xref: /openbmc/linux/drivers/net/ethernet/freescale/dpaa/dpaa_eth.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *	 notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *	 notice, this list of conditions and the following disclaimer in the
9  *	 documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *	 names of its contributors may be used to endorse or promote products
12  *	 derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/of_platform.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/io.h>
39 #include <linux/if_arp.h>
40 #include <linux/if_vlan.h>
41 #include <linux/icmp.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/udp.h>
45 #include <linux/tcp.h>
46 #include <linux/net.h>
47 #include <linux/skbuff.h>
48 #include <linux/etherdevice.h>
49 #include <linux/if_ether.h>
50 #include <linux/highmem.h>
51 #include <linux/percpu.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/sort.h>
54 #include <soc/fsl/bman.h>
55 #include <soc/fsl/qman.h>
56 
57 #include "fman.h"
58 #include "fman_port.h"
59 #include "mac.h"
60 #include "dpaa_eth.h"
61 
62 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
63  * using trace events only need to #include <trace/events/sched.h>
64  */
65 #define CREATE_TRACE_POINTS
66 #include "dpaa_eth_trace.h"
67 
68 static int debug = -1;
69 module_param(debug, int, 0444);
70 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
71 
72 static u16 tx_timeout = 1000;
73 module_param(tx_timeout, ushort, 0444);
74 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
75 
76 #define FM_FD_STAT_RX_ERRORS						\
77 	(FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL	| \
78 	 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
79 	 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME	| \
80 	 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
81 	 FM_FD_ERR_PRS_HDR_ERR)
82 
83 #define FM_FD_STAT_TX_ERRORS \
84 	(FM_FD_ERR_UNSUPPORTED_FORMAT | \
85 	 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
86 
87 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
88 			  NETIF_MSG_LINK | NETIF_MSG_IFUP | \
89 			  NETIF_MSG_IFDOWN)
90 
91 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
92 /* Ingress congestion threshold on FMan ports
93  * The size in bytes of the ingress tail-drop threshold on FMan ports.
94  * Traffic piling up above this value will be rejected by QMan and discarded
95  * by FMan.
96  */
97 
98 /* Size in bytes of the FQ taildrop threshold */
99 #define DPAA_FQ_TD 0x200000
100 
101 #define DPAA_CS_THRESHOLD_1G 0x06000000
102 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
103  * The size in bytes of the egress Congestion State notification threshold on
104  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
105  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
106  * and the larger the frame size, the more acute the problem.
107  * So we have to find a balance between these factors:
108  * - avoiding the device staying congested for a prolonged time (risking
109  *   the netdev watchdog to fire - see also the tx_timeout module param);
110  * - affecting performance of protocols such as TCP, which otherwise
111  *   behave well under the congestion notification mechanism;
112  * - preventing the Tx cores from tightly-looping (as if the congestion
113  *   threshold was too low to be effective);
114  * - running out of memory if the CS threshold is set too high.
115  */
116 
117 #define DPAA_CS_THRESHOLD_10G 0x10000000
118 /* The size in bytes of the egress Congestion State notification threshold on
119  * 10G ports, range 0x1000 .. 0x10000000
120  */
121 
122 /* Largest value that the FQD's OAL field can hold */
123 #define FSL_QMAN_MAX_OAL	127
124 
125 /* Default alignment for start of data in an Rx FD */
126 #define DPAA_FD_DATA_ALIGNMENT  16
127 
128 /* Values for the L3R field of the FM Parse Results
129  */
130 /* L3 Type field: First IP Present IPv4 */
131 #define FM_L3_PARSE_RESULT_IPV4	0x8000
132 /* L3 Type field: First IP Present IPv6 */
133 #define FM_L3_PARSE_RESULT_IPV6	0x4000
134 /* Values for the L4R field of the FM Parse Results */
135 /* L4 Type field: UDP */
136 #define FM_L4_PARSE_RESULT_UDP	0x40
137 /* L4 Type field: TCP */
138 #define FM_L4_PARSE_RESULT_TCP	0x20
139 
140 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
141 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
142 
143 #define FSL_DPAA_BPID_INV		0xff
144 #define FSL_DPAA_ETH_MAX_BUF_COUNT	128
145 #define FSL_DPAA_ETH_REFILL_THRESHOLD	80
146 
147 #define DPAA_TX_PRIV_DATA_SIZE	16
148 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
149 #define DPAA_TIME_STAMP_SIZE 8
150 #define DPAA_HASH_RESULTS_SIZE 8
151 #define DPAA_RX_PRIV_DATA_SIZE	(u16)(DPAA_TX_PRIV_DATA_SIZE + \
152 					dpaa_rx_extra_headroom)
153 
154 #define DPAA_ETH_RX_QUEUES	128
155 
156 #define DPAA_ENQUEUE_RETRIES	100000
157 
158 enum port_type {RX, TX};
159 
160 struct fm_port_fqs {
161 	struct dpaa_fq *tx_defq;
162 	struct dpaa_fq *tx_errq;
163 	struct dpaa_fq *rx_defq;
164 	struct dpaa_fq *rx_errq;
165 };
166 
167 /* All the dpa bps in use at any moment */
168 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
169 
170 /* The raw buffer size must be cacheline aligned */
171 #define DPAA_BP_RAW_SIZE 4096
172 /* When using more than one buffer pool, the raw sizes are as follows:
173  * 1 bp: 4KB
174  * 2 bp: 2KB, 4KB
175  * 3 bp: 1KB, 2KB, 4KB
176  * 4 bp: 1KB, 2KB, 4KB, 8KB
177  */
178 static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt)
179 {
180 	size_t res = DPAA_BP_RAW_SIZE / 4;
181 	u8 i;
182 
183 	for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++)
184 		res *= 2;
185 	return res;
186 }
187 
188 /* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is
189  * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that,
190  * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us
191  * half-page-aligned buffers, so we reserve some more space for start-of-buffer
192  * alignment.
193  */
194 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES)
195 
196 static int dpaa_max_frm;
197 
198 static int dpaa_rx_extra_headroom;
199 
200 #define dpaa_get_max_mtu()	\
201 	(dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
202 
203 static int dpaa_netdev_init(struct net_device *net_dev,
204 			    const struct net_device_ops *dpaa_ops,
205 			    u16 tx_timeout)
206 {
207 	struct dpaa_priv *priv = netdev_priv(net_dev);
208 	struct device *dev = net_dev->dev.parent;
209 	struct dpaa_percpu_priv *percpu_priv;
210 	const u8 *mac_addr;
211 	int i, err;
212 
213 	/* Although we access another CPU's private data here
214 	 * we do it at initialization so it is safe
215 	 */
216 	for_each_possible_cpu(i) {
217 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
218 		percpu_priv->net_dev = net_dev;
219 	}
220 
221 	net_dev->netdev_ops = dpaa_ops;
222 	mac_addr = priv->mac_dev->addr;
223 
224 	net_dev->mem_start = priv->mac_dev->res->start;
225 	net_dev->mem_end = priv->mac_dev->res->end;
226 
227 	net_dev->min_mtu = ETH_MIN_MTU;
228 	net_dev->max_mtu = dpaa_get_max_mtu();
229 
230 	net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
231 				 NETIF_F_LLTX);
232 
233 	net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
234 	/* The kernels enables GSO automatically, if we declare NETIF_F_SG.
235 	 * For conformity, we'll still declare GSO explicitly.
236 	 */
237 	net_dev->features |= NETIF_F_GSO;
238 
239 	net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
240 	/* we do not want shared skbs on TX */
241 	net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
242 
243 	net_dev->features |= net_dev->hw_features;
244 	net_dev->vlan_features = net_dev->features;
245 
246 	memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
247 	memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
248 
249 	net_dev->ethtool_ops = &dpaa_ethtool_ops;
250 
251 	net_dev->needed_headroom = priv->tx_headroom;
252 	net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
253 
254 	/* start without the RUNNING flag, phylib controls it later */
255 	netif_carrier_off(net_dev);
256 
257 	err = register_netdev(net_dev);
258 	if (err < 0) {
259 		dev_err(dev, "register_netdev() = %d\n", err);
260 		return err;
261 	}
262 
263 	return 0;
264 }
265 
266 static int dpaa_stop(struct net_device *net_dev)
267 {
268 	struct mac_device *mac_dev;
269 	struct dpaa_priv *priv;
270 	int i, err, error;
271 
272 	priv = netdev_priv(net_dev);
273 	mac_dev = priv->mac_dev;
274 
275 	netif_tx_stop_all_queues(net_dev);
276 	/* Allow the Fman (Tx) port to process in-flight frames before we
277 	 * try switching it off.
278 	 */
279 	usleep_range(5000, 10000);
280 
281 	err = mac_dev->stop(mac_dev);
282 	if (err < 0)
283 		netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
284 			  err);
285 
286 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
287 		error = fman_port_disable(mac_dev->port[i]);
288 		if (error)
289 			err = error;
290 	}
291 
292 	if (net_dev->phydev)
293 		phy_disconnect(net_dev->phydev);
294 	net_dev->phydev = NULL;
295 
296 	return err;
297 }
298 
299 static void dpaa_tx_timeout(struct net_device *net_dev)
300 {
301 	struct dpaa_percpu_priv *percpu_priv;
302 	const struct dpaa_priv	*priv;
303 
304 	priv = netdev_priv(net_dev);
305 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
306 
307 	netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
308 		   jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
309 
310 	percpu_priv->stats.tx_errors++;
311 }
312 
313 /* Calculates the statistics for the given device by adding the statistics
314  * collected by each CPU.
315  */
316 static struct rtnl_link_stats64 *dpaa_get_stats64(struct net_device *net_dev,
317 						  struct rtnl_link_stats64 *s)
318 {
319 	int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
320 	struct dpaa_priv *priv = netdev_priv(net_dev);
321 	struct dpaa_percpu_priv *percpu_priv;
322 	u64 *netstats = (u64 *)s;
323 	u64 *cpustats;
324 	int i, j;
325 
326 	for_each_possible_cpu(i) {
327 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
328 
329 		cpustats = (u64 *)&percpu_priv->stats;
330 
331 		/* add stats from all CPUs */
332 		for (j = 0; j < numstats; j++)
333 			netstats[j] += cpustats[j];
334 	}
335 
336 	return s;
337 }
338 
339 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
340 {
341 	struct platform_device *of_dev;
342 	struct dpaa_eth_data *eth_data;
343 	struct device *dpaa_dev, *dev;
344 	struct device_node *mac_node;
345 	struct mac_device *mac_dev;
346 
347 	dpaa_dev = &pdev->dev;
348 	eth_data = dpaa_dev->platform_data;
349 	if (!eth_data)
350 		return ERR_PTR(-ENODEV);
351 
352 	mac_node = eth_data->mac_node;
353 
354 	of_dev = of_find_device_by_node(mac_node);
355 	if (!of_dev) {
356 		dev_err(dpaa_dev, "of_find_device_by_node(%s) failed\n",
357 			mac_node->full_name);
358 		of_node_put(mac_node);
359 		return ERR_PTR(-EINVAL);
360 	}
361 	of_node_put(mac_node);
362 
363 	dev = &of_dev->dev;
364 
365 	mac_dev = dev_get_drvdata(dev);
366 	if (!mac_dev) {
367 		dev_err(dpaa_dev, "dev_get_drvdata(%s) failed\n",
368 			dev_name(dev));
369 		return ERR_PTR(-EINVAL);
370 	}
371 
372 	return mac_dev;
373 }
374 
375 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
376 {
377 	const struct dpaa_priv *priv;
378 	struct mac_device *mac_dev;
379 	struct sockaddr old_addr;
380 	int err;
381 
382 	priv = netdev_priv(net_dev);
383 
384 	memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
385 
386 	err = eth_mac_addr(net_dev, addr);
387 	if (err < 0) {
388 		netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
389 		return err;
390 	}
391 
392 	mac_dev = priv->mac_dev;
393 
394 	err = mac_dev->change_addr(mac_dev->fman_mac,
395 				   (enet_addr_t *)net_dev->dev_addr);
396 	if (err < 0) {
397 		netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
398 			  err);
399 		/* reverting to previous address */
400 		eth_mac_addr(net_dev, &old_addr);
401 
402 		return err;
403 	}
404 
405 	return 0;
406 }
407 
408 static void dpaa_set_rx_mode(struct net_device *net_dev)
409 {
410 	const struct dpaa_priv	*priv;
411 	int err;
412 
413 	priv = netdev_priv(net_dev);
414 
415 	if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
416 		priv->mac_dev->promisc = !priv->mac_dev->promisc;
417 		err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
418 						 priv->mac_dev->promisc);
419 		if (err < 0)
420 			netif_err(priv, drv, net_dev,
421 				  "mac_dev->set_promisc() = %d\n",
422 				  err);
423 	}
424 
425 	err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
426 	if (err < 0)
427 		netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
428 			  err);
429 }
430 
431 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
432 {
433 	if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
434 		return NULL;
435 
436 	return dpaa_bp_array[bpid];
437 }
438 
439 /* checks if this bpool is already allocated */
440 static bool dpaa_bpid2pool_use(int bpid)
441 {
442 	if (dpaa_bpid2pool(bpid)) {
443 		atomic_inc(&dpaa_bp_array[bpid]->refs);
444 		return true;
445 	}
446 
447 	return false;
448 }
449 
450 /* called only once per bpid by dpaa_bp_alloc_pool() */
451 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
452 {
453 	dpaa_bp_array[bpid] = dpaa_bp;
454 	atomic_set(&dpaa_bp->refs, 1);
455 }
456 
457 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
458 {
459 	int err;
460 
461 	if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
462 		pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
463 		       __func__);
464 		return -EINVAL;
465 	}
466 
467 	/* If the pool is already specified, we only create one per bpid */
468 	if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
469 	    dpaa_bpid2pool_use(dpaa_bp->bpid))
470 		return 0;
471 
472 	if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
473 		dpaa_bp->pool = bman_new_pool();
474 		if (!dpaa_bp->pool) {
475 			pr_err("%s: bman_new_pool() failed\n",
476 			       __func__);
477 			return -ENODEV;
478 		}
479 
480 		dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
481 	}
482 
483 	if (dpaa_bp->seed_cb) {
484 		err = dpaa_bp->seed_cb(dpaa_bp);
485 		if (err)
486 			goto pool_seed_failed;
487 	}
488 
489 	dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
490 
491 	return 0;
492 
493 pool_seed_failed:
494 	pr_err("%s: pool seeding failed\n", __func__);
495 	bman_free_pool(dpaa_bp->pool);
496 
497 	return err;
498 }
499 
500 /* remove and free all the buffers from the given buffer pool */
501 static void dpaa_bp_drain(struct dpaa_bp *bp)
502 {
503 	u8 num = 8;
504 	int ret;
505 
506 	do {
507 		struct bm_buffer bmb[8];
508 		int i;
509 
510 		ret = bman_acquire(bp->pool, bmb, num);
511 		if (ret < 0) {
512 			if (num == 8) {
513 				/* we have less than 8 buffers left;
514 				 * drain them one by one
515 				 */
516 				num = 1;
517 				ret = 1;
518 				continue;
519 			} else {
520 				/* Pool is fully drained */
521 				break;
522 			}
523 		}
524 
525 		if (bp->free_buf_cb)
526 			for (i = 0; i < num; i++)
527 				bp->free_buf_cb(bp, &bmb[i]);
528 	} while (ret > 0);
529 }
530 
531 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
532 {
533 	struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
534 
535 	/* the mapping between bpid and dpaa_bp is done very late in the
536 	 * allocation procedure; if something failed before the mapping, the bp
537 	 * was not configured, therefore we don't need the below instructions
538 	 */
539 	if (!bp)
540 		return;
541 
542 	if (!atomic_dec_and_test(&bp->refs))
543 		return;
544 
545 	if (bp->free_buf_cb)
546 		dpaa_bp_drain(bp);
547 
548 	dpaa_bp_array[bp->bpid] = NULL;
549 	bman_free_pool(bp->pool);
550 }
551 
552 static void dpaa_bps_free(struct dpaa_priv *priv)
553 {
554 	int i;
555 
556 	for (i = 0; i < DPAA_BPS_NUM; i++)
557 		dpaa_bp_free(priv->dpaa_bps[i]);
558 }
559 
560 /* Use multiple WQs for FQ assignment:
561  *	- Tx Confirmation queues go to WQ1.
562  *	- Rx Error and Tx Error queues go to WQ2 (giving them a better chance
563  *	  to be scheduled, in case there are many more FQs in WQ3).
564  *	- Rx Default and Tx queues go to WQ3 (no differentiation between
565  *	  Rx and Tx traffic).
566  * This ensures that Tx-confirmed buffers are timely released. In particular,
567  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
568  * are greatly outnumbered by other FQs in the system, while
569  * dequeue scheduling is round-robin.
570  */
571 static inline void dpaa_assign_wq(struct dpaa_fq *fq)
572 {
573 	switch (fq->fq_type) {
574 	case FQ_TYPE_TX_CONFIRM:
575 	case FQ_TYPE_TX_CONF_MQ:
576 		fq->wq = 1;
577 		break;
578 	case FQ_TYPE_RX_ERROR:
579 	case FQ_TYPE_TX_ERROR:
580 		fq->wq = 2;
581 		break;
582 	case FQ_TYPE_RX_DEFAULT:
583 	case FQ_TYPE_TX:
584 		fq->wq = 3;
585 		break;
586 	default:
587 		WARN(1, "Invalid FQ type %d for FQID %d!\n",
588 		     fq->fq_type, fq->fqid);
589 	}
590 }
591 
592 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
593 				     u32 start, u32 count,
594 				     struct list_head *list,
595 				     enum dpaa_fq_type fq_type)
596 {
597 	struct dpaa_fq *dpaa_fq;
598 	int i;
599 
600 	dpaa_fq = devm_kzalloc(dev, sizeof(*dpaa_fq) * count,
601 			       GFP_KERNEL);
602 	if (!dpaa_fq)
603 		return NULL;
604 
605 	for (i = 0; i < count; i++) {
606 		dpaa_fq[i].fq_type = fq_type;
607 		dpaa_fq[i].fqid = start ? start + i : 0;
608 		list_add_tail(&dpaa_fq[i].list, list);
609 	}
610 
611 	for (i = 0; i < count; i++)
612 		dpaa_assign_wq(dpaa_fq + i);
613 
614 	return dpaa_fq;
615 }
616 
617 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
618 			      struct fm_port_fqs *port_fqs)
619 {
620 	struct dpaa_fq *dpaa_fq;
621 
622 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
623 	if (!dpaa_fq)
624 		goto fq_alloc_failed;
625 
626 	port_fqs->rx_errq = &dpaa_fq[0];
627 
628 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
629 	if (!dpaa_fq)
630 		goto fq_alloc_failed;
631 
632 	port_fqs->rx_defq = &dpaa_fq[0];
633 
634 	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
635 		goto fq_alloc_failed;
636 
637 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
638 	if (!dpaa_fq)
639 		goto fq_alloc_failed;
640 
641 	port_fqs->tx_errq = &dpaa_fq[0];
642 
643 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
644 	if (!dpaa_fq)
645 		goto fq_alloc_failed;
646 
647 	port_fqs->tx_defq = &dpaa_fq[0];
648 
649 	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
650 		goto fq_alloc_failed;
651 
652 	return 0;
653 
654 fq_alloc_failed:
655 	dev_err(dev, "dpaa_fq_alloc() failed\n");
656 	return -ENOMEM;
657 }
658 
659 static u32 rx_pool_channel;
660 static DEFINE_SPINLOCK(rx_pool_channel_init);
661 
662 static int dpaa_get_channel(void)
663 {
664 	spin_lock(&rx_pool_channel_init);
665 	if (!rx_pool_channel) {
666 		u32 pool;
667 		int ret;
668 
669 		ret = qman_alloc_pool(&pool);
670 
671 		if (!ret)
672 			rx_pool_channel = pool;
673 	}
674 	spin_unlock(&rx_pool_channel_init);
675 	if (!rx_pool_channel)
676 		return -ENOMEM;
677 	return rx_pool_channel;
678 }
679 
680 static void dpaa_release_channel(void)
681 {
682 	qman_release_pool(rx_pool_channel);
683 }
684 
685 static void dpaa_eth_add_channel(u16 channel)
686 {
687 	u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
688 	const cpumask_t *cpus = qman_affine_cpus();
689 	struct qman_portal *portal;
690 	int cpu;
691 
692 	for_each_cpu(cpu, cpus) {
693 		portal = qman_get_affine_portal(cpu);
694 		qman_p_static_dequeue_add(portal, pool);
695 	}
696 }
697 
698 /* Congestion group state change notification callback.
699  * Stops the device's egress queues while they are congested and
700  * wakes them upon exiting congested state.
701  * Also updates some CGR-related stats.
702  */
703 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
704 			   int congested)
705 {
706 	struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
707 		struct dpaa_priv, cgr_data.cgr);
708 
709 	if (congested) {
710 		priv->cgr_data.congestion_start_jiffies = jiffies;
711 		netif_tx_stop_all_queues(priv->net_dev);
712 		priv->cgr_data.cgr_congested_count++;
713 	} else {
714 		priv->cgr_data.congested_jiffies +=
715 			(jiffies - priv->cgr_data.congestion_start_jiffies);
716 		netif_tx_wake_all_queues(priv->net_dev);
717 	}
718 }
719 
720 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
721 {
722 	struct qm_mcc_initcgr initcgr;
723 	u32 cs_th;
724 	int err;
725 
726 	err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
727 	if (err < 0) {
728 		if (netif_msg_drv(priv))
729 			pr_err("%s: Error %d allocating CGR ID\n",
730 			       __func__, err);
731 		goto out_error;
732 	}
733 	priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
734 
735 	/* Enable Congestion State Change Notifications and CS taildrop */
736 	initcgr.we_mask = QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES;
737 	initcgr.cgr.cscn_en = QM_CGR_EN;
738 
739 	/* Set different thresholds based on the MAC speed.
740 	 * This may turn suboptimal if the MAC is reconfigured at a speed
741 	 * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
742 	 * In such cases, we ought to reconfigure the threshold, too.
743 	 */
744 	if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
745 		cs_th = DPAA_CS_THRESHOLD_10G;
746 	else
747 		cs_th = DPAA_CS_THRESHOLD_1G;
748 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
749 
750 	initcgr.we_mask |= QM_CGR_WE_CSTD_EN;
751 	initcgr.cgr.cstd_en = QM_CGR_EN;
752 
753 	err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
754 			      &initcgr);
755 	if (err < 0) {
756 		if (netif_msg_drv(priv))
757 			pr_err("%s: Error %d creating CGR with ID %d\n",
758 			       __func__, err, priv->cgr_data.cgr.cgrid);
759 		qman_release_cgrid(priv->cgr_data.cgr.cgrid);
760 		goto out_error;
761 	}
762 	if (netif_msg_drv(priv))
763 		pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
764 			 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
765 			 priv->cgr_data.cgr.chan);
766 
767 out_error:
768 	return err;
769 }
770 
771 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
772 				      struct dpaa_fq *fq,
773 				      const struct qman_fq *template)
774 {
775 	fq->fq_base = *template;
776 	fq->net_dev = priv->net_dev;
777 
778 	fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
779 	fq->channel = priv->channel;
780 }
781 
782 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
783 				     struct dpaa_fq *fq,
784 				     struct fman_port *port,
785 				     const struct qman_fq *template)
786 {
787 	fq->fq_base = *template;
788 	fq->net_dev = priv->net_dev;
789 
790 	if (port) {
791 		fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
792 		fq->channel = (u16)fman_port_get_qman_channel_id(port);
793 	} else {
794 		fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
795 	}
796 }
797 
798 static void dpaa_fq_setup(struct dpaa_priv *priv,
799 			  const struct dpaa_fq_cbs *fq_cbs,
800 			  struct fman_port *tx_port)
801 {
802 	int egress_cnt = 0, conf_cnt = 0, num_portals = 0, cpu;
803 	const cpumask_t *affine_cpus = qman_affine_cpus();
804 	u16 portals[NR_CPUS];
805 	struct dpaa_fq *fq;
806 
807 	for_each_cpu(cpu, affine_cpus)
808 		portals[num_portals++] = qman_affine_channel(cpu);
809 	if (num_portals == 0)
810 		dev_err(priv->net_dev->dev.parent,
811 			"No Qman software (affine) channels found");
812 
813 	/* Initialize each FQ in the list */
814 	list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
815 		switch (fq->fq_type) {
816 		case FQ_TYPE_RX_DEFAULT:
817 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
818 			break;
819 		case FQ_TYPE_RX_ERROR:
820 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
821 			break;
822 		case FQ_TYPE_TX:
823 			dpaa_setup_egress(priv, fq, tx_port,
824 					  &fq_cbs->egress_ern);
825 			/* If we have more Tx queues than the number of cores,
826 			 * just ignore the extra ones.
827 			 */
828 			if (egress_cnt < DPAA_ETH_TXQ_NUM)
829 				priv->egress_fqs[egress_cnt++] = &fq->fq_base;
830 			break;
831 		case FQ_TYPE_TX_CONF_MQ:
832 			priv->conf_fqs[conf_cnt++] = &fq->fq_base;
833 			/* fall through */
834 		case FQ_TYPE_TX_CONFIRM:
835 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
836 			break;
837 		case FQ_TYPE_TX_ERROR:
838 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
839 			break;
840 		default:
841 			dev_warn(priv->net_dev->dev.parent,
842 				 "Unknown FQ type detected!\n");
843 			break;
844 		}
845 	}
846 
847 	 /* Make sure all CPUs receive a corresponding Tx queue. */
848 	while (egress_cnt < DPAA_ETH_TXQ_NUM) {
849 		list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
850 			if (fq->fq_type != FQ_TYPE_TX)
851 				continue;
852 			priv->egress_fqs[egress_cnt++] = &fq->fq_base;
853 			if (egress_cnt == DPAA_ETH_TXQ_NUM)
854 				break;
855 		}
856 	}
857 }
858 
859 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
860 				   struct qman_fq *tx_fq)
861 {
862 	int i;
863 
864 	for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
865 		if (priv->egress_fqs[i] == tx_fq)
866 			return i;
867 
868 	return -EINVAL;
869 }
870 
871 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
872 {
873 	const struct dpaa_priv	*priv;
874 	struct qman_fq *confq = NULL;
875 	struct qm_mcc_initfq initfq;
876 	struct device *dev;
877 	struct qman_fq *fq;
878 	int queue_id;
879 	int err;
880 
881 	priv = netdev_priv(dpaa_fq->net_dev);
882 	dev = dpaa_fq->net_dev->dev.parent;
883 
884 	if (dpaa_fq->fqid == 0)
885 		dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
886 
887 	dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
888 
889 	err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
890 	if (err) {
891 		dev_err(dev, "qman_create_fq() failed\n");
892 		return err;
893 	}
894 	fq = &dpaa_fq->fq_base;
895 
896 	if (dpaa_fq->init) {
897 		memset(&initfq, 0, sizeof(initfq));
898 
899 		initfq.we_mask = QM_INITFQ_WE_FQCTRL;
900 		/* Note: we may get to keep an empty FQ in cache */
901 		initfq.fqd.fq_ctrl = QM_FQCTRL_PREFERINCACHE;
902 
903 		/* Try to reduce the number of portal interrupts for
904 		 * Tx Confirmation FQs.
905 		 */
906 		if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
907 			initfq.fqd.fq_ctrl |= QM_FQCTRL_HOLDACTIVE;
908 
909 		/* FQ placement */
910 		initfq.we_mask |= QM_INITFQ_WE_DESTWQ;
911 
912 		qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
913 
914 		/* Put all egress queues in a congestion group of their own.
915 		 * Sensu stricto, the Tx confirmation queues are Rx FQs,
916 		 * rather than Tx - but they nonetheless account for the
917 		 * memory footprint on behalf of egress traffic. We therefore
918 		 * place them in the netdev's CGR, along with the Tx FQs.
919 		 */
920 		if (dpaa_fq->fq_type == FQ_TYPE_TX ||
921 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
922 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
923 			initfq.we_mask |= QM_INITFQ_WE_CGID;
924 			initfq.fqd.fq_ctrl |= QM_FQCTRL_CGE;
925 			initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
926 			/* Set a fixed overhead accounting, in an attempt to
927 			 * reduce the impact of fixed-size skb shells and the
928 			 * driver's needed headroom on system memory. This is
929 			 * especially the case when the egress traffic is
930 			 * composed of small datagrams.
931 			 * Unfortunately, QMan's OAL value is capped to an
932 			 * insufficient value, but even that is better than
933 			 * no overhead accounting at all.
934 			 */
935 			initfq.we_mask |= QM_INITFQ_WE_OAC;
936 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
937 			qm_fqd_set_oal(&initfq.fqd,
938 				       min(sizeof(struct sk_buff) +
939 				       priv->tx_headroom,
940 				       (size_t)FSL_QMAN_MAX_OAL));
941 		}
942 
943 		if (td_enable) {
944 			initfq.we_mask |= QM_INITFQ_WE_TDTHRESH;
945 			qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
946 			initfq.fqd.fq_ctrl = QM_FQCTRL_TDE;
947 		}
948 
949 		if (dpaa_fq->fq_type == FQ_TYPE_TX) {
950 			queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
951 			if (queue_id >= 0)
952 				confq = priv->conf_fqs[queue_id];
953 			if (confq) {
954 				initfq.we_mask |= QM_INITFQ_WE_CONTEXTA;
955 			/* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
956 			 *	     A2V=1 (contextA A2 field is valid)
957 			 *	     A0V=1 (contextA A0 field is valid)
958 			 *	     B0V=1 (contextB field is valid)
959 			 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
960 			 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
961 			 */
962 				initfq.fqd.context_a.hi = 0x1e000000;
963 				initfq.fqd.context_a.lo = 0x80000000;
964 			}
965 		}
966 
967 		/* Put all the ingress queues in our "ingress CGR". */
968 		if (priv->use_ingress_cgr &&
969 		    (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
970 		     dpaa_fq->fq_type == FQ_TYPE_RX_ERROR)) {
971 			initfq.we_mask |= QM_INITFQ_WE_CGID;
972 			initfq.fqd.fq_ctrl |= QM_FQCTRL_CGE;
973 			initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
974 			/* Set a fixed overhead accounting, just like for the
975 			 * egress CGR.
976 			 */
977 			initfq.we_mask |= QM_INITFQ_WE_OAC;
978 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
979 			qm_fqd_set_oal(&initfq.fqd,
980 				       min(sizeof(struct sk_buff) +
981 				       priv->tx_headroom,
982 				       (size_t)FSL_QMAN_MAX_OAL));
983 		}
984 
985 		/* Initialization common to all ingress queues */
986 		if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
987 			initfq.we_mask |= QM_INITFQ_WE_CONTEXTA;
988 			initfq.fqd.fq_ctrl |=
989 				QM_FQCTRL_HOLDACTIVE;
990 			initfq.fqd.context_a.stashing.exclusive =
991 				QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
992 				QM_STASHING_EXCL_ANNOTATION;
993 			qm_fqd_set_stashing(&initfq.fqd, 1, 2,
994 					    DIV_ROUND_UP(sizeof(struct qman_fq),
995 							 64));
996 		}
997 
998 		err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
999 		if (err < 0) {
1000 			dev_err(dev, "qman_init_fq(%u) = %d\n",
1001 				qman_fq_fqid(fq), err);
1002 			qman_destroy_fq(fq);
1003 			return err;
1004 		}
1005 	}
1006 
1007 	dpaa_fq->fqid = qman_fq_fqid(fq);
1008 
1009 	return 0;
1010 }
1011 
1012 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1013 {
1014 	const struct dpaa_priv  *priv;
1015 	struct dpaa_fq *dpaa_fq;
1016 	int err, error;
1017 
1018 	err = 0;
1019 
1020 	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1021 	priv = netdev_priv(dpaa_fq->net_dev);
1022 
1023 	if (dpaa_fq->init) {
1024 		err = qman_retire_fq(fq, NULL);
1025 		if (err < 0 && netif_msg_drv(priv))
1026 			dev_err(dev, "qman_retire_fq(%u) = %d\n",
1027 				qman_fq_fqid(fq), err);
1028 
1029 		error = qman_oos_fq(fq);
1030 		if (error < 0 && netif_msg_drv(priv)) {
1031 			dev_err(dev, "qman_oos_fq(%u) = %d\n",
1032 				qman_fq_fqid(fq), error);
1033 			if (err >= 0)
1034 				err = error;
1035 		}
1036 	}
1037 
1038 	qman_destroy_fq(fq);
1039 	list_del(&dpaa_fq->list);
1040 
1041 	return err;
1042 }
1043 
1044 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1045 {
1046 	struct dpaa_fq *dpaa_fq, *tmp;
1047 	int err, error;
1048 
1049 	err = 0;
1050 	list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1051 		error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1052 		if (error < 0 && err >= 0)
1053 			err = error;
1054 	}
1055 
1056 	return err;
1057 }
1058 
1059 static void dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1060 				  struct dpaa_fq *defq,
1061 				  struct dpaa_buffer_layout *buf_layout)
1062 {
1063 	struct fman_buffer_prefix_content buf_prefix_content;
1064 	struct fman_port_params params;
1065 	int err;
1066 
1067 	memset(&params, 0, sizeof(params));
1068 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1069 
1070 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1071 	buf_prefix_content.pass_prs_result = true;
1072 	buf_prefix_content.pass_hash_result = true;
1073 	buf_prefix_content.pass_time_stamp = false;
1074 	buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1075 
1076 	params.specific_params.non_rx_params.err_fqid = errq->fqid;
1077 	params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1078 
1079 	err = fman_port_config(port, &params);
1080 	if (err)
1081 		pr_err("%s: fman_port_config failed\n", __func__);
1082 
1083 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1084 	if (err)
1085 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1086 		       __func__);
1087 
1088 	err = fman_port_init(port);
1089 	if (err)
1090 		pr_err("%s: fm_port_init failed\n", __func__);
1091 }
1092 
1093 static void dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps,
1094 				  size_t count, struct dpaa_fq *errq,
1095 				  struct dpaa_fq *defq,
1096 				  struct dpaa_buffer_layout *buf_layout)
1097 {
1098 	struct fman_buffer_prefix_content buf_prefix_content;
1099 	struct fman_port_rx_params *rx_p;
1100 	struct fman_port_params params;
1101 	int i, err;
1102 
1103 	memset(&params, 0, sizeof(params));
1104 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1105 
1106 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1107 	buf_prefix_content.pass_prs_result = true;
1108 	buf_prefix_content.pass_hash_result = true;
1109 	buf_prefix_content.pass_time_stamp = false;
1110 	buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1111 
1112 	rx_p = &params.specific_params.rx_params;
1113 	rx_p->err_fqid = errq->fqid;
1114 	rx_p->dflt_fqid = defq->fqid;
1115 
1116 	count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count);
1117 	rx_p->ext_buf_pools.num_of_pools_used = (u8)count;
1118 	for (i = 0; i < count; i++) {
1119 		rx_p->ext_buf_pools.ext_buf_pool[i].id =  bps[i]->bpid;
1120 		rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size;
1121 	}
1122 
1123 	err = fman_port_config(port, &params);
1124 	if (err)
1125 		pr_err("%s: fman_port_config failed\n", __func__);
1126 
1127 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1128 	if (err)
1129 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1130 		       __func__);
1131 
1132 	err = fman_port_init(port);
1133 	if (err)
1134 		pr_err("%s: fm_port_init failed\n", __func__);
1135 }
1136 
1137 static void dpaa_eth_init_ports(struct mac_device *mac_dev,
1138 				struct dpaa_bp **bps, size_t count,
1139 				struct fm_port_fqs *port_fqs,
1140 				struct dpaa_buffer_layout *buf_layout,
1141 				struct device *dev)
1142 {
1143 	struct fman_port *rxport = mac_dev->port[RX];
1144 	struct fman_port *txport = mac_dev->port[TX];
1145 
1146 	dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1147 			      port_fqs->tx_defq, &buf_layout[TX]);
1148 	dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq,
1149 			      port_fqs->rx_defq, &buf_layout[RX]);
1150 }
1151 
1152 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1153 			     struct bm_buffer *bmb, int cnt)
1154 {
1155 	int err;
1156 
1157 	err = bman_release(dpaa_bp->pool, bmb, cnt);
1158 	/* Should never occur, address anyway to avoid leaking the buffers */
1159 	if (unlikely(WARN_ON(err)) && dpaa_bp->free_buf_cb)
1160 		while (cnt-- > 0)
1161 			dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1162 
1163 	return cnt;
1164 }
1165 
1166 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1167 {
1168 	struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1169 	struct dpaa_bp *dpaa_bp;
1170 	int i = 0, j;
1171 
1172 	memset(bmb, 0, sizeof(bmb));
1173 
1174 	do {
1175 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1176 		if (!dpaa_bp)
1177 			return;
1178 
1179 		j = 0;
1180 		do {
1181 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1182 
1183 			bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1184 
1185 			j++; i++;
1186 		} while (j < ARRAY_SIZE(bmb) &&
1187 				!qm_sg_entry_is_final(&sgt[i - 1]) &&
1188 				sgt[i - 1].bpid == sgt[i].bpid);
1189 
1190 		dpaa_bman_release(dpaa_bp, bmb, j);
1191 	} while (!qm_sg_entry_is_final(&sgt[i - 1]));
1192 }
1193 
1194 static void dpaa_fd_release(const struct net_device *net_dev,
1195 			    const struct qm_fd *fd)
1196 {
1197 	struct qm_sg_entry *sgt;
1198 	struct dpaa_bp *dpaa_bp;
1199 	struct bm_buffer bmb;
1200 	dma_addr_t addr;
1201 	void *vaddr;
1202 
1203 	bmb.data = 0;
1204 	bm_buffer_set64(&bmb, qm_fd_addr(fd));
1205 
1206 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1207 	if (!dpaa_bp)
1208 		return;
1209 
1210 	if (qm_fd_get_format(fd) == qm_fd_sg) {
1211 		vaddr = phys_to_virt(qm_fd_addr(fd));
1212 		sgt = vaddr + qm_fd_get_offset(fd);
1213 
1214 		dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size,
1215 				 DMA_FROM_DEVICE);
1216 
1217 		dpaa_release_sgt_members(sgt);
1218 
1219 		addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size,
1220 				      DMA_FROM_DEVICE);
1221 		if (dma_mapping_error(dpaa_bp->dev, addr)) {
1222 			dev_err(dpaa_bp->dev, "DMA mapping failed");
1223 			return;
1224 		}
1225 		bm_buffer_set64(&bmb, addr);
1226 	}
1227 
1228 	dpaa_bman_release(dpaa_bp, &bmb, 1);
1229 }
1230 
1231 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1232 		      const union qm_mr_entry *msg)
1233 {
1234 	switch (msg->ern.rc & QM_MR_RC_MASK) {
1235 	case QM_MR_RC_CGR_TAILDROP:
1236 		percpu_priv->ern_cnt.cg_tdrop++;
1237 		break;
1238 	case QM_MR_RC_WRED:
1239 		percpu_priv->ern_cnt.wred++;
1240 		break;
1241 	case QM_MR_RC_ERROR:
1242 		percpu_priv->ern_cnt.err_cond++;
1243 		break;
1244 	case QM_MR_RC_ORPWINDOW_EARLY:
1245 		percpu_priv->ern_cnt.early_window++;
1246 		break;
1247 	case QM_MR_RC_ORPWINDOW_LATE:
1248 		percpu_priv->ern_cnt.late_window++;
1249 		break;
1250 	case QM_MR_RC_FQ_TAILDROP:
1251 		percpu_priv->ern_cnt.fq_tdrop++;
1252 		break;
1253 	case QM_MR_RC_ORPWINDOW_RETIRED:
1254 		percpu_priv->ern_cnt.fq_retired++;
1255 		break;
1256 	case QM_MR_RC_ORP_ZERO:
1257 		percpu_priv->ern_cnt.orp_zero++;
1258 		break;
1259 	}
1260 }
1261 
1262 /* Turn on HW checksum computation for this outgoing frame.
1263  * If the current protocol is not something we support in this regard
1264  * (or if the stack has already computed the SW checksum), we do nothing.
1265  *
1266  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1267  * otherwise.
1268  *
1269  * Note that this function may modify the fd->cmd field and the skb data buffer
1270  * (the Parse Results area).
1271  */
1272 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1273 			       struct sk_buff *skb,
1274 			       struct qm_fd *fd,
1275 			       char *parse_results)
1276 {
1277 	struct fman_prs_result *parse_result;
1278 	u16 ethertype = ntohs(skb->protocol);
1279 	struct ipv6hdr *ipv6h = NULL;
1280 	struct iphdr *iph;
1281 	int retval = 0;
1282 	u8 l4_proto;
1283 
1284 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1285 		return 0;
1286 
1287 	/* Note: L3 csum seems to be already computed in sw, but we can't choose
1288 	 * L4 alone from the FM configuration anyway.
1289 	 */
1290 
1291 	/* Fill in some fields of the Parse Results array, so the FMan
1292 	 * can find them as if they came from the FMan Parser.
1293 	 */
1294 	parse_result = (struct fman_prs_result *)parse_results;
1295 
1296 	/* If we're dealing with VLAN, get the real Ethernet type */
1297 	if (ethertype == ETH_P_8021Q) {
1298 		/* We can't always assume the MAC header is set correctly
1299 		 * by the stack, so reset to beginning of skb->data
1300 		 */
1301 		skb_reset_mac_header(skb);
1302 		ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1303 	}
1304 
1305 	/* Fill in the relevant L3 parse result fields
1306 	 * and read the L4 protocol type
1307 	 */
1308 	switch (ethertype) {
1309 	case ETH_P_IP:
1310 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1311 		iph = ip_hdr(skb);
1312 		WARN_ON(!iph);
1313 		l4_proto = iph->protocol;
1314 		break;
1315 	case ETH_P_IPV6:
1316 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1317 		ipv6h = ipv6_hdr(skb);
1318 		WARN_ON(!ipv6h);
1319 		l4_proto = ipv6h->nexthdr;
1320 		break;
1321 	default:
1322 		/* We shouldn't even be here */
1323 		if (net_ratelimit())
1324 			netif_alert(priv, tx_err, priv->net_dev,
1325 				    "Can't compute HW csum for L3 proto 0x%x\n",
1326 				    ntohs(skb->protocol));
1327 		retval = -EIO;
1328 		goto return_error;
1329 	}
1330 
1331 	/* Fill in the relevant L4 parse result fields */
1332 	switch (l4_proto) {
1333 	case IPPROTO_UDP:
1334 		parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1335 		break;
1336 	case IPPROTO_TCP:
1337 		parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1338 		break;
1339 	default:
1340 		if (net_ratelimit())
1341 			netif_alert(priv, tx_err, priv->net_dev,
1342 				    "Can't compute HW csum for L4 proto 0x%x\n",
1343 				    l4_proto);
1344 		retval = -EIO;
1345 		goto return_error;
1346 	}
1347 
1348 	/* At index 0 is IPOffset_1 as defined in the Parse Results */
1349 	parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1350 	parse_result->l4_off = (u8)skb_transport_offset(skb);
1351 
1352 	/* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1353 	fd->cmd |= FM_FD_CMD_RPD | FM_FD_CMD_DTC;
1354 
1355 	/* On P1023 and similar platforms fd->cmd interpretation could
1356 	 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1357 	 * is not set so we do not need to check; in the future, if/when
1358 	 * using context_a we need to check this bit
1359 	 */
1360 
1361 return_error:
1362 	return retval;
1363 }
1364 
1365 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1366 {
1367 	struct device *dev = dpaa_bp->dev;
1368 	struct bm_buffer bmb[8];
1369 	dma_addr_t addr;
1370 	void *new_buf;
1371 	u8 i;
1372 
1373 	for (i = 0; i < 8; i++) {
1374 		new_buf = netdev_alloc_frag(dpaa_bp->raw_size);
1375 		if (unlikely(!new_buf)) {
1376 			dev_err(dev, "netdev_alloc_frag() failed, size %zu\n",
1377 				dpaa_bp->raw_size);
1378 			goto release_previous_buffs;
1379 		}
1380 		new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES);
1381 
1382 		addr = dma_map_single(dev, new_buf,
1383 				      dpaa_bp->size, DMA_FROM_DEVICE);
1384 		if (unlikely(dma_mapping_error(dev, addr))) {
1385 			dev_err(dpaa_bp->dev, "DMA map failed");
1386 			goto release_previous_buffs;
1387 		}
1388 
1389 		bmb[i].data = 0;
1390 		bm_buffer_set64(&bmb[i], addr);
1391 	}
1392 
1393 release_bufs:
1394 	return dpaa_bman_release(dpaa_bp, bmb, i);
1395 
1396 release_previous_buffs:
1397 	WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1398 
1399 	bm_buffer_set64(&bmb[i], 0);
1400 	/* Avoid releasing a completely null buffer; bman_release() requires
1401 	 * at least one buffer.
1402 	 */
1403 	if (likely(i))
1404 		goto release_bufs;
1405 
1406 	return 0;
1407 }
1408 
1409 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1410 {
1411 	int i;
1412 
1413 	/* Give each CPU an allotment of "config_count" buffers */
1414 	for_each_possible_cpu(i) {
1415 		int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1416 		int j;
1417 
1418 		/* Although we access another CPU's counters here
1419 		 * we do it at boot time so it is safe
1420 		 */
1421 		for (j = 0; j < dpaa_bp->config_count; j += 8)
1422 			*count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1423 	}
1424 	return 0;
1425 }
1426 
1427 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1428  * REFILL_THRESHOLD.
1429  */
1430 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1431 {
1432 	int count = *countptr;
1433 	int new_bufs;
1434 
1435 	if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1436 		do {
1437 			new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1438 			if (unlikely(!new_bufs)) {
1439 				/* Avoid looping forever if we've temporarily
1440 				 * run out of memory. We'll try again at the
1441 				 * next NAPI cycle.
1442 				 */
1443 				break;
1444 			}
1445 			count += new_bufs;
1446 		} while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1447 
1448 		*countptr = count;
1449 		if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1450 			return -ENOMEM;
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1457 {
1458 	struct dpaa_bp *dpaa_bp;
1459 	int *countptr;
1460 	int res, i;
1461 
1462 	for (i = 0; i < DPAA_BPS_NUM; i++) {
1463 		dpaa_bp = priv->dpaa_bps[i];
1464 		if (!dpaa_bp)
1465 			return -EINVAL;
1466 		countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1467 		res  = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1468 		if (res)
1469 			return res;
1470 	}
1471 	return 0;
1472 }
1473 
1474 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1475  * either contiguous frames or scatter/gather ones.
1476  * Skb freeing is not handled here.
1477  *
1478  * This function may be called on error paths in the Tx function, so guard
1479  * against cases when not all fd relevant fields were filled in.
1480  *
1481  * Return the skb backpointer, since for S/G frames the buffer containing it
1482  * gets freed here.
1483  */
1484 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1485 					  const struct qm_fd *fd)
1486 {
1487 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1488 	struct device *dev = priv->net_dev->dev.parent;
1489 	dma_addr_t addr = qm_fd_addr(fd);
1490 	const struct qm_sg_entry *sgt;
1491 	struct sk_buff **skbh, *skb;
1492 	int nr_frags, i;
1493 
1494 	skbh = (struct sk_buff **)phys_to_virt(addr);
1495 	skb = *skbh;
1496 
1497 	if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1498 		nr_frags = skb_shinfo(skb)->nr_frags;
1499 		dma_unmap_single(dev, addr, qm_fd_get_offset(fd) +
1500 				 sizeof(struct qm_sg_entry) * (1 + nr_frags),
1501 				 dma_dir);
1502 
1503 		/* The sgt buffer has been allocated with netdev_alloc_frag(),
1504 		 * it's from lowmem.
1505 		 */
1506 		sgt = phys_to_virt(addr + qm_fd_get_offset(fd));
1507 
1508 		/* sgt[0] is from lowmem, was dma_map_single()-ed */
1509 		dma_unmap_single(dev, qm_sg_addr(&sgt[0]),
1510 				 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1511 
1512 		/* remaining pages were mapped with skb_frag_dma_map() */
1513 		for (i = 1; i < nr_frags; i++) {
1514 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1515 
1516 			dma_unmap_page(dev, qm_sg_addr(&sgt[i]),
1517 				       qm_sg_entry_get_len(&sgt[i]), dma_dir);
1518 		}
1519 
1520 		/* Free the page frag that we allocated on Tx */
1521 		skb_free_frag(phys_to_virt(addr));
1522 	} else {
1523 		dma_unmap_single(dev, addr,
1524 				 skb_tail_pointer(skb) - (u8 *)skbh, dma_dir);
1525 	}
1526 
1527 	return skb;
1528 }
1529 
1530 /* Build a linear skb around the received buffer.
1531  * We are guaranteed there is enough room at the end of the data buffer to
1532  * accommodate the shared info area of the skb.
1533  */
1534 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1535 					const struct qm_fd *fd)
1536 {
1537 	ssize_t fd_off = qm_fd_get_offset(fd);
1538 	dma_addr_t addr = qm_fd_addr(fd);
1539 	struct dpaa_bp *dpaa_bp;
1540 	struct sk_buff *skb;
1541 	void *vaddr;
1542 
1543 	vaddr = phys_to_virt(addr);
1544 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1545 
1546 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1547 	if (!dpaa_bp)
1548 		goto free_buffer;
1549 
1550 	skb = build_skb(vaddr, dpaa_bp->size +
1551 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1552 	if (unlikely(!skb)) {
1553 		WARN_ONCE(1, "Build skb failure on Rx\n");
1554 		goto free_buffer;
1555 	}
1556 	WARN_ON(fd_off != priv->rx_headroom);
1557 	skb_reserve(skb, fd_off);
1558 	skb_put(skb, qm_fd_get_length(fd));
1559 
1560 	skb->ip_summed = CHECKSUM_NONE;
1561 
1562 	return skb;
1563 
1564 free_buffer:
1565 	skb_free_frag(vaddr);
1566 	return NULL;
1567 }
1568 
1569 /* Build an skb with the data of the first S/G entry in the linear portion and
1570  * the rest of the frame as skb fragments.
1571  *
1572  * The page fragment holding the S/G Table is recycled here.
1573  */
1574 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1575 				    const struct qm_fd *fd)
1576 {
1577 	ssize_t fd_off = qm_fd_get_offset(fd);
1578 	dma_addr_t addr = qm_fd_addr(fd);
1579 	const struct qm_sg_entry *sgt;
1580 	struct page *page, *head_page;
1581 	struct dpaa_bp *dpaa_bp;
1582 	void *vaddr, *sg_vaddr;
1583 	int frag_off, frag_len;
1584 	struct sk_buff *skb;
1585 	dma_addr_t sg_addr;
1586 	int page_offset;
1587 	unsigned int sz;
1588 	int *count_ptr;
1589 	int i;
1590 
1591 	vaddr = phys_to_virt(addr);
1592 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1593 
1594 	/* Iterate through the SGT entries and add data buffers to the skb */
1595 	sgt = vaddr + fd_off;
1596 	for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1597 		/* Extension bit is not supported */
1598 		WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1599 
1600 		sg_addr = qm_sg_addr(&sgt[i]);
1601 		sg_vaddr = phys_to_virt(sg_addr);
1602 		WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
1603 				    SMP_CACHE_BYTES));
1604 
1605 		/* We may use multiple Rx pools */
1606 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1607 		if (!dpaa_bp)
1608 			goto free_buffers;
1609 
1610 		count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1611 		dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size,
1612 				 DMA_FROM_DEVICE);
1613 		if (i == 0) {
1614 			sz = dpaa_bp->size +
1615 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1616 			skb = build_skb(sg_vaddr, sz);
1617 			if (WARN_ON(unlikely(!skb)))
1618 				goto free_buffers;
1619 
1620 			skb->ip_summed = CHECKSUM_NONE;
1621 
1622 			/* Make sure forwarded skbs will have enough space
1623 			 * on Tx, if extra headers are added.
1624 			 */
1625 			WARN_ON(fd_off != priv->rx_headroom);
1626 			skb_reserve(skb, fd_off);
1627 			skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1628 		} else {
1629 			/* Not the first S/G entry; all data from buffer will
1630 			 * be added in an skb fragment; fragment index is offset
1631 			 * by one since first S/G entry was incorporated in the
1632 			 * linear part of the skb.
1633 			 *
1634 			 * Caution: 'page' may be a tail page.
1635 			 */
1636 			page = virt_to_page(sg_vaddr);
1637 			head_page = virt_to_head_page(sg_vaddr);
1638 
1639 			/* Compute offset in (possibly tail) page */
1640 			page_offset = ((unsigned long)sg_vaddr &
1641 					(PAGE_SIZE - 1)) +
1642 				(page_address(page) - page_address(head_page));
1643 			/* page_offset only refers to the beginning of sgt[i];
1644 			 * but the buffer itself may have an internal offset.
1645 			 */
1646 			frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1647 			frag_len = qm_sg_entry_get_len(&sgt[i]);
1648 			/* skb_add_rx_frag() does no checking on the page; if
1649 			 * we pass it a tail page, we'll end up with
1650 			 * bad page accounting and eventually with segafults.
1651 			 */
1652 			skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1653 					frag_len, dpaa_bp->size);
1654 		}
1655 		/* Update the pool count for the current {cpu x bpool} */
1656 		(*count_ptr)--;
1657 
1658 		if (qm_sg_entry_is_final(&sgt[i]))
1659 			break;
1660 	}
1661 	WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1662 
1663 	/* free the SG table buffer */
1664 	skb_free_frag(vaddr);
1665 
1666 	return skb;
1667 
1668 free_buffers:
1669 	/* compensate sw bpool counter changes */
1670 	for (i--; i > 0; i--) {
1671 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1672 		if (dpaa_bp) {
1673 			count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1674 			(*count_ptr)++;
1675 		}
1676 	}
1677 	/* free all the SG entries */
1678 	for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) {
1679 		sg_addr = qm_sg_addr(&sgt[i]);
1680 		sg_vaddr = phys_to_virt(sg_addr);
1681 		skb_free_frag(sg_vaddr);
1682 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1683 		if (dpaa_bp) {
1684 			count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1685 			(*count_ptr)--;
1686 		}
1687 
1688 		if (qm_sg_entry_is_final(&sgt[i]))
1689 			break;
1690 	}
1691 	/* free the SGT fragment */
1692 	skb_free_frag(vaddr);
1693 
1694 	return NULL;
1695 }
1696 
1697 static int skb_to_contig_fd(struct dpaa_priv *priv,
1698 			    struct sk_buff *skb, struct qm_fd *fd,
1699 			    int *offset)
1700 {
1701 	struct net_device *net_dev = priv->net_dev;
1702 	struct device *dev = net_dev->dev.parent;
1703 	enum dma_data_direction dma_dir;
1704 	unsigned char *buffer_start;
1705 	struct sk_buff **skbh;
1706 	dma_addr_t addr;
1707 	int err;
1708 
1709 	/* We are guaranteed to have at least tx_headroom bytes
1710 	 * available, so just use that for offset.
1711 	 */
1712 	fd->bpid = FSL_DPAA_BPID_INV;
1713 	buffer_start = skb->data - priv->tx_headroom;
1714 	dma_dir = DMA_TO_DEVICE;
1715 
1716 	skbh = (struct sk_buff **)buffer_start;
1717 	*skbh = skb;
1718 
1719 	/* Enable L3/L4 hardware checksum computation.
1720 	 *
1721 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1722 	 * need to write into the skb.
1723 	 */
1724 	err = dpaa_enable_tx_csum(priv, skb, fd,
1725 				  ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE);
1726 	if (unlikely(err < 0)) {
1727 		if (net_ratelimit())
1728 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1729 				  err);
1730 		return err;
1731 	}
1732 
1733 	/* Fill in the rest of the FD fields */
1734 	qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1735 	fd->cmd |= FM_FD_CMD_FCO;
1736 
1737 	/* Map the entire buffer size that may be seen by FMan, but no more */
1738 	addr = dma_map_single(dev, skbh,
1739 			      skb_tail_pointer(skb) - buffer_start, dma_dir);
1740 	if (unlikely(dma_mapping_error(dev, addr))) {
1741 		if (net_ratelimit())
1742 			netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1743 		return -EINVAL;
1744 	}
1745 	qm_fd_addr_set64(fd, addr);
1746 
1747 	return 0;
1748 }
1749 
1750 static int skb_to_sg_fd(struct dpaa_priv *priv,
1751 			struct sk_buff *skb, struct qm_fd *fd)
1752 {
1753 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1754 	const int nr_frags = skb_shinfo(skb)->nr_frags;
1755 	struct net_device *net_dev = priv->net_dev;
1756 	struct device *dev = net_dev->dev.parent;
1757 	struct qm_sg_entry *sgt;
1758 	struct sk_buff **skbh;
1759 	int i, j, err, sz;
1760 	void *buffer_start;
1761 	skb_frag_t *frag;
1762 	dma_addr_t addr;
1763 	size_t frag_len;
1764 	void *sgt_buf;
1765 
1766 	/* get a page frag to store the SGTable */
1767 	sz = SKB_DATA_ALIGN(priv->tx_headroom +
1768 		sizeof(struct qm_sg_entry) * (1 + nr_frags));
1769 	sgt_buf = netdev_alloc_frag(sz);
1770 	if (unlikely(!sgt_buf)) {
1771 		netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n",
1772 			   sz);
1773 		return -ENOMEM;
1774 	}
1775 
1776 	/* Enable L3/L4 hardware checksum computation.
1777 	 *
1778 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1779 	 * need to write into the skb.
1780 	 */
1781 	err = dpaa_enable_tx_csum(priv, skb, fd,
1782 				  sgt_buf + DPAA_TX_PRIV_DATA_SIZE);
1783 	if (unlikely(err < 0)) {
1784 		if (net_ratelimit())
1785 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1786 				  err);
1787 		goto csum_failed;
1788 	}
1789 
1790 	sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom);
1791 	qm_sg_entry_set_len(&sgt[0], skb_headlen(skb));
1792 	sgt[0].bpid = FSL_DPAA_BPID_INV;
1793 	sgt[0].offset = 0;
1794 	addr = dma_map_single(dev, skb->data,
1795 			      skb_headlen(skb), dma_dir);
1796 	if (unlikely(dma_mapping_error(dev, addr))) {
1797 		dev_err(dev, "DMA mapping failed");
1798 		err = -EINVAL;
1799 		goto sg0_map_failed;
1800 	}
1801 	qm_sg_entry_set64(&sgt[0], addr);
1802 
1803 	/* populate the rest of SGT entries */
1804 	frag = &skb_shinfo(skb)->frags[0];
1805 	frag_len = frag->size;
1806 	for (i = 1; i <= nr_frags; i++, frag++) {
1807 		WARN_ON(!skb_frag_page(frag));
1808 		addr = skb_frag_dma_map(dev, frag, 0,
1809 					frag_len, dma_dir);
1810 		if (unlikely(dma_mapping_error(dev, addr))) {
1811 			dev_err(dev, "DMA mapping failed");
1812 			err = -EINVAL;
1813 			goto sg_map_failed;
1814 		}
1815 
1816 		qm_sg_entry_set_len(&sgt[i], frag_len);
1817 		sgt[i].bpid = FSL_DPAA_BPID_INV;
1818 		sgt[i].offset = 0;
1819 
1820 		/* keep the offset in the address */
1821 		qm_sg_entry_set64(&sgt[i], addr);
1822 		frag_len = frag->size;
1823 	}
1824 	qm_sg_entry_set_f(&sgt[i - 1], frag_len);
1825 
1826 	qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
1827 
1828 	/* DMA map the SGT page */
1829 	buffer_start = (void *)sgt - priv->tx_headroom;
1830 	skbh = (struct sk_buff **)buffer_start;
1831 	*skbh = skb;
1832 
1833 	addr = dma_map_single(dev, buffer_start, priv->tx_headroom +
1834 			      sizeof(struct qm_sg_entry) * (1 + nr_frags),
1835 			      dma_dir);
1836 	if (unlikely(dma_mapping_error(dev, addr))) {
1837 		dev_err(dev, "DMA mapping failed");
1838 		err = -EINVAL;
1839 		goto sgt_map_failed;
1840 	}
1841 
1842 	fd->bpid = FSL_DPAA_BPID_INV;
1843 	fd->cmd |= FM_FD_CMD_FCO;
1844 	qm_fd_addr_set64(fd, addr);
1845 
1846 	return 0;
1847 
1848 sgt_map_failed:
1849 sg_map_failed:
1850 	for (j = 0; j < i; j++)
1851 		dma_unmap_page(dev, qm_sg_addr(&sgt[j]),
1852 			       qm_sg_entry_get_len(&sgt[j]), dma_dir);
1853 sg0_map_failed:
1854 csum_failed:
1855 	skb_free_frag(sgt_buf);
1856 
1857 	return err;
1858 }
1859 
1860 static inline int dpaa_xmit(struct dpaa_priv *priv,
1861 			    struct rtnl_link_stats64 *percpu_stats,
1862 			    int queue,
1863 			    struct qm_fd *fd)
1864 {
1865 	struct qman_fq *egress_fq;
1866 	int err, i;
1867 
1868 	egress_fq = priv->egress_fqs[queue];
1869 	if (fd->bpid == FSL_DPAA_BPID_INV)
1870 		fd->cmd |= qman_fq_fqid(priv->conf_fqs[queue]);
1871 
1872 	/* Trace this Tx fd */
1873 	trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
1874 
1875 	for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
1876 		err = qman_enqueue(egress_fq, fd);
1877 		if (err != -EBUSY)
1878 			break;
1879 	}
1880 
1881 	if (unlikely(err < 0)) {
1882 		percpu_stats->tx_errors++;
1883 		percpu_stats->tx_fifo_errors++;
1884 		return err;
1885 	}
1886 
1887 	percpu_stats->tx_packets++;
1888 	percpu_stats->tx_bytes += qm_fd_get_length(fd);
1889 
1890 	return 0;
1891 }
1892 
1893 static int dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1894 {
1895 	const int queue_mapping = skb_get_queue_mapping(skb);
1896 	bool nonlinear = skb_is_nonlinear(skb);
1897 	struct rtnl_link_stats64 *percpu_stats;
1898 	struct dpaa_percpu_priv *percpu_priv;
1899 	struct dpaa_priv *priv;
1900 	struct qm_fd fd;
1901 	int offset = 0;
1902 	int err = 0;
1903 
1904 	priv = netdev_priv(net_dev);
1905 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
1906 	percpu_stats = &percpu_priv->stats;
1907 
1908 	qm_fd_clear_fd(&fd);
1909 
1910 	if (!nonlinear) {
1911 		/* We're going to store the skb backpointer at the beginning
1912 		 * of the data buffer, so we need a privately owned skb
1913 		 *
1914 		 * We've made sure skb is not shared in dev->priv_flags,
1915 		 * we need to verify the skb head is not cloned
1916 		 */
1917 		if (skb_cow_head(skb, priv->tx_headroom))
1918 			goto enomem;
1919 
1920 		WARN_ON(skb_is_nonlinear(skb));
1921 	}
1922 
1923 	/* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
1924 	 * make sure we don't feed FMan with more fragments than it supports.
1925 	 */
1926 	if (nonlinear &&
1927 	    likely(skb_shinfo(skb)->nr_frags < DPAA_SGT_MAX_ENTRIES)) {
1928 		/* Just create a S/G fd based on the skb */
1929 		err = skb_to_sg_fd(priv, skb, &fd);
1930 		percpu_priv->tx_frag_skbuffs++;
1931 	} else {
1932 		/* If the egress skb contains more fragments than we support
1933 		 * we have no choice but to linearize it ourselves.
1934 		 */
1935 		if (unlikely(nonlinear) && __skb_linearize(skb))
1936 			goto enomem;
1937 
1938 		/* Finally, create a contig FD from this skb */
1939 		err = skb_to_contig_fd(priv, skb, &fd, &offset);
1940 	}
1941 	if (unlikely(err < 0))
1942 		goto skb_to_fd_failed;
1943 
1944 	if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
1945 		return NETDEV_TX_OK;
1946 
1947 	dpaa_cleanup_tx_fd(priv, &fd);
1948 skb_to_fd_failed:
1949 enomem:
1950 	percpu_stats->tx_errors++;
1951 	dev_kfree_skb(skb);
1952 	return NETDEV_TX_OK;
1953 }
1954 
1955 static void dpaa_rx_error(struct net_device *net_dev,
1956 			  const struct dpaa_priv *priv,
1957 			  struct dpaa_percpu_priv *percpu_priv,
1958 			  const struct qm_fd *fd,
1959 			  u32 fqid)
1960 {
1961 	if (net_ratelimit())
1962 		netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
1963 			  fd->status & FM_FD_STAT_RX_ERRORS);
1964 
1965 	percpu_priv->stats.rx_errors++;
1966 
1967 	if (fd->status & FM_FD_ERR_DMA)
1968 		percpu_priv->rx_errors.dme++;
1969 	if (fd->status & FM_FD_ERR_PHYSICAL)
1970 		percpu_priv->rx_errors.fpe++;
1971 	if (fd->status & FM_FD_ERR_SIZE)
1972 		percpu_priv->rx_errors.fse++;
1973 	if (fd->status & FM_FD_ERR_PRS_HDR_ERR)
1974 		percpu_priv->rx_errors.phe++;
1975 
1976 	dpaa_fd_release(net_dev, fd);
1977 }
1978 
1979 static void dpaa_tx_error(struct net_device *net_dev,
1980 			  const struct dpaa_priv *priv,
1981 			  struct dpaa_percpu_priv *percpu_priv,
1982 			  const struct qm_fd *fd,
1983 			  u32 fqid)
1984 {
1985 	struct sk_buff *skb;
1986 
1987 	if (net_ratelimit())
1988 		netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
1989 			   fd->status & FM_FD_STAT_TX_ERRORS);
1990 
1991 	percpu_priv->stats.tx_errors++;
1992 
1993 	skb = dpaa_cleanup_tx_fd(priv, fd);
1994 	dev_kfree_skb(skb);
1995 }
1996 
1997 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
1998 {
1999 	struct dpaa_napi_portal *np =
2000 			container_of(napi, struct dpaa_napi_portal, napi);
2001 
2002 	int cleaned = qman_p_poll_dqrr(np->p, budget);
2003 
2004 	if (cleaned < budget) {
2005 		napi_complete(napi);
2006 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2007 
2008 	} else if (np->down) {
2009 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2010 	}
2011 
2012 	return cleaned;
2013 }
2014 
2015 static void dpaa_tx_conf(struct net_device *net_dev,
2016 			 const struct dpaa_priv *priv,
2017 			 struct dpaa_percpu_priv *percpu_priv,
2018 			 const struct qm_fd *fd,
2019 			 u32 fqid)
2020 {
2021 	struct sk_buff	*skb;
2022 
2023 	if (unlikely(fd->status & FM_FD_STAT_TX_ERRORS) != 0) {
2024 		if (net_ratelimit())
2025 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2026 				   fd->status & FM_FD_STAT_TX_ERRORS);
2027 
2028 		percpu_priv->stats.tx_errors++;
2029 	}
2030 
2031 	percpu_priv->tx_confirm++;
2032 
2033 	skb = dpaa_cleanup_tx_fd(priv, fd);
2034 
2035 	consume_skb(skb);
2036 }
2037 
2038 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2039 					 struct qman_portal *portal)
2040 {
2041 	if (unlikely(in_irq() || !in_serving_softirq())) {
2042 		/* Disable QMan IRQ and invoke NAPI */
2043 		qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2044 
2045 		percpu_priv->np.p = portal;
2046 		napi_schedule(&percpu_priv->np.napi);
2047 		percpu_priv->in_interrupt++;
2048 		return 1;
2049 	}
2050 	return 0;
2051 }
2052 
2053 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2054 					      struct qman_fq *fq,
2055 					      const struct qm_dqrr_entry *dq)
2056 {
2057 	struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2058 	struct dpaa_percpu_priv *percpu_priv;
2059 	struct net_device *net_dev;
2060 	struct dpaa_bp *dpaa_bp;
2061 	struct dpaa_priv *priv;
2062 
2063 	net_dev = dpaa_fq->net_dev;
2064 	priv = netdev_priv(net_dev);
2065 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2066 	if (!dpaa_bp)
2067 		return qman_cb_dqrr_consume;
2068 
2069 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2070 
2071 	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2072 		return qman_cb_dqrr_stop;
2073 
2074 	if (dpaa_eth_refill_bpools(priv))
2075 		/* Unable to refill the buffer pool due to insufficient
2076 		 * system memory. Just release the frame back into the pool,
2077 		 * otherwise we'll soon end up with an empty buffer pool.
2078 		 */
2079 		dpaa_fd_release(net_dev, &dq->fd);
2080 	else
2081 		dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2082 
2083 	return qman_cb_dqrr_consume;
2084 }
2085 
2086 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2087 						struct qman_fq *fq,
2088 						const struct qm_dqrr_entry *dq)
2089 {
2090 	struct rtnl_link_stats64 *percpu_stats;
2091 	struct dpaa_percpu_priv *percpu_priv;
2092 	const struct qm_fd *fd = &dq->fd;
2093 	dma_addr_t addr = qm_fd_addr(fd);
2094 	enum qm_fd_format fd_format;
2095 	struct net_device *net_dev;
2096 	u32 fd_status = fd->status;
2097 	struct dpaa_bp *dpaa_bp;
2098 	struct dpaa_priv *priv;
2099 	unsigned int skb_len;
2100 	struct sk_buff *skb;
2101 	int *count_ptr;
2102 
2103 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2104 	priv = netdev_priv(net_dev);
2105 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2106 	if (!dpaa_bp)
2107 		return qman_cb_dqrr_consume;
2108 
2109 	/* Trace the Rx fd */
2110 	trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2111 
2112 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2113 	percpu_stats = &percpu_priv->stats;
2114 
2115 	if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2116 		return qman_cb_dqrr_stop;
2117 
2118 	/* Make sure we didn't run out of buffers */
2119 	if (unlikely(dpaa_eth_refill_bpools(priv))) {
2120 		/* Unable to refill the buffer pool due to insufficient
2121 		 * system memory. Just release the frame back into the pool,
2122 		 * otherwise we'll soon end up with an empty buffer pool.
2123 		 */
2124 		dpaa_fd_release(net_dev, &dq->fd);
2125 		return qman_cb_dqrr_consume;
2126 	}
2127 
2128 	if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2129 		if (net_ratelimit())
2130 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2131 				   fd_status & FM_FD_STAT_RX_ERRORS);
2132 
2133 		percpu_stats->rx_errors++;
2134 		dpaa_fd_release(net_dev, fd);
2135 		return qman_cb_dqrr_consume;
2136 	}
2137 
2138 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
2139 	if (!dpaa_bp)
2140 		return qman_cb_dqrr_consume;
2141 
2142 	dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE);
2143 
2144 	/* prefetch the first 64 bytes of the frame or the SGT start */
2145 	prefetch(phys_to_virt(addr) + qm_fd_get_offset(fd));
2146 
2147 	fd_format = qm_fd_get_format(fd);
2148 	/* The only FD types that we may receive are contig and S/G */
2149 	WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2150 
2151 	/* Account for either the contig buffer or the SGT buffer (depending on
2152 	 * which case we were in) having been removed from the pool.
2153 	 */
2154 	count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2155 	(*count_ptr)--;
2156 
2157 	if (likely(fd_format == qm_fd_contig))
2158 		skb = contig_fd_to_skb(priv, fd);
2159 	else
2160 		skb = sg_fd_to_skb(priv, fd);
2161 	if (!skb)
2162 		return qman_cb_dqrr_consume;
2163 
2164 	skb->protocol = eth_type_trans(skb, net_dev);
2165 
2166 	skb_len = skb->len;
2167 
2168 	if (unlikely(netif_receive_skb(skb) == NET_RX_DROP))
2169 		return qman_cb_dqrr_consume;
2170 
2171 	percpu_stats->rx_packets++;
2172 	percpu_stats->rx_bytes += skb_len;
2173 
2174 	return qman_cb_dqrr_consume;
2175 }
2176 
2177 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2178 						struct qman_fq *fq,
2179 						const struct qm_dqrr_entry *dq)
2180 {
2181 	struct dpaa_percpu_priv *percpu_priv;
2182 	struct net_device *net_dev;
2183 	struct dpaa_priv *priv;
2184 
2185 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2186 	priv = netdev_priv(net_dev);
2187 
2188 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2189 
2190 	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2191 		return qman_cb_dqrr_stop;
2192 
2193 	dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2194 
2195 	return qman_cb_dqrr_consume;
2196 }
2197 
2198 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2199 					       struct qman_fq *fq,
2200 					       const struct qm_dqrr_entry *dq)
2201 {
2202 	struct dpaa_percpu_priv *percpu_priv;
2203 	struct net_device *net_dev;
2204 	struct dpaa_priv *priv;
2205 
2206 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2207 	priv = netdev_priv(net_dev);
2208 
2209 	/* Trace the fd */
2210 	trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2211 
2212 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2213 
2214 	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2215 		return qman_cb_dqrr_stop;
2216 
2217 	dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2218 
2219 	return qman_cb_dqrr_consume;
2220 }
2221 
2222 static void egress_ern(struct qman_portal *portal,
2223 		       struct qman_fq *fq,
2224 		       const union qm_mr_entry *msg)
2225 {
2226 	const struct qm_fd *fd = &msg->ern.fd;
2227 	struct dpaa_percpu_priv *percpu_priv;
2228 	const struct dpaa_priv *priv;
2229 	struct net_device *net_dev;
2230 	struct sk_buff *skb;
2231 
2232 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2233 	priv = netdev_priv(net_dev);
2234 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2235 
2236 	percpu_priv->stats.tx_dropped++;
2237 	percpu_priv->stats.tx_fifo_errors++;
2238 	count_ern(percpu_priv, msg);
2239 
2240 	skb = dpaa_cleanup_tx_fd(priv, fd);
2241 	dev_kfree_skb_any(skb);
2242 }
2243 
2244 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2245 	.rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2246 	.tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2247 	.rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2248 	.tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2249 	.egress_ern = { .cb = { .ern = egress_ern } }
2250 };
2251 
2252 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2253 {
2254 	struct dpaa_percpu_priv *percpu_priv;
2255 	int i;
2256 
2257 	for_each_possible_cpu(i) {
2258 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2259 
2260 		percpu_priv->np.down = 0;
2261 		napi_enable(&percpu_priv->np.napi);
2262 	}
2263 }
2264 
2265 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2266 {
2267 	struct dpaa_percpu_priv *percpu_priv;
2268 	int i;
2269 
2270 	for_each_possible_cpu(i) {
2271 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2272 
2273 		percpu_priv->np.down = 1;
2274 		napi_disable(&percpu_priv->np.napi);
2275 	}
2276 }
2277 
2278 static int dpaa_open(struct net_device *net_dev)
2279 {
2280 	struct mac_device *mac_dev;
2281 	struct dpaa_priv *priv;
2282 	int err, i;
2283 
2284 	priv = netdev_priv(net_dev);
2285 	mac_dev = priv->mac_dev;
2286 	dpaa_eth_napi_enable(priv);
2287 
2288 	net_dev->phydev = mac_dev->init_phy(net_dev, priv->mac_dev);
2289 	if (!net_dev->phydev) {
2290 		netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2291 		return -ENODEV;
2292 	}
2293 
2294 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2295 		err = fman_port_enable(mac_dev->port[i]);
2296 		if (err)
2297 			goto mac_start_failed;
2298 	}
2299 
2300 	err = priv->mac_dev->start(mac_dev);
2301 	if (err < 0) {
2302 		netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2303 		goto mac_start_failed;
2304 	}
2305 
2306 	netif_tx_start_all_queues(net_dev);
2307 
2308 	return 0;
2309 
2310 mac_start_failed:
2311 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2312 		fman_port_disable(mac_dev->port[i]);
2313 
2314 	dpaa_eth_napi_disable(priv);
2315 
2316 	return err;
2317 }
2318 
2319 static int dpaa_eth_stop(struct net_device *net_dev)
2320 {
2321 	struct dpaa_priv *priv;
2322 	int err;
2323 
2324 	err = dpaa_stop(net_dev);
2325 
2326 	priv = netdev_priv(net_dev);
2327 	dpaa_eth_napi_disable(priv);
2328 
2329 	return err;
2330 }
2331 
2332 static const struct net_device_ops dpaa_ops = {
2333 	.ndo_open = dpaa_open,
2334 	.ndo_start_xmit = dpaa_start_xmit,
2335 	.ndo_stop = dpaa_eth_stop,
2336 	.ndo_tx_timeout = dpaa_tx_timeout,
2337 	.ndo_get_stats64 = dpaa_get_stats64,
2338 	.ndo_set_mac_address = dpaa_set_mac_address,
2339 	.ndo_validate_addr = eth_validate_addr,
2340 	.ndo_set_rx_mode = dpaa_set_rx_mode,
2341 };
2342 
2343 static int dpaa_napi_add(struct net_device *net_dev)
2344 {
2345 	struct dpaa_priv *priv = netdev_priv(net_dev);
2346 	struct dpaa_percpu_priv *percpu_priv;
2347 	int cpu;
2348 
2349 	for_each_possible_cpu(cpu) {
2350 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2351 
2352 		netif_napi_add(net_dev, &percpu_priv->np.napi,
2353 			       dpaa_eth_poll, NAPI_POLL_WEIGHT);
2354 	}
2355 
2356 	return 0;
2357 }
2358 
2359 static void dpaa_napi_del(struct net_device *net_dev)
2360 {
2361 	struct dpaa_priv *priv = netdev_priv(net_dev);
2362 	struct dpaa_percpu_priv *percpu_priv;
2363 	int cpu;
2364 
2365 	for_each_possible_cpu(cpu) {
2366 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2367 
2368 		netif_napi_del(&percpu_priv->np.napi);
2369 	}
2370 }
2371 
2372 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2373 				   struct bm_buffer *bmb)
2374 {
2375 	dma_addr_t addr = bm_buf_addr(bmb);
2376 
2377 	dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE);
2378 
2379 	skb_free_frag(phys_to_virt(addr));
2380 }
2381 
2382 /* Alloc the dpaa_bp struct and configure default values */
2383 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2384 {
2385 	struct dpaa_bp *dpaa_bp;
2386 
2387 	dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2388 	if (!dpaa_bp)
2389 		return ERR_PTR(-ENOMEM);
2390 
2391 	dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2392 	dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2393 	dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2394 
2395 	dpaa_bp->seed_cb = dpaa_bp_seed;
2396 	dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2397 
2398 	return dpaa_bp;
2399 }
2400 
2401 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2402  * We won't be sending congestion notifications to FMan; for now, we just use
2403  * this CGR to generate enqueue rejections to FMan in order to drop the frames
2404  * before they reach our ingress queues and eat up memory.
2405  */
2406 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2407 {
2408 	struct qm_mcc_initcgr initcgr;
2409 	u32 cs_th;
2410 	int err;
2411 
2412 	err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2413 	if (err < 0) {
2414 		if (netif_msg_drv(priv))
2415 			pr_err("Error %d allocating CGR ID\n", err);
2416 		goto out_error;
2417 	}
2418 
2419 	/* Enable CS TD, but disable Congestion State Change Notifications. */
2420 	initcgr.we_mask = QM_CGR_WE_CS_THRES;
2421 	initcgr.cgr.cscn_en = QM_CGR_EN;
2422 	cs_th = DPAA_INGRESS_CS_THRESHOLD;
2423 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2424 
2425 	initcgr.we_mask |= QM_CGR_WE_CSTD_EN;
2426 	initcgr.cgr.cstd_en = QM_CGR_EN;
2427 
2428 	/* This CGR will be associated with the SWP affined to the current CPU.
2429 	 * However, we'll place all our ingress FQs in it.
2430 	 */
2431 	err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2432 			      &initcgr);
2433 	if (err < 0) {
2434 		if (netif_msg_drv(priv))
2435 			pr_err("Error %d creating ingress CGR with ID %d\n",
2436 			       err, priv->ingress_cgr.cgrid);
2437 		qman_release_cgrid(priv->ingress_cgr.cgrid);
2438 		goto out_error;
2439 	}
2440 	if (netif_msg_drv(priv))
2441 		pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2442 			 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2443 
2444 	priv->use_ingress_cgr = true;
2445 
2446 out_error:
2447 	return err;
2448 }
2449 
2450 static const struct of_device_id dpaa_match[];
2451 
2452 static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
2453 {
2454 	u16 headroom;
2455 
2456 	/* The frame headroom must accommodate:
2457 	 * - the driver private data area
2458 	 * - parse results, hash results, timestamp if selected
2459 	 * If either hash results or time stamp are selected, both will
2460 	 * be copied to/from the frame headroom, as TS is located between PR and
2461 	 * HR in the IC and IC copy size has a granularity of 16bytes
2462 	 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2463 	 *
2464 	 * Also make sure the headroom is a multiple of data_align bytes
2465 	 */
2466 	headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
2467 		DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
2468 
2469 	return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom,
2470 					      DPAA_FD_DATA_ALIGNMENT) :
2471 					headroom;
2472 }
2473 
2474 static int dpaa_eth_probe(struct platform_device *pdev)
2475 {
2476 	struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL};
2477 	struct dpaa_percpu_priv *percpu_priv;
2478 	struct net_device *net_dev = NULL;
2479 	struct dpaa_fq *dpaa_fq, *tmp;
2480 	struct dpaa_priv *priv = NULL;
2481 	struct fm_port_fqs port_fqs;
2482 	struct mac_device *mac_dev;
2483 	int err = 0, i, channel;
2484 	struct device *dev;
2485 
2486 	dev = &pdev->dev;
2487 
2488 	/* Allocate this early, so we can store relevant information in
2489 	 * the private area
2490 	 */
2491 	net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2492 	if (!net_dev) {
2493 		dev_err(dev, "alloc_etherdev_mq() failed\n");
2494 		goto alloc_etherdev_mq_failed;
2495 	}
2496 
2497 	/* Do this here, so we can be verbose early */
2498 	SET_NETDEV_DEV(net_dev, dev);
2499 	dev_set_drvdata(dev, net_dev);
2500 
2501 	priv = netdev_priv(net_dev);
2502 	priv->net_dev = net_dev;
2503 
2504 	priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2505 
2506 	mac_dev = dpaa_mac_dev_get(pdev);
2507 	if (IS_ERR(mac_dev)) {
2508 		dev_err(dev, "dpaa_mac_dev_get() failed\n");
2509 		err = PTR_ERR(mac_dev);
2510 		goto mac_probe_failed;
2511 	}
2512 
2513 	/* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2514 	 * we choose conservatively and let the user explicitly set a higher
2515 	 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2516 	 * in the same LAN.
2517 	 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2518 	 * start with the maximum allowed.
2519 	 */
2520 	net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2521 
2522 	netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2523 		   net_dev->mtu);
2524 
2525 	priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2526 	priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2527 
2528 	/* device used for DMA mapping */
2529 	arch_setup_dma_ops(dev, 0, 0, NULL, false);
2530 	err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40));
2531 	if (err) {
2532 		dev_err(dev, "dma_coerce_mask_and_coherent() failed\n");
2533 		goto dev_mask_failed;
2534 	}
2535 
2536 	/* bp init */
2537 	for (i = 0; i < DPAA_BPS_NUM; i++) {
2538 		int err;
2539 
2540 		dpaa_bps[i] = dpaa_bp_alloc(dev);
2541 		if (IS_ERR(dpaa_bps[i]))
2542 			return PTR_ERR(dpaa_bps[i]);
2543 		/* the raw size of the buffers used for reception */
2544 		dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM);
2545 		/* avoid runtime computations by keeping the usable size here */
2546 		dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size);
2547 		dpaa_bps[i]->dev = dev;
2548 
2549 		err = dpaa_bp_alloc_pool(dpaa_bps[i]);
2550 		if (err < 0) {
2551 			dpaa_bps_free(priv);
2552 			priv->dpaa_bps[i] = NULL;
2553 			goto bp_create_failed;
2554 		}
2555 		priv->dpaa_bps[i] = dpaa_bps[i];
2556 	}
2557 
2558 	INIT_LIST_HEAD(&priv->dpaa_fq_list);
2559 
2560 	memset(&port_fqs, 0, sizeof(port_fqs));
2561 
2562 	err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2563 	if (err < 0) {
2564 		dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2565 		goto fq_probe_failed;
2566 	}
2567 
2568 	priv->mac_dev = mac_dev;
2569 
2570 	channel = dpaa_get_channel();
2571 	if (channel < 0) {
2572 		dev_err(dev, "dpaa_get_channel() failed\n");
2573 		err = channel;
2574 		goto get_channel_failed;
2575 	}
2576 
2577 	priv->channel = (u16)channel;
2578 
2579 	/* Start a thread that will walk the CPUs with affine portals
2580 	 * and add this pool channel to each's dequeue mask.
2581 	 */
2582 	dpaa_eth_add_channel(priv->channel);
2583 
2584 	dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
2585 
2586 	/* Create a congestion group for this netdev, with
2587 	 * dynamically-allocated CGR ID.
2588 	 * Must be executed after probing the MAC, but before
2589 	 * assigning the egress FQs to the CGRs.
2590 	 */
2591 	err = dpaa_eth_cgr_init(priv);
2592 	if (err < 0) {
2593 		dev_err(dev, "Error initializing CGR\n");
2594 		goto tx_cgr_init_failed;
2595 	}
2596 
2597 	err = dpaa_ingress_cgr_init(priv);
2598 	if (err < 0) {
2599 		dev_err(dev, "Error initializing ingress CGR\n");
2600 		goto rx_cgr_init_failed;
2601 	}
2602 
2603 	/* Add the FQs to the interface, and make them active */
2604 	list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
2605 		err = dpaa_fq_init(dpaa_fq, false);
2606 		if (err < 0)
2607 			goto fq_alloc_failed;
2608 	}
2609 
2610 	priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
2611 	priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
2612 
2613 	/* All real interfaces need their ports initialized */
2614 	dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs,
2615 			    &priv->buf_layout[0], dev);
2616 
2617 	priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
2618 	if (!priv->percpu_priv) {
2619 		dev_err(dev, "devm_alloc_percpu() failed\n");
2620 		err = -ENOMEM;
2621 		goto alloc_percpu_failed;
2622 	}
2623 	for_each_possible_cpu(i) {
2624 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2625 		memset(percpu_priv, 0, sizeof(*percpu_priv));
2626 	}
2627 
2628 	/* Initialize NAPI */
2629 	err = dpaa_napi_add(net_dev);
2630 	if (err < 0)
2631 		goto napi_add_failed;
2632 
2633 	err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
2634 	if (err < 0)
2635 		goto netdev_init_failed;
2636 
2637 	dpaa_eth_sysfs_init(&net_dev->dev);
2638 
2639 	netif_info(priv, probe, net_dev, "Probed interface %s\n",
2640 		   net_dev->name);
2641 
2642 	return 0;
2643 
2644 netdev_init_failed:
2645 napi_add_failed:
2646 	dpaa_napi_del(net_dev);
2647 alloc_percpu_failed:
2648 	dpaa_fq_free(dev, &priv->dpaa_fq_list);
2649 fq_alloc_failed:
2650 	qman_delete_cgr_safe(&priv->ingress_cgr);
2651 	qman_release_cgrid(priv->ingress_cgr.cgrid);
2652 rx_cgr_init_failed:
2653 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
2654 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2655 tx_cgr_init_failed:
2656 get_channel_failed:
2657 	dpaa_bps_free(priv);
2658 bp_create_failed:
2659 fq_probe_failed:
2660 dev_mask_failed:
2661 mac_probe_failed:
2662 	dev_set_drvdata(dev, NULL);
2663 	free_netdev(net_dev);
2664 alloc_etherdev_mq_failed:
2665 	for (i = 0; i < DPAA_BPS_NUM && dpaa_bps[i]; i++) {
2666 		if (atomic_read(&dpaa_bps[i]->refs) == 0)
2667 			devm_kfree(dev, dpaa_bps[i]);
2668 	}
2669 	return err;
2670 }
2671 
2672 static int dpaa_remove(struct platform_device *pdev)
2673 {
2674 	struct net_device *net_dev;
2675 	struct dpaa_priv *priv;
2676 	struct device *dev;
2677 	int err;
2678 
2679 	dev = &pdev->dev;
2680 	net_dev = dev_get_drvdata(dev);
2681 
2682 	priv = netdev_priv(net_dev);
2683 
2684 	dpaa_eth_sysfs_remove(dev);
2685 
2686 	dev_set_drvdata(dev, NULL);
2687 	unregister_netdev(net_dev);
2688 
2689 	err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
2690 
2691 	qman_delete_cgr_safe(&priv->ingress_cgr);
2692 	qman_release_cgrid(priv->ingress_cgr.cgrid);
2693 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
2694 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2695 
2696 	dpaa_napi_del(net_dev);
2697 
2698 	dpaa_bps_free(priv);
2699 
2700 	free_netdev(net_dev);
2701 
2702 	return err;
2703 }
2704 
2705 static struct platform_device_id dpaa_devtype[] = {
2706 	{
2707 		.name = "dpaa-ethernet",
2708 		.driver_data = 0,
2709 	}, {
2710 	}
2711 };
2712 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
2713 
2714 static struct platform_driver dpaa_driver = {
2715 	.driver = {
2716 		.name = KBUILD_MODNAME,
2717 	},
2718 	.id_table = dpaa_devtype,
2719 	.probe = dpaa_eth_probe,
2720 	.remove = dpaa_remove
2721 };
2722 
2723 static int __init dpaa_load(void)
2724 {
2725 	int err;
2726 
2727 	pr_debug("FSL DPAA Ethernet driver\n");
2728 
2729 	/* initialize dpaa_eth mirror values */
2730 	dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
2731 	dpaa_max_frm = fman_get_max_frm();
2732 
2733 	err = platform_driver_register(&dpaa_driver);
2734 	if (err < 0)
2735 		pr_err("Error, platform_driver_register() = %d\n", err);
2736 
2737 	return err;
2738 }
2739 module_init(dpaa_load);
2740 
2741 static void __exit dpaa_unload(void)
2742 {
2743 	platform_driver_unregister(&dpaa_driver);
2744 
2745 	/* Only one channel is used and needs to be released after all
2746 	 * interfaces are removed
2747 	 */
2748 	dpaa_release_channel();
2749 }
2750 module_exit(dpaa_unload);
2751 
2752 MODULE_LICENSE("Dual BSD/GPL");
2753 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
2754