j;
362 
363 	for_each_possible_cpu(i) {
364 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
365 
366 		cpustats = (u64 *)&percpu_priv->stats;
367 
368 		/* add stats from all CPUs */
369 		for (j = 0; j < numstats; j++)
370 			netstats[j] += cpustats[j];
371 	}
372 }
373 
374 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
375 			 void *type_data)
376 {
377 	struct dpaa_priv *priv = netdev_priv(net_dev);
378 	struct tc_mqprio_qopt *mqprio = type_data;
379 	u8 num_tc;
380 	int i;
381 
382 	if (type != TC_SETUP_QDISC_MQPRIO)
383 		return -EOPNOTSUPP;
384 
385 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
386 	num_tc = mqprio->num_tc;
387 
388 	if (num_tc == priv->num_tc)
389 		return 0;
390 
391 	if (!num_tc) {
392 		netdev_reset_tc(net_dev);
393 		goto out;
394 	}
395 
396 	if (num_tc > DPAA_TC_NUM) {
397 		netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
398 			   DPAA_TC_NUM);
399 		return -EINVAL;
400 	}
401 
402 	netdev_set_num_tc(net_dev, num_tc);
403 
404 	for (i = 0; i < num_tc; i++)
405 		netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
406 				    i * DPAA_TC_TXQ_NUM);
407 
408 out:
409 	priv->num_tc = num_tc ? : 1;
410 	netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
411 	return 0;
412 }
413 
414 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
415 {
416 	struct dpaa_eth_data *eth_data;
417 	struct device *dpaa_dev;
418 	struct mac_device *mac_dev;
419 
420 	dpaa_dev = &pdev->dev;
421 	eth_data = dpaa_dev->platform_data;
422 	if (!eth_data) {
423 		dev_err(dpaa_dev, "eth_data missing\n");
424 		return ERR_PTR(-ENODEV);
425 	}
426 	mac_dev = eth_data->mac_dev;
427 	if (!mac_dev) {
428 		dev_err(dpaa_dev, "mac_dev missing\n");
429 		return ERR_PTR(-EINVAL);
430 	}
431 
432 	return mac_dev;
433 }
434 
435 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
436 {
437 	const struct dpaa_priv *priv;
438 	struct mac_device *mac_dev;
439 	struct sockaddr old_addr;
440 	int err;
441 
442 	priv = netdev_priv(net_dev);
443 
444 	memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
445 
446 	err = eth_mac_addr(net_dev, addr);
447 	if (err < 0) {
448 		netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
449 		return err;
450 	}
451 
452 	mac_dev = priv->mac_dev;
453 
454 	err = mac_dev->change_addr(mac_dev->fman_mac,
455 				   (const enet_addr_t *)net_dev->dev_addr);
456 	if (err < 0) {
457 		netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
458 			  err);
459 		/* reverting to previous address */
460 		eth_mac_addr(net_dev, &old_addr);
461 
462 		return err;
463 	}
464 
465 	return 0;
466 }
467 
468 static void dpaa_set_rx_mode(struct net_device *net_dev)
469 {
470 	const struct dpaa_priv	*priv;
471 	int err;
472 
473 	priv = netdev_priv(net_dev);
474 
475 	if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
476 		priv->mac_dev->promisc = !priv->mac_dev->promisc;
477 		err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
478 						 priv->mac_dev->promisc);
479 		if (err < 0)
480 			netif_err(priv, drv, net_dev,
481 				  "mac_dev->set_promisc() = %d\n",
482 				  err);
483 	}
484 
485 	if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
486 		priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
487 		err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
488 						  priv->mac_dev->allmulti);
489 		if (err < 0)
490 			netif_err(priv, drv, net_dev,
491 				  "mac_dev->set_allmulti() = %d\n",
492 				  err);
493 	}
494 
495 	err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
496 	if (err < 0)
497 		netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
498 			  err);
499 }
500 
501 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
502 {
503 	if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
504 		return NULL;
505 
506 	return dpaa_bp_array[bpid];
507 }
508 
509 /* checks if this bpool is already allocated */
510 static bool dpaa_bpid2pool_use(int bpid)
511 {
512 	if (dpaa_bpid2pool(bpid)) {
513 		refcount_inc(&dpaa_bp_array[bpid]->refs);
514 		return true;
515 	}
516 
517 	return false;
518 }
519 
520 /* called only once per bpid by dpaa_bp_alloc_pool() */
521 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
522 {
523 	dpaa_bp_array[bpid] = dpaa_bp;
524 	refcount_set(&dpaa_bp->refs, 1);
525 }
526 
527 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
528 {
529 	int err;
530 
531 	if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
532 		pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
533 		       __func__);
534 		return -EINVAL;
535 	}
536 
537 	/* If the pool is already specified, we only create one per bpid */
538 	if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
539 	    dpaa_bpid2pool_use(dpaa_bp->bpid))
540 		return 0;
541 
542 	if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
543 		dpaa_bp->pool = bman_new_pool();
544 		if (!dpaa_bp->pool) {
545 			pr_err("%s: bman_new_pool() failed\n",
546 			       __func__);
547 			return -ENODEV;
548 		}
549 
550 		dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
551 	}
552 
553 	if (dpaa_bp->seed_cb) {
554 		err = dpaa_bp->seed_cb(dpaa_bp);
555 		if (err)
556 			goto pool_seed_failed;
557 	}
558 
559 	dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
560 
561 	return 0;
562 
563 pool_seed_failed:
564 	pr_err("%s: pool seeding failed\n", __func__);
565 	bman_free_pool(dpaa_bp->pool);
566 
567 	return err;
568 }
569 
570 /* remove and free all the buffers from the given buffer pool */
571 static void dpaa_bp_drain(struct dpaa_bp *bp)
572 {
573 	u8 num = 8;
574 	int ret;
575 
576 	do {
577 		struct bm_buffer bmb[8];
578 		int i;
579 
580 		ret = bman_acquire(bp->pool, bmb, num);
581 		if (ret < 0) {
582 			if (num == 8) {
583 				/* we have less than 8 buffers left;
584 				 * drain them one by one
585 				 */
586 				num = 1;
587 				ret = 1;
588 				continue;
589 			} else {
590 				/* Pool is fully drained */
591 				break;
592 			}
593 		}
594 
595 		if (bp->free_buf_cb)
596 			for (i = 0; i < num; i++)
597 				bp->free_buf_cb(bp, &bmb[i]);
598 	} while (ret > 0);
599 }
600 
601 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
602 {
603 	struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
604 
605 	/* the mapping between bpid and dpaa_bp is done very late in the
606 	 * allocation procedure; if something failed before the mapping, the bp
607 	 * was not configured, therefore we don't need the below instructions
608 	 */
609 	if (!bp)
610 		return;
611 
612 	if (!refcount_dec_and_test(&bp->refs))
613 		return;
614 
615 	if (bp->free_buf_cb)
616 		dpaa_bp_drain(bp);
617 
618 	dpaa_bp_array[bp->bpid] = NULL;
619 	bman_free_pool(bp->pool);
620 }
621 
622 static void dpaa_bps_free(struct dpaa_priv *priv)
623 {
624 	dpaa_bp_free(priv->dpaa_bp);
625 }
626 
627 /* Use multiple WQs for FQ assignment:
628  *	- Tx Confirmation queues go to WQ1.
629  *	- Rx Error and Tx Error queues go to WQ5 (giving them a better chance
630  *	  to be scheduled, in case there are many more FQs in WQ6).
631  *	- Rx Default goes to WQ6.
632  *	- Tx queues go to different WQs depending on their priority. Equal
633  *	  chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
634  *	  WQ0 (highest priority).
635  * This ensures that Tx-confirmed buffers are timely released. In particular,
636  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
637  * are greatly outnumbered by other FQs in the system, while
638  * dequeue scheduling is round-robin.
639  */
640 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
641 {
642 	switch (fq->fq_type) {
643 	case FQ_TYPE_TX_CONFIRM:
644 	case FQ_TYPE_TX_CONF_MQ:
645 		fq->wq = 1;
646 		break;
647 	case FQ_TYPE_RX_ERROR:
648 	case FQ_TYPE_TX_ERROR:
649 		fq->wq = 5;
650 		break;
651 	case FQ_TYPE_RX_DEFAULT:
652 	case FQ_TYPE_RX_PCD:
653 		fq->wq = 6;
654 		break;
655 	case FQ_TYPE_TX:
656 		switch (idx / DPAA_TC_TXQ_NUM) {
657 		case 0:
658 			/* Low priority (best effort) */
659 			fq->wq = 6;
660 			break;
661 		case 1:
662 			/* Medium priority */
663 			fq->wq = 2;
664 			break;
665 		case 2:
666 			/* High priority */
667 			fq->wq = 1;
668 			break;
669 		case 3:
670 			/* Very high priority */
671 			fq->wq = 0;
672 			break;
673 		default:
674 			WARN(1, "Too many TX FQs: more than %d!\n",
675 			     DPAA_ETH_TXQ_NUM);
676 		}
677 		break;
678 	default:
679 		WARN(1, "Invalid FQ type %d for FQID %d!\n",
680 		     fq->fq_type, fq->fqid);
681 	}
682 }
683 
684 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
685 				     u32 start, u32 count,
686 				     struct list_head *list,
687 				     enum dpaa_fq_type fq_type)
688 {
689 	struct dpaa_fq *dpaa_fq;
690 	int i;
691 
692 	dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
693 			       GFP_KERNEL);
694 	if (!dpaa_fq)
695 		return NULL;
696 
697 	for (i = 0; i < count; i++) {
698 		dpaa_fq[i].fq_type = fq_type;
699 		dpaa_fq[i].fqid = start ? start + i : 0;
700 		list_add_tail(&dpaa_fq[i].list, list);
701 	}
702 
703 	for (i = 0; i < count; i++)
704 		dpaa_assign_wq(dpaa_fq + i, i);
705 
706 	return dpaa_fq;
707 }
708 
709 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
710 			      struct fm_port_fqs *port_fqs)
711 {
712 	struct dpaa_fq *dpaa_fq;
713 	u32 fq_base, fq_base_aligned, i;
714 
715 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
716 	if (!dpaa_fq)
717 		goto fq_alloc_failed;
718 
719 	port_fqs->rx_errq = &dpaa_fq[0];
720 
721 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
722 	if (!dpaa_fq)
723 		goto fq_alloc_failed;
724 
725 	port_fqs->rx_defq = &dpaa_fq[0];
726 
727 	/* the PCD FQIDs range needs to be aligned for correct operation */
728 	if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
729 		goto fq_alloc_failed;
730 
731 	fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
732 
733 	for (i = fq_base; i < fq_base_aligned; i++)
734 		qman_release_fqid(i);
735 
736 	for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
737 	     i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
738 		qman_release_fqid(i);
739 
740 	dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
741 				list, FQ_TYPE_RX_PCD);
742 	if (!dpaa_fq)
743 		goto fq_alloc_failed;
744 
745 	port_fqs->rx_pcdq = &dpaa_fq[0];
746 
747 	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
748 		goto fq_alloc_failed;
749 
750 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
751 	if (!dpaa_fq)
752 		goto fq_alloc_failed;
753 
754 	port_fqs->tx_errq = &dpaa_fq[0];
755 
756 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
757 	if (!dpaa_fq)
758 		goto fq_alloc_failed;
759 
760 	port_fqs->tx_defq = &dpaa_fq[0];
761 
762 	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
763 		goto fq_alloc_failed;
764 
765 	return 0;
766 
767 fq_alloc_failed:
768 	dev_err(dev, "dpaa_fq_alloc() failed\n");
769 	return -ENOMEM;
770 }
771 
772 static u32 rx_pool_channel;
773 static DEFINE_SPINLOCK(rx_pool_channel_init);
774 
775 static int dpaa_get_channel(void)
776 {
777 	spin_lock(&rx_pool_channel_init);
778 	if (!rx_pool_channel) {
779 		u32 pool;
780 		int ret;
781 
782 		ret = qman_alloc_pool(&pool);
783 
784 		if (!ret)
785 			rx_pool_channel = pool;
786 	}
787 	spin_unlock(&rx_pool_channel_init);
788 	if (!rx_pool_channel)
789 		return -ENOMEM;
790 	return rx_pool_channel;
791 }
792 
793 static void dpaa_release_channel(void)
794 {
795 	qman_release_pool(rx_pool_channel);
796 }
797 
798 static void dpaa_eth_add_channel(u16 channel, struct device *dev)
799 {
800 	u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
801 	const cpumask_t *cpus = qman_affine_cpus();
802 	struct qman_portal *portal;
803 	int cpu;
804 
805 	for_each_cpu_and(cpu, cpus, cpu_online_mask) {
806 		portal = qman_get_affine_portal(cpu);
807 		qman_p_static_dequeue_add(portal, pool);
808 		qman_start_using_portal(portal, dev);
809 	}
810 }
811 
812 /* Congestion group state change notification callback.
813  * Stops the device's egress queues while they are congested and
814  * wakes them upon exiting congested state.
815  * Also updates some CGR-related stats.
816  */
817 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
818 			   int congested)
819 {
820 	struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
821 		struct dpaa_priv, cgr_data.cgr);
822 
823 	if (congested) {
824 		priv->cgr_data.congestion_start_jiffies = jiffies;
825 		netif_tx_stop_all_queues(priv->net_dev);
826 		priv->cgr_data.cgr_congested_count++;
827 	} else {
828 		priv->cgr_data.congested_jiffies +=
829 			(jiffies - priv->cgr_data.congestion_start_jiffies);
830 		netif_tx_wake_all_queues(priv->net_dev);
831 	}
832 }
833 
834 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
835 {
836 	struct qm_mcc_initcgr initcgr;
837 	u32 cs_th;
838 	int err;
839 
840 	err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
841 	if (err < 0) {
842 		if (netif_msg_drv(priv))
843 			pr_err("%s: Error %d allocating CGR ID\n",
844 			       __func__, err);
845 		goto out_error;
846 	}
847 	priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
848 
849 	/* Enable Congestion State Change Notifications and CS taildrop */
850 	memset(&initcgr, 0, sizeof(initcgr));
851 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
852 	initcgr.cgr.cscn_en = QM_CGR_EN;
853 
854 	/* Set different thresholds based on the MAC speed.
855 	 * This may turn suboptimal if the MAC is reconfigured at a speed
856 	 * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
857 	 * In such cases, we ought to reconfigure the threshold, too.
858 	 */
859 	if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
860 		cs_th = DPAA_CS_THRESHOLD_10G;
861 	else
862 		cs_th = DPAA_CS_THRESHOLD_1G;
863 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
864 
865 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
866 	initcgr.cgr.cstd_en = QM_CGR_EN;
867 
868 	err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
869 			      &initcgr);
870 	if (err < 0) {
871 		if (netif_msg_drv(priv))
872 			pr_err("%s: Error %d creating CGR with ID %d\n",
873 			       __func__, err, priv->cgr_data.cgr.cgrid);
874 		qman_release_cgrid(priv->cgr_data.cgr.cgrid);
875 		goto out_error;
876 	}
877 	if (netif_msg_drv(priv))
878 		pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
879 			 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
880 			 priv->cgr_data.cgr.chan);
881 
882 out_error:
883 	return err;
884 }
885 
886 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
887 				      struct dpaa_fq *fq,
888 				      const struct qman_fq *template)
889 {
890 	fq->fq_base = *template;
891 	fq->net_dev = priv->net_dev;
892 
893 	fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
894 	fq->channel = priv->channel;
895 }
896 
897 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
898 				     struct dpaa_fq *fq,
899 				     struct fman_port *port,
900 				     const struct qman_fq *template)
901 {
902 	fq->fq_base = *template;
903 	fq->net_dev = priv->net_dev;
904 
905 	if (port) {
906 		fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
907 		fq->channel = (u16)fman_port_get_qman_channel_id(port);
908 	} else {
909 		fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
910 	}
911 }
912 
913 static void dpaa_fq_setup(struct dpaa_priv *priv,
914 			  const struct dpaa_fq_cbs *fq_cbs,
915 			  struct fman_port *tx_port)
916 {
917 	int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
918 	const cpumask_t *affine_cpus = qman_affine_cpus();
919 	u16 channels[NR_CPUS];
920 	struct dpaa_fq *fq;
921 
922 	for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
923 		channels[num_portals++] = qman_affine_channel(cpu);
924 
925 	if (num_portals == 0)
926 		dev_err(priv->net_dev->dev.parent,
927 			"No Qman software (affine) channels found\n");
928 
929 	/* Initialize each FQ in the list */
930 	list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
931 		switch (fq->fq_type) {
932 		case FQ_TYPE_RX_DEFAULT:
933 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
934 			break;
935 		case FQ_TYPE_RX_ERROR:
936 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
937 			break;
938 		case FQ_TYPE_RX_PCD:
939 			if (!num_portals)
940 				continue;
941 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
942 			fq->channel = channels[portal_cnt++ % num_portals];
943 			break;
944 		case FQ_TYPE_TX:
945 			dpaa_setup_egress(priv, fq, tx_port,
946 					  &fq_cbs->egress_ern);
947 			/* If we have more Tx queues than the number of cores,
948 			 * just ignore the extra ones.
949 			 */
950 			if (egress_cnt < DPAA_ETH_TXQ_NUM)
951 				priv->egress_fqs[egress_cnt++] = &fq->fq_base;
952 			break;
953 		case FQ_TYPE_TX_CONF_MQ:
954 			priv->conf_fqs[conf_cnt++] = &fq->fq_base;
955 			fallthrough;
956 		case FQ_TYPE_TX_CONFIRM:
957 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
958 			break;
959 		case FQ_TYPE_TX_ERROR:
960 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
961 			break;
962 		default:
963 			dev_warn(priv->net_dev->dev.parent,
964 				 "Unknown FQ type detected!\n");
965 			break;
966 		}
967 	}
968 
969 	 /* Make sure all CPUs receive a corresponding Tx queue. */
970 	while (egress_cnt < DPAA_ETH_TXQ_NUM) {
971 		list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
972 			if (fq->fq_type != FQ_TYPE_TX)
973 				continue;
974 			priv->egress_fqs[egress_cnt++] = &fq->fq_base;
975 			if (egress_cnt == DPAA_ETH_TXQ_NUM)
976 				break;
977 		}
978 	}
979 }
980 
981 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
982 				   struct qman_fq *tx_fq)
983 {
984 	int i;
985 
986 	for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
987 		if (priv->egress_fqs[i] == tx_fq)
988 			return i;
989 
990 	return -EINVAL;
991 }
992 
993 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
994 {
995 	const struct dpaa_priv	*priv;
996 	struct qman_fq *confq = NULL;
997 	struct qm_mcc_initfq initfq;
998 	struct device *dev;
999 	struct qman_fq *fq;
1000 	int queue_id;
1001 	int err;
1002 
1003 	priv = netdev_priv(dpaa_fq->net_dev);
1004 	dev = dpaa_fq->net_dev->dev.parent;
1005 
1006 	if (dpaa_fq->fqid == 0)
1007 		dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
1008 
1009 	dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
1010 
1011 	err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
1012 	if (err) {
1013 		dev_err(dev, "qman_create_fq() failed\n");
1014 		return err;
1015 	}
1016 	fq = &dpaa_fq->fq_base;
1017 
1018 	if (dpaa_fq->init) {
1019 		memset(&initfq, 0, sizeof(initfq));
1020 
1021 		initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
1022 		/* Note: we may get to keep an empty FQ in cache */
1023 		initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1024 
1025 		/* Try to reduce the number of portal interrupts for
1026 		 * Tx Confirmation FQs.
1027 		 */
1028 		if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1029 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1030 
1031 		/* FQ placement */
1032 		initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1033 
1034 		qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1035 
1036 		/* Put all egress queues in a congestion group of their own.
1037 		 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1038 		 * rather than Tx - but they nonetheless account for the
1039 		 * memory footprint on behalf of egress traffic. We therefore
1040 		 * place them in the netdev's CGR, along with the Tx FQs.
1041 		 */
1042 		if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1043 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1044 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1045 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1046 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1047 			initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1048 			/* Set a fixed overhead accounting, in an attempt to
1049 			 * reduce the impact of fixed-size skb shells and the
1050 			 * driver's needed headroom on system memory. This is
1051 			 * especially the case when the egress traffic is
1052 			 * composed of small datagrams.
1053 			 * Unfortunately, QMan's OAL value is capped to an
1054 			 * insufficient value, but even that is better than
1055 			 * no overhead accounting at all.
1056 			 */
1057 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1058 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1059 			qm_fqd_set_oal(&initfq.fqd,
1060 				       min(sizeof(struct sk_buff) +
1061 				       priv->tx_headroom,
1062 				       (size_t)FSL_QMAN_MAX_OAL));
1063 		}
1064 
1065 		if (td_enable) {
1066 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1067 			qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1068 			initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1069 		}
1070 
1071 		if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1072 			queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1073 			if (queue_id >= 0)
1074 				confq = priv->conf_fqs[queue_id];
1075 			if (confq) {
1076 				initfq.we_mask |=
1077 					cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1078 			/* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1079 			 *	     A2V=1 (contextA A2 field is valid)
1080 			 *	     A0V=1 (contextA A0 field is valid)
1081 			 *	     B0V=1 (contextB field is valid)
1082 			 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1083 			 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1084 			 */
1085 				qm_fqd_context_a_set64(&initfq.fqd,
1086 						       0x1e00000080000000ULL);
1087 			}
1088 		}
1089 
1090 		/* Put all the ingress queues in our "ingress CGR". */
1091 		if (priv->use_ingress_cgr &&
1092 		    (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1093 		     dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1094 		     dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1095 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1096 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1097 			initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1098 			/* Set a fixed overhead accounting, just like for the
1099 			 * egress CGR.
1100 			 */
1101 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1102 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1103 			qm_fqd_set_oal(&initfq.fqd,
1104 				       min(sizeof(struct sk_buff) +
1105 				       priv->tx_headroom,
1106 				       (size_t)FSL_QMAN_MAX_OAL));
1107 		}
1108 
1109 		/* Initialization common to all ingress queues */
1110 		if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1111 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1112 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1113 						QM_FQCTRL_CTXASTASHING);
1114 			initfq.fqd.context_a.stashing.exclusive =
1115 				QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1116 				QM_STASHING_EXCL_ANNOTATION;
1117 			qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1118 					    DIV_ROUND_UP(sizeof(struct qman_fq),
1119 							 64));
1120 		}
1121 
1122 		err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1123 		if (err < 0) {
1124 			dev_err(dev, "qman_init_fq(%u) = %d\n",
1125 				qman_fq_fqid(fq), err);
1126 			qman_destroy_fq(fq);
1127 			return err;
1128 		}
1129 	}
1130 
1131 	dpaa_fq->fqid = qman_fq_fqid(fq);
1132 
1133 	if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1134 	    dpaa_fq->fq_type == FQ_TYPE_RX_PCD) {
1135 		err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev,
1136 				       dpaa_fq->fqid, 0);
1137 		if (err) {
1138 			dev_err(dev, "xdp_rxq_info_reg() = %d\n", err);
1139 			return err;
1140 		}
1141 
1142 		err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq,
1143 						 MEM_TYPE_PAGE_ORDER0, NULL);
1144 		if (err) {
1145 			dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n",
1146 				err);
1147 			xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1148 			return err;
1149 		}
1150 	}
1151 
1152 	return 0;
1153 }
1154 
1155 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1156 {
1157 	const struct dpaa_priv  *priv;
1158 	struct dpaa_fq *dpaa_fq;
1159 	int err, error;
1160 
1161 	err = 0;
1162 
1163 	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1164 	priv = netdev_priv(dpaa_fq->net_dev);
1165 
1166 	if (dpaa_fq->init) {
1167 		err = qman_retire_fq(fq, NULL);
1168 		if (err < 0 && netif_msg_drv(priv))
1169 			dev_err(dev, "qman_retire_fq(%u) = %d\n",
1170 				qman_fq_fqid(fq), err);
1171 
1172 		error = qman_oos_fq(fq);
1173 		if (error < 0 && netif_msg_drv(priv)) {
1174 			dev_err(dev, "qman_oos_fq(%u) = %d\n",
1175 				qman_fq_fqid(fq), error);
1176 			if (err >= 0)
1177 				err = error;
1178 		}
1179 	}
1180 
1181 	if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1182 	     dpaa_fq->fq_type == FQ_TYPE_RX_PCD) &&
1183 	    xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq))
1184 		xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1185 
1186 	qman_destroy_fq(fq);
1187 	list_del(&dpaa_fq->list);
1188 
1189 	return err;
1190 }
1191 
1192 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1193 {
1194 	struct dpaa_fq *dpaa_fq, *tmp;
1195 	int err, error;
1196 
1197 	err = 0;
1198 	list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1199 		error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1200 		if (error < 0 && err >= 0)
1201 			err = error;
1202 	}
1203 
1204 	return err;
1205 }
1206 
1207 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1208 				 struct dpaa_fq *defq,
1209 				 struct dpaa_buffer_layout *buf_layout)
1210 {
1211 	struct fman_buffer_prefix_content buf_prefix_content;
1212 	struct fman_port_params params;
1213 	int err;
1214 
1215 	memset(&params, 0, sizeof(params));
1216 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1217 
1218 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1219 	buf_prefix_content.pass_prs_result = true;
1220 	buf_prefix_content.pass_hash_result = true;
1221 	buf_prefix_content.pass_time_stamp = true;
1222 	buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1223 
1224 	params.specific_params.non_rx_params.err_fqid = errq->fqid;
1225 	params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1226 
1227 	err = fman_port_config(port, &params);
1228 	if (err) {
1229 		pr_err("%s: fman_port_config failed\n", __func__);
1230 		return err;
1231 	}
1232 
1233 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1234 	if (err) {
1235 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1236 		       __func__);
1237 		return err;
1238 	}
1239 
1240 	err = fman_port_init(port);
1241 	if (err)
1242 		pr_err("%s: fm_port_init failed\n", __func__);
1243 
1244 	return err;
1245 }
1246 
1247 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1248 				 struct dpaa_fq *errq,
1249 				 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1250 				 struct dpaa_buffer_layout *buf_layout)
1251 {
1252 	struct fman_buffer_prefix_content buf_prefix_content;
1253 	struct fman_port_rx_params *rx_p;
1254 	struct fman_port_params params;
1255 	int err;
1256 
1257 	memset(&params, 0, sizeof(params));
1258 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1259 
1260 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1261 	buf_prefix_content.pass_prs_result = true;
1262 	buf_prefix_content.pass_hash_result = true;
1263 	buf_prefix_content.pass_time_stamp = true;
1264 	buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT;
1265 
1266 	rx_p = &params.specific_params.rx_params;
1267 	rx_p->err_fqid = errq->fqid;
1268 	rx_p->dflt_fqid = defq->fqid;
1269 	if (pcdq) {
1270 		rx_p->pcd_base_fqid = pcdq->fqid;
1271 		rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1272 	}
1273 
1274 	rx_p->ext_buf_pools.num_of_pools_used = 1;
1275 	rx_p->ext_buf_pools.ext_buf_pool[0].id =  bp->bpid;
1276 	rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1277 
1278 	err = fman_port_config(port, &params);
1279 	if (err) {
1280 		pr_err("%s: fman_port_config failed\n", __func__);
1281 		return err;
1282 	}
1283 
1284 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1285 	if (err) {
1286 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1287 		       __func__);
1288 		return err;
1289 	}
1290 
1291 	err = fman_port_init(port);
1292 	if (err)
1293 		pr_err("%s: fm_port_init failed\n", __func__);
1294 
1295 	return err;
1296 }
1297 
1298 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1299 			       struct dpaa_bp *bp,
1300 			       struct fm_port_fqs *port_fqs,
1301 			       struct dpaa_buffer_layout *buf_layout,
1302 			       struct device *dev)
1303 {
1304 	struct fman_port *rxport = mac_dev->port[RX];
1305 	struct fman_port *txport = mac_dev->port[TX];
1306 	int err;
1307 
1308 	err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1309 				    port_fqs->tx_defq, &buf_layout[TX]);
1310 	if (err)
1311 		return err;
1312 
1313 	err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1314 				    port_fqs->rx_defq, port_fqs->rx_pcdq,
1315 				    &buf_layout[RX]);
1316 
1317 	return err;
1318 }
1319 
1320 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1321 			     struct bm_buffer *bmb, int cnt)
1322 {
1323 	int err;
1324 
1325 	err = bman_release(dpaa_bp->pool, bmb, cnt);
1326 	/* Should never occur, address anyway to avoid leaking the buffers */
1327 	if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1328 		while (cnt-- > 0)
1329 			dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1330 
1331 	return cnt;
1332 }
1333 
1334 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1335 {
1336 	struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1337 	struct dpaa_bp *dpaa_bp;
1338 	int i = 0, j;
1339 
1340 	memset(bmb, 0, sizeof(bmb));
1341 
1342 	do {
1343 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1344 		if (!dpaa_bp)
1345 			return;
1346 
1347 		j = 0;
1348 		do {
1349 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1350 
1351 			bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1352 
1353 			j++; i++;
1354 		} while (j < ARRAY_SIZE(bmb) &&
1355 				!qm_sg_entry_is_final(&sgt[i - 1]) &&
1356 				sgt[i - 1].bpid == sgt[i].bpid);
1357 
1358 		dpaa_bman_release(dpaa_bp, bmb, j);
1359 	} while (!qm_sg_entry_is_final(&sgt[i - 1]));
1360 }
1361 
1362 static void dpaa_fd_release(const struct net_device *net_dev,
1363 			    const struct qm_fd *fd)
1364 {
1365 	struct qm_sg_entry *sgt;
1366 	struct dpaa_bp *dpaa_bp;
1367 	struct bm_buffer bmb;
1368 	dma_addr_t addr;
1369 	void *vaddr;
1370 
1371 	bmb.data = 0;
1372 	bm_buffer_set64(&bmb, qm_fd_addr(fd));
1373 
1374 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1375 	if (!dpaa_bp)
1376 		return;
1377 
1378 	if (qm_fd_get_format(fd) == qm_fd_sg) {
1379 		vaddr = phys_to_virt(qm_fd_addr(fd));
1380 		sgt = vaddr + qm_fd_get_offset(fd);
1381 
1382 		dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1383 			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1384 
1385 		dpaa_release_sgt_members(sgt);
1386 
1387 		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1388 				    virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1389 				    DMA_FROM_DEVICE);
1390 		if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1391 			netdev_err(net_dev, "DMA mapping failed\n");
1392 			return;
1393 		}
1394 		bm_buffer_set64(&bmb, addr);
1395 	}
1396 
1397 	dpaa_bman_release(dpaa_bp, &bmb, 1);
1398 }
1399 
1400 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1401 		      const union qm_mr_entry *msg)
1402 {
1403 	switch (msg->ern.rc & QM_MR_RC_MASK) {
1404 	case QM_MR_RC_CGR_TAILDROP:
1405 		percpu_priv->ern_cnt.cg_tdrop++;
1406 		break;
1407 	case QM_MR_RC_WRED:
1408 		percpu_priv->ern_cnt.wred++;
1409 		break;
1410 	case QM_MR_RC_ERROR:
1411 		percpu_priv->ern_cnt.err_cond++;
1412 		break;
1413 	case QM_MR_RC_ORPWINDOW_EARLY:
1414 		percpu_priv->ern_cnt.early_window++;
1415 		break;
1416 	case QM_MR_RC_ORPWINDOW_LATE:
1417 		percpu_priv->ern_cnt.late_window++;
1418 		break;
1419 	case QM_MR_RC_FQ_TAILDROP:
1420 		percpu_priv->ern_cnt.fq_tdrop++;
1421 		break;
1422 	case QM_MR_RC_ORPWINDOW_RETIRED:
1423 		percpu_priv->ern_cnt.fq_retired++;
1424 		break;
1425 	case QM_MR_RC_ORP_ZERO:
1426 		percpu_priv->ern_cnt.orp_zero++;
1427 		break;
1428 	}
1429 }
1430 
1431 /* Turn on HW checksum computation for this outgoing frame.
1432  * If the current protocol is not something we support in this regard
1433  * (or if the stack has already computed the SW checksum), we do nothing.
1434  *
1435  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1436  * otherwise.
1437  *
1438  * Note that this function may modify the fd->cmd field and the skb data buffer
1439  * (the Parse Results area).
1440  */
1441 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1442 			       struct sk_buff *skb,
1443 			       struct qm_fd *fd,
1444 			       void *parse_results)
1445 {
1446 	struct fman_prs_result *parse_result;
1447 	u16 ethertype = ntohs(skb->protocol);
1448 	struct ipv6hdr *ipv6h = NULL;
1449 	struct iphdr *iph;
1450 	int retval = 0;
1451 	u8 l4_proto;
1452 
1453 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1454 		return 0;
1455 
1456 	/* Note: L3 csum seems to be already computed in sw, but we can't choose
1457 	 * L4 alone from the FM configuration anyway.
1458 	 */
1459 
1460 	/* Fill in some fields of the Parse Results array, so the FMan
1461 	 * can find them as if they came from the FMan Parser.
1462 	 */
1463 	parse_result = (struct fman_prs_result *)parse_results;
1464 
1465 	/* If we're dealing with VLAN, get the real Ethernet type */
1466 	if (ethertype == ETH_P_8021Q) {
1467 		/* We can't always assume the MAC header is set correctly
1468 		 * by the stack, so reset to beginning of skb->data
1469 		 */
1470 		skb_reset_mac_header(skb);
1471 		ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1472 	}
1473 
1474 	/* Fill in the relevant L3 parse result fields
1475 	 * and read the L4 protocol type
1476 	 */
1477 	switch (ethertype) {
1478 	case ETH_P_IP:
1479 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1480 		iph = ip_hdr(skb);
1481 		WARN_ON(!iph);
1482 		l4_proto = iph->protocol;
1483 		break;
1484 	case ETH_P_IPV6:
1485 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1486 		ipv6h = ipv6_hdr(skb);
1487 		WARN_ON(!ipv6h);
1488 		l4_proto = ipv6h->nexthdr;
1489 		break;
1490 	default:
1491 		/* We shouldn't even be here */
1492 		if (net_ratelimit())
1493 			netif_alert(priv, tx_err, priv->net_dev,
1494 				    "Can't compute HW csum for L3 proto 0x%x\n",
1495 				    ntohs(skb->protocol));
1496 		retval = -EIO;
1497 		goto return_error;
1498 	}
1499 
1500 	/* Fill in the relevant L4 parse result fields */
1501 	switch (l4_proto) {
1502 	case IPPROTO_UDP:
1503 		parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1504 		break;
1505 	case IPPROTO_TCP:
1506 		parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1507 		break;
1508 	default:
1509 		if (net_ratelimit())
1510 			netif_alert(priv, tx_err, priv->net_dev,
1511 				    "Can't compute HW csum for L4 proto 0x%x\n",
1512 				    l4_proto);
1513 		retval = -EIO;
1514 		goto return_error;
1515 	}
1516 
1517 	/* At index 0 is IPOffset_1 as defined in the Parse Results */
1518 	parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1519 	parse_result->l4_off = (u8)skb_transport_offset(skb);
1520 
1521 	/* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1522 	fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1523 
1524 	/* On P1023 and similar platforms fd->cmd interpretation could
1525 	 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1526 	 * is not set so we do not need to check; in the future, if/when
1527 	 * using context_a we need to check this bit
1528 	 */
1529 
1530 return_error:
1531 	return retval;
1532 }
1533 
1534 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1535 {
1536 	struct net_device *net_dev = dpaa_bp->priv->net_dev;
1537 	struct bm_buffer bmb[8];
1538 	dma_addr_t addr;
1539 	struct page *p;
1540 	u8 i;
1541 
1542 	for (i = 0; i < 8; i++) {
1543 		p = dev_alloc_pages(0);
1544 		if (unlikely(!p)) {
1545 			netdev_err(net_dev, "dev_alloc_pages() failed\n");
1546 			goto release_previous_buffs;
1547 		}
1548 
1549 		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1550 				    DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1551 		if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1552 					       addr))) {
1553 			netdev_err(net_dev, "DMA map failed\n");
1554 			goto release_previous_buffs;
1555 		}
1556 
1557 		bmb[i].data = 0;
1558 		bm_buffer_set64(&bmb[i], addr);
1559 	}
1560 
1561 release_bufs:
1562 	return dpaa_bman_release(dpaa_bp, bmb, i);
1563 
1564 release_previous_buffs:
1565 	WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1566 
1567 	bm_buffer_set64(&bmb[i], 0);
1568 	/* Avoid releasing a completely null buffer; bman_release() requires
1569 	 * at least one buffer.
1570 	 */
1571 	if (likely(i))
1572 		goto release_bufs;
1573 
1574 	return 0;
1575 }
1576 
1577 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1578 {
1579 	int i;
1580 
1581 	/* Give each CPU an allotment of "config_count" buffers */
1582 	for_each_possible_cpu(i) {
1583 		int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1584 		int j;
1585 
1586 		/* Although we access another CPU's counters here
1587 		 * we do it at boot time so it is safe
1588 		 */
1589 		for (j = 0; j < dpaa_bp->config_count; j += 8)
1590 			*count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1591 	}
1592 	return 0;
1593 }
1594 
1595 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1596  * REFILL_THRESHOLD.
1597  */
1598 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1599 {
1600 	int count = *countptr;
1601 	int new_bufs;
1602 
1603 	if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1604 		do {
1605 			new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1606 			if (unlikely(!new_bufs)) {
1607 				/* Avoid looping forever if we've temporarily
1608 				 * run out of memory. We'll try again at the
1609 				 * next NAPI cycle.
1610 				 */
1611 				break;
1612 			}
1613 			count += new_bufs;
1614 		} while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1615 
1616 		*countptr = count;
1617 		if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1618 			return -ENOMEM;
1619 	}
1620 
1621 	return 0;
1622 }
1623 
1624 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1625 {
1626 	struct dpaa_bp *dpaa_bp;
1627 	int *countptr;
1628 
1629 	dpaa_bp = priv->dpaa_bp;
1630 	if (!dpaa_bp)
1631 		return -EINVAL;
1632 	countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1633 
1634 	return dpaa_eth_refill_bpool(dpaa_bp, countptr);
1635 }
1636 
1637 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1638  * either contiguous frames or scatter/gather ones.
1639  * Skb freeing is not handled here.
1640  *
1641  * This function may be called on error paths in the Tx function, so guard
1642  * against cases when not all fd relevant fields were filled in. To avoid
1643  * reading the invalid transmission timestamp for the error paths set ts to
1644  * false.
1645  *
1646  * Return the skb backpointer, since for S/G frames the buffer containing it
1647  * gets freed here.
1648  *
1649  * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer
1650  * and return NULL in this case.
1651  */
1652 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1653 					  const struct qm_fd *fd, bool ts)
1654 {
1655 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1656 	struct device *dev = priv->net_dev->dev.parent;
1657 	struct skb_shared_hwtstamps shhwtstamps;
1658 	dma_addr_t addr = qm_fd_addr(fd);
1659 	void *vaddr = phys_to_virt(addr);
1660 	const struct qm_sg_entry *sgt;
1661 	struct dpaa_eth_swbp *swbp;
1662 	struct sk_buff *skb;
1663 	u64 ns;
1664 	int i;
1665 
1666 	if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1667 		dma_unmap_page(priv->tx_dma_dev, addr,
1668 			       qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1669 			       dma_dir);
1670 
1671 		/* The sgt buffer has been allocated with netdev_alloc_frag(),
1672 		 * it's from lowmem.
1673 		 */
1674 		sgt = vaddr + qm_fd_get_offset(fd);
1675 
1676 		/* sgt[0] is from lowmem, was dma_map_single()-ed */
1677 		dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1678 				 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1679 
1680 		/* remaining pages were mapped with skb_frag_dma_map() */
1681 		for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1682 		     !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1683 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1684 
1685 			dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1686 				       qm_sg_entry_get_len(&sgt[i]), dma_dir);
1687 		}
1688 	} else {
1689 		dma_unmap_single(priv->tx_dma_dev, addr,
1690 				 qm_fd_get_offset(fd) + qm_fd_get_length(fd),
1691 				 dma_dir);
1692 	}
1693 
1694 	swbp = (struct dpaa_eth_swbp *)vaddr;
1695 	skb = swbp->skb;
1696 
1697 	/* No skb backpointer is set when running XDP. An xdp_frame
1698 	 * backpointer is saved instead.
1699 	 */
1700 	if (!skb) {
1701 		xdp_return_frame(swbp->xdpf);
1702 		return NULL;
1703 	}
1704 
1705 	/* DMA unmapping is required before accessing the HW provided info */
1706 	if (ts && priv->tx_tstamp &&
1707 	    skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1708 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1709 
1710 		if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1711 					  &ns)) {
1712 			shhwtstamps.hwtstamp = ns_to_ktime(ns);
1713 			skb_tstamp_tx(skb, &shhwtstamps);
1714 		} else {
1715 			dev_warn(dev, "fman_port_get_tstamp failed!\n");
1716 		}
1717 	}
1718 
1719 	if (qm_fd_get_format(fd) == qm_fd_sg)
1720 		/* Free the page that we allocated on Tx for the SGT */
1721 		free_pages((unsigned long)vaddr, 0);
1722 
1723 	return skb;
1724 }
1725 
1726 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1727 {
1728 	/* The parser has run and performed L4 checksum validation.
1729 	 * We know there were no parser errors (and implicitly no
1730 	 * L4 csum error), otherwise we wouldn't be here.
1731 	 */
1732 	if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1733 	    (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1734 		return CHECKSUM_UNNECESSARY;
1735 
1736 	/* We're here because either the parser didn't run or the L4 checksum
1737 	 * was not verified. This may include the case of a UDP frame with
1738 	 * checksum zero or an L4 proto other than TCP/UDP
1739 	 */
1740 	return CHECKSUM_NONE;
1741 }
1742 
1743 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a)))
1744 
1745 /* Build a linear skb around the received buffer.
1746  * We are guaranteed there is enough room at the end of the data buffer to
1747  * accommodate the shared info area of the skb.
1748  */
1749 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1750 					const struct qm_fd *fd)
1751 {
1752 	ssize_t fd_off = qm_fd_get_offset(fd);
1753 	dma_addr_t addr = qm_fd_addr(fd);
1754 	struct dpaa_bp *dpaa_bp;
1755 	struct sk_buff *skb;
1756 	void *vaddr;
1757 
1758 	vaddr = phys_to_virt(addr);
1759 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1760 
1761 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1762 	if (!dpaa_bp)
1763 		goto free_buffer;
1764 
1765 	skb = build_skb(vaddr, dpaa_bp->size +
1766 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1767 	if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1768 		goto free_buffer;
1769 	skb_reserve(skb, fd_off);
1770 	skb_put(skb, qm_fd_get_length(fd));
1771 
1772 	skb->ip_summed = rx_csum_offload(priv, fd);
1773 
1774 	return skb;
1775 
1776 free_buffer:
1777 	free_pages((unsigned long)vaddr, 0);
1778 	return NULL;
1779 }
1780 
1781 /* Build an skb with the data of the first S/G entry in the linear portion and
1782  * the rest of the frame as skb fragments.
1783  *
1784  * The page fragment holding the S/G Table is recycled here.
1785  */
1786 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1787 				    const struct qm_fd *fd)
1788 {
1789 	ssize_t fd_off = qm_fd_get_offset(fd);
1790 	dma_addr_t addr = qm_fd_addr(fd);
1791 	const struct qm_sg_entry *sgt;
1792 	struct page *page, *head_page;
1793 	struct dpaa_bp *dpaa_bp;
1794 	void *vaddr, *sg_vaddr;
1795 	int frag_off, frag_len;
1796 	struct sk_buff *skb;
1797 	dma_addr_t sg_addr;
1798 	int page_offset;
1799 	unsigned int sz;
1800 	int *count_ptr;
1801 	int i, j;
1802 
1803 	vaddr = phys_to_virt(addr);
1804 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1805 
1806 	/* Iterate through the SGT entries and add data buffers to the skb */
1807 	sgt = vaddr + fd_off;
1808 	skb = NULL;
1809 	for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1810 		/* Extension bit is not supported */
1811 		WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1812 
1813 		sg_addr = qm_sg_addr(&sgt[i]);
1814 		sg_vaddr = phys_to_virt(sg_addr);
1815 		WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES));
1816 
1817 		dma_unmap_page(priv->rx_dma_dev, sg_addr,
1818 			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1819 
1820 		/* We may use multiple Rx pools */
1821 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1822 		if (!dpaa_bp)
1823 			goto free_buffers;
1824 
1825 		if (!skb) {
1826 			sz = dpaa_bp->size +
1827 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1828 			skb = build_skb(sg_vaddr, sz);
1829 			if (WARN_ON(!skb))
1830 				goto free_buffers;
1831 
1832 			skb->ip_summed = rx_csum_offload(priv, fd);
1833 
1834 			/* Make sure forwarded skbs will have enough space
1835 			 * on Tx, if extra headers are added.
1836 			 */
1837 			WARN_ON(fd_off != priv->rx_headroom);
1838 			skb_reserve(skb, fd_off);
1839 			skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1840 		} else {
1841 			/* Not the first S/G entry; all data from buffer will
1842 			 * be added in an skb fragment; fragment index is offset
1843 			 * by one since first S/G entry was incorporated in the
1844 			 * linear part of the skb.
1845 			 *
1846 			 * Caution: 'page' may be a tail page.
1847 			 */
1848 			page = virt_to_page(sg_vaddr);
1849 			head_page = virt_to_head_page(sg_vaddr);
1850 
1851 			/* Compute offset in (possibly tail) page */
1852 			page_offset = ((unsigned long)sg_vaddr &
1853 					(PAGE_SIZE - 1)) +
1854 				(page_address(page) - page_address(head_page));
1855 			/* page_offset only refers to the beginning of sgt[i];
1856 			 * but the buffer itself may have an internal offset.
1857 			 */
1858 			frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1859 			frag_len = qm_sg_entry_get_len(&sgt[i]);
1860 			/* skb_add_rx_frag() does no checking on the page; if
1861 			 * we pass it a tail page, we'll end up with
1862 			 * bad page accounting and eventually with segafults.
1863 			 */
1864 			skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1865 					frag_len, dpaa_bp->size);
1866 		}
1867 
1868 		/* Update the pool count for the current {cpu x bpool} */
1869 		count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1870 		(*count_ptr)--;
1871 
1872 		if (qm_sg_entry_is_final(&sgt[i]))
1873 			break;
1874 	}
1875 	WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1876 
1877 	/* free the SG table buffer */
1878 	free_pages((unsigned long)vaddr, 0);
1879 
1880 	return skb;
1881 
1882 free_buffers:
1883 	/* free all the SG entries */
1884 	for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) {
1885 		sg_addr = qm_sg_addr(&sgt[j]);
1886 		sg_vaddr = phys_to_virt(sg_addr);
1887 		/* all pages 0..i were unmaped */
1888 		if (j > i)
1889 			dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]),
1890 				       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1891 		free_pages((unsigned long)sg_vaddr, 0);
1892 		/* counters 0..i-1 were decremented */
1893 		if (j >= i) {
1894 			dpaa_bp = dpaa_bpid2pool(sgt[j].bpid);
1895 			if (dpaa_bp) {
1896 				count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1897 				(*count_ptr)--;
1898 			}
1899 		}
1900 
1901 		if (qm_sg_entry_is_final(&sgt[j]))
1902 			break;
1903 	}
1904 	/* free the SGT fragment */
1905 	free_pages((unsigned long)vaddr, 0);
1906 
1907 	return NULL;
1908 }
1909 
1910 static int skb_to_contig_fd(struct dpaa_priv *priv,
1911 			    struct sk_buff *skb, struct qm_fd *fd,
1912 			    int *offset)
1913 {
1914 	struct net_device *net_dev = priv->net_dev;
1915 	enum dma_data_direction dma_dir;
1916 	struct dpaa_eth_swbp *swbp;
1917 	unsigned char *buff_start;
1918 	dma_addr_t addr;
1919 	int err;
1920 
1921 	/* We are guaranteed to have at least tx_headroom bytes
1922 	 * available, so just use that for offset.
1923 	 */
1924 	fd->bpid = FSL_DPAA_BPID_INV;
1925 	buff_start = skb->data - priv->tx_headroom;
1926 	dma_dir = DMA_TO_DEVICE;
1927 
1928 	swbp = (struct dpaa_eth_swbp *)buff_start;
1929 	swbp->skb = skb;
1930 
1931 	/* Enable L3/L4 hardware checksum computation.
1932 	 *
1933 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1934 	 * need to write into the skb.
1935 	 */
1936 	err = dpaa_enable_tx_csum(priv, skb, fd,
1937 				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
1938 	if (unlikely(err < 0)) {
1939 		if (net_ratelimit())
1940 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1941 				  err);
1942 		return err;
1943 	}
1944 
1945 	/* Fill in the rest of the FD fields */
1946 	qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1947 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1948 
1949 	/* Map the entire buffer size that may be seen by FMan, but no more */
1950 	addr = dma_map_single(priv->tx_dma_dev, buff_start,
1951 			      priv->tx_headroom + skb->len, dma_dir);
1952 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1953 		if (net_ratelimit())
1954 			netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1955 		return -EINVAL;
1956 	}
1957 	qm_fd_addr_set64(fd, addr);
1958 
1959 	return 0;
1960 }
1961 
1962 static int skb_to_sg_fd(struct dpaa_priv *priv,
1963 			struct sk_buff *skb, struct qm_fd *fd)
1964 {
1965 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1966 	const int nr_frags = skb_shinfo(skb)->nr_frags;
1967 	struct net_device *net_dev = priv->net_dev;
1968 	struct dpaa_eth_swbp *swbp;
1969 	struct qm_sg_entry *sgt;
1970 	void *buff_start;
1971 	skb_frag_t *frag;
1972 	dma_addr_t addr;
1973 	size_t frag_len;
1974 	struct page *p;
1975 	int i, j, err;
1976 
1977 	/* get a page to store the SGTable */
1978 	p = dev_alloc_pages(0);
1979 	if (unlikely(!p)) {
1980 		netdev_err(net_dev, "dev_alloc_pages() failed\n");
1981 		return -ENOMEM;
1982 	}
1983 	buff_start = page_address(p);
1984 
1985 	/* Enable L3/L4 hardware checksum computation.
1986 	 *
1987 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1988 	 * need to write into the skb.
1989 	 */
1990 	err = dpaa_enable_tx_csum(priv, skb, fd,
1991 				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
1992 	if (unlikely(err < 0)) {
1993 		if (net_ratelimit())
1994 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1995 				  err);
1996 		goto csum_failed;
1997 	}
1998 
1999 	/* SGT[0] is used by the linear part */
2000 	sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
2001 	frag_len = skb_headlen(skb);
2002 	qm_sg_entry_set_len(&sgt[0], frag_len);
2003 	sgt[0].bpid = FSL_DPAA_BPID_INV;
2004 	sgt[0].offset = 0;
2005 	addr = dma_map_single(priv->tx_dma_dev, skb->data,
2006 			      skb_headlen(skb), dma_dir);
2007 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2008 		netdev_err(priv->net_dev, "DMA mapping failed\n");
2009 		err = -EINVAL;
2010 		goto sg0_map_failed;
2011 	}
2012 	qm_sg_entry_set64(&sgt[0], addr);
2013 
2014 	/* populate the rest of SGT entries */
2015 	for (i = 0; i < nr_frags; i++) {
2016 		frag = &skb_shinfo(skb)->frags[i];
2017 		frag_len = skb_frag_size(frag);
2018 		WARN_ON(!skb_frag_page(frag));
2019 		addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
2020 					frag_len, dma_dir);
2021 		if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2022 			netdev_err(priv->net_dev, "DMA mapping failed\n");
2023 			err = -EINVAL;
2024 			goto sg_map_failed;
2025 		}
2026 
2027 		qm_sg_entry_set_len(&sgt[i + 1], frag_len);
2028 		sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
2029 		sgt[i + 1].offset = 0;
2030 
2031 		/* keep the offset in the address */
2032 		qm_sg_entry_set64(&sgt[i + 1], addr);
2033 	}
2034 
2035 	/* Set the final bit in the last used entry of the SGT */
2036 	qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
2037 
2038 	/* set fd offset to priv->tx_headroom */
2039 	qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
2040 
2041 	/* DMA map the SGT page */
2042 	swbp = (struct dpaa_eth_swbp *)buff_start;
2043 	swbp->skb = skb;
2044 
2045 	addr = dma_map_page(priv->tx_dma_dev, p, 0,
2046 			    priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
2047 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2048 		netdev_err(priv->net_dev, "DMA mapping failed\n");
2049 		err = -EINVAL;
2050 		goto sgt_map_failed;
2051 	}
2052 
2053 	fd->bpid = FSL_DPAA_BPID_INV;
2054 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2055 	qm_fd_addr_set64(fd, addr);
2056 
2057 	return 0;
2058 
2059 sgt_map_failed:
2060 sg_map_failed:
2061 	for (j = 0; j < i; j++)
2062 		dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
2063 			       qm_sg_entry_get_len(&sgt[j]), dma_dir);
2064 sg0_map_failed:
2065 csum_failed:
2066 	free_pages((unsigned long)buff_start, 0);
2067 
2068 	return err;
2069 }
2070 
2071 static inline int dpaa_xmit(struct dpaa_priv *priv,
2072 			    struct rtnl_link_stats64 *percpu_stats,
2073 			    int queue,
2074 			    struct qm_fd *fd)
2075 {
2076 	struct qman_fq *egress_fq;
2077 	int err, i;
2078 
2079 	egress_fq = priv->egress_fqs[queue];
2080 	if (fd->bpid == FSL_DPAA_BPID_INV)
2081 		fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2082 
2083 	/* Trace this Tx fd */
2084 	trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2085 
2086 	for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2087 		err = qman_enqueue(egress_fq, fd);
2088 		if (err != -EBUSY)
2089 			break;
2090 	}
2091 
2092 	if (unlikely(err < 0)) {
2093 		percpu_stats->tx_fifo_errors++;
2094 		return err;
2095 	}
2096 
2097 	percpu_stats->tx_packets++;
2098 	percpu_stats->tx_bytes += qm_fd_get_length(fd);
2099 
2100 	return 0;
2101 }
2102 
2103 #ifdef CONFIG_DPAA_ERRATUM_A050385
2104 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s)
2105 {
2106 	struct dpaa_priv *priv = netdev_priv(net_dev);
2107 	struct sk_buff *new_skb, *skb = *s;
2108 	unsigned char *start, i;
2109 
2110 	/* check linear buffer alignment */
2111 	if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN))
2112 		goto workaround;
2113 
2114 	/* linear buffers just need to have an aligned start */
2115 	if (!skb_is_nonlinear(skb))
2116 		return 0;
2117 
2118 	/* linear data size for nonlinear skbs needs to be aligned */
2119 	if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN))
2120 		goto workaround;
2121 
2122 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2123 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2124 
2125 		/* all fragments need to have aligned start addresses */
2126 		if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN))
2127 			goto workaround;
2128 
2129 		/* all but last fragment need to have aligned sizes */
2130 		if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) &&
2131 		    (i < skb_shinfo(skb)->nr_frags - 1))
2132 			goto workaround;
2133 	}
2134 
2135 	return 0;
2136 
2137 workaround:
2138 	/* copy all the skb content into a new linear buffer */
2139 	new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 +
2140 						priv->tx_headroom);
2141 	if (!new_skb)
2142 		return -ENOMEM;
2143 
2144 	/* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */
2145 	skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD);
2146 
2147 	/* Workaround for DPAA_A050385 requires data start to be aligned */
2148 	start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN);
2149 	if (start - new_skb->data)
2150 		skb_reserve(new_skb, start - new_skb->data);
2151 
2152 	skb_put(new_skb, skb->len);
2153 	skb_copy_bits(skb, 0, new_skb->data, skb->len);
2154 	skb_copy_header(new_skb, skb);
2155 	new_skb->dev = skb->dev;
2156 
2157 	/* Copy relevant timestamp info from the old skb to the new */
2158 	if (priv->tx_tstamp) {
2159 		skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags;
2160 		skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps;
2161 		skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey;
2162 		if (skb->sk)
2163 			skb_set_owner_w(new_skb, skb->sk);
2164 	}
2165 
2166 	/* We move the headroom when we align it so we have to reset the
2167 	 * network and transport header offsets relative to the new data
2168 	 * pointer. The checksum offload relies on these offsets.
2169 	 */
2170 	skb_set_network_header(new_skb, skb_network_offset(skb));
2171 	skb_set_transport_header(new_skb, skb_transport_offset(skb));
2172 
2173 	dev_kfree_skb(skb);
2174 	*s = new_skb;
2175 
2176 	return 0;
2177 }
2178 
2179 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv,
2180 				struct xdp_frame **init_xdpf)
2181 {
2182 	struct xdp_frame *new_xdpf, *xdpf = *init_xdpf;
2183 	void *new_buff, *aligned_data;
2184 	struct page *p;
2185 	u32 data_shift;
2186 	int headroom;
2187 
2188 	/* Check the data alignment and make sure the headroom is large
2189 	 * enough to store the xdpf backpointer. Use an aligned headroom
2190 	 * value.
2191 	 *
2192 	 * Due to alignment constraints, we give XDP access to the full 256
2193 	 * byte frame headroom. If the XDP program uses all of it, copy the
2194 	 * data to a new buffer and make room for storing the backpointer.
2195 	 */
2196 	if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) &&
2197 	    xdpf->headroom >= priv->tx_headroom) {
2198 		xdpf->headroom = priv->tx_headroom;
2199 		return 0;
2200 	}
2201 
2202 	/* Try to move the data inside the buffer just enough to align it and
2203 	 * store the xdpf backpointer. If the available headroom isn't large
2204 	 * enough, resort to allocating a new buffer and copying the data.
2205 	 */
2206 	aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT);
2207 	data_shift = xdpf->data - aligned_data;
2208 
2209 	/* The XDP frame's headroom needs to be large enough to accommodate
2210 	 * shifting the data as well as storing the xdpf backpointer.
2211 	 */
2212 	if (xdpf->headroom  >= data_shift + priv->tx_headroom) {
2213 		memmove(aligned_data, xdpf->data, xdpf->len);
2214 		xdpf->data = aligned_data;
2215 		xdpf->headroom = priv->tx_headroom;
2216 		return 0;
2217 	}
2218 
2219 	/* The new xdp_frame is stored in the new buffer. Reserve enough space
2220 	 * in the headroom for storing it along with the driver's private
2221 	 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to
2222 	 * guarantee the data's alignment in the buffer.
2223 	 */
2224 	headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom,
2225 			 DPAA_FD_DATA_ALIGNMENT);
2226 
2227 	/* Assure the extended headroom and data don't overflow the buffer,
2228 	 * while maintaining the mandatory tailroom.
2229 	 */
2230 	if (headroom + xdpf->len > DPAA_BP_RAW_SIZE -
2231 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
2232 		return -ENOMEM;
2233 
2234 	p = dev_alloc_pages(0);
2235 	if (unlikely(!p))
2236 		return -ENOMEM;
2237 
2238 	/* Copy the data to the new buffer at a properly aligned offset */
2239 	new_buff = page_address(p);
2240 	memcpy(new_buff + headroom, xdpf->data, xdpf->len);
2241 
2242 	/* Create an XDP frame around the new buffer in a similar fashion
2243 	 * to xdp_convert_buff_to_frame.
2244 	 */
2245 	new_xdpf = new_buff;
2246 	new_xdpf->data = new_buff + headroom;
2247 	new_xdpf->len = xdpf->len;
2248 	new_xdpf->headroom = priv->tx_headroom;
2249 	new_xdpf->frame_sz = DPAA_BP_RAW_SIZE;
2250 	new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0;
2251 
2252 	/* Release the initial buffer */
2253 	xdp_return_frame_rx_napi(xdpf);
2254 
2255 	*init_xdpf = new_xdpf;
2256 	return 0;
2257 }
2258 #endif
2259 
2260 static netdev_tx_t
2261 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2262 {
2263 	const int queue_mapping = skb_get_queue_mapping(skb);
2264 	bool nonlinear = skb_is_nonlinear(skb);
2265 	struct rtnl_link_stats64 *percpu_stats;
2266 	struct dpaa_percpu_priv *percpu_priv;
2267 	struct netdev_queue *txq;
2268 	struct dpaa_priv *priv;
2269 	struct qm_fd fd;
2270 	int offset = 0;
2271 	int err = 0;
2272 
2273 	priv = netdev_priv(net_dev);
2274 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2275 	percpu_stats = &percpu_priv->stats;
2276 
2277 	qm_fd_clear_fd(&fd);
2278 
2279 	if (!nonlinear) {
2280 		/* We're going to store the skb backpointer at the beginning
2281 		 * of the data buffer, so we need a privately owned skb
2282 		 *
2283 		 * We've made sure skb is not shared in dev->priv_flags,
2284 		 * we need to verify the skb head is not cloned
2285 		 */
2286 		if (skb_cow_head(skb, priv->tx_headroom))
2287 			goto enomem;
2288 
2289 		WARN_ON(skb_is_nonlinear(skb));
2290 	}
2291 
2292 	/* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2293 	 * make sure we don't feed FMan with more fragments than it supports.
2294 	 */
2295 	if (unlikely(nonlinear &&
2296 		     (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2297 		/* If the egress skb contains more fragments than we support
2298 		 * we have no choice but to linearize it ourselves.
2299 		 */
2300 		if (__skb_linearize(skb))
2301 			goto enomem;
2302 
2303 		nonlinear = skb_is_nonlinear(skb);
2304 	}
2305 
2306 #ifdef CONFIG_DPAA_ERRATUM_A050385
2307 	if (unlikely(fman_has_errata_a050385())) {
2308 		if (dpaa_a050385_wa_skb(net_dev, &skb))
2309 			goto enomem;
2310 		nonlinear = skb_is_nonlinear(skb);
2311 	}
2312 #endif
2313 
2314 	if (nonlinear) {
2315 		/* Just create a S/G fd based on the skb */
2316 		err = skb_to_sg_fd(priv, skb, &fd);
2317 		percpu_priv->tx_frag_skbuffs++;
2318 	} else {
2319 		/* Create a contig FD from this skb */
2320 		err = skb_to_contig_fd(priv, skb, &fd, &offset);
2321 	}
2322 	if (unlikely(err < 0))
2323 		goto skb_to_fd_failed;
2324 
2325 	txq = netdev_get_tx_queue(net_dev, queue_mapping);
2326 
2327 	/* LLTX requires to do our own update of trans_start */
2328 	txq->trans_start = jiffies;
2329 
2330 	if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2331 		fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2332 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2333 	}
2334 
2335 	if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2336 		return NETDEV_TX_OK;
2337 
2338 	dpaa_cleanup_tx_fd(priv, &fd, false);
2339 skb_to_fd_failed:
2340 enomem:
2341 	percpu_stats->tx_errors++;
2342 	dev_kfree_skb(skb);
2343 	return NETDEV_TX_OK;
2344 }
2345 
2346 static void dpaa_rx_error(struct net_device *net_dev,
2347 			  const struct dpaa_priv *priv,
2348 			  struct dpaa_percpu_priv *percpu_priv,
2349 			  const struct qm_fd *fd,
2350 			  u32 fqid)
2351 {
2352 	if (net_ratelimit())
2353 		netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2354 			  be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2355 
2356 	percpu_priv->stats.rx_errors++;
2357 
2358 	if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2359 		percpu_priv->rx_errors.dme++;
2360 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2361 		percpu_priv->rx_errors.fpe++;
2362 	if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2363 		percpu_priv->rx_errors.fse++;
2364 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2365 		percpu_priv->rx_errors.phe++;
2366 
2367 	dpaa_fd_release(net_dev, fd);
2368 }
2369 
2370 static void dpaa_tx_error(struct net_device *net_dev,
2371 			  const struct dpaa_priv *priv,
2372 			  struct dpaa_percpu_priv *percpu_priv,
2373 			  const struct qm_fd *fd,
2374 			  u32 fqid)
2375 {
2376 	struct sk_buff *skb;
2377 
2378 	if (net_ratelimit())
2379 		netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2380 			   be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2381 
2382 	percpu_priv->stats.tx_errors++;
2383 
2384 	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2385 	dev_kfree_skb(skb);
2386 }
2387 
2388 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2389 {
2390 	struct dpaa_napi_portal *np =
2391 			container_of(napi, struct dpaa_napi_portal, napi);
2392 	int cleaned;
2393 
2394 	np->xdp_act = 0;
2395 
2396 	cleaned = qman_p_poll_dqrr(np->p, budget);
2397 
2398 	if (cleaned < budget) {
2399 		napi_complete_done(napi, cleaned);
2400 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2401 	} else if (np->down) {
2402 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2403 	}
2404 
2405 	if (np->xdp_act & XDP_REDIRECT)
2406 		xdp_do_flush();
2407 
2408 	return cleaned;
2409 }
2410 
2411 static void dpaa_tx_conf(struct net_device *net_dev,
2412 			 const struct dpaa_priv *priv,
2413 			 struct dpaa_percpu_priv *percpu_priv,
2414 			 const struct qm_fd *fd,
2415 			 u32 fqid)
2416 {
2417 	struct sk_buff	*skb;
2418 
2419 	if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2420 		if (net_ratelimit())
2421 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2422 				   be32_to_cpu(fd->status) &
2423 				   FM_FD_STAT_TX_ERRORS);
2424 
2425 		percpu_priv->stats.tx_errors++;
2426 	}
2427 
2428 	percpu_priv->tx_confirm++;
2429 
2430 	skb = dpaa_cleanup_tx_fd(priv, fd, true);
2431 
2432 	consume_skb(skb);
2433 }
2434 
2435 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2436 					 struct qman_portal *portal, bool sched_napi)
2437 {
2438 	if (sched_napi) {
2439 		/* Disable QMan IRQ and invoke NAPI */
2440 		qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2441 
2442 		percpu_priv->np.p = portal;
2443 		napi_schedule(&percpu_priv->np.napi);
2444 		percpu_priv->in_interrupt++;
2445 		return 1;
2446 	}
2447 	return 0;
2448 }
2449 
2450 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2451 					      struct qman_fq *fq,
2452 					      const struct qm_dqrr_entry *dq,
2453 					      bool sched_napi)
2454 {
2455 	struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2456 	struct dpaa_percpu_priv *percpu_priv;
2457 	struct net_device *net_dev;
2458 	struct dpaa_bp *dpaa_bp;
2459 	struct dpaa_priv *priv;
2460 
2461 	net_dev = dpaa_fq->net_dev;
2462 	priv = netdev_priv(net_dev);
2463 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2464 	if (!dpaa_bp)
2465 		return qman_cb_dqrr_consume;
2466 
2467 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2468 
2469 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2470 		return qman_cb_dqrr_stop;
2471 
2472 	dpaa_eth_refill_bpools(priv);
2473 	dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2474 
2475 	return qman_cb_dqrr_consume;
2476 }
2477 
2478 static int dpaa_xdp_xmit_frame(struct net_device *net_dev,
2479 			       struct xdp_frame *xdpf)
2480 {
2481 	struct dpaa_priv *priv = netdev_priv(net_dev);
2482 	struct rtnl_link_stats64 *percpu_stats;
2483 	struct dpaa_percpu_priv *percpu_priv;
2484 	struct dpaa_eth_swbp *swbp;
2485 	struct netdev_queue *txq;
2486 	void *buff_start;
2487 	struct qm_fd fd;
2488 	dma_addr_t addr;
2489 	int err;
2490 
2491 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2492 	percpu_stats = &percpu_priv->stats;
2493 
2494 #ifdef CONFIG_DPAA_ERRATUM_A050385
2495 	if (unlikely(fman_has_errata_a050385())) {
2496 		if (dpaa_a050385_wa_xdpf(priv, &xdpf)) {
2497 			err = -ENOMEM;
2498 			goto out_error;
2499 		}
2500 	}
2501 #endif
2502 
2503 	if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) {
2504 		err = -EINVAL;
2505 		goto out_error;
2506 	}
2507 
2508 	buff_start = xdpf->data - xdpf->headroom;
2509 
2510 	/* Leave empty the skb backpointer at the start of the buffer.
2511 	 * Save the XDP frame for easy cleanup on confirmation.
2512 	 */
2513 	swbp = (struct dpaa_eth_swbp *)buff_start;
2514 	swbp->skb = NULL;
2515 	swbp->xdpf = xdpf;
2516 
2517 	qm_fd_clear_fd(&fd);
2518 	fd.bpid = FSL_DPAA_BPID_INV;
2519 	fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2520 	qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len);
2521 
2522 	addr = dma_map_single(priv->tx_dma_dev, buff_start,
2523 			      xdpf->headroom + xdpf->len,
2524 			      DMA_TO_DEVICE);
2525 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2526 		err = -EINVAL;
2527 		goto out_error;
2528 	}
2529 
2530 	qm_fd_addr_set64(&fd, addr);
2531 
2532 	/* Bump the trans_start */
2533 	txq = netdev_get_tx_queue(net_dev, smp_processor_id());
2534 	txq->trans_start = jiffies;
2535 
2536 	err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd);
2537 	if (err) {
2538 		dma_unmap_single(priv->tx_dma_dev, addr,
2539 				 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd),
2540 				 DMA_TO_DEVICE);
2541 		goto out_error;
2542 	}
2543 
2544 	return 0;
2545 
2546 out_error:
2547 	percpu_stats->tx_errors++;
2548 	return err;
2549 }
2550 
2551 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr,
2552 			struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len)
2553 {
2554 	ssize_t fd_off = qm_fd_get_offset(fd);
2555 	struct bpf_prog *xdp_prog;
2556 	struct xdp_frame *xdpf;
2557 	struct xdp_buff xdp;
2558 	u32 xdp_act;
2559 	int err;
2560 
2561 	xdp_prog = READ_ONCE(priv->xdp_prog);
2562 	if (!xdp_prog)
2563 		return XDP_PASS;
2564 
2565 	xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE,
2566 		      &dpaa_fq->xdp_rxq);
2567 	xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM,
2568 			 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true);
2569 
2570 	/* We reserve a fixed headroom of 256 bytes under the erratum and we
2571 	 * offer it all to XDP programs to use. If no room is left for the
2572 	 * xdpf backpointer on TX, we will need to copy the data.
2573 	 * Disable metadata support since data realignments might be required
2574 	 * and the information can be lost.
2575 	 */
2576 #ifdef CONFIG_DPAA_ERRATUM_A050385
2577 	if (unlikely(fman_has_errata_a050385())) {
2578 		xdp_set_data_meta_invalid(&xdp);
2579 		xdp.data_hard_start = vaddr;
2580 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2581 	}
2582 #endif
2583 
2584 	xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp);
2585 
2586 	/* Update the length and the offset of the FD */
2587 	qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data);
2588 
2589 	switch (xdp_act) {
2590 	case XDP_PASS:
2591 #ifdef CONFIG_DPAA_ERRATUM_A050385
2592 		*xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 :
2593 				xdp.data - xdp.data_meta;
2594 #else
2595 		*xdp_meta_len = xdp.data - xdp.data_meta;
2596 #endif
2597 		break;
2598 	case XDP_TX:
2599 		/* We can access the full headroom when sending the frame
2600 		 * back out
2601 		 */
2602 		xdp.data_hard_start = vaddr;
2603 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2604 		xdpf = xdp_convert_buff_to_frame(&xdp);
2605 		if (unlikely(!xdpf)) {
2606 			free_pages((unsigned long)vaddr, 0);
2607 			break;
2608 		}
2609 
2610 		if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf))
2611 			xdp_return_frame_rx_napi(xdpf);
2612 
2613 		break;
2614 	case XDP_REDIRECT:
2615 		/* Allow redirect to use the full headroom */
2616 		xdp.data_hard_start = vaddr;
2617 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2618 
2619 		err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog);
2620 		if (err) {
2621 			trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2622 			free_pages((unsigned long)vaddr, 0);
2623 		}
2624 		break;
2625 	default:
2626 		bpf_warn_invalid_xdp_action(xdp_act);
2627 		fallthrough;
2628 	case XDP_ABORTED:
2629 		trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2630 		fallthrough;
2631 	case XDP_DROP:
2632 		/* Free the buffer */
2633 		free_pages((unsigned long)vaddr, 0);
2634 		break;
2635 	}
2636 
2637 	return xdp_act;
2638 }
2639 
2640 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2641 						struct qman_fq *fq,
2642 						const struct qm_dqrr_entry *dq,
2643 						bool sched_napi)
2644 {
2645 	bool ts_valid = false, hash_valid = false;
2646 	struct skb_shared_hwtstamps *shhwtstamps;
2647 	unsigned int skb_len, xdp_meta_len = 0;
2648 	struct rtnl_link_stats64 *percpu_stats;
2649 	struct dpaa_percpu_priv *percpu_priv;
2650 	const struct qm_fd *fd = &dq->fd;
2651 	dma_addr_t addr = qm_fd_addr(fd);
2652 	struct dpaa_napi_portal *np;
2653 	enum qm_fd_format fd_format;
2654 	struct net_device *net_dev;
2655 	u32 fd_status, hash_offset;
2656 	struct qm_sg_entry *sgt;
2657 	struct dpaa_bp *dpaa_bp;
2658 	struct dpaa_fq *dpaa_fq;
2659 	struct dpaa_priv *priv;
2660 	struct sk_buff *skb;
2661 	int *count_ptr;
2662 	u32 xdp_act;
2663 	void *vaddr;
2664 	u32 hash;
2665 	u64 ns;
2666 
2667 	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2668 	fd_status = be32_to_cpu(fd->status);
2669 	fd_format = qm_fd_get_format(fd);
2670 	net_dev = dpaa_fq->net_dev;
2671 	priv = netdev_priv(net_dev);
2672 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2673 	if (!dpaa_bp)
2674 		return qman_cb_dqrr_consume;
2675 
2676 	/* Trace the Rx fd */
2677 	trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2678 
2679 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2680 	percpu_stats = &percpu_priv->stats;
2681 	np = &percpu_priv->np;
2682 
2683 	if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)))
2684 		return qman_cb_dqrr_stop;
2685 
2686 	/* Make sure we didn't run out of buffers */
2687 	if (unlikely(dpaa_eth_refill_bpools(priv))) {
2688 		/* Unable to refill the buffer pool due to insufficient
2689 		 * system memory. Just release the frame back into the pool,
2690 		 * otherwise we'll soon end up with an empty buffer pool.
2691 		 */
2692 		dpaa_fd_release(net_dev, &dq->fd);
2693 		return qman_cb_dqrr_consume;
2694 	}
2695 
2696 	if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2697 		if (net_ratelimit())
2698 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2699 				   fd_status & FM_FD_STAT_RX_ERRORS);
2700 
2701 		percpu_stats->rx_errors++;
2702 		dpaa_fd_release(net_dev, fd);
2703 		return qman_cb_dqrr_consume;
2704 	}
2705 
2706 	dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2707 		       DMA_FROM_DEVICE);
2708 
2709 	/* prefetch the first 64 bytes of the frame or the SGT start */
2710 	vaddr = phys_to_virt(addr);
2711 	prefetch(vaddr + qm_fd_get_offset(fd));
2712 
2713 	/* The only FD types that we may receive are contig and S/G */
2714 	WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2715 
2716 	/* Account for either the contig buffer or the SGT buffer (depending on
2717 	 * which case we were in) having been removed from the pool.
2718 	 */
2719 	count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2720 	(*count_ptr)--;
2721 
2722 	/* Extract the timestamp stored in the headroom before running XDP */
2723 	if (priv->rx_tstamp) {
2724 		if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2725 			ts_valid = true;
2726 		else
2727 			WARN_ONCE(1, "fman_port_get_tstamp failed!\n");
2728 	}
2729 
2730 	/* Extract the hash stored in the headroom before running XDP */
2731 	if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2732 	    !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2733 					      &hash_offset)) {
2734 		hash = be32_to_cpu(*(u32 *)(vaddr + hash_offset));
2735 		hash_valid = true;
2736 	}
2737 
2738 	if (likely(fd_format == qm_fd_contig)) {
2739 		xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr,
2740 				       dpaa_fq, &xdp_meta_len);
2741 		np->xdp_act |= xdp_act;
2742 		if (xdp_act != XDP_PASS) {
2743 			percpu_stats->rx_packets++;
2744 			percpu_stats->rx_bytes += qm_fd_get_length(fd);
2745 			return qman_cb_dqrr_consume;
2746 		}
2747 		skb = contig_fd_to_skb(priv, fd);
2748 	} else {
2749 		/* XDP doesn't support S/G frames. Return the fragments to the
2750 		 * buffer pool and release the SGT.
2751 		 */
2752 		if (READ_ONCE(priv->xdp_prog)) {
2753 			WARN_ONCE(1, "S/G frames not supported under XDP\n");
2754 			sgt = vaddr + qm_fd_get_offset(fd);
2755 			dpaa_release_sgt_members(sgt);
2756 			free_pages((unsigned long)vaddr, 0);
2757 			return qman_cb_dqrr_consume;
2758 		}
2759 		skb = sg_fd_to_skb(priv, fd);
2760 	}
2761 	if (!skb)
2762 		return qman_cb_dqrr_consume;
2763 
2764 	if (xdp_meta_len)
2765 		skb_metadata_set(skb, xdp_meta_len);
2766 
2767 	/* Set the previously extracted timestamp */
2768 	if (ts_valid) {
2769 		shhwtstamps = skb_hwtstamps(skb);
2770 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2771 		shhwtstamps->hwtstamp = ns_to_ktime(ns);
2772 	}
2773 
2774 	skb->protocol = eth_type_trans(skb, net_dev);
2775 
2776 	/* Set the previously extracted hash */
2777 	if (hash_valid) {
2778 		enum pkt_hash_types type;
2779 
2780 		/* if L4 exists, it was used in the hash generation */
2781 		type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2782 			PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2783 		skb_set_hash(skb, hash, type);
2784 	}
2785 
2786 	skb_len = skb->len;
2787 
2788 	if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2789 		percpu_stats->rx_dropped++;
2790 		return qman_cb_dqrr_consume;
2791 	}
2792 
2793 	percpu_stats->rx_packets++;
2794 	percpu_stats->rx_bytes += skb_len;
2795 
2796 	return qman_cb_dqrr_consume;
2797 }
2798 
2799 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2800 						struct qman_fq *fq,
2801 						const struct qm_dqrr_entry *dq,
2802 						bool sched_napi)
2803 {
2804 	struct dpaa_percpu_priv *percpu_priv;
2805 	struct net_device *net_dev;
2806 	struct dpaa_priv *priv;
2807 
2808 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2809 	priv = netdev_priv(net_dev);
2810 
2811 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2812 
2813 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2814 		return qman_cb_dqrr_stop;
2815 
2816 	dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2817 
2818 	return qman_cb_dqrr_consume;
2819 }
2820 
2821 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2822 					       struct qman_fq *fq,
2823 					       const struct qm_dqrr_entry *dq,
2824 					       bool sched_napi)
2825 {
2826 	struct dpaa_percpu_priv *percpu_priv;
2827 	struct net_device *net_dev;
2828 	struct dpaa_priv *priv;
2829 
2830 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2831 	priv = netdev_priv(net_dev);
2832 
2833 	/* Trace the fd */
2834 	trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2835 
2836 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2837 
2838 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2839 		return qman_cb_dqrr_stop;
2840 
2841 	dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2842 
2843 	return qman_cb_dqrr_consume;
2844 }
2845 
2846 static void egress_ern(struct qman_portal *portal,
2847 		       struct qman_fq *fq,
2848 		       const union qm_mr_entry *msg)
2849 {
2850 	const struct qm_fd *fd = &msg->ern.fd;
2851 	struct dpaa_percpu_priv *percpu_priv;
2852 	const struct dpaa_priv *priv;
2853 	struct net_device *net_dev;
2854 	struct sk_buff *skb;
2855 
2856 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2857 	priv = netdev_priv(net_dev);
2858 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2859 
2860 	percpu_priv->stats.tx_dropped++;
2861 	percpu_priv->stats.tx_fifo_errors++;
2862 	count_ern(percpu_priv, msg);
2863 
2864 	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2865 	dev_kfree_skb_any(skb);
2866 }
2867 
2868 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2869 	.rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2870 	.tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2871 	.rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2872 	.tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2873 	.egress_ern = { .cb = { .ern = egress_ern } }
2874 };
2875 
2876 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2877 {
2878 	struct dpaa_percpu_priv *percpu_priv;
2879 	int i;
2880 
2881 	for_each_online_cpu(i) {
2882 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2883 
2884 		percpu_priv->np.down = false;
2885 		napi_enable(&percpu_priv->np.napi);
2886 	}
2887 }
2888 
2889 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2890 {
2891 	struct dpaa_percpu_priv *percpu_priv;
2892 	int i;
2893 
2894 	for_each_online_cpu(i) {
2895 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2896 
2897 		percpu_priv->np.down = true;
2898 		napi_disable(&percpu_priv->np.napi);
2899 	}
2900 }
2901 
2902 static void dpaa_adjust_link(struct net_device *net_dev)
2903 {
2904 	struct mac_device *mac_dev;
2905 	struct dpaa_priv *priv;
2906 
2907 	priv = netdev_priv(net_dev);
2908 	mac_dev = priv->mac_dev;
2909 	mac_dev->adjust_link(mac_dev);
2910 }
2911 
2912 /* The Aquantia PHYs are capable of performing rate adaptation */
2913 #define PHY_VEND_AQUANTIA	0x03a1b400
2914 
2915 static int dpaa_phy_init(struct net_device *net_dev)
2916 {
2917 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2918 	struct mac_device *mac_dev;
2919 	struct phy_device *phy_dev;
2920 	struct dpaa_priv *priv;
2921 
2922 	priv = netdev_priv(net_dev);
2923 	mac_dev = priv->mac_dev;
2924 
2925 	phy_dev = of_phy_connect(net_dev, mac_dev->phy_node,
2926 				 &dpaa_adjust_link, 0,
2927 				 mac_dev->phy_if);
2928 	if (!phy_dev) {
2929 		netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2930 		return -ENODEV;
2931 	}
2932 
2933 	/* Unless the PHY is capable of rate adaptation */
2934 	if (mac_dev->phy_if != PHY_INTERFACE_MODE_XGMII ||
2935 	    ((phy_dev->drv->phy_id & GENMASK(31, 10)) != PHY_VEND_AQUANTIA)) {
2936 		/* remove any features not supported by the controller */
2937 		ethtool_convert_legacy_u32_to_link_mode(mask,
2938 							mac_dev->if_support);
2939 		linkmode_and(phy_dev->supported, phy_dev->supported, mask);
2940 	}
2941 
2942 	phy_support_asym_pause(phy_dev);
2943 
2944 	mac_dev->phy_dev = phy_dev;
2945 	net_dev->phydev = phy_dev;
2946 
2947 	return 0;
2948 }
2949 
2950 static int dpaa_open(struct net_device *net_dev)
2951 {
2952 	struct mac_device *mac_dev;
2953 	struct dpaa_priv *priv;
2954 	int err, i;
2955 
2956 	priv = netdev_priv(net_dev);
2957 	mac_dev = priv->mac_dev;
2958 	dpaa_eth_napi_enable(priv);
2959 
2960 	err = dpaa_phy_init(net_dev);
2961 	if (err)
2962 		goto phy_init_failed;
2963 
2964 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2965 		err = fman_port_enable(mac_dev->port[i]);
2966 		if (err)
2967 			goto mac_start_failed;
2968 	}
2969 
2970 	err = priv->mac_dev->start(mac_dev);
2971 	if (err < 0) {
2972 		netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2973 		goto mac_start_failed;
2974 	}
2975 
2976 	netif_tx_start_all_queues(net_dev);
2977 
2978 	return 0;
2979 
2980 mac_start_failed:
2981 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2982 		fman_port_disable(mac_dev->port[i]);
2983 
2984 phy_init_failed:
2985 	dpaa_eth_napi_disable(priv);
2986 
2987 	return err;
2988 }
2989 
2990 static int dpaa_eth_stop(struct net_device *net_dev)
2991 {
2992 	struct dpaa_priv *priv;
2993 	int err;
2994 
2995 	err = dpaa_stop(net_dev);
2996 
2997 	priv = netdev_priv(net_dev);
2998 	dpaa_eth_napi_disable(priv);
2999 
3000 	return err;
3001 }
3002 
3003 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu)
3004 {
3005 	int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom;
3006 
3007 	/* We do not support S/G fragments when XDP is enabled.
3008 	 * Limit the MTU in relation to the buffer size.
3009 	 */
3010 	if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) {
3011 		dev_warn(priv->net_dev->dev.parent,
3012 			 "The maximum MTU for XDP is %d\n",
3013 			 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN);
3014 		return false;
3015 	}
3016 
3017 	return true;
3018 }
3019 
3020 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu)
3021 {
3022 	struct dpaa_priv *priv = netdev_priv(net_dev);
3023 
3024 	if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu))
3025 		return -EINVAL;
3026 
3027 	net_dev->mtu = new_mtu;
3028 	return 0;
3029 }
3030 
3031 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf)
3032 {
3033 	struct dpaa_priv *priv = netdev_priv(net_dev);
3034 	struct bpf_prog *old_prog;
3035 	int err;
3036 	bool up;
3037 
3038 	/* S/G fragments are not supported in XDP-mode */
3039 	if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) {
3040 		NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP");
3041 		return -EINVAL;
3042 	}
3043 
3044 	up = netif_running(net_dev);
3045 
3046 	if (up)
3047 		dpaa_eth_stop(net_dev);
3048 
3049 	old_prog = xchg(&priv->xdp_prog, bpf->prog);
3050 	if (old_prog)
3051 		bpf_prog_put(old_prog);
3052 
3053 	if (up) {
3054 		err = dpaa_open(net_dev);
3055 		if (err) {
3056 			NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed");
3057 			return err;
3058 		}
3059 	}
3060 
3061 	return 0;
3062 }
3063 
3064 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp)
3065 {
3066 	switch (xdp->command) {
3067 	case XDP_SETUP_PROG:
3068 		return dpaa_setup_xdp(net_dev, xdp);
3069 	default:
3070 		return -EINVAL;
3071 	}
3072 }
3073 
3074 static int dpaa_xdp_xmit(struct net_device *net_dev, int n,
3075 			 struct xdp_frame **frames, u32 flags)
3076 {
3077 	struct xdp_frame *xdpf;
3078 	int i, nxmit = 0;
3079 
3080 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3081 		return -EINVAL;
3082 
3083 	if (!netif_running(net_dev))
3084 		return -ENETDOWN;
3085 
3086 	for (i = 0; i < n; i++) {
3087 		xdpf = frames[i];
3088 		if (dpaa_xdp_xmit_frame(net_dev, xdpf))
3089 			break;
3090 		nxmit++;
3091 	}
3092 
3093 	return nxmit;
3094 }
3095 
3096 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3097 {
3098 	struct dpaa_priv *priv = netdev_priv(dev);
3099 	struct hwtstamp_config config;
3100 
3101 	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
3102 		return -EFAULT;
3103 
3104 	switch (config.tx_type) {
3105 	case HWTSTAMP_TX_OFF:
3106 		/* Couldn't disable rx/tx timestamping separately.
3107 		 * Do nothing here.
3108 		 */
3109 		priv->tx_tstamp = false;
3110 		break;
3111 	case HWTSTAMP_TX_ON:
3112 		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3113 		priv->tx_tstamp = true;
3114 		break;
3115 	default:
3116 		return -ERANGE;
3117 	}
3118 
3119 	if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
3120 		/* Couldn't disable rx/tx timestamping separately.
3121 		 * Do nothing here.
3122 		 */
3123 		priv->rx_tstamp = false;
3124 	} else {
3125 		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3126 		priv->rx_tstamp = true;
3127 		/* TS is set for all frame types, not only those requested */
3128 		config.rx_filter = HWTSTAMP_FILTER_ALL;
3129 	}
3130 
3131 	return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
3132 			-EFAULT : 0;
3133 }
3134 
3135 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
3136 {
3137 	int ret = -EINVAL;
3138 
3139 	if (cmd == SIOCGMIIREG) {
3140 		if (net_dev->phydev)
3141 			return phy_mii_ioctl(net_dev->phydev, rq, cmd);
3142 	}
3143 
3144 	if (cmd == SIOCSHWTSTAMP)
3145 		return dpaa_ts_ioctl(net_dev, rq, cmd);
3146 
3147 	return ret;
3148 }
3149 
3150 static const struct net_device_ops dpaa_ops = {
3151 	.ndo_open = dpaa_open,
3152 	.ndo_start_xmit = dpaa_start_xmit,
3153 	.ndo_stop = dpaa_eth_stop,
3154 	.ndo_tx_timeout = dpaa_tx_timeout,
3155 	.ndo_get_stats64 = dpaa_get_stats64,
3156 	.ndo_change_carrier = fixed_phy_change_carrier,
3157 	.ndo_set_mac_address = dpaa_set_mac_address,
3158 	.ndo_validate_addr = eth_validate_addr,
3159 	.ndo_set_rx_mode = dpaa_set_rx_mode,
3160 	.ndo_eth_ioctl = dpaa_ioctl,
3161 	.ndo_setup_tc = dpaa_setup_tc,
3162 	.ndo_change_mtu = dpaa_change_mtu,
3163 	.ndo_bpf = dpaa_xdp,
3164 	.ndo_xdp_xmit = dpaa_xdp_xmit,
3165 };
3166 
3167 static int dpaa_napi_add(struct net_device *net_dev)
3168 {
3169 	struct dpaa_priv *priv = netdev_priv(net_dev);
3170 	struct dpaa_percpu_priv *percpu_priv;
3171 	int cpu;
3172 
3173 	for_each_possible_cpu(cpu) {
3174 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3175 
3176 		netif_napi_add(net_dev, &percpu_priv->np.napi,
3177 			       dpaa_eth_poll, NAPI_POLL_WEIGHT);
3178 	}
3179 
3180 	return 0;
3181 }
3182 
3183 static void dpaa_napi_del(struct net_device *net_dev)
3184 {
3185 	struct dpaa_priv *priv = netdev_priv(net_dev);
3186 	struct dpaa_percpu_priv *percpu_priv;
3187 	int cpu;
3188 
3189 	for_each_possible_cpu(cpu) {
3190 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3191 
3192 		netif_napi_del(&percpu_priv->np.napi);
3193 	}
3194 }
3195 
3196 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
3197 				   struct bm_buffer *bmb)
3198 {
3199 	dma_addr_t addr = bm_buf_addr(bmb);
3200 
3201 	dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
3202 		       DMA_FROM_DEVICE);
3203 
3204 	skb_free_frag(phys_to_virt(addr));
3205 }
3206 
3207 /* Alloc the dpaa_bp struct and configure default values */
3208 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
3209 {
3210 	struct dpaa_bp *dpaa_bp;
3211 
3212 	dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
3213 	if (!dpaa_bp)
3214 		return ERR_PTR(-ENOMEM);
3215 
3216 	dpaa_bp->bpid = FSL_DPAA_BPID_INV;
3217 	dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
3218 	if (!dpaa_bp->percpu_count)
3219 		return ERR_PTR(-ENOMEM);
3220 
3221 	dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
3222 
3223 	dpaa_bp->seed_cb = dpaa_bp_seed;
3224 	dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
3225 
3226 	return dpaa_bp;
3227 }
3228 
3229 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
3230  * We won't be sending congestion notifications to FMan; for now, we just use
3231  * this CGR to generate enqueue rejections to FMan in order to drop the frames
3232  * before they reach our ingress queues and eat up memory.
3233  */
3234 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
3235 {
3236 	struct qm_mcc_initcgr initcgr;
3237 	u32 cs_th;
3238 	int err;
3239 
3240 	err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
3241 	if (err < 0) {
3242 		if (netif_msg_drv(priv))
3243 			pr_err("Error %d allocating CGR ID\n", err);
3244 		goto out_error;
3245 	}
3246 
3247 	/* Enable CS TD, but disable Congestion State Change Notifications. */
3248 	memset(&initcgr, 0, sizeof(initcgr));
3249 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
3250 	initcgr.cgr.cscn_en = QM_CGR_EN;
3251 	cs_th = DPAA_INGRESS_CS_THRESHOLD;
3252 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
3253 
3254 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
3255 	initcgr.cgr.cstd_en = QM_CGR_EN;
3256 
3257 	/* This CGR will be associated with the SWP affined to the current CPU.
3258 	 * However, we'll place all our ingress FQs in it.
3259 	 */
3260 	err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
3261 			      &initcgr);
3262 	if (err < 0) {
3263 		if (netif_msg_drv(priv))
3264 			pr_err("Error %d creating ingress CGR with ID %d\n",
3265 			       err, priv->ingress_cgr.cgrid);
3266 		qman_release_cgrid(priv->ingress_cgr.cgrid);
3267 		goto out_error;
3268 	}
3269 	if (netif_msg_drv(priv))
3270 		pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
3271 			 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
3272 
3273 	priv->use_ingress_cgr = true;
3274 
3275 out_error:
3276 	return err;
3277 }
3278 
3279 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl,
3280 			     enum port_type port)
3281 {
3282 	u16 headroom;
3283 
3284 	/* The frame headroom must accommodate:
3285 	 * - the driver private data area
3286 	 * - parse results, hash results, timestamp if selected
3287 	 * If either hash results or time stamp are selected, both will
3288 	 * be copied to/from the frame headroom, as TS is located between PR and
3289 	 * HR in the IC and IC copy size has a granularity of 16bytes
3290 	 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
3291 	 *
3292 	 * Also make sure the headroom is a multiple of data_align bytes
3293 	 */
3294 	headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE);
3295 
3296 	if (port == RX) {
3297 #ifdef CONFIG_DPAA_ERRATUM_A050385
3298 		if (unlikely(fman_has_errata_a050385()))
3299 			headroom = XDP_PACKET_HEADROOM;
3300 #endif
3301 
3302 		return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT);
3303 	} else {
3304 		return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
3305 	}
3306 }
3307 
3308 static int dpaa_eth_probe(struct platform_device *pdev)
3309 {
3310 	struct net_device *net_dev = NULL;
3311 	struct dpaa_bp *dpaa_bp = NULL;
3312 	struct dpaa_fq *dpaa_fq, *tmp;
3313 	struct dpaa_priv *priv = NULL;
3314 	struct fm_port_fqs port_fqs;
3315 	struct mac_device *mac_dev;
3316 	int err = 0, channel;
3317 	struct device *dev;
3318 
3319 	dev = &pdev->dev;
3320 
3321 	err = bman_is_probed();
3322 	if (!err)
3323 		return -EPROBE_DEFER;
3324 	if (err < 0) {
3325 		dev_err(dev, "failing probe due to bman probe error\n");
3326 		return -ENODEV;
3327 	}
3328 	err = qman_is_probed();
3329 	if (!err)
3330 		return -EPROBE_DEFER;
3331 	if (err < 0) {
3332 		dev_err(dev, "failing probe due to qman probe error\n");
3333 		return -ENODEV;
3334 	}
3335 	err = bman_portals_probed();
3336 	if (!err)
3337 		return -EPROBE_DEFER;
3338 	if (err < 0) {
3339 		dev_err(dev,
3340 			"failing probe due to bman portals probe error\n");
3341 		return -ENODEV;
3342 	}
3343 	err = qman_portals_probed();
3344 	if (!err)
3345 		return -EPROBE_DEFER;
3346 	if (err < 0) {
3347 		dev_err(dev,
3348 			"failing probe due to qman portals probe error\n");
3349 		return -ENODEV;
3350 	}
3351 
3352 	/* Allocate this early, so we can store relevant information in
3353 	 * the private area
3354 	 */
3355 	net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
3356 	if (!net_dev) {
3357 		dev_err(dev, "alloc_etherdev_mq() failed\n");
3358 		return -ENOMEM;
3359 	}
3360 
3361 	/* Do this here, so we can be verbose early */
3362 	SET_NETDEV_DEV(net_dev, dev->parent);
3363 	dev_set_drvdata(dev, net_dev);
3364 
3365 	priv = netdev_priv(net_dev);
3366 	priv->net_dev = net_dev;
3367 
3368 	priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
3369 
3370 	mac_dev = dpaa_mac_dev_get(pdev);
3371 	if (IS_ERR(mac_dev)) {
3372 		netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
3373 		err = PTR_ERR(mac_dev);
3374 		goto free_netdev;
3375 	}
3376 
3377 	/* Devices used for DMA mapping */
3378 	priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
3379 	priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
3380 	err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
3381 	if (!err)
3382 		err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
3383 						   DMA_BIT_MASK(40));
3384 	if (err) {
3385 		netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
3386 		goto free_netdev;
3387 	}
3388 
3389 	/* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
3390 	 * we choose conservatively and let the user explicitly set a higher
3391 	 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
3392 	 * in the same LAN.
3393 	 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
3394 	 * start with the maximum allowed.
3395 	 */
3396 	net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
3397 
3398 	netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
3399 		   net_dev->mtu);
3400 
3401 	priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
3402 	priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
3403 
3404 	/* bp init */
3405 	dpaa_bp = dpaa_bp_alloc(dev);
3406 	if (IS_ERR(dpaa_bp)) {
3407 		err = PTR_ERR(dpaa_bp);
3408 		goto free_dpaa_bps;
3409 	}
3410 	/* the raw size of the buffers used for reception */
3411 	dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
3412 	/* avoid runtime computations by keeping the usable size here */
3413 	dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
3414 	dpaa_bp->priv = priv;
3415 
3416 	err = dpaa_bp_alloc_pool(dpaa_bp);
3417 	if (err < 0)
3418 		goto free_dpaa_bps;
3419 	priv->dpaa_bp = dpaa_bp;
3420 
3421 	INIT_LIST_HEAD(&priv->dpaa_fq_list);
3422 
3423 	memset(&port_fqs, 0, sizeof(port_fqs));
3424 
3425 	err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
3426 	if (err < 0) {
3427 		dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
3428 		goto free_dpaa_bps;
3429 	}
3430 
3431 	priv->mac_dev = mac_dev;
3432 
3433 	channel = dpaa_get_channel();
3434 	if (channel < 0) {
3435 		dev_err(dev, "dpaa_get_channel() failed\n");
3436 		err = channel;
3437 		goto free_dpaa_bps;
3438 	}
3439 
3440 	priv->channel = (u16)channel;
3441 
3442 	/* Walk the CPUs with affine portals
3443 	 * and add this pool channel to each's dequeue mask.
3444 	 */
3445 	dpaa_eth_add_channel(priv->channel, &pdev->dev);
3446 
3447 	dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
3448 
3449 	/* Create a congestion group for this netdev, with
3450 	 * dynamically-allocated CGR ID.
3451 	 * Must be executed after probing the MAC, but before
3452 	 * assigning the egress FQs to the CGRs.
3453 	 */
3454 	err = dpaa_eth_cgr_init(priv);
3455 	if (err < 0) {
3456 		dev_err(dev, "Error initializing CGR\n");
3457 		goto free_dpaa_bps;
3458 	}
3459 
3460 	err = dpaa_ingress_cgr_init(priv);
3461 	if (err < 0) {
3462 		dev_err(dev, "Error initializing ingress CGR\n");
3463 		goto delete_egress_cgr;
3464 	}
3465 
3466 	/* Add the FQs to the interface, and make them active */
3467 	list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
3468 		err = dpaa_fq_init(dpaa_fq, false);
3469 		if (err < 0)
3470 			goto free_dpaa_fqs;
3471 	}
3472 
3473 	priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX);
3474 	priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX);
3475 
3476 	/* All real interfaces need their ports initialized */
3477 	err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
3478 				  &priv->buf_layout[0], dev);
3479 	if (err)
3480 		goto free_dpaa_fqs;
3481 
3482 	/* Rx traffic distribution based on keygen hashing defaults to on */
3483 	priv->keygen_in_use = true;
3484 
3485 	priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
3486 	if (!priv->percpu_priv) {
3487 		dev_err(dev, "devm_alloc_percpu() failed\n");
3488 		err = -ENOMEM;
3489 		goto free_dpaa_fqs;
3490 	}
3491 
3492 	priv->num_tc = 1;
3493 	netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
3494 
3495 	/* Initialize NAPI */
3496 	err = dpaa_napi_add(net_dev);
3497 	if (err < 0)
3498 		goto delete_dpaa_napi;
3499 
3500 	err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
3501 	if (err < 0)
3502 		goto delete_dpaa_napi;
3503 
3504 	dpaa_eth_sysfs_init(&net_dev->dev);
3505 
3506 	netif_info(priv, probe, net_dev, "Probed interface %s\n",
3507 		   net_dev->name);
3508 
3509 	return 0;
3510 
3511 delete_dpaa_napi:
3512 	dpaa_napi_del(net_dev);
3513 free_dpaa_fqs:
3514 	dpaa_fq_free(dev, &priv->dpaa_fq_list);
3515 	qman_delete_cgr_safe(&priv->ingress_cgr);
3516 	qman_release_cgrid(priv->ingress_cgr.cgrid);
3517 delete_egress_cgr:
3518 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3519 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3520 free_dpaa_bps:
3521 	dpaa_bps_free(priv);
3522 free_netdev:
3523 	dev_set_drvdata(dev, NULL);
3524 	free_netdev(net_dev);
3525 
3526 	return err;
3527 }
3528 
3529 static int dpaa_remove(struct platform_device *pdev)
3530 {
3531 	struct net_device *net_dev;
3532 	struct dpaa_priv *priv;
3533 	struct device *dev;
3534 	int err;
3535 
3536 	dev = &pdev->dev;
3537 	net_dev = dev_get_drvdata(dev);
3538 
3539 	priv = netdev_priv(net_dev);
3540 
3541 	dpaa_eth_sysfs_remove(dev);
3542 
3543 	dev_set_drvdata(dev, NULL);
3544 	unregister_netdev(net_dev);
3545 
3546 	err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
3547 
3548 	qman_delete_cgr_safe(&priv->ingress_cgr);
3549 	qman_release_cgrid(priv->ingress_cgr.cgrid);
3550 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3551 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3552 
3553 	dpaa_napi_del(net_dev);
3554 
3555 	dpaa_bps_free(priv);
3556 
3557 	free_netdev(net_dev);
3558 
3559 	return err;
3560 }
3561 
3562 static const struct platform_device_id dpaa_devtype[] = {
3563 	{
3564 		.name = "dpaa-ethernet",
3565 		.driver_data = 0,
3566 	}, {
3567 	}
3568 };
3569 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3570 
3571 static struct platform_driver dpaa_driver = {
3572 	.driver = {
3573 		.name = KBUILD_MODNAME,
3574 	},
3575 	.id_table = dpaa_devtype,
3576 	.probe = dpaa_eth_probe,
3577 	.remove = dpaa_remove
3578 };
3579 
3580 static int __init dpaa_load(void)
3581 {
3582 	int err;
3583 
3584 	pr_debug("FSL DPAA Ethernet driver\n");
3585 
3586 	/* initialize dpaa_eth mirror values */
3587 	dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3588 	dpaa_max_frm = fman_get_max_frm();
3589 
3590 	err = platform_driver_register(&dpaa_driver);
3591 	if (err < 0)
3592 		pr_err("Error, platform_driver_register() = %d\n", err);
3593 
3594 	return err;
3595 }
3596 module_init(dpaa_load);
3597 
3598 static void __exit dpaa_unload(void)
3599 {
3600 	platform_driver_unregister(&dpaa_driver);
3601 
3602 	/* Only one channel is used and needs to be released after all
3603 	 * interfaces are removed
3604 	 */
3605 	dpaa_release_channel();
3606 }
3607 module_exit(dpaa_unload);
3608 
3609 MODULE_LICENSE("Dual BSD/GPL");
3610 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
3611